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Abstract

A truncated Lévy subordinator is a Lévy subordinator in R
+ with Lévy measure restricted

from above by a certain level b. In this paper, we study the path and distribution properties of

this type of processes in detail and set up an exact simulation framework based on a marked

renewal process. In particular, we focus on a typical specification of truncated Lévy subor-

dinator, namely the truncated stable process. We establish an exact simulation algorithm for

the truncated stable process, which is very accurate and efficient. Compared to the existing

algorithm suggested in Chi (2012), our algorithm outperforms over all parameter settings. Us-

ing a distribution decomposition technique, we also develop an exact simulation algorithm for

the truncated tempered stable process and other related processes. We illustrate an applica-

tion of our algorithm as a valuation tool for stochastic hyperbolic discounting, and numerical

analysis are provided to demonstrate the accuracy and effectiveness of our methods. We also

show that variations of the result can also be used to sample two-sided truncated Lévy pro-

cesses, two-sided Lévy processes via subordinating Brownian motions, and truncated Lévy

driven Ornstein-Uhlenbeck processes.

Keywords: Monte Carlo simulation; Exact simulation; Marked Renewal Representation; Stable process; Truncated

stable process; Truncated tempered stable process; Two-sided truncated Lévy process; Brownian motion subordination;

Lévy driven Ornstein-Uhlenbeck process

∗Department of Statistics, London School of Economics, London WC2A 2AE, United Kingdom. Email:

a.dassios@lse.ac.uk
†Department of Mathematics, Brunel University London, Uxbridge UB8 3PH, United Kingdom. Email: jia-

wei.lim@brunel.ac.uk
‡Department of Statistics, University of Warwick, Coventry CV4 7AL, United Kingdom. Email: y.qu3@lse.ac.uk

1



1 Introduction

Lévy subordinators are real-valued Lévy processes with non-decreasing sample paths and common

examples of Lévy subordinators are the Inverse Gaussian and Gamma processes. Truncated Lévy

subordinators are Lévy subordinators which have jump sizes restricted to be below a certain level

b. Just like the original non-truncated subordinator, these processes have bounded variation and in-

finite activity. They have many potential applications in finance and insurance. For instance, Lévy

subordinators have been widely used to model aggregate claim processes in the literature, see Ber-

toin and Doney (1994); Furrer et al. (1997); Furrer (1998); Schmidli (2001); Morales and Schoutens

(2003); Klüppelberg et al. (2004). However, in practice, truncated Lévy subordinators provide bet-

ter representations of aggregate claims than non-truncated Lévy subordinators as there is often an

upper limit to the liability coverage of most insurance policies and excess-of-loss reinsurance taken

up by the insurer also ensure that claim liabilities do not exceed a certain limit. Besides practical

applications in insurance, truncated Lévy subordinators are also closely related to the present value

of stochastic perpetuities. Stochastic perpetuities are of interest in many fields including finance,

astrophysics and number theory (see Vervaat (1979); Embrechts and Goldie (1994); Blanchet and

Sigman (2011)). In particular, the value of a generalised Vervaat perpetuity can be distributionally

decomposed into a truncated Gamma process and a compound Poisson process (see Dassios et al.

(2019)). As an application, we show how the truncated stable process is related to the valuation of

perpetuities with stochastic hyperbolic discounting. This form of discounting is used frequently in

behavioural economics and environmental science, see Sozou (1998); Hepburn et al. (2010); Wang

(2017).

Computational tools for Lévy related processes are very useful, since analytical and probability

results are often difficult to obtain. While truncated Lévy processes have Lévy measure restricted

to the interval (0, b), their density has support on the whole positive real line. For most truncated

Lévy processes, this density is unknown or only has an infinite series representation. Hence, it

is difficult to find an exact simulation scheme to sample this type of processes at a fixed time t.

Approximations can be employed such as that described in Asmussen and Rosiński (2001), but it

imposes a trade-off between computing effort and approximation error. Chi (2012) proposed an

approach by establishing integral series expansion of the density of truncated Lévy subordinator

on [b,∞) in terms of its density on (0, b) and applying rejection sampling suggested in Devroye

(1968) to the integral series expansion to sample the truncated Lévy subordinator, but this is very

computationally intensive.
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In this paper, we propose a general simulation framework to generate the position of trun-

cated Lévy subordinator at a fixed time t, where no procedure of truncation, numerical inversion

or discretisation is required. Our approach is based on a path decomposition of the process, into

subsequent hitting times of level b. This can then be simulated using a marked renewal process -

the process increases b units plus the associated overshoot at every hitting time of level b. Thus,

in order to simulate the position of the process at a fixed time, we only need to know the joint dis-

tribution of the hitting time and overshoot, and the distribution of the process given the condition

that the position of the process is less than the truncation level b. These distributions can be found

for a wide range of truncated subordinators, in particular it can be derived from the density of

the original non-truncated subordinator. Compared with Chi (2012), our procedure is achievable

without the need to derive integral series expansion for the density of the truncated Lévy process.

Another advantage of our method is that the pairs of random variables representing the hitting time

and overshoots are independent and identically distributed, so our algorithm can be vectorised to

reduce computation time.

For implementation, we focus on a typical specification of truncated Lévy subordinators, i.e.

truncated stable process. We make use of the Zolotarev integral representation of the density of

stable processes (Zolotarev, 1966), together with the aid of multi-dimensional acceptance-rejection

schemes, to develop simulation algorithms to sample the hitting times, overshoots and position of

the process given it is less than b. By generating these quantities within the marked renewal frame-

work, we obtain a simulation algorithm to sample the position of the truncated stable process at

a fixed time t. The algorithm is very accurate and efficient. Compared to the existing algorithm

suggested in Chi (2012), our method outperforms over all parameter settings and even more sub-

stantially when the fixed time t is large.

The rest of this paper will be structured as follows. In Section 2, we formally introduce the

truncated Lévy process, and derive key results such as the joint density of its hitting time and over-

shoot. In Section 3, we illustrate the marked renewal representation for the truncated Lévy process

and establish the exact simulation framework accordingly. In Section 4, we look at some specific

examples of truncated Lévy subordinators. Based on the marked renewal framework, we derive

exact simulation algorithms for the truncated stable process and truncated tempered stable process

accordingly. Extensive numerical analysis and comparisons have been carried out and reported

in detail, which demonstrate the accuracy and effectiveness of our algorithms. An application on

the valuation of perpetuity with stochastic hyperbolic discounting is also provided. In Section 5,

based on the marked renewal approach for truncated Lévy subordinator, we propose exact simula-
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Figure 1: Sample paths of a truncated Lévy Subordinator with b = 0.2, 1.5, 3, respectively.

tion schemes for two-sided truncated Lévy processes, two-sided Lévy processes via subordinating

Brownian motions, and truncated Lévy driven Ornstein-Uhlenbeck models. Finally, in Section 6,

we draw a brief conclusion for the paper.

2 Definitions and Distributional Properties

Definition 2.1. A truncated Lévy subordinator Zt is defined by restricting the support of the Lévy

measure ν with an upper bound b. The Laplace transform of Zt is given as

E

î

e−vZt
ó

= exp

Ñ

−t

b∫

0

(1− e−vz)ν(dz)

é

, v ∈ R
+.

Zt preserves most properties of the original Lévy subordinator. It is a non-decreasing process with

bounded variation and infinite activity, i.e, there are infinite number of jumps over a compact in-

terval. The only difference is that the sizes of those infinite number of jumps are not allowed to

exceed a certain level b. This is illustrated Figure 1, where we plot the sample paths of a truncated

Lévy subordinator Zt for three different truncation levels b.
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The original non-truncated Lévy subordinator Xt is thus equivalent to

Xt
D
=Zt +Rt,

where Zt is the truncated Lévy subordinator with Lévy measure restricted to (0, b), and Rt is a

compound Poisson process with mean t

∫ ∞

b
ν(dx), independent from Zt, and the density of its

jump sizes is

f(x) =
ν(dx)

∫ ∞

b
ν(dx)

, b ≤ x < ∞.

This allows us to consider subordinators whose Lévy measure is discontinuous at b, and thus jump

sizes are not characterised by a single continuous distribution. More generally, Rt can be replaced

by any compound Poisson process with an arbitrary Poisson rate and jump distribution.

The paths of the truncated Lévy subordinator Zt can be characterised via hitting times and

associated overshoots. Let T be the first hitting time of level b of the truncated Lévy subordinator

Zt, and W be the associated overshoot at time T , i.e.

T : = inf {t > 0|Zt > b} , (2.1)

W : = ZT − b. (2.2)

The general representation of the joint distribution of the first passage time and the associated

overshoot is formulated in Theorem 2.1 below.

Theorem 2.1. Let T be the first hitting time of level b of Zt with Lévy measure ν, and W be the

overshoot at time T . Then the joint probability density function of (T,W ) is given by

fT,W (t, w) =

b∫

0

fZt(z)ν(b+ w − z)dz, (2.3)

where t ∈ (0,∞), w ∈ (0, b), and fZt(z) denotes the density of Zt within (0, b). In particular, we

have

fZt(z) = eν̄(b)tfXt(z)1{0<z<b}, (2.4)

where ν̄(s) :=

∞∫

s

ν(x)dx, and fXt(·) is the density of Xt with Laplace transform

E

î

e−vXt
ó

= exp

Ñ

−t

∞∫

0

Ä

1− e−vx
ä

ν(dx)

é

. (2.5)
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Proof. Using the strong Markov property of Lévy processes, we have

P (T ∈ dt,W > w) = lim
ǫ→0

1

ǫ
P (Zt−ǫ ≤ b, Zt > b+ w)

= lim
ǫ→0

1

ǫ

b∫

0

P (Zt−ǫ ∈ dz)P (Zǫ > b+ w − z)

=

b∫

0

fZt(z)

∞∫

b+w−z

ν(ds)dz, (2.6)

with

lim
ǫ→0

1

ǫ
P (Zǫ > z) = lim

ǫ→0
L−1







1

ǫv

Ñ

1− exp

Ñ

−ǫ

∞∫

0

(1− e−vs)ν(s)ds

éé





= L−1







1

v

∞∫

0

(1− e−vs)ν(s)ds







=

∞∫

z

ν(s)ds,

where L−1 denotes the inverse Laplace transform. Differentiating (2.6) with respect to w, the joint

density of (T,W ) directly follows (2.3). The density of Zt within (0, b) can be derived though its

Laplace transform, we have

fZt(z)

= L−1
¶

E

î

e−vZt
ó©

1{0<z<b}

= L−1






exp

Ñ

−t

∞∫

0

Ä

1− e−vz
ä

ν(dz)

é

exp

Ñ

t

∞∫

b

Ä

1− e−vz
ä

ν(dz)

é




1{0<z<b}

= L−1






exp

Ñ

−t

∞∫

0

Ä

1− e−vz
ä

ν(dz)

é

exp

Ñ

t

∞∫

b

ν(dz)

é

exp

Ñ

−t

∞∫

b

e−vzν(dz)

é




1{0<z<b}

= L−1







∞∫

0

e−vzfXt(z)dz exp

Ñ

t

∞∫

b

ν(dz)

é

∞∑

k=0

(−t)k

k!

Ñ

∞∫

b

e−vzν(dz)

ék






1{0<z<b}

= eν̄(b)tfXt(z)1{0<z<b}.

where fXt(·) denotes the density of Xt with Laplace transform (2.5).

Under the circumstance that the first passage time of Zt hits level b is greater than t, the dis-

tribution of the truncated process Zt is characterised via its density within (0, b). The details are

illustrated in Theorem 2.2.
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Theorem 2.2. Given the hitting time T , the conditional density of {Zt|T > t} is given by

f(x|T > t) =
fXt(x)

b∫

0

fXt(x)dx

, 0 < x < b, (2.7)

where fXt(·) denotes the density of Xt with Laplace transform (2.5).

Proof. We know that

{Zt|T > t} D
= {Zt|Zt < b},

since {T > t} is equivalent to {Zt < b}. The density therefore satisfies

f(x|T > t) = f(x|x < b) =
fXt(x)

b∫

0

fXt(x)dx

.

Thus, the density immediately follows (2.7).

3 Marked Renewal Representation

The paths of the truncated subordinatorZt can be characterised by a marked renewal process. First,

we define a sequence of hitting time spans T1, T2, T3, ..., and denoting Si =
i∑

j=1
Tj , let

Ti := inf{t > 0|ZSi−1+t > ZSi−1 + b}, i = 2, 3, ... (3.1)

We further define W1,W2, ... to be the overshoots at time S1, S2, ..., i.e.

Wi := ZSi
− ZSi−1 − b. (3.2)

Hence, at time Si the process will automatically increase by (b + Wi) units for all i. Since the

process Zt has independent and stationary increments, each pair of (Ti,Wi) are independent and

identically distributed (i.i.d) with joint density given in Theorem 2.1. In addition, Wi will be

bounded by 0 and b for all i as the jump sizes of the process is restricted with an upper bound b.

The value of the process at time Sn will be ZSn =
n∑

i=1
(b+Wi). The position of the process Zt at

time t therefore can be expressed as using a marked renewal process as follows,

Zt =
Nt∑

i=1

(b+Wi) +
Ä

Zt − ZSNt
| SNt < t < SNt + Tn+1

ä

, (3.3)
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Figure 2: Graphical illustration of a sample path of Xt

T1

b

b
b+W1

T1 + T2

2b+W1

2b+
2∑

i=1
Wi

3b+
2∑

i=1
Wi

b

T1 + T2 + T3 T1 + ...+ Tn+1T1 + ...+ Tn

ZSNt

nb+
n−1∑

i=1
Wi

nb+
n∑

i=1
Wi

t

Zt

time

where Nt =
∞∑

i=1
1{Si≤t} is determined via (3.1) such that t ∈ [SNt , SNt + Tn+1). We also use

Figure 2 to illustrate the marked renewal idea graphically.

The first part in (3.3) represents the position of the truncated process at time SNt before reaches

t. The second term in (3.3) represents the movement of the process within the time span t − SNt

and we have

{Zt − ZSNt
| SNt < t < SNt + Tn+1} D

= {Zt−SNt
|t− SNt < Tn+1}.

Conditioning on t− SNt < Tn+1, the distribution of Zt−SNt
satisfies (2.7) in Theorem 2.2. Thus,

Xt can be simulated by generating pairs of hitting time and overshoot (Ti,Wi), stopping when the

sum of Ti that have been generated, say SNt+1, becomes larger than the input t. We then generate

the part {Zt−SNt
|t− SNt < Tn+1} and return to (3.3). We give the details of the exact simulation

method in Algorithm 3.1. In particular, we show how to emphasize the marked renewal procedure

using a recursive loop. For implementation, one needs to specify the Lévy measure in explicit

form in order to identify the joint density of (T,W ) and the conditional density of {Zt|T > t}. In

the following sections, we consider several typical examples of truncated Lévy subordinators and
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Algorithm 3.1 Marked Renewal Simulation Framework

1. set Z = 0; S = 0

2. repeat{

3. sample (T,W ) from the distribution fT,W (t, w) in (2.3)

4. set S = S + T , Z = Z + b+W

5. if(S > t) break

6. }

7. set ZS−T = Z − b−W

8. sample Zt−(S−T ) from the distribution fZt−(S−T )|T>t−(S−T )(x, t) in (2.7)

9. return ZS−T + Zt−(S−T )

develop associated simulation algorithms based on Algorithm 3.1.

4 Truncated Stable Process

Truncated stable processes retain most properties of stable processes. In this section, we analyse

distributional properties of these processes and develop corresponding exact simulation algorithms

based on marked renewal framework.

4.1 Definitions and Distributional Properties

Let Zt be a truncated Lévy subordinator with Lévy measure

ν(dz) =
αz−α−1e−µz

Γ(1− α)
1{0<z<b}dz, α ∈ (0, 1), µ ∈ R, (4.1)

For µ = 0, Zt is a truncated stable process with stability α, abbreviated as TS(α, t). For µ > 0, Zt

is a truncated tempered stable process with stability parameter α and tilting parameter µ, denoted

by TTS(α, µ, t). For µ < 0, Zt is also a well-defined Lévy subordinator.

The Laplace transform of Zt can be expressed as

E

î

e−vZt
ó

= exp

Ñ

− αt

Γ(1− α)

b∫

0

(1− e−vz)
e−µz

zα+1
dz

é

= exp

Ñ

− αt̂

Γ(1− α)

1∫

0

(1− e−vbz)
e−µbz

zα+1
dz

é

= E

î

e−vbZt̂

ó

,
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where t̂ = tb−α. Hence, for µ = 0, the truncated stable Zt with truncation level b at time t

is identical to bZt̂, where Zt̂ is a truncated stable with truncation level 1 at time t̂. For µ > 0,

the truncated tempered stable with truncation level b, titling parameter µ at time t is identical to

bZt̂, where Zt̂ is a truncated tempered stable with truncation level 1, tilting parameter µb at time t̂.

Therefore, without loss of generality, we set b = 1 in here and other parts of the paper for simplicity.

As the density of a stable process can be expressed using an integral representation of Zolotarev

(1966), see Kanter (1975), Zolotarev (1986), we can easily obtain analytical expression for the joint

distribution (T,W ) and the distribution of {Zt|T > t} based on Theorem 2.1 and 2.2.

Lemma 4.1. For a truncated stable process Zt the joint probability density function of (T,W ) is

given by

fT,W (t, w) =

1∫

w

π∫

0

αe
t

Γ(1−α)

πΓ(1− α)

α

1− α
A(u)y−

1
1−α t

1
1−α e−A(u)y

−
α

1−α t
1

1−α 1

(1 + w − y)α+1
dudy,

(4.2)

and

A(u) :=

ñ

sin(αu)α sin((1− α)u)1−α

sinu

ô
1

1−α

. (4.3)

In addition, given the hitting time T , the conditional density of {Zt|T > t} is given by

f(x|T > t) =

π∫

0

1

Bπ

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α
du, 0 < x < 1, (4.4)

where

B =

π∫

0

1

π
e−A(u)t

1
1−α

du.

Proof. For a stable process St with stability index α and Laplace transform E

î

e−vSt

ó

= e−tvα ,

the density of St is of the form

fα(x, t) = t−
1
α fα(t

− 1
αx, 1)

=
1

π

π∫

0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α
du, (4.5)

with A(u) defined in (4.3) (Devroye, 2009). Hence, the conditional density of Zt within (0, 1) is
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given by

f(x|T > t) = exp

Ñ

tα

Γ(1− α)

∞∫

1

x−α−1dx

é

fα(x, t)

=
e

t
Γ(1−α)

π

π∫

0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α
du. (4.6)

The joint probability density function of the hitting time and overshoot (T,W ) therefore directly

follows (4.2).

For truncated tempered stable process, the joint probability density function of (T,W ) and

the conditional density of {Zt|T > t} depends on the density of the associated tempered stable

process. The details are given below in Lemma 4.2.

Lemma 4.2. For a truncated tempered stable process Zt with Lévy measure (4.1) for µ > 0, the

density of Zt within (0, 1) is given as

fZt(x) =
e

t
Γ(1−α)(e

−µ+µαγ(1−α,µ))

π

π∫

0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α−µxdu (4.7)

with A(u) defined in (4.3) and γ(·, ·) is the lower incomplete gamma function such that

γ(s, x) =

x∫

0

ys−1e−ydy.

Proof. For a general tempered stable process St with Laplace transform

E

î

e−vSt
ó

= exp (−t [(µ+ v)α − µα])

The density of St is of the following form

fα,µ(x, t) = eµ
αt−µxt−

1
α fα(t

− 1
αx, 1).

where fα(·, 1) is the associated density function with stability α. Hence we obtain (4.7) based on

the Zolotarev integral representation and Theorem 2.1.

Lemma 4.3. For a truncated tempered stable process Xt, the joint probability density function of

11



(T,W ) is of the form

fT,W (t, w) =

1∫

w

π∫

0

αe
(e−µ+µαγ(1−α,µ))t

Γ(1−α)

πΓ(1− α)

α

1− α
A(u)y−

1
1−α t

1
1−α e−A(u)y

−
α

1−α t
1

1−α e−µ(1+w)

(1 + w − y)α+1
dudy.

(4.8)

In addition, given the hitting, the conditional density of {Zt|T > t} is given by

f(x|T > t) =

∫ π

0

1

Dπ

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α−µxdu, (4.9)

where

D =

1∫

0

π∫

0

α

π(1− α)
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α−µxdudx.

Proof. (4.8) and (4.9) are derived directly based on Theorem 2.1, 2.2 and Lemma 4.2.

4.2 Exact Simulation Scheme

For µ = 0, with analytical expressions for the joint probability density function (T,W ) and the

conditional density of {Zt|T > t} in Lemma 4.1, we can develop simulation algorithms to sample

(T,W ) and {Zt|T > t} accordingly. The details are provided in the following Algorithm 4.1 and

4.2.

Algorithm 4.1 Exact Simulation of (T,W )

1. set ζ = Γ(1− α)−1; A0 = (1− α)α
α

1−α

2. minimise C(λ) = A0e
ζ

1
α λ1− 1

α α(1−α)
1
α−1

(A0 − λ)α−2

3. record critical value λ∗

4. set C = C(λ∗)

5. repeat{

6. sample U ∼ U [0, π]; U1 ∼ U [0, 1],

7. set Y = 1− U1

1
1−α ; AU =

î

sinα (αU) sin1−α ((1− α)U)/sin(U)
ó

1
1−α ,

8. sample R ∼ Γ(2− α,AU − λ); V ∼ U [0, 1]

9. if( V ≤ AUe
ζR1−αY α

e−λ∗R(AU − λ∗)α−2Y α−1(1− (1− Y )α)/C) break

10. }

11. sample U2 ∼ U [0, 1],

12. set T = R1−αY α; W = Y − 1 + [(1− Y )−α − U2 ((1− Y )−α − 1)]
− 1

α

13. return (T,W ).

12



Proof. The simulation algorithm for (T,W ) is developed based on a multi-dimensional A/R scheme.

The joint probability density function of the hitting time and overshoot is given by

fT,W (t, w) =

1∫

w

π∫

0

f(t, y, u)f(w|y)dudy,

where

f(t, y, u) =
αζ

π(1− α)
A(u)y−

1
1−α t

1
1−α e−A(u)y

−
α

1−α t
1

1−α+ζt
Ä

(1− y)−α − 1
ä

,

for t ∈ (0,∞), y ∈ (0, 1), u ∈ (0, π), and

f(w|y) =
1

(1+w−y)α+1

1
α
((1− y)−α − 1)

, 0 < w < y.

with ζ = 1
Γ(1−α) . We then make a transformation by setting r = y−

α
1−α t

1
1−α , the density of

(R, Y, U) is of the form

f(r, y, u) =
αζeζr

1−αyα

π
A(u)r(1−α)y−(1−α)e−A(u)r(1− y)−α (1− (1− y)α) ,

for r ∈ (0,∞), y ∈ (0, 1), u ∈ (0, π).

To simulate (R, Y, U), we choose an envelope (R′, Y ′, U ′) with density

g(r, y, u) =
1

π

(A(u)− λ)2−αr1−αe−(A(u)−λ)r

Γ(2− α)
(1− α)(1− y)−α,

where U ′ ∼ U [0, π], R′ ∼ Γ(2 − α,A(U) − λ), and Y with CDF G(y) = (1 − y)1−α, which

can be inverted explicitly, i.e. G−1(u) = 1 − u
1

1−α . The random variable can be simulated via

inverse transformation by setting Y ′ = 1−U
1

1−α

1 with U1 ∼ U [0, 1]. Hence, the ratio of these two

densities is given as

f(r, y, u)

g(r, y, u)
=

αζΓ(2− α)A(u)

(1− α)(A(u)− λ)2−α
eζr

1−αyαe−λryα−1(1− (1− y)α)

≤ αζΓ(2− α)A0

(1− α)(A0 − λ)2−α
eζr

1−αyαe−λryα−1(1− (1− y)α)

≤ αζΓ(2− α)A0

(1− α)(A0 − λ)2−α
eζ

1
α λ1− 1

α α(1−α)
1
α−1

= C(λ), (4.10)

where A0 = (1− α)α
α

1−α . Note that C(λ) can be further minimised over λ via numerical optim-

13



isation1.

Given Y , we can directly simulate W via inverse transformation as the CDF of {W |Y } is given

as

F (w|y) = 1

((1− y)−α − 1)

î

(1− y)−α − (1 + w − y)−α
ó

, 0 < w < y,

which can be inverted explicitly and thus simulated via inverse transformation.

Algorithm 4.2 Exact Simulation of {Zt|T > t}
1. sample U1 ∼ U [0, π]

2. set AU1 =
î

sinα (αU1) sin
1−α ((1− α)U1)/sin(U1)

ó
1

1−α

3. repeat{

4. sample U2 ∼ U [0, π]

5. set

Z =

[

− log(U2)

AU1t
1

1−α

]− α
1−α

(4.11)

6. if(Z < 1) break

7. }

8. return Z

Proof. To generate {Zt|T > t}, we can generate the stable process St with the density

f(x) =

π∫

0

1

π

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x

−
α

1−α t
1

1−α
du, 0 < x < ∞,

If St < 1, then we accept the candidate. St can be simulated via inverse transformation, the CDF

is given as

FSt(x) =

π∫

0

1

π
e−A(u)x

−
α

1−α t
1

1−α
du, 0 < x < ∞,

Hence, we first sample a uniform variable with domain (0, π) and then sample St via (4.11) through

inverse transformation.

1The numerical optimisation in here and the other parts of this paper is only carried once before entering the loop.

Hence, the optimisation will not slow down the entire simulation procedure.
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Hence, to generate a truncated stable sample Zt, we implement Algorithm 4.3.

Algorithm 4.3 Exact Simulation of Truncated Stable Zt ∼ TS(α, t)

1. set Z = 0; S = 0

2. repeat{

3. sample (T,W ) via Algorithm 4.1

4. set S = S + T , Z = Z + b+W

5. if(S > t) break

6. }

7. set ZS−T = Z − b−W

8. sample Zt−(S−T ) via Algorithm 4.2

9. return ZS−T + Zt−(S−T )

For µ > 0, the truncated tempered stable process can be simulated either via the marked

renewal approach or via simple rejection method based on truncated stable process. Although

we can use the marked renewal approach to generate this truncated tempered stable, due to the

complexity of the analytical distribution of (T,W ), we therefore design an alternative simulation

scheme based on the simulation algorithm for truncated stable process. As the density for the

truncated stable is obtained by tempering exponential function to the truncated stable process, we

can use an A/R scheme after generating the truncated stable sample. The procedures are illustrated

in Algorithm 4.4.

Algorithm 4.4 Exact Simulation of Truncated Tempered Stable Zt ∼ TTS(α, µ, t)

1. repeat{

2. sample Zt ∼ TS(α, t) via Algorithm 4.3

3. sample V ∼ U [0, 1]

4. if(V ≤ exp(−µZt)) break

5. }

6. return Zt

This algorithm relies on the fact that the density of the truncated tempered stable process is

obtained by multiplying an exponential function to the density of the truncated stable process. The

algorithm only works efficiently for smaller tilting parameter µ. As the complexity of the algorithm

is given by exp(µ), the computation costs will increase rapidly when the tilting parameter increases.

15



In order to improve the efficiency and reduce simulation time, we develop a decomposition scheme

to reduce the size of the tilting parameter when µ is large, the details are provided in Theorem 4.1.

Theorem 4.1. The distribution of truncated tempered stable process Zt ∼ TTS(α, µ, t) can be

exactly decomposed as

Zt
D
= b× Z̃t +

Nt∑

i=1

Ji, b ∈ (0, 1),

where

• Z̃t ∼ TTS(α, µb, t/bα);

• Nt is a Poisson process with rate λt, where2

λ =
îÄ

b−αe−bµ − e−µ
ä

+ µα (Γ(1− α, µ)− Γ(1− α, µb))
ó

/Γ(1− α); (4.12)

• {Ji}i=1,2,... are i.i.d random variables with distribution

fJi(z) =
αz−α−1e−µz

[(b−αe−bµ − e−µ) + µα (Γ(1− α, µ)− Γ(1− α, µb))]
, z ∈ (b, 1), ∀i = 1, 2, ...

(4.13)

Proof. For a truncated tempered stable process Zt with µ > 0, the Laplace transform is of the

following form

E

î

e−vZt
ó

= exp

Ñ

− αt

Γ(1− α)

1∫

0

(1− e−vz)z−α−1e−µzdz

é

= exp

Ñ

− αt

Γ(1− α)

b∫

0

(1− e−vz)
e−µz

zα+1
dz

é

exp

Ñ

− αt

Γ(1− α)

1∫

b

(1− e−vz)
e−µz

zα+1
dz

é

= exp

Ñ

− αt

bαΓ(1− α)

1∫

0

(1− e−vbz)
e−µbz

zα+1
dz

é

exp

Ñ

− αt

Γ(1− α)

1∫

b

(1− e−vz)
e−µz

zα+1
dz

é

,

(4.14)

where b < 1. We can see that

1. The first part of (4.14) is the Laplace transform of Z̃t ∼ TTS(α, µb, t/bα) with Lévy meas-

ure

ν(dz) =
α

bαΓ(1− α)

e−µbz

zα+1
dz,

2. The second part of (4.14) is the Laplace transform of a compound Poisson process. The

2Γ(·, ·) is the upper incomplete gamma function.
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Laplace exponent can be rewritten as

λt

∞∫

0

(1− e−vz)fJi(z)dz, (4.15)

where λ is of the form (4.12) and fJi(·) is of the form (4.13). As λ < ∞, this clearly

indicates that (4.15) is the Laplace exponent of a compound Poisson process.

And the corresponding simulation algorithm based on the decomposition scheme is given as

follows:

Algorithm 4.5 Enhanced Exact Simulation of Truncated Tempered Stable Zt ∼ TTS(α, µ, t)

1. sample Z̃t ∼ TTS(α, µb, t/bα) via Algorithm 4.4

2. set λ = [(b−αe−bµ − e−µ) + µα(Γ(1− α, µ)− Γ(1− α, µb))]/Γ(1− α); i = 0 ; St = 0

3. sample N ∼ Poisson(λt)

4. minimise C(κ) = α(e−(κ+µ)b−e−(κ+µ))max{eκ,eκbb−α−1}

(κ+µ)((b−αe−bµ−e−µ)+µα(Γ(1−α,µ)−Γ(1−α,µb)))
; record critical value κ∗

5. if(N 6= 0){

6. repeat{

7. repeat{

8. sample U ∼ U [0, 1]; V ∼ U [0, 1]

9. set J = − ln(e−(κ∗+µ)b − (e−(κ∗+µ)b − e−(κ∗+µ))U)/(κ∗ + µ)

10. if (V ≤ J−α−1eκ
∗J/max{eκ∗

, eκ
∗bb−α−1} ) break

11. }

12. set St = St + J ; i = i+ 1

13. if(i = N ) break

14. }

15. }

16. return b× Z̃t + St

Proof. According to Theorem 4.1, Z̃t ∼ TTS(α, µb, t/bα) can be simulated via Algorithm 4.4,

with tilting parameter µb. And the i.i.d jumps for the compound Poisson can be simulated via

acceptance-rejection scheme, we choose an envelop random variable J ′ with density

g(z) =
(κ+ µ)e−(κ+µ)z

e−(κ+µ)b − e−(κ+µ)
, z ∈ (b, 1),
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the CDF is given by

G(z) =
e−(κ+µ)b − e−(κ+µ)z

e−(κ+µ)b − e−(κ+µ)
, z ∈ (b, 1),

which can be inverted explicitly, i.e. G−1(u) = − ln(e−(κ+µ)b−(e−(κ+µ)b−e−(κ+µ))u)/(κ+ µ), u ∈
(0, 1), and the random variable J ′ can be simulated via inverse transformation by setting J ′ =

− ln(e−(κ+µ)b − (e−(κ+µ)b − e−(κ+µ))U)/(κ+ µ) with U ∼ U [0, 1]. The A/R constant is given

as

C(κ) =
α
Ä

e−(κ+µ)b − e−(κ+µ)
ä

max
{

eκ, eκb

bα+1

}

(κ+ µ) [(b−αe−bµ − e−µ) + µα (Γ(1− α, µ)− Γ(1− α, µb))]
,

where κ∗ is the critical value that minimises C(κ).

Since we break the truncated tempered stable process into a truncated tempered process with

a smaller tilting parameter and a compound Poisson process, the computation costs will be re-

duced for the truncated tempered stable process with smaller tilting parameter, but there will be

extra costs to generate the compound Poisson process. Therefore, we also need to consider the effi-

ciency to generate the compound Poisson process to choose an optimal b to decompose the process.

Finally, for µ < 0, Zt is a well-defined Lévy subordinator. Based on distributional decompos-

ition, this process can be split into a truncated stable process, and a compound Poisson process.

Details of the decomposition scheme are given in Theorem 4.2.

Theorem 4.2. Let Zt be a Lévy subordinator with Lévy measure

ν(dz) =
αz−α−1e|µ|z

Γ(1− α)
1{0<z<1}, α ∈ (0, 1), µ < 0,

we have

Zt
D
= Z̄t +

Nt∑

i=1

Yi,

where

• Z̄t ∼ TS(α, t);

• Nt is a Poisson process with rate ̺t, where ̺ =
α

Γ(1− α)

1∫

0

(e|µ|z − 1)z−α−1dz.

• {Yi}i=1,2,... are i.i.d random variables with distribution

fYi
(z) =

1

F

e|µ|z − 1

zα+1
, z ∈ (0, 1), (4.16)

with F =

1∫

0

(e|µ|z − 1)z−α−1dz < ∞.
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Proof. The Laplace transform of Zt can be expressed as follows,

E

î

e−vZt
ó

= exp

Ñ

− αt

Γ(1− α)

1∫

0

(1− e−vz)
1

zα+1
dz

é

exp

Ñ

− αtF

Γ(1− α)

1∫

0

(1− e−vz)
e|µ|z − 1

Fzα+1
dz

é

,

(4.17)

where F =

1∫

0

(e|µ|z − 1)z−α−1dz is a finite constant. We can see that the first part of (4.17) ia a

truncated stable process with stability α. The second part of (4.17) is a compound Poisson process

with Poisson rate αtF
Γ(1−α) and the density of the i.i.d jumps, namely fYi

(i), of the form in (4.16) is

a well-defined density as fYi
(z) > 0 for all z ∈ (0, 1) and

∞∫

0

fYi
(z)dz = 1 as F is finite.

Based on Algorithm 4.3 and Theorem 4.2, to generate Zt with µ < 0, one could follow Al-

gorithm 4.6.

Algorithm 4.6 Exact Simulation of Zt with µ < 0

1. sample Z̄t ∼ TS(α, t) via Algorithm 4.3

2. set F = int((e|µ|z − 1)z−α−1, 0, 1); ̺ = αF/Γ(1− α); i = 0 ; Lt = 0

3. sample N ∼ Poisson(̺t)

4. minimise C(ξ) = eξ−1
Fξ(1−α) max

¶

(e|µ| − 1)e−ξ, |µ|
©

5. record critical value ξ∗

6. if(N 6= 0){

7. repeat{

8. repeat{

9. sample U ∼ U [0, 1]; V ∼ U [0, 1]

10. set Y = [ln(U(eξ
∗ − 1) + 1)/ξ∗]

1
1−α

11. if (V ≤ Y −1(e|µ|Y − 1)e−ξ∗Y 1−α
/max{(e|µ| − 1)e−ξ∗ , |µ|} ) break

12. }

13. set Lt = Lt + Y ; i = i+ 1

14. if(i = N ) break

15. }

16. }

17. return Z̄t + Lt
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Proof. According to Theorem 4.2, Zt with µ < 0 can be decomposed into a truncated stable pro-

cess Z̄t with stability index α and a compound Poisson process
Nt∑

i=1
Yi. Z̄t can be directly simulated

via Algorithm 4.3. The i.i.d jumps of the compound Poisson can be simulated via an acceptance-

rejection scheme. We choose an envelope random variable Y ′ with density

g(z) =
ξ(1− α)

eξ − 1

eξz
1−α

zα
, 0 < z < 1,

the CDF is given by

G(z) =
eξz

1−α − 1

eξ − 1
, 0 < z < 1,

which can be inverted explicitly, i.e.

G−1(u) = [ln(u(eξ − 1) + 1)/ξ]
1

1−α , 0 < u < 1.

and the random variable can be simulated via inverse transformation by setting Y ′ = [ln(U(eξ −
1) + 1)/ξ]

1
1−α with U ∼ U [0, 1]. To find the A/R constant, we have

fYi
(z)

g(z)
=

eξ − 1

Fξ(1− α)

(e|µ|z − 1)e−ξz1−α

z

≤ eξ − 1

Fξ(1− α)
max

¶

(e|µ| − 1)e−ξ, |µ|
©

(4.18)

The A/R constant depends on the input µ, in order to obtain high acceptance rate, we use numerical

optimization to find the optimal ξ∗ that minimises (4.18).

4.3 Numerical Studies

In this section, we illustrate the performance and effectiveness of our exact simulation schemes

through extensive numerical experiments. The simulation experiments are all conducted on a nor-

mal laptop with Intel Core i7-6500U CPU@2.50GHz processor, 8.00GB RAM,Windows 10 Home

and 64-bit Operating System. The algorithms are coded and performed in R.3.6.0, and computing

time is measured by the elapsed CPU time in seconds. Numerical validation and test for our al-

gorithms are based on the PDF and CDF of truncated stable process and truncated tempered stable

process, which can be calculated by inverting the Laplace transform numerically3. In particular,

we assess the goodness-of-fit by comparing the CDFs and PDFs obtained by Algorithm 4.3, 4.5

and 4.6 and by the numerical inverse of Laplace transform. The associated plots of CDFs, PDFs

3A variety of methods are available for numerically inverting Laplace transforms with high accuracy, such as Gaver

(1966), Stehfest (1970), Abate and Whitt (1992, 1995, 2006). Here, we use the Euler scheme in Abate and Whitt (2006).
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Figure 3: Comparison of the empirical CDF/PDF for Algorithm 4.3, 4.5 and 4.6 with the CDF/PDF obtained

via numerical inverse under the parameter setting t = 1, α = 0.5 for Algorithm 4.3, t = 1, α =
0.5, µ = 1 for Algorithm 4.5, and t = 1, α = 0.5, µ = −1 for Algorithm 4.6.

and histograms are illustrated in Figure 3. Overall, we can observe that each of these algorithms

can achieve a very high level of accuracy, and the simulated CDF and PDF are fitted well to the

associated numerical inversion.

For truncated stable process, we establish a comparison of CPU time for Algorithm 4.3 with

stability index α = 0.1, 0.2, 0.3, ..., 0.9. The numerical results in detail is reported in Table 1. We

can see that Algorithm 4.3 is more efficient for large stability parameter α. This is due to the fact

that the A/R constantC(λ) in (4.10) is smaller for largeα, i.e. the acceptance rate to sample (T,W )

using Algorithm 4.1, Figure 4, is higher for large α. Larger t also requires more computation time

as one has to generate more hitting times to break the marked renewal routine. We also implement

a comparison between Algorithm 4.3 against the algorithm suggested in Chi (2012). We compared

the computation time to generate 100, 000 samples using these two algorithms for different values

ofα. We can see that sampling based on Algorithm 4.3 is much faster than algorithm in Chi (2012).
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Figure 4: Acceptance rate for Algorithm 4.1 to sample (T,W ) for α ∈ (0, 1).

Table 1: Comparison of the CPU times for Algorithm 4.3 and Algorithm suggested in Chi (2012) for 100, 000
replications, based on parameter setting α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and t = 1,

respectively.

α 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

Algorithm 4.3 9.38 5.47 4.89 3.57 2.40 2.75 2.56 2.36 2.19

Chi (2012) 480.37 495.21 553.78 538.80 557.83 581.21 613.72 639.30 682.49

For instance, for α = 0.5 and t = 1, Algorithm 4.3 is 230 times faster than Chi (2012) for 100, 000

replications. The out-performance of our algorithm would even become much more substantial

when t increases.

For the truncated tempered stable process, we carry out a comparison between Algorithm 4.4

and 4.5. The results are reported in Table 2. We can see that when µ and t are small, the time

needed for two algorithms are more or less the same. However, when µ and t are larger, Algorithm

4.5 outperforms Algorithm 4.4 in terms of computation time.

4.4 Truncated Stable Process and Perpetuities with Hyperbolic Discounting

The truncated stable process is also closely related with the present value of hyperbolic discounting

perpetuity X of the form

X =
∞∑

i=1

h(Ti), (4.19)

where Ti is the time of the ith event of a Poisson process Nt with rate λ and h(·) is the discounting

function of the form

h(t) = (1 + kt)−γ , k ∈ R
+, γ ∈ (1,∞). (4.20)

The Laplace transform of X is provided in Theorem 4.3.

Theorem 4.3. Consider the perpetuity X with hyperbolic discounting in (4.19), the Laplace trans-
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Table 2: Comparison between the true means and the associated simulation results based on parameter setting

t = 0.5, 4, α = 0.5, µ = 1 for Algorithm 4.4, 4.5.

Paths 1,000 4,000 16,000 64,000 256,000 1,024,000 1,000 4,000 16,000 64,000 256,000 1,024,000

α = 0.5 t = 0.5 µ = 1 α = 0.5 t = 4 µ = 1
Algorithm 4.4 0.15 0.56 2.08 7.47 28.41 117.74 0.14 0.61 2.73 10.67 43.81 167.59

Algorithm 4.5 0.11 0.35 1.23 4.14 17.31 76.69 0.12 0.40 1.65 5.45 23.41 90.74

form is given as follows,

E

î

e−vX
ó

= exp

Ñ

− λ

kγ

1∫

0

Ä

1− e−vu
ä

u
−1− 1

γ du

é

, v ∈ R
+. (4.21)

Proof. The infinitesimal generator A of the process (X, t) acting on any function f(x, t) within

its domain Ω(A) is given by

Af(x, t) =
∂f

∂t
+ λ (f(x+ h(t))− f(x)) .

By applying the piecewise-deterministic Markov processes theory and martingale approach, we

can derive the conditional Laplace transform of X . More precisely, set Af(x, t) = 0, we try a

solution of the form e−vxg(t) with v ∈ R
+, where g(t) is deterministic and differentiable function

of t. Then, we get

g′(t) + λg(t)
Ä

e−vh(t) − 1
ä

= 0,

Hence, the martingale is of the form

e−vX exp

Ñ

λ

t∫

0

Ä

1− e−vh(s)
ä

ds

é

.

By martingale property, we obtain

E

î

e−vX
ó

= exp

Ñ

−λ

∞∫

0

Ä

1− e−vh(s)
ä

ds

é

= exp

Ñ

− λ

kγ

1∫

0

Ä

1− e−vu
ä

u
−1− 1

γ du

é

.

We have X
D
=Zt, where Zt represents the position of a truncated stable process at time t =

λΓ(1− α)/[αkγ], such that Zt ∼ TS(1/γ, λΓ(1− α)/[αkγ]). Therefore, we can use Algorithm

4.3 to simulate the hyperbolic discounting perpetuity X . Figure 5 shows the histograms of the

hyperbolic discounting perpetuity X with different parameters of γ.
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Figure 5: Histograms of Hyperbolic Discounting Perpetuity X under the parameter setting γ = 2, 5, 10,

k = 1.5, λ = 2, respectively.

For a more general hyperbolic discounting perpetuity X of the form

X =
∞∑

i=1

Yih(Ti),

with {Yi}i=1,2,... being i.i.d random variables with finite mean, the value of X turns out to be the

position of a truncated Lévy subordinator Xt at the fixed time t = λ
κγ

with Lévy measure

ν(dx) = tx
−1− 1

γ

∞∫

x

y
1
γ fY (y)dy,

where fY (·) is the density of Yi. We could apply the decomposition scheme suggested in Dassios

et al. (2019) to simulate the general hyperbolic discounting perpetuity.

5 Truncated Lévy Related Processes

5.1 Two-sided symmetric Lévy Process

Based on the marked renewal scheme for truncated Lévy process, we can also simulate two-sided

symmetric truncated Lévy processes. Since Lévy process with bounded variation can be repres-

ented as the difference of two independent subordinators, for two-sided symmetric truncated Lévy

process Ẑt with characteristic function

E

[

eiθẐt

]

= exp

Ö

t

b∫

−b

Ä

eiθz − 1
ä

ν(dz)

è

, θ ∈ R, (5.1)

24



-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5
×10

4 Two-Sided Truncated Stable

α=0.6, t=1, µ=0

-4 -3 -2 -1 0 1 2 3 4
0

0.5

1

1.5

2

2.5
×10

4 Two-Sided Truncated Tempered Stable

α=0.6, t=1, µ=2

Figure 6: Histograms of two-sided truncated stable and truncated tempered stable, Ẑt, under the parameter

setting α = 0.6, t = 1, b = 1, and µ = 0, 2, respectively.

where ν is the Lévy measure on R that satisfies the following conditions

∫

R

min{1, z}ν(dz) < ∞;

and ν(z) = ν(−z), ∀z ∈ (−b, b).

Proposition 5.1. The law of Ẑt with characteristic function (5.1) can be exactly decomposed by

Ẑt
D
=Z+

t − Z−
t , (5.2)

where Z+
t , Z−

t are independent truncated Lévy subordinators.

Proof. The characteristic function of Ẑt can be expressed as

E

[

eiθẐt

]

= exp

Ö

t

b∫

−b

Ä

eiθz − 1
ä

ν(|z|)dz

è

= exp

Ñ

t

b∫

0

Ä

eiθz − 1
ä

ν(|z|)dz
é

exp

Ñ

t

b∫

0

Ä

e−iθz − 1
ä

ν(|z|)dz
é

= E

[

eiθ(Z
+
t −Z−

t )
]

, (5.3)

where Z+
t , Z−

t are independent truncated Lévy subordinators with Lévy measure ν(z) on z ∈
(0, b).

In Figure 6, we illustrate the histograms of the two-sided truncated stable and truncated tempered

stable under different parameter settings. Except the two-sided symmetric truncated Lévy pro-

cess, a new class of two-sided symmetric Lévy processes, namely Brownian motions subordinated

by truncated Lévy subordinators, can also be simulated based on the marked renewal simulation
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Figure 7: Histograms of Brownian motion subordinated by truncated stable process BZt
under the parameter

setting t = 1, b = 1, and α = 0.2, 0.5, 0.9, respectively.

scheme. Let Bt be a standard Brownian motion, Zt be an independent truncated Lévy subordin-

ator with Lévy measure νZ on (0, b). The process BZt is a two-sided symmetric Lévy process, the

associated Lévy measure is of the following form,

ν(dx) =

b∫

0

e−
x2

2z√
2πz

νZ(dz)dx, x ∈ R.

Example 5.1. Let Zt be a truncated stable process with truncation level b, BZt is a two-sided

symmetric Lévy process with Lévy measure

ν(dx) =
t

21−απ

Γ(α+ 1/2, x2/[2b])

x1+2α
dx, x ∈ R.

When α = 1/2, BZt is a rapidly decaying tempered stable with stability 1, see Kim et al. (2010),

the Lévy measure is given as

ν(dx) =
t√
2π

e−
x2

2b

x2
dx, x ∈ R.

In Figure 7, we show the histograms for BZt under t = 1 and α = 0.2, 0.5, 0.9.

5.2 Truncated Lévy Driven Ornstein-Uhlenbeck Process

A Lévy driven Ornstein-Uhlenbeck process is the analogue of an ordinary Gaussian OU process

with its Brownian motion part replaced by a Lévy process, Uhlenbeck and Ornstein (1930). The

process is defined via stochastic differential equation as below,

Definition 5.1 (Lévy Driven Ornstein-Uhlenbeck Process). Xt is a Lévy driven Ornstein-Uhlenbeck
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process that satisfies the stochastic differential equation (SDE)

dXt = −δXtdt+ ̺dZt, t ≥ 0, (5.4)

where

• ̺ > 0 is a positive constant;

• δ > 0 is the constant rate of exponential decay;

• Zt is a Lévy subordinator, which is called the background driving Lévy process (BDLP) of

a non-Gaussian OU process.

This class of stochastic processes has been extensively studied in the literature, see Wolfe

(1982), Sato and Yamazato (1984), Barndorff-Nielsen (1998) and Barndorff-Nielsen et al. (1998).

Nowadays, these processes have been widely used as the continuous-time stochastic models for the

observed behaviour of price dynamics in finance and economics, see Barndorff-Nielsen and Shep-

hard (2001b, 2002). It has also been used in option pricing, see Nicolato and Venardos (2003),

Kallsen et al. (2011) and Li and Linetsky (2014), and for describing high-frequency financial data

in market microstructure, see Barndorff-Nielsen and Shephard (2003a,b) and Todorov and Tauchen

(2006).

Due to numerous applications of these models, the availability of efficient and accurate simu-

lation algorithms is particularly important in the context of model validation and statistical infer-

ence, as well as for risk analysis and derivative pricing. The simulation design for exactly sampling

without bias has been recently brought to the attention in the literature. Zhang and Zhang (2008);

Zhang (2011); Qu et al. (2019); Dassios et al. (2017b) suggested exact simulation algorithms for

several types of Lévy driven OU processes with BDLP being Gamma processes, inverse Gaussian

processes, and tempered stable processes, etc. For the truncated Lévy driven OU processes, based

on the decomposition scheme developed in Qu et al. (2019); Dassios et al. (2017b); Qu (2019) and

the marked renewal simulation scheme for the truncated Lévy subordinator, one could also exact

simulate truncated Lévy driven OU processes. In the rest of this section, we consider a typical

example, i.e. the truncated stable driven OU process to demonstrate the methodology.

Exact Simulation of truncated stable driven OU process

Let Xt be an OU process following the SDE in (5.4), with Zt being a truncated stable process with

truncation level b. Given τ ∈ R
+, the distribution of Xt+τ conditional on Xt can be decomposed
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into three basic components: one deterministic trend, one truncated stable, one compound Poisson.

The details are provided in Proposition 5.2.

Proposition 5.2. The distribution of Xt+τ conditional on Xt can be exactly decomposed as

Xt+τ | Xt
D
= wXt

︸ ︷︷ ︸

Deterministic trend

+ T̃ S
︸︷︷︸

Infinite jumps

+
N∑

i=1

Li,

︸ ︷︷ ︸

Finite jumps

τ ∈ R
+, w := e−δτ , (5.5)

where

• T̃ S is a truncated stable with Lévy measure

ν(dx) =
(1− wα)̺

δΓ(1− α)

1

xα+1
1{0<x<bw}dx. (5.6)

• N is a Poisson random variable of rate
̺ζ

δΓ(1−α) , where

ζ =
b−α

α

î

α log(w) + w−α − 1
ó

. (5.7)

• {Li}i=1,2,... are i.i.d random variables with density

fLi
(x) =

x−α − b−α

ζx
, x ∈ (bw, b), (5.8)

which can be simulated via the following A/R procedures:

(1) sample U ∼ U(0, 1); set X = b [w−α − (w−α − 1)U ]
− 1

α ;

(2) sample V ∼ U(0, 1), if

V ≤
Ä

1− b−αXα
ä

/(1− wα),

then, accept X; Otherwise, reject this candidate and go back to Step (1).

Proof. According to Qu (2019), given the Lévy measure Zt in (4.1) with µ = 0, the Laplace

transform of Xt+τ given Xt can be expressed as

E

î

e−vXt+τ | Xt

ó

= e−vwXt exp

Ñ

− α̺

δΓ(1− α)

v∫

vw

1

u

b∫

0

Ä

1− e−uy
ä

y−1−αdydu

é

= e−vwXt exp

Ö

− α̺

δΓ(1− α)

b∫

0

Ä

1− e−vx
ä 1

x

x
w
∧b

∫

x

y−1−αdydx

è
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Figure 8: Simulated pathes of truncated stable driven OU processes, with the parameter setting (δ, ̺,X0) =
(1, 1, 1) within the time period of [0, 10] and 10, 000 equally-spaced discretisation steps.

= e−vwXt exp

Ñ

−(1− wα)̺

δΓ(1− α)

bw∫

0

Ä

1− e−vx
ä 1

x1+α
dx

é

exp

Ñ

− ̺ζ

δΓ(1− α)

b∫

bw

Ä

1− e−vx
ä x−α − b−α

ζx
dx

é

,

(5.9)

with ζ in (5.7). The three components of (5.9) correspond to

1. The Laplace transform of e−δτXt.

2. The Laplace transform of a truncated stable T̃ S with truncation level bw, and the corres-

ponding Lévy measure is specified in (5.6).

3. The Laplace transform of a compound Poisson
N∑

i=1
Li, with Poisson rate ̺ζ

δΓ(1−α) and jump-

size {Li}i=1,2,.. with density fLi
in (5.8).

Based on simulation scheme for truncated stable in Algorithm 4.3 and the decomposition

scheme in Proposition 5.2, one could easily sample the truncated stable driven OU process. In
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Figure 8, we illustrate several simulated paths of the truncated stable driven OU processes under

parameter settings (α, b, δ, ̺,X0) = (0.2, 0.8, 1, 1, 1), (α, b, δ, ̺,X0) = (0.5, 0.8, 1, 1, 1), and

(α, b, δ, ̺,X0) = (0.9, 1.6, 1, 1, 1), respectively. In general, as long as the density of the truncated

Lévy subordinator is specified, one could use the marked renewal method to sample the truncated

Lévy subordinator and use the decomposition scheme in Qu et al. (2019); Dassios et al. (2017b);

Qu (2019) to sample the corresponding non-Gaussian OU process.

6 Concluding Remarks

In this paper, we introduce a new type of Lévy subordinator whose jump sizes are restricted by a cer-

tain truncation level. We have derived some important distributional properties of these processes

and marked renewal representation which leads to an exact simulation framework in general. In par-

ticular, we have developed Algorithm 4.3 to sample the truncated stable process, Algorithm 4.4 to

sample the truncated tempered stable process and Algorithm 4.6 to sample truncated stable related

process. In addition, we develop an enhanced algorithm, Algorithm 4.5, to improve computational

speed for the truncated tempered stable with large tilting parameter. Based on the simulation al-

gorithms for truncated Lévy subordinators, we develop exact simulation schemes for two-sided

Lévy processes and truncated Lévy Ornstein-Uhlenbeck processes. Extensive numerical experi-

ments and tests are established in order to demonstrate the accuracy of our results.
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