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Abstract
We study the Ornstein-Uhlenbeck process having a symmetric normal tempered stable stationary law and represent its
transition distribution in terms of the sum of independent laws. In addition, we write the background driving Lévy process
as the sum of two independent Lévy components. Accordingly, we can design two alternate algorithms for the simulation
of the skeleton of the Ornstein-Uhlenbeck process. The solution based on the transition law turns out to be faster since it is
based on a lower number of computational steps, as confirmed by extensive numerical experiments. We also calculate the
characteristic function of the transition density which is instrumental for the application of the FFT-based method of Carr and
Madan (J Comput Finance 2:61–73, 1999) to the pricing of a strip of call options written on markets whose price evolution is
modeled by such an Ornstein-Uhlenbeck dynamics. This setting is indeed common for spot prices in the energy field. Finally,
we show how to extend the range of applications to future markets.

Keywords Simulations · Normal tempered stable processes · Lévy-driven Ornstein-Uhlenbeck processes · Energy markets ·
Derivative pricing

1 Introduction

Recent studies have shown a growing interest in themodeling
with non-Gaussian Lévy processes of Ornstein-Uhlenbeck
(OU) type typically for financial applications. Indeed, for
instance, interest rates and in particular the spot prices of
energy and commodity markets exhibit mean-reversion and
spikes. Such features are hard to capture with plain Lévy pro-
cesses and even with Gaussian OU processes. As observed
in a series of papers by Barndorff-Nielsen (1998) and
Barndorff-Nielsen and Shephard (2001, 2003) the family of
tempered stable (TS) processes represent a mathematically
manageable class suitable for several financial applications.
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Moreover plain TS processes, under certain parameter con-
ditions, can be taken as subordinators to then time-change
standard Brownian motions yielding another class of Lévy
processes, named normal tempered stable processes (NTS),
where the well-known variance gamma (VG) and normal
inverse Gaussian (NIG) processes are particular cases. These
TS subordinators are built by tempering the Lévy density
of stable subordinators by a given tempering function. This
is typically done with a classical exponentially decreasing
function, but the approach can be conveniently extended tak-
ing completely monotone tempering functions á la Rosiński
(2007) and can be generalized as done by Bianchi et al.
(2017), Kimet al. (September 2010) andfinally by Grabchak
(2016, 2019).

On the other hand, when moving to the OU types the
transition law is in general available in terms of characteristic
functions or of Lévy measures which makes the parameter
estimation and the path simulation non trivial. To this end, for
TS-driven OU processes some new and efficient approaches
have been proposed, for instance in Qu et al. (2019, 2021),
Sabino and Cufaro Petroni (2021b, 2022), Grabchak (2020)
and Grabchak and Sabino (2022) covering the construction
of Lévy-driven OU processes from either the stationary law
or from the backward driving Lévy process (BDLP). When
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however, one considers NTS process of OU type, the state
of art is not fully complete and the aim of this study is to fill
this gap for symmetric NTS distributions.

There are in fact two standardways to associate aNTS dis-
tribution to an OU process X(·): if its stationary law is a NTS
distribution we will say that X(·) is a NTS-OU process; if on
the other hand, X(·) is driven by a NTS background noise we
will say that X(·) is a OU-NTS process. Indeed, a common
convention states that if D is the stationary distribution we
will say that an OU process X(·) is aD-OU process; when on
the other hand, the background noise is distributed accord-
ing to the infinitely divisible law D we will say that X(·) is
an OU-D process. Even though these mathematical objects
are labeled by similar names they are instead very different.
Well-known examples of NTS distributions are the VG and
NIG laws which then according to the aforementioned nam-
ing convention, lead to NIG-OU and VG-OU processes in
the former case, and to OU-NIG and OU-VG processes in
the latter one.

As far as we are aware of, in the current state of affairs, the
transition density and efficient simulation methods are avail-
able for VG-OU processes (see Sabino and Cufaro Petroni
(2021b)), for OU-VG processes (see Cummins et al. (2017)
and Sabino (2020)) and for OU-NTS process with a sym-
metric distribution (see Sabino (2022)) whereas, they are
still outstanding for the combination NTS-OU which moti-
vates this investigation. Actually, the special case ofNIG-OU
processes, will full asymmetric law, was already addressed
in Barndorff-Nielsen (1998) without however providing an
explicit information of the transition law but rather the BDLP
only.

The first contribution of this work is the decomposition
of the transition law of a symmetric NTS-OU process in
terms of independent and manageable distributions. We also
consider the more general tempering functions in the spirit
of Grabchak (2016) that covers completely monotone and
exponential functions as well. The second contribution is the
calculation of the BDLP and its representation as the sum
of independent processes: a NTS and a compound Poisson.
Here instead, we take only a completely monotone temper-
ing. These two results entail two alternate procedures for the
simulation of the skeleton of aNTS-OUprocesses.More pre-
cisely, since one of the components of the BDLP is a NTS
process one can rely on the findings of Sabino (2022) in
the context now of a OU-NTS process and apply them to
the original problem. This solution however, is slower than
the one which starts from the stationary law since it involves
more computational steps as we also illustrate with extensive
numerical experiments.

Having a fast and unbiased simulation algorithm is also
instrumental for the parameter estimation which can accord-
ingly be accomplished viaMonte Carlo-basedmethods other
than via moment (or cumulant) matching.

The simple decomposition in terms of the sum of inde-
pendent random variables allows a simple computation of
the characteristic function and the cumulative generating
function of the transition lawwhich is then an additional con-
tribution. In the context of derivative pricing these quantities
are instrumental for the derivation of the risk-neutral condi-
tions and the application of FFT-based techniques (see Carr
and Madan (1999)). We present an application to the pricing
of a strip of daily European call options written on a market
whose spot dynamics follows a NTS-OU process which is
typical for energy and commodity markets. Of course, the
range of applications can be enlarged to different contracts,
for instance to Asian options using the Fourier techniques
like those in Zhang and Oosterlee (2013), to storage facil-
ities or swing options with the least-squares Monte Carlo
method (see Boogert and de Jong (2008)), or even to the
future markets in order to capture the volatility smile and
the Samuelson effect (see for instance Benth et al. (2019),
Latini et al. (2019) and Piccirilli et al. (2021)). Moreover,
these FFT and MC approaches can be employed in model
calibration from quoted options in which case the param-
eters are obtained by minimizing the distance between the
quoted values and the model option prices computed either
via FFT or via Monte Carlo simulations.

Finally, additional applications could be interest rate or
credit modeling similar to those studied in Bianchi and
Fabozzi (Aug 2015) and even physical modeling like col-
lective motion in the charged particle accelerator beams as
discussed in Cufaro Petroni (2007).

The paper is structured as follows. Sect. 2 sets up the scene
and defines the notation. Sect. 3 illustrates the main results
whereas, Sect. 4 presents the numerical experiments and the
potential applications. Finally, Sect. 5 concludes the paper.

2 Notations and preliminary remarks

In this sectionwepresent the concept of self-decomposability,
its relation to non-Gaussian OU processes and normal
variance-mean mixtures. We also introduce the notation and
the shortcuts that will be used throughout the paper.

2.1 Notation

We write N (μ, σ 2), σ > 0, to denote the Gaussian distri-
bution with mean μ and variance σ 2, U([0, 1]) to denote the
uniform distribution in [0, 1] andP(λ) to denote the Poisson
distribution with parameter λ > 0. We label GGa(d, p, β),
d > 0, p > 0, β > 0 the generalized gamma distribution
with pdf

f (x) = p β p xd−1

�(d/p)
e−(β x)p
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where �(x) represents the Euler gamma function. Of course,
for p = 1 we retrieve the gamma distribution with scale
d and rate β denoted �(d, β) and if X ∼ GGa(d, p, β)

then X p ∼ �(d/p, β p). Moreover, Wκ,μ(z) is theWhittaker
function and Kν(x) is themodifiedBessel function of the sec-
ond kind (see Gradshteyn and Ryzhik (2007)). We use the
shortcut sd for self-decomposable distributions and use the
shortcut rvfor random variable and iid for independently and
identically distributed. Finally, we use chf, lch, cgf, cdf and
pdf as shortcuts for characteristic function, logarithmic char-
acteristic function, cumulant generating function, cumulative
distribution function and density function, respectively.

2.2 Self-decomposable laws and OU processes

A lawwith chf η(u) is said to be sd (see Sato (1999), Cufaro
Petroni (2008)) when for every 0 < a < 1 we can find
another law with chf χa(u) such that

η(u) = η(au)χa(u). (1)

Of course, a rvX with chf η(u) is also said to be sd when its
law is sd, and this means that for every 0 < a < 1 we can
always find two independent rv’s, Y with the same law of X ,
and Za with chf χa(u) such that in distribution

X
d= aY + Za . (2)

Hereafter the rvZa will be called the a-remainderof X and
is infinitely divisible (see Sato (1999)). Several works (see
for instance Barndorff-Nielsen (1998), Sabino and Cufaro
Petroni (2021b, 2022) and Sabino (2020)) have pointed out
that the transition law between the times t and t + 
t of
a Lévy-driven OU process X(·) essentially coincides with
the law of the a-remainder of its sd-stationary distribution,
provided that a = e−b
t where b is the OU mean-reversion
rate.

To see that, take a non-Gaussian one-dimensional Lévy
process L(·), the BDLP, and the OU process X(·)withmean-
reversion rate b > 0, which is solution of the stochastic
differential equation (SDE)

d X(t) = −bX(t)dt + d L(t)

X(0) = X0 P-a.s. b > 0 (3)

namely,

X(t) = X0 e−bt + Z(t), Z(t) =
∫ t

0
e−b (t−s)d L(s).

(4)

Assuming the notation introduced in Section 1, well-known
result (see for instance Cont and Tankov (2004) or Sato

(1999)) states that a distribution D can be the stationary law
of some OU-D process if and only if D is sd. In addition, it
is possible to see (see also Barndorff-Nielsen et al. (1998))
that the solution process (4) is stationary if and only if its
chf ϕX (u, t) is constant in time and coincides with the chf
ϕX (u) of the (sd) invariant initial distribution that turns out
to be sd according to

ϕX (u) = ϕX (u e−b t )ϕZ (u, t) (5)

ψZ (u, t) = ψ X (u) − ψ X (u e−b t ) (6)

where now, at every given t ,ϕZ (u, t) = eψZ (u,t) andψZ (u, t)
denote the chf and the lch of the rvZ(t) in (4), respectively.
This last statement apparently means that the law of Z(t)
in the solution (4) coincides with that of the a-remainderof
the sd, stationary law provided that a = e−b t , as mentioned
before.

A number of relations between the distribution of the sta-
tionary process and that of the rvL(1) are known, we present
here only those ones relevant for this study. Assuming for
simplicity that the Lévy measure of L(1) and that of the
stationary process admit densities, respectively denoted as
νL(x) and νX (x), and supposing that νX (x) is differentiable,
it results (see Sato (1999), Cont and Tankov (2004))

νX (x) = U (x)

b |x | U (x) =
{∫ x

−∞ νL(y)dy x < 0∫ +∞
x νL(y)dy x > 0

(7)

νX (x) + xν′
X (x) = −νL(x)

b
x �= 0. (8)

One can also explicitly calculate the cumulants cX ,k(x0, t),
k = 1, 2, . . . of X(t) for X0 = x0 either from the cumulants
cL,k of L(1) according to

cX ,k(x0, t) = E [X(t)|X0 = x0]

= x0e−b tδ1k + cL,k

k b

(
1 − e−k b t

)
, k ∈ N

∗

(9)

or from those of the stationary law here denoted cX ,k

cX ,k(x0, t) = E [X(t)|X0 = x0]

= x0e−b tδ1k + cX ,k

(
1 − e−k b t

)
, k ∈ N

∗

(10)

where δi j denotes the Kronecker delta. These quantities can
be used both as benchmarks to test the performance of the
simulation algorithms, and to carry out an estimation proce-
dure based on the generalized method of moments.
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2.3 Tempered stable subordinators

In the following sections we will focus our attention on the
OU processes whose stationary law is a NTS law, that can
be seen as the one of a Brownian motion (BM) at time t
subordinated by a TS subordinator with no drift. To this
end, we recall that a TS subordinator S(·) with no drift is
a finite variation Lévy process with characteristic exponent
(che) ψS(u) = t−1 log(ϕS(u, t))

ψS(u) =
∫ +∞

0
(eiux − 1)νS(x)dx,

such that

∫ +∞

0
(x ∧ 1) νS(x)dx < +∞

and Lévy densities of the form

νS(x) = c
q(x)

x1+α
c > 0, 0 ≤ α < 1 (11)

where the tempering term q(x) with q(0) = 1 is monotoni-
cally decreasing and q(+∞) = 0 for x > 0, and q(x) = 0
for x < 0.

We consider tempering functions which can be written as

q(x) =
∫ ∞

0
e−(x s)p

Q(ds), p > α (12)

where Q(·) is a probability measure. This class is a relevant
one-dimensional subfamily of the general TS laws discussed
in Grabchak (2020). It covers for p = 1 the set of completely
monotone functions as in Rosiński (2007), for p = 2 the
case of Rapidly Decreasing TS-OU discussed in Kim et al.
(September 2010) and Bianchi et al. (2017), the Modified
TS-OU studied in Kim et al. (2009), and the Bessel TS-OU
discussed in Chung (2016).

Hereafter, we will denote the law of a TS subordinator at
time t = 1 with T S(α, c, Q, p). Taking p = 1, Q(ds) =
δβ(ds), where δ·(·) represents the Dirac delta, we retrieve
the classical exponentially tilted TS law which we denote
CT S(α, β, c).

2.4 Normal variance-meanmixtures

In order to introduce NTS laws we recall that a rv Y is said to
be distributed according to a normal variance-mean mixture
with mixture pdf fV (x) if it has the form

Y = μ + θ V + σ
√

V X (13)

where X ∼ N (0, 1) and V , independent from X , has pdf
fV (x) defined on the positive real axis R+, θ , μ and σ > 0

are real numbers. The conditional distribution of Y given V is
thus a Gaussian distributionN (μ + θV , σ 2 V ), whereas the
unconditional pdf and chf denoted fY (x) and ϕY (u) respec-
tively, are

fY (x) =
∫ ∞

0

1√
2π σ 2 v

exp

(
− (x − μ − θ v)2

2 σ 2 v

)
fV (v)dv

(14)

ϕY (u) = ei u μϕV

(
θ u + i σ 2 u2

2

)
(15)

where ϕV (u) denotes the chf of V .
Assuming for simplicity μ = 0, the law of Y coincides

with the distribution of the position of a subordinated BM
where the density of the subordinator at a fixed time is given
by fV (x). ANTSdistribution is then a normalmean-variance
mixture distribution with a TS mixture law, accordingly, a
time-changed a BM with drift θ and volatility σ with a TS
subordinator, is a NTS process. Of course taking α = 1/2
and Q(ds) = δβ(ds) we have the well-known NIG process.
Finally, it is possible to see that NTS distribution admits Lévy
density νN (x) which, according to Theorem 4.3 in Cont and
Tankov, can be represented as follows

νN (x) = c

σ
√
2π

∫ +∞

0
e
− (x−μ u)2

2σ2 u
1

uα+3/2

×
∫ +∞

0
e−(s u)p

Q(ds)du. (16)

3 Symmetric NTS-OU processes and their
simulation

In the section we focus on the transition law of OU pro-
cesses whose stationary law is a symmetric NTS. According
the aforementioned notation, such a process is labeled SNTS-
OU. The symmetric NTS distribution assumes μ = θ = 0
in (13) andhereafterwill be dubbed asSNT S(α, c, Q, p, σ )

to reflect its parameters. According to (4) a SNTS-OU pro-
cess can be represented as

X(t) = X(0)e−bt +
∫ t

0
e−b(t−s)d L X (s)

= X(0)e−bt + Z X (t) (17)

and L X (·) is its BDLP. We remark that the case α = 1/2
and Q(ds) = δβ(ds), β > 0 has been already studied in
Barndorff-Nielsen (1998) without the symmetric constrain.
On the other hand, Barndorff-Nielsen (1998) does not focus
on Z X (·) but rather on L X (·). In contrast, we focus on the
former process and show that this different approach, irre-
spective to the extension to a general SNTS-OU process, not
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only explicitly gives information on the transition law of X(·)
but also yields a faster simulation algorithm of its skeleton.
Moreover, finding the chf and the mgf of X(·) is straightfor-
ward.

3.1 Derivation from the stationary law

Proposition 3.1 Denoting a = e−b t and ω = a2, under
the assumption qα = ∫ +∞

0 sα Q(ds) < +∞, the pathwise
solution (17) with X(0) = X0, P-a.s., is in distribution, the
sum of three independent rv’s

X(t) = a X0 + Z X (t)
d= a X0 + X1 + X2 (18)

where

Xi
d= σ

√
Mi Yi , i = 1, 2, (19)

with Y1, Y2, M1, M2 all mutually independent and Yi ∼
N (0, 1), i = 1, 2. M1 ∼ T S(α, c(1 − ωα), Q, p), there-
fore, X1 is distributed according to aSNT S (α, c (1 − ωα),

Q, p, σ ) law. In turn,

M2 =
Pω∑

k=0

Jk, J0 = 0, P-a.s. (20)

is a compound Poisson rv where Pω is an independent Poisson
rv with parameter

�ω = c (1 − ωα)qα

α
�

(
p − α

p

)
(21)

and Jk, k > 0 are iid rv’s with density

f J (u) =
∫ +∞

0

sα Q(ds)

qα

×
∫ ω−1

1

p(s v)p−αu p−α−1e−(s u v)p

�(1 − α/p)

α vα−1

ω−α − 1
dv

(22)

namely, a mixture of a generalized gamma law GGa(p −
α, p, V S)with random rate being the product of two indepen-
dent rv’s: S with cdf FS(ds) = sα Q(ds)/qα and V having
pdf

fV (v) = α

ω−α − 1
vα−1 1 ≤ v ≤ 1/ω. (23)

Proof Taking a = e−bt , the law of of the rv Z X (t) coincides
with that of the a-remainderof a SNT S(α, c, Q, p, σ ) dis-
tribution which is infinitely divisible therefore, we can rely
on the Lévy-Khinchin machinery. According to Proposition

3.1 in Sabino and Cufaro Petroni (2022) the Lévy density
νZ (x, t) of Z X (t) can be written as

νZ (x, t) = c

σ
√
2π

∫ +∞

0

∫ +∞

0

⎛
⎝e

− x2

2 u σ2 − e
− x2

2ω u σ2

a

⎞
⎠

u−α−3/2e−(s u)p
Q(ds)du

By change of variable ω u = y in the second term of the
integral and then changing back y = u the above integral
can be re-written as

νZ (x, t) = c

σ
√
2π

∫ +∞

0

∫ +∞

0

e
− x2

2 u σ2

uα+3/2

(
e−(s u)p − ωαe−(s u/ω)p

)
Q(ds)du

= c (1 − ωα)

σ
√
2π

∫ +∞

0

∫ +∞

0

e
− x2

2 u σ2

uα+3/2 e−s p u p
Q(ds)du

+c ωα

∫ +∞

0

∫ +∞

0

e
− x2

2 u σ2

σ
√
2π u

e−s p u p − e−(s u/ω)p

uα+1

Q(ds)du

= ν1(x, t) + ν2(x, t)

ν1(x, t) is theLévydensity of aSNT S(α, c(1−ωα), Q, p, σ )

distribution hence of an infinitely divisible rv X1
d=

σY1
√

M1, where Y1 ∼ N (0, 1) and M1 ∼ T S(α, c(1 −
ωα), Q, p), and Y1 and M1 independent.

On the other hand, according to Theorem 4.3 in Cont and
Tankov, we note that ν2(x, t) is the Lévy density of a normal
mean-variance mixture law whose mixing distribution has
Lévy density

�(u, t) =
∫ +∞

0

e−(s u)p − e−(s u/ω)p

uα+1 Q(ds)

which corresponds to a compound Poisson rv. Indeed, let
�ω = ∫ +∞

0 �(u, t)du we have

�ω = c ωα

p

∫ +∞

0
Q(ds)

∫ +∞

0

e−s pz − e−s p z/ωp

uα/p+1 dz

= c (1 − ωα)

α
�

(
p − α

p

) ∫ +∞

0
sα Q(ds) < +∞

where we have used the change of variables z = u p and
3.434.1 in Gradshteyn and Ryzhik (2007) hence, we can
write X2 = σY2

√
M2 with M2 = ∑N

n=0 Jn, J0 = 0, P-a.s..
Knowing that

e−(s u)p − e−(s u/ω)p =
∫ ω−1

1
p (s u)pv p−1e−(s u v)p

dv,

the pdf f J (u) = �(u, t)/�ω can be represented as

f J (u) = α

(ω−α − 1) qα�(1 − α/p)
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∫ +∞

0

∫ ω−1

1
p (s u)pv p−1e−(s u v)p

u−α−1dvQ(ds) f J (u)

=
∫ +∞

0

sα Q(ds)

qα

∫ ω−1

1

p (s v)p−αu p−α−1e−(s u v)p

�(1 − α/p)

α vα−1

ω−α − 1
dv

that concludes the proof. ��
Remark 1 From the standard properties of the Gaussian law,
it also holds

Z X (t)
d= σ X

√
M1 + M2 (24)

where X ∼ N (0, 1) and it turns out to be a more convenient
and a computationally efficient way to simulate the skeleton
of X(·).
Proposition 3.1 also provides an algorithm for the simula-
tion of the skeleton of an SNTS-OU process on a time-grid
t0, t1, . . . tM . Assuming at each step am = e−b(tm−tm−1), m =
0, . . . , M , it consists of the following recursion with initial
condition X(t0) = X0:

X(tm) = am X(tm−1) + Z X (tm−1), m = 1, . . . , M,

(25)

also detailed in Algorithm 1. Of course, taking Q(ds) =
δβ(ds), steps 9 simplifies and the TS law turns out to be
a classical TS distribution. The generation of the rv’s in
Algorithm 1 is standard except that for the classical TS dis-
tributed rv M1, for V and S that depends on the specific
tempering function. To this end, the sampling from a classi-
cal TS law has been widely studied by several authors (see
for instance Devroye (2009) and Hofert (2012)), of course,
taking α = 0.5 the TS law coincides with an IG law hence,
one can rely on the many-two-one transformation method of
Michael et al. (1976). Finally, V can be generated via the
inverse method after observing that

V
d= (

1 + U (ω−α − 1)
) 1

α

where U ∼ U([0, 1]).

3.2 Derivation from the BDLP

In any case, from equations (8) we can also characterize
the BDLP of an SNTS-OU process. Such a process has
already been studied in Barndorff-Nielsen (1998) includ-
ing the asymmetric case under the assumption that α = 1/2,
Q(ds) = δβ(ds) and p = 1. It turns out that the BDLP is the
sum of three independent processes, one of them simplifies
out for the symmetric case and more important, can only be
represented in terms of its che, therefore it is not straight-
forward to simulate it and its cdf can only be obtained by

Algorithm 1
1: X(t0) ← X0.
2: for m = 1, . . . , M do
3: am = e−b(tm−tm−1)

4: ωm = a2
m = e−2 b(tm−tm−1)

Independently generate X , M1, Pω, V , S, J
5: x ← X ∼ N (0, 1).
6: m1 ← M1 ∼ T S

(
α, c (1 − ω−α

m ), Q, p
)

7: n ← Pωm ∼ P(�ωm ), � Generate a Poisson rv with �ωm in (21)
8: vi ← Vi , i = 1, . . . , n � Generate rv’s with pdf (23)
9: si ← Si i = 1, . . . , n � Generate rv’s with cdf sα Q(ds)/qα

10: ji ← Ji ∼ GGa(p − α, p, vi si ), i = 1, n � Generate n
generalized gamma rv’s with the same scale 1−α and random rates

11: m2 ← ∑n
i=1 ji

12: zm ← x
√

m1 + m2
13: X(tm) ← am X(tm−1) + zm .
14: end for

numerical inversion. Of course, in this study we are con-
sidering the easier symmetric situation which is somehow
justified by the above observations. The characterization of
the BDLP of a SNTS-OU process is given by the following
proposition, where we take p = 1 then the tempering func-
tion is completely monotone. We will comment on this last
assumption afterward.

Proposition 3.2 Under the assumption of Proposition 3.1,
but with p = 1 and then dropping the dependence on
p from for simplicity, the BDLP L X (·) is the sum of two
independent Lévy processes L1(·) and L2(·). L1(1) ∼
SNT S(α, 2 b α c, Q, σ ), hence it is a SNTS process, and

L2(t) =
N (t)∑
n=0

Hn, H0 = 0, P-a.s. (26)

namely, a compound Poisson process with intensity

λ = 2 b �(1 − α) c qα (27)

and the independent jump sizes have pdf

fH (x) = ν2(x)

λ
= 2α− 1

2

�( 12 )�(1 − α)qα

|x |−α+ 1
2

×
∫ ∞

0
sα Kα− 1

2

(
|x |

√
2 s

σ

)
Q(ds) (28)

Remark 2 From Küchler and Tappe (2008) equation 4.8 and

knowing that W0,ν(z) =
√

z
π

Kν

( z
2

)
, the pdf (28) turns out

to be the pdf of the difference of two independent gamma
mixture laws with mixing distribution having cdf FS(ds) =
sα Q(ds)

qα
, namely H

d= H1 − H2 with H1 and H2 independent

and Hi ∼ �
(
1 − α,

√
2 S
σ

)
, i = 1, 2.
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Proof From Theorem 4.3 and equation A.2 in Cont and
Tankov (2004), the Lévy density ν̄X (x) of a SNT S(α, c,
Q, σ ) distribution can be represented as

ν̄X (x) = c

σ
√
2π

∫ ∞

0

∫ ∞

0
e
− x2

2σ2u u− 3
2−αe−s u Q(ds)du

= |x |−(α+ 1
2 )

∫ ∞

0
Cα,c,σ (s)Kα+ 1

2
(Aσ (s) |x |) Q(ds),

where

Aσ (s) =
√
2s

σ
, Cα,c,σ (s) =

√
2

π
c σ 2α Aσ (s)α+ 1

2 .

From (8) the Lévy density νL(x) of the BDLP is equal to
−b

(
ν̄X (x) + x ν̄′

X (x)
)
, hence after derivation and knowing

that K ′
ν(x) = −Kν−1(x) − ν x−1Kν(x), we get

νL(x) = 2α b|x |−(α+ 1
2 )

∫ ∞

0
Cα,c,σ (s)

×Kα+ 1
2
(Aσ (s) |x |) Q(ds) + b|x |−α+ 1

2

×
∫ ∞

0
Cα,c,σ (s)Kα− 1

2
(Aσ (s) |x |) Q(ds)

= ν1(x) + ν2(x).

ν1(x) is the Lévy density of a SNT S(α, 2 b α c, Q, σ ) law
whereas, ν2(x) is the Lévy density of a compound Poisson
process L2(t) = ∑N (t)

n=0 Hn . Indeed,

λ =
∫
R

ν2(x)dx

= b
∫
R

∫ ∞

0
|x |−α+ 1

2 Cα,c,σ (s)Kα− 1
2
(Aσ (s) |x |) Q(ds)

= 2−α+ 1
2 �

(
1

2

)
�(1 − α)b

×
∫ ∞

0
Cα,c,σ (s)Aσ (s)α− 1

2 Q(ds)

= 2 b�(1 − α) c qα,

where we have used 6.561.16 page 676 in Gradshteyn and
Ryzhik (2007), Kν(x) = K−ν(x) and �( 12 ) = √

π . The pdf
of the jumps is then

fH (x) = ν2(x)

λ

= 2α− 1
2

�( 12 )�(1 − α)qα

|x |−α+ 1
2

×
∫ ∞

0
sα Kα− 1

2

(
|x |

√
2 s

σ

)
Q(ds)

that concludes the proof. ��

Weremark that Proposition3.2 andTheorem3.1 in Barndorff-
Nielsen (1998) are in agreementwhen one takesα = 1/2 and
the symmetric distribution. Of course, our notation is differ-
ent and it is a well known fact that the sum of standard normal
rv’s is chi-squared distributed which in turn is a �(1/2, 1)
law. As a consequence of Proposition 3.2 an SNTS-OU pro-
cess can be alternatively represented as

X(t) = X(0)e−b t +
∫ ∞

0
e−b (t−s)L1(t)

+
∫ ∞

0
e−b (t−s)L2(t) = X(0)e−b t + Z̃(t) + ε(t)

(29)

and accordingly its transition density can also be derived
from (29). Once again for p = 1, and Q(ds) = δβ(ds)
the law of Z̃(t) has been studied in Sabino (2022), Propo-
sition 3.1, and we can rely on the fact that if O ∼
SNT S(α, c, Q, σ ) then κ O ∼ SNT S(α, κ c, Q, σ ), κ >

0. In addition,

ε(t) =
N (t)∑
n=0

e−b (t−τn)Hn
d=

N (t)∑
n=0

e−b Un t Hn, (30)

where τn, n ∈ N are the jumping times of N (·) and Un ∼
U([0, 1]), with Hn, Un, τn, n ∈ N all mutually indepen-
dent. The last equality in distribution is a consequence of
the observations in Lawrance (1980). All these results can
be summarized in the following corollary

Corollary 3.3 Under the assumptions of Proposition 3.2 but
with Q(ds) = δβ(ds), X(t) can be represented as the sum
in distribution of four independent rv’s

X(t)
d= a X0 + 2α b (X̃1 + X̃2) + ε (31)

where X0 = X(0)P-a.s.,

X̃i
d= σ

√
M̃i Yi (32)

with X̃i , M̃i , i = 1, 2 mutually independent, X̃i ∼ N (0, 1).

M̃1 ∼ CT S
(
α,

β
ω
,

c (1−ωα)
2α b

)
, in turn,

M̃2 =
P̃ω∑

k=0

J̃k, J̃0 = 0, P-a.s.

is a compound Poisson rv where P̃ω is an independent Poisson
rv with parameter

�̃ω = c �(1 − α) βα

2 b α2ωα

(
1 − ωα + ωα logωα

)
(33)
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and Jk, k > 0 are iid rv’s with density

f J (x) =
∫ 1

ω

1

x−α (β v)1−α e−β v x

�(1 − α)

× α ωα

1 − ωα + ωα logωα

vα − 1

v
dv (34)

namely, J ∼ �(1 − α, β, Ṽ ) where Ṽ has pdf

fṼ (v) = α ωα

1 − ωα + ωα logωα

vα − 1

v
1 ≤ v ≤ 1/ω

(35)

finally, ε
d= ε(t).

This corollary then, entails an alternative procedure, sum-
marized in Algorithm 2, for the simulation of an SNTS-OU
process valid for p = 1 and Q(ds) = δβ(ds). Of course, it
is not complicated to relax this last assumption, on the other
hand, in our numerical illustrations we will only consider the
case of exponentially tilted TS laws. Finally, Remark 1 is
applicable to the corollary as well.

Algorithm 2
1: X(t0) ← X0.
2: for m = 1, . . . , M do
3: am = e−b(tm−tm−1)

4: ωm = a2
m = e−2 b (tm−tm−1)

Independently generate X , M̃1, M̃2, P̃ω, J , N , H1, H2, U
5: x ← X ∼ N (0, 1).

6: m̃1 ← M̃1 ∼ CT S
(
α,

β
ωm

, c 1−ωmα
2α b

)

7: n1 ← P̃ωm ∼ P(�̃ωm ), � Generate a Poisson rv with �̃ωm in
(33)

8: ṽi ← Ṽi , i = 1, . . . , n � Generate independent rv’s with
pdf (35)

9: β̃i ← β ṽi , i = 1, . . . , n1
10: j̃i ← J̃i ∼ G(1 − α, β̃i ), i = 1, . . . , n1 � Generate n1

gamma rv’s all with the same scale 1 − α and random rates
11: m2 ← ∑n1

i=1 ji
12: z̃m ← x

√
m1 + m2

13: n2 ← N (λ(tm − tm−1)) ∼ P(λ(tm − tm−1)),

14: h̃1,� ← H1,l ∼ G(1 − α,

√
2 β
σ

eb (tm−tm−1)U� ), U ∼
U([0, 1])� = 1, . . . , n2

15: h̃2,� ← H2,l ∼ G(1 − α,

√
2 β
σ

eb (tm−tm−1)U� ), U ∼
U([0, 1])� = 1, . . . , n2

16: εm ← ∑n2
�=1(h̃1,� − h̃2,�)

17: X(tm) ← am X(tm−1) + 2α b z̃m + εm
18: end for

With regards to the simulation of V , an efficient algorithm
is detailed in Sabino and Cufaro Petroni (2022) which is
based on the decomposition-rejection method illustrated in
Devroye (1986) page 67 whereas, in steps 14 and 15 we have
used the fact that if H ∼ �(α, β) then κ H ∼ �(α, β/κ), κ >

0.

It is straightforward to notice that the numbers of steps
of Algorithm 1 is much lower than Algorithm 2 that means
that one can expect that the former one will be faster, as
will be shown in the section with the numerical illustration.
Moreover, as a side-product the two procedures provide eas-
ier ways to perform the parameter estimation from real data
usingMonteCarlo (MC) based techniques compared to those
illustrated in Barndorff-Nielsen (1998) for the NIG process
of OU type.

3.3 The chf and cgf of the transition law

The chf, lch and cgf of the transition law of a SNTS process
are quantities which are very helpful for instance, for the
pricing of financial derivatives or for the derivation of the
risk-neutral conditions.

Proposition 3.4 Under the assumptions of Proposition 3.1
but with p = 1, denoting ϕi (u) and ψi (u) the chf and the
lch of Mi , i = 1, 2 respectively, the chf ϕX (u, t) and the lch
ψX (u, t) of X(t) in (17) are

ϕX (u, t) = ei u X(0) e−b t
ϕZ X (u, t), ϕZ X (u, t)

= ϕ1

(
i σ 2 u2

2
u, t

)
ϕ2

(
i σ 2 u2

2
u, t

)
(36)

ψ1(u) =
∫ ∞

0

(
(s − i u)α − sα

)
Q(ds) (37)

ψ2(u) = �ω (ϕJ (u) − 1) (38)

ϕJ (u) = 1

ω−α − 1

∫ ∞

0

((
1

ω
− i u

s

)α

−
(
1 − i u

s

)α)
FS(ds) (39)

where ϕJ (u) is the chf of J .

Proof Equation (36) is a consequence of (15) and (18),
whereas ψ1(u) is the lch of a TS subordinator, see Küchler
and Tappe (2013). From Proposition 3.1 we know that M2

is a compound Poisson rv therefore (38) expresses its lch in
terms of the chf of the jumps sizes ϕJ (u) which in turn is

ϕJ (u) =
∫ ∞
0

FS(ds)
∫ ω−1

1

α vα−1

ω−α − 1

(
s v

s v − i u

)1−α

= α

ω−α − 1

∫ ∞
0

FS(ds)
∫ ω−1

1

(
v − i u

s

)α−1

= 1

ω−α − 1

∫ ∞
0

((
1

ω
− i u

s

)α

−
(
1 − i u

s

)α)
FS(ds)

��
Remark 3 As far as we are aware of, the chf of a T S(α, c, Q,

p) distribution is known for p = 1 and p = 2 only. In this
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last case the chf can be written in terms of confluent hyper-
geometric functions (see Bianchi et al. (2017)). Moreover,
for p �= 1 it is not possible to write the Lévy density of the
stationary law in terms of the modified Bessel function of the
second type. These observations explain why we presented
some propositions under the less general condition p = 1
only. On the other hand, we conjecture that for p > 1 Propo-
sition 3.2 should be still valid after replacing the gamma
laws with the generalized gamma laws and some other small
changes.

Corollary 3.5 Taking p = 1 and Q(ds) = δβ(ds), the cgf
m X (s, t) of X(t) in (17) defined as m X (s, t) = log E

[
es X(t)

]
is

m X (s, t) = s X(0)e−b t + m Z X (s, t) s ∈
(

−
√
2 β

σ
,

√
2 β

σ

)

m Z X (s, t) = m1

(
s2 σ 2

2

)
+ m2

(
s2 σ 2

2

)
s ∈

(
−

√
2 β

σ
,

√
2 β

σ

)

m1(s) = c (1 − ωα)�(−α)
[
(β − s)α − βα

]
s ≤ β

m2(s) = �ω

[
1

βα(ω−α − 1)

((
β

ω
− s

)α

− (β − s)α
)

− 1

]
, s < β

where m Z X (s, t), m1(s) and m2(s) are the cgf of Z X (t), M1

and M2, respectively.

4 Numerical illustrations

In this section, we analyze the performance and the effec-
tiveness of the algorithms for the simulation of SNTS-OU
processes and we present possible financial applications,
namely derivative pricing.

We also assume, p = 1 and Q(ds) = δβ(ds) and take
CTS subordinators with an unbiased clock, E [S(t)] = t in
which case they form a one-parameter family with

β = 1 − α

ν
, c = 1

�(1 − α)

(
1 − α

ν

)1−α

= β1−α

�(1 − α)
. (40)

Finally, all the numerical experiments in this paper have been
conducted using Python with a 64-bit Intel Core i5-6300U
CPU, 8GB.

4.1 Path simulations

The performance of the algorithms is measured in terms of
the absolute percentage error relatively to the second and
fourth cumulants denoted err % and defined as

err % = |true value − estimated value|
true value

namely, the absolute percentage difference between the the-
oretical values of the second and fourth cumulants and their

MC estimation. From Equation (10) one can calculate the
cumulants cX ,k(x0, t), k = 1, 2, . . . of X(t) for X(0) = x0
knowing the cumulants cX̄ ,k of the stationary SNTS law,
which in turn can be written as (see Sabino (2022))

cX̄ ,2 k = Cα,ν,σ2
2 n−α−1/2 A−2 n+α−1/2

α,ν,σ �

(
2 n + 1

2

)
�

× (n − α) ,

where

Cα,ν,σ = 2α/2+5/4

√
2π �(1 − α)

σα−1/2
(
1 − α

ν

)5/4−α/2

,

Aα,ν,σ =
√
2(1 − α)

νσ 2 .

Of course, one could also legitimately start from (9) but that is
less straightforward. Table 1 and 2 show the estimated cumu-
lants taking (b, σ, ν) = (1, 0.201, 0.256) with two 
t’s and
then varying the number of MC repetition R. Tables 3 also
reports the CPU times in seconds using Algorithm 1 and
Algorithm 2, respectively. The choice 
t = 1/360 and

t = 1/12 can be interpreted as daily and monthly time-
steps, respectively. Apparently, the two different procedures
return unbiased cumulants although a relatively high num-
ber of repetitions should be used to attain low percentage
errors. The speed of convergence seems somehow slower for

t = 1/360, our interpretation is that with this value of

t the expected number of jumps of the compound Poisson
component is low but still non-negligible and accordingly a
higher number of repetitions is required to attain the same
percentage error with 
t = 1/12. In contrast, when looking
at the computational times in Table 3 the alternatives have a
completely different behaviour. As expected, Algorithm 1 is
faster because its implementation is slimmerwith fewer steps
than Algorithm 2. Also one can notice that when α = 0.5 the
execution times are lower in both cases because the I G ran-
dom variate can be drawn with the efficient many-two-one
transformation method of Michael et al. (1976). In com-
parison, the difference in computational time is smaller for

t = 1/360 mainly because the time is dominated by the
generation of TS random variates whereas, for 
t = 1/12
the cost of simulating from the compound Poisson plays a
more relevant role. Based on the above observations, one can
conclude that Algorithm 1 is the more preferable solution.
Finally, Fig. 1 plots the sample trajectories with Algorithm 2
and varying α.

4.2 Financial applications

We consider two financial applications: the pricing of a strip
of daily European options in energy or commodity markets
and the modeling of future markets.
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Table 1 Cumulants, cX ,2 is multiplied by 104 whereas, cX ,4 by 105. (b, σ, ν) = (1, 0.201, 0.256), 
t = 1/360

α = 0.1

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

103 1.915 14.4% 2.970 32.7% 0.651 53.0% 1.747 26.1%

104 2.652 18.5% 2.120 5.3% 1.644 18.7% 0.896 35.3%

2 · 104 2.447 9.3% 2.197 1.9% 1.629 17.6% 1.816 31.1%

5 · 104 2.278 1.8% 2.319 3.6% 1.212 12.5% 1.650 19.1%

105 2.403 7.4% 2.379 6.3% 1.534 10.8% 1.241 10.4%

106 2.263 1.1% 2.250 0.5% 1.341 3.2% 1.441 4.0%

α = 0.3

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

103 1.674 25.2% 1.710 23.6% 0.832 39.9% 0.628 54.7%

104 1.850 17.4% 1.663 25.7% 0.736 46.9% 0.485 65.0%

2 · 104 2.296 2.6% 1.972 11.9% 1.138 17.9% 0.852 38.5%

5 · 104 2.222 0.7% 2.008 10.3% 1.248 9.9% 1.210 12.6%

105 2.179 2.7% 2.067 7.7% 1.274 8.0% 1.260 9.0%

106 2.245 0.3% 2.171 3.0% 1.413 2.0% 1.322 4.5%

α = 0.5

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

103 2.932 31.0% 1.771 20.9% 0.997 28.0% 0.205 85.2%

104 1.897 15.3% 2.600 16.2% 0.982 29.1% 1.043 24.7%

2 · 104 1.912 14.6% 2.576 15.1% 1.201 13.3% 1.562 12.8%

5 · 104 1.929 13.8% 2.455 9.7% 1.559 12.6% 1.237 10.7%

105 2.186 2.3% 2.349 5.0% 1.459 5.4% 1.439 3.9%

106 2.202 1.6% 2.276 1.7% 1.401 1.2% 1.437 3.7%

α = 0.7

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

103 1.107 50.5% 4.016 79.4% 0.050 96.4% 0.902 34.9%

104 1.763 21.2% 1.997 10.8% 0.505 63.5% 0.941 32.0%

2 · 104 1.908 14.7% 2.019 9.8% 1.952 40.9% 0.907 34.5%
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Table 1 continued

α = 0.7

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

5 · 104 2.323 3.8% 2.070 7.5% 1.608 16.1% 0.998 28.0%

105 2.271 1.4% 2.129 4.9% 1.502 8.4% 1.183 14.6%

106 2.259 0.9% 2.203 1.6% 1.402 1.2% 1.307 5.6%

α = 0.9

cX ,2(x0 = 0,
 t) = 2.238 · 10−4 cX ,4(x0 = 0,
 t) = 1.385 · 10−5

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

R MC err% MC err% MC err% MC err%

103 1.643 26.6% 3.556 58.9% 0.010 99.3% 2.904 109.7%

104 2.677 19.6% 2.094 6.5% 2.692 94.3% 0.531 61.7%

2 · 104 2.492 11.4% 2.215 1.0% 1.735 25.2% 1.733 25.1%

5 · 104 2.342 4.6% 2.065 7.7% 1.669 20.5% 0.975 29.6%

105 2.212 1.2% 2.299 2.7% 1.284 7.3% 1.503 8.5%

106 2.242 0.2% 2.189 2.2% 1.449 4.6% 1.329 4.0%

A daily strip of M call options with maturity T and strike
K is a contract with payoff

C(K , T ) =
M∑

m=1

(P(tm) − K )+

=
M∑

m=1

cm(K , tm), 0 = t1, t2, . . . tM = T

where P(·) denotes the spot price process of a certain com-
modity, for instance gas of power. Such a contract normally
encompasses monthly, quarterly and yearly maturities, but is
not very liquid and is generally offered by brokers.

The spot price of power or gas and in general of commodi-
ties exhibit mean-reversion, seasonality and spikes, which
are hard to be modeled in a pure Gaussian world. Differ-
ent approaches have been investigated in order to somehow
extend the classical Gaussian framework introduced in Lucia
and Schwartz (Jan 2002) and Schwartz and Smith (2000).
Among others, Cartea and Figueroa (2005), Meyer-Brandis
and Tankov (2008) and Sabino and Cufaro Petroni (2021a)
have studied mean-reverting jump-diffusions to model sud-
den spikes, whereas . Cummins et al. (2017, 2018), and
Sabino (2022, 2020, 2022) have considered VG, CGMY
and OU-SNTS processes to price power or gas derivative
contracts.

Weassume that the evolution of the spot dynamics is a one-
factor model driven by a SNTS-OU process, this assumption
is somehow similar to Benth and Šaltyté Benth (2004) and
Benth et al. (2007) where the authors instead take a OU-NIG.
Accordingly we have

P(t) = F(0, t) eh(t)+X(t) (41)

where h(t) is a deterministic function, F(0, t) is the forward
curve derived from quoted products and reflects the season-
ality, whereas X(·) is the SNTS-OU process in (4) under the
assumption that p = 1 and Q(ds) = δβ(ds).

For this financial application the chf and the cgf obtained
in Sect. 3.3 play a key role for finding the risk-neutral condi-
tions and the pricing relying on the FFT-based technique of
Carr and Madan (1999). Indeed, as also observed in Lemma
3.1 in Hambly et al. (2009) the risk-neutral conditions are
met when the deterministic function h(t) is given by

h(t) = −m X (1, t) (42)

where m X (s, t) is the cgf of X(t), therefore, assuming for
simplicity X(0) = 0, we have

h(t) = m X (1, t) = m1

(
σ 2

2

)

+ m2

(
σ 2

2

)
,

√
2 β

σ
=

√
2 (1 − α)

νσ 2 > 1 (43)

with mi (·), i = 1, 2 are defined in Corollary 3.5.
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Table 2 Cumulants is multiplied by 103 whereas, cX ,4 by 104. (b, σ, ν) = (1, 0.201, 0.256), 
t = 1/12

R α = 0.1

cX ,2(x0 = 0,
 t) = 2.183 · 10−3 cX ,4(x0 = 0,
 t) = 1.328 · 10−4

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

MC err% MC err% MC err% MC err%

103 6.565 5.8 5.568 10.2 5.124 44.2 2.018 43.2

104 6.307 1.7 6.206 0.1 3.720 4.7 3.187 10.3

2 · 104 6.226 0.4 6.216 0.2 3.648 2.6 3.362 5.4

5 · 104 6.237 0.6 6.276 1.2 3.724 4.8 3.462 2.6

105 6.214 0.2 6.204 0.0 3.608 1.5 3.473 2.3

106 6.215 0.2 6.210 0.1 3.637 2.4 3.551 0.1

R α = 0.3

cX ,2(x0 = 0,
 t) = 2.183 · 10−3 cX ,4(x0 = 0,
 t) = 1.328 · 10−4

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

MC err% MC err% MC err% MC err%

103 5.963 3.9 7.068 14.0 4.185 17.8 3.981 12.0

104 6.275 1.2 5.830 6.0 3.215 9.5 3.142 11.6

2 · 104 6.227 0.4 6.042 2.6 3.283 7.6 3.295 7.3

5 · 104 6.120 1.3 6.156 0.8 3.363 5.4 3.583 0.8

105 6.210 0.1 6.090 1.8 3.515 1.1 3.453 2.8

106 6.183 0.3 6.124 1.3 3.517 1.0 3.563 0.3

R α = 0.5

cX ,2(x0 = 0,
 t) = 2.183 · 10−3 cX ,4(x0 = 0,
 t) = 1.328 · 10−4

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

MC err% MC err% MC err% MC err%

103 5.891 5.0 6.365 2.6 2.441 31.3 3.161 11.0

104 6.271 1.1 6.165 0.6 3.183 10.4 2.755 22.5

2 · 104 6.170 0.5 6.275 1.2 3.191 10.2 3.187 10.3

5 · 104 6.198 0.1 6.277 1.2 3.411 4.0 3.214 9.5

105 6.176 0.4 6.220 0.3 3.427 3.6% 3.345 5.9

1000000 6.199 0.1 6.215 0.2 3.509 1.3% 3.550 0.1

R α = 0.7

cX ,2(x0 = 0,
 t) = 2.183 · 10−3 cX ,4(x0 = 0,
 t) = 1.328 · 10−4

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

MC err% MC err% MC err% MC err%

103 6.255 0.9 5.606 9.6 5.802 63.3 6.147 73.0

104 6.062 2.3 5.640 9.1 4.920 38.4 4.416 24.3

2 · 104 6.111 1.5 5.633 9.2 2.492 29.9 4.416 24.3

5 · 104 6.232 0.5 5.716 7.8 3.744 5.4 3.373 5.1

105 6.211 0.1 5.925 4.5 3.504 1.4 3.530 0.7

1000000 6.212 0.2 6.061 2.3 3.560 0.2 3.533 0.6

123



Statistics and Computing            (2022) 32:81 Page 13 of 17    81 

Table 2 continued

R α = 0.7

cX ,2(x0 = 0,
 t) = 2.183 · 10−3 cX ,4(x0 = 0,
 t) = 1.328 · 10−4

Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

MC err% MC err% MC err% MC err%

103 5.441 12.3 5.497 11.4 0.638 82.1 0.663 81.4

104 5.987 3.5 5.455 12.1 2.105 40.8 5.836 64.2

2 · 104 6.014 3.0 5.637 9.1 2.348 33.9 4.074 14.6

5 · 104 6.182 0.3 5.713 7.9 3.812 7.3 3.974 11.8

105 6.275 1.2 5.855 5.6% 3.712 4.5 3.640 2.4

106 6.211 0.1 5.922 4.5% 3.700 4.1 3.487 1.9

Table 3 Computational times in seconds for R = 106 repetitions (b, σ, ν) = (1, 0.201, 0.256). A 1 and A 2 stand for Algorithm 1 and Algorithm 2,
respectively whereas, the columns relative to A 2 are the multiplicative factors compared to the CPU’s of Algorithm 1

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2 A 1 A 2


t = 1/360 1.422 ×1.6 1.416 ×1.6 1.024 ×1.1 1.404 ×1.6 1.408 ×1.5


t = 1/12 2.210 ×1.9 2.128 ×1.8 1.477 ×1.4 1.938 ×1.8 1.631 ×1.7

As a consequence of Proposition 3.4, we can make use of
the explicit form of the chf of the log P(t) = log F(0, t) +
h(t)+ X(t) to compute the price of such a strip of calls using
the FFT-based technique of Carr and Madan (1999).

For this specific example we consider a set with real-
istic parameters, taken from Sabino (2022), (b, ν, σ ) =
(10, 0.7, 0.2) and let α vary. In addition, in order to better
highlight the dependency on thematurity andα, we take a flat
forward curve F(0, t) = 20, indeed the seasonality changes
the moneyness of the strip of call options and could shadow
some features; therefore we also assume an at-the-money
strike K = 20.

Table 4 shows the numerical results relatively to differ-
ent α’s and different maturities spanning from one month to
one year. Table 4 also compares the results obtained with the
FFT method to those with the MC method with 105 simula-
tions. As far as this last method is concerned, we also report
the standard errors defined as the sample standard devia-
tion divided by the square root of the relative number of
simulations. As expected, we observe that the FFT and the
MC approaches return comparable results, of course the FFT
method is known to be faster and is then preferable.

As second application we consider forward contracts in
energy markets, sometimes called swaps, whose value at
time t , maturity T , t ≤ T ≤ T1 < T2, and with delivery
period [T1, T2] is denoted by F(t, T1, T2). Often the evo-
lution of these contracts is modeled by exponential Lévy or
additive processes as done for instance in Kiesel et al. (2009)
or Goutte et al. (2014) with one or more driving factors. A
discussion on the differences of the available approaches is

beyond the scope of this study, what is nevertheless rele-
vant is the fact that European call and put options written
on these contracts exhibit a volatility smile and the so-called
Samuelson effect which cannot be described by a pure Lévy
or exponential Lévy mode. One has to resort then to additive
processes. In the same vein of the setting of Piccirilli et al.
(2021) but for simplicity with one-factor only, one canmodel
F(t, T1, T2) as

F(t, T1, T2) = F(0, T1, T2) +
∫ t

0
�(u, T1, T2)d L X (u)

− m(t, T1, T2) (44)

where m(t, T1, T2) is a deterministic functions that ensures
that F(·, T1, T2) is a martingale. Moreover,

�(u, T1, T2) = γ

b (T2 − T1)

(
e−b (T1−u) − e−b (T2−u)

)
(45)

is another deterministic functions meant to capture the
Samuelson effect (see also Jaeck and Lautier (2016)). Of
course, such dynamics are related to the process studied in
Section 3, because, after some algebra, it turns out

X(t, T1, T2) = γ1

b (T2 − T1)

(
e−b (T1−t) − e−b (T2−t)

)
∫ t

0
e−b (t−u)d L1(u) = �(t, T1, T2)Z X (t),

hence the chf and in the particular, the simulation proce-
dure of the skeleton of the additive process X(·, T1, T2) can
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Fig. 1 Sample trajectories of a SNTS-OU process with (b, σ, ν) = (1, 0.201, 0.256)

Table 4 Strip of at-the money call option prices obtained with the FFT and the MC method with 105 simulations under the assumption that
(b, σ, ν) = (10, 0.2, 0.7)

α = 0.1 α = 0.3 α = 0.5 α = 0.7 α = 0.9

FFT MC FFT MC FFT MC FFT MC FFT MC

T = 1/12 26.20 25.95 ± 0.15 27.29 27.13 ± 0.15 28.49 28 ± 0.15 29.79 28.19 ± 0.15 31.58 30.62 ± 0.15

T = 3/12 111.29 110.36 ± 0.47 113.07 112.43 ± 0.47 115.09 114.64 ± 0.46 117.51 116.32 ± 0.47 121.30 120.09 ± 0.46

T = 1/2 244.00 243.23 ± 0.80 246.57 246.32 ± 0.80 249.60 247.11 ± 0.80 253.45 252.98 ± 0.80 259.95 258.15 ± 0.79

T = 9/12 376.84 375.86 ± 1.04 380.19 379.95 ± 1.03 384.22 381.95 ± 1.03 389.50 388.79 ± 1.03 398.70 396.9 ± 1.02

T = 1 509.67 507.91 ± 1.23 513.81 513.74 ± 1.22 518.84 516.09 ± 1.22 525.55 525.11 ± 1.22 537.45 535.55 ± 1.21

be derived from those of Z X (·). Accordingly one can adopt
FFT or MC-based techniques to price derivative contracts
and in addition, can rely on simulation methods which are
very useful for risk managers to derive information about
the distribution of the traded portfolios and a view on their
risk profile. To this end, it is fundamental to dispose of an
exact and non-biased simulation schemewith sufficiently fast

computational speed that can be run with different parame-
ter settings and market conditions. Finally, Fig. 2 shows the
evolution according to the model (4.2) of a swap contract
with maturity in six months, T1=1/2, and delivery period
over a quarter, T2 − T1 = 1/4, assuming (b, σ, ν) =
(20, 0.201, 0.256), with initial price F(0, T1, T2) = 20 and
different values of α.
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Fig. 2 Sample trajectories of F(·, T1, T2) with T1 = 1/2, T2 = T1 + 1/4, F(0, T1, T2) = γ = 20, (b, σ, ν) = (20, 0.201, 0.256)

5 Conclusions

In this paper we have studied the properties of the OU pro-
cess with a symmetric normal tempered stable stationary law,
named symmetric NTS-OU process, with main focus on the
transition law and the backward driving Lévy processes. Our
findings complement the existing state of affairs because the
characterization of a NTS-OUwas still missing. On the other
hand the full asymmetric case has not here been covered and
will be the object of future studies.

We have found that the transition distribution and the
backward driving Lévy process can be represented in terms
of the sum of independent random variables or processes,
where two terms are always of normal tempered stable and
of compound Poisson type. This result has two important
implications: the design of fast simulation methods and the
derivation of the characteristic function.We then present two
applications to energy or commodity markets, namely the

pricing of a strip of European call options and the modeling
of forward markets.
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