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Abstract
Constructing Lévy-driven Ornstein–Uhlenbeck processes is a task closely related to
the notion of self-decomposability. In particular, their transition laws are linked to the
properties of what will be hereafter called the a-remainder of their self-decomposable
stationary laws. In the present study we fully characterize the Lévy triplet of these
a-remainders and we provide a general framework to deduce the transition laws of the
finite variation Ornstein–Uhlenbeck processes associated with tempered stable distri-
butions. We focus finally on the subclass of the exponentially-modulated tempered
stable laws and we derive the algorithms for an exact generation of the skeleton of
Ornstein–Uhlenbeck processes related to such distributions, with the further advan-
tage of adopting procedures which are tens of times faster than those already available
in the existing literature.
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1 Introduction

The Lévy-driven Ornstein–Uhlenbeck (OU) processes have attracted considerable
interest in recent studies because of their potential applications to a wide range of
fields. As observed in Barndorff-Nielsen and Shephard (2001), these OU process
are mathematically tractable and can be seen as the continuous-time analogues of
the autoregressive AR(1) processes (see Wolfe 1982). They constitute indeed a rich
and flexible class that can accommodate features such as jumps, semi-heavy tails and
asymmetry which are well evident in the real physical phenomena as well as in the
financial data. The energy and commodity markets exhibit for instance a strong mean-
reversion and sudden spikes which makes the use of the Lévy-driven OU-processes
more advisable than the standard Gaussian framework. In addition, several approaches
based on Lévy processes such as the Variance Gamma (VG) or the Normal Inverse
Gaussian (NIG) have been proposed to overcome the known limits of the usual Black-
Scholes model (see Madan and Seneta 1990 and Barndorff-Nielsen 1998): all these
non Gaussian noises can of course be adopted as the drivers of OU processes. Example
of their applications to mathematical finance can be found in Benth and Pircalabu
(2018), Sabino (2020a) and Sabino and Cufaro Petroni (2021b) in the context of
energy markets, in Bianchi and Fabozzi (Aug 2015) for the modeling of credit risk
and in Barndorff-Nielsen and Shephard (2001) for stochastic volatility modeling.

The distributional properties of a non-Gaussian process of OU-type are closely
related to the notion of self-decomposability (sd), because as noted in Barndorff-
Nielsen and Shephard (2001) and in Taufer and Leonenko (2009), the stationary law
of such a processmust be sd.We recall here that a lawwith characteristic function (chf )
η(u) is said to be sd (see Sato 1999; Cufaro Petroni 2008) when for every 0 < a < 1
we can find another law with chf χa(u) such that

η(u) = η(au)χa(u). (1)

Of course a random variable (rv) X with chf η(u) is also said to be sd when its law
is sd, and looking at the definitions this means that for every 0 < a < 1 we can
always find two independent rv’s—a Y with the same law of X , and a Za with chf
χa(u)—such that in distribution

X
d= aY + Za (2)

Hereafter the rv Za will be called the a-remainder of X and in general has an infinitely
divisible distribution (id) (see Sato 1999). We will show in the following (see also
Barndorff-Nielsen 1998; Sabino and Cufaro Petroni 2021a, Sabino 2020a) that the
transition law between the times t and t + �t of a Lévy-driven OU process X(t)
essentially coincides indeed with the law of the a-remainder of its sd-stationary distri-
bution, provided that a = e−b�t where b is the OUmean-reversion rate. It is therefore
natural to investigate the properties of the a-remainder of a certain sd law even irre-
spective of its possible relation to the theory of the OU processes.

In this study we focus our attention on the class of the tempered stable (TS) distri-
butions (see for instance Rosinski 2007 and Grabchak 2016) with finite variation, and
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we provide a general framework to derive their transition laws from their associated
a-remainders. There are in fact two standard ways to associate a TS distribution to an
OU process X(·): if its stationary law is a TS distribution we will say that X(·) is a
TS-OU process; if on the other hand, X(·) is driven by a TS background noise we will
say that X(·) is a OU-TS process.

Some of the results discussed in the following sections are not new: Kawai and
Masuda (2011, 2012) and Zhang (2011), for instance, have considered OU processes
whose stationary law is an exponentially-modulated TS distribution, hereafter called
classical TS (CTS), whereas (Bianchi et al. 2017) have taken into account the rapidly
decreasing TS laws (RDTS), and (Grabchak 2020) finally merged all these laws in
the larger class of the general TS distributions. Recently (Qu et al. 2021) have also
studied both CTS-OU and OU-CTS processes.

We approach the theory of OU processes differently namely, from the point of view
of the a-remainder’s of the stationary law. To this end, the first contribution of this
inquiry is the characterization of the Lévy triplet of the a-remainder of a sd law: this
would of course constitute a crucial building block in the construction of a Lévy-driven
OU processes. On the other hand, we remark that—by exploiting properties valid for
every id distribution—an explicit knowledge of the Lévy triplet of the a-remainder
makes very easy and straightforward the calculation of the cumulants of the transition
law of a OU process. This turns out in particular, to be a remarkable asset in testing
the efficiency of the simulation algorithms and can be adopted for the parameters
estimation. It is also worthwhile remarking that the laws of the a-remainders are in
fact id, and therefore they lend the possibility of producing an entire new class of
associated Lévy processes as shown for instance in Gardini et al. (2021, 2022a, b).

In this perspective, the second contribution of the present paper consists in har-
monizing the know results relative to TS processes of OU type in the scheme of the
a-remainders, and in showing the further advantages of this approach: some of the the-
orems in the aforementioned literature become indeed special cases of this proposed
comprehensive framework. Also, compared to the existing literature we can test the
simulation algorithms more thoroughly taking higher order cumulants instead of just
the mean and the variance.

Finally, as done in Qu et al. (2021), we focus our attention on the case of the
CTS related OU processes with their transition laws, both for the OU-CTS and the
CTS-OU cases, but within the perspective of the a-remainders. The third contribution
is the derivation of a few new algorithms intended to simulate the skeleton of such
processes which are tens of times faster than those available in the existing literature.
We find in particular that for the simulation of the CTS-OU processes our procedure
is computationally more efficient and by far faster than that of Zhang (2011) because
it does not rely on an acceptance rejection method (other than that required to draw
from a CTS law), but rather on the inverse method (see Devroye 1986). For OU-CTS
processes instead, we designed a new procedure based on an acceptance rejection
method that, at variance with that of Qu et al. (2021), has the advantage of having an
expected number of iterations before acceptance that can always be kept arbitrarily
close to 1.More important,we focus on computational efficiency and propose a flexible
approximation which can even skip such an acceptance rejection step which leads to a
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remarkably faster solution compared to that of Qu et al. (2021). Finally, our numerical
experiments also suggest a simple strategy for the parameter estimation.

The paper is organized as follows: the Sect. 2 introduces the notations and the
preliminary notions. In particular it presents the basic properties of non-Gaussian OU
processes and their relation with the sd laws. In the Sect. 3 we then derive the Lévy
triplet of thea-remainder of an arbitrary sd law, and in particular that of thea-remainder
of a general TS distribution with finite variation. These results are instrumental to
explicitly write down the transition law of CTS-OU process. In the subsequent Sect. 5
we focus on the OU-CTS processes, and in Sect. 6 we present the algorithms for the
simulation of the skeleton of both the CTS-OU and the OU-CTS processes pointing
out their differences and their advantages with respect to the solutions already existing
in the literature. The Sect. 7 illustrates the effectiveness of our simulation schemes by
comparing the true values and theMonte Carlo estimated values of the first four cumu-
lants.We also consider some approximation schemes to further check the performance
of our procedures and we propose a simple approach to the parameters calibration.
Finally the Sect. 8 concludes the paper with an overview of future inquiries and of
possible further applications.

2 Notations and preliminary remarks

Before proceeding, we introduce some notation relative to the various distributions
that we consider in the paper. We write G(α, β) to denote the gamma distribution with
shape parameter α > 0 and rate parameter β > 0. We write U([0, 1]) to denote a
uniform distribution in [0, 1] and P(λ) to denote the Poisson distribution with mean
λ > 0. Finally, we use the shortcuts pdf, lch and iid for probability density function,
logarithmic characteristic and independent and identically distributed, respectively.

Take a—possibly non-Gaussian—one-dimensional Lévy process L(·), and the OU
process X(·) which is solution of the stochastic differential equation (SDE)

d X(t) = −bX(t)dt + d L(t) X(0) = X0 P-a.s. b > 0 (3)

to wit

X(t) = X0 e−bt + Z(t) Z(t) =
∫ t

0
e−b (t−s)d L(s). (4)

Hereafter L(·) will be called background driving Lévy process (BDLP) and L(t) will
also represent its stationary increment ofwidth t that completely define the process, but
for an arbitrary initial condition. It is known that the chf ϕL(u, t) of these increments,
and their lch ψL(u, t) = ln ϕL(u, t) are retrievable from a given id law with chf
ϕL(u) = eψL (u) according to

ϕL(u, t) = ϕL(u)t ψL(u, t) = t ψL(u).
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Based on the Lévy-Khinching representation theorem (see Sato 1999 pp. 37–38)
ψL(u) can be characterized in terms of the generating triplet (γ g, σ, ν)g:

ψL(u) = iuγ g − 1

2
σ 2 u2 +

∫
R

(eiux − 1 − iuxg(x))ν(dx)

where γ g ∈ R, σ > 0, ν(·) is a measure on R such that ν({0}) = 0 and∫
R
(1 ∧ |x |2)ν(dx), and g : R → R satisfying g(x) = 1 + o(x) as x → 0 and

g(x) = O(1/|x |) as x → ∞; g is called the truncating function. In this paper, unless
explicitly mentioned, we consider g(x) = 1|x |≤1 and write the relative generating
triplet (γ, σ, ν).
Following a Barndorff-Nielsen and Shephard (2001) convention, ifD is the stationary
distribution we will say that X(·) is a D-OU process; when on the other hand the rv
L(1) is distributed according to the id lawDwewill say that X(·) is an OU-D process.
Awell-known result (see for instance Cont and Tankov 2004 or Sato 1999) states that a
distributionD can be the stationary law of some OU-D process if and only ifD is self-
decomposable (sd, see more below). In addition, just by taking an arbitrary degenerate
initial condition X0 = x0, P-a.s.—and if we can manage to retrieve the distribution
of its second, integral term Z(t)—from the pathwise solution (4) it is also apparently
possible to deduce the transition law of the Markov process X(·), and therefore all its
distributional details in an explicit form. It is appropriate to point out moreover that
in the Eq. (4) we provided the solution in terms of the original BDLP L(t) rather than
of the dimensionless time BDLP L(b t) as done in Barndorff-Nielsen and Shephard
(2001): therefore a few results of ours will turn out to be explicitly dependent on the
parameter b. The differences between these two equivalent representations are also
discussed in Barndorff-Nielsen (1998), Barndorff-Nielsen and Shephard (2003) or
Schoutens (2003) page 48.

Going back now to the SDE (3) it is possible to see (see also Barndorff-Nielsen et al.
1998) that the solution process (4) is stationary if and only if its chf ϕX (u, t) is constant
in time and coincides with the chf ϕX (u) of the (sd) invariant initial distribution that
turns out to be decomposable according to

ϕX (u) = ϕX (u e−b t )ϕZ (u, t)

where now, at every given t , ϕZ (u, t) = eψZ (u,t) denotes the chf of the rv Z(t) in (4).
This last statement apparently means that the law of Z(t) in the solution (4) coincides
with that of the a-remainder of the sd, stationary law ϕX provided that a = e−b t , and
that moreover we have

ϕZ (u, t) = ϕX (u)

ϕX (u e−b t )
(5)

ψZ (u, t) = ψ X (u) − ψ X (u e−b t ). (6)

It turns out therefore that studying the transition law of an OU process essentially
amounts to find first its stationary law, and then the law of its a-remainder (5): it is
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easy indeed to see from (4) that the chf of the time homogeneous transition law with
a degenerate initial condition X(0) = x0, P-a.s. is

ϕX (u, t |x0) = e ix0ue−bt
ϕZ (u, t) = ϕX (u) e ix0ue−bt

ϕX (u e−b t )
(7)

As a consequence one can focus on the properties of the a-remainders of these sd
distributions in order to deduce the transition pdf of the associated OU processes.

A number of additional relations between the distribution of the stationary process
and that of the rv L(1) are known: it is possible to show for instance, that between the
lch’s ψ X (u) = ln ϕX (u) of the stationary distribution, and ψL(u) = ln ϕL(u) of L(1)
the following relation holds (see Taufer and Leonenko 2009 and Schoutens 2003)

ψ X (u) =
∫ +∞

0
ψL(u e−bs)ds. (8)

On the other hand, assuming for simplicity that the Lévy measure of L(1) and that of
the stationary process admit densities—respectively denoted as νL(x) and νX (x)—
and supposing that νX (x) is differentiable, it also results (see Sato 1999; Cont and
Tankov 2004)

νX (x) = U (x)

b |x | U (x) =
{∫ x

−∞ νL(y)dy x < 0∫ +∞
x νL(y)dy x > 0

(9)

νX (x) + xν′
X (x) = −νL(x)

b
x �= 0. (10)

Taking advantage finally of (6), (7) and (8) it is easy to see that the transition lch of
the OU process can also be written in terms of the corresponding ψL(u) of L(1) in
the form

ψX (u, t |x0) = iux0e−bt + ψZ (u, t) = iux0e−b t +
∫ t

0
ψL

(
ue−b s

)
ds. (11)

As a consequence, as already observed in Sabino and Cufaro Petroni (2021a) and
Sabino (2020a), we can also calculate the cumulants cX ,k(x0, t), k = 1, 2, . . . of
X(t) for X0 = x0 from the cumulants cL,k of L(1) according to

cX ,1(x0, t) = E [X(t)|X0 = x0] = x0e−b t + cL,1

b

(
1 − e−b t

)
, k = 1 (12)

cX ,k(x0, t) = cL,k

k b

(
1 − e−k b t

)
, k = 2, 3, . . . (13)

On the other hand, according to (6), the said cumulants cX ,k(x0, t), k = 1, 2, . . . for
X0 = x0 can also be derived from those of the stationary law here denoted cX ,k

cX ,1(x0, t) = E [X(t)|X0 = x0] = x0e−b t + cX ,1

(
1 − e−b t

)
, k = 1 (14)
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cX ,k(x0, t) = cX ,k

(
1 − e−k b t

)
, k = 2, 3, . . . (15)

These quantities can be used both as benchmarks to test the performance of the sim-
ulation algorithms, and to carry out an estimation procedure based on the generalized
method of moments.

In the following sections we focus our attention on the tempered stable processes
(TS; see Rosinski 2007) with finite variation (for details see Cont and Tankov 2004),
and we will analyze both the TS-OU and the OU-TS processes. To this end, we recall
that the finite variation TS processes have Lévy densities of the form

ν(x) = c
q(x)

|x |1+α
c > 0, 0 ≤ α < 1 (16)

where the tempering term q(x) with q(0) = 1 is monotonically decreasing and
q(+∞) = 0 for x > 0, and monotonically increasing and q(−∞) = 0 for x < 0.
We do not adopt however the full characterization of Rosinski (2007) because we will
focus on one-dimensional laws only, and mainly on the exponentially modulated TS,
also known as (bilateral) classical tempered stable laws (CTS), where q(x) = e−β1x

for x ≥ 0, while q(x) = eβ2x for x < 0 with β1, β2 > 0.

3 The TS distributions and their a-remainders

In the forthcoming sections we will discuss both the TS-OU and the OU-TS processes
looking in particular to the properties of the a-remainder of their stationary laws, and
we will focus our attention chiefly on the CTS subfamily. It is worthwhile noticing
first that the study of these processes has extensively been carried on in the literature
and that several types of TS laws have been investigated. For instance, (Kawai and
Masuda 2011, 2012) and (Zhang 2011) have considered OU processes whose sta-
tionary marginal law is a CTS distribution, whereas (Bianchi et al. 2017) assume a
rapidly decreasing TS law (RDTS) and (Grabchak 2020) finally harmonizes all these
types of laws considering the larger class of general TS distributions. Albeit many
results can consequently be found in the literature cited so far, we will nevertheless
elaborate a little on this topic also to show how the proofs of the propositions can be
carried out in a simple way by taking advantage of the properties of the a-remainders
and of their Lévy triplets. For this purpose let us remember in particular that, as it is
well-known, the sd laws constitute a subclass of the class of the id distributions having
an absolutely-continuous Lévy measure with density

ν(x) = k(x)

|x |
where k(x) is increasing in (−∞, 0) and decreasing in (0,+∞) (see Cont and Tankov
2004, Proposition 15.3). Remark then that every TS distribution satisfying (16) also is
sd. The law of the a-remainder of a sd law is id too (see Sato 1999) and the following
proposition characterizes it in terms of its Lévy triplet.
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Proposition 1 Consider a sd law with Lévy triplet (γ, σ, ν), then for every 0 < a < 1
the law of its a-remainder has Lévy triplet (γa, σa, νa):

γa = γ (1 − a) − a
∫
R

sign(x)(1|x |≤ 1
a

− 1|x |≤1)k(x) dx (17)

σa = σ
√

(1 − a2) (18)

νa(x) = k(x) − k(x/a)

|x | = ν(x) − ν (x/a)

a
(19)

Proof The Lévy-Khintchin representation of the lch of our sd law can be given in two
equivalent ways taking 1|x |≤1 and 1|x |≤ 1

a
as truncating functions, respectively

ψ(u) =
{

iuγ − 1
2σ

2u2 + ∫
R

(
eiux − 1 − iux1|x |≤1

) k(x)
|x | dx

iuγ ′ − 1
2σ

2u2 + ∫
R

(
eiux ′ − 1 − iux ′1|x ′|≤ 1

a

)
k(x ′)
|x ′| dx ′

γ ′ = γ +
∫
R

sign(x)(1|x |≤ 1
a

− 1|x |≤1) k(x) dx (20)

Therefore, using both the representations (20) with the change of variable x = ax ′ in
the second integral, the lch of the a-remainder ψa(u) = ψ(u) − ψ(au) becomes

ψa(u) = iu

(
γ (1 − a) − a

∫
R

sign(x)(1|x |≤ 1
a

− 1|x |≤1) k(x) dx

)

−σ 2(1 − a2)u2

2
+

∫
R

(
eiux − 1 − iux1|x |≤1

) k(x) − k(x/a)

|x | dx

Due to the properties of k(x) it turns out that k(x) − k(x/a) > 0 for every x and for
every 0 < a < 1; and, as it also happens that with νa(x) defined in (19) we have

∫
R

(1 ∧ x2)νa(x)dx < +∞

it is easy to see that νa(x) qualifies as a Lévy density, then (γa, σa, νa) represents the
Lévy triplet of the law of the a-remainder of the sd law. 
�
In the context of the OU processes where the law of Z(t) in (4) at the time t is the a-
remainder of the stationary law for a = e−bt , the Proposition 1 along with the Eq. (9)
enables us to connect the Lévy density νZ (x, t) of the id rv Z(t) at the time t to νX (x)

and νL(x), the Lévy densities respectively of the sd stationary law and of the BDLP
L(1) at time t = 1:

νZ (x, t) = k X (x) − k X (x/a)

|x | = νX (x) − νX (x/a)

a
a = e−b t

= U (x) − U (x/a)

b |x | = 1

T b |x |

⎧⎨
⎩

∫ x
x/a

νL(y)dy x < 0

∫ x/a
x νL(y)dy x > 0

(21)
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According to the previous representations we can therefore adopt one of two possible
strategies to study the properties of the transition law of a Lévy-driven OU process:
the first based on the stationary law and more suitable for aD-OU process; the second
using the distribution of the BDLP and more suitable for an OU-D process.

A Lévy process is said to be of finite variation when its trajectories are of finite
variation with probability 1, and it is possible to prove (Cont and Tankov 2004) that
this happens if and only if its characteristic triplet (γ, σ, ν) satisfies the conditions

σ = 0,
∫

|x |≤1
x ν(dx) < +∞. (22)

Consequently, the lch of a process L(·) with finite variation and with triplet (γ, 0, ν)

can represented as

ψL(u) = iud +
∫
R

(eiux − 1)ν(dx),

where d = γ − ∫
|x |≤1 xν(dx) and it is called drift. Note that the Lévy triplet is not

given by (d, 0, ν) but by (γ, 0, ν). An important subclass of such processes is that
of subordinators that are Lévy processes with almost surely non-decreasing sample
paths: in this event their Lévy triplet must satisfy the conditions

d ≥ 0, ν((−∞, 0]) = 0,
∫ +∞

0
(x ∧ 1) ν(dx) < +∞. (23)

As a matter of fact it would also be easy to see from the Lévy-Khintchin characteriza-
tion theorem that any process of finite variation can be written as the difference of two
independent subordinators—for instance the Variance Gamma (VG) processes can be
represented as the difference of two Gamma processes—and therefore, without loss of
generality, we can focus our attention on subordinators only. Without presuming now
that the actual processes involved are of finite variation, subordinators or even Lévy
processes, we will say hereafter for short that an id law with Lévy triplet (γ, σ, ν) is
of finite variation when it satisfies the conditions (22), and is a subordinator when it
satisfies the conditions (23).

Moreover, for a TS subordinator we consider tempering functions which can be
written as

q(x) =
∫ ∞

0
e−x ps p

Q(ds), (24)

where p > 0 and Q(·) is a probability measure. Of course, taking p = 1 we get
the set of completely monotone functions as in Rosinski (2007)). Finally, in the rest
of the paper we will consider only subordinators with zero drift and we will denote
CT S(α, β, c) a CTS law having a Lévy density (16) with q(x) = 0, x < 0, q(x) =
e−βx , x ≥ 0, therefore with p = 1 amd Q(ds) = δβ(ds), where δ represents the
Dirac delta.
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Proposition 2 Consider a TS law with Lévy measure ν such that ν((−∞, 0]) = 0 and

ν(x) = c
q(x)

x1+α
x > 0, c ≥ 0, 0 ≤ α < 1, p > α (25)

where q(x) is a tempering function with associated probability measure Q(·) such
that

∫ ∞

0
sα Q(ds) < ∞. (26)

Then, the Lévy density of its a-remainder is

νa(x) = ν1(x) + ν2(x),

⎧⎪⎨
⎪⎩

ν1(x) = c (1 − aα)
q(x)

x1+α

ν2(x) = c aα q(x) − q( x/a)

x1+α

(27)

where

∫ +∞

0
ν2(x)dx = �

(
p − α

p

)
c(1 − aα)

α

∫ ∞

0
sα Q(ds). (28)

Proof As already remarked every TS law is sd and, if confined to x > 0, it is easy
to see that (23) is satisfied so that the law is a subordinator and hence also of finite
variation. As a consequence there is an a-remainder and from Proposition 1 we have

νa(x) = ν(x) − ν( x/a)

a
= (1 − aα)ν(x) + aαν(x) − ν( x/a)

a

= c (1 − aα)
q(x)

x1+α
+ caα q(x) − q( x/a)

x1+α
= ν1(x) + ν2(x).

Now, while ν1(x) is just a rescaled form of the original TS Lévy measure, we find that
ν2(x) > 0 is also normalizable.

From (24) and from Gradshteyn and Ryzhik (2007), 3.434.1 we have indeed that

∫ +∞

0
ν2(x)dx = c aα

∫ +∞

0

∫ +∞

0

e−s p x p − e−s p x p/a p

xα+1 dx Q(ds)

= c aα

p

∫ +∞

0

∫ +∞

0

e−s p y − e−s p y/a p

yα/p+1 dy Q(ds)

= �

(
p − α

p

)
c(1 − aα)

α

∫ ∞

0
sα Q(ds),

and therefore the integral in (28) turns out to be finite. 
�
Under the conditions of the Proposition 2 we have found that ν2(x) is an integrable

non-negative function therefore, taking �a = ∫ ∞
0 ν2(x)dx ga(x) = ν2(x)/�a can
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be interpreted a full fledged pdf. As a consequence ν2(x) can be considered as the
Lévy density of a compound Poisson law of parameter�a and jump length distributed
according to the pdf ga(x). Since on the other hand ν1(x) is the Lévy density of the
original TS law but rescaling the parameter c to c(1 − aα), according to the previous
proposition we can claim that the a-remainder Za of a TS law with Lévy density (25)
is—in distribution—the sum Ya +Ca of two independent rv’s: a TS Ya of the type (25)
with parameters α, c(1 − aα) and measure Q(·), and a compound Poisson rv

Ca =
Na∑

k=1

Ja,k

where Ns is a Poisson rv of parameter �a and Ja,k, k = 1, 2, . . . are a sequence of
iid rv’s with pdf ga(x)

As can be seen from (7) in the Sect. 2, the transition law of an OU process (4)
directly follows from the a-remainder of its sd stationary distribution when we take
a = e−b t . Adding in the results of the Proposition 2 we can therefore fully display
the Lévy measure of the said transition laws when the stationary distribution is a
TS subordinator with Lévy density (25). This class of laws is not without merits in
itself and is a relevant one-dimensional subfamily of the general tempered stable laws
discussed in Grabchak (2020). It includes on the other hand the CTS subordinators
with 0 ≤ α < 1, while in fact the Theorem 1 in Zhang and Zhang (2008) for Inverse
Gaussian-OU processes (IG-OU) and the Theorem 1 in Zhang (2011) for TS-OU are
special cases of the Proposition 2. The proposition also covers the p TS-OU introduced
in Grabchak (2016), and for p = 2 the case of Rapidly Decreasing TS-OU (RDTS-
OU) discussed in Kim et al. (September 2010) and Bianchi et al. (2017), the Modified
TS-OU (MTS-OU) studied in Kim et al. (2009), and the Bessel TS-OU (BTS-OU)
discussed in Chung (2016). It is expedient to notice at this point that, although for
a fixed time t the law of Z(t) defined in (4) is id and coincides with that of the a-
remainder of the stationary law taking a = e−b t , this process is not Lévy because a
changes in time.

The particular case of a TS-OU process with α = 0 (namely a G-OU process if the
stationary law is a CTS) is also noteworthy: in this event indeed the BDLP turns out
to be just a compound Poisson process. In fact it is easy to see that, for x > 0 and
α = 0, from (9), (21) and (25) it results

∫ +∞

x
νL(y) dy = U (x) = c b q(x)

and hence (since q(0) = 1)

∫ +∞

0
νL(x)dx = cb < +∞ νL(x) = −cb q ′(x)
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Therefore the BDLP will be a compound Poisson process

L(t) =
N (t)∑
k=1

Jk (29)

where now N (t) is a Poisson process with intensity λ = c b, and Jk are iid jumps with
pdf

f J (x) = νL(x)

λ
= −q ′(x) (30)

(remember that q(x) is supposed to be non increasing). Then the pathwise solution (4)
of the OU Eq. (3) becomes now

X(t) = X0e−bt + Z(t) Z(t) =
N (t)∑
k=1

Jke−b(t−τk ) (31)

where τk represent the jumping times of the Poisson process N (t). Of course this
representation is valid for any BDLP compound Poisson and not only for that in (29).

This type of Z(t) has also interesting financial applications beyond the context of
OU processes: it can indeed describe random cash-flows occurring at random time-
to-maturities with a rate of return equal to b. Remark moreover that—as observed by
Lawrance (1980) in the context of Poisson point processes—for every t > 0 we have

N (t)∑
k=1

Jke−b(t−τk ) d=
N (t)∑
k=1

Jke−b t Uk (32)

irrespective of the law of Jk , whereUk ∼ U([0, 1]) are a sequence of iid rv’s uniformly
distributed in [0, 1].

4 Finite variation CTS-OU processes

In this sectionwe focus onCTS-OUprocesseswithfinite variation, namely the subclass
of OU processes with stationary distribution CT S

(
α, β, c

)
with 0 ≤ α < 1. Such a

subclass is especially manageable and in this particular case the Proposition 2 entails
indeed the following result.

Proposition 3 The CTS-OU process X(t) with initial condition X(0) = X0, P-a.s.,
and with stationary distribution CT S

(
α, β, c

)
whose Lévy density (16) with 0 ≤ α <

1, x > 0 has the tempering function q(x) = e−β x , β > 0, can be represented as

X(t)
d= X0e−b t + X1 + X2 (33)
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where X1 is again a CT S
(
α, β, c(1 − aα)

)
with a = e−b t , and

X2
d=

Na∑
i=1

J̃i (34)

is a compound Poisson rv , where Na is a Poisson rv with mean

�a = c� (1 − α)
βα

α
(1 − aα) (35)

and J̃i are iid jumps, independent from Na and distributed according to the pdf

f J (x) = α

a−α − 1

∫ 1
a

1

(β v)1−αx−αvα−1 e−β v x

�(1 − α)
dv (36)

Proof The law of Z(t) in the pathwise solution (4) coincides with that of the a-
remainder Za of the stationary law CT S

(
α, β, c

)
whose Lévy density is

νX (x) = c
e−β x

xα+1 x > 0, a = e−b t .

From Proposition 2 taking p = 1 and Q(ds) = δβ(ds) we then have

νZ (x, t) = ν1(x, t) + ν2(x, t)

{
ν1(x) = c (1−aα)

xα+1 e−β x

ν2(x) = c aα

xα+1

(
e−β x − e− β x

a
)

where ν1(x) apparently corresponds to a CT S (α, β, c(1 − aα)) law and

�a = c aα

∫ ∞

0

e−β x − e− β x
a

xα+1 dx = c aα

α
� (1 − α) βα(a−α − 1).

Then, ν2(x) is associated to the law of a compound Poisson rv with parameter �a and
jumps distributed according to f J (x) = ν2(x)/�a . On the other hand, since

e−β x − e− β x
a =

∫ 1
a

1
β x e−β v x dv

we can also write

f J (x) = α x−α−1

βα(a−α − 1)� (1 − α)

(
e−β x − e− β x

a

)

= α

a−α − 1

∫ 1
a

1

(β v)1−αx−αvα−1 e−β v x

�(1 − α)
dv

and this concludes the proof. 
�
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Remark 1 The law with pdf f J (x) coincides with the DTS distribution of Zhang
(2011): from Eq. (36) we see that it is a mixture of a gamma law G(1 − α, βV ) with
a random V distributed according to the pdf

fV (v) = α

a−α − 1
vα−1, 1 ≤ v ≤ 1/a . (37)

It is easy to verify moreover that

V
d=

(
1 + (a−α − 1) U

α

) 1
α

, (38)

where U ∼ U(0, 1) is a uniform rv, and therefore its simulation can be based on
standard routines. In particular, when α = 1/2, X(·) turns out to be an IG-OU process
and the simulation of its skeleton no longer requires now the acceptance-rejection
methods adopted in Zhang and Zhang (2008) and in Qu et al. (2021), but can be based
on the method illustrated in Michael et al. (1976) (see also Devroye (1986) page 148).

5 Finite variation OU-CTS processes

In this section we will consider Lévy-driven OU processes whose BDLP is a CTS
process with q(x) = e−βx . In this specific case, the stationary law is not known in
an explicit form (see for instance Table 2 in Barndorff-Nielsen and Shephard (2003)),
but according to our discussion in the Sect. 2 the transition law of the solution (4) of
the Eq. (3) can nevertheless be retrieved through the formula (7) if the law of Z(t)
is known (remember that Z(t) remains the same for every initial condition). On the
other handwe have shown that the formula (21) enables us to deduce the Lévymeasure
density of Z(t) at a given t directly from the Lévy measure density of the BDLP. We
will show thus in the present section that the transition law of our OU-CTS process is
the convolution of a CTS law (with parameters different from that of the BDLP) and
a compound Poisson law.

Proposition 4 For 0 ≤ α < 1, and at every t > 0, the pathwise solution (4) of an OU-
CTS Eq. (3) with L(1) ∼ CT S

(
α, β, c

)
and with X(0) = X0, P-a.s. is in distribution

the sum of three independent rv’s

X(t)
d= aX0 + X1 + X2 a = e−b t (39)

where X1 is distributed according to the law CT S
(
α,

β
a , c 1−aα

α b

)
, while

X2 =
Na∑

k=1

Jk
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is a compound Poisson rv where Na is an independent Poisson rv with parameter

�a = c βα�(1 − α)

b α2aα

(
1 − aα + aα log aα

)
(40)

and Jk are iid rv’s with pdf

f J (x) = α aα

1 − aα + aα log aα

∫ 1
a

1

x−α (β v)1−α e−βv x

�(1 − α)

vα − 1

v
dv (41)

Remark 2 Thepdf f J (x) (41) can be seen as amixture of the gamma lawsG(1−α, βV )

with a random rate parameter V distributed according to the pdf

fV (v) = α aα

1 − aα + aα log aα

vα − 1

v
1 ≤ v ≤ 1/a (42)

which is correctly normalized. Proposition 4 covers the case of a OU-gamma process
illustrated in Qu et al. (2019) when α tends to zero: we have indeed

lim
α→0+ �a = lim

α→0+
c βα�(1 − α)

b α2aα

(
1 − aα + aα log aα

) = c log2 a

2 b

and therefore, replacing a = e−b t , we retrieve the equation 4.11 in Qu et al. (2019).
Similarly, for α → 0+ f J (x) coincides with the equation (4.9) in Qu et al. (2019),
and can be seen as the pdf of an exponentially distributed rv G(1, βV ) with a random
rate parameter with the pdf (see the proof of the Theorem 4.1 in Qu et al. (2019))

lim
α→0+ fV (v) = 2 log v

v log2 a
1 ≤ v ≤ 1/a

Proof Based on Eq. (21) and with the change of variable y = wx , the Lévy density of
the term Z(t) in the pathwise solution (4) of an OU-CTS process is (remember that
the coefficient a = e−bt is time dependent)

νZ (x, t) = c

b x

∫ x
a

x

e−β y

yα+1 dy = c

b

∫ 1
a

1

e−βwx

xα+1 wα+1 dw

= c e− β
a x

b xα+1

∫ 1
a

1

dw

wα+1 + c

b

∫ 1
a

1

e−βwx − e− β
a x

xα+1 wα+1 dw = ν1(x) + ν2(x).

The first term apparently is the Lévy density of aCTS law CT S
(
α,

β
a , c 1−aα

α b

)
because

it is easy to see that

ν1(x) = c (1 − aα) e− βx
a

b α x1+α
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On the other hand ν2(x) > 0 for every x > 0 because e−βwx − e− β
a x > 0 when

0 < w < 1/a , and moreover with v = aw we find (see 3.434.1 in Gradshteyn and
Ryzhik (2007))

�a =
∫ ∞

0
ν2(x) dx =

∫ ∞

0

c

b
dx

∫ 1
a

1

e−βwx − e− β
a x

xα+1 wα+1 dw

= c

b

∫ 1
a

1

dw

wα+1

∫ ∞

0

e−βwx − e− β
a x

xα+1 dx = c

b

∫ 1
a

1

dw

wα+1

βα�(1 − α)

α
(a−α − wα)

= c βα�(1 − α)

b α

∫ 1

a

1 − vα

v1+α
dv = c βα�(1 − α)

b α2aα

(
1 − aα + aα log aα

)

where apparently 0 < �a < +∞. As a consequence

f J (x) = ν2(x)

�a
= α2aα

(1 − aα + aα log aα) βα�(1 − α)

∫ 1
a

1

e−βw x − e− βx
a

x1+αw1+α
dw

(43)

is a valid pdf and then, ν2(x) represents the Lévy density of a compound Poisson
law with parameter �a and jumps distributed according to the pdf f J (x). It would be
possible to show now (see 3.381.3 in Gradshteyn and Ryzhik (2007)) that

f J (x) = α2aα

(1 − aα + aα log aα) �(1 − α)

×
[

�(−α, βx) − �
(−α, βx/a

)
x

− 1 − aα

αβα

e− βx
a

x1+α

]

where�(γ, z) is the incomplete gamma function. For later computational convenience
however, we prefer to give an alternative representation of this jumps distribution.
Since

e−βw x − e− βx
a = β x

∫ 1
a

w

e−βvx dv

and with an exchange in the order of the integrations, the pdf (43) becomes

f J (x) = α2aαβ1−αx−α

(1 − aα + aα log aα) �(1 − α)

∫ 1
a

1

dw

w1+α

∫ 1
a

w

e−βvx dv

= α2aαβ1−αx−α

(1 − aα + aα log aα) �(1 − α)

∫ 1
a

1
dv e−βvx

∫ v

1

dw

w1+α

= α2aαβ1−αx−α

(1 − aα + aα log aα) �(1 − α)

∫ 1
a

1
e−βvx vα − 1

αvα
dv

= α aα

1 − aα + aα log aα

∫ 1
a

1

x−α (β v)1−α e−βv x

�(1 − α)

vα − 1

v
dv
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that coincides with (41) and is a mixture of gamma laws G(1−α, βV ) with a random
rate parameter distributed according to the pdf (42), as stated in the Remark 2. 
�

6 Simulation algorithms

The simulation of CTS laws have been widely discussed in several studies (see for
instance Kawai and Masuda (2011, 2012), Zhang (2011) and Grabchak (2019, 2020)
and the references therein) and several software packages are available for such pur-
pose.

Therefore, in this sectionwewill only illustrate how to exactly simulate theCTS-OU
and the OU-CTS processes that, although similar in names, are two rather different
objects as explained in the previous sections. As far as the CTS-OU processes are
concerned, our contribution is the enhancement of the simulation performance by
taking advantage of the representation (36) for f J (x) that, in contrast to Zhang (2011),
does not require any acceptance-rejection procedure. On the other hand, with regard to
OU-CTS processes, we design a new simulation procedure for the drawings from the
mixture with pdf (42). At variancewith the approach of Qu et al. (2021), this algorithm
is based on an acceptance-rejection method whose expected number of iterations
before acceptance however can be made arbitrarily close to one and is therefore more
efficient. More important, the dominating pdf is monotone and convex and can be
made arbitrary close to the pdf of the mixture, and thus, the acceptance rejection
step can be skipped leading to a very fast solution. In our numerical experiments we
consider a time grid t0, t1, . . . , tM , �tm = tm − tm−1 , m = 1, . . . , M with M steps.

6.1 CTS-OU processes

The simulation procedure for the generation of the skeleton of CTS-OU process is
based on the Proposition 3 and is summarized in theAlgorithm 1.We remark that when

Algorithm 1 , 0 < α < 1
1 X0 ← x
2 for m = 1, . . . , M do
3 a ← e−b�tm

4 x1 ← X1 ∼ CT S
(
α, β, c(1 − aα)

)
5 n ← Na ∼ P(�a), � Generate an independent Poisson rv with �a in (35)
6 ui ← Ui ∼ U(0, 1), i = 1, . . . , n � Generate n iid uniform rv’s

7 vi ←
(
1 + a−α−1

α ui

) 1
α � Generate according to (38)

8 β̃i ← β vi , i = 1, . . . , n
9 ji ← Ji ∼ G(1 − α, β̃i ), i = 1, . . . , n � Generate n independent gamma rv’s all with the same
scale 1 − α and random rates

10 x2 ← ∑n
i=1 ji

11 X(tm ) ← a X(tm−1) + x1 + x2.
12 end for
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α = 0 a CTS-OU process is a compound Poisson process with a gamma stationary law
whose efficient exact simulation can be found in Sabino and Cufaro Petroni (2021a).

6.2 OU-CTS processes

The simulation steps for the skeleton of a OU-CTS process are then summarized in
the Algorithm 2. The sampling from a CTS law has been widely studied by several

Algorithm 2 , 0 ≤ α < 1
1 X0 ← x
2 for m = 1, . . . , M do
3 a ← e−b�tm

4 x1 ← X1 ∼ CT S
(
α,

β
a ,

c(1−aα)
α b

)
5 n ← Na ∼ P(�a), � Generate an independent Poisson rv with �a in (35)
6 vi ← Vi , i = 1, . . . , n � Generate n iid rv’s with pdf given by Equation (42)
7 β̃i ← β vi , i = 1, . . . , n
8 ji ← Ji ∼ G(1 − α, β̃i ), i = 1, . . . , n � Generate n independent generalized gamma rv’s all with
the same p, scale p − α and random rates

9 x2 ← ∑n
i=1 ji

10 X(tm ) ← a X(tm−1) + x1 + x2.
11 end for

authors (see for instance Devroye (2009) and Hofert (2012)), and here the only non-
standard step is the fifth one in the Algorithm 2, namely that allowing the generation
of the jumps of the compound Poisson process of Proposition 4. On the other hand,
as mentioned in Remark 2, these jump sizes are iid rv’s following a gamma law with
shape 1−α and a random rate. Therefore the unique remaining task is to sample from
a law with the pdf fV (v) (42). Since however this pdf is not monotonic in [1, 1/a]
for every value of its parameters, we first define the new rv

W = − log V

log a
V = a−W = e−W log a

that has now the pdf

fW (w) = −aα log aα

1 − aα + aα log aα

(
a−αw − 1

)

= log a−α

a−α − 1 − log a−α

(
ew log a−α − 1

)
0 ≤ w ≤ 1. (44)

It is straightforward to check then that fW (w) is monotonic and convex in [0, 1] and
hence one can rely on the inversion-rejection algorithm illustrated in Devroye (1986)
page 355. The solution that we propose here is very similar to that, and in effect
consists in replacing the steps required for the sequential search of the inversion part
with the method of partitioning the densities into intervals (see once again Devroye
1986 page 67). We remark indeed that fW (w), besides being monotonic and convex,
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also has the following upper bound

fW (w) ≤ g(w) = G(a, α) ḡ(w), 0 ≤ w ≤ 1

G(a, α) = log a−α
(
a−α − 1

)
2

(
a−α − 1 − log a−α

) , ḡ(w) = 2w

namely it is dominated by a linear function where G(a, α) is the area under g(x). We
could therefore devise a simple acceptance-rejection procedure where G(a, α) should
be as close to 1 as possible because it roughly represents the number of iterations
needed in the rejection algorithm. While however G(a, α) → 1+ when a → 1−,
unfortunately it is G(a, α) → +∞ for a → 0+. Taking therefore a = e−b t , this latter
limit means that the generation of a OU-CTS process with a large b t might either have
a heavy computational cost, or potentially require a large number of simulations.

In principle we could consider only small time steps, but on the other hand the
acceptance-rejection sampling can be easily improved, via the modified decomposi-
tion method elucidated in Devroye (1986) page 69, just by taking a piecewise linear
dominating function g(w). More precisely we partition [0, 1] into L disjoint intervals
I� = [w�−1, w�], � = 1, . . . , L ,

⋃
� I� = [0, 1] with w0 = 0, and then we have

fW (w) ≤ gL(w) =
L∑

�=1

g�(w)1�(w),

g�(w) = fW (w�) − fW (w�−1)

w� − w�−1
(w − w�−1) + fW (w�−1),

1�(w)=
{
1, if w ∈ I�

0, else
� = 1, . . . , L

where we can also write

gL(w) = GL(a, α)

L∑
�=1

p� ḡ�(w)1�(w), ḡ� = g�(w)

q�

,

q� =
∫
I�

g�(w)dw, p� = q�

GL(a, α)
, GL(a, α) =

L∑
�=1

q�.

Apparently the ḡ�(w), � = 1, . . . , L turn out to be piecewise linear pdf ’s, while
the p� constitute a discrete, normalized distribution. Increasing the number L of the
intervals, with given 0 < a < 1 and 0 < α < 1, GL(a, α) can be made arbitrary
close to 1 because it measures the trapezoidal approximation of

∫ 1
0 fW (w)dw =

1. On the other hand the random drawing from the laws with pdf ’s ḡ�(w), � =
1, . . . , L is very simple and can be implemented via the standard routines and is
extremely fast. Based on this last observation and on the trapeziodal rule, one can
select a relatively high number L , approximate fW (w) with gL(w) and avoid running
the acceptance-rejection procedure. The numerical experiments illustrated in Sect. 7
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show that such an approximation returns cumulants which are consistent with their
theoretical value. Moreover it is easy to implement and brings a remarkable reduction
of the computational time, especially for programming languages like Python, R and
MATLAB because for loops can be avoided and the code can be ‘vectorized’.

Denoting now with S a rv with distribution P {S = �} = p�, � = 1, . . . , L , and
with Y� a rv with pdf ḡ�(w), the Algorithm 3 summarizes the instructions needed
to implement the sixth step in the Algorithm 2. We remark finally that an alternative
procedure, leading to similar results, might have been some shrewd decomposition of
fW (w) rather than of its dominating curve. However Devroye (1986) at the page 70
nicely spell out the reasons why the procedure here adopted is in principle preferable.

Algorithm 3
1 repeat
2 s ← S � Generate a discrete rv with P {S = �} = p�, � = 1, . . . , L
3 y ← Ys � Independently generate a rv with pdf ḡs (w)

4 u ← U ∼ U [0, 1] � Independently Generate a uniform rv.

5 until u ≤ fW (y)
gL (y)

6 v ← a−α y

7 return v

Remark 3 It is worthwhile mentioning that an alternative procedure relying on a dif-
ferent acceptance-rejection strategy has been proposed in Qu et al. (2021). In contrast
to this last approach, however, in our algorithm GL(a, α) can be made arbitrary close
to 1 irrespective of the value of a (and of the size of the time-step), and therefore our
approach turns out to be computationally more efficient.

On the other hand we can also take advantage of the interplay between the OU-CTS
and the CTS-OU processes to gain an insight into the possible benefits of the different
simulation strategies: from (10) we find indeed that the Lévy density of the BDLP
L(t) for a CTS-OU process is

νL(x) = c b α
e−β x

xα+1 + c b β
e−β x

xα
. (45)

where the first term apparently provides the BDLP L1(t) of an OU-CTS, whereas
the second term corresponds to a compound Poisson L2(t) (see Cont and Cont and
Tankov 2004 page 132). Therefore the path-wise solution (4) of our CTS-OU process
is now

X(t) = x0e−bt + Z1(t) + Z2(t)

{
Z1(t) = ∫ t

0 e−b(t−s)d L1(s)

Z2(t) = ∫ t
0 e−b(t−s)d L2(s)

where Z1 is a OU-CTS (with Z1(0) = 0) and, as shown in (31), Z2 is a compound
Poisson that can easily be simulated based on (32). On the other hand, according to the
Proposition 4, the OU-CTS process Z1(t) is in its turn the sum of a (time-dependent)
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CTS rv X1 and of a (time-dependent) compound Poisson rv X2; so that ultimately a
CTS-OU process with a degenerate initial condition X0 = x0—beyond being of the
form (33) presented in the Proposition 3—can now be seen also as the sum of four
random terms: one distributed according to a CTS law, two compound Poisson rv’s
and a degenerate summand. Of course the two representations coincide in distribution
and, as a matter of fact, the four-terms representation reproduces again that of Qu et al.
(2021); but the possible alternative simulation algorithms stemming from the four term
representation, although perfectly correct, would require now the generation of three
rv’s and the use of acceptance-rejection methods in addition to that needed for the
sampling of a CTS distributed rv, and therefore they would turn out to be rather less
efficient than the Algorithm 1.

Finally, based on Remark 2 and on the results of Qu et al. (2019), we notice that
for α = 0 the simulation of V is here much easier because no acceptance-rejection
method is required.

7 Numerical experiments

In this section, we will assess the performance and the effectiveness of our algorithms
through extensive numerical experiments.All the simulation experiments in the present
paper have been conducted usingPythonwith a 64-bit Intel Core i5-6300UCPU, 8GB.
The performance of the algorithms is ranked in terms of the percentage error relative
to the first four cumulants denoted err % and defined as

err % = true value − estimated value

true value

Finally, we focus on the computational performance of our solutions in comparison
to that of the algorithms in the existing literature.

7.1 CTS-OU processes

Since the Lévy density on [0,+∞) of the stationary law CT S (α, β, c) of a CTS-OU
process with finite variation and parameters α, β, c is

νX (x) = c e−βx

x1+α
x > 0, β > 0, 0 ≤ α < 1

its cumulants are (see for instance Cont and Tankov 2004, Proposition 3.13)

cX ,k =
∫ +∞

0
xkνX (x) dx = c βα−k�(k − α) (46)

and therefore from (14) and (15)we obtain the cumulants of X(�t)with the degenerate
initial condition X0 = x0

cX ,k(x0,�t)= x0e−b�tδk,1 + c βα−k�(k − α)(1 − e−kb�t ) k =1, 2, . . . (47)
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Fig. 1 Sample trajectories of CTS-OU processes with (x0, b, c, β) = (0, 10, 0.8, 1.4) and α ∈
{0.3, 0.5, 0.7, 0.9}

In our numerical experiments we consider a CTS-OU process with x0 = 0 and
parameters (b, c, β) = (10, 0.8, 1.4) whose trajectories with α ∈ {0.3, 0.5, 0.7, 0.9}
are displayed in Fig. 1 where of course the case α = 0.5 is that of an IG-OU process.
We remark that the sampling from an IG law can be performed via the many-to-one
transformation method of Michael et al. (1976), and therefore no acceptance-rejection
procedure is required in Algorithm 1 to generate the skeleton of an IG-OU process.

The Tables 1 and 2 compare then the true values of the first four cumulants
cX ,k(0,�t)with their corresponding estimates from 106 simulations respectively with
�t = 1/365 and �t = 30/365. We can conclude therefrom that the proposed Algo-
rithm 1 produces cumulants that are very close to their theoretical values. Table 3
focuses on the computational times required by each term in Eq. (33) and highlights
the difference between our methodology and that proposed in Zhang (2011). The
numerical results clearly show that our solution is at least ten times faster because,
in contrast to Zhang (2011), it avoids the acceptance rejection step required for the
simulation of the compound Poisson component X2.

For the sake of brevity, we do not report the additional results obtained with dif-
ferent parameter settings that anyhow bring us to the same findings. Overall, from the
numerical results reported in this section, it is evident that the Algorithm 1 proposed
above can achieve a very high level of accuracy as well as a conspicuous efficiency.
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The fact that we can easily compute the cumulants of an OU process substantiates
the advantages of focusing our treatment on the law of the a-remainder of its station-
ary distribution. In addition to both the simple derivation of the transition pdf and the
detailed testing of its statistical properties, we could indeed also conceive a parame-
ter estimation procedure based on the generalized method of moments (GMM). We
remark finally that the law of an a-remainder always is id, and therefore a simple mod-
ification of the simulation procedure presented in the Algorithm 1 could be adopted
for the generation of a Lévy process whose law at time t = 1 is that of the a-remainder
of a CTS distribution.

7.2 OU-CTS processes

Here too we will benchmark the results of the numerical experiments against the true
values of the first four cumulants of OU-CTS process at time�t with X(0) = 0. From
the formula (46) for the cumulants of a CT S (α, β, c) distribution, and from (12)
and (13) we first recover indeed the cumulants of X(�t) with the degenerate initial
condition X0 = x0

cX ,k(x0,�t) = x0e−b�tδk,1 + c (1 − e−k�t )

b kβk−α
� (k − α) k = 1, 2, . . . (48)

For our simulations we consider then the same parameter settings of the previous
section—x0 = 0, (b, c, β) = (10, 0.8, 1.4)—adapted to an OU-CTS process, and
with α ∈ {0.3, 0.5, 0.7, 0.9} we get the sample trajectories displayed in the Fig. 2,
where of course the case α = 0.5 is that of an OU-IG process.

In order to generate a OU-CTS process, we adopt four strategies. This first choice
is Algorithm 2 where X2 is generated with plain Algorithm 3 taking L = 100 equally
spaced subintervals of [0, 1]. As observed in Sect. 6, the pdf fW (w) is increasing
and convex in [0, 1] which can be partitioned into a sufficiently large number of
sub-intervals such that fW (w) can be approximated by a simple step-wise linear pdf.
Based on this observation, the second one is a very good approximation still based on
Algorithm 2 where X2 is simulated taking L = 2000 equally spaced subintervals of
[0, 1] and approximating the law with pdf fW (w) with that with pdf gL(w) (prop-
erly normalized); the acceptance rejection steps are then skipped. Other than reducing
the number of computations, this strategy has the advantage to avoid for loops in
programming languages like Python, MATLAB and R whose computational perfor-
mance otherwise normally suffers some limitations.

In addition to these two configurations for Algorithm 2, we also consider here
two other approximate procedures: the first boils down to simply neglect X2 in the
Proposition 4; the second—in the same vein of Benth et al. (2018) dealing with the
normal inverse Gaussian-drivenOUprocesses—takes advantage of the approximation
of the law of Z(t) in (4) with that of e−k t L(t) where L(t) ∼ CT S

(
α, β/a, c t

)
.

Tables 4 and 5 compare then the true values of the first four cumulants cX ,k(0,�t)
with their corresponding estimates for 106 simulations with �t = 1/365 and �t =

123



Fast simulation of tempered stable Ornstein–Uhlenbeck processes 2543

Fig. 2 Sample trajectories of OU-CTS processes with (x0, b, c, β) = (0, 10, 0.8, 1.4) and α ∈
{0.3, 0.5, 0.7, 0.9}

30/365; the labels X1 only and Approximation 2 refer to the aforesaid first and second
alternative procedures respectively.

The Tables 4 and 5 clearly show that the cumulants returned by Algorithm 2 are
equally close to the theoretical values irrespective to the choice of �t and to the
configuration. Hence, the trapezoidal approximation of fW (w) returns an efficient
approximation as already noted in Devroye (1986) pages 67 and 68. Moreover, we
can now conclude that our Algorithm 2 has the lowest percent errors, but nevertheless,
in some practical situations, the errors of two other approximations could be deemed
acceptable taking also into account that their computational cost is lower. In particular,
the second alternative procedure outperforms the third one and its percent errors are not
much higher than those of the exact method. When however the time step is larger, or
equivalently when a = e−b�t is close to 0, the three procedures give radically different
outcomes and, as it is shown in the Table 5, the two approximate methods return
completely biased results. Conversely, the exact method and the related approximate
method continue to be reliable and its percent errors remain small even for the higher
cumulants.

The previous state of affairs for anOU-CTS is due to the fact that X2 in Proposition 4
produces only a second order effect when �t → 0+: using indeed a Taylor expansion
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Table 5 OU-CTS

cX ,1(0, �t) cX ,2(0, �t) cX ,3(0, �t) cX ,4(0, �t)

α True MC Err % True MC Err % True MC Err % True MC Err %

Algorithm 2, L = 100

0.1 3.54 3.54 0.1 1.64 1.65 −0.8 1.68 1.73 −2.7 2.75 2.89 −5.2

0.3 4.60 4.58 0.4 1.65 1.62 1.9 1.52 1.49 2.0 2.31 2.36 −2.1

0.5 6.72 6.72 −0.1 1.73 1.74 −1.0 1.40 1.43 −2.0 1.97 1.98 −0.3

0.7 12.12 12.15 −0.2 1.87 1.88 −0.4 1.31 1.31 0.6 1.70 1.63 4.0

0.9 41.24 41.22 0.1 2.12 2.12 0.2 1.26 1.25 0.8 1.49 1.42 4.6

Algorithm 2, L = 2000, no AR

0.1 3.54 3.54 0.1 1.64 1.64 −0.3 1.68 1.71 −1.6 2.75 2.85 −3.7

0.3 4.60 4.59 0.1 1.65 1.65 0.1 1.52 1.53 −0.4 2.31 2.41 −4.3

0.5 6.72 6.71 0.1 1.73 1.72 0.4 1.40 1.39 0.6 1.97 1.93 2.3

0.7 12.12 12.09 0.3 1.87 1.85 1.3 1.31 1.28 2.9 1.70 1.66 2.5

0.9 41.24 41.21 0.1 2.12 2.13 −0.6 1.26 1.29 −2.5 1.49 1.56 −4.5

X1 only

0.1 3.54 2.37 33.0 1.64 0.67 58.9 1.68 0.41 75.7 2.75 0.39 85.8

0.3 4.60 3.35 27.1 1.65 0.74 55.6 1.52 0.39 74.2 2.31 0.33 85.6

0.5 6.72 5.34 20.4 1.73 0.84 51.4 1.40 0.40 71.4 1.97 0.33 83.3

0.7 12.12 10.57 12.8 1.87 1.00 46.8 1.31 0.40 69.3 1.70 0.29 83.2

0.9 41.24 39.37 4.5 2.12 1.24 41.6 1.26 0.44 65.2 1.49 0.32 78.3

Approximation 2

0.1 3.54 2.29 35.4 1.64 0.65 60.4 1.68 0.39 77.0 2.75 0.35 87.3

0.3 4.60 2.95 35.8 1.65 0.65 60.8 1.52 0.34 77.5 2.31 0.29 87.7

0.5 6.72 4.34 35.4 1.73 0.69 60.2 1.40 0.33 76.7 1.97 0.26 86.9

0.7 12.12 7.82 35.5 1.87 0.74 60.3 1.31 0.31 76.6 1.70 0.23 86.5

0.9 41.24 26.60 35.5 2.12 0.84 60.5 1.26 0.29 76.9 1.49 0.20 86.8

Comparing the first four true cumulants with their corresponding MC-estimated values (multiplied by 100)
obtained with R = 106 replications and �t = 30/365

we find

�a = c�(1 − α)b βα

2
(�t)2 + o

(
(�t)2

)

and therefore the compound Poisson X2 has a relevant impact only when�t is not too
small. Notice instead that this is not how a CTS-OU process behaves because from
the Proposition 3 we see that for �t → 0+

�a = c�(1 − α)b βα�t + o(�t)

so that X2 results in a first order effect and cannot be neglected even for small �t . As
mentioned above, to tackle the simulation of the random rate, Qu et al. (2021) have
proposed an alternative solution that is based on an acceptance rejectionmethod again,
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and whose expected number of iterations before acceptance tends to 1 for small time
steps (�t → 0+; a → 1−); but unfortunately this value somehow deteriorates and
tends to 2 (50% of acceptance) for large time steps (�t → +∞; a → 0+). From our
previous findings we know instead that neglecting X2 is a fair approximation for finer
time grids so that the impact on the computational cost of the acceptance rejection is
rather restricted. On the other hand, no matter how large the time step �t is, with our
algorithm the expected number of iterations before acceptance can be kept as close
to 1 as possible because it depends on the accuracy of a trapezioidal approximation.
Therefore, recalling also that the computational cost to generate a simple discrete rv
is very low, our approach turns out to be computationally more efficient.

However, from the computational point of view, one may argue that it may be
nevertheless faster to generate a trajectory with 30 points with �t = 1/365 instead of
one single pointwith�t = 30/365. To this end, Table 6 summarizes the computational
times in seconds of X1 and X2 in Eq. (39) and for the latter component, it highlights
the difference among the plain Algorithm 2 taking L = 100, Algorithm 2 with the
approximation of fW (w) with gL(w) taking L = 2000, and the methodology of
Qu et al. (2021). The computational times of Algorithm 2 with the aforementioned
approximation are tens of times smaller than those returned by the other solutions.
For instance, the computational times of a OU-IG process is now a matter of seconds
and not of tens of seconds anymore with R = 106 replications. We remark that the
computational time of the plain Algorithm 2 is also faster than that of Qu et al. (2021)
because the former one has a lower number of operations before acceptance. We also
stress the fact that we paid attention to an efficient implementation of the methodology
of Qu et al. (2021) indeed, the computational times in Table 6 are smaller than those
reported in the original paper although we used a computer with less computational
power. We also remark that the computational time of X2 with L = 2000 taking
fW (w) ≈ gL(w) and �t = 30/365 is less than 30 times that of just X1 with �t =
1/365 in contrast to plain Algorithm 2 and the methodology of Qu et al. (2021). We
conclude then that our methodology provides a remarkable computational advantage
and is the preferable one.

These observations could also lead to a convenient strategy combining parameters
estimation and exact simulation of the OU-CTS processes. Assuming that the data
could be made available with a fine enough time-granularity (e.g. daily t = 1/365),
we could base the parameters estimation on the likelihood methods by approximating

the exact transitionpdf with that of aCTS lawCT S
(
α,

β
a ,

c(1−aα)
α b

)
. However, to avoid

being forced to always simulate the OU-CTS processes on a fine time-grid allowing
the approximations (for instance if one needs to simulate it at a monthly granularity
t = 30/365), the generation of the skeleton of such processes will be preferably based
on the exact method of the Algorithm 2.

8 Conclusions

In this paper we studied the transition laws of the tempered stable relatedOUprocesses
with finite variation from the standpoint of the a-remainders of sd distributions: in fact,
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the transition law of any OU process essentially coincides with the distribution of the
a-remainder of its stationary sd distribution. To this purpose, we first derived the
Lévy triplet of the a-remainder of a general sd law which is then instrumental to
find the representation of the transition law of tempered stable related OU processes
with finite variation. We thereafter focused our attention on the CTS-OU and the
OU-CTS processes: respectively those whose stationary law is a CTS distribution,
and those whose BDLP is a CTS process. As already done in Zhang and Zhang
(2008, 2009), Kawai and Masuda (2011) and Qu et al. (2021), we showed that their
transition law coincides with the distribution of the sum of a CTS distributed rv (with
scaled parameters), of a suitable compound Poisson rv and of a degenerate term: we
accordingly also derived their path-generation algorithms.

As for the simulation of the skeleton of CTS-OU processes, we focused on the
computational efficiency indeed, our proposed procedure amounts to a remarkable
improvement with respect to the existing solutions presented in Zhang and Zhang
(2008), Zhang (2011), Kawai andMasuda (2011): it does not rely on additional accep-
tance rejection methods other than that required to generate a CTS distributed rv. Our
computational times are by far faster and are suitable for real-time applications. On the
other hand, the simulation procedure for a OU-CTS process is based on an acceptance
rejection approach more efficient than that described in Qu et al. (2021), because here
the number of iterations before acceptance can be made arbitrarily close to 1 no matter
how fine we choose the time grid of the skeleton. We also proposed an approximation
that even avoids running the acceptance-rejection step bringing a remarkable reduction
of the computational time especially if the solution is implemented in programming
languages like Python, R and MATLAB. Our numerical experiments show that this
last procedure returns correct cumulants and computational times which are tens of
times smaller than the other solutions.

Although we considered in the present paper only the CTS distributions restricted
on the positive real axis, the results can be easily extended to the bilateral case and the
simulation of the relative processeswould be simply obtained by running twice the pro-
posed algorithms. A further object of our future inquiries will be instead the possible
extension to the p -TS related OU processes (see Grabchak Grabchak (2021b)) com-
bined with the application of the algorithms recently proposed in Grabchak (2021a) to
draw samples from p -TS laws. We remark moreover that, due to the fact that the laws
of the a-remainders are id, our approach is also suited to build and simulate new Lévy
processes via the subordination of a Brownian motion with the Lévy process gener-
ated by the a-remainder of a gamma and IG law, respectively (as done for instance in
Gardini et al. (2021, 2022a)).

All these algorithms would finally be especially useful for a simulation-based sta-
tistical inference, and for some financial applications like as the derivative pricing and
the value-risk calculations. To this end, a possible future research line could be the
study of the time reversal simulations in the spirit of some recent papers by Pellegrino
and Sabino (2015) and Sabino (2020b) relatively to the time-changed OU processes
introduced in Li and Linesky (2014).
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