7,487 research outputs found

    Word Extraction Associated with a Confidence Index for On-Line Handwritten Sentence Recognition

    No full text
    International audienceThis paper presents an extension of our on-line sentence recognition system by integrating an automatic word extraction mechanism. Our word extraction task is based on the characterization of inter-stroke gaps, combined to a rejection strategy to evaluate the reliability of the gap classification results. A reconsideration mechanism then used this confidence index to create additional extracted word hypotheses by further controlling the complexity of the recognition task. Different metrics are used to evaluate the impact of this whole word extraction task on the recognition performance, on a set of 395 English sentences

    Handling out-of-vocabulary words and recognition errors based on word linguistic context for handwritten sentence recognition

    No full text
    International audienceIn this paper we investigate the use of linguistic information given by language models to deal with word recognition errors on handwritten sentences. We focus especially on errors due to out-of-vocabulary (OOV) words. First, word posterior probabilities are computed and used to detect error hypotheses on output sentences. An SVM classifier allows these errors to be categorized according to defined types. Then, a post-processing step is performed using a language model based on Part-of-Speech (POS) tags which is combined to the n-gram model previously used. Thus, error hypotheses can be further recognized and POS tags can be assigned to the OOV words. Experiments on on-line handwritten sentences show that the proposed approach allows a significant reduction of the word error rate

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    A writer identification and verification system using HMM based recognizers

    Get PDF
    In this paper, an off-line, text independent system for writer identification and verification of handwritten text lines using Hidden Markov Model (HMM) based recognizers is presented. For each writer, an individual recognizer is built and trained on text lines of that writer. This results in a number of recognizers, each of which is an expert on the handwriting of exactly one writer. In the identification and verification phase, a text line of unknown origin is presented to each of these recognizers and each one returns a transcription that includes the log-likelihood score for the generated output. These scores are sorted and the resulting ranking is used for both identification and verification. Several confidence measures are defined on this ranking. The proposed writer identification and verification system is evaluated using different experimental setup

    Use of a Confusion Network to Detect and Correct Errors in an On-Line Handwritten Sentence Recognition System

    No full text
    International audienceIn this paper we investigate the integration of a confusion network into an on-line handwritten sentence recognition system. The word posterior probabilities from the confusion network are used as confidence scored to detect potential errors in the output sentence from the Maximum A Posteriori decoding on a word graph. Dedicated classifiers (here, SVMs) are then trained to correct these errors and combine the word posterior probabilities with other sources of knowledge. A rejection phase is also introduced in the detection process. Experiments on handwritten sentences show a 28.5i% relative reduction of the word error rate

    Off-line Thai handwriting recognition in legal amount

    Get PDF
    Thai handwriting in legal amounts is a challenging problem and a new field in the area of handwriting recognition research. The focus of this thesis is to implement Thai handwriting recognition system. A preliminary data set of Thai handwriting in legal amounts is designed. The samples in the data set are characters and words of the Thai legal amounts and a set of legal amounts phrases collected from a number of native Thai volunteers. At the preprocessing and recognition process, techniques are introduced to improve the characters recognition rates. The characters are divided into two smaller subgroups by their writing levels named body and high groups. The recognition rates of both groups are increased based on their distinguished features. The writing level separation algorithms are implemented using the size and position of characters. Empirical experiments are set to test the best combination of the feature to increase the recognition rates. Traditional recognition systems are modified to give the accumulative top-3 ranked answers to cover the possible character classes. At the postprocessing process level, the lexicon matching algorithms are implemented to match the ranked characters with the legal amount words. These matched words are joined together to form possible choices of amounts. These amounts will have their syntax checked in the last stage. Several syntax violations are caused by consequence faulty character segmentation and recognition resulting from connecting or broken characters. The anomaly in handwriting caused by these characters are mainly detected by their size and shape. During the recovery process, the possible word boundary patterns can be pre-defined and used to segment the hypothesis words. These words are identified by the word recognition and the results are joined with previously matched words to form the full amounts and checked by the syntax rules again. From 154 amounts written by 10 writers, the rejection rate is 14.9 percent with the recovery processes. The recognition rate for the accepted amount is 100 percent

    Seq-UPS: Sequential Uncertainty-aware Pseudo-label Selection for Semi-Supervised Text Recognition

    Full text link
    This paper looks at semi-supervised learning (SSL) for image-based text recognition. One of the most popular SSL approaches is pseudo-labeling (PL). PL approaches assign labels to unlabeled data before re-training the model with a combination of labeled and pseudo-labeled data. However, PL methods are severely degraded by noise and are prone to over-fitting to noisy labels, due to the inclusion of erroneous high confidence pseudo-labels generated from poorly calibrated models, thus, rendering threshold-based selection ineffective. Moreover, the combinatorial complexity of the hypothesis space and the error accumulation due to multiple incorrect autoregressive steps posit pseudo-labeling challenging for sequence models. To this end, we propose a pseudo-label generation and an uncertainty-based data selection framework for semi-supervised text recognition. We first use Beam-Search inference to yield highly probable hypotheses to assign pseudo-labels to the unlabelled examples. Then we adopt an ensemble of models, sampled by applying dropout, to obtain a robust estimate of the uncertainty associated with the prediction, considering both the character-level and word-level predictive distribution to select good quality pseudo-labels. Extensive experiments on several benchmark handwriting and scene-text datasets show that our method outperforms the baseline approaches and the previous state-of-the-art semi-supervised text-recognition methods.Comment: Accepted at WACV 202

    A Computational Theory of Contextual Knowledge in Machine Reading

    Get PDF
    Machine recognition of off–line handwriting can be achieved by either recognising words as individual symbols (word level recognition) or by segmenting a word into parts, usually letters, and classifying those parts (letter level recognition). Whichever method is used, current handwriting recognition systems cannot overcome the inherent ambiguity in writingwithout recourse to contextual information. This thesis presents a set of experiments that use Hidden Markov Models of language to resolve ambiguity in the classification process. It goes on to describe an algorithm designed to recognise a document written by a single–author and to improve recognition by adaptingto the writing style and learning new words. Learning and adaptation is achieved by reading the document over several iterations. The algorithm is designed to incorporate contextual processing, adaptation to modify the shape of known words and learning of new words within a constrained dictionary. Adaptation occurs when a word that has previously been trained in the classifier is recognised at either the word or letter level and the word image is used to modify the classifier. Learning occurs when a new word that has not been in the training set is recognised at the letter level and is subsequently added to the classifier. Words and letters are recognised using a nearest neighbour classifier and used features based on the two–dimensional Fourier transform. By incorporating a measure of confidence based on the distribution of training points around an exemplar, adaptation and learning is constrained to only occur when a word is confidently classified. The algorithm was implemented and tested with a dictionary of 1000 words. Results show that adaptation of the letter classifier improved recognition on average by 3.9% with only 1.6% at the whole word level. Two experiments were carried out to evaluate the learning in the system. It was found that learning accounted for little improvement in the classification results and also that learning new words was prone to misclassifications being propagated
    • …
    corecore