1,439 research outputs found

    Data-efficient Learning of Robotic Clothing Assistance using Bayesian Gaussian Process Latent Variable Models

    Get PDF
    Motor-skill learning for complex robotic tasks is a challenging problem due to the high task variability. Robotic clothing assistance is one such challenging problem that can greatly improve the quality-of-life for the elderly and disabled. In this study, we propose a data-efficient representation to encode task-specific motor-skills of the robot using Bayesian nonparametric latent variable models. The effectivity of the proposed motor-skill representation is demonstrated in two ways: (1) through a real-time controller that can be used as a tool for learning from demonstration to impart novel skills to the robot and (2) by demonstrating that policy search reinforcement learning in such a task-specific latent space outperforms learning in the high-dimensional joint configuration space of the robot. We implement our proposed framework in a practical setting with a dual-arm robot performing clothing assistance tasks

    Robotic cloth manipulation for clothing assistance task using Dynamic Movement Primitives

    Get PDF
    The need of robotic clothing assistance in the field of assistive robotics is growing, as it is one of the most basic and essential assistance activities in daily life of elderly and disabled people. In this study we are investigating the applicability of using Dynamic Movement Primitives (DMP) as a task parameterization model for performing clothing assistance task. Robotic cloth manipulation task deals with putting a clothing article on both the arms. Robot trajectory varies significantly for various postures and also there can be various failure scenarios while doing cooperative manipulation with non-rigid and highly deformable clothing article. We have performed experiments on soft mannequin instead of human. Result shows that DMPs are able to generalize movement trajectory for modified posture.3rd International Conference of Robotics Society of India (AIR \u2717: Advances in Robotics), June 28 - July 2, 2017, New Delhi, Indi

    Bayesian Nonparametric Learning of Cloth Models for Real-time State Estimation

    Get PDF
    Robotic solutions to clothing assistance can significantly improve quality of life for the elderly and disabled. Real-time estimation of the human-cloth relationship is crucial for efficient learning of motor skills for robotic clothing assistance. The major challenge involved is cloth-state estimation due to inherent nonrigidity and occlusion. In this study, we present a novel framework for real-time estimation of the cloth state using a low-cost depth sensor, making it suitable for a feasible social implementation. The framework relies on the hypothesis that clothing articles are constrained to a low-dimensional latent manifold during clothing tasks. We propose the use of manifold relevance determination (MRD) to learn an offline cloth model that can be used to perform informed cloth-state estimation in real time. The cloth model is trained using observations from a motion capture system and depth sensor. MRD provides a principled probabilistic framework for inferring the accurate motion-capture state when only the noisy depth sensor feature state is available in real time. The experimental results demonstrate that our framework is capable of learning consistent task-specific latent features using few data samples and has the ability to generalize to unseen environmental settings. We further present several factors that affect the predictive performance of the learned cloth-state model

    Adapting robot task planning to user preferences: an assistive shoe dressing example

    Get PDF
    The final publication is available at link.springer.comHealthcare robots will be the next big advance in humans’ domestic welfare, with robots able to assist elderly people and users with disabilities. However, each user has his/her own preferences, needs and abilities. Therefore, robotic assistants will need to adapt to them, behaving accordingly. Towards this goal, we propose a method to perform behavior adaptation to the user preferences, using symbolic task planning. A user model is built from the user’s answers to simple questions with a fuzzy inference system, and it is then integrated into the planning domain. We describe an adaptation method based on both the user satisfaction and the execution outcome, depending on which penalizations are applied to the planner’s rules. We demonstrate the application of the adaptation method in a simple shoe-fitting scenario, with experiments performed in a simulated user environment. The results show quick behavior adaptation, even when the user behavior changes, as well as robustness to wrong inference of the initial user model. Finally, some insights in a non-simulated world shoe-fitting setup are also provided.Peer ReviewedPostprint (author's final draft

    Data-driven robotic manipulation of cloth-like deformable objects : the present, challenges and future prospects

    Get PDF
    Manipulating cloth-like deformable objects (CDOs) is a long-standing problem in the robotics community. CDOs are flexible (non-rigid) objects that do not show a detectable level of compression strength while two points on the article are pushed towards each other and include objects such as ropes (1D), fabrics (2D) and bags (3D). In general, CDOs’ many degrees of freedom (DoF) introduce severe self-occlusion and complex state–action dynamics as significant obstacles to perception and manipulation systems. These challenges exacerbate existing issues of modern robotic control methods such as imitation learning (IL) and reinforcement learning (RL). This review focuses on the application details of data-driven control methods on four major task families in this domain: cloth shaping, knot tying/untying, dressing and bag manipulation. Furthermore, we identify specific inductive biases in these four domains that present challenges for more general IL and RL algorithms.Publisher PDFPeer reviewe
    • …
    corecore