
Sim-to-Real Reinforcement Learning for
Deformable Object Manipulation

Jan Matas
Department of Computing
Imperial College London
jm6214@imperial.ac.uk

Stephen James
Department of Computing
Imperial College London
slj12@imperial.ac.uk

Andrew J. Davison
Department of Computing
Imperial College London

a.davison@imperial.ac.uk

Abstract: We have seen much recent progress in rigid object manipulation, but in-
teraction with deformable objects has notably lagged behind. Due to the large con-
figuration space of deformable objects, solutions using traditional modelling ap-
proaches require significant engineering work. Perhaps then, bypassing the need
for explicit modelling and instead learning the control in an end-to-end manner
serves as a better approach? Despite the growing interest in the use of end-to-end
robot learning approaches, only a small amount of work has focused on their ap-
plicability to deformable object manipulation. Moreover, due to the large amount
of data needed to learn these end-to-end solutions, an emerging trend is to learn
control policies in simulation and then transfer them over to the real world. To-
date, no work has explored whether it is possible to learn and transfer deformable
object policies. We believe that if sim-to-real methods are to be employed fur-
ther, then it should be possible to learn to interact with a wide variety of objects,
and not only rigid objects. In this work, we use a combination of state-of-the-art
deep reinforcement learning algorithms to solve the problem of manipulating de-
formable objects (specifically cloth). We evaluate our approach on three tasks —
folding a towel up to a mark, folding a face towel diagonally, and draping a piece
of cloth over a hanger. Our agents are fully trained in simulation with domain
randomisation, and then successfully deployed in the real world without having
seen any real deformable objects.

Keywords: Manipulation, Reinforcement Learning, Deformable Objects

1 Introduction

The majority of state-of-the-art work in robotic manipulation focuses on working with rigid objects,
that either do not deform when they are grasped or have negligible deformation. However, de-
formable object manipulation has many important real-world applications. Key domains of interest
are home assistance robotics (cloth folding [1], bed making [2], getting dressed [3, 4]); medicine
(robot surgery [5], suturing [6]); and industry (cable insertion [7]). Robots attempting to work with
these objects are however presented with many new challenges, most notably the large object con-
figuration spaces, the difficulty of accurate object behaviour modelling, and the large change in the
configuration resulting from manipulation attempts.

Of the limited amount of work in deformable object manipulation, the majority focuses on folding
2D deformable objects, such as towels or articles of clothing. One approach employed explicit mod-
elling of cloth deformation in simulation and then attempted to find an optimal trajectory based on
the model [8, 9, 10]. However, those models tend to be very sensitive to the deformation parameters
of the objects (stiffness, shear resistance, friction) and therefore do not generalise well to unseen ob-
jects or environments. The second approach does not attempt to model the cloth but instead relies on
visuomotor servoing to achieve the task. The robot identifies ideal grasping points based on heuris-
tics (e.g. large curvature corresponds to a corner) and then executes a folding routine [11, 12, 13].
Both approaches require a significant amount of engineering specific to the manipulation task, and
it would be cumbersome to extend them to achieve success in a wholly different scenario. An al-
ternative direction is to learn deformable object manipulation in an end-to-end manner, mapping

2nd Conference on Robot Learning (CoRL 2018), Zrich, Switzerland.

Figure 1: We learn robot policies in simulation and test them in the real-world. The algorithm was
evaluated on 3 different tasks: folding a large towel up to a tape (top row), hanging a small towel on
a hanger (middle row) and diagonally folding a square piece of cloth (bottom row).

observations directly to actions, and bypassing the need for explicit modelling. Specifically, we em-
ploy Reinforcement Learning (RL) to create an algorithm that is task agnostic and can learn many
different behaviours based on the definition of a reward and a couple of provided demonstrations.
This has been extensively studied in the context of rigid object manipulation (see [14] for a compre-
hensive evaluation), but only a small amount of work has focused on deformable objects. Moreover,
no study has previously investigated the applicability of sim-to-real methods (such as domain ran-
domisation) to transfer deformable object policies. We believe that if sim-to-real methods are to be
employed further, then it should be possible to learn to interact with a wide variety of objects, and
not only rigid objects, which has been the case to-date. To the best of our knowledge, deep RL and
sim-to-real have not yet been applied to the domain of deformable object manipulation.

In this paper, we use an improved version of Deep Deterministic Policy Gradients (DDPG) [15],
seeded with 20 demonstrations, to train an agent purely in simulation on three different tasks: fold-
ing a small towel diagonally, folding a towel up to a specific point and draping a towel over a small
hanger. All tasks are learned via a single sparse reward on task completion. The agent receives only
RGB images and the proprioceptive state (joint angles, gripper position) during test time. We em-
ployed domain randomisation [16, 17] in simulation to simplify the policy transfer from simulation
to the real world without further training. Qualitative results can be seen in the video1.

2 Related Work

Cloth manipulation tasks solved by conventional robotics methods include cloth flattening [18],
cloth folding [10, 8] or bringing cloth into a desired configuration [9]. The robots identify the
cloth configuration based on visual information with hand-engineered heuristics and then use this
either directly to parametrise a pre-programmed trajectory or indirectly by feeding the information
to a mathematical model of the cloth. Some methods have also leveraged demonstrations for cloth
manipulation, either through the use of behavioural cloning with noise injection [2, 19] or by creating
a trajectory-aware registration method that becomes robust to distractions by observing the action
multiple times [19]. Other work has combined imitation learning and the PoWER RL algorithm to
learn a policy for folding a towel by observing human demonstrations [20]. The towel was equipped
with reflective markers and a complex system was employed to reconstruct the missing data if the
markers were occluded or not detected.

Deep learning has not yet been extensively applied to cloth manipulation, even though it has found
applications in many other robotic domains, including rigid object manipulation [21, 22], UAV
control [23] or bipedal robot control [24]. One of the most prevalent deep RL methods in robotics is
DDPG [15]. The algorithm allows control in continuous space without discretisation, which makes it
a good fit for controlling robot joint velocities. The algorithm has been the basis for a large number
of extensions [25, 26, 27, 28, 29, 30] which have further improved the performance of the agent.
DDPG can also be extended with demonstrations to considerably speed up the learning process [7].

1https://sites.google.com/view/sim-to-real-deformable

2

https://sites.google.com/view/sim-to-real-deformable

Figure 2: Examples of domain randomisation for the hanger environment. During randomisation,
we vary the table textures, cloth and arm colours, light position, camera position and orientation,
cloth size and position, hanger size and position, initial arm position and size of arm base.

Transferring policies learned in simulation into the real world is a challenging task. Previous work
has shown that direct transfer was not possible [31], while others have shown that transfer only works
after the agent has received additional training in the real world [32]. A promising technique to
accomplish a successful transfer from simulation to the real world is domain randomisation [16, 30,
17], which samples simulation parameters (e.g. camera position, light position, textures etc.) from
probability distributions centred at a noisy estimate of the ground truth. As a result, the agent learns
to ignore minor variations in the environment, so it becomes robust to domain changes, including
the sim-to-real transfer. This approach has been successfully employed on a pick-and-place task,
where an agent trained using supervised learning methods in the simulation was able to pick up a
cube and move it to a basket, even in the presence of distractors and variable lighting [17].

3 Background

We consider a classic RL setting that can be represented as a Markov Decision Process (MDP)
defined as a 5-tuple (S,A, P, r, γ), where S is the set of full states of the environment, A is the set
of actions, r : S × A → R is the reward function, γ is a discount factor and P : S × A × S : R
is a state transition probability function. The decision process is partially observable and the agent
receives observations o from the set of observations O. The reward function in our work is sparse,
so the agent only receives the reward on accomplishing the full task. Hence, retraining the agent
for a new task only requires defining the conditions of success and possibly a new hyper-parameter
search, which can be parallelised and automated.

The goal of the agent is to learn a deterministic policy π : O → A such that taking action at = π(ot)
maximises the return from the state st (sum of discounted future rewards),Rt =

∑∞
i=t γ

i−tr(si, ai).
After taking an action a, the environment transitions from state st to state st+1 sampled from prob-
ability distribution P (st, at, .). The quality of taking an action at in state st can be measured by a
Q function Q(st, at) = E[Rt|st, at].
DDPG [15] is a deep RL algorithm for learning control policies in a continuous action domain.
It uses an actor neural network, parametrised by a set of parameters θπ , that maps observations
to actions π : O → A and tries to maximise Q(st, π(ot)) at each time-step t. However, the Q
function is not known and DDPG employs a critic neural network, parametrised by parameters θQ,
to estimate Q by minimising the Bellman loss:

Lcritic = (Q(st, at)− rt −Q*(st+1, π
*(ot+1)))

2 .

During training, the agent acts in the environment according to noisy policy at = π(ot) +N(0, σ).
The Gaussian noise facilitates exploration. Each transition the agent generates is stored in a replay
buffer from where it is sampled in batches to train the networks. Sampling from a replay buffer
stabilises training by removing temporal correlations and therefore reduces the changes in the distri-
butions the networks are trying to learn. DDPG also employs target networks Q* and π* to reduce
the risk of Q-value estimates oscillating or diverging due to the recursive Q-value definition in the
Bellman equation.

DDPG became the primary building block of many other algorithms trying to improve on it. We
give here a brief summary of the selected DDPG extensions that we incorporated into our algorithm.

Prioritised Replay Prioritised replay [29] assigns a priority pi to each transition, computed as a
sum of the last temporal difference (TD) error and small hyper-parameter ε. TD error is defined
as the difference between critic prediction and critic target, so it serves as a proxy for the learning

3

progress induced by the transition. ε guarantees that even transitions with small TD errors can
be sampled in the future, which is necessary because the critic changes its estimates as learning
progresses. All new transitions are added to the replay buffer with priority equal to the current
maximal priority in the buffer. The sampling probability is computed as P (i) = pαi∑

k p
α
k

, where α is
a parameter controlling the strength of the prioritisation. Prioritised sampling introduces a bias that
needs to be corrected by multiplying the TD error of the transition when training by the importance
sampling weight: wi = (1

NP (i))
β , where β is a hyper-parameter controlling the magnitude of bias

correction and N is the replay buffer size.

N-Step returns N-Step returns help to quickly propagate the reward signal throughout the robot
trajectory by looking at N subsequent transitions instead of just one. It has been shown to accelerate
and stabilise learning [27]. N-step returns change the critic loss to:

Lnstep = (Q(st, at)−
N∑
i=0

γirt+i − γNQ*(st+N , π
*(ot+N)))2 .

It is possible to use both 1-step loss and N-step loss at the same time, in which case the critic loss
becomes the sum of the losses weighted by two hyper-parameters λnstep and λ1step.

DDPGfD The original DDPG usually does not perform well on complex multi-step tasks with
sparse rewards, because it is statistically improbable that the agent would often discover the right be-
haviour by random exploration. DDPGfD [7] overcomes this limitation by seeding the training with
demonstrations, which are inserted into the prioritised replay buffer along with normal transitions.
Demonstration transitions are never deleted from the replay buffer, and their priority is increased
by a small constant εD to make them more likely to be sampled. DDPGfD begins with a pre-
training phase, where it executes a fixed number of training steps using the replay buffer initialised
with demo transitions. Following pre-training, it begins collecting new experiences. DDPGfD also
employs N-Step returns and adds L2-regularisation on both actor and critic.

Behavioural Cloning [28] DDPG can be further adapted to take advantage of demonstrations
by introducing behavioural cloning loss to the actor network. This loss is applied only when a
demonstration is sampled from the replay buffer for training. It encourages the actor to propose
the same action as the demonstrator in the given state. After sufficient training, the agent might
surpass the performance of the demonstrator and LBC would then become detrimental to agent
performance. The Q-filter mitigates this problem by only applying LBC if the critic judges that the
action proposed by the actor is worse than the action of the demonstrator.

LBC =

{
|π(oi)− ai|2, if Q(si, ai) > Q(si, π(oi))

0 otherwise

Reset to demonstration Reset to demonstration [28] aims to make it easier for the agent to receive
a reward in sparse long-horizon tasks. After the end of an episode, the environment will have a small
probability of being placed into a random state encountered during demonstrations. In those cases,
the agent only needs to complete the sub-task starting at the sampled state. This sub-task is usually
substantially easier, particularly if the demonstration state was sampled near the end of the episode.

TD3 DDPG is prone to overestimating Q-values, which in turn leads to sub-optimal policies. TD3
[25] implements 3 improvements to address the overestimation resulting from approximation errors.
Firstly, it maintains 2 independent critic networks and always takes the minimum Q-value as the
optimisation target for both actor and critic. Secondly, it proposes to delay the propagation of weight
updates to target network by a couple of steps, so they have time to converge to a better quality
update. Finally, it regularises the target Q-value by adding a clipped normal noise to the action
proposed by the target actor to explicitly increase the smoothness of the Q-function prediction. The
TD3 1-step target of the critic is defined to be:

y = rt +mini=1,2Q
*
i (st+1, π(ot+1) + clip(N (0, σ),−c, c)) .

4

Conv Conv Conv Conv RGB In
(84x84x3)

Joint angles
Gripper pos

Full state

FC
256

FC
269

FC
256

FC
256

Action
4 tanh

FC
256

FC
256

FC
256

FC
256

Task target
1

Cloth corners
12

 linear

linear

2x Q-val
1

Min

All with 3x3 kernel, 32 filters, stride 2

Figure 3: The network architecture uses 3 different inputs — RGB images from the camera looking
at the scene, joint angles and gripper position (available at test time from the robot API) and full state,
which is only available at training time. The top half of the figure corresponds to the actor, while
the bottom half corresponds to twin critics. The actor receives joint angles, gripper position and
RGB images while the critic receives full-low dimensional state. Auxiliary outputs of the actor are
only used during training to help the network quickly recognise essential scene features. However,
they were also useful for debugging purposes at test time, because we can plot the estimate of cloth
position and target position to verify that the actor understands the scene.

Asymmetric actor-critic The simulator always has a perfect understanding of the environment,
which can be leveraged during the training phase. Asymmetric actor-critic [30] uses high dimen-
sional (RGB) partial observations as an input to the actor, whilst using low-dimensional environment
state (object positions, arm state, etc.) as the input for the critic. This extension significantly reduces
the number of trainable parameters and increases the accuracy of the critic.

4 Method
4.1 Simulation

The reinforcement learning community currently uses many simulators to facilitate the cheap and
fast collection of data. Among the widely used simulators, only Pybullet [33] implements some
rudimentary and experimental functionality for simulating deformable objects. Even though the
simulator implements 2D rectangular cloth creation in its C++ API, we found the out-of-the-box
simulation behaviour impractical for our purposes. We initially tried to rely on physics simulation
to create a lasting grasp, which was not possible. The gripper either tunnelled through the cloth (low
collision margin) or the gripper repelled it before the grasp attempt (high collision margin). We were
only able to resolve the issue by creating a fake grasp implemented as a set of anchors between cloth
nodes and gripper fingers.

The grasp creation was stochastic and deliberately failed in 5% of the cases to expose the agent to
unsuccessful grasp scenarios. Moreover, the creation of the constraint was subject to the gripper
endpoint being in close proximity to a cloth node. Creating the constraint only to a single point on
each gripper causes the cloth to spin unnaturally, so multiple anchors were used — one at the middle
and one at both extremities of each fingertip. Finally, we found that the existing implementation of
anchors between soft bodies and rigid bodies was not sufficient because it reached an equilibrium of
forces with the cloth hanging approximately 5 cm below the gripper. We adapted the implementation
so the anchor between cloth node and rigid object is honoured regardless of other forces acting on
the cloth.

We employed domain randomisation to facilitate a smooth domain transfer of the learned policy.
More specifically, we randomised the textures using Perlin noise [34]; object and background
colours; object parameters and positions; arm spawn position and joint angles; camera position, ori-
entation and intrinsics; light source position and colour; and all reflectance coefficients. The values
were sampled from either normal or uniform distributions around the noisy ground truth estimates.

4.2 Learning algorithm with integrated improvements

During initial experimentation, we found that DDPG was not successful in solving any of the pro-
posed environments, and so investigated possible improvements. We have taken inspiration from the

5

success of the Rainbow DQN agent [35] integrating all recently proposed extensions and achieving
state-of-the-art performance on a set of benchmark tasks. Starting with the DDPG baseline avail-
able in the OpenAI repository [36], we implemented all DDPG extensions listed in Section 3. We
however did not use the Q-value target regularisation in TD3 because we found it to be detrimental
to the agent performance for these particular tasks. This results in the following critic loss, applied
to at during training:

Lcritic(a) = λnstepLnstep(a)wi + λ1stepL1step(a)wi + λL2L
Q
reg(θ

Q),

Lnstep(a) = (Q(st, a)−
N∑
i=0

γirt+i − γNmini=1,2Q
*
i (st+N , π

*(ot+N)))2,

L1step(a) = (Q(st, a)− rt −mini=1,2Q
*
i (st+1, π

*(ot+1)))
2

The auxiliary outputs predict the key features of the environments (in our case those are cloth corner
positions, tape y-coordinate and hanger y-coordinate). Laux is the mean square error between the
prediction and the actual value. Each component of the auxiliary predictions can be weighted by
separate weightings, although this was rarely used in practice. The resulting actor loss is:

Lactor = −Lcritic(π(ot)) + λBCLBC + Laux

LBC =

{
(π(oi)− ai)2, if Q(si, ai) > Q(si, π(oi)) and i is demonstration
0 otherwise .

The priority of each transaction is updated after each training step according to:

pi = Li,nstep(ai) + Li,1step(ai) + ε+ εD max
k∈minibatch

(Lk,nstep(ak) + Lk,1step(ak)) ,

where ε = 10−6 is a small constant. We found that it was impossible to tune the fixed constant
εD (as suggested by DDPGfD) to boost the priority of demonstrations further because the TD error
magnitude varied by multiple orders of magnitude across training epochs. We instead made the fur-
ther demo priority boost term proportional to the maximal losses in the current mini-batch. εD is set
to 0 for updating priorities of all transitions apart from demonstrations. We used the same network
architecture (Figure 3) for all 3 experiments. The full learning algorithm with all improvements will
be made available online.2.

5 Experiments

5.1 Cloth manipulation environments

All standard RL environments for manipulation tasks only contain rigid objects, so we designed and
implemented 3 new environments for solving deformable object tasks. Each environment exposes
an RGB observation with dimensions 84x84x3, a low dimensional state and low dimensional actor
input (joint angles and gripper position). The robotic arm in the environments is 7DOF Kinova Mico
controlled by 4-dimensional action. First 3 dimensions are the velocity of the end effector while the
last dimension is a gripping velocity (negative for opening and positive for closing). The reward is
sparse with +100 for success and 0 otherwise. Gripper rotation is not necessary for the tasks and
is therefore kept fixed. The origin of the coordinate system is at the base of the arm, with z-axis
perpendicular to the table and x-axis pointing towards the camera. The environments implement
OpenAI gym [37] API and use Pybullet as a simulation engine [33]. We call the 3 environments
Tape, Hanging and Diagonal Folding:

1. Tape: The robot needs to fold a large towel up to a mark identified by a piece of black
tape. The tape can be in 3 different positions: 5/8th, 7/8th and at the end of the towel. The
robot receives a reward if both corners of the lifted side of the cloth are within a threshold
distance from the tape. The gripper is fixed to point downwards with fingers parallel to the
y-axis. This task was proposed by Lee et al. [19].

2. Hanging: The robot needs to grasp the piece of cloth and drape it over a small hanger.
The cloth appears on the left side of the scene, and we sample its position from a uniform

2https://sites.google.com/view/sim-to-real-deformable

6

https://sites.google.com/view/sim-to-real-deformable

0 50 100 150 200 250
Epoch

0

20

40

60

80

Re
w

ar
d

Ours - mean
No Demo Prioritisation - mean
No Auxiliary Predictions - mean
No Pretraining - mean
No Twin Critic - mean
No N-Step Returns - mean
No Behavioural Cloning - mean
No Demonstrations - mean
Only 5 Demonstrations - mean
No reset-to-demo - mean
No Gripper Pos in Actor - mean
No Low-Dim Data in Actor - mean

Figure 4: Ablation studies on the Diagonal Folding task, where “Ours” shows the result of the
algorithm with all improvements. The reward for success was set to be 100, and therefore it is equal
to the percentage of successes. Two evaluation episodes were performed after each epoch. Curves
report the mean of 2 random seeds, and they were smoothed to improve legibility.

distribution. The reward is given when the cloth is released from the gripper, and all corners
stay 5 or more cm over the ground for 20 simulation steps (this rules out cloth sliding off
the hanger). The gripper has fingers parallel to the x-axis.

3. Diagonal folding: The robot needs to fold a rectangular face towel (∼ 28× 28cm) diago-
nally. The reward is given if the diagonal corners are within a threshold distance from each
other and all pairs of corners on the same side of the rectangle are at distances larger than
3/4 of the side length when flat (this is to prevent the robot simply crumpling the cloth to
align corners, which we have observed before). The gripper is parallel to the x-axis.

5.2 Simulation results and ablation studies

Success rates (Sim)
Diagonal folding 90%

Hanging 77%
Tape 86%

Table 1: Success rates in
simulation

We ran the training algorithm with all implemented improvements (la-
belled “Ours”) on the three tasks we defined above. Each training run
was seeded with 20 demos. Each experiment took approximately 24
hours to run on one GeForce GTX TITAN. The success rates (mean of
3 random seeds) in the final evaluations of the experiments are shown
in Table 1, which were achieved after approximately 80k transitions
and in the presence of domain randomisation.

The most likely failure case across all environments is a failure to
grasp the cloth. Even though the agent has learned to do multiple re-grasps, in some situations, it
repeatedly fails (e.g. by closing the gripper above the towel). We believe this is due to an outlier
in the camera configuration sampled from a normal distribution. Secondly, too fast or inaccurate
motion usually causes the agent to crumple the towel after which it is no longer able to achieve the
task. Thirdly, in the Hanging task, the agent sometimes drapes the cloth too far, causing it to fall.

We performed ablation studies to verify the contributions of selected modifications to DDPG. The
agent integrating all improvements either outperforms or matches the performance of all training
runs with an ablation. Two implemented improvements do not seem to increase the agent perfor-
mance: reset to demonstration and adding gripper position to the low dimensional actor input. In
the first case, we hypothesise that due to the BC loss, the agent can complete successful full-length
tasks early in training so it can quickly form a diverse set of successful episodes. This might be
preferable over repeatedly resetting to similar states from demonstrations. In the second case, we
removed gripper position from actor input, instead making it an auxiliary output. The agent accu-
rately learned to predict the forward kinematics, so the gripper position input was not necessary.
However, also removing joint angles (No Low-Dim Data in actor) was detrimental to performance
which indicates that the agent cannot infer gripper position accurately from images only.

The features with questionable value are Twin Critic and Pre-training. Although they seem to pro-
vide improvement, the trade-off is increased computational cost. Pre-training has a constant cost of
7 minutes at the start of training and maintaining two critics increased runtime by 1%. However,
Twin Critic would be substantially more expensive if it also used RGB observations.

7

Hanging task
Vicinity 100%
Grasp 76.6%

Drape over 70%
Full success 46.6%

Diagonal folding task
Grasp 66.6%

Not crumpled 66.6%
d ≤ 0.15m 53.3%
d ≤ 0.1m 40%

d ≤ 0.05m 20%

Tape folding task
Grasp 90%

d ≤ 0.15m 90%
d ≤ 0.1m 76.6%
d ≤ 0.05m 43%

Table 2: The success rates for each environment in the real world. Note that these are run in the real
world without additional training. For the hanging task, vicinity means the gripper being within 5cm
from the cloth, drape over means the cloth is touching the top part of the hanger and full success
is achieved if the cloth does not fall after it is released. For diagonal folding, not crumpled means
that adjacent corners are more than 15cm from each other and the d is the distance between diagonal
corners (lower is better). For tape folding, d is the distance between towel edge and the tape mark.

The improvements that convincingly demonstrated a positive contribution to agent performance are
Auxiliary predictions, Behavioural Cloning and Demo prioritisation. Without boosting the priority
of the demonstrations (adding the εD term to priority equation), they are much less likely to be
sampled because they form only a tiny portion of the replay buffer.

5.3 Sim-to-real transfer

In real-world experiments, we use the Kinova Mico 7DOF robotic arm mounted in the middle of
a table, and we collect the RGB observation using a low-cost Genius C170 web camera mounted
on a fixed tripod next to the table. We report the results of 30 trials on the real robot for each task
in Table 2. As in simulation, the most prominent failure case is failed grasping, particularly with
thin face towels (used in Hanging and Diagonal folding). The robot has only a small acceptable
margin of error (roughly 1 cm) in the z-axis for a successful grasp — going too low will prevent the
gripper from closing and going too high will not grasp the cloth. The other common failure case
was an imprecise movement resulting in crumpling of the fabric from which the agent was not able
to recover. this was partly caused by low simulation fidelity. The real cloth was much stiffer and
therefore less forgiving to imprecise movement and the agent could not learn this in simulation.

When experimenting with various levels of domain randomisation, we found that heavy randomi-
sation can be detrimental to learning. Specifically, we tried sampling the texture colours from a
uniform distribution across all colours and the performance of the agent after the transfer was sig-
nificantly worse. We believe that it then became much harder for the network to identify invariant
environment features it could use for orientation. Consistently with previous work [17], we found
that camera randomisation is essential for successful transfer. Even with randomisation, the agent
was still very sensitive to the camera position.

6 Conclusion and Future work

Building up on recent work in end-to-end learning for rigid object manipulation, we have extended
those ideas to the domain of deformable objects and specifically, we have addressed the problem
of cloth manipulation. We proposed a task agnostic algorithm based on Deep RL which bypasses
the need to explicitly model cloth behaviour and does not require reward shaping to converge. The
agent was able to learn 3 long horizon tasks: folding a towel to a tape mark, diagonal folding of
face towel and draping a small towel over a hanger. Training was seeded with 20 demonstrations
and happened entirely in simulation with a couple of adaptations to account for imperfections in
experimental deformable body support, and with domain randomisation to enable easy transfer of
the policy. The learning algorithm incorporated 9 improvements proposed in the recent literature
and we have presented ablation studies to understand the role of these improvements.

We believe that the primary factor limiting further research into deformable object manipulation is
the lack of support for those objects in most robotic simulators. We are hoping that further research
into simulation will allow us to create an accurate model of deformable object grasping, incorporate
it into a widely used simulator and release the environments to create a set of benchmark tasks for
future research in the domain.

8

References
[1] S. Miller, J. van den Berg, M. Fritz, T. Darrell, K. Goldberg, and P. Abbeel. A Geometric

Approach to Robotic Laundry Folding. Household Service Robotics, 2014.

[2] M. Laskey, C. Powers, R. Joshi, A. Poursohi, and K. Goldberg. Learning Robust Bed Making
using Deep Imitation Learning with DART. CoRR, 2017.

[3] Y. Gao, H. J. Chang, and Y. Demiris. Iterative path optimisation for personalised dressing
assistance using vision and force information. International Conference on Intelligent Robots
and Systems, 2016.

[4] T. Tamei, T. Matsubara, A. Rai, and T. Shibata. Reinforcement Learning of Clothing Assistance
with a Dual-arm Robot. International Conference on Humanoid Robots, 2011.

[5] B. Thananjeyan, A. Garg, S. Krishnan, C. Chen, L. Miller, and K. Goldberg. Multilateral
surgical pattern cutting in 2D orthotropic gauze with deep reinforcement learning policies for
tensioning. International Conference on Robotics and Automation), 2017.

[6] J. Schulman, J. Ho, C. Lee, and P. Abbeel. Generalization in Robotic Manipulation Through
The Use of Non-Rigid Registration. International Symposium on Robotics Research, 2013.

[7] M. Večerı́k, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothörl, T. Lampe,
and M. Riedmiller. Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
Problems with Sparse Rewards. CoRR, 2017.

[8] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. Allen. Folding Deformable Objects using Predictive
Simulation and Trajectory Optimization. International Conference on Intelligent Robots and
Systems, 2015.

[9] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel. Bringing clothing
into desired configurations with limited perception. International Conference on Robotics and
Automation, 2011.

[10] Y. Yamakawa, A. Namiki, and M. Ishikawa. Motion planning for dynamic folding of a cloth
with two high-speed robot hands and two high-speed sliders. International Conference on
Robotics and Automation, 2011.

[11] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. Cloth grasp point detection
based on multiple-view geometric cues with application to robotic towel folding. International
Conference on Robotics and Automation, 2010.

[12] F. Osawa, H. Seki, and Y. Kamiy. Unfolding of Massive Laundry and Classification Types by
Dual Manipulator. Journal of Advanced Computational Intelligence and Intelligent Informat-
ics, 2007.

[13] C. Bersch, B. Pitzer, and S. Kammel. Bimanual robotic cloth manipulation for laundry folding.
International Conference on Intelligent Robots and Systems, 2011.

[14] D. Quillen, E. Jang, O. Nachum, C. Finn, J. Ibarz, and S. Levine. Deep Reinforcement Learn-
ing for Vision-Based Robotic Grasping: A Simulated Comparative Evaluation of Off-Policy
Methods. CoRR, 2018.

[15] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. CoRR, 2015.

[16] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain Randomization
for Transferring Deep Neural Networks from Simulation to the Real World. International
Conference on Intelligent Robots and Systems, 2017.

[17] S. James, A. J. Davison, and E. Johns. Transferring End-to-End Visuomotor Control from
Simulation to Real World for a Multi-Stage Task. Conference on Robot Learning, 2017.

9

[18] K. Sun, G. Aragon-Camarasa, P. Cockshott, S. Rogers, J. P. Siebert, L. Sun, G. Aragon-
Camarasa, P. Cockshott, S. Rogers, and J. P. Siebert. A Heuristic-Based Approach for Flatten-
ing Wrinkled Clothes. 2013.

[19] A. X. Lee, A. Gupta, H. Lu, S. Levine, and P. Abbeel. Learning from Multiple Demonstra-
tions using Trajectory-Aware Non-Rigid Registration with Applications to Deformable Object
Manipulation. International Conference on Intelligent Robots and Systems, 2015.

[20] B. Balaguer and S. Carpin. Combining imitation and reinforcement learning to fold deformable
planar objects. International Conference on Intelligent Robots and Systems, 2011.

[21] S. Gu, E. Holly, T. Lillicrap, and S. Levine. Deep Reinforcement Learning for Robotic Ma-
nipulation with Asynchronous Off-Policy Updates. International Conference on Robotics and
Automation, 2016.

[22] J. Peters and S. Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks.

[23] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An Application of Reinforcement Learning
to Aerobatic Helicopter Flight. International Conference on Neural Information Processing
Systems, 2006.

[24] X. B. Peng, G. Berseth, and Y. Kangkang. DeepLoco: Dynamic Locomotion Skills Using
Hierarchical Deep Reinforcement Learning. ACM Transactions on Graphics, 2017.

[25] S. Fujimoto, H. van Hoof, and D. Meger. Addressing Function Approximation Error in Actor-
Critic Methods. CoRR, 2018.

[26] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mcgrew, J. Tobin,
P. Abbeel, and W. Z. Openai. Hindsight Experience Replay. Neural Information Processing
Systems Conference, 2017.

[27] G. Barth-Maro, M. W. Hoffma, D. Budden, W. Dabney, D. Horgan, D. Tb, A. Muldal,
N. Heess, T. Lillicrap, and London. Distributed Distributional Deterministic Policy Gradients.
International Conference on Learning Representations, 2018.

[28] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming Exploration
in Reinforcement Learning with Demonstrations. International Conference on Robotics and
Automation, 2017.

[29] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. Prioritized Experience Replay. CoRR, 2015.

[30] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric Actor Critic
for Image-Based Robot Learning. Robotics: Science and Systems, 2017.

[31] S. James and E. Johns. 3D Simulation for Robot Arm Control with Deep Q-Learning. Neural
Information Processing Systems Conference Workshop, 2016.

[32] A. A. Rusu, M. Vecerik, T. Rothörl, N. Heess, R. Pascanu, and R. Hadsell. Sim-to-Real Robot
Learning from Pixels with Progressive Nets. Conference on Robot Learning, 2017.

[33] E. Coumans and Y. Bai. PyBullet, a Python module for physics simulation for games, robotics
and machine learning. GitHub repository, 2016.

[34] K. Perlin. An image synthesizer. ACM SIGGRAPH Computer Graphics, 1985.

[35] M. Hessel, J. Modayil, H. van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan, B. Piot,
M. G. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforcement learning.
CoRR, 2017.

[36] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu. Openai baselines. GitHub repository, 2017.

[37] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
OpenAI Gym. GitHub repository, 2016.

10

	Introduction
	Related Work
	Background
	Method
	Simulation
	Learning algorithm with integrated improvements

	Experiments
	Cloth manipulation environments
	Simulation results and ablation studies
	Sim-to-real transfer

	Conclusion and Future work

