347,690 research outputs found

    On the Structure and Complexity of Rational Sets of Regular Languages

    Get PDF
    In a recent thread of papers, we have introduced FQL, a precise specification language for test coverage, and developed the test case generation engine FShell for ANSI C. In essence, an FQL test specification amounts to a set of regular languages, each of which has to be matched by at least one test execution. To describe such sets of regular languages, the FQL semantics uses an automata-theoretic concept known as rational sets of regular languages (RSRLs). RSRLs are automata whose alphabet consists of regular expressions. Thus, the language accepted by the automaton is a set of regular expressions. In this paper, we study RSRLs from a theoretic point of view. More specifically, we analyze RSRL closure properties under common set theoretic operations, and the complexity of membership checking, i.e., whether a regular language is an element of a RSRL. For all questions we investigate both the general case and the case of finite sets of regular languages. Although a few properties are left as open problems, the paper provides a systematic semantic foundation for the test specification language FQL

    Decidability of Identity-free Relational Kleene Lattices

    Get PDF
    National audienceFamilies of binary relations are important interpretations of regular expressions, and the equivalence of two regular expressions with respect to their relational interpretations is decidable: the problem reduces to the equality of the denoted regular languages.Putting together a few results from the literature, we first make explicit a generalisation of this reduction, for regular expressions extended with converse and intersection: instead of considering sets of words (i.e., formal languages), one has to consider sets of directed and labelled graphs.We then focus on identity-free regular expressions with intersection—a setting where the above graphs are acyclic—and we show that the corresponding equational theory is decidable. We achieve this by defining an automaton model, based on Petri Nets, to recognise these sets of acyclic graphs, and by providing an algorithm to compare such automata

    Symbolic Solving of Extended Regular Expression Inequalities

    Get PDF
    This paper presents a new solution to the containment problem for extended regular expressions that extends basic regular expressions with intersection and complement operators and consider regular expressions on infinite alphabets based on potentially infinite character sets. Standard approaches deciding the containment do not take extended operators or character sets into account. The algorithm avoids the translation to an expression-equivalent automaton and provides a purely symbolic term rewriting systems for solving regular expressions inequalities. We give a new symbolic decision procedure for the containment problem based on Brzozowski's regular expression derivatives and Antimirov's rewriting approach to check containment. We generalize Brzozowski's syntactic derivative operator to two derivative operators that work with respect to (potentially infinite) representable character sets.Comment: Technical Repor

    On the complexity of minimum inference of regular sets

    Get PDF
    We prove results concerning the computational tractability of some problems related to determining minimum realizations of finite samples of regular sets by finite automata and regular expressions

    On universality of concurrent expressions with synchronization primitives

    Get PDF
    AbstractConcurrent expressions are a class of extended regular expressions with a shuffle operator (‖) and its closure (). The class of concurrent expressions with synchronization primitives, called synchronized concurrent expressions, is introduced as an extended model of Shaw's flow expressions. This paper discusses some formal properties of synchronized concurrent expressions from a formal language theoretic point of view. It is shown that synchronized concurrent expressions with three signal/wait operations are universal in the sense that they can simulate any semaphore controlled concurrent expressions and they can describe the class of recursively enumerable sets. Some results on semaphore controlled regular expressions are also included to give a taste of more positive results

    Boundedness in languages of infinite words

    Full text link
    We define a new class of languages of ω\omega-words, strictly extending ω\omega-regular languages. One way to present this new class is by a type of regular expressions. The new expressions are an extension of ω\omega-regular expressions where two new variants of the Kleene star L∗L^* are added: LBL^B and LSL^S. These new exponents are used to say that parts of the input word have bounded size, and that parts of the input can have arbitrarily large sizes, respectively. For instance, the expression (aBb)ω(a^Bb)^\omega represents the language of infinite words over the letters a,ba,b where there is a common bound on the number of consecutive letters aa. The expression (aSb)ω(a^Sb)^\omega represents a similar language, but this time the distance between consecutive bb's is required to tend toward the infinite. We develop a theory for these languages, with a focus on decidability and closure. We define an equivalent automaton model, extending B\"uchi automata. The main technical result is a complementation lemma that works for languages where only one type of exponent---either LBL^B or LSL^S---is used. We use the closure and decidability results to obtain partial decidability results for the logic MSOLB, a logic obtained by extending monadic second-order logic with new quantifiers that speak about the size of sets

    Deciding KAT and Hoare Logic with Derivatives

    Get PDF
    Kleene algebra with tests (KAT) is an equational system for program verification, which is the combination of Boolean algebra (BA) and Kleene algebra (KA), the algebra of regular expressions. In particular, KAT subsumes the propositional fragment of Hoare logic (PHL) which is a formal system for the specification and verification of programs, and that is currently the base of most tools for checking program correctness. Both the equational theory of KAT and the encoding of PHL in KAT are known to be decidable. In this paper we present a new decision procedure for the equivalence of two KAT expressions based on the notion of partial derivatives. We also introduce the notion of derivative modulo particular sets of equations. With this we extend the previous procedure for deciding PHL. Some experimental results are also presented.Comment: In Proceedings GandALF 2012, arXiv:1210.202
    • …
    corecore