
Theoretical Computer Science 19 (1982) 105-115
North-Holland Publishing Company

105

NOTE

ON UNIVERSALITY OF CONCURRENT EXPRESSIO:N§
WITH SYNCHRONIZATION PRIMITIVES

T. IT0 and Y. NISHITANI
Department of Electrical Communications, School of Engineering, jbhoku Univewly, $endai,
Japan

Communicated by M. Nivat
Received September 198 1

Abstract. Concurrent expressions are a class of extended regular expressions with a shuffle
operator (II) and its closure (@). The class of concurrent expressions with synchronization primi-
tives, called synchronized concurrent expressions, is intmdsccd as an extended modlel of Shaw’s
flow expressions. This paper discusses sciile formal properties of synchronized concurrent
expressions from a formal language theoretic point of view. It is shown that synchronized
concurrent expressions with three signal/wait operations are universal in the sense that they can
simulate any semaphore controlled concurrent expressions and they can describe the class of
recursively enumerable sets. Some results on semaphore colrtrolled ‘regular expressilons are also
included to give a taste of more positive results.

1. Introduction

A number of formal approaches to investigate properties of concurrent process
are proposed in the literature. Shaw [7] proposed a model called “flow expression”.
Flow expressions are a class of extended regular expressions with a shuffle operation,
its closure, an infinite cycle operation and synchronization primitives. Shaw [7]
discusses the correspondence between flow expressions and concurrent processes

and gives some elementary properties of flow expressions. Also, Shaw [8] discusses
some relations between flow expressions and other models of concurrent processes.

Some formal properties of flow expressions have been studied by Shaw, Araki-
Tokura and others from a formal language theoretic point of view, as is mentioned
in Shaw [8].

In this paper we introduce a slightly generalized formalism of flow expressions,
called “synchronized concurrent expressions”, which is more suitable for our

theoretical study on concurrent processes. Concurrent expressions are a class of

extended regular expressions with a. shuffle operator (11) and its closure (*). The
class of concurrent expressions with synchronization primitives (like semaphore

primitives) is called synchronized concurrent expressions in this paper. We introduce

03043975/82/0000-0000/$02.75 @ 1982 North-Holland

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82652517?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IOCI T. Ito, Y. Nishitani

a reasonable L ks of synchronization primitives defined as concurrent expressions,
capable of tiescribing various semaphore systems. Using this formalism we show
that synchroked concurrent expressions with three signal/wait semaphore oper-
ations are universal in the sense that they can simulate any semaphore controlled
concurrent expressions and they can describe the class of recursively enumerable
sets. Some latest results on semaphore controlled regular expressions are also
included to explain more positive theoretical aspects of these studies.

2. Synchronized concurrent expressions

In this section we give the definitions of
(1) co ricurrent expression,
(2) synchronized concurrent expression,
(3) se:maphore systems and synchronization primitives in concurrent expressions
and we explain some previous results.

2.1, DeRtrition of concurrent expressions

Let A be a finite set of symbols. Then the set of concurrent expressions over A
can be declined recursively as follows:
(1) 4, A, a are concurrent expressions,
(2) if E and F are concurrent expressions, then (E), E-I-F, EF, E”, EllF and E@
are concurrent expressions.

The semantics of concurrent expressions can be defined as follows:

(1)
(2)
(3)
(4)
Cv
(6)
(7)
03)
(9)

ISi = 0 (0: the empty set),
IA I= {A} (A : the empty word),
Ial ={a} (a EA).,

I(E)I = IElt
!E+FI=IEIuIFI,

lEFl= (xv Ix E IEl, Y E IFI,,
IE*I = tJ2, IE’j, where E’ = A, Ei+’ = E’E for i 2 0,
1Ellr'i = ~Y~GY~. . . x,aynz Ixi E A”‘, yi E A*, ~1x2 l l l xm E IEI, yly2 l . . y, E IFI},
]E@I = Uz, IE”‘I, where E”’ = A, Eiiitl = E"'llE for i 2 0.

Remark 1. In this paper concurrent expressions are defined as extended regular
expressions with the shuffle operator (II) and its closure (‘). Shaw’s definition of
fiovr- expressions zontains an infinite cycle operation (oo), but the infinity operator
(00) was excluded int this paper since its descriptive power is beyond the standard
theory of formal languages. The analysis of flow expressions in this paper is
essentially tased on the theory of formal languages. In this paper
- R(A) denotes tlhe set of regular expressions over A;
- C(A) denotes the set of concurrent expressions over A.

Universality of concurrent expressions 107

Remark 2. Let E = ab and F = b as an example. Then we have

lEllFl= (abc, .wb, cab), IE@i = (A, ab, abab, aabb, . . .]

The shuffle operation “E(IF” corresponds to the set of computation sequences by
a concurrent process:

cobegin EllF cloend

2.2. Synchronized concurrent expressions

Let C be a finite set of symbols and r be a finite set of synchronization primitives,
where C A r = 0. Then a concurrent expression over L: and Z is called a synchronized
concurrent expression, and a language over A! is called a synchro.rization mechanism.
Given a synchronization mechanism K and a concurrent expression E, the language
described by E with K-control is given as

where h and h” are the following homomorphisms:

a (aE% h0=IA (aET);
A (a W,

K(a)=Ia (a Er).

Let K be a synchronization mechanism and K be a family of languages in terms
of synchronization mechanisms as follows:

LK ={L~(E)~EEC(~U~),~~~=~}, LK= u ‘k
KEK

where C(Z UP) is the set of concurrent expressions over C UK
-5.

Remark 3. In the above definition C and r correspond to the set of basic processes
and synchronization primkives, respectively. It may be interpreted that an element
of x of IEI is a computational sequence of a concurrent process denoted by E. The
homomorphisms h(x) and 6(x) correspond to the sequences of basic processes and
synchronization primitives in X, respectively. This formalism of characterizing
process descriptions and synchronization mechanisms of synchronized concurrent
expressions by homomorphisms is a slightly generalized and formalized version of
flow expressions introduced by Shaw [7], in which only a restricted class of syn-5
chronization ;iezhanisms are allowed. Qur present formalism enables us to deal
with synchronization mechanisms independently of process descriptions. In this
paper we study the descriptive power of L K and LK with respect to K and K using
this formalism.

2.3. Semaphore systems and synchronization primitives in concurrent expressions

Let r, = {Oi, Wi I i = 0, 1, , . . , n - 1}, where ai and oi correspond to the wait and
signal operations on the ith semiaphore variable, respectively. Using concurrent

108 T. Ito, Y. Nishitani

expressions We define four semaphore systems over r, in the following way:

(1) Counter semaphore: C(n)

C = {C(n) 1 n 2 0}, where C(0) = {A};

(2) [O]-counter semaphore: C&z)

C&z) = ~(oboo)*~~(cnw)*Il ’ ’ ’ llbn-ml-*PI,
Co = {C&z) I rz 2 0}, where CO(O) = {A};

(3) Hinary semaphore: B(n)

B(n) = I(u(_lw”+ u~)*[l(ulw + a*)*11 l l l Ilbl-1wl-1+ a,-d*L

B={B(n)Jn ~O},whereB(O)={h};

(4) [O]-binary semaphore: B&z)

I&J(n) = lhm>*~lb*dll ’ l l llbn-IwI-1)*l9
Bob) = {Bob) I n a 0}, where &(O) = {A}.

Remark 4. From the standpoint of operating systems practice we have the following
correspondence.

(1) wi and 0; of C(n) and Co(n) correspond to the following wait&) and signal(
respectively:

Wait(&): whens>Odos+s-1,

signal(whentruedosc-s+l;

(2) mi and oj of B(n) correspond to “when si = 1 do si +- 0” and “when true do
Si +- l”, respectively;

(3) wi and ai of Be(n) correspond to “when !Si = 1 do si + 0” and “when Si = 0 do
Si + 1”) respectively.

In the above definition of the semaphore systems we can observe the interesting
fact that the synchronization mechanisms based on counter semaphores and binary
semaphores can be defined as a kind of well-structured concurrent expressions in
the sense that they are expressed without any complicated nesting structure and
they are readable from left to right. These well-structured descriptions of syn-
chronization mechanisms may be interesting and worthwhile for future studies.

Extending the above definitions of semaphore systems we can define the following
general synchronization rrzhanism:

(5) Let GE(n) be a family of synchronization mechanisms defined by concurrent
expression with it synchronization primitives. Then we denote CE = LJ~=, GE(n).

Universality of concurrent eqressions 109

Notice that in this definition of CE n synchronization primitives are not restricted
to the semaphores. C(n), Co(n), B(n) and B&z) may be considered to be special
cases of CE(2n).

(6) A concurrent expression controlled by a semaphore system will be called as
a semaphore controlled concurrent expression. In the discussions below we are
interested in LK and LK when K and K belong to the semaphore :systems of CE.

2.4. Some previous results

Under our present formalism we can state the results obtained in the study of
flow expressions as follows:

Tl: For a concurrent expression E, IEI is not necessarily context-free but
context-sensitive; if E does not contain the shuffle closure operator (@),
then IEI is regular.

T2: If a concurrent expression E does not contain any shuffle closure (II)9 then
LB&E) is regular [7].

T3: Lg = RE, where RE is a family of recursively enumarable sets. [l]
T4: LCE = Lc(6) = LGceJ = LB(,jI =, b3,3(6)* [61

According to Tl we can say that any synchronization mechanism which belongs
to CE is a context-sensitive control structure; B(n) and Be(n) aie regular control
structures for n 3 1; C(n) and C&t) are not regular control structures for n 2 1.
In this paper we improve and extend T4 using a different simulation technique,
which will be explained in the following sections.

2.5. Examples

Before moving onto the detailed discussions we give several examples to give
an intuitive appeal of synchronized concurrent expressions.

(1) Correspondence between concurrent expressions and programs

bream 1
if B then E else F
begin E; F end
while B do E
cobegin EIJF coend
for i = 1 to n do createprocess [E, i]
wait(s)
signal(s)

[concurrent expression]
E-IF
EF
E*

EIIF
E@

(2) LB,cl,[(oabu)ll(wcd~)] = (abed, cdab},

L,[(aso>Qp] = Is*1 assuming that u and o does not appear in S,

Ls[awba] = 0 (in this case the process is deadlocked).

110 T. Ito, Y. Nishitani

3. IJnivers&ty of synchronized concurrent expressions

Intuitively a semaphore system may be universal in the sense that any synchroniz-
ation mechanism in operating systems practice can be realized by a semaphore
system.. Using the above formalism we give a Corma’l proof that four kinds of

semaphore systems gklren in Section 2
can simulate each other,
can simulate any synchronization mechanism within CE and
can describe the family of recursively enumberable sets;

eventuallly we reach the universality of synchronized concurrent expressions.
That is, we can prove the following theorem:

Theorem f. L.CE = LC = Lc,, = LB = LB,, =: RE.

In order to prove Theorem 1 we need1 some preliminary definitions and results

Definitfion. ci (0 -= i c q - 1) is the following mapping from (25 u m)* into the set of
integers: for x E (C u r,)* and a (C u r,),

Ci(A)L=O, ci(xa) =

i

Q(X)+! for a =Ci,

Ci(X)-1 for a =Wi,

Ci(X) for a & (Ui, Wi)*

Proposition. For x E (2 u r,) &xi E C(,y1) if arid only if for any x’ E prefix(x) and
each i (O~isn -l), ci(x’)M,

DefMtion. ILet A and d’ be the finite s&s of symbols and f be a mapping from A

into C(@‘). For a concurrent expression E on A f (E) denotes a concurrent expression
on A’ which is obtained from E by replacing every occurrence of a &A) by f(a).
When 1 f (x)1 denotes a single word for x(E A*), f(x) may be treated as a word on
A’, where we assume f(A) = A.

Proposition. Let E be a concurrent expression on A and let f: d + C(A’ u {[, I}) be the
following mapping :

f(a) = D%l

where [ad] are the symbols which do not belong to A’ and Ea E C(A’).

If the sequence of [and] in y E If(E)1 ’ IS o t e f h f orm of (1:])“, then there exists
such that y E 1 f (x)1, and x and y are given as

x=ala2...am (aj E A),

y = [y1][y21 . l l [Ytnl C[Yil e IfWlJ*

Universality of concurrent expredons

Lemma 1.

111

LCE ~‘LC(n +3)r L CE{n) - = LC,,(n+3),

LCE(n)S&?(n+3), I 4x(n)- = LBtr(n+3)*

This lemma constitutes the major part of Theorem I. In this paper we give the
outline of the proof of this lemma, since the complete proof is rather lengthy.

Outline of the proof of Lemma 1. Let r = {yo9 yr, . . . , yn. .I} be a set of synchroniz-
ation primitives. In order to establish Lemma 1 we construct a concurrent expression
E’ on C u rH+3 for a concurrent expression EK on r and a concurrent expression
E on C UK For this concurrent expression E’ we show

LIEKI(~~) = Lccn+3,(E’) = Lc,,cm+3@‘) = L~(r:+3j(E’) = LBoln+3)(E’).

Let 1, [,]I and [be a;, +I, w1 +I, cr’,+2, OM, respectively, for l-i+3 = bm, w),

Cl, 01, l l * 9 ct, + 1, wn + 1, U, +2, wn +2}. We define the following mappings:

flsUr+c(~urn+3),

h(a) = Cal (a E n,

fl(3G) = bJi&l 3 (yi E n,

f2: r -+ c(rn+3),

Then the required concurrent expression E’ can be given as follows:

E’ = lI(fi(E)ltME~)[[.

Lemma 1 can be proved by showing that

since we have

&,c’JE”) 5 &‘JE”) E &dE”) and LB,,~JE”) c Lc,,&Er’) E Lcc,,(E”)

for any concurrent expression E”.

Proof of Theorem 1. Using Lemma 1 we can easily prove Theorem 1. From Lemma
1 we have LCE c Lc. From the definition of C(n), GE(n) and CE, c[n 2~ CE&i j G

CE: hence we have Lc E LcE. Thus we get LoE - - Lc; we can establish the similar

results for CO, B and BO.

Remark 5. The recursive enumerability of Theorem 1 follows from T3, but the
srdof of 1’3 by Araki-Tokura is complicated since they use the original Shaw flow
expression and the binary semaphore system for simulation. Using the formalism

112 T. Ito. ?/. Nishiiani

of this paper we can give a neat proof of LcE = RE in a straightforward manner,

simufating the behaviour of 2-counter automaton by a synchronized concurrent
expression. Intuitively speaking this can be done by simulating a counter behaviour

a synchronization mechanism

where y, y and yo correspond to the increment (+l), the decrement (-1) and the
zero test of the coun?er, respectively. According to this proof we can show the
following stronger result:

Corollary. Ls& = RE where LEi = {L&E) 1 E E R(C u r), C n I-’ = p)) and R(C v r)
is the set of regular expressions over C v r.

That is, the regular expressions controlled by @E can describe recursively enumer-
able sets; hence we can say that synchronized regular expressions are universal.

4. Universality of synchronized concurrent expressions with three synchronization
prhdtives

The results on universality of synchronized concurrent expressions can be
strengthened as follows:

Theorem 2. LcE = L=(3) = LG,o = LB(3) = LBot3) = RE.
The proof of this theorem can be shown by showing the following lemmas, and

Lemma 3 constitute the major part of Theorem 2.

Lemma 2. Lctn) c Lc,cn 19 L C(n) c LB(n), Lccn, CLBo(n) forn =O, 1,2,. *..

Lemma 3. LB*(~) G LC(3j for n = 0, 1,2,

Outline of the proof of Lemma 2. The, proof of Lemma 2 can be given by showing
that for any concurrent expression E on C ur- we can construct a concurrent
expression E’ such that

&W(E) = Lc&E’) = &(n,(E’J = LB,+@‘).

Let fi be the following mapping:

f;i:S,-*r,; ft(Ui)=wi forUiEr,; fi(Oi)--Oi forwiEr,.

Then the required concurrent expression E’ can be given as follows:

E” = Ellfl(Ec)

Universality of concurrent expressions 113

where EC is the concurrent expression corresponding to C(n), thiat is,

EC = (~~oo+ao)@il l l l l((c,plw,,-1 +(T,-I)?

For this E’ we can show

&W(E) z b,,cn,(E’) and k&E’) E kd3

From these results we can prove Lemma 2, since for any expression E” we have

L ao(n dE”) c LdE”) E Lccn ,(E”),

Lm,,(E”) C Lc,,(,,(E”) c Lee,@“).

Outline of the proof of Lemma 3. The proof of Lemma 3 can be given by showing

that for any concurrent expression E on CL& we can construct a concurrent
expression E’ on C u 1’3 such that

&k,(E) = Lc&E’).

The required concurrent expression E’ can be given as

E’ = s(O)]f(E)[W(O)

where

(1)] and [correspond to (TV and oo, respectively;
(2) For integers t (*O) and i (SO), let (t)i be the value of the ith position of the

binary representation of t, and let N = 2” - 1. For an integer t (OS r s N), W[t)
and S(t) are defined as the following words on I-‘?:

W(f) =&I,“-‘, S(t) = a:@;

(3) f:CuT, -X(LJ~J,

fW=bl (aEm

+* * •+[W(~~“-1)S(k*“-1)]) j (CFj dt,),

f(mil= ([W(kl)S(~I I]+ [W(k2)S(~2)1

+- l l + [W(k*pl -‘)S(k*” ‘)I) (Oi E rn)

assumingthat ki(l s js2”-‘)isanintegersuchthat(k& = 1 andOG ki<N (=2” - l),
and 6 = ki -2’. In order to show that LB,,(,)(E) = Lc&E’) we need to use the

following propositions.

Proposition. For x E (r u&)*, I&..) E B(n) if and only if 6) d ci(X’) s 1 for any X’ E
prefix(x) and euery i (0 d i 5 n -l)andci(x)=Oforeveryi (Osii%-l)a

114 T. Ito,, Y. Nishitani

Proposition. Let

y = S<ro,lf<ud[W(t’)S(tl)lf(rrl)[W(!~ W(h!lfbd l l l

[w(t’,?s!L’ilf’bn)[wta

where jEZ* (Osjsm) andM=m+l. Then

~(y)~C(3)ifandonlyift~=t~+~fureue~~yj(O~j~m).

Using the above results we can prove our main theorem as follows:

Proof of Theorem 2. By Theorem 1, LCE = LBt,; by Lemma 3, LB0 C_ L=(3); by

Lemma 2, Lct3) E L,,(3)* ko(3) - c LCE follows from the definitions. Thus we have

proved

LCE = k(3) = LC,,c 3).

’ Similarly we can pte)*:e

LCE = b.?, = 1 &,I 3)*

This compk;tes the proof of Theorem 2.

5. Concluding remarks

We can summarize our results in th,is paper as follows:

(1) L@-;E = LC = I-C,, = LB = L&, = IRE;

(2) LCE = LRg = k(3) = &(3) = b1.3) = L&(3) -RE
where Rig is the class of regular expressions defined over I-‘,,. (Notice that B and

Bo belong to Rg.)
It remains open if the class of synchronized concurrent expressions with only

two synchronization primitives are universal.
The universality of synchronized concui-rynt expressions implies a rather negative

result for analysis of concurrent processes. This leads us to study a more restricted

class of synchronized concurrent expressions. We have already mentioned such a
class, called a class of synchronized regular expressions.

A regular expression over C and r is called a synchronized regular expression.

Given a. synchronization mechanism K we define a family of languages as follows:

1 -Eg = {LK (E)IE E R(C u r), C n l- = Ib), z.‘,‘” = LJ LZ”.
KEK

For the class of synchronized regular expressions we have the following results:
(i) LFE =

(ii) LE” = : the family of regular sets);

YJniversality of concurrent expressions t 15

(iii) REG = LEi = LEf z LEg s Lg” 5 Lglf = PN where PN is the family oi Petri
net languages;

(iv) S&,5: LE&+II (n 28);

(4 G%CK = G%CK~Z~ = CFL where DYCK(n) is the Dyck synchronization
mechanism over I’,, defined as follows:

Let

GD =wr, hdw, VT = l-n = {gl, ml, u2, w2, l l l 3 cr,n &},

VN =s, P={S+StTpS~iS~1~i~n}U{S+A}.

The Dyck synchronization mechanism over r, - DYCK(n) - can be defined as the
language generated by the above grammar Go. We also define as

DYCK = {DYCK(n) 1 n 2 0).

This result establishes a characterization theorem of context-free languages by a
class of synchronized regular expressions.

The details of these results on synchronized regular expressions will be given

elsewhere.

References

El] T. Araki and N. Tokura, Unsolvability of the equivalence problems of flow expressions, Trans.
IECE Japan J62-D f5) (1979) (in Japanese).

!:2] T. Araki and N. Tokura, On the descriptive power of flow expressions and event expressions, Traru.
IECE Japan .I631D (8) (1980) (in Japanese).

[3] P.C. Fisher, Turing machines with restricted memory access, Information and Control 9 (4) (1966).
[4] A.N. Habermann Introduction to Operating System Design (Science Research Associates, 1976).
[S] J.E. Hopcroft and J.D. Ullman, Formal Languages and their Relation to Automata Theory (Addison-

Wesley, Reading, MA, 1969).
561 Y. Nishitani and T. Ito, On the descriptive power of semaphore controlled flow expressions,

Convention Record of IECE of Japan (August 1980) (in Japanese).
[7] A.C. Shaw, Software descriptions with flow expressions, IEEE Trans. Software Engrg. 4 (3) (1978).
[8] A.C. Shaw, Software specification languages based on regular expression, in: Software Developmettt

Tools (Springer, Berlin, 1980).

