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Abstract. Concurrent expressions are a class of extended regular expressions with a shuffle 
operator (II) and its closure (@). The class of concurrent expressions with synchronization primi- 
tives, called synchronized concurrent expressions, is intmdsccd as an extended modlel of Shaw’s 
flow expressions. This paper discusses sciile formal properties of synchronized concurrent 
expressions from a formal language theoretic point of view. It is shown that synchronized 
concurrent expressions with three signal/wait operations are universal in the sense that they can 
simulate any semaphore controlled concurrent expressions and they can describe the class of 
recursively enumerable sets. Some results on semaphore colrtrolled ‘regular expressilons are also 
included to give a taste of more positive results. 

1. Introduction 

A number of formal approaches to investigate properties of concurrent process 
are proposed in the literature. Shaw [7] proposed a model called “flow expression”. 
Flow expressions are a class of extended regular expressions with a shuffle operation, 
its closure, an infinite cycle operation and synchronization primitives. Shaw [7] 
discusses the correspondence between flow expressions and concurrent processes 

and gives some elementary properties of flow expressions. Also, Shaw [8] discusses 
some relations between flow expressions and other models of concurrent processes. 

Some formal properties of flow expressions have been studied by Shaw, Araki- 
Tokura and others from a formal language theoretic point of view, as is mentioned 
in Shaw [8]. 

In this paper we introduce a slightly generalized formalism of flow expressions, 
called “synchronized concurrent expressions”, which is more suitable for our 

theoretical study on concurrent processes. Concurrent expressions are a class of 

extended regular expressions with a. shuffle operator (11) and its closure (*). The 
class of concurrent expressions with synchronization primitives (like semaphore 

primitives) is called synchronized concurrent expressions in this paper. We introduce 
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a reasonable L ks of synchronization primitives defined as concurrent expressions, 
capable of tiescribing various semaphore systems. Using this formalism we show 
that synchroked concurrent expressions with three signal/wait semaphore oper- 
ations are universal in the sense that they can simulate any semaphore controlled 
concurrent expressions and they can describe the class of recursively enumerable 
sets. Some latest results on semaphore controlled regular expressions are also 
included to explain more positive theoretical aspects of these studies. 

2. Synchronized concurrent expressions 

In this section we give the definitions of 
( 1) co ricurrent expression, 
(2) synchronized concurrent expression, 
(3) se:maphore systems and synchronization primitives in concurrent expressions 
and we explain some previous results. 

2.1, DeRtrition of concurrent expressions 

Let A be a finite set of symbols. Then the set of concurrent expressions over A 
can be declined recursively as follows: 
(1) 4, A, a are concurrent expressions, 
(2) if E and F are concurrent expressions, then (E), E-I-F, EF, E”, EllF and E@ 
are concurrent expressions. 

The semantics of concurrent expressions can be defined as follows: 

(1) 
(2) 
(3) 
(4) 
Cv 
(6) 
(7) 
03) 
(9) 

ISi = 0 (0: the empty set), 
IA I= {A} (A : the empty word), 
Ial ={a} (a EA)., 

I(E)I = IElt 
!E+FI=IEIuIFI, 

lEFl= (xv Ix E IEl, Y E IFI,, 
IE*I = tJ2, IE’j, where E’ = A, Ei+’ = E’E for i 2 0, 
1Ellr'i = ~Y~GY~. . . x,aynz Ixi E A”‘, yi E A*, ~1x2 l l l xm E IEI, yly2 l . . y, E IFI}, 
]E@I = Uz, IE”‘I, where E”’ = A, Eiiitl = E"'llE for i 2 0. 

Remark 1. In this paper concurrent expressions are defined as extended regular 
expressions with the shuffle operator (II) and its closure (‘). Shaw’s definition of 
fiovr- expressions zontains an infinite cycle operation (oo), but the infinity operator 
(00) was excluded int this paper since its descriptive power is beyond the standard 
theory of formal languages. The analysis of flow expressions in this paper is 
essentially tased on the theory of formal languages. In this paper 
- R(A) denotes tlhe set of regular expressions over A; 
- C(A) denotes the set of concurrent expressions over A. 
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Remark 2. Let E = ab and F = b as an example. Then we have 

lEllFl= (abc, .wb, cab), IE@i = (A, ab, abab, aabb, . . .] 

The shuffle operation “E(IF” corresponds to the set of computation sequences by 
a concurrent process: 

cobegin EllF cloend 

2.2. Synchronized concurrent expressions 

Let C be a finite set of symbols and r be a finite set of synchronization primitives, 
where C A r = 0. Then a concurrent expression over L: and Z is called a synchronized 
concurrent expression, and a language over A! is called a synchro.rization mechanism. 
Given a synchronization mechanism K and a concurrent expression E, the language 
described by E with K-control is given as 

where h and h” are the following homomorphisms: 

a (aE% h0=IA (aET); 
A (a W, 

K(a)=Ia (a Er). 

Let K be a synchronization mechanism and K be a family of languages in terms 
of synchronization mechanisms as follows: 

LK ={L~(E)~EEC(~U~),~~~=~}, LK= u ‘k 
KEK 

where C(Z UP) is the set of concurrent expressions over C UK 
-5. 

Remark 3. In the above definition C and r correspond to the set of basic processes 
and synchronization primkives, respectively. It may be interpreted that an element 
of x of IEI is a computational sequence of a concurrent process denoted by E. The 
homomorphisms h(x) and 6(x) correspond to the sequences of basic processes and 
synchronization primitives in X, respectively. This formalism of characterizing 
process descriptions and synchronization mechanisms of synchronized concurrent 
expressions by homomorphisms is a slightly generalized and formalized version of 
flow expressions introduced by Shaw [7], in which only a restricted class of syn-5 
chronization ;iezhanisms are allowed. Qur present formalism enables us to deal 
with synchronization mechanisms independently of process descriptions. In this 
paper we study the descriptive power of L K and LK with respect to K and K using 
this formalism. 

2.3. Semaphore systems and synchronization primitives in concurrent expressions 

Let r, = {Oi, Wi I i = 0, 1, , . . , n - 1}, where ai and oi correspond to the wait and 
signal operations on the ith semiaphore variable, respectively. Using concurrent 
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expressions We define four semaphore systems over r, in the following way: 

(1) Counter semaphore: C(n) 

C = {C(n) 1 n 2 0}, where C(0) = {A}; 

(2) [O]-counter semaphore: C&z) 

C&z) = ~(oboo)*~~(cnw)*Il ’ ’ ’ llbn-ml-*PI, 
Co = {C&z) I rz 2 0}, where CO(O) = {A}; 

(3) Hinary semaphore: B(n) 

B(n) = I(u(_lw”+ u~)*[l(ulw + a*)*11 l l l Ilbl-1wl-1+ a,-d*L 

B={B(n)Jn ~O},whereB(O)={h}; 

(4) [O]-binary semaphore: B&z) 

I&J(n) = lhm>*~lb*dll ’ l l llbn-IwI-1)*l9 
Bob ) = {Bob ) I n a 0}, where &(O) = {A}. 

Remark 4. From the standpoint of operating systems practice we have the following 
correspondence. 

(1) wi and 0; of C(n) and Co(n) correspond to the following wait&) and signal( 
respectively: 

Wait(&): whens>Odos+s-1, 

signal( whentruedosc-s+l; 

(2) mi and oj of B(n) correspond to “when si = 1 do si +- 0” and “when true do 
Si +- l”, respectively; 

(3) wi and ai of Be(n) correspond to “when !Si = 1 do si + 0” and “when Si = 0 do 
Si + 1”) respectively. 

In the above definition of the semaphore systems we can observe the interesting 
fact that the synchronization mechanisms based on counter semaphores and binary 
semaphores can be defined as a kind of well-structured concurrent expressions in 
the sense that they are expressed without any complicated nesting structure and 
they are readable from left to right. These well-structured descriptions of syn- 
chronization mechanisms may be interesting and worthwhile for future studies. 

Extending the above definitions of semaphore systems we can define the following 
general synchronization rrzhanism: 

(5) Let GE(n) be a family of synchronization mechanisms defined by concurrent 
expression with it synchronization primitives. Then we denote CE = LJ~=, GE(n). 



Universality of concurrent eqressions 109 

Notice that in this definition of CE n synchronization primitives are not restricted 
to the semaphores. C(n), Co(n), B(n) and B&z) may be considered to be special 
cases of CE(2n). 

(6) A concurrent expression controlled by a semaphore system will be called as 
a semaphore controlled concurrent expression. In the discussions below we are 
interested in LK and LK when K and K belong to the semaphore :systems of CE. 

2.4. Some previous results 

Under our present formalism we can state the results obtained in the study of 
flow expressions as follows: 

Tl: For a concurrent expression E, IEI is not necessarily context-free but 
context-sensitive; if E does not contain the shuffle closure operator (@), 
then IEI is regular. 

T2: If a concurrent expression E does not contain any shuffle closure (II)9 then 
LB&E) is regular [7]. 

T3: Lg = RE, where RE is a family of recursively enumarable sets. [l] 
T4: LCE = Lc(6) = LGceJ = LB(,jI =, b3,3(6)* [61 

According to Tl we can say that any synchronization mechanism which belongs 
to CE is a context-sensitive control structure; B(n) and Be(n) aie regular control 
structures for n 3 1; C(n) and C&t) are not regular control structures for n 2 1. 
In this paper we improve and extend T4 using a different simulation technique, 
which will be explained in the following sections. 

2.5. Examples 

Before moving onto the detailed discussions we give several examples to give 
an intuitive appeal of synchronized concurrent expressions. 

(1) Correspondence between concurrent expressions and programs 

bream 1 
if B then E else F 
begin E; F end 
while B do E 
cobegin EIJF coend 
for i = 1 to n do createprocess [E, i] 
wait(s) 
signal(s) 

[concurrent expression ] 
E-IF 
EF 
E* 

EIIF 
E@ 

(2) LB,cl,[(oabu)ll(wcd~)] = (abed, cdab}, 

L,[(aso>Qp] = Is*1 assuming that u and o does not appear in S, 

Ls[awba] = 0 (in this case the process is deadlocked). 
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3. IJnivers&ty of synchronized concurrent expressions 

Intuitively a semaphore system may be universal in the sense that any synchroniz- 
ation mechanism in operating systems practice can be realized by a semaphore 
system.. Using the above formalism we give a Corma’l proof that four kinds of 

semaphore systems gklren in Section 2 
can simulate each other, 
can simulate any synchronization mechanism within CE and 
can describe the family of recursively enumberable sets; 

eventuallly we reach the universality of synchronized concurrent expressions. 
That is, we can prove the following theorem: 

Theorem f. L.CE = LC = Lc,, = LB = LB,, =: RE. 

In order to prove Theorem 1 we need1 some preliminary definitions and results 

Definitfion. ci (0 -= i c q - 1) is the following mapping from (25 u m)* into the set of 
integers: for x E (C u r,)* and a (C u r,), 

Ci(A)L=O, ci(xa) = 

i 

Q(X)+! for a =Ci, 

Ci(X)-1 for a =Wi, 

Ci(X) for a & (Ui, Wi)* 

Proposition. For x E (2 u r,) &xi E C(,y1) if arid only if for any x’ E prefix(x) and 
each i (O~isn -l), ci(x’)M, 

DefMtion. ILet A and d’ be the finite s&s of symbols and f be a mapping from A 

into C(@‘). For a concurrent expression E on A f (E) denotes a concurrent expression 
on A’ which is obtained from E by replacing every occurrence of a &A) by f(a). 
When 1 f (x)1 denotes a single word for x( E A*), f(x) may be treated as a word on 
A’, where we assume f(A) = A. 

Proposition. Let E be a concurrent expression on A and let f: d + C(A’ u {[, I}) be the 
following mapping : 

f(a) = D%l 

where [ ad ] are the symbols which do not belong to A’ and Ea E C(A’). 

If the sequence of [ and ] in y E If(E)1 ’ IS o t e f h f orm of (1: ])“, then there exists 
such that y E 1 f (x)1, and x and y are given as 

x=ala2...am (aj E A), 

y = [y1][y21 . l l [Ytnl C[Yil e IfWlJ* 
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Lemma 1. 
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LCE ~‘LC(n +3)r L CE{n) - = LC,,(n+3), 

LCE(n)S&?(n+3), I 4x(n)- = LBtr(n+3)* 

This lemma constitutes the major part of Theorem I. In this paper we give the 
outline of the proof of this lemma, since the complete proof is rather lengthy. 

Outline of the proof of Lemma 1. Let r = {yo9 yr, . . . , yn. .I} be a set of synchroniz- 
ation primitives. In order to establish Lemma 1 we construct a concurrent expression 
E’ on C u rH+3 for a concurrent expression EK on r and a concurrent expression 
E on C UK For this concurrent expression E’ we show 

LIEKI(~~) = Lccn+3,(E’) = Lc,,cm+3@‘) = L~(r:+3j(E’) = LBoln+3)(E’). 

Let 1, [, ]I and [ be a;, +I, w1 +I, cr’,+2, OM, respectively, for l-i+3 = bm, w), 

Cl, 01, l l * 9 ct, + 1, wn + 1, U, +2, wn +2}. We define the following mappings: 

flsUr+c(~urn+3), 

h(a) = Cal (a E n, 

fl(3G ) = bJi&l 3 (yi E n, 

f2: r -+ c(rn+3), 

Then the required concurrent expression E’ can be given as follows: 

E’ = lI(fi(E)ltME~)[[. 

Lemma 1 can be proved by showing that 

since we have 

&,c’JE”) 5 &‘JE”) E &dE”) and LB,,~JE”) c Lc,,&Er’) E Lcc,,(E”) 

for any concurrent expression E”. 

Proof of Theorem 1. Using Lemma 1 we can easily prove Theorem 1. From Lemma 
1 we have LCE c Lc. From the definition of C(n), GE(n) and CE, c[n 2~ CE&i j G 

CE: hence we have Lc E LcE. Thus we get LoE - - Lc; we can establish the similar 

results for CO, B and BO. 

Remark 5. The recursive enumerability of Theorem 1 follows from T3, but the 
srdof of 1’3 by Araki-Tokura is complicated since they use the original Shaw flow 
expression and the binary semaphore system for simulation. Using the formalism 
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of this paper we can give a neat proof of LcE = RE in a straightforward manner, 

simufating the behaviour of 2-counter automaton by a synchronized concurrent 
expression. Intuitively speaking this can be done by simulating a counter behaviour 

a synchronization mechanism 

where y, y and yo correspond to the increment (+l), the decrement (-1) and the 
zero test of the coun?er, respectively. According to this proof we can show the 
following stronger result: 

Corollary. Ls& = RE where LEi = {L&E) 1 E E R(C u r), C n I-’ = p)) and R(C v r) 
is the set of regular expressions over C v r. 

That is, the regular expressions controlled by @E can describe recursively enumer- 
able sets; hence we can say that synchronized regular expressions are universal. 

4. Universality of synchronized concurrent expressions with three synchronization 
prhdtives 

The results on universality of synchronized concurrent expressions can be 
strengthened as follows: 

Theorem 2. LcE = L=(3) = LG,o = LB(3) = LBot3) = RE. 
The proof of this theorem can be shown by showing the following lemmas, and 

Lemma 3 constitute the major part of Theorem 2. 

Lemma 2. Lctn) c Lc,cn 19 L C(n) c LB(n), Lccn, CLBo(n) forn =O, 1,2,. *.. 

Lemma 3. LB*(~) G LC(3j for n = 0, 1,2, . . . . 

Outline of the proof of Lemma 2. The, proof of Lemma 2 can be given by showing 
that for any concurrent expression E on C ur- we can construct a concurrent 
expression E’ such that 

&W(E) = Lc&E’) = &(n,(E’J = LB,+@‘). 

Let fi be the following mapping: 

f;i:S,-*r,; ft(Ui)=wi forUiEr,; fi(Oi)--Oi forwiEr,. 

Then the required concurrent expression E’ can be given as follows: 

E” = Ellfl(Ec) 
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where EC is the concurrent expression corresponding to C(n), thiat is, 

EC = (~~oo+ao)@il l l l l((c,plw,,-1 +(T,-I)? 

For this E’ we can show 

&W(E) z b,,cn,(E’) and k&E’) E kd3 

From these results we can prove Lemma 2, since for any expression E” we have 

L ao(n dE”) c LdE”) E Lccn ,(E”), 

Lm,,(E”) C Lc,,(,,(E”) c Lee,@“). 

Outline of the proof of Lemma 3. The proof of Lemma 3 can be given by showing 

that for any concurrent expression E on CL& we can construct a concurrent 
expression E’ on C u 1’3 such that 

&k,(E) = Lc&E’). 

The required concurrent expression E’ can be given as 

E’ = s(O)]f(E)[ W(O) 

where 

(1) ] and [ correspond to (TV and oo, respectively; 
(2) For integers t (*O) and i (SO), let (t)i be the value of the ith position of the 

binary representation of t, and let N = 2” - 1. For an integer t (OS r s N), W[t) 
and S(t) are defined as the following words on I-‘?: 

W(f) =&I,“-‘, S(t) = a:@; 

(3) f:CuT, -X(LJ~J, 

fW=bl (aEm 

+* * •+[W(~~“-1)S(k*“-1)]) j (CFj dt,), 

f(mil= ([ W(kl)S(~I I]+ [ W(k2)S(~2)1 

+- l l + [ W(k*pl -‘)S(k*” ‘)I) (Oi E rn) 

assumingthat ki(l s js2”-‘)isanintegersuchthat(k& = 1 andOG ki<N (=2” - l), 
and 6 = ki -2’. In order to show that LB,,(,)(E) = Lc&E’) we need to use the 

following propositions. 

Proposition. For x E (r u&)*, I&..) E B(n) if and only if 6) d ci(X’) s 1 for any X’ E 
prefix(x) and euery i (0 d i 5 n -l)andci(x)=Oforeveryi (Osii%-l)a 
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Proposition. Let 

y = S<ro,lf<ud[ W(t’)S(tl)lf(rrl)[W(!~ W(h!lfbd l l l 

[ w(t’,?s!L’ilf’bn)[ wta 

where jEZ* (Osjsm) andM=m+l. Then 

~(y)~C(3)ifandonlyift~=t~+~fureue~~yj(O~j~m). 

Using the above results we can prove our main theorem as follows: 

Proof of Theorem 2. By Theorem 1, LCE = LBt,; by Lemma 3, LB0 C_ L=(3); by 

Lemma 2, Lct3) E L,,(3)* ko(3) - c LCE follows from the definitions. Thus we have 

proved 

LCE = k(3) = LC,,c 3). 

’ Similarly we can pte)*:e 

LCE = b.?, = 1 &,I 3)* 

This compk;tes the proof of Theorem 2. 

5. Concluding remarks 

We can summarize our results in th,is paper as follows: 

(1) L@-;E = LC = I-C,, = LB = L&, = IRE; 

(2) LCE = LRg = k(3) = &(3) = b1.3) = L&(3) -RE 
where Rig is the class of regular expressions defined over I-‘,,. (Notice that B and 

Bo belong to Rg.) 
It remains open if the class of synchronized concurrent expressions with only 

two synchronization primitives are universal. 
The universality of synchronized concui-rynt expressions implies a rather negative 

result for analysis of concurrent processes. This leads us to study a more restricted 

class of synchronized concurrent expressions. We have already mentioned such a 
class, called a class of synchronized regular expressions. 

A regular expression over C and r is called a synchronized regular expression. 

Given a. synchronization mechanism K we define a family of languages as follows: 

1 -Eg = {LK (E)IE E R(C u r), C n l- = Ib), z.‘,‘” = LJ LZ”. 
KEK 

For the class of synchronized regular expressions we have the following results: 
(i) LFE = 

(ii) LE” = : the family of regular sets); 
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(iii) REG = LEi = LEf z LEg s Lg” 5 Lglf = PN where PN is the family oi Petri 
net languages; 

(iv) S&,5: LE&+II (n 28); 

(4 G%CK = G%CK~Z~ = CFL where DYCK(n) is the Dyck synchronization 
mechanism over I’,, defined as follows: 

Let 

GD =wr, hdw, VT = l-n = {gl, ml, u2, w2, l l l 3 cr,n &}, 

VN =s, P={S+StTpS~iS~1~i~n}U{S+A}. 

The Dyck synchronization mechanism over r, - DYCK(n) - can be defined as the 
language generated by the above grammar Go. We also define as 

DYCK = {DYCK(n) 1 n 2 0). 

This result establishes a characterization theorem of context-free languages by a 
class of synchronized regular expressions. 

The details of these results on synchronized regular expressions will be given 

elsewhere. 
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