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Abstract
This paper presents a new algorithm for the containment problem for extended regular expressions
that contain intersection and complement operators and that range over infinite alphabets. The
algorithm solves extended regular expressions inequalities symbolically by term rewriting and
thus avoids the translation to an expression-equivalent automaton.

Our algorithm is based on Brzozowski’s regular expression derivatives and on Antimirov’s
term-rewriting approach to check containment. To deal with large or infinite alphabets effec-
tively, we generalize Brzozowski’s derivative operator to work with respect to (potentially infinite)
representable character sets.

1998 ACM Subject Classification F.4.3 Formal Languages

Keywords and phrases Extended regular expression, containment, infinite alphabet, infinite
character set, effective boolean algebra

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2014.175

1 Introduction

Regular expressions have many applications in the context of software development and
information technology: text processing, program analysis, compiler construction, query
processing, and so on. Modern programming languages either come with standard libraries
for regular expression processing or they provide built-in facilities to this end (e.g., Perl,
Ruby, and JavaScript). Many of these implementations augment the basic regular operations
+, ·, and ∗ (union, concatenation, and Kleene star) with enhancements like character classes
and wildcard literals, cardinalities, sub-matching, intersection, complement, and so on.

Regular expressions (RE) are advantageous in these domains because they provide a
concise means to encode many interesting problems. REs are well suited for verification
applications, because there are decision procedures for many problems involving them: the
word problem (w ∈ JrK), emptiness (JrK = ∅), finiteness, containment (JrK ⊆ JsK), and
equivalence (JrK = JsK). Here we let r and s range over RE and write J·K for the function that
maps a regular expression to the regular language that it denotes. There are also effective
constructions for operations like union, intersection, complement, prefixes, suffixes, etc on
regular languages.

Recent applications impose new demands on operations involving regular expressions. The
Unicode character set with its more than 1.1 million code points requires the ability to deal
effectively with very large character sets and hence character classes. Similarly, formalizing
access contracts for objects in scripting languages even requires regular expressions over an
infinite alphabet: in this application, the alphabet itself is an infinite formal language (the
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176 Symbolic Solving of Extended Regular Expression Inequalities

language of field names) and a “character class” (i.e., a set of field names) is itself described
by a regular expression [12, 8]. Hence, a “character class” may have infinitely many elements.

To enable such applications, we study the containment problem for regular expressions
with two enhancements. First, we consider extended regular expressions (ERE) that contain
intersection and complement operators beyond the standard regular operators of union,
concatenation, and Kleene star. An ERE also denotes a regular language but it can be
much more concise than a standard RE. Second, we consider EREs on any alphabet that
is presented as an effective boolean algebra. This extension encompasses some practically
useful instances of infinite alphabets like the set of all field names in a scripting language.

The first enhancement is known to be decidable, but we give a new symbolic decision
procedure based on Brzozowski’s regular expression derivatives [4] and Antimirov’s rewriting
approach to check containment [1]. The second enhancement has been studied previously
[21, 19, 20], but in the context of automata and finite state transducers. It has not been
investigated at the level of regular expressions and in particular not in the context of
Brzozowski’s and Antimirov’s work. We give sufficient conditions to ensure applicability
of our modification of Brzozowski’s and Antimirov’s approach to the containment problem
while retaining decidability.

1.1 Related Work
The practical motivation for considering this extension is drawn from the authors’ previous
work on checking access contracts for objects in a scripting language at run time [12]. In
that work, an access contract specifies a set of access paths that start from a specific anchor
object. An access path is a word over the field names of the objects traversed by the path
and we specify such a set of paths by a regular expression on the field names. We claim
that such a regular expression draws from an infinite alphabet because a field name in a
scripting language is an arbitrary string (of characters). For succinctness, we specify sets of
field names using a second level of regular expressions on characters.

In our implementation, checking containment is required to reduce memory consumption.
If the same object is restricted by more than one contract, then we apply containment
checking to remove redundant contracts. In our previous work, contracts were limited to
basic regular expressions and the field-level expressions were limited to disjunctions of literals.
Applying the results of the present paper enables us to lift both restrictions.

The textbook approach to checking regular expression containment is via translation
to finite automata, which may involve an exponential blowup, and then by constructing
a simulation (or a bisimulation for equivalence) [9]. A related approach based on non-
deterministic automata is presented by Bonchi and Pous [3].

The exponential blowup is due to the construction of a deterministic automaton from
the regular expression. Thompson’s construction [18], creates a non-deterministic finite
automaton with ε-transitions where the number of states and transitions is linear to the length
of the (standard) regular expression. Glushkov’s [7] and McNaughton and Yamada’s [14]
position automaton computes an n + 1-state non-deterministic automaton with up to n2

transitions from an n-symbol expression. They are the first to use the notion of a first
symbol. Brzozowski’s regular expression derivatives [4] directly calculate a deterministic
automaton from an ERE. Antimirov’s partial derivative approach [2] computes a n+ 1-state
non-deterministic automation, but his work does not consider intersection and complement.
We are not aware of an extension of Glushkov’s algorithm to extended regular expressions.

Owens and other have implemented an extension of Brzozowski’s approach with character
classes and wildcards [16].
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Antimirov [1] also proposes a symbolic method for solving regular expression inequalities,
based on partial derivatives, with exponential worst-case run time. His containment calculus
is closely related to the simulation technique used by Hopcroft and Karp [9] for proving
equivalence of automata. In fact, a decision procedure for containment of regular expressions
leads to one for equivalence and vice versa. Ginzburg [6] gives an equivalence procedure
based on Brzozowski derivatives. Antimirov’s original work does not consider intersection
and complement. Caron and coworkers [5] extend Antimirov’s work to ERE using antichains,
but the resulting procedure is very complex compared to ours.

A shortcoming of all existing approaches is their restriction to finite alphabets. Supporting
both makes a significant difference in practice: an iteration over the alphabet Σ is feasible for
small alphabets, but it is impractical for very large alphabets (e.g., Unicode) or infinite ones
(e.g., another level of regular languages as for our contracts). Furthermore, most regular
expressions used in practice contain character sets. We apply techniques developed for
symbolic finite automata to address these issues [20].

1.2 Overview
This paper is organized as follows. In Section 2, we recall notations and concepts. Section 3
introduces the notion of an effective boolean algebra for representing sets of symbols abstractly.
Section 4 explains Antimirov’s algorithm for checking containment, which is the starting
point of our work. Next, Section 5 defines two notions of derivatives on regular expressions
with respect to symbol sets. It continues to introduce the key notion of next literals, which
ensures finiteness of our extension to Antimirov’s algorithm. Section 6 contains the heart
of our extended algorithm, a deduction system that determines containment of extended
regular expressions along with a soundness proof.

A technical report [13] extends this paper by an appendix with further technical details,
examples, and proofs of theorems.

2 Regular Expressions

An alphabet Σ is a denumerable, potentially infinite set of symbols. Σ∗ is the set of all finite
words over symbols from Σ with ε denoting the empty word. Let a, b, c ∈ Σ range over
symbols; u, v, w ∈ Σ∗ over words; and A,B,C ⊆ Σ over sets of symbols.

Let L,L′ ⊆ Σ∗ be languages. The left quotient of L by a word u, written u−1L, is the
language {v | uv ∈ L}. It is immediate from the definition that (au)−1L = u−1(a−1L) and
that u ∈ L iff ε ∈ u−1L. Furthermore, L ⊆ L′ iff u−1L ⊆ u−1L′ for all words u ∈ Σ∗. The
left quotient of one language by another is defined by L−1L′ = {v | uv ∈ L′, u ∈ L}. We
write L·L′ for the concatenation of languages {uv | u ∈ L, v ∈ L′} and L∗ for the Kleene
closure {v1 . . . vn | n ∈ N, vi ∈ L}. We sometimes write L for the complement Σ∗ \ L and A
for Σ \A.

An extended regular expression (ERE) on an alphabet Σ is a syntactic phrase derivable
from non-terminals r, s, t. It comprises the the empty word, literals, union, concatenation,
Kleene star, as well as intersection and negation operators.

r, s, t := ε | A | r+s | r·s | r∗ | r&s | !r

Compared to standard definitions, a literal is a set A of symbols, which stands for an abstract,
possibly empty, character class. We write a instead of {a} for the frequent case of a single
letter literal. We consider regular expressions up to similarity [4], that is, up to associativity
and commutativity of the union operator with the empty set as identity.

FSTTCS 2014



178 Symbolic Solving of Extended Regular Expression Inequalities

The language JrK ⊆ Σ∗ of a regular expression r is defined inductively by:

JεK = {ε}
JAK = {a | a ∈ A}

Jr+sK = JrK ∪ JsK
Jr·sK = JrK·JsK
Jr∗K = JrK∗

Jr&sK = JrK ∩ JsK
J!rK = JrK

For finite alphabets, JrK is a regular language. For arbitrary alphabets, we define a language
to be regular, if it is equal to JrK, for some ERE r.

We write r v s (r is contained in s) to express that JrK ⊆ JsK.
The nullable predicate ν(r) indicates whether JrK contains the empty word, that is, ν(r)

iff ε ∈ JrK. It is defined inductively by:

ν(ε) = true
ν(A) = false

ν(r+s) = ν(r) ∨ ν(s)
ν(r·s) = ν(r) ∧ ν(s)
ν(r∗) = true

ν(r&s) = ν(r) ∧ ν(s)
ν(!r) = ¬ν(r)

The Brzozowski derivative ∂a(r) of an ERE r w.r.t. a symbol a computes a regular expression
for the left quotient a−1JrK (see [4]). It is defined inductively as follows:

∂a(ε) = ∅

∂a(A) =
{
ε, a ∈ A
∅, a /∈ A

∂a(r+s) = ∂a(r)+∂a(s)

∂a(r·s) =
{
∂a(r)·s+∂a(s), ν(r)
∂a(r)·s, ¬ν(r)

∂a(r∗) = ∂a(r)·r∗
∂a(r&s) = ∂a(r)&∂a(s)
∂a(!r) = !∂a(r)

The case for the set literal A generalizes Brzozowski’s definition. The definition is extended
to words by ∂au(r) = ∂u(∂a(r)) and ∂ε(r) = r. It is easy to see that u ∈ JrK iff ε ∈ J∂u(r)K.

3 Representing Sets of Symbols

The definition of an ERE in Section 2 just states that a literal is a set of symbols A ⊆ Σ.
However, to define tractable algorithms, we require that A is an element of an effective
boolean algebra [20] (U,t,u, ·,⊥,>) where U ⊆ ℘(Σ) is closed under the boolean operations.
Here t and u denote union and intersection of symbol sets, · the complement, and ⊥ and >
the empty set and the full set Σ, respectively. In this algebra, we need to be able to decide
equality of sets (hence the term effective) and to represent singleton symbols.

For finite (small) alphabets, we may just take U = ℘(Σ). A set of symbols may be
enumerated and ranges of symbols may be represented by character classes, as customarily
supported in regular expression implementations. Alternatively, a bitvector representation
may be used.
If the alphabet is infinite (or just too large), then the boolean algebra of finite and
cofinite sets of symbols is the basis for a suitable representation. That is, the set
U = {A ∈ ℘(Σ) | A finite ∨A finite} is effectively closed under the boolean operations.
In our application to checking access contracts in scripting languages [12], the alphabet
itself is a set of words (the field names of objects) composed from another set Γ of symbols:
Σ ⊆ ℘(Γ∗). To obtain an effective boolean algebra, we choose the set U = {A ⊆ ℘(Γ∗) |
A is regular}, which is effectively closed under the boolean operations.
Sets of symbols may also be represented by formulas drawn from a decidable first-order
theory over a (finite or infinite) alphabet. For example, the character range [a-z] would
be represented by the formula x ≥ ’a’∧x ≤ ’z’. In this case, the boolean operations get



M. Keil and P. Thiemann 179

mapped to the disjunction, conjunction, or negation of predicates; bottom and top are
false and true, respectively. An SMT solver can decide equality and subset constraints.
This approach has been demonstrated to be effective for very large character sets in the
work on symbolic finite automata [20].

The rest of this paper is generic with respect to the choice of an effective boolean algebra.

4 Antimirov’s Algorithm for Checking Containment

Given two regular expressions r, s, the containment problem asks whether r v s. This problem
is decidable using standard techniques from automata theory: construct a deterministic
finite automaton for r&!s and check it for emptiness. The drawback of this approach is the
expensive construction of the automaton. In general, this expense cannot be avoided because
problem is PSPACE-complete [10, 11, 15].

Antimirov [1] proposed an algorithm for deciding containment of standard regular ex-
pressions (without intersection and negation) that is based on rewriting of inequalities. His
algorithm has the same asymptotic complexity as the automaton construction, but it can
fail early and is therefore better behaved in practice. We phrase the algorithm in terms of
Brzozowski derivatives to avoid introducing Antimirov’s notion of partial derivatives.

I Theorem 1 (Containment [1, Proposition 7(2)]). For regular expressions r and s,

r v s⇔ (∀u ∈ Σ∗) ∂u(r) v ∂u(s).

Antimirov’s algorithm applies this theorem exhaustively to an inequality r v̇ s (i.e., a
proposed containment) to generate all pairs ∂u(r) v̇ ∂u(s) of iterated derivatives until it finds
a contradiction or saturation. More precisely, Antimirov defines a containment calculus CC
which works on sets S of atoms, where an atom is either an inequality r v̇ s or a boolean
constant true or false. It consists of the rule CC-Disprove which infers false from a trivially
inconsistent inequality and the rule CC-Unfold that applies Theorem 1 to generate new
inequalities.

CC-Disprove
ν(r) ∧ ¬ν(s)
r v̇ s `CC false

CC-Unfold
ν(r)⇒ ν(s)

r v̇ s `CC {∂a(r) v̇ ∂a(s) | a ∈ Σ}

An inference in the calculus for checking whether r0 v s0 is a sequence S0 `CC S1 `CC S2 `CC
. . . where S0 = {r0 v̇ s0} and Si+1 is an extension of Si by selecting an inequality in Si and
adding the consequences of applying one of the CC rules to it. That is, if r v̇ s ∈ Si and
r v̇ s `CC S, then Si+1 = Si ∪ S.

Antimirov argues [1, Theorem 8] that this algorithm is sound and complete by proving
(using Theorem 1) that r v s does not hold if and only if a set of atoms containing false is
derivable from r v̇ s. The algorithm terminates because there are only finitely many different
inequalities derivable from r v̇ s using rule CC-Unfold.

The containment calculus CC has two drawbacks. First, the choice of an inequality for the
next inference step is nondeterministic. Second, an adaptation to a setting with an infinite
alphabet seems doomed because rule CC-Unfold requires us to compute the derivative for
infinitely many a ∈ Σ at each application. We address the second drawback next.

FSTTCS 2014



180 Symbolic Solving of Extended Regular Expression Inequalities

5 Derivatives on Literals

In this section, we develop a variant of Theorem 1 that enables us to define a variant of
the CC-Unfold rule that is guaranteed to add finitely many atoms, even if the alphabet is
infinite. First, we observe that we may restrict the symbols considered in rule CC-Unfold
to initial symbols of the left hand side of an inequality.

I Definition 2 (First). Let first(r) := {a | aw ∈ JrK} be the set of initial symbols derivable
from regular expression r.

Clearly, (∀a ∈ Σ) ∂a(r) v ∂a(s) iff (∀b ∈ first(r)) ∂b(r) v ∂b(s) because ∂b(r) = ∅ for
all b /∈ first(r). Thus, CC-Unfold does not have to consider the entire alphabet, but
unfortunately first(r) may still be an infinite set of symbols. For that reason, we propose
to compute derivatives with respect to literals (i.e., non-empty sets of symbols) instead of
single symbols. However, generalizing derivatives to literals has some subtle problems.

To illustrate these problems, let us recall the specification of the Brzozowski derivative:

J∂a(r)K = a−1JrK

We might be tempted to consider the following naive extension of the derivative to a set of
symbols A.

J∂A(r)K = A−1JrK =
⋃
a∈A

a−1JrK =
⋃
a∈A

J∂a(r)K (wrong)

However, this attempt at a specification yields inconsistent results. To see why, consider the
case where r = !s. Generalizing from ∂a(!s) = !∂a(s), we might try to define ∂A(!s) := !∂A(s).
If this definition was sensible, then (1) and (2) should yield the same results:

J∂A(!s)K (wrong)=
⋃
a∈A

J∂a(!s)K def ∂a=
⋃
a∈A

J∂a(s)K (1)

J!∂A(s)K def ∂a= J∂A(s)K (wrong)=
⋃
a∈A

J∂a(s)K de Morgan=
⋂
a∈A

J∂a(s)K (2)

However, we obtain a contradiction: with A = {a, b} and s = a·a+b·b, (1) yields Σ∗
whereas (2) yields {a, b}, which is clearly different.

5.1 Positive and Negative Derivatives
To address this problem, we introduce two types of derivative operators with respect to
symbol sets. The positive derivative ∆A(r) computes an expression that contains the union
of all ∂a(r) with a ∈ A, whereas the negative derivative ∇A(r) computes an expression
contained in the intersection of all ∂a(r) with a ∈ A.

The positive and negative derivative operators are defined by mutual induction and flip
at the complement operator. Most cases of their definition are identical to the Brzozowski
derivative (cf. Section 2), thus we only show the cases that are different. For all literals A
with JAK 6= ∅:

∆B(A) :=
{
ε, A uB 6= ⊥
∅, otherwise

∆B(!r) := !∇B(r)

∇B(A) :=
{
ε, A uB = ⊥
∅, otherwise

∇B(!r) := !∆B(r)
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For single symbol literals of the form B = {a}, it holds that ∆a(r) = ∇a(r) = ∂a(r).
Derivatives with respect to the empty set are defined as ∆∅(r) = ∅ and ∇∅(r) = Σ∗.

The following lemma states the connection between the derivative by a literal and the
derivative by a symbol.

I Lemma 3 (Positive and negative derivatives). For any r and B, it holds that:

J∆B(r)K ⊇
⋃
a∈B

J∂a(r)K J∇B(r)K ⊆
⋂
a∈B

J∂a(r)K

Proof of Lemma 3. Both inclusions are proved simultaneously by induction on r. J

The following examples illustrate the properties of the derivatives.

I Example 4 (Positive derivative). Let r be (a · c)&(b · c) and let the literal A = {a, b}.

∆A(r) = ∆A(a · c)&∆A(b · c) = c&c w ∂a(r)+∂b(r) = ∅+∅

I Example 5 (Negative derivative). Let r be (a · c)+(b · c) and let the literal A = {a, b}.

∇A(r) = ∇A(a · c)+∇A(b · c) = ∅+∅ v ∂a(r)&∂b(r) = c&c

Positive (negative) derivatives yield an upper (lower) approximation to the information
expected from a derivative. This approximation arises because we tried to define the
derivative with respect to an arbitrary literal A. To obtain the precise information, we need
to restrict these literals suitably to next literals.

5.2 Next Literals
An occurrence of a literal A in a regular expression r is initial if there is some a ∈ Σ such that
∂a(r) reduces this occurrence. That is, the computation of ∂a(r) involves ∂a(A). Intuitively,
A helps determine the first symbol of an element of JrK.

I Example 6 (Initial Literals).
1. Let r1 = {a, b}.a∗. Then {a, b} is an initial literal.
2. Let r2 = {a, b}.a∗ + {b, c}.c∗. Then {a, b} and {b, c} are initial.

Generalizing from the first example, we might be tempted to conjecture that if A is initial in
r, then (∀a, b ∈ A) ∂a(r) = ∂b(r). However, the second example shows that this conjecture is
wrong: {a, b} is initial in r2, but ∂a(r2) = a∗ and ∂b(r2) = a∗ + c∗.

The problem with the second example is that {a, b} ∩ {b, c} 6= ∅. Hence, instead of
identifying initial literals of an ERE r, we define a set next(r) of next literals which are
mutually disjoint, whose union contains first(r), and where the symbols in each literal yield
the same derivative. In the second example, it must be that next(r2) = {{a}, {b}, {c}}.

It turns out that this problem arises in a number of cases when defining next(r) inductively.
Hence, we define an operation on that builds a set of mutually disjoint literals that cover the
union of two sets of mutually disjoint literals.

I Definition 7 (Join). Let L1 and L2 be two sets of mutually disjoint literals.

L1 on L2 :={(A1 uA2), (A1 u
⊔

L2), (
⊔

L1 uA2) | A1 ∈ L1, A2 ∈ L2}

The following lemma states the properties of the join operation.

FSTTCS 2014



182 Symbolic Solving of Extended Regular Expression Inequalities

next(ε) = {∅}
next(A) = {A}

next(r+s) = next(r) on next(s)

next(r·s) =
{
next(r) on next(s), ν(r)
next(r), ¬ν(r)

next(r∗) = next(r)
next(r&s) = next(r) u next(s)
next(!r) = next(r) ∪ {

d
{A | A ∈ next(r)}}

Figure 1 Computing next literals.

I Lemma 8 (Properties of Join). Let L1 and L2 be non-empty sets of mutually disjoint
literals.
1.

⋃
(L1 on L2) =

⋃
L1 ∪

⋃
L2.

2. (∀A 6= A′ ∈ L1 on L2) A uA′ = ∅.
3. (∀A ∈ L1 on L2) (∀Ai ∈ Li) A uAi 6= ∅ ⇒ A v Ai.

Proof of Lemma 8. Immediate from the definition. J

Figure 1 contains the definition of next(r). For ε the set of next literals consists of the empty
set. The next literal of a literal A is A. The next literals of a union r+s are computed as
the join of the next literals of r and s as explained in Example 6. The next literals of a
concatenation r·s are the next literals of r if r is not nullable. Otherwise, they are the join
of the next literals of both operands. The next literals of a Kleene star expression r∗ are the
next literals of r. For an intersection r&s, the set of next literals is the set of all intersections
A uA′ of the next literals of both operands. In this case, the join operation on is not needed
because symbols that only appear in literals from one operand can be elided. To see this,
consider next(a&b) = {{a} u {b}} = {∅} whereas {{a}} on {{b}} = {∅, {a}, {b}}.

The set of next literals of !r comprises the next literals of r and a new literal, which is the
intersection of the complements of all literals in next(r). We might contemplate to exclude
literals that contain symbols a such that ∂a(r) is equivalent to Σ∗, but we refrain from doing
so because this equivalence cannot be decided with a finite set of rewrite rules [17].

The function next(r) \ {∅} computes the equivalence classes of a partial equivalence
relation ∼ on Σ such that equivalent symbols yield the same derivative on r. The relation is
defined by a ∼ b if there exists A ∈ next(r) such that a ∈ A and b ∈ A. Furthermore, the
derivative by a symbol that is not part of the relation yields the empty set.

I Lemma 9 (Partial Equivalence). Let L = next(r).
1. (∀A ∈ L) (∀a, b ∈ A) ∂a(r) = ∂b(r)
2. (∀a /∈

⋃
L) ∂a(r) = ∅

Proof of Lemma 9. Both proofs are by induction on r. J

It remains to show that next(r) covers all symbols in first(r).

I Lemma 10 (First). For all r,
⋃
next(r) ⊇ first(r).

Proof of Lemma 10. The proof is by induction on r. J

Moreover, there are only finitely many different next literals for each regular expression.

I Lemma 11 (Finiteness). For all r, |next(r)| is finite.
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Proof of Lemma 11. By induction on r. The base cases construct finite sets and the
inductive cases build a finite number of combinations of the results from the subexpressions.

J

Now, we put next literals to work. If we only take positive or negative derivatives with
respect to next literals, then the inclusions in Lemma 3 turn into equalities. The result is
that both the positive and the negative derivative, when applied to a next literal A, calculate
a regular expression for the left quotient A−1JrK.

I Theorem 12 (Left Quotient). For all r, A ∈ next(r) \ {∅}, and a ∈ JAK:

J∆A(r)K = J∇A(r)K = J∂a(r)K

Proof of Lemma 12. By induction on r. J

Motivated by this result, we define the Brzozowski derivative for a non-empty subset A of a
literal in next(r). This definition involves an arbitrary choice of a ∈ A, but this choice does
not influence the calculated derivative according to Lemma 9, part 1.

I Definition 13. Let A′ ∈ next(r). For each ∅ 6= A ⊆ A′ define ∂A(r) := ∂a(r), where a ∈ A.

I Lemma 14 (Coverage). For all a, u, and r it holds that:

u ∈ J∂a(r)K ⇔ ∃A ∈ next(r) : a ∈ A ∧ u ∈ J∆A(r)K ∧ u ∈ J∇A(r)K

Proof of Lemma 14. This result follows from Theorem 12 and Lemma 10. J

We conclude that to determine a finite set of representatives for all derivatives of a regular
expression r it is sufficient to select one symbol a from each equivalence class A ∈ next(r)\{∅}
and calculate ∂a(r). Alternatively, we may calculate ∆A(r) or∇A(r) according to Theorem 12.
It remains to lift this result to solving inequalities.

6 Solving Inequalities

Theorem 1 is the foundation of Antimirov’s algorithm. It turns out that we can prove a
stronger version of this theorem, which makes the rules CC-Disprove and CC-Unfold sound
and complete and which also encompasses the soundness of the restriction to first sets.

I Theorem 15 (Containment).

r v s ⇔ (ν(r)⇒ ν(s)) ∧ (∀a ∈ first(r)) ∂a(r) v ∂a(s)

Proof of Theorem 15. r v s iff JrK ⊆ JsK iff (∀w) w ∈ JrK⇒ w ∈ JsK.
Induction on w. If w = ε, then ε ∈ JrK ⇒ ε ∈ JsK iff ν(r) ⇒ ν(s). If w = aw′, then

a ∈ first(r) ⊆ first(s), w′ ∈ a−1JrK ⊆ a−1JsK, which is equivalent to ∂a(r) v ∂a(s). J

As we remarked before, it may be very expensive (or even impossible) to construct all
derivatives with respect to the first symbols, particularly for negated expressions and for
large or infinite alphabets. To obtain a decision procedure for containment, we need a finite
set of derivatives. Therefore, we use next literals as representatives of the first symbols and
use Brzozowski derivatives on literals (Definition 13) on both sides.

To define the next literals of an inequality r v̇ s, it would be sound to use the join
of the next literals of both sides: next(r) on next(s). However, we can do slightly better.
Theorem 15 proves that the first symbols of r are sufficient to prove containment. Using the
full join operation, however, would cover first(r) ∪ first(s) (by Lemma 10). Hence, we define
a left-biased version of the join operator that only covers the symbols of its left operand.
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I Definition 16 (Left Join). Let L1 and L2 be two sets of mutually disjoint literals.

L1 n L2 :={(A1 uA2), (A1 u
⊔

L2) | A1 ∈ L1, A2 ∈ L2}

The following lemma states the properties of the left join operation.

I Lemma 17 (Properties of Left Join). Let L1 and L2 be non-empty sets of mutually disjoint
literals.
1.

⋃
(L1 n L2) =

⋃
L1.

2. (∀A 6= A′ ∈ L1 n L2) A uA′ = ∅.
3. (∀A ∈ L1 n L2) (∀Ai ∈ Li) A uAi 6= ∅ ⇒ A v Ai.

Proof of Lemma 17. Immediate from the definition. J

I Definition 18 (Next Literals of an Inequality). Let r v̇ s be an inequality.

next(r v̇ s) := next(r) n next(s)

Finally, we can state a generalization of Antimirov’s containment theorem for EREs, where
each unfolding step generates only finitely many derivatives.

I Theorem 19 (Containment). For all regular expressions r and s,

r v s ⇔ (ν(r)⇒ ν(s)) ∧ (∀A ∈ next(r v̇ s)) ∂A(r) v ∂A(s).

Proof of Theorem 19. The proof is by contraposition. If r 6v s then ∃A ∈ next(r v̇ s) :
∂A(r) 6v ∂A(s) or ¬(ν(r)⇒ ν(s)). J

For A ∈ next(r v̇ s) define ∇A(r v̇ s) := (∇A(r) v̇∆A(s)) = (∂A(r) v̇ ∂A(s)).

I Theorem 20 (Finiteness). Let R be a finite set of regular inequalities. Define

F (R) = R ∪ {∇A(r v̇ s) | r v̇ s ∈ R,A ∈ next(r v̇ s)}

For each r and s, the set
⋃
i∈N F

(i)({r v s}) is finite.

Proof of Theorem 20. As we consider regular expressions up to similarity (cf. [4]) and
∇A(r v̇ s) = ∂A(r) v̇ ∂A(s) is essentially applying the Brzozowski derivative to a pair of
(extended) regular expressions, the set of these pairs is finite (because there are only finitely
many dissimilar iterated Brzozowski derivatives for a regular expression [4]). J

These results are the basis for a complete decision procedure for solving inequalities
on extended regular expressions where literals are defined via an effective boolean algebra.
Figure 2 defines this procedure as a judgment of the form Γ ` r v̇ s : b, where Γ is a set
of previous visited inequalities r v̇ s with ν(r) ⇒ ν(s) that are assumed to be true and
b ∈ {true, false}. The effective boolean algebra comes into play in the computation of the
next literals and in the computation of the derivatives.

Rule (Disprove) detects contradictory inequalities in the same way as Antimirov’s rule
CC-Disprove. Rule (Cycle) detects circular reasoning: Under the assumption that r v̇ s
holds we were not (yet) able to derive a contradiction and thus conclude that r v̇ s holds.
This rule guarantees termination because of the finiteness result (Theorem 20). The rules
(Unfold-True) and (Unfold-False) apply only if r v̇ s is neither contradictory nor in
the context. A deterministic implementation would generate the literals A ∈ next(r v̇ s) and
recursively check ∇A(r v̇ s). If any of these checks returns false, then (Unfold-False) fires.
Otherwise (Unfold-True) signals a successful containment proof. Theorem 19 is the basis
for soundness and completeness of the unfolding rules.
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(Disprove)
ν(r) ¬ν(s)

Γ ` r v̇ s : false

(Cycle)
r v̇ s ∈ Γ

Γ ` r v̇ s : true

(Unfold-True)
r v̇ s 6∈ Γ ν(r)⇒ ν(s) ∀A ∈ next(r v̇ s) : Γ ∪ {r v̇ s} ` ∂A(r) v̇ ∂A(s) : true

Γ ` r v̇ s : true

(Unfold-False)
r v̇ s 6∈ Γ ν(r)⇒ ν(s) ∃A ∈ next(r v̇ s) : Γ ∪ {r v̇ s} ` ∂A(r) v̇ ∂A(s) : false

Γ ` r v̇ s : false

Figure 2 Decision procedure for containment.

(Prove-Identity)
Γ ` r v r : true

(Prove-Empty)
Γ ` ∅ v s : true

(Prove-Nullable)
ν(s)

Γ ` ε v s : true

(Disprove-Empty)
∃A ∈ next(r) : A 6= ∅
Γ ` r v ∅ : false

Figure 3 Prove and disprove axioms.

I Theorem 21 (Soundness). For all regular expression r and s:

∅ ` r v̇ s : > ⇔ r v s

Proof of Theorem 21. We prove that Γ ` r v̇ s : false iff r 6v s, for all contexts Γ where
r v̇ s /∈ Γ. This is sufficient because each regular inequality gives rise to a finite derivation
by Theorem 20. J

In addition to the rules from Figure 2, we may add auxiliary rules to detect trivially
consistent or inconsistent inequalities early (Figure 3 contains some examples). Such rules
may be used to improve efficiency. They decide containment directly instead of unfolding
repeatedly.

7 Conclusion

Antimirov’s algorithm is a viable tool for proving containment of regular expressions to
extended regular expressions on potentially infinite alphabets. To work effectively with such
alphabets, we require that literals in regular expressions are drawn from an effective boolean
algebra. As a slight difference, we work with Brzozowski derivatives instead of Antimirov’s
notion of partial derivative.

The main effort in lifting Antimirov’s algorithm is to identify, for each regular inequality
r v̇ s, a finite set of symbols such that calculating the derivation with respect to these
symbols covers all possible derivations with all symbols. We regard the construction of the
set of suitable representatives in an effective boolean algebra, embodied in the notion of next
literals next(r v̇ s), as a key contribution of this work.
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