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On the Complexity of Minimum Inference of Regular Sets* 

DANA ANGLUIK 

Computer Science Department, Edinburgh University, Edinbwgh EH9 3 JZ, Scotland 

We prove results concerning the computational tractability of some problems 
related to determining minimum realizations of finite samples of regular sets 
by finite automata and regular expressions. 

1. INTRODUCTION 

In this paper we consider the computational problem of finding a smallest 
finite-state description, in some specified system of description, compatible 
with a given finite positive and negative sample of a regular set. A procedure 
which solves this problem may be used to perform identification in the limit 
of the regular sets. Work on the general topic of identification in the limit, or 
algorithmic inductive inference, may be found in Gold (1967), Feldman (1972), 
Blum and Blum (1975). 

Algorithms hitherto proposed to solve problems of this kind are exhaustive 
search procedures, for example, Horning (1969), Biermann (1974), Wharton 
(1977). Gold (1974) has shown that in general the problem is unlikely to admit 
of a polynomial time algorithm, that is, 

THEOREM 1 (Gold). The problem of determining, for a given jinite sample S 
and positive integer t, whether there exists a determitiistic finite automaton of at 
most t states compatible with S, is NP-complete. 

On the other hand, if the sample is required to classify all strings not exceeding 
a given length, we have the following result of Trakhtenbrot and Barzdin (1973): 

THEOREM 2 (Trakhtenbrot and Barzdin). There is a poZynomiaZ time 
algovitk-a which Joy any uniform-complete sample S jinds a deterministic jinite 
automaton of the minimum possible number of states compatible with S. 

This suggests that constraints on the density of the sample might be used to 
guarantee computational tractibility of the problem. However, in Section 3 

j * These results appear in the author’s Ph.D. thesis, submitted to the Electrical En- 
gineering and Computer Science Department, University of California, Berkeley, March 
1976. The research was supported by the National Science Foundation, Grant 
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below we demonstrate that the problem remains NP-hard  even under rather 
strong constraints on the density of the sample. The  construction given also 
shows that various restrictions on the type of the realizing automaton are 
similarly ineffective. 

In  Section 4 we consider another possible system of representation of regular 
sets, namely regular expressions. We prove a theorem analogous to Theorem 1 
for this system of representation and various restrictions of it. The  techniques 
required for dealing with smallest regular expressions are different from those 
concerning minimum state finite automata, and are possibly of independent 
interest. 

In  Levin (1972), Pfleeger (1973), Pudlak and Springsteel (1977) may be found 
related results on the complexity of finding minimum realizations of incom- 
pletely-specified Boolean functions, minimizing incompletely-specified deter- 
ministic automata, and finding hypotheses in specified forms in agreement with 
given observations, respectively. 

2. DEFINITIONS 

U = {0, 1} is the alphabet throughout. I f  m and n are nonnegative integers 
with m ~< n we use U~ ~ to denote strings of length at least m and at most n 
over U. The  null string is denoted A. 

I f  u and v are strings, then [ u l denotes the length of u, u • v and uv denote 
the concatenation of u and v, rev(u) denotes the reverse of u, and u(i) denotes the 
ith letter of u. 

I f  A and B are sets of strings then A • B denotes the set of all strings uv such 
that u ~ A and v e B. A m is defined inductively: A ° -= {A} and A ~+1 = A ~ • A 
for all nonnegative integers i. A* denotes the union of all A m as n ranges over 
all nonnegative integers; A + is A*  minus the null string. 

I f  S is any finite Set, ] S ] denotes the cardinality of S. tog x means the base 
two logarithm of x. Ix] denotes the least integer not less than x. 

A sample S is a finite subset of U + x U such that whenever (u, a> and <v, b> 
ar e members  of S and u = v then a = b. The  domain of S, denoted domain(S)i 
is the set of all strings u such that for some a ~ U, (u, a) e S. (We assume 
that a sample is presented as input via a string which lists every pair in the 
sample, so that the length of the input is proportional to the sum of the lengths 
of the strings in the domain of the sample.) 

A partially-specified machine M is a quadruple <Q, p, 3, h) such that Q is 
a finite set, the set of states of M, p e Q is the initial state of M, 3 maps a subset 
of  Q x U into Q, and A maps a subset of Q x U into U. We implicitly consider 
3 and A as extended in the usual way to maps from a subset of Q x U* into Q 
and a subset of Q x U+ into U, respectively. We define 

~(q, a la  ~ "'" a . )  = )t(q, a l )  "A(q, ala2) "" A(q, ~ a ~  "" am), 
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whenever the right hand side is defined. Thus A maps a subset of Q × U ÷ 
into U ÷. We abbreviate ~(p, u), h(p, u), A(p, u) by ~(u), A(u), i(u). 

A fully-specified machine (or simply, a machine) is a partially-specified machine 
(Q, p, 3, A) such that ~ and A are defined on all of Q × U. 

A partially-specified machine (Q, p, 8, A) will be said to agree with (or be 
compatible with) a sample S iff for every (u, a) ~ S, h(u) is defined, and A(u) = a. 

Regular expressions and the sets they denote are defined inductively as follows: 
0 and 1 are regular expressions, denoting the sets {0} and {1}; if E and F are 
regular expressions denoting the sets S and T then (E • F), (E v F), and (E)* 
are regular expressions denoting the sets S • T, S ~3 T, and S*. 

The set denoted by the regular expressions E will be denoted by L(E). Two 
regular expressions E and F are equivalent iffL(E) = L(F). 

We will freely omit unnecessary parentheses and the concatenation symbel 
when informally designating regular expressions. 

A regular expression E agrees with (or is compatible with) a sample S iff for 
each ~u, a) ~ S, u ~L(E) iff a =  1. 

We use the definitions of deterministic and nondeterministic polynomial time 
computability and reducibility, of the classes P and NP, and of NP-com- 
p!eteness as found in Cook (1971) and Karp (1972). A set S is NP-hard iff 
every set in N P  is polynomial time reducible to S. 

3. ON THE EFFECT OF SAMPLE DENSITY 

We define the size of a partially-specified machine to be the cardinality of the 
set of states of the machine. 

We define a sample S to be uniform-complete iff the domain of S consists of atI 
strings not exceeding a given length and no others. In other words, there exists 
an integer k such that domain(S) = U1 k. 

We need also a quantification of the notion of a "nearly" uniform-complete 
sample. Thus, given a real-valued function g(x) we say that a sample S is 
g(x)-ineomplete iff the domain of S is U1 ~ --  A for some positive integer k and 
some set d of cardinality less than g(2~'+1). For example, a sample whose domain 
consists of all strings of length not exceeding 2k + 1 which do not have 1 k as 
a prefix is xl/2-incomplete for any positive integer k. 

We have the following easy corollary of Theorem 2: 

COROLLARY 1. For any positive number d there is a polynomial time algorithm 
which correctly decides for any (d log x)-incomplete sample S and positive integer t 
whether there is a machine of size at most t which agrees with S. 

Pro@ Suppose S is a (d log x)-incomplete sample. I f  k is the length of 
the longest string in the domain of S and n ~ 2 e+l then the domain of S is b~ ~ 
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minus at most d log n strings. For each of the at most n a possible ways of 
specifying outputs for the missing strings, we may apply the algorithm of 
Theorem 2 and take the smallest of the results. | 

T h e  remainder of this section is devoted to proving the following: 

THEOREM 3. For any positive number E it is an NP-complete problem to 
decide, for an arbitrary x'-incomplete sample S and positive integer t, whether there 
is a machine of size at most t which agrees with S. 

The  reason that  Gold's  construction for the proof of Theorem 1 does not 
suffice to prove Theorem 3 is that a propositional f o r m u l a f  of m clauses and n 
variables is t ransformed to a sample containing strings of length at least r = 
max(m, n). For such a sample to be x'-incomplete,  it must  contain c2 ~ strings 
for some positive constant c, which would not be polynomial in the size o f f  as 
required for the NP-reduct ion.  Thus,  the primary purpose of the new construc- 
tion is to keep the sample strings to length O (log r). We give a construction 
which achieves this, and then briefly indicate how the E may be achieved. 

Proof of Theorem 3. Let  ~ be a fixed positive number.  
T o  see that  the indicated problem is in NP, we note that if S and t are give n 

and t exceeds the length of the string presenting S then there must necessarily 
be a machine of size t which agrees with S. Otherwise, we may nondeterministi- 
tally guess a machine of size t and check that it agrees with S. 

T h e  proof that the problem is NP-hard  is a polynomial t ime reduction of 
a known NP-comple te  problem to it. First we assume that k is a fixed positive 
integer (the value will be specified later) and define a particular incompletely- 
specified machine M to be used in the proof. 

W e  set 

L = 4k + 3, 

A = - { u ~ U * : l u i  ~ < 2 k + l  and i f l u l  > k t h e n u ( k +  1) = 1}, 

h(u) = u ' l S ,  w h e r e s = L - - 2 l u l .  

,~ (Note that h is injective, with range disjoint from A.) 

' ,  B = {h(u) : u ~ A } ;  

Q = A u B .  

For e a c h w ~ Q a n d a ~ U ,  

' ' (i) i f ] w l  ~ k o r k ~ [ w l  < 2 k + l t h e n  
\ 

3(w, a) = w ' a  and A(w, a) = 1 ;  

! .  (ii) i f l w l  ~ k o r l w l  = 2 k +  1 then  

8(w, l) = w" 1 and A(w, 1) = l;  
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(iii) i f 2 k + l  < [w]  < L  thenh-~(w) = v ' b  for some b ~ U ,  and we 
let 

8(w, a) = h ( v )  and A(w, 0) = b  and A(w, 1) = 1; 

(iv) if lwL = L t h e n  

3(w, a) = w and A(w, a) = 0. 

And,  finally, 

M =  (Q, A, 3, A). 

Figure 1 gives another view of the definition of M, indicating the inductive 
definition of the partially-specified machine T~+ 1 (R~+I) from two copies of T~ 
(R~), and the construction of M from 2 k + 1 copies of each of T k and R~. 
I f  w is a state in the left half of M, then h(w) is its mirror image in the right half. 

I f  we define the level of a state w of M to be I w [, we note that the only un- 
specified values of 3 and A are the 0-transitions and 0-outputs from states at 
levels k and 2k -}- 1. Define 

g(r,s)  = 0  if r + s  > L  

= 1  if r + s ~ L  

The  following facts may be verified of M:  

(a) ] Q!  = 2 2~+~- 2 k + l -  2; 

(b) 3(w) = w for all w~  Q; 

(c) A(w. 1 s) = g ( I  w I, s) for a l l w ~  Q; 

(d) A(h(w) • 0 s) = 1 ~. rev(w) for all w ~ A, where s = I w ] and t = L --  s; 

(e) A(w" 0 8) = U '  rev(h-l(w)) for all w E B, where t = ] w I and s = L --  t. 

I t em (c) may be used to distinguish states at different levels of M, items (d) and 
(e) to distinguish two states at the same level. We accordingly define a sample, 

S = { ( u , ) ~ ( u ) ) :  either u = w ' l  8 for w E Q  and s ~ L @ l - - l w ]  or 

u = w • 18 .0~ for w e A ,  s = L - - 2  F wl and t ~< l wl}. 

LEMMA 1. / f  M ' =  (Q' ,  p ' ,  3', h ' )  is any machine which agrees with this 
sample S then S'(v) ~ ~'(w) for all v and w in Q with v ~ w. Consequently 
] Q ' ]  ~ ! Q I .  

Proof. Fix v and w from Q with v @ w. There  are three possible cases: 
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FIo.  1. Construct ion of M.  

(i) I v  I v 6 I w[ .  Wi thou t  loss of generality, assume that I v l  > I w l- 
Le t  s = L + 1 - -  ] v 1. Since M '  agrees with S, 

h ' ( v ' l  *) = h ( v ' l  * ) = g ( l v l , s ) = O ,  

A'(w" 10 = g ( I  w ], s) = 1, 

so a'(v) ~ a'(w). 
(ii) ] v l  = ] w l a n d I v ]  ~ 2 k + l .  L e t t = l v l a n d s = L - - 2 t .  T h e n  

~'(v • 1 ~ "09  = 1 *+*" rev(v), 

A'(w" 1 s "0 t) = 1 s+*" rev(w). 
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(iii) iv  [ = I w I and Iv  I > 2k + 1. Let  % = h-l(~), w 1 = h-i(w), 
t = l v l ,  s = L - - t .  T h e n v  1 y a w  l a n d  

;~'(v "08) = I t" rev(vl), 

} , ' (w '0  ~) = l~-rev(wl). | 

Now we give the reduction. Let S F  = {f: f is a propositional formula in 
conjunctive normal form with each clause containing either only positive or 
only negative literal@ Let S S A T  = { f E  SF: f is satisfiable}. Then  S S A T  is 
an NP-complete problem, see Gold(1974). 

Let  f ~ S F  be given. Suppose f has m clauses and n variables. Fix k -~ 
[log(m + n)]. Consider the machine M = (Q, A, 3, A} defined above for this 
value of k. Choose two disjoint sets C and V contained in U ~ with I C L = m 
and I V I = n, to represent the clauses and variables of f ,  respectively. Define 

in(v, c) = 1 

= 0  

sense(c) ----- 1 

= 0  

if v ~ V, c ~ C, and variable v appears in clause c, 

otherwise, 

if c ~ C and clause c contains only positive literals, 

otherwise. 

T 1 =- {(vlw0, in(v, w)}: v, w ~ Uk}, 

T 2 ={(c01S,  g ( s , k ) } : c ~ C , s  ~ L @  l - - k } ,  

T 3 = {@01c0, 1): c 6 C}, 

T4 --  {@00, sense(c)}: c e C}. 

And finally, 

SI == S u Tl W T2 W Ta U T4 , 

where S is the sample defined above for the value of k chosen. 
Since the domains of the components of the union defining S~ are pairwise 

disjoint, S~ is a sample. 

L~MMA 2. There is a machine of size at most ] Q I agreeing with S I iff f ~ S S A T .  

Pro@ Suppose that M '  = (Q' ,  p ' ,  S', A') is a machine of size at most I Q i 
which agrees with S s . Define T(v) = )t'(v0) for all v c V. We shall show that ~- 
is an assignment which satisfiesf. Note that M '  agrees with S, so from Lemma 1 
we conclude that Q'  consists precisely of those elements 3'(w) such that w ~ Q 
and that these are all distinct. Let  c a C be any clause. Let  v c be the unique 
element of Q such that 8'(vc) = 3'(c0). Since M '  agrees with T2, A'(vfl s) 
A'(c01 ~) = g(s, k) for all positive integers s not exceeding L + 1 -  k. This  
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shows tha t  ve m u s t  be  of  length  (and level) k. By agreement  wi th  T s we have 

A'(velc0) = A'(c01c0) ~ 1, so by  agreement  wi th  "I'1, i n ( r e ,  c) = 1, so v c ~ V 
and  t h e  var iable  vc appears  in the clause c. Final ly ,  since M '  agrees wi th  T4, 
~-(v~) = A'(v,0) = A'(c00) = sense(c), so the  value  ass igned by  ~- to vc satisfies c. 
S ince  c was an a rb i t ra ry  clause o f f ,  ~- satisfies f .  

Converse ly ,  suppose  f is satisfiable and let  ~- be an ass ignment  of 0 and 1 to 
e lements  of  l ;r which  satisfies f .  F o r  each c ~ C let v c be such tha t  in(v e , c) = 1 
a n d  sense(c) = ~-(v~). W e  define a mach ine  M '  = ( Q ' ,  A,  3', A')  as fol lows:  

Q; = Q. 

F o r  all w ~ Q '  and  a E U, 

~ ' (w ,  a )  = 

A'(w, a) = 

~(w, a) if  this  is defined,  

v w i f w E C a n d a  = 0 ,  

wl  otherwise,  

A(w, a) if  this  is def ined,  

in(u, v) if  w = ulv, where  u, v ~ U k and a = O, 

T(w) if  w ~ V and a = O, 

= 1 otherwise.  

T h e n  M '  is a ful ly-specif ied mach ine  wi th  [ Q I states. T o  see tha t  it  agrees 

wi th  $ I ,  

(i) M '  extends  M and consequent ly  agrees wi th  S;  

(ii) M '  agrees wi th  T 1 by  expl ici t  const ruct ion;  

(iii) i f c ~ C a n d l  ~ s ~ L +  1 - - k t h e n  

A'(c0) = 1 by  the defaul t  case for  A', 

~'(c01 ~) = A'(voP) = A(vol~) = g(s, k), 

so M '  agrees wi th  T 2 ; 

(iv) for all c ~ C, 

A'(c01c0) = A'(vclc0 ) = i n ( r e ,  c) = 1, 

so M '  agrees wi th  T a ; 

(v) for  all c ~  C, 

~ ' ( c0 0 )  = ~ ' (vo0)  = . ( v c )  = s e n s e ( c ) ,  

so M '  agrees wi th  T 4. | 
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To  complete the proof of Theorem 3 we must show how to achieve x ~- 
incompleteness of the sample. (Note that the strings of S s are of length 
O(log(m + n)).) We therefore pad S~ as follows. 

Let r == [(4k - -  5)/el and add a "preamble" of r states to the machine M 
to obtain the machine M '  = (Q' ,  p ' ,  3', ;V) as indicated in Fig. 2. Each of the 
additional r states may be distinguished from the original states of M by its 
output under either input 0 or 1, and from the other states of the preamble by 
its outputs under the input string 1 ~+~. We define s = 4k q- 4, t - -  r + s, 

G = {(u, X'(u)) : u 4: l~v for all strings v, and u ~ UI~}, 

V 2 = {(l~u, b) : (u, b) ~ SI}, 

s i = G u G .  

Note that the domain of S~ is Ut t less at most 2 "~ strings, and since 2* ~< (2~) * 
the sample S5 is xMncomplete. I t  is then straightforward but tedious to verify 
that Lemmas 1 and 2 may be strengthened to give 

" p l ' e a m b l e "  o f  r s t a t e s  

S -'h 
O f f / o  

FIC. 2. The machine M'. 

LEMMA 3. There is a machine of size at most [Q'~t which agrees with S '  s iff 
f ~ S S A T .  

I t  is clear that the indicated reduction may be carried out in polynomial time 
in the length off ,  which concludes the proof of Theorem 3. | 

We note that the machine M '  constructed in the second half of the proof of 
Lemma 2 is "finite-language" (i.e., accepts a finite set of strings), so we have 

COROLLARY 2. I f  C is any class of machines which contains all the finite- 
language machines then it is an NP-hard problem to decide for a sample S and 
positive integer t whether there is a machine from class C which is compatible with S 
and of size at most t. 
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4. INFERRING REGULAR EXPRESSIONS 

The  notion of size we shall use for regular expressions has been chosen 
primarily to simplify the proofs in this section. The  size~ of a regular expression 
will be the number  of occurrences of the symbols 0 and 1 in it. (The  results that  
follow can be shown to hold for other definitions of size.) Define R = {(S, t ) :  
S is a sample, and there is a regular expression of size at most t which agrees 
with S}. 

THEOREM 4. R is an NP-complete problem. 

Proof. T o  see that R is in NP, we note first that for any expression of size m 
there is an equivalent expression of length (as a string) at most 10m, using the 
fact that (E*)* is equivalent to E*. I f  t exceeds the sum of the lengths of the 
strings in the domain of S then there will necessarily be an expression of size 
at most t which agrees with S (namely, the disjunction of all the strings in the 
positive part  of S). Otherwise, we nondeterministically guess a regular expression 
of length at most 10t and check that  it agrees with S. (That  the agreement may  
be checked in polynomial t ime is proved, for example, in Aho, Hopcroft,  and 
Ullman (1974).) 

The  proof that R is NP-ha rd  is a polynomial t ime reduction to it of the 
following problem: S A T  = { f : f  is a propositional formula in conjunctive 
normal form which is satisfiable}. S A T  is NP-eomplete ,  see Karp (1972). L e t f  
be a propositional formula in conjunctive normal form with elauses numbered  1 
to m and variables numbered 1 to n. Define 

cont(i, j )  = 0 

= 1  

= - - 1  

q = (1100) n, 

Fij = 

$ 1 =  

$ 2 =  

S a = 

$ 4 =  
& =  

if variable j does not appear in clause i, 

if variable j appears positively in clause i, 

if variable j appears negatively in clause i, 

1100 if cont( i , j )  = 0, 

110 if cont(i , j)  = 1, 

100 if cont(i ,])  = - -1 ,  

{<q, 1)}, 

{(mxxy, 0):  q = wxy and x contains both 0 and 1 }, 

(<(11oo)~ lO(11oo)*, o>: r + s = n - -  1}, 

{(F~IFi2 " '  Fin ,  0}: 1 ~< i ~ m}, 

& u & v & v & .  

LEMMA 4. f ~ S A T  iff ( S  1, 3n) ~ R. 
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Proof. Suppose f e S A T .  Let  T be an assignment of 0 and 1 to the variables 

o f f  which satisfies f .  For  e a c h j  = 1, 2,..., n let 

E j  = (1)*00 i f  ~-(j) = 1, 

= 1 1 ( 0 ) *  i f  . ( j )  = 0.  

Le t  E = E1E 2 ". En • Then  E is a regular expression of size 3n. To see that E 
agrees with S I note first that L(E) is contained in L((I*0*) *~) and if wlw 2 "" w~ e 
L(E),  where each w~- eL( l (1 )*  0(0)*), then each w~ eL(E~). Then  

(i) q e L(E),  so E agrees with S 1 ; 

(ii) if q = wxy and x contains both 0 and 1 then wxxy  is not in L((1 *0") n) 

and so is not in L(E),  so E agrees with S 2 ; 

(iii) if r + s = n - -  1 and (1100) r 10( l l00)~eL(E)  then 10aL(Ej )  for 
some j ,  which is a contradiction, so E agrees with S 8 ; 

(iv) if E does not  agree with S 4 then for some i between 1 and m, 

FilFi2 "'" Fin eL(E) .  Hence Fit eL(E j )  for j = 1, 2 , . ,  n. Let  k be any variable 
appearing in clause i. I f  k appears positively in i then Fi~ = 110 so E~ must  be 
11(0)* and ~(k) = 0. I f  k appears negatively in clause i then similarly r(k) = 1. 
I n  either case, we find that  • does not satisfy clause i, contradicting our choice 
of  ~. Hence E must  agree with $4 • 

Conversely suppose that  there exists a regular expression of size at most 3n 
which agrees with S I . We  shall show that  a min imum such expression must  have 
essentially the form of E and derive from it an assignment which satisfies f .  
Le t  E be a regular expression of min imum possible size compatible with S I . 
By hypothesis the size of E is at most  3n. We use the associativity of concatena- 
t ion to rewrite E as an equivalent expression of the same size: F = FiF e ".  F e ,  

where each F~ is not itself a concatenation. Since q EL(E)  we may choose 

q l ,  q2 ,.--, qk such that  q = qlq2 " ' "  q!e and each qi aL(Fi) .  For  each i, F i cannot 
be of the form (G v H).  For  suppose to the contrary that  F i = (G v H).  Since 

qi ~L(Fi)  we have qi EL(G) or ql aL (H) .  I f  qi aL(G)  then by replacing F i  by G 
in F we get an expression of strictly smaller size which is still compatible with 
5:i ,  contradicting our choice of E. Similarly for the case of qi ~L(H) .  

Thus  the only possibilities for F i are 0 or 1 or (G)* for some regular expres- 
sion G. In  this last case, qlq2 ' "  (q~)Z "" % is also in L(E),  so by  agreement 
with $2 ,  q, cannot contain both 0 and 1. Hence we may again reassociate the 
concatenations in E to obtain an expression G1H1G2H~ "'" GnH~,  where for 
e a c h j  = 1, 2,..., n we have 11 EL(G~) and OOEL(Hj). 

Now the size of Gj is at most  two for all j ,  for otherwise we could replace Gj 
by  11 and obtain an expression of strictly smaller size compatible with S I . 
Similarly,  the size of Hj  is at most two. I t  may be verified that the only expressions 
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of size one which generate the string 11 are of the form (J)*, where 1 E L(J),  and 
so must  also generate the string 1, and similarly for expressions of size one which 
generate 00. Thus  for each j we cannot have both Gj and Hj of size one, for 
otherwise 10 eL(GjHj), contradicting agreement with $3.  To attain size at most 
(and exactly) 3n for E we must have for each j either the size of G i is one or 
the size of H a is one, but not both. Hence we define 

7(j) = 1 if the size of Gj is one, 

= 0 otherwise. 

To  see that T satisfies f we suppose to the contrary that it falsifies clause i. 
Then  for each variable j, 

(i) i f j  does not appear in clause i thenFi~ = 1100 eL(G~H~); 

(ii) i f j  appears positively in clause i then r(j)  = 0 and 

Fij = 110 eL(GjH~); 

(iii) i f j  appears negatively in clause i then ~-(j) = 1 and 

Fi~. = 100 eL(GjHj). 

Thus  FilFi2 "" Fi,~ ~L(E), contradicting agreement with Sa .  Hence r must  
s a t i s f y f a n d f e  SAT. | 

The indicated construction of S] from f may be carried out in polynomial 
time in the length o f f ,  so we conclude that the problem R is NP-hard.  | 

We note that the expression constructed in the first half of the proof of 
Lemma 4 is of a special form in that it contains no occurrences of the symbol v.  
Thus  we have 

COROLLARY 3. I f  C is any set of regular expressions containing all those 
expressions in which v does not appear, then the problem of deciding for a sample S 
and positive integer t whether there exists an expression from C which is compatible 
with S and of size at most t zs NP-hard. 

A separate construction is given to prove the analog of Corollary 3 for *-free 
regular expressions in Angluin (1976). 

5. REMARKS AND CONCLUSIONS 

In  particular cases it might be more economical to represent a uniform- 
complete sample S as the list of strings u such that (u, 1) ~ S. The  algorithm 
of Trakhtenbrot and Barzdin of Theorem 2 can be adapted to run in time' 
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polynomial  in the length of this form of presentation of the input, which may be 
of some practical interest. The  question of whether Theorem 4 holds when 
regular expressions are allowed to contain the negation operator is open. In  
general, the ident i ty  of the regular set inferred for a given sample depends on 
the system of representat ion and definition of size chosen. Angluin (1976) gives 
an example of this phenomenon for determinist ic versus nondeterminist ic 

automata. 
I t  is hoped that these largely negative results will be of use in guiding the 

search for appropriate formulations of problems in concrete inductive inference, 
and in the evaluation of proposed algorithmic solutions. 
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