517 research outputs found

    Optimal control with structure constraints and its application to the design of passive mechanical systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering; and, (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Page 214 blank.Includes bibliographical references.Structured control (static output feedback, reduced-order control, and decentralized feedback) is one of the most important open problems in control theory and practice. In this thesis, various techniques for synthesis of structured controllers are surveyed and investigated, including H2 optimization, H[infinity] optimization, L1 control, eigenvalue and eigenstructure treatment, and multiobjective control. Unstructured control-full- state feedback and full-order control-is also discussed. Riccati-based synthesis, linear matrix inequalities (LMI), homotopy methods, gradient- and subgradientbased optimization are used. Some new algorithms and extensions are proposed, such as a subgradient-based method to maximize the minimal damping with structured feedback, a multiplier method for structured optimal H2 control with pole regional placement, and the LMI-based H2/H[infinity]/pole suboptimal synthesis with static output feedback. Recent advances in related areas are comprehensively surveyed and future research directions are suggested. In this thesis we cast the parameter optimization of passive mechanical systems as a decentralized control problem in state space, so that we can apply various decentralized control techniques to the parameter design which might be very hard traditionally. More practical constraints for mechanical system design are considered; for example, the parameters are restricted to be nonnegative, symmetric, or within some physically-achievable ranges. Marginally statable systems and hysterically damped systems are also discussed. Numerical examples and experimental results are given to illustrate the successful application of decentralized control techniques to the design of passive mechanical systems, such as multi-degree-of-freedom tuned-mass dampers, passive vehicle suspensions, and others.by Lei Zuo.S.M

    Advances in PID, Smith and Deadbeat control

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Disturbance Feedback Control for Industrial Systems:Practical Design with Robustness

    Get PDF

    A Near-Optimal Decentralized Servomechanism Controller for Hierarchical Interconnected Systems

    Get PDF
    This paper is concerned with decentralized output regulation of hierarchical systems subject to input and output disturbances. It is assumed that the disturbance can be represented as the output of an autonomous LTI system with unknown initial state. The primary objective is to design a decentralized controller with the property that not only does it reject the degrading effect of the disturbance on the output (for a satisfactory steady-state performance), it also results in a small LQ cost function (implying a good transient behavior). To this end, the underlying problem is treated in two phases. In the first step, a number of modified systems are defined in terms of the original system. The problem of designing a LQ centralized controller which stabilizes all the modified systems and rejects the disturbance in the original system is considered, and it is shown that this centralized controller can be efficiently found by solving a LMI problem. In the second step, a method recently presented in the literature is exploited to decentralize the designed centralized controller. It is proved that the obtained controller satisfies the pre-determined design specifications including disturbance rejection. Simulation results elucidate the efficacy of the proposed control law

    Structured, Gain-Scheduled Control of Wind Turbines

    Get PDF

    Optimal Output Modification and Robust Control Using Minimum Gain and the Large Gain Theorem

    Full text link
    When confronted with a control problem, the input-output properties of the system to be controlled play an important role in determining strategies that can or should be applied, as well as the achievable closed-loop performance. Optimal output modification is a process in which the system output is modified in such a manner that the modified system has a desired input-output property and the modified output is as similar as possible to a specified desired output. The first part of this dissertation develops linear matrix inequality (LMI)-based optimal output modification techniques to render a linear time-invariant (LTI) system minimum phase using parallel feedforward control or strictly positive real by linearly interpolating sensor measurements. H-ininifty-optimal parallel feedforward controller synthesis methods that rely on the input-output system property of minimum gain are derived and tested on a numerical example. The H2- and H-infinity-optimal sensor interpolation techniques are implemented in numerical simulations of noncolocated elastic mechanical systems. All mathematical models of physical systems are, to some degree, uncertain. Robust control can provide a guarantee of closed-loop stability and/or performance of a system subject to uncertainty, and is often performed using the well-known Small Gain Theorem. The second part of this dissertation introduces the lessor-known Large Gain Theorem and establishes its use for robust control. A proof of the Large Gain Theorem for LTI systems using the familiar Nyquist stability criterion is derived, with the goal of drawing parallels to the Small Gain Theorem and increasing the understanding and appreciation of this theorem within the control systems community. LMI-based robust controller synthesis methods using the Large Gain Theorem are presented and tested numerically on a robust control benchmark problem with a comparison to H-infinity robust control. The numerical results demonstrate the practicality of performing robust control with the Large Gain Theorem, including its ability to guarantee an uncertain closed-loop system is minimum phase, which is a robust performance problem that previous robust control techniques could not solve.PHDAerospace EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/143934/1/caverly_1.pd

    An extension algorithm of regional eigenvalue assignment controller design for nonlinear systems

    Get PDF
    This paper provides a new method to nonlinear control theory, which is developed from the eigenvalue assignment method. The main purpose of this method is to locate the pointwise eigenvalues of the linear-like structure built by freezing the nonlinear systems at a given time instant in a desired disk region. Since the control requirements for the transient response characteristics are the major constraints on the selection of the disk centre and radius, two different update algorithms are also developed to reshape the disk region by changing the disk centre and radius at each time step. The effectiveness of the proposed methods is tested in both simulations and experiments. A validated three-DOF laboratory helicopter is used for experiments

    Linear Matrix Inequality Approach to Robust Emergency Lateral Control of a Highway Vehicle With Time-Varying Uncertainties.

    Get PDF
    New linear-matrix-inequality (LMI) based methods are developed for the static-output-feedback stabilization and reduced-gain static-output-feedback stabilization of time-invariant systems. Unlike previous methods, the static-output-feedback method is non-iterative in LMI solutions. The methods are extended to design robust static-output-feedback controllers for time-varying systems using a polytopic-systems approach. Examples are given which demonstrate the use of each of the new methods. The specific problem of emergency lateral control of a highway vehicle is then addressed using the new robust static-output-feedback method. A controller is designed which robustly stabilizes the vehicle over the range of highway speeds (15 to 30 m/s) and a range of expected independent changes in front and rear lateral tire stiffness (15 to 30 kN/rad)
    corecore