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Abstract
In the Single-Input-Single-Output (SISO) setting, Negative Imaginary (NI) systems
refer to systems with negative frequency response for all positive frequencies. The
NI theory was motivated by the study of inertial systems with collocated position
sensor and force actuator. This type of systems can have nonminimum phase zero, be
improper and have up to a relative degree of two. Thus, stability analysis and controller
synthesis using passivity theorem may not be applicable. Moreover, using traditional
design techniques such as H∞ and H2 to control this kind of systems may lead to
conservative results and poor performance due to the oscillatory nature of the systems
and the effect of the unmodelled dynamics on the closed-loop system performance.

The NI property can be observed in a number of physical systems such as cantilever
beams, large space structures, robotic manipulators, gantry crane systems, vibration
shock absorbers, series elastic actuators and mechatronic systems. This, in addition
to the simple internal stability result of interconnected NI systems, which depends
only on the DC loop gain, has made the theory appealing for practical engineering
applications. Example of some of these applications include vibration control of lightly-
damped flexible structure, motion control of robotic arm, the control of a DC servo
motor, nano-positioning control of an atomic force microscope, consensus control of
multi-agent systems, to mention but a few.

Due to the vast areas of application of the NI theory, controller synthesis techniques
that achieve some transient performance level, such as prescribed decay rate, becomes
imperative. This thesis therefore focuses on the synthesis technique of such controllers.
A set of Linear Matrix Inequalities (LMIs) conditions are proposed for the synthesis of
a dynamic output feedback controller. These LMIs render the closed-loop system to be
NI and ensure that the DC gain condition for closed-loop internal stability is satisfied.
The proposed conditions also ensures that the closed-loop system has prescribed decay
rate via the α− pole placement technique.

The thesis then introduces a new class of NI systems called the Linear Time-Varying
(LTV) NI systems. First, a time domain definition is provided, before a state-space
characterization is proposed using Linear Differential Matrix Inequalities (LDMIs).
Furthermore, a specialized case of the LTV NI systems called the Linear Parameter-
Varying (LPV) NI systems are introduced. The state-space characterization of the
LPV NI systems is provided using LMIs. Finally, a set of sufficient conditions for the
stability of two asymptotically stable LTV NI systems is proposed and the result is
shown to specialise to the LPV NI systems case.

Also, this thesis introduces a robust controller synthesis technique using the prin-
ciples of Internal Model Control (IMC) and NI theory. In the proposed technique,

11



the design of the Youla parameter is cast as an NI controller synthesis problem. Two
different synthesis methods are provided, both of which are sufficient conditions. One
is an LMI-based approach and the other is a frequency domain approach.

Finally, the thesis deals with hardware validation of the proposed LMI-based IMC
NI controller synthesis technique. The efficacy of the technique is demonstrated on
a flexible cantilever beam with collocated position sensor and force actuator. The
controller is designed to attenuate the vibration of the flexible structure caused by
external disturbances.
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λi(A) the ith eigenvalue of matrix A

In n × n identity matrix

λmin(A) the minimum eigenvalue of matrix A that has only real eigenvalues
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Number sets

C field of complex numbers

Cn field of complex vectors with n elements

Cn×m field of complex matrices with n rows and m columns

Fn×m field of complex or real matrices with n rows and m columns

R field of real numbers

Rn field of real vectors with n elements

Rn×m field of real matrices with n rows and m columns

R≥0 non-negative real numbers

Symbols

< less than

= equal to

> greater than

∪ union

≡ equivalent to

∃ there exist

∀ for all

≥ greater than or equal to

⇐⇒ equivalent to

=⇒ implies

∈ belongs to

≤ less than or equal to
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̸= not equal to

̸≡ not equivalent to

⊂ subset of
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Chapter 1

Introduction

1.1 Background

The study of Negative Imaginary (NI) systems was motivated by the study of lightly

damped inertial systems with collocated force actuator and position sensor [15,16].These

kind of systems are modelled by Partial Differential Equation (PDEs). However, they

can also be expressed as the sum of an infinite number of lightly damped second or-

der linear system with highly resonant modes. For all positive frequencies, the linear

system exhibit a negative frequency response with a phase that lies between 0o and

−180o. Due to the negative frequency response of the systems, those kind of systems

were termed as Negative Imaginary Systems.

One of the main advantage of modelling flexible systems as NI systems (i.e. using

collocated force actuator and position sensor) is that even when higher order system

will be considered, it will still have the NI property. Moreover, if on the other hand,

we consider a reduced order model for control purpose, the reduced order model still

retains the NI property together with the spillover or unmodelled dynamics. Hence,

the NI theory can be used to control the reduced order model whilst being robust

to the unmodelled dynamics by satisfying a simple DC gain condition. Furthermore,

the closed-loop system synthesized using the NI theory will also be robust to any

other mechanical perturbation, in addition to the unmodelled dynamics, having the

NI property and also satisfying the DC gain condition.

The NI theory was developed for positive feedback interconnection of linear systems

having the NI systems property. Consider the positive feedback interconnection of

23
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Figure 1.1: A positive feedback interconnection of NI systems.

an NI system G(s), with a Strictly Negative Imaginary (SNI) system H(s) show in

Figure 1.1. For simplicity, we consider the case where the two systems are Single-Input-

Single-Output (SISO) systems so that we can make reference to the Nyquist plots of

the systems. The stability of the positive feedback interconnection follows using the

Nyquist stability criterion. First, since we have a positive feedback interconnection,

then the critical Nyquist point of interest is the +1 + j0 point.

Since G(s) is NI and H(s) is SNI, then ∠G(jω) ∈ [−180o, 0o], ∠H(jω) ∈ (−180o, 0o)

and ∠G(jω)H(jω) ∈ (−360o, 0o), ∀ ω > 0. Also, since H(s) and G(s) are real and

rational, then G(jω)H(jω) will have real frequency response at ω = 0 and ω = ∞.

Hence, when G(∞)H(∞) = 0 and G(0)H(0) < 1, the critical Nyquist point will not

be encircled and thus, closed-loop stability is guaranteed. Therefore, a necessary and

sufficient condition for the stability of two NI system is the DC gain being less than

unity if one of the systems is strictly proper.

A good control system is characterized by good performance and robust stability.

It therefore comes as no surprise that these two main aspects of the control system

keep on getting quite a lot of attention.

For robust stability, when the designer has as much information on the feedback

interconnected systems as possible, then the Nyquist stability theorem can provide the

necessary and sufficient tool for ensuring internal stability [15–17].

If however, the designer has limited information on the feedback interconnected

systems, it may still be possible to design a closed-loop control system with guaranteed

internal stability if the systems have certain properties. For example, the robust

stability of a feedback interconnection of Bounded Real (BR) systems with contractive

gain can be established using the small-gain theorem [18,88]. While for the feedback
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interconnection of Positive Real (PR) systems, passivity theorem can be used to

establish robust stability [15,16,19,45].

Such theorems (i.e. passivity and small-gain) serve as important tools in stability

analysis as they allow for the establishment of necessary and sufficient conditions for the

robust stability even when the designer has limited information on the interconnected

systems.

Therefore, the NI stability result is similar to some of the well known robust

stability result in the literature, such as passivity and small-gain theorem. However,

the NI stability result has some fundamental differences to these results. For example,

in the position control of lightly damped structure having collocated force actuator

and position sensor, such systems exhibit the NI properties and not the PR systems

properties. As such, passivity theorem cannot be used for the analysis of such systems.

Also, the NI stability result is not an absolute value type of result. For example,

a negative DC gain such as G(0)H(0) < −50I will guarantee stability of the positive

feedback interconnection of G(s) and H(s) using the NI theory but not via the small-

gain theorem. Hence, NI stability theory is not a one-sided type of stability result as

is the small-gain theorem. Furthermore, the small-gain theorem is a result that needs

to hold for all frequencies while NI stability result is only a DC gain condition.

Due to these nuances and appealing stability result, the NI theory has been applied

in a number of practical engineering application. These include vibration attenuation

of flexible structures [55], control of DC machine with parametric uncertainty [27],

control of flexible robotic arm [39], Consensus control of networked systems [48,49,53],

position control of nanopositioning systems such as Atomic Force Microscope [40,41],

damping control of guitar string [38], control of large bridge structures [36], to mention

but a few.

1.2 Motivation

Since the introduction of NI systems by [15, 16], NI theory has proven to be quite

popular due to its simple stability result and the wide range of possible areas of

application. As such, the NI synthesis problem has attracted a lot of attention in

recent times.
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The NI synthesis problem is broadly classified into two categories viz: the first

being that of designing a controller to render the closed-loop NI (wihtout the controller

itself being NI) while the second entails designing the controller itself to be NI. In

the first case, an NI or SNI uncertainty is first extracted from the nominal plant and

the NI synthesis problem becomes that of synthesizing either an NI or SNI closed-

loop system depending on the uncertainty. Most of the NI synthesis solutions in the

literature addressed this type of problem. Some of the solutions include the work

in [32,41,66,79,81].

However, non of the above stated work addressed the issue of performance of the

closed-loop system. Some of the recent works that address the issue of performance

of the closed-loop systems do have other shortcomings. For example, [64] relied on

the transformation from PR to NI systems. However, using that transformation, an

Strictly Positive Real (SPR) system is transformed into an NI (not SNI) system. This

is due to the introduction of a blocking zero at the origin which makes the system

NI. So, if the uncertainty is NI, the closed-loop system will also be NI which will not

satisfy the conditions for robust stability as one of the systems is required to be SNI.

The work in [82] addressed the NI synthesis problem with H∞ closed-loop perfor-

mance. This was done by first designing an NI controller and then minimizing its

distance from another synthesized H∞ controller. But there is no guarantee that the

NI controller will retain any of the property of the H∞ controller just by minimizing

the distance between the two controller.

Other solution such as the one offered in [70] used full state feedback for synthesis.

But some of the states might not be available for measurement and even if they are, it

might not be cost-effective to measure all of them.

For the second type of synthesis problem, where the controller is synthesized itself

to be NI, only a handful of work addressed such kind of problem. In [20], it was shown

that the Integral Resonant Control (IRC) was a form of SNI system. Hence, IRC

controllers were designed for vibration attenuation in [36, 55]. However, in [55], the

controller parameters were obtained via a nonlinear optimization which is difficult to

solve while [36] did not provide a synthesis technique.

The work in this thesis is therefore motivated by providing a solutions to some of

the shortcomings of the NI synthesis problem. The first solution addresses the issue
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of designing a dynamic output feedback controller that renders the closed-loop system

SNI and is robust to all class of NI uncertainties satisfying a certain DC gain condition.

The synthesized closed-loop system also has some time domain performance in the

form of prescribed decay rate.

However, sometimes separating the uncertainty from the nominal plant can be

difficult. Hence, applying the solutions using the first synthesis approach may not

always be possible. The second solution involves the use of the principles of Internal

Model Control (IMC) to synthesize an NI(or SNI) controller for an uncertain SNI

(or NI) plant (respectively). This approach also provides a tuning parameter that is

used to improve the performance of the closed-loop system and also facilitates perfect

nominal set-point tracking for a constant reference signal.

Finally, most of the work in the NI literature are theoretical, with handful practical

validation. Thus, the work in this thesis is also motivated to bridge this gap between

theory and practice. Therefore, we built a test rig to validate one of the synthesis

techniques proposed in this thesis.

1.3 Aims and Objectives

The main aim of this thesis is to address the issue of the NI synthesis problem, which

include synthesizing a controller that renders the closed-loop system NI or synthesizing

the controller itself to be NI. Here, we aim to provide an Linear Matrix Inequality

(LMI)-based synthesis technique for NI systems. This is due to the fact that LMIs can

readily be solved using Semi Definite Programming (SDP) solvers, hence making the

the synthesis technique appealing for industrial applications.

Another main aim of the thesis to ensure that the synthesized controllers improve

the time domain performance of the closed-loop system. However, unlike the tradi-

tional performance measures used in robust control, such as H∞ and H2 performance

measures, we use measures such as output tracking, decay rate, settling time, damping

of the closed-loop system e.t.c. This is done so that the tuning becomes more intuitive.

Among the objectives of this thesis include building a test rig that will be used to

validate some of the synthesis technique developed in the thesis. The test rig will be in

the form of a flexible structure system will collocated force actuator and position sensor.
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The designed controller should be able to attenuate the vibration of the structure and

at the same time be robust to the unmodelled dynamics of the flexible structure system.

Although the NI literature has been rich with contributions, there are still some

practical systems that are yet to be captured by the current literature. For example, if

we consider the rectilinear motion of a time-varying point mass, then the relationship

between the position and the thrust has a time-varying NI property. Therefore, this

thesis aims to extend NI literature to account for those kind of systems.

1.4 Contributions

In line with the aforementioned aims and objectives of the thesis, together with the

shortcomings highlighted in the background of this thesis, the major contributions of

this thesis are in the areas of solution to the NI synthesis problem and analysis of

linear time-varying (LTV) NI systems.

In our first contribution, we provided a definition of α− SNI systems. We showed

that these are asymptotically stable NI systems with a prescribed decay rate dictated

by the variable α. We also showed the difference between these kind of systems with

the Strongly Strictly Negative Imaginary (SSNI) systems existing in the literature.

Furthermore, we used the α- SNI property for the synthesis of a dynamic output

feedback controller that renders the closed-loop system α− SNI. This ensures that

the poles of the closed-loop system are atleast on or to the left of −α in the left half

of the complex plane. As such, the variable α was used as a measure of improving

the performance of the closed-loop system, which in this case is the decay rate of the

closed-loop system.

Another major contribution of this thesis is in extending the NI literature to account

for a new class of systems called the LTV and Linear Parameter-Varying (LPV) NI

systems. We first provided an input-output time domain definition of LTV NI and

Output Strictly Negative Imaginary (OSNI) systems. We showed that both systems

are dissipative with respect to a supply rate which is dependent on the input and

derivative of the output of the system. This essentially is the power supplied to the

system as the input the force and the derivative of the output is velocity. We also
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provided a state-space characterization of both LTV NI and OSNI systems. The state-

space characterization helps to facilitate easy analysis and synthesis of this kind of

systems. We concluded the work on LTV NI systems by providing a stability result

for the positive feedback interconnection of an LTV NI system with and LTV OSNI

system.

In a similar flavour, we provided a state-space characterization LPV NI and LPV

OSNI systems. We also studied the conditions necessary to ensure the stability of an

unforced positive feedback interconnection of an LPV NI system with an LPV OSNI

system.

One of the main aim of this thesis is provide controller synthesis techniques that

are easy and intuitive. It is common knowledge that IMC are popular in the industry

due to their ease of design and robustness property. For any nominal stable, minimum

phase plant, designing a stable Youla parameter guarantees robust stability using the

IMC design technique. However, almost all systems have some level of uncertainty and

this nice property of robustness of the IMC controller does not extend to uncertain

plants.

Hence, in this thesis, we combined the IMC design principle with the NI theory

to extend the robustness property to account for uncertain NI systems. We provide a

DC gain condition that ensures that the Youla parameter is always stable for a certain

NI controller, thus robustly stabilizing a given NI system with a known DC gain. We

provide two methods of synthesizing a controller using the IMC-NI principles; one via

a frequency domain approach and the other using LMIs. We show that both methods

can facilitate nominal set-pointing tracking of a constant reference signal with only

knowledge of the DC gain of the system. Moreover, we also show that the different

synthesis techniques can be used to improve some other performance of the closed-loop

system such as damping.

The final contribution of the thesis is in the application of the NI-IMC based

controller to a hardware system for a vibration attenuation problem. First, we built

a test rig of a flexible structure system, which consisted of a cantilever beam with

collocated force actuator and position sensor. We also provided a model of the plant

via Matlab system identification toolbox. We considered the first two resonant modes

and consider the rest of the modes as unmodelled dynamics. We used the model to
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design a controller using LMI based technique of the NI-IMC synthesis procedure. We

successfully applied the designed controller on the flexible structure system to robustly

attenuate the vibration as the cantilever beam is subjected to external disturbances

and also remain robustly stable against the unmodelled dynamics.

1.5 Outline of the Thesis

The rest of the report will be organized as follows: Chapter 2 provides a comprehensive

literature review of the NI system theory. Chapter 3 provides the background infor-

mation required for a better understanding of the NI theory. In Chapter 4, α− SNI

systems are introduced. An LMI-based dynamic output feedback controller synthesis

technique using the α− SNI framework is also provided in this chapter. Chapter 5

introduces a new class of NI systems termed as LTV NI systems. The time domain

definition of the systems is provided and a state-space characterisation of the LTV NI

systems is developed. Stability result for the positive feedback interconnection of two

LTV NI systems is also established in this Chapter. The results are then specialised to

the LPV NI systems. In Chapter 6, an NI controller synthesis technique is introduced

using the IMC framework. Two different techniques are presented: one based on a

frequency domain approach and the other is an LMI-based approach. Chapter 7 deals

with the experimental validation of the IMC based controller synthesis introduced in

Chapter 6. Finally, the conclusions and future work are provided in Chapter 8.



Chapter 2

Literature Review

This chapter provides a comprehensive literature review of the NI theory. It introduces

the different definitions of NI systems, the different flavours of NI state-space charac-

terizations and robust stability results of the positive feedback interconnection of the

two NI systems.

We also provide a comprehensive explanation of the various solution of the NI

synthesis problem proposed in the literature thus far. This is due to the fact that the

NI synthesis problem is central to this thesis and hence, it is important to bring the

reader up to date with recent contributions to the solution of that problem and also

highlight the shortcomings that we try to address.

In the study of inertial systems, [15,16] realized that by considering lightly damped

structures with collocated position (and not velocity) sensor and force actuator, systems

with a different characteristics to those used in passivity and small-gain theorem were

obtained. Such systems were termed as NI systems. These are systems that have

negative imaginary frequency response for all positive frequency ω ∈ (0, ∞) [15]. In

the SISO case, this can be interpreted as the Nyquist plot lying on or below the real

axis of the complex plane. A typical plot of a system with the NI property is shown in

Fig. 2.1, where the Nyquist plot will lie in the red region. The characteristics exhibited

by the NI systems was similar to that observed in the SISO positive postion feedback

control systems in [1,2]. The NI systems may be nonminimum phase, improper and can

have relative degree of up to two and as such passivity theorem could not be applied

to them. Moreover, using small-gain theorem will lead to a conservative result [16, 31].

Due to the aforementioned reasons, [16,31] set out to provide a complete state-space

31
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Figure 2.1: Red region shows where the Nyquist plot of a SISO NI system lies.

representation of the NI systems and the conditions for the robust stability of such

systems. In a similar vein to the passivity and small-gain theorem, necessary and

sufficient conditions for the robust stability of a positive feedback interconnection of

NI systems was established. For robust stability of a positive feedback interconnection

of an NI system with a SNI system, under certain assumptions, a DC gain of less than

unity was required [16, 31]. The SNI systems are the class of NI systems that touch

the real axis only at zero and infinite frequencies.

Unlike passivity theorem, this was a conditional stability result. The robust stability

result of NI systems was obtained by exploiting the relationship between NI systems

and PR systems. Also, an NI lemma which was used as a litmus test to check whether

a transfer function matrix was NI was proposed [15,16]. However, the stability results

in [15,16] were established based on the assumption that the NI systems had no poles

either at the origin or on the imaginary axis. Also, a minimal state-space realization

was assumed.

[20] also proposed an NI lemma similar that of [15, 16] and an SNI lemma. A

pertubation technique was used for proposing the SNI lemma. Using the pertubation

technique, two different SNI lemmas were proposed. The pertubation technique was
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Examples of Nyquist plot of SISO NI systems (a) Simple first order system
1

s+1 ; (b) Loseless system 1
s2+1 ; (c) Double integrator 1

s2 ; (d) Higher order system
2s2+s+1.1

2s4+7s3+17s2+17s+5.9 ; (e) Nonminimum phase system 1−s
s+1 ; (f) Improper system −s.
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also utilized in showing that an Integral Resonant Controller (IRC) was an SNI system.

Moreover, the various proposed lemmas all invoked minimality of the state-space

representation.

In [25], the definition of NI systems was extended to include poles on the imaginary

axis but not at the origin. Necessary and sufficient conditions for systems to be NI

and SNI were also provided via an NI and SNI lemma. The SNI lemma was termed

as the Weakly Strict NI (WSNI) lemma as it was analogous to the Weakly Strict PR

(WSPR) lemma. The requirement for the DC gain to be less than unity for internal

stability was also shown to be valid for NI systems with poles on the imaginary axis.

Similar to [15,16], [25] also assumed a minimal state-space realization for the system.

An SSNI lemma was proposed in [21]. The lemma was termed as the SSNI lemma

because it was analogous to the Strongly Strict PR (SSPR) lemma. The minimality

assumption in [16,31] and [25] was relaxed in [21]. The property of reciprocal system

was exploited in the establishment of the SSNI lemma.Two SSNI lemmas were proposed.

The first lemma gave necessary and sufficient condition for a system to be SSNI under

the assumption that the system is observable. The other lemma was given under the

assumption that the system had no observable uncontrollable modes.

The definition of NI systems was extended in [74] to cover systems expressed

in descriptor form. This was due to the fact that many important systems were

expressed in descriptor form rather than the regular state-space representation. Using

the relationship between NI and PR systems and the notion of Weierstrass form

transformation, necessary and sufficient conditions for the descriptor systems to be NI

were established in [74].

[22, 34] further extended the class of NI systems to cover the lossless systems.

Necessary and sufficient conditions under which a system can be termed as lossless NI

were provided. They also established the fact that a DC gain of less than unity was

required for internal stability of a positive feedback interconnection of a lossless NI

and an SNI system.

Finite Frequency NI (FFNI) systems were introduced in [23,24]. These are systems

which have NI properties over certain frequency range in addition to being Lyapunov

stable. Using the relationship between Finite Frequency PR (FFPR) and FFNI systems,

an FFNI lemma was proposed. Moreover, necessary and sufficient conditions were
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established for a system to be FFNI under the proposed lemma. It was also shown

that as the limit frequency approached infinity, the FFNI lemma was equivalent to the

NI lemma that already existed in the literature.

A time domain interpretation of the FFNI lemma was also provided [23,24]. The

interpretation was given in terms of input, output and state of the system rather than

the state-space realization. The representation was given with a view of making it

easier to extend the lemma to nonlinear systems since nonlinear systems cannot be

represented in transfer function form.

In a similar approach to [21], [32] relaxed the minimality assumption and proposed

an NI lemma. This lemma also used the relationship between NI and PR systems.

Under the assumption that the feedthrough matrix is symmetric, the lemma stated

that a system was NI if a positive semidefinite matrix solution of a particular LMI

exist.

A method for identifying NI and SNI SISO and Multi Input Multi Output (MIMO)

systems was proposed by [40]. This method was based on the Hamiltonian matrix of

the transfer function matrix. For a SISO system, a minimal state-space realization was

adjudged to be NI if the Hamiltonian matrix had no eigenvalues of odd multiplicity

on the open negative real axis and the imaginary axis poles of the PR counterpart are

positive. For SISO SNI systems, it was established that the Hamiltonian matrix is

required to have all its eigenvalues in the open real axis and the state matrix should

be Hurwitz.

While for MIMO systems, a minimal state-space realization was deemed to be

NI if no pure imaginary eigenvalue of the Hamiltonian matrix is of odd multiplicity.

However, the MIMO system is SNI if the Hamiltonian matrix has no pure imaginary

axis eigenvalue except at the origin.

The first attempt in proposing stability results that apply to distributed-parameter

NI systems was addressed in [46,83]. In [46], sufficient conditions were provided for the

internal stability of a positive feedback interconnection of NI systems with poles on

the imaginary axis (but not the origin) and an SNI systems using Integral Quadratic

Constraint (IQC) approach. While in [83], necessary and sufficient conditions for

internal stability of an NI system with poles on the imaginary axis but not the origin

and an SNI system was established. The sufficiency part was proved by developing
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multiplier at zero and infinite frequency such that the IQC at those frequencies hold.

Unlike the previous results in the literature, the stability conditions established

in [46, 83] do not rely on the state-space matrices of the system. The result could

be applied to NI systems with non-rational transfer function such as time delay NI

systems.

A major extension to the definition of NI systems was given in [29, 39] to include

systems with free body dynamics (i.e. systems with poles at the origin). It was shown

that NI systems could have up to two poles at the origin. Necessary and sufficient

conditions for the internal stability of a positive feedback interconnection of an SNI

system and an NI system with pole(s) at the origin were also provided. These conditions

were mainly matrix sign definite conditions.

The focal point of establishing the stability conditions in [29, 39] in addition to

mathematical tools such as singular value decomposition and Schurs’ complement, was

the Laurent series expansion. The expansion made it possible to obtain the coefficients

that contain the information of the free body dynamics of interest.

With the work of [29,39] that allows for NI systems with poles at the origin, [41,75]

proposed a new generalized NI lemma. This lemma was based on the existence of a

positive semidefinite matrix solution to a given LMI condition. [41,75] also proposed

new NI and SNI lemmas in terms of Algebraic Riccati Equations (AREs).

A more general NI property for descriptor systems was addressed in [71]. An LMI

based approach with equality constraint was used to derive necessary and sufficient

conditions for descriptor systems to be NI via a state-space formulation. The LMI

conditions thus provided a more numerically efficient method for determining the NI

property of the descriptor systems compared to the work in [74]. Under some technical

assumptions, [71] proposed an NI, SNI and lossless NI lemmas. These lemmas were

shown to coincide with the NI, SNI and lossless NI lemmas that existed in the literature

when the descriptor system is reduced to standard state-space representation.

The first attempt to define NI systems to include systems with non rational transfer

function matrices was made in [35]. The authors considered symmetric transfer function

matrices. Using the concept of skew imaginary matrix, NI systems were defined in

terms of sign conditions in the domain of analyticity.

Using the definition presented in [35], NI systems were extended to cover a wide
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range of systems which included systems with pole at infinity, systems with negative

relative degree, systems with non-rational transfer function matrix and nonminimum

phase systems. All these systems were not captured by earlier definition of NI systems.

This new definition also included NI systems that already existed in the literature.

The dissipativity of the states of NI systems with respect to a particular supply

function was also established by [35]. Furthermore, a relationship between NI and PR

systems was also given based on the new definition.

Sequel to the result presented in [35], [47] used similar approach to provide a defi-

nition of symmetric SNI systems also via a sign condition in the domain of analyticity.

The definition captured a new class of SNI systems (i.e. SNI systems with non rational

transfer function) that were otherwise not captured by the existing definition in the

literature. [47] also provided a new definition for SSNI and WSNI systems.

Another important contribution by [47] was the introduction of a transformation

that transformed SSNI systems to SSPR systems. Subsequent to this work, it had

been widely believed that SSNI systems could only be transformed to PR systems

as reported in the NI literature. Finally, conditions under which NI, SNI or WSNI

properties are preserved for a feedback interconnection were also presented.

Since some NI transfer functions may not be symmetric, the definitions provided

in [35] and [47] may not be applicable to some NI systems. Therefore, [76] considered

a new class of NI systems that may also be non proper, non symmetric but rational.

However, [76] only gave sufficient conditions for the transfer function matrix to be NI.

The work was also restricted to NI systems and SNI systems were not addressed.

In view of the increasing importance of digital control in present day systems, [37]

provided a Discrete Time (DT) equivalence of the work in [35,47]. A DT definition for

non necessarily rational NI, SSNI and WSNI symmetric systems was provided. The

relationship between DT NI and DT PR systems was also presented.

Necessary and sufficient conditions for a DT symmetric, real, rational and proper

transfer function matrix to be NI were also given in [37]. Moreover, conditions under

which DT NI, SSNI and WSNI systems preserve their properties in a feedback intercon-

nection were also established. Furthermore, necessary and sufficient conditions for a

positive feedback interconnection of a DT NI system and a DT WSNI to be internally

stable was provided.



CHAPTER 2. LITERATURE REVIEW 38

[77] also provided a DT counter part of the work in [76]. However, unlike in the

Continuous Time (CT) framework, [77] focused on proper (and not non-proper) transfer

function matrix. A simple bilinear transformation was presented for transforming CT

NI systems to DT NI systems. A relationship between DT PR and DT NI systems was

also established. A DT NI lemma which provided necessary and sufficient conditions

to allow for the algebraic characterization of a linear DT system as NI was given.

Finally, stability condition for a positive feedback interconnection of DT NI and DT

SNI system was proposed.

With the extension of the definition of NI systems to include poles at the imaginary

axis and the origin, [57] revisited the conditions required for internal stability. [57]

sought to improve the necessary and sufficient condition established in [29,39] which

were deemed to be complicated and difficult to ascertain while at the same time relaxing

some gain assumptions imposed in [15,16].

Necessary and sufficient conditions for internal stability of NI systems with poles

on the imaginary axis but not at the origin were first derived. The assumptions of the

NI and SNI system gain at infinity imposed in [16, 31] were relaxed in deriving the

conditions. Two different necessary and sufficient conditions were established. These

conditions were shown to reduce to the stability results established in [16, 31] when

the same assumptions were imposed. The result was also specialized to SISO systems

resulting in a more simpler necessary and sufficient conditions.

In the second part of the work by [57], the internal stability of NI systems with

poles at the origin was addressed. Robust stability conditions were derived using a

linear shift transformation and the existence of a certain negative definite matrix. The

conditions derived in [57] were shown to be the same as those established in [29, 39]

when the NI system is considered to be strictly proper as assumed in the latter. The

stability conditions were also shown to correspond to the conditions established in the

first part of the work when the NI system does not have a pole at the origin.

Finally, since the necessary and sufficient conditions established in [57] depended on

the existence of a particular negative definite matrix, a definitive method of obtaining

such a matrix was established and it was also shown that such a matrix need not to

be unique.

As earlier stated, in addition to robust stability, control systems should also have
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good performance. For this reason, [30] addressed the issue of robust performance of NI

systems. This was done by transforming the NI systems to BR systems via PR systems.

In the robust performance analysis, a fictional BR uncertainty was introduced. The

fictional uncertainty transformed the robust performance problem to a robust stability

problem. Hence, the problem became that of ensuring the internal stability of a closed-

loop system in the presence of a mixed SNI and Strictly BR (SBR) uncertainty. With

the problem being in the standard structured singular value framework, a quantifiable

value for the performance could be obtained.

[30] also established necessary and sufficient condition for a system with mixed

NI and BR uncertainty to be internally stable under the assumption that the nominal

system was stabilizable and detectable.

In some cases, practical systems may not have pure NI or SNI property but rather a

mixture of properties. For example, the same system may have NI property at certain

frequency range and PR or BR property at other frequency range.Thus, [28] addressed

the issue of systems with mixed NI and small-gain property.

This was done by exploiting the dissipative property of the system with respect to

three frequency dependent triplets. Three different frequency regions were identified

viz: NI frequency region, BR frequency region and NI plus BR frequency region. A

frequency dependent flag was used in identifying the region which the system was

in at any particular time. Using the frequency dependent triplets and the frequency

flag, [28] established necessary and sufficient conditions for the internal stability of a

positive feedback interconnection of a system with mixed NI and BR property and

an SNI system. It was shown in [28] that the established internal stability conditions

captured a larger class of NI systems as compared to the class in [15,16].

As with other similar robust stability theorems (such as passivity and small-gain),

efforts have also been made in controller synthesis for NI systems due to the importance

of these systems in practical applications. The first effort in controller synthesis for NI

systems was presented in [31,33].

Owing to the fact that robust H∞ controller synthesis methods for BR systems was

well documented in the literature, [31,33] transformed NI systems to BR systems such

that H∞ techniques could be applied to the transformed system. The transformation

of the NI systems to BR systems was via PR systems. Hence, [31, 33] showed that for
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a generalized plant that is both stabilizable and detectable, the problem of obtaining

a controller that internally stabilizes the plant and makes the closed-loop system

NI is akin to the problem of obtaining a controller that internally stabilizes another

generalized plant (obtained via transforming the original generalized plant) while at

the same time making its’ input-output map contractive.

But since the transformation used in [31, 33] from NI to BR systems was via PR

systems, a blocking zero at zero was introduced to the transformed system. For this

reason, SNI systems could not be transformed to SPR or SBR systems. Therefore, a

definitive controller synthesis technique was not given in [31,33].

Having established that IRC was an SNI system, [20] synthesized an IRC controller

to robustly stabilize an NI plant which was a flexible structure with collocated force

actuator and position sensor. A static state feedback controller was also synthesized

in [20]. The static feedback controller was designed such that the closed-loop system

was NI and had a DC gain of less than unity. The uncertainty of the system was

assumed to be SNI which ensured the satisfaction of the DC loop gain condition

thereby resulting in a robustly stable closed-loop system.

A static state feedback controller based on LMI formulation was developed in [32].

It was assumed that all the states of the system were available for the controller design

and that the uncertainty of the system was SNI. The controller was also synthesized

to ensure that the DC gain of the system was less than unity which was a necessary

and sufficient condition for robust internal stability.

Another static state feedback controller was synthesized in [41]. A Riccati-based

approach was employed for the synthesis. Schur decomposition was used to transform

the original plant and the controller synthesis reduced to solving two Lyapunov equa-

tions. However, this synthesis method always results in a Lyapunov stable closed-loop

system.

On the other hand, [66] tackled the problem of both output and state feedback

controller synthesis. Three different NI controller synthesis methods were presented.

The first two methods were output feedback, where a static and a dynamic output

feedback controllers were designed which rendered the closed-loop system NI. The third

method was an observer based state feedback controller.

In the obsever based controller synthesis method, the seperation principle was
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shown to still hold when the plant input is available for the observer design. This led

to a more easier controller design process. Furthermore, an algorithm for calculating

the gain (for static output feedback controller) or the controller matrices (for dynamic

output feedback controller) was also developed. Also, [66] showed that it was possible

to impose a structural constraint on the developed controllers by taking advantage of

the structures of these controllers.

Sufficient conditions for the solution of SNI synthesis problem was proposed in

[79, 81]. Both static state and dynamic output feedback synthesis problems were

addressed. The synthesis was based on the solution of ARE. For the static state

feedback, it was shown that a gain which renders the closed-loop system NI exist if

the solution of an ARE exist. This gain can further ensure that the closed-loop system

is SNI and asymptotically stable if some eigenvalue and singularity conditions are

fulfilled. A similar approach to the static state synthesis was utilized for the synthesis

of the dynamic output feedback controller but under some more restrictive assumptions.

Here, also, the closed-loop system is strengthened from NI to SNI if certain conditions

are fulfilled.

An SNI full state static feedback control synthesis technique was proposed by [70].

Necessary and sufficient conditions were provided for the SNI synthesis problem using

a Lyapunov based design approach as opposed to ARE used in [79,81]. Under certain

assumptions, [70] was able to prove that the synthesized closed-loop system was SNI

and had a prescribed degree of stability dictated by a certain pertubation constant.

The problem of dynamic output feedback synthesis that transforms the closed-loop

system to an SSNI system was addressed in [58]. The synthesis technique was based

on the LMI framework introduced in [73]. The synthesized controller achieves robust

stability against NI/SNI uncertainty via the DC gain condition of the NI theory. It

was also shown that other performance objectives such as H2 and H∞ performance

could be readily incorporated into the design via the multi-objective LMI formulation.

Finally, [58] showed that the synthesized controller can still maintain some level of

robust H∞ performance in the presence of NI/SNI uncertainty.

In [82], an SNI controller synthesis technique with H∞ performance was proposed.

This was achieved by first synthesizing an H∞ controller before subsequently designing

the SNI controller by minimizing the distance between the H∞ controller and the SNI
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controller, with the SNI conditions being imposed as LMI constraints. Robust stability

to NI uncertainties was achieved by imposing an LMI DC gain constraint that satisfies

the DC gain condition of the NI theory for internal stability of an NI-SNI positive

feedback interconnection.

The work in [31,33] did not provide a systematic approach to design the NI controller

while synthesis methods such as those proposed in [20, 32, 41, 66, 70, 79, 81] use static

state feedback design which may not be feasible when all the states are not available for

measurement. Moreover, even in cases where the states are available for measurement,

the sensors used for measuring that states might be very expensive.

The dynamic output feedback synthesis proposed in [79, 81] uses ARE which is

difficult to solve. Both the static and dynamic output feedback synthesis technique

in [66] do not address the issue of output performance of the closed-loop system. Al-

though [64] addressed the issue of performance, the dynamic output feedback synthesis

technique proposed uses a transformation from PR to NI which does not hold for the

strict case.

Due to these shortcomings, the work in Chapter 4 aims to provide a dynamic output

feedback synthesis via an LMI-based technique with a method of improving the time

domain performance of the closed-loop system using a particular constant to define

the minimum decay rate of the closed-loop system.

There are some systems such as a flexible structure system with time-varying mass

and a collocated force actuator and position sensor, which give rise to a class of NI

system referred to as LTV NI systems. This class of systems has not been addressed

in the literature so far and are studied in Chapter 5.

Recent work in [58] that proposed a multi-objective dynamic output feedback

synthesis may result in difficulties when fitting the framework to practical systems.

On the other hand, for the synthesis technique proposed in [82], there is no guarantee

that the NI controller synthesized using that approach will retain the properties of

the corresponding H∞ controller by just minimising the distance between the two

controllers. Hence, Chapter 6 provides a controller synthesis method using LMI, that

can easily be fitted to practical systems and provides guidelines on how to design the

controller and tune it for a better output performance of the closed-loop system.

Since its’ inception, the NI system theory has received quite a lot of attention and



CHAPTER 2. LITERATURE REVIEW 43

within few years, substantial amount of literature can be found on the topic. However,

it has also been shown to have quite a lot of practical applications.

An IRC was designed to damp the first five mode of a guitar string in [38]. The

process involved stretching and fixing the string at both ends before placing it in a

magnetic field. An electric current was then supplied to the string which caused it to

vibrate. By using a collocated force actuator and displacement sensor, the dynamics

of the system was found to satisfy the NI property. Hence, IRC was designed to damp

the resonant modes while ensuring robust stability. Experimental setup was used to

confirm the validity of the control system.

NI theory has also been used in consensus control of networked systems. The work

in [49] explored the conditions under which consensus of networked NI systems is

achieved in the presence of NI uncertainty and L2 disturbance. The work focused on

output feedback consensus as opposed to state feedback which was usually considered

in the literature. The authors in [49] were also able to show that a single agent system

has more robustness compared to networked systems. Finally, the convergence of some

commonly occuring NI systems was shown to depend on the initial pattern for zero

initial conditions of the controller.

The work in [48] also focused on consensus control but of heterogeneous NI systems.

However in this approach, unlike in [49], the incidence matrix and not the laplacian

matrix was used in deriving the feedback control law. This was done to preserve

the NI property of the networked systems. Both L2 external disturbance and NI

uncertainty were also considered. Necessary and sufficient conditions for robust output

feedback consensus were first derived for networked NI systems without poles at the

origin. Afterwards, the robust output feedback consensus problem for strictly proper

networked NI systems with poles at the origin was addressed.

The underlying dynamics of a 3-mirror optical cavity system was found to be NI.

The authors in [42] therefore designed an IRC to improve the damping of the piezo-

electric transducer. Internal stability was ensured by making the DC gain of the optical

cavity system and the controller to be less than unity.

Nanopositioning systems [40, 41] are another area where NI theory was applied.

In [40], the developed spectral methods for checking the NI and SNI property of

a system was applied to two different nanopositioning systems. The first was the
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cantilever beam while the second was an atomic force microscope. In [41], a state

feedback controller was designed for an atomic force microscope to make the closed-

loop system with respect to the lateral position NI.

The control of a DC machine with parametric uncertainty was addressed in [27].

Robust stability conditions for SISO NI systems with parametric uncertainty was

first developed. Robust stability conditions via structured singular value were also

established. Finally, a static proportional controller was designed for the DC machine

with zero order parametric uncertainty that ensured the robust stability conditions

developed were satisfied.

As stated already, the synthesis technique developed in Chapter 6 was with a view

to ease application on practical systems, in addition to achieving robust stability and

improved performance. In terms of vibration attenuation problem using NI theory,

most of the work designed an IRC to achieve damping of the resonant modes [36,38,55].

However, in cases like [36,38], there was no explanation on how to design the parameters

of the IRC controller. Also, in [55], the parameters of the IRC controller were obtained

using a nonlinear optimisation technique and the controller performance was dependent

on the initial guess of the parameters. But it is common knowledge that nonlinear

optimisation is difficult to solve and does not have a closed-form solution. Thus, the

controller synthesis technique introduced in Chapter 6, which is based on the solutions

of LMIs [that can easily be solved by SDP solvers], is used to design an NI controller

for a cantilever beam hardware to attenuate the vibration of the flexible structure in

Chapter 7.



Chapter 3

Preliminaries

This section gives a primer on all the technical tools needed to understand the sub-

sequent chapters in this thesis. This is essential as it provides the reader with the

background knowledge needed to have a clear understanding of the technical contribu-

tions of the thesis.

This chapter starts by introducing basic linear algebra information used in such as

different properties types and characteristics of matrices. It also provides some matrix

manipulation tools such as Schur complement. The knowledge of linear algebra is

extensively used in the thesis for both analysis of stability and synthesis of NI systems.

The chapter also provides information on linear dynamical systems. This include

information such as the various representation of state-space LTI NI systems, the

transpose and inverse of a dynamic system, internal stability of a positive feedback

interconnection of linear LTI systems and some tools used for the analysis of LTV

systems such as Barbalat’s lemma. The knowledge of linear dynamical systems and

that of linear algebra is used extensively in proving the main results of this thesis.

Finally, the chapter provides some of the major results in the field of NI systems

theory. This include the definition of NI systems and it’s subsets, the NI lemmas and

their different flavours, together with the NI stability theory. This information provides

the cornerstone on which the thesis is built upon on. As such a clear understanding of

it is imperative to have a clear picture of the thesis.

45
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3.1 Linear Algebra

3.1.1 Eigenvalue and Eigenvector of a Matrix

Eigenvalues and eigenvectors are very important in linear algebra as they give a lot of

information of a particular matrix. They are used in a number of application such as

linear transformations, stability analysis, matrix diagonalization, vibration analysis to

mention but a few.

Definition 1. [89] A nonzero vector x ∈ Cn is referred to the right eigenvector of

M ∈ Cn×n if there exist a scalar λ ∈ C, called an eigenvalue, such that Mx = λx. The

pair λ and x are called the eigenpair of M .

Similarly, a nonzero vector y ∈ Cn is a left eigenvector corresponding to an eigen-

value β if y∗M = βy∗.

3.1.2 Positive Definite and Semidefinite Matrix

The concept of positive definite and semidefinite matrix is widely used in control theory

most especially in stability analysis. It also plays an important role in NI system theory

for state-space characterization and stability analysis.

Definition 2. [85] A matrix A ∈ Cn×n is Hermitian if it is equal to its complex

conjugate transpose, that is A = A∗; it is skew Hermitian if A = −A∗. If A is a real

matrix satisfying the Hermitian property, it is called a symmetric matrix (A = AT ).

Definition 3. [88] A square Hermitian matrix X = X∗ is said to be positive

(semi)definite, denoted by X(≥ 0) > 0, if x∗Xx(≥ 0) > 0 ∀x ̸= 0.

3.1.3 Singular Value and Singular Value Decomposition of a

Matrix

The singular value of any matrix always exist as oppose to the eigenvalues which only

exist for square matrices. The singular value of a matrix A can simply be defined as

the squre root of A∗A or AA∗.

The singular value decomposition is an important tool in matrix analysis. This

helps to give an intuitive insight into the size of a matrix via the singular values and
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the strength of the input or ouput direction via the singular vectors [88].

Theorem 1. [88] Let X ∈ Fm×n. There exist unitary matrices

U = [u1, u2, ..., um] ∈ Fm×m

V = [v1, v2, ...vn] ∈ Fn×n

such that

X = UΣV ∗, Σ =
(

Σ1 0
0 0

)
where

Σ1 =



σ1 0 · · · 0

0 σ2 · · · 0
... ... . . . ...

0 0 · · · σi


and

σ1 ≥ σ2 ≥ · · · ≥ σi, i = min{m, n}.

3.1.4 Absolute Continuity

Absolute continuity (AC) helps in establishing the relationship between differentiation

and integration. It is a more stringent condition than continuity and ensures that the

derivative of a function is defined almost everywhere and the derivative is Lebesgue

integrable.

Definition 4. [4] Let f be a real-valued function defined on [α, β]. Then f is absolutely

continuous on [α, β] if for a given ϵ > 0, ∃ δ > 0 such that

n∑
i=1

|f(x′
i) − f(xi)| < ϵ

for every finite collection {(xi, x′
i)} of non-overlapping intervals with

n∑
i=1

|x′
i − xi| < δ.
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3.1.5 Schur Complement

The Schur complement provides an important tool for matrix inversion as well as for

the determining the positive definiteness of a symmetric matrix. These important

features of the Schur complement are highlighted by the following lemma

Lemma 1. [91] For any symmetric matrix X of the form

X =

 A B

BT C

,

if A is invertible then the following properties hold:

1. X > 0 if and only if A > 0 and C − BT A−1B > 0

2. If A > 0, then X ≥ 0 if and only if C − BT A−1B ≥ 0

3.1.6 Kernel, Image and Rank of a Matrix

Definition 5. [88] Let M ∈ Fn×n be a linear transformation from Fn to Fm, i.e.,

M : Fn −→ Fm.

Then

• The kernel or null space of M is defined by

Ker (M) = N (M) := {x ∈ Fn : Mx = 0}

• The image or range of M is given by

Im (M) = R (M) := {y ∈ Fm : y = Mx, x ∈ Fn}

• The rank of the matrix is the defined as the maximum number of the independent

row or columns of the matrix. The rank is given by

rank (M) = dim(Im(M))
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3.1.7 Class K Function

We introduce the class K comparison function which helps in the stability analysis of

nonautonomous systems.

Definition 6. [45] Let σ : [ 0, r ) → [ 0, ∞ ) be a continuous function with r > 0.

Then σ is of class K if it is strictly increasing and σ(0) = 0. If r = ∞, then the

function belongs to class K∞.

3.2 Linear Dynamical Systems

This section will give a brief overview of some basic but important theory of Linear

Time-Invariant (LTI) systems. This theoretical background will be paramount in

having a clear and good understanding of NI systems theory and analysis presented in

subsequent chapters.

3.2.1 Linear Dynamical Systems Representation

Consider the LTI system given by the equations:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

where x(t) ∈ Rn is called the state of the system, u(t) ∈ Rm is referred to as the system

input and y(t) ∈ Rp is called the system output. The matrix A ∈ Rn×n is called the

state matrix. Its eigenvalues represent the poles of the system. B ∈ Rn×m is referred

to as input to state matrix, C ∈ Rm×n is the state to output matrix while D ∈ Rm×m

represent the feedthrough matrix. The matrices A,B,C,D are real constant matrices.

A system is referred to as a SISO system if m = 1 and p = 1. On the other hand, a

system which has multiple input (m > 1) and multiple output (p > 1) is called MIMO

system.

The state-space representation of the LTI system can also be expressed as:

 A B

C D

 = C(sI − A)−1B + D = G(s)
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Some important operations on the transfer matrix G(s) are given by the following

definitions

Definition 7. [88] The transpose of a transfer function matrix G(s) is given by

GT (s) = B∗(sI − A)−∗C∗ + D∗ =

 A∗ C∗

B∗ D∗


Definition 8. [88] The inverse of a transfer function matrix G(s) is defined by

G−1(s) =

 A − BD−1C −BD−1

D−1C D−1


Definition 9. [97]

A state-space realization

 A B

C D

 is said to be minimal if and only if it is control-

lable and observable.

3.2.2 Internal Stability

Consider the positive feedback interconnection shown in Fig. 3.1 below. The system

is said to be internally stable if for any energy bounded input signals (w1, w2), the

output signals (e1, e2) are also energy bounded.

Lemma 2. [88] The system in Fig.3.1 is internally stable if and only if the transfer

function matrix

 I −M(s)

−∆(s) I


−1

=

M(s)(I − ∆(s)M(s))−1∆(s) M(s)(I − ∆(s)M(s))−1

(I − ∆(s)M(s))−1∆(s) (I − ∆(s)M(s))−1


from (w1, w2) to (e1, e2) belongs to RH∞.

It should be noted that this internal stability result is a necessary and sufficient

stability result i.e. it is an "if and only if" condition.
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Figure 3.1: Positive Feedback Interconnection

3.2.3 Linear Fractional Transformation

Linear Fractional Transformation (LFT) play an important role in control theory by

providing a unifying framework for many concepts and also helps in generalizing transfer

functions and their corresponding state-space formulation to include uncertainty [84].

Definition 10. [84,88] Given a complex matrix M partitioned as M =
(

M11 M12
M21 M22

)
∈

C(p1+p2)+(q1+q2), and let ∆l ∈ Cq2×p2 and ∆u ∈ Cq1×p1 be two other complex matrices.

Then we can formally define a lower LFT with respect to ∆l as the map

Fl(M, •) : Cq2×p2 7→ Cp1×q1

with

Fl(M, •) = M11 + M12∆l(I − M22∆l)−1M21

provided that the inverse (I − M22∆l)−1 exists.

In a similar way, the upper LFT with respect to ∆u is defined as

Fu(M, •) : Cq1×p1 7→ Cp2×q2

with

Fu(M, ∆u) = M22 + M21∆u(I − M11∆u)−1M12

provided that the inverse of (I − M11∆u)−1 exists.
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3.2.4 Nonlinear Systems Analysis

An important lemma in the analysis of the stability of nonlinear and time-varying

systems is the Barbalat’s lemma. The lemma helps in proving the smoothness of the

derivative of a function when the function is bounded.

Lemma 3. [86] Let f(t) be a differentiable function with a finite limit as t → ∞.

Then ḟ(t) → 0 as t → ∞ if ḟ is uniformly continuous.

Barbalat’s lemma provides a Lyapunov-like tool that can be used in the analysis

of nonautonomous dynamic systems. This is shown in the following lemma

Lemma 4. [86] If a scalar function V (x, t) satisfies the following conditions

• V (x, t) is lower bounded

• V̇ (x, t) is negative semi-definite

• V̇ (x, t) is uniformly continuous in time

then V̇ (x, t) → 0 as t → ∞.

The next theorem is used to establish the boundedness of the trajectories of a

nonautonomous systems.

Theorem 2. [45] Let ẋ = f(t, x) with f : [0, ∞) × D → Rn, where D ⊂ Rn is a

domain containing x = 0. Suppose

• f(x, t) is piecewise continuous in t and locally Lipschitz x on [0, ∞) × D.

• f(t, 0) is uniformly bounded for all t ≥ 0

Let V : [0, ∞) × D → R be a continuously differentiable function such that

Γ1(x) ≤ V (t, x) ≤ Γ2(x)

V̇ (t, x) = ∂V

∂t
+ ∂V

∂x
≤ −Γ(x)

∀ t ≥ 0, ∀ x ∈ D, where Γ1(x) and Γ2(x) are continuous positive definite functions

and Γ(x) is a continuous positive semidefinite function on D. Let r > 0 be such
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that Br ⊂ D and let ρ < min∥x∥=r Γ1(x). Then, all solutions of ẋ = f(t, x) with

x(t0) ∈ {x ∈ Br | Γ2(x) ≤ ρ} are bounded and satisfy

Γ(x(t)) → 0 as t → ∞.

Furthermore, if all the assumptions hold globally and Γ1(x) is radially unbounded, the

statement is true for all x(t0) ∈ Rn.

The definition of Zero State Detectability (ZSD) is used in establishing the asymp-

totic stability of nonlinear systems

Definition 11. [10] Consider a nonlinear system given by

Σ :


ẋ(t) = f(x) + G(x)u, x(0) = x0;

y(t) = h(x) + J(x)u,
(3.1)

with x ∈ Rn, y ∈ Rm and u ∈ Rm, where the input is assumed to be locally square

integrable. Let f : Rn → Rn, G : Rn → Rn×m, h : Rn → Rm and J : Rn → Rm×m be

smooth functions with f(0) = 0 and h(0) = 0.

The nonlinear system (3.1) is said to be locally ZSD if for any trajectory x(t) ∈ D

such that u(t) = 0, h(x(t)) = 0 implies lim
t→+∞

x(t) → 0, where D is the neighbourhood

of 0. If D = Rn, then the system is ZSD.

3.2.5 Minimality of Linear Time-Varying Systems

Here, we define the controllability and observability of a LTV systems.

Definition 12. [87] Let (A(t), B(t), C(t)) be the state-space realization of a time-

varying system with dim (A) = n×n. The realization is said to be uniformly controllable

if the controllability matrix

C = [p0, p1, · · · , pn−1] ;

pk+1 = −A(t)pk + ṗk; p0 = B(t),

is non-singular ∀ t.

Similarly, via duality, the state-space realization is said to be uniformly observable

if the observability matrix

O = [q0, q1, · · · , qn−1] ;

qk+1 = −AT (t)qk + q̇k; q0 = CT (t),
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is non-singular ∀ t.

3.2.6 Affine Quadratic Stability

We first present the condition of a multiconvex function to be negative in a hyper-

rectangular box and then use that result to provide conditions for Affine Quadratic

Stability (AQS) of a linear parameter dependent system.

Consider a class of finite-dimensional, square, LPV dynamical systems described

by

ΣLP V :


ẋ(t) = A(ρ)x(t) + B(ρ)u(t) x(0) = x0,

y(t) = Cx(t)
(3.2)

where A(ρ), B(ρ) depend affinely on the uncertain (possibly time-varying) parameter

vector ρ = [ρ1, ρ2, · · · , ρK ] ∈ RK , that is, A(ρ) = A0 + ρ1A1 + · · · + ρKAK and

B(ρ) = B0 + ρ1B1 + · · · + ρKBK . Below, we mention two technical assumptions that

must be satisfied by the LPV NI systems studied here:

A1. Each parameter ρi varies in the known interval [ρi,min, ρi,max] for all i ∈ {1, 2, · · · , K}.

This implies that the parameter vector ρ ∈ RK is valued in a hyper-rectangle

with the set of vertices V = {(v1, · · · , vK) : vi ∈ {ρi,min, ρi,max} ∀i}.

A2. The rate of variation ρ̇i is well defined for all t ∈ R≥0 and ρ̇i ∈ [γi,min, γi,max]

where the range γi,min ≤ 0 ≤ γi,max is known for all i ∈ {1, · · · , K}. This implies

that the vector ρ̇ ∈ RK varies within a hyper-rectangle having the set of vertices

C = {(e1, · · · , ek) : ei ∈ {γi,min, γi,max} ∀i}.

Lemma 5. [11] Let f(ρ1, · · · , ρK) = σ0 + ∑
i σiρi + ∑

i<j θijρiρj + ∑
i αiρ

2
i be a scalar

quadratic, multiconvex function of ρ ∈ RK such that

2αi = ∂2f

∂ρ2
i

(ρ) ≥ 0 ∀i = 1, · · · , K.

Then f(·) will be negative in the parameter box of Assumption A1 if and only if it has

negative values at the vertices of the parameter box.

Next, we use Lemma 5 to provide a definition of AQS. AQS is a less conservative

result than the quadratic stability because AQS uses the variation in the rate of change

of the parameter to reduce conservatism [11].
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Theorem 3. [11] Consider the LPV dynamical system given by 3.2 and satisfying

assumptions A1 and A2. Also, let ρmean =
(

ρ1+ρ1
2 , · · · ,

ρ
K

+ρK

2

)
be the average value

of the parameter vector. Then the system is said to be AQS if A(ρmean) is stable and

there exist K + 1 symmetric matrices P0, · · · , PK with P (ρ) = P0 + ρ1P1 + · · · + ρKPK

satisfying

Γ(v, e) = P (v)A(v) + A(v)T P (v) + P (e) − P0 < 0 ∀(v, e) ∈ V × C (3.3a)

PiAi + AT
i Pi ≥ 0 fori = 1, · · · , K. (3.3b)

If 3.3a-3.3b are satisfied, then a Lyapunov function for the system given in 3.2 with

trajectories ρ(t)satisfying Assumptions A1 and A2 is given by V (x, ρ) = xT P (ρ)x.

3.3 Negative Imaginary Systems

Here, we provide a background knowledge of NI and SNI systems and the internal

stability results that exist in the literature. The background knowledge is imperative

in understanding the theoretical developments reported in this thesis. Moreover, these

technical results will be extensively used in proving the main results presented in this

thesis.

Definition 13. [76] A square real rational transfer function matrix G(s) is NI if

1. G(s) has no poles in ℜ[s] > 0

2. j[G(jω) − G(jω)∗] ≥ 0 for all ω ∈ (0, ∞) such that jω is not a pole of G(s)

3. If jω0, ω0 ∈ (0, ∞), is a pole of G(s), it is at most a simple pole, and the residue

matrix K0 = lims→jω0 jG(s) is positive semidefinite and Hermitian

4. If s = 0 is a pole of G(s), then lims→0 skG(s) = 0 for all k ≥ 3 and lims→0 skG(s)

is positive semidefinite and Hermitian

5. If s = j∞ is a pole of G(s), then limω→∞
G(jω)
(jω)2 is negative semidefinite Hermitian,

and limω→∞
G(jω)
(jω)k = 0 for all k ≥ 3

Condition 1 of Definition 13 means that NI systems cannot be unstable systems as

they do not have poles on the open right half of the complex plane. Hence, NI systems
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are at least Lyapunov stable. The restriction of the Nyquist plot of NI systems to lie

on or below the real axis of the complex plane is imposed by the second condition of

Definition 13.

The following lemma, referred to as the NI lemma, provides a state-space charac-

terisation for NI systems without poles at the origin.

Lemma 6. (NI Lemma) [25] Let G(s) be the real, rational and proper transfer

function matrix of a finite-dimensional, square and causal system G having a minimal

state-space realization

 A B

C D

. Then, G(s) is NI without poles at the origin if and

only if det(A) ̸= 0, D = D⊤ and there exists a real matrix Y = Y ⊤ > 0 such that

AY + Y A⊤ ≤ 0 and B + AY C⊤ = 0. (3.4)

From Lemma 6, it is clear that the NI systems we consider in this thesis are

allowed to have poles on the imaginary axis, but not at the origin. Hence, that is why

AY + Y A⊤ ≤ 0 has a non-strict inequality condition. In general, there are systems

with poles on the origin that do satisfy the NI property. For example, both a single

and double integrator are NI systems. The next lemma is also an NI lemma but allows

for NI systems to have poles on origin whilst imposing minimality assumption.

Lemma 7. [41,75] Let

 A B

C D

 be the minimal state-space realization of the transfer

funtion matrix G(s) with A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n and D ∈ Rm×m. Then

G(s) is NI if and only if D = DT and there exist matrices P = P T ≥ 0, W ∈ Rm×m,

and L ∈ Rm×n such that the following LMI is satisfied:

 PA + AT P PB − AT CT

BT P − CA −(CB + BT CT )

 =

 −LT L −LT W

−W T L −W T W

 ≤ 0.

We also define a subset of the NI systems, called the SNI systems as follows.

Definition 14. (SNI system) [15] A square, real, rational, proper transfer function

matrix N(s) is said to be SNI if

1. N(s) has no poles in ℜ{s} ≥ 0;
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2. j[N(jω) − N(jω)∗] > 0 for all ω ∈ (0, ∞).

SSNI systems form a strict subset within the SNI class that satisfy two additional

frequency-domain criteria in the neighbourhood of ω = 0 and ω = ∞.

Definition 15. (SSNI System) [21] Let G(s) be the real, rational and proper transfer

function matrix of a finite-dimensional, square, causal system G. Then, G(s) is said

to be SSNI if

• G(s) is SNI;

• lim
ω→∞

jω [G(jω) − G(jω)∗] > 0;

• lim
ω→0

j
1
ω

[G(jω) − G(jω)∗] > 0.

Below, we present a slightly modified version of the SSNI lemma [21] by exploiting

[59, Lemma 2].

Lemma 8. (SSNI Lemma) [21, 59] Let G(s) ∈ RHm×m
∞ be the real, rational and

proper transfer function matrix of a finite-dimensional, square and causal system G,

having a state-space realization

 A B

C D

. Suppose rank[B] = rank[C] = m and the

pair (A, C) is observable. Then, G(s) is SSNI if and only if D = D⊤ and there exists

a real matrix Y = Y ⊤ > 0 such that AY + Y A⊤ < 0 and B + AY C⊤ = 0.

It is also worth pointing out here that since AY + Y A⊤ < 0, with Y > 0, SSNI

systems are asymptotically stable systems without any poles on the imaginary axis.

We now recall the internal stability condition for a stable NI system interconnected

with an SNI system via positive feedback.

Theorem 4. [15,57] Let G(s) be a stable NI system and H(s) be an SNI system. Let

either G(∞) = 0, or else G(∞)H(∞) = 0 and H(∞) ≥ 0. Then, the positive feedback

interconnection of G(s) and H(s), shown in Fig. 3.2, is internally stable if and only if

λmax[H(0)G(0)] < 1.

Thus, the stability result is a necessary and sufficient type of result. Theorem 4

forms the cornerstone of the whole NI theory. Therefore, it is the theorem upon which

most of the work in this thesis is centred around. The robust stability achieved by the
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Figure 3.2: A positive feedback interconnection of NI systems.

different synthesis methods presented in this thesis is achieved by satisfying the DC

gain condition of the NI stability result.

As discussed already in Section 1.1, the NI stability theory is conditional stability

result, unlike the passivity theorem. However, it does include some important systems

which are not covered by passivity theorem. For example, nonlinear systems can be

feedback linearized to double integrator, which is NI but not passive.

Also, the NI stability result is not an absolute value type of result and impose

restriction on only one frequency unlike the small-gain theorem.

The NI stability result was extended in [57, Theorem 9] to remove the restrictions

on the gain at infinity.

3.4 Summary

The chapter started by introducing some matrix properties such as eigenvalues and

eigenvector, (semi)positive and (semi)negative definiteness, together with some matrix

manipulation tools such as Schur’s complement. These will enable the reader to have

a good grasp of the technical chapters in this thesis as they are used in both analysis

and synthesis of NI systems.

The chapter also presented some key information on LTI systems. We introduced

state-space representation of LTI systems, together with some of its common operations

such as the transpose, inverse and conjugate of a state-space representation. Also, we

presented the necessary and sufficient condition required for the internal stability of

an LTI system.

Furthermore, we introduced some nonlinear system analysis tools such as Barbalat’s
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lemma, ZSD and the result required for the asymptotic stability non-autonomous

nonlinear systems. The chapter also presented the minimality conditions for LTV

systems, results that ensure the negativeness of a multiconvex function and AQS

conditions. All these play an important role in our analysis of LTV and LPV NI

systems reported in this thesis.

Finally, we highlighted some of the main results in the NI system theory. First, we

provided a definition for NI, SNI and SSNI systems. We also provided the state-space

characterization of NI and SSNI systems which are termed as the NI and SSNI Lemma

respectively. In the final part of the chapter, we introduced the internal stability result

for the positive feedback interconnection of two NI systems. This stability result is the

cornerstone of the whole NI systems theory and hence, forms an essential part of the

results presented in this thesis.



Chapter 4

α− SNI and Output Feedback

Controller Synthesis

All the materials presented in this chapter were published in [59].

4.1 Introduction

In this chapter, we address the NI synthesis problem in which the aim is to synthesis

a dynamic output feedback controller that renders the closed-loop system NI. In this

case, the plant or the controller itself need not be NI, but the closed-loop system and

the uncertainty should both possess the NI property.

Therefore, the problem we address in this chapter is: how do we synthesize a

dynamic output feedback controller which renders the closed-loop system α− SNI and

at the same time is robustly stable to all class of NI uncertainties satisfying a particular

DC gain condition. The variable α dictates the decay rate of the closed-loop NI system

and is used as a measure of the performance of the closed-loop system.

Hence, unless otherwise stated, NI synthesis in this chapter refers to the problem

of synthesizing a controller which renders the closed-loop system NI.

There are a number of research work dedicated towards the problem of NI controller

synthesis which renders the closed-loop system to be NI. For example, an LMI-based

state feedback synthesis imposing closed-loop NI property is explored in [20,32]. While

in [41], the state feedback synthesis has been done to enforce closed-loop NI/SNI

property using an ARE-based approach. In [66], the authors introduce a static state

60
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feedback and a dynamic output feedback controller synthesis schemes imposing closed-

loop NI property. In [64], a dynamic output feedback control framework which renders

the closed-loop system NI is proposed for systems with stable NI uncertainty by

transforming the NI uncertainty into PR framework. Of recent, in [79] and [81], the

problem of synthesizing both a state and dynamic output feedback controller that

renders the closed-loop system SNI was addressed via an ARE-based approach.

However, in terms of NI synthesis that improves the time domain transient perfor-

mance, [65] synthesized a state feedback NI controller by using the notion of α− and

D− pole placement introduced in [96] which enforces the NI property of the closed-loop

system.

For state feedback synthesis technique rendering the closed-loop NI, such as that

employed in [20,32,65,66], not all the states are available for measurement to implement

a full state feedback controller. And in cases where all the states are available for

measurement, it might not be cost-effective to implement such a controller. For

example, a simple 6 degree of freedom rigid body translating in space may have up to

twelve different states which include linear position and velocity and angular position

and velocity. Hence, measuring all these states may demand buying very expensive

sensors.

On the other hand, synthesis techniques that use an ARE-based approach such

as [41, 79, 80] may not be desirable as AREs are numerically challenging to solve. Fur-

thermore, the output feedback synthesis techniques introduced in [66, 81] are complex

and did not address the issue of output performance.

Motivated by the aforementioned shortcomings, the work in this chapter proposes

an LMI-based procedure to design a dynamic output feedback controller applying the

α− SNI framework that ensures robust stability against all stable, strictly proper, NI

uncertainties. Regional pole placement, or pole placement in general, provides a way

of achieving time domain performance such as reducing peak overshoot and settling

time, increasing decay rate, etc. [73]. Furthermore, it is shown via examples that the

designed controller can also satisfy a certain level of robust performance.

The main contributions of this chapter are

• Provide a definition of α− SNI systems and show that this class of systems are

asymptotically stable system.
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• Provide a dynamic output feedback synthesis technique using the α− SNI frame-

work which renders the closed-loop system α− SNI, with a minimum decay rate

for the closed-loop system dictated by the variable α. We also show that the

synthesized closed-loop system will be robust to all class of NI uncertainties

satisfying the DC gain condition.

1y




( )M s

( )s

2e

1e

2y
2w
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(a)

( )sz w
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( )K s
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( )M s

(b)

Figure 4.1: (a) Positive feedback interconnection of two NI systems; (b) M − ∆
configuration for robust stability analysis.

4.2 α− Strictly Negative Imaginary Systems

Definition 16. [59] Let D = DT and α > 0. Then, R(s) =

 A B

C D

 is said to be

α− SNI if there exists a real matrix Y = Y T > 0 such that

AY + Y AT + 2αY ≤ 0 and B + AY CT = 0. (4.1)

We now provide some remarks which explore the properties of α− SNI systems and

find the connections between α− SNI and SSNI systems properties.

Remark 1. The α− SNI systems are inherently stable. This can be readily established

from (4.1), which implies AY + Y AT < 0 for α > 0 and Y > 0, which in turn ensures

Hurwitzness of A applying [88, Lemma 3.19]. ■

Note that the definition of α− SNI systems does not require a minimal state-space

realization of the underlying system. In this context, the literature [32, 79] may be
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referred where it is shown that most of the analysis and synthesis results associated

with NI, SNI and SSNI systems theory remain applicable in case of non-minimal system

realization.

Remark 2. From Definition 16, one may think that the set of the α− SNI systems is a

subset of the SSNI class having poles in ℜ[s] ≤ −α. But, unlike SSNI systems [21], α−

SNI system property does not impose any restrictions on the state-space realization. It

can be concluded that the set of α− SNI systems, say R(s), with a completely observable

state-space realization and R(s) − R(−s)T having full normal rank belongs to the SSNI

class. ■

Note that in case of α− SNI systems the full normal rank constraint on R(s) −

R(−s)T is implied by (4.1) when the B matrix has full column rank. It is proved in

the following lemma. The same conclusion applies to Lemma 8 as well.

Lemma 9. [59] Let R(s) =

 A B

C D

 be an (m×m) α− SNI system with rank[B] =

m. Then, R(s) − R(−s)T has full normal rank.

Proof. [59] For a given α > 0 and Y > 0, (4.1) implies AY +Y AT < 0. Then there

exists a square and non-singular matrix L such that AY + Y AT = −LT L. For these

L and Y , the transfer function matrix N(s) =

 A B

LY −1A−1 0

 acquires full column

rank at s = jω for all ω ∈ R since A is Hurwitz and rank[B] = m via assumption and

rank[LY −1A−1] = n. It implies from [25, Corollary 1]

jω[R(jω) − R(jω)∗] = ω2N(jω)∗N(jω) > 0 (4.2)

for all ω ∈ R\{0} and R(0)−R(0)T = 0 since R(0) = CY CT +D = R(0)T . This implies

that there does not exist any continuum interval of ω ∈ R for which det[R(jω)−R(jω)∗]

remains zero. This in turn ensures that R(s) − R(−s)T must have full normal rank.

Note minimality is not required.
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4.3 Output Feedback Controller Synthesis using α−

SNI Framework

4.3.1 Problem Formulation

Consider an LTI generalized plant G(s) described by the following state-space equations

G(s) :



ẋ = Ax + B1w + B2u,

z = C1x + D11w + D12u,

y = C2x + D21w,

(4.3)

where x(t) ∈ Rn is the state vector of the generalized plant, u(t) ∈ Rnu represents

the control input , y(t) ∈ Rny is the measured output, w(t) ∈ Rm is the exogenous

input and z(t) ∈ Rm is the objective signal. The matrices A ∈ Rn×n, B1 ∈ Rn×m,

B2 ∈ Rn×nu , C1 ∈ Rm×n, C2 ∈ Rny×n, D11 and D21 are all constant and known.

Assume that D12 = 0, (A, B2) is stabilizable and (A, C2) is detectable. The aim is to

synthesize a full-order dynamic output feedback controller

K(s) :


ẋc = Acxc + Bcy,

u = Ccxc + Dcy,
(4.4)

such that the nominal closed-loop system M(s), which is given by the lower linear

fractional transformation between the generalized plant G(s) and the controller K(s),

is α− SNI and is robustly stable against all stable, strictly proper, NI uncertainties

∆(s) with ∆(0) ≤ γ−1 for a given γ > 0. The state-space realization of the M(s), as

shown in Fig. 4.1b, from w to z is given by

M(s) =

 Acl Bcl

Ccl Dcl

 =


A + B2DcC2 B2Cc B1 + B2DcD21

BcC2 Ac BcD21

C1 0 D11

 . (4.5)

4.3.2 Controller Synthesis using α− SNI Framework

This subsection provides the main result of this chapter. Theorem 5 gives a set of

sufficient conditions required for the existence of a dynamic output feedback controller

K(s) which makes the nominal closed-loop system given in (4.5) α− SNI with a given
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α > 0 and maintains closed-loop stability in presence of any stable, strictly proper, NI

uncertainty satisfying the DC gain condition.

Theorem 5. [59] Let a generalized plant G(s) be given by (4.3) with D11 = DT
11,

D12 = 0, (A, B2) stabilizable and (A, C2) detectable. Let γ > 0, α > 0 and m ≤ 2n.

Suppose there exist matrices Â ∈ Rn×n, B̂ ∈ Rn×ny , Ĉ ∈ Rnu×n, D̂ ∈ Rnu×ny and

symmetric matrices P ∈ Rn×n and X ∈ Rn×n such that
Φ11 + 2αP Φ12 + 2αI PB1 + B̂D21 + ÂCT

1

⋆ Φ22 + 2αX Φ23

⋆ ⋆ 0

 ≤ 0, (4.6)

 P I

I X

 > 0, (4.7)

and C1XCT
1 + D11 < γI, (4.8)

with the following shorthand

Φ11 = PA + PAT + B̂C2 + CT
2 B̂T , (4.9a)

Φ12 = Â + (A + B2D̂C2)T , (4.9b)

Φ22 = XAT + AX + B2Ĉ + ĈT BT
2 , (4.9c)

Φ23 = B1 + B2D̂D21 + AXCT
1 + B2ĈCT

1 , (4.9d)

and the symbol ⋆ denotes the elements due to symmetry. Then, an internally stabilizing

controller K(s) is given by (4.4) where

Dc = D̂, (4.10a)

Cc = (Ĉ − DcC2X)M−T , (4.10b)

Bc = N−1(B̂ − PB2Dc), (4.10c)

Ac = N−1(Â − PAX − NBcC2X − PB2CcM
T − PB2DcC2X)M−T , (4.10d)

and M and N are square and non-singular solutions of the algebraic equation MNT =

I − XP . This controller K(s) forms a closed-loop system M(s), expressed as in (4.5),

which is α− SNI and is robust to all stable, strictly proper, NI uncertainties ∆(s)

satisfying λmax[∆(0)] ≤ γ−1.
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Proof. [59] First note that Dcl = DT
cl in (4.5) and m ≤ 2n. The proof will proceed

via the following steps which establishes that for M(s) =

 Acl Bcl

Ccl Dcl

 to be α− SNI

with a given α > 0, conditions (4.6)-(4.8) need to be satisfied.

Step 1

From Definition 16, M(s) =

 Acl Bcl

Ccl Dcl

 is α− SNI with a given α > 0 if there exists

Y = Y T > 0 such that  AclY + Y AT
cl + 2αY ⋆

BT
cl + CclY AT

cl 0

 ≤ 0. (4.11)

Step 2

Since inequality (4.11) is not in LMI form due to presence of the terms containing

products of unknown controller variables, a linearising change in controller variables

[73, 96] is required to transform (4.11) into LMI form. Partition the closed-loop

Lyapunov matrix Y and Y −1 as follows:

Y =

 X M

MT •

 and Y −1 =

 P N

NT •

 , (4.12)

where X and P are symmetric n × n matrices and the symbol • represents matrices

that are not explicitly used in the linearization process. Note Y −1 exists since Y > 0

via (4.7) which has been explained subsequently in step 4. Note also that X, P , M ,

N are not independent variables but must satisfy XP + MNT = I (see [73, 96] for

details). Since, M and N are square and non-singular, the following block matrices

Π1 =

 P I

NT 0

 and Π2 =

 I X

0 MT

 (4.13)

are non-singular. Π1 and Π2 are related through the expression

Y Π1 = Π2 (4.14)
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which is obtained from Y Y −1 = I. The change of controller variables are defined as

Â = PAX + NBcC2X + PB2CcM
T + PB2DcC2X + NAcM

T ,

B̂ = NBc + PB2Dc,

Ĉ = DcC2X + CcM
T , and

D̂ = Dc.

(4.15)

Step 3

Applying a congruence transformation on (4.11) with the block diagonal matrix

diag{Π1, I} and using (4.14), we obtain

 ΠT
1 AclΠ2 + ΠT

2 AT
clΠ1 + 2αΠT

1 Π2 ⋆(
BT

cl + CclY AT
cl

)
Π1 0

 ≤ 0. (4.16)

Simplifying all the product terms and substituting into (4.16) the linearizing change

of controller variables given in (4.15), we get back condition (4.6), that is,
Φ11 + 2αP Φ12 + 2αI PB1 + B̂D21 + ÂCT

1

⋆ Φ22 + 2αX Φ23

⋆ ⋆ 0

 ≤ 0.

Step 4

Positive definiteness of the closed-loop Lyapunov matrix Y =

 X M

MT •

 is guaran-

teed by (4.7) via the congruence transformation shown below

ΠT
1 Y Π1 =

 P I

I X

 > 0. (4.17)

Step 5

The inequality condition (4.8) is equivalent to M(0) < γI since M(0) = CclY CT
cl + D11.

This in turn implies λmax[M(0)∆(0)] < 1 via [15]. Thus, the interconnection of M(s)

being α− SNI and ∆(s) being stable NI satisfies all the assumptions of [15, Theorem

5] as well as the DC loop gain condition. Therefore, the interconnection is robustly

stable. This completes the proof. □
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Remark 3. The implication of Theorem 5 is that the closed-loop system M(s) will be

robustly stable to all class of NI uncertainties with DC gain γ−1. This means that in

the case of a flexible structure system with collocated force actuator and position sensor,

if we use a truncated model of the system as our generalized plant G(s) for controller

synthesis and consider the rest of the modes as unmodelled dynamics, then the result

of Theorem 5 will ensure robust stability to this unmodelled dynamics as long as the

DC gain of the unmodelled dynamics is less than or equal to γ−1. This is due to the

fact that (4.6) and (4.8) of Theorem 5 will ensure that the closed-loop system is α−

SNI and has a DC gain less than γ,respectively.

Remark 4. In order to find square and non-singular solutions of M and N from the

expression MNT = I−XP , methods such as Q−R factorisation, Cholesky factorisation

or Eigen-decomposition can be used. But the easiest solution is to choose M = I and

accordingly, N = I − PX. This choice of M and N rules out the possibility of getting

ill-conditioned solutions in Matlab due to computational issues. ■

4.4 Numerical Examples

In this section, we will present two illustrative examples to elucidate the usefulness of

the proposed synthesis technique.

4.4.1 Example 1

We reconsider the model of an uncertain flexible structure system with collocated

position sensor and force actuator, as shown in Fig. 4.2, originally studied in [20,32]

followed later by [66]. We assume that the output of the system ȳ is subjected to some

disturbance d. This represents the measured output of the system y. This uncertainty

∆(s) is given by ∆(s) = P (s) − 1, where P (s) is the dynamics of the uncertain flexible

structure. Since P (s) is SNI, ∆(s) is also SNI. We also assume that ∆(s) satisfies

∆(∞) ≥ 0. More information about the system can be found in [20,32].

The generalized plant model G of the physical system is governed by the following

state-space equations. The output of the system y(t) is subjected to some bounded
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Figure 4.2: Block diagram of the simplified model of an uncertain flexible structure
system taken in [32].

disturbance d(t) ∈ R.

G :




ẋ1

ẋ2

ẋ3

 =


−1 0 0

1 −1 1

0 1 −1




x1

x2

x3

 +


0 0

0 0

1 1


 w

d

 +


−2

1

0

 u,

 z

y

 =

 0 1 0

0 1 0




x1

x2

x3

 +

 0 0

1 1


 w

d

 ,

and W (s) = ∆(s)Z(s), where W (s) and Z(s) are the Laplace transform of w(t) and

z(t) respectively. In line with [32], ∆(s) is an SNI uncertainty with ∆(∞) = 0 and

∆(0) ≤ 1.

Part I. The control objective is to synthesize a dynamic output feedback controller

K(s) such that the nominal closed-loop system M(s) becomes α− SNI and remains

stable closed-loop in presence of any ∆(s) defined above. Choosing α = 0.8 and

applying Theorem 5, we obtain a feasible solution set of matrices

P =


126.3650 15.0662 83.8253

15.0662 7.8543 15.0240

83.8253 15.0240 126.6103

 > 0,

X =


33.3391 −2.0000 −31.8531

−2.0000 0.5764 1.5764

−31.8531 1.5764 30.8991

 > 0,

and Â, B̂, Ĉ, D̂ using the CVX toolbox [95] in SDP mode with SEDUMI solver to

solve the LMIs. We fix M = I and hence, N = I − PX. The controller matrices Ac,
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Bc, Cc and Dc are then uniquely reconstructed for this M and N using the relations

(4.10a)-(4.10d). The controller K(s) is computed as

K(s) = 3.7491(s + 1)(s + 1.345)(s + 6.358)
(s + 36.45)(s + 1.386)(s + 1.001)

which constitutes the nominal closed-loop system

M(s) = 3.749s5 + 33.63s4 + 97.04s3 + 126.6s2 + 77.97s + 18.48
s6 + 38.09s5 + 174.3s4 + 336.1s3 + 328.9s2 + 162s + 32.06

from w to z. The closed-loop poles are given by λi(Acl) = {−33.1278, −1.1847, −0.9259±

j0.1564, −0.9264, −1.00}. It can be readily verified that M(s) is an α− SNI transfer

function with ℜ[λi[Acl]] < −0.8 for all i. The Nyquist plot of M(s) given in Fig. 4.3a

also reflects that M(s) is an SNI transfer function. Now, we find M(0) = 0.5764

and hence, M(0)∆(0) = 0.5764 < 1, which ensures robust stability in closed-loop

against the given set of ∆(s) having ∆(0) ≤ 1 via Theorem 5. In order to show the
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Figure 4.3: (a) Nyquist plot of the α− SNI transfer function M(s) obtained in Example
1; (b) LFT configuration for robust performance problem by augmenting a fictitious
uncertainty ∆f (s) with the stable NI uncertainty ∆(s).

applicability of the proposed synthesis scheme, we study the disturbance-attenuation

problem in presence of two arbitrarily chosen strictly proper SNI uncertainties given by

∆1(s) = 1
s+2 and ∆2 = 1

s+20 . A pulse disturbance having amplitude 0.1 and Ton = 1s

is applied to the system under all zero initial condition. Figures 4.4a-4.4e compare



CHAPTER 4. α− SNI AND O/F CONTROLLER SYNTHESIS 71

the closed-loop time response corresponding to the nominal case and in presence of

the uncertainties. It is observed that the designed controller K(s) ensures closed-loop

stability and also provides satisfactory transient performance in presence of the uncer-

tainty. The figures reveal that the percentage deviation from nominal to perturbed

condition in each of the states as well as the output y(t) remains within 5% only.

Moreover, despite the presence of uncertainty, the control effort u(t) increases to a

negligible extent with respect to nominal level.

Part II. Apart from the time domain performance analysis, we would also like to

quantify and measure the robust H∞ performance of the closed-loop system output

(y) from the disturbance (d) achieved by the designed controller K(s). Theoretically,

robust H∞ performance is analysed [88] by recasting the robust performance problem

into a robust stability problem with respect to the augmented, two-block uncertainty

∆p(s) =

 ∆(s) 0

0 ∆f (s)

, where ∆f(s) ∈ RHnd×ny
∞ is a fictitious uncertainty and

∆(s) ∈ RHm×m
∞ is the physical uncertainty as depicted in Fig. 4.3b. To measure the

robust H∞ performance, µ-analysis technique is invoked. According to [88, Theorem

11.9], robust H∞ performance with level β of the closed-loop system shown in Fig.

4.3b is guaranteed for all stable ∆(s) with ∥∆(s)∥∞ < 1
β

for a given β > 0 if and only

if

sup
ω∈R

µ∆p(N(jω)) ≤ β, (4.18)

where N(s) represents the transfer function mapping from

 w

d

 to

 z

y

. Following

this approach, in the present example, we compute an upper bound to µ∆p(N(jω))

using the Matlab Robust Control Toolbox for the frequency interval ω ∈ [10−4, 104]

and find sup
ω∈[10−4,104]

µ∆P
(N(jω)) ≤ 2.1529. We also calculate ∥N11(s)∥∞ = ∥M(s)∥∞ =

0.5764. It signifies that, to satisfy robust stability alone (via Small-gain Theorem [88]),

∥∆(s)∥∞ < 1
0.5764 = 1.7349; while, to ensure the robust H∞ performance with level

2.1529 via µ-analysis, ∥∆(s)∥∞ < 1
2.1529 = 0.4645 is required. However, from Part

I, it can be seen that the synthesized controller can ensure robust performance even

for ∆1 = 0.5. This is bigger set of uncertainty than that allowed by robust H∞

performance.

Remark 5. It should be noted that Part II of Example 4.4.1 is not a comparison
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Figure 4.4: Closed-loop time responses of the designed system under the nominal as
well as perturbed condition subjected to a pulse disturbance and zero initial condition:
(a) State x1(t), (b) State x2(t), (c) State x3(t), (d) System output y(t), (e) Control
signal u(t).
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between robust H∞ performance and robust performance of the synthesized closed-loop

system in Part I. This is because more restrictions is imposed on the H∞ controller

for it to satisfy the robust performance, while no further restrictions is imposed on the

synthesized NI closed-loop system. Hence, the µ− analysis just helps to provide a lower

bound for the class of uncertainties for which robust performance can be achieved.

4.4.2 Example 2

Here, we adopt the following MIMO example from [66] being inspired by [72], where

the same example was studied to show an application of a decentralized static output

feedback controller. The generalized plant G is expressed via (4.3) with the following

state-space matrices

A =



−4 0 −2 0 0

0 −2 0 2 0

0 0 −2 0 −1

0 −2 0 −1 0

3 0 −2 0 −1


, B1 =



1

1

1

1

1


,

CT
1 =



0

1

0

0

0


, B2 =



1 0 0

1 0 0

0 0 0

0 1 0

0 0 1


, C2 =


1 0 0 0 0

0 1 0 0 0

0 0 0 0 1



and D11 = 0, D12 = 01×4, D21 = 03×1. The uncertainty ∆(s) is assumed to be any

stable, strictly proper, NI transfer function with ∆(0) ≤ 3.6. Similar to Example 1, the

control objective is to synthesize an output feedback controller K(s) which internally

stabilizes G and renders M(s) from w to z α− SNI. Choosing α = 2, we apply Theorem
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5 on G and obtain a feasible solution set of matrices

X =



24.58 −0.06 −9.69 −2.83 −7.73

−0.06 0.25 0.34 0.03 0.32

−9.69 0.34 24.50 −5.65 10.07

−2.83 0.03 −5.65 31.85 −1.45

−7.73 0.32 10.07 −1.45 34.22


> 0,

P =



21.12 −7.37 1.86 −4.69 −7.69

−7.37 53.42 −10.22 −23.68 −7.41

1.86 −10.22 11.45 −2.81 1.85

−4.69 −23.68 −2.81 39.11 −4.68

−7.69 −7.41 1.85 −4.68 21.14


> 0,

and Â, B̂, Ĉ, D̂. M = I is taken and hence, N = I − PX. The controller state-space

matrices are then reconstructed according to (4.10a)-(4.10d) as given below:

Ac =



−10.40 −9.92 −13.89 −10.27 −9.25

−5.73 −6.89 −5.02 −4.09 −4.20

1.58 0.80 −1.89 0.82 1.83

9.19 2.87 3.17 1.89 6.55

−3.24 −0.09 6.12 0.08 −6.57


,

Bc =



46.38 −4.96 −39.16

−4.96 −65.26 −10.10

19.58 −40.04 31.07

20.32 −8.28 17.61

−39.16 −10.10 −38.19


, Dc = 03×3,

and Cc =


0.27 0.36 0.31 0.36 0.28

−0.04 0.11 0.06 0.096 0.026

0.39 0.23 −0.24 0.20 0.38

 .

We compute the nominal closed-loop system

M(s) =

(s + 2.35)(s2 + 4.942s + 7.379)(s2 + 13.89s + 49.69)
(s2 + 6.256s + 13.73)(s2 + 6.423s + 18.4)

(s + 2.325)(s + 3.274)(s2 + 4.967s + 7.426)(s2 + 6.174s + 13.64)
(s2 + 5.95s + 17.95)(s2 + 11.17s + 62.71)
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which has been verified to be SNI with ℜ[λi[Acl]] < −2. The Nyquist plot of M(s)

shown Fig. 4.5 confirms that it is indeed SNI. As M(s) is strictly proper and

M(0)∆(0) = 0.2507×3.6 = 0.9025 < 1, it guarantees that the designed controller K(s)

ensures robust stability of the generalized plant G against any stable NI uncertainty

∆(s) satisfying ∆(0) ≤ 3.6 via Theorem 5.
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Figure 4.5: Nyquist plot of the synthesized α− SNI transfer function M(s) obtained
in Example 2.

Remark 6. It should be noted that the choice of the variable α in both examples was

an arbitrary one. It is desirable to have α as large as possible. However, choosing

a very large value for α will lead to a high control action which may cause actuator

saturation. Also, a very large α will mean that the class of uncertainties for which the

closed-loop system is robustly stable against becomes smaller. This is to be expected

because the more performance we demand from the closed-loop system, the less robust it

will become. Therefore, there is always a trade-off between robustness and performance

of the closed-loop system.

4.5 Conclusions

This chapter addressed the issue of NI controller synthesis with a prescribed degree

of stability. First, we provided a definition for α− SNI systems which are a subset

of the SNI class. Subsequently, we introduced a synthesis technique that uses the
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α− SNI framework to impose a minimum prescribed decay rate for the closed-loop

synthesized system. Robust stability is ensured against any stable, strictly proper NI

uncertainty satisfying the DC loop gain condition for the positive interconnection of

NI-SNI systems. We presented two numerical examples that showed the usefulness of

the proposed synthesis technique.



Chapter 5

Linear Time-Varying Negative

Imaginary Systems

All the materials presented in this chapter were published in [60].

5.1 Introduction

There are many contributions in the NI literature that introduce different classes of

NI systems and systems related to NI systems such as in [3, 8, 9, 14, 94]. However,

non of these works addressed the issue of LTV NI systems. LTV NI systems may

arise, for example, in real life applications such as a flexible structure with collocated

force actuator and position sensor having time-varying mass or a rocket in longitudinal

motion where the mass of the rocket changes as the fuel in the tank is used up. In

electrical circuits, such systems may arise when the resistors, inductors or capitors are

time-varying and the output of the circuit is the voltage across a capacitor connected

in series with a voltage source or the current flowing through an inductor connected

in parallel with a current source.

In this chapter, we introduce the notion of LTV NI systems. LTV NI systems are

defined using a time domain dissipative supply rate w(u, ẏ) that depends on input to

the system (u), time-derivative of the system’s output (ẏ) and an index δ ≥ 0. For

δ > 0, it gives rise to a strict subclass within the LTV NI systems, termed as LTV

Output SNI (OSNI) systems. For characterizing the proposed class of systems, a set

of LDMI conditions are derived based on the given state-space realization. Finally,

77
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a set of sufficient conditions are derived which ensures that the origin is a globally

asymptotically stable equilibrium point of an unforced positive feedback interconnection

of two uniformly asymptotically stable LTV NI systems. Subsequently, LTV NI theory

is specialized to LPV cases for which, the DLMI conditions can easily be avoided

by considering the rate of variation of the uncertain parameters as independent LMI

variables.

The major contributions of this chapter include

• Provide a time domain definition for LTV NI systems. The definition is with

respect to a supply rate w(u, ẏ), which depends on the input u and time derivative

of the output ẏ.

• Provide a time domain definition for LTV OSNI systems. Similar to the LTV NI

definition, the definition is with respect to the dissipative supply rate, depending

on the input and time derivative of the output, in addition to a variable δ > 0.

• Provide a state-space characterization of the LTV NI systems using DLMI condi-

tions. This helps in the stability analysis and synthesis of this kind of systems.

• Provide a state-space characterization of LTV OSNI system. These conditions

also use DLMI and are restricted to systems with relative degree two.

• The chapter then provides condition for the uniform global asymptotic stability

of the equilibrium point of an unforced positive feedback LTV NI-OSNI intercon-

nection.

• LPV NI and OSNI systems, which are a specialization of the LTV NI and OSNI

systems respectively, are introduced. In this case, the state-space characteriza-

tions are presented using LMIs and not DLMIs as with LTV systems.

• The chapter ends by providing conditions for the global asymptotic stability of

the equilibrium for an unforced positive feedback interconnection of an LPV

NI-OSNI systems.
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5.2 Linear Time-Varying NI Systems Theory

5.2.1 Definition and Properties

Consider a class of finite-dimensional, square, LTV dynamical systems described by

the state-space equations

Σ :


ẋ(t) = A(t)x(t) + B(t)u(t), x(0) = x0;

y(t) = Cx(t),
(5.1)

where x(t) ∈ Rn, u(t) ∈ Rm and y(t) ∈ Rm ∀t ∈ R≥0 and the matrices A(t) and

B(t) are assumed to be continuous and bounded ∀t ∈ R≥0. Note that in this section,

the admissible inputs u are considered to be in the space Um along with sufficient

smoothness properties such that unique solution of the state trajectory x(t) exists

forward in time ∀t ∈ R≥0 and also x ∈ Ln
2e. Hence ẏ(t) = Cẋ(t) = CA(t)x(t) +

CB(t)u(t) also exists forward in time and ẏ ∈ Lm
2e.

Definition 17. [60] (LTV NI systems) Let Σ be a finite-dimensional, square, LTV

system as described in (5.1). Then Σ is said to be an LTV NI system if there exists a

constant β ∈ R such that ∫ T

0
ẏ(t)T u(t) dt ≥ β (5.2)

for any admissible u ∈ Um, any initial condition x0 ∈ Rn and all T ∈ [0, ∞).

Remark 7. In the SISO LTI case, the name ‘negative imaginary’ is motivated by the

Nyquist plot of the transfer function being restricted to the third and fourth quadrants of

the Nyquist plane over ω ∈ R≥0. Since this chapter considers LTV systems of the state-

space form (5.1), the name ‘LTV NI’ is chosen for this class of systems to underpin

the connection to its LTI counterpart (i.e., although the time domain definition (5.2)

does not have a Nyquist interpretation, it specialises in the LTI case to the condition

jω [Σ(jω) − Σ(jω)∗] ≥ 0 ∀ω ∈ R≥0 which recommends the name ‘NI’ in the LTI

case [15]).

We will now define the class of LTV OSNI systems.

Definition 18. [60] (LTV OSNI systems) Let Σ be a finite-dimensional, square

and stable LTV system as described in (5.1). Then Σ is said to be an LTV OSNI
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system if there exist the constants β ∈ R and δ > 0 such that∫ T

0
ẏ(t)T u(t) dt ≥ δ

∫ T

0
ẏ(t)T ẏ(t) dt + β (5.3)

for any admissible u ∈ Um, any initial condition x0 ∈ Rn and all T ∈ [0, ∞).

Remark 8. Definitions 17 and 18 would remain valid even when the LTV state-space

system in (5.1) had its output equation y(t) = C(t)x(t) with C(t) and Ċ(t) assumed to

be continuous and bounded for all t ∈ R≥0. We do not however consider that situation

in order to simplify the results that follow.

5.2.2 State-Space Characterization of LTV NI Systems

In this subsection, state-space characterizations are provided for the LTV NI and OSNI

systems which involve LDMI conditions.

Lemma 10. [60] (LTV NI lemma) Let Σ be a finite-dimensional, square, LTV sys-

tem as described in (5.1). Then Σ is LTV NI if there exists a continuously differentiable

and bounded matrix P (t) = P (t)T ≥ 0 for all t ∈ R≥0 such that Ṗ (t) + P (t)A(t) + A(t)T P (t) P (t)B(t) − A(t)T CT

B(t)T P (t) − CA(t) −CB(t) − B(t)T CT

 ≤ 0. (5.4)

Proof. [60] By exploiting the property of block partitioned semidefinite matrix [85],

there always exist continuous and bounded matrices L(t) ∈ Rm×n and W (t) ∈ Rm×m

for all t ∈ R≥0 such that Ṗ (t) + P (t)A(t) + A(t)T P (t) P (t)B(t) − A(t)T CT

B(t)T P (t) − CA(t) −CB(t) − B(t)T CT



=

 −LT (t)L(t) −LT (t)W (t)

−W T (t)L(t) −W T (t)W (t)

 ≤ 0 ∀t ≥ 0. (5.5)

Let V (t, x) = 1
2xT P (t)x with P (t) = P (t)T ≥ 0 for all t ∈ R≥0 be a Lyapunov function

candidate associated with the system Σ. The time derivative of V (t, x) along the
trajectories of Σ, given by (5.1), subjected to any admissible input u ∈ Um, is computed
as V̇ (t, x) = 1

2xT
(
Ṗ + PA + AT P

)
x + xT PBu. Integrating the last expression with

respect to time t from 0 to T ∈ R≥0 and substituting Ṗ + PA + AT P = −LT L and
PB − AT CT = −LT W from (5.5), we have

V (T, x(T )) − V (0, x(0)) =
∫ T

0

[
−1

2xT LT Lx + xT (AT CT − LT W )u
]

dt (5.6)
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for any admissible u ∈ Um and for all T ∈ [0, ∞). Now using the fact that V (T, x(T ))−

V (0, x(0)) ≥ −V (0, x(0)), (5.6) implies (5.7), where β = −V (0, 0) ∈ (−∞, 0],
∫ T

0
xT AT CT u dt ≥

∫ T

0

(1
2xT LT Lx + xT LT Wu

)
dt + β. (5.7)

Since CB is a square matrix, it can be expressed as CB = 1
2

(
CB + BT CT

)
+

1
2

(
CB − BT CT

)
. Below, we derive the expression for ẏT u on noting that ẏ = Cẋ =

CAx + CBu,

ẏT u = xT AT CT u + 1
2uT

(
CB + BT CT

)
u + 1

2uT
(
CB − BT CT

)
u

⇒ ẏT u = xT AT CT u + 1
2uT

(
CB + BT CT

)
u (5.8)

by exploiting the property uT
(
CB − BT CT

)
u = 0 ∀u ∈ Rm since

(
CB − BT CT

)
is

skew-symmetric [85]. Integrating (5.8) from 0 to T ∈ [0, ∞) and plugging (5.7) into it,

we find
∫ T

0
ẏT u dt ≥

∫ T

0

(1
2xT LT Lx + xT LT Wu + 1

2uT W T Wu
)

dt + β

⇒
∫ T

0
ẏT u dt ≥ β [via the completion of squares]

for any admissible u ∈ Um and for all T ∈ [0, ∞). Hence it is proved that Σ is an LTV

NI system via Definition 17. ■

We will now provide the state-space characterization for LTV OSNI systems.

Lemma 11. [60] (LTV OSNI lemma) Let Σ be a finite-dimensional, square, LTV

system as described in (5.1). Also let CB(t) ≡ 0 and CA(t) ̸≡ 0 for all t ∈ R≥0.

Then Σ is LTV OSNI if there exists a continuously differentiable and bounded matrix

P (t) = P (t)T > 0 for all t ∈ R≥0 such that

Ṗ (t) + P (t)A(t) + A(t)T P (t) < 0 and P (t)B(t) = A(t)T CT . (5.9)

Proof. [60] Let there exist a real-valued, continuous and bounded matrix Q(t) =

Q(t) > 0 for all t ∈ R≥0 such that

Ṗ (t) + P (t)A(t) + A(t)T P (t) = −Q(t) < 0 ∀t ∈ R≥0. (5.10)

Inequality (5.10) implies uniform asymptotic stability of the OSNI system Σ. Let

V (t, x) = 1
2xT P (t)x with P (t) = P (t)T > 0 be a Lyapunov function candidate for
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Σ. Now, utilising (5.6) from the proof of Lemma 10 and substituting V̇ (t, x) =
1
2xT

(
Ṗ + PA + AT P

)
x + xT PBu, we obtain

V (T, x(T )) − V (0, x(0)) =
∫ T

0

(
−1

2xT Qx + xT AT CT u
)

dt (5.11)

for any admissible u ∈ Um and for all T ∈ [0, ∞). From (5.8), we have
∫ T

0 ẏT u dt =∫ T
0 xT AT CT u dt since CB(t) = 0 ∀t ∈ R≥0 via supposition. Utilizing this result, (5.11)

implies ∫ T

0
ẏT u dt =

∫ T

0
xT AT CT u dt ≥ 1

2

∫ T

0
xT Qx dt + β. (5.12)

We also have ẏT ẏ = xT AT CT CAx for all t ∈ R≥0 since CB = 0 via supposition. Now

exploiting the property λmin[P ]||x|| ≤ xT Px ≤ λmax[P ]||x|| when P = P T ≥ 0 [85],

we obtain ẏT ẏ = xT AT CT CAx ≤ c̄xT x and xT Qx ≥ q
¯
xT x for all t ∈ R≥0 denoting

c̄ = sup
∀t≥0

λmax[AT CT CA] > 0 and q
¯

= inf
∀t≥0

λmin[Q] > 0. The last two expressions

together imply xT Qx ≥
q
¯̄
c
ẏT ẏ ∀t ∈ R≥0. This, in turn, implies from (5.12) that∫ T

0 ẏT u dt ≥ δ
∫ T

0 ẏT ẏ dt+β for any admissible u ∈ Um, for all T ∈ [0, ∞) and denoting

δ = q

2̄c̄
> 0. Hence, Σ is an LTV OSNI system according to Definition 18. ■

Remark 9. The LTV NI lemma specialises to the well-established NI lemma (i.e. in

the LTI setting) [15, 57]. Whereas, the LTV OSNI lemma partly captures the LTI

OSNI lemma [5,6] since the latter does not impose the constraint CB = 0. Hence, the

LTV OSNI result cannot be considered as a generalised version of its LTI counterpart.

Moreover, LTV NI and OSNI theory is completely independent of the conventional

frequency-domain characterization of the existing NI and OSNI systems.

Remark 10. In contrast to the conventional NI and OSNI theory (i.e. in the LTI

setting), the proposed LTV results do not impose the minimality constraint since the

LTV NI and OSNI lemma conditions are sufficient-type results. Minimality condition

is mainly required to establish the necessity part [7]. The proposed lemmas can be

rendered necessary and sufficient if uniform controllability and observability constraints

are imposed. However, for LTV systems, it is numerically very difficult to test these

properties a priori and hence, the results becomes less appealing to the readers.
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5.3 Closed-Loop Stability Analysis of LTV NI and

OSNI Systems

This section studies an unforced positive feedback closed-loop system shown in Fig. 5.1

containing two uniformly asymptotically stable LTV NI systems of which, one is LTV

OSNI. We show that the closed-loop system has a single globally asymptotically stable

equilibrium point which is the origin given by

 x1

x2

 =

 0

0

.

Theorem 6. [60] Let Σ1 and Σ2 be two finite-dimensional, square and uniformly

asymptotically stable LTV systems. Also let B2(t) has full column rank, C2B2(t) ≡ 0

and C2A2(t) ̸≡ 0 for all t ∈ R≥0. Suppose Σ1 is uniformly zero-state detectable and

there exist continuously differentiable and bounded matrices P1(t) = P1(t)T > 0 and

P2(t) = P2(t)T > 0 for all t ∈ R≥0 such that Σ1 satisfies (5.4) and Σ2 satisfies (5.9).

Then the origin is a globally uniformly asymptotically stable equilibrium point of the

unforced positive feedback interconnection of Σ1 and Σ2 shown in 5.1 if P1(t) −CT
1 C2

−CT
2 C1 P2(t)

 > 0 ∀t ∈ R≥0. (5.13)

Proof. [60] Let there exist continuous and bounded matrices L(t) ∈ Rm×n, W (t) ∈

Rm×m and Q(t) = Q(t)T > 0 such that Σ1 satisfies (5.5) and Σ2 satisfies (5.10)

for all t ∈ R≥0. We designate V1(t, x1) = 1
2xT

1 P1(t)x1 and V2(t, x2) = 1
2xT

2 P2(t)x2

be the Lyapunov function candidates associated with Σ1 and Σ2 respectively. Let

the combined Lyapunov function candidate for the closed-loop system be V (t, x) =

V1(t, x1) + V2(t, x2) − yT
1 y2 where x =

[
xT

1 xT
2

]T
. It is apparent that

V (t, x) = 1
2xT

1 P1(t)x1 + 1
2xT

2 P2(t)x2 − xT
1 CT

1 C2x2

= 1
2

 x1

x2


T  P1(t) −CT

1 C2

−CT
2 C1 P2(t)


 x1

x2

 > 0

via (5.13) and V (t0, 0) = 0 for any t0 ∈ R≥0. Owing to the continuously differentiable

property and boundedness of P1(t) and P2(t) ∀t ∈ R≥0, V (t, x) can be characterized as

0 < α1(||x||) ≤ V (t, x) ≤ α2(||x||) < ∞ ∀x ∈ Rn1+n2 where α1(·) and α2(·) are class-K

functions with α1 being radially unbounded in x. Moreover, V (t, x) is a continuously

differentiable function since V̇ (t, x) remains uniformly continuous in t ≥ 0 (shown



CHAPTER 5. LINEAR TIME-VARYING NI SYSTEMS 84

1

2

1 0r 

2 0r 

1u

2u

1y

2y





Figure 5.1: Positive feedback interconnection of LTV NI systems.
later in the ongoing proof). Now, the time-derivative of V (t, x) is derived as follows:

V̇ (t, x) = V̇1(t, x1) + V̇2(t, x2) − ẏT
1 y2 − yT

1 ẏ2

= 1
2xT

1

(
Ṗ1 + P1A1 + AT

1 P1
)

x1 + xT
1 P1B1u1 + 1

2xT
2 (Ṗ2+

P2A2 + AT
2 P2)x2 + xT

2 P2B2u2 − ẏT
1 y2 − yT

1 ẏ2

= −1
2xT

2 Qx2 + ẏT
2 u2 − 1

2xT
1

(
LT L

)
x1 − 1

2uT
1

(
W T W

)
u1

− xT
1 LT Wu1 + ẏT

1 u1 − ẏT
1 y2 − yT

1 ẏ2 [using (5.5), (5.10)]

= −1
2xT

2 Qx2 + ẏT
2 y1 − 1

2 (Lx1 + Wu1)T (Lx1 + Wu1) +

ẏT
1 y2 − ẏT

1 y2 − yT
1 ẏ2 [using u1 = y2 and u2 = y1]

= −1
2xT

2 Qx2 − 1
2 (Lx1 + Wu1)T (Lx1 + Wu1) (5.14)

≤ −1
2xT

2 Qx2 ≤ −qmin χ(||x2||) ≤ 0 (5.15)

where qmin = inf
∀t≥0

λmin[Q(t)] > 0 and χ(·) is a class-K function. Now, [45, Theorem 8.4]

and [86, Theorem 4.1] guarantee that both x1(t) and x2(t) will remain uniformly

bounded for all t ≥ 0. Then, to show uniform asymptotic stability of the states,

we will seek to apply Barbalat’s lemma [86]. It can be verified that V̈ (t, x) remains

bounded ∀t ≥ 0 since (i) x1 and x2 are already proved to be bounded ∀t ≥ 0 (and

hence, y1 = C1x1 and y2 = C2x2 are also uniformly bounded), (ii) the matrices Ai(t)

and Bi(t) for i ∈ {1, 2} are assumed to be bounded ∀t ≥ 0, and (iii) the input-

derivative terms u̇1 = ẏ2 = C2ẋ2 = C2A2x2 + C2B2y1 and u̇2 = ẏ1 = C1A1x1 + C1B1y2

are also bounded ∀t ≥ 0. Therefore, V̇ (t, x) is uniformly continuous for all t ≥ 0

which ultimately implies V̇ (t, x) → 0 as t → ∞ by exploiting Barbalat’s lemma.

Finally, [86, Lemma 4.3] ensures that lim
t→∞

x2(t) = 0 for any bounded x2,0 ∈ Rn2 . This

hence implies lim
t→∞

y2(t) = lim
t→∞

u1(t) = 0 as C2 is constant and u1 = y2. Furthermore,

as t → ∞, the state-space equation of Σ2, that is, ẋ2 = A2(t)x2(t) + B2(t)y1(t) implies
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lim
t→∞

y1(t) = 0 since u2 = y1, B2(t) has full column rank and due to uniform asymptotic

convergence of x2(t). Now, exploiting uniform zero-state detectability (ZSD) 1 and

uniform asymptotic stability of Σ1, u1 ≡ 0 and y1 ≡ 0 imply lim
t→∞

x1(t) = 0 for any

bounded x1,0 ∈ Rn1 . Combining the aforementioned arguments, it can be asserted

that the positive feedback closed-loop system of Σ1 and Σ2 is globally uniformly

asymptotically stable. ■

Remark 11. When Σ1 and Σ2 are LTI NI systems, then condition (5.13) of Theorem

6 is equivalent to the DC gain condition of Theorem 4. This can easily be seen since

Y1 = Y T
1 = P −1

1 , Y2 = Y T
2 = P −1

2 , both exist as P1 > 0, P2 > 0 and Σ1(0) = C1Y1C
T
1 ,

Σ2(0) = C2Y2C
T
2 are the DC gains of Σ1 and Σ2 respectively. Then condition (5.13)

can be written as  Y −1
1 −CT

1 C2

−CT
2 C1 Y −1

2

 > 0.

Then taking the Schur’s complement with respect to Y −1
2 , the above condition becomes

Y −1
1 − CT

1 C2Y2C
T
2 C1 > 0. But C2Y2C

T
2 = Σ2(0). So Y −1

1 − CT
1 Σ2(0)TC1 > 0, which

can then be expressed as  Y −1
1 CT

1

C1 Σ−1
2 (0)

 > 0.

Also, taking the Schur’s complement with respect to Y −1
1 , we have

⇔Σ−1
2 (0) − C1Y1C

T
1 > 0,

⇔Σ−1
2 (0) − Σ1(0) > 0,

⇔Σ1(0)Σ2(0) < 1,

which clearly shows that condition (5.13) of Theorem 6 does indeed becomes the DC

gain condition of Theorem 4 for the LTI case.

5.4 Linear Parameter-Varying NI Systems

As the LTI NI and OSNI lemmas involve LDMI conditions, it may give rise to com-

putational issues while solving the LDMIs using the SDP solver packages. To bypass
1The notion of uniform ZSD is defined for non-autonomous systems [10], analogous to the concept

of ZSD applied to autonomous systems [45].
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the LDMIs, in this section, we have specialized the previous results to LPV NI and

OSNI systems considering bounded variation of the uncertain system parameters. Now,

consider a class of finite-dimensional, square, LPV dynamical systems described by

ΣLP V :


ẋ(t) = A(ρ)x(t) + B(ρ)u(t) x(0) = x0,

y(t) = Cx(t)
(5.16)

where A(ρ), B(ρ) depend affinely on the uncertain (possibly time-varying) parameter

vector ρ = [ρ1, ρ2, · · · , ρK ] ∈ RK , that is, A(ρ) = A0 + ρ1A1 + · · · + ρKAK and

B(ρ) = B0 + ρ1B1 + · · · + ρKBK . Below, we mention two technical assumptions that

must be satisfied by the LPV NI systems studied here:

A1. Each parameter ρi varies in the known interval [ρi,min, ρi,max] for all i ∈ {1, 2, · · · , K}.

This implies that the parameter vector ρ ∈ RK is valued in a hyper-rectangle

with the set of vertices V = {(v1, · · · , vK) : vi ∈ {ρi,min, ρi,max} ∀i}.

A2. The rate of variation ρ̇i is well defined for all t ∈ R≥0 and ρ̇i ∈ [γi,min, γi,max]

where the range γi,min ≤ 0 ≤ γi,max is known for all i ∈ {1, · · · , K}. This implies

that the vector ρ̇ ∈ RK varies within a hyper-rectangle having the set of vertices

C = {(e1, · · · , ek) : ei ∈ {γi,min, γi,max} ∀i}.

We introduce the following notation ρmean =
[

ρ1,min+ρ1,max
2 , ρ2,min+ρ2,max

2 , · · · ,
ρK,min+ρK,max

2

]
to be used subsequently in Lemmas 12 and 13. Lemma 12 gives a set of sufficient

conditions for LPV NI systems and is a specialized result of the LTV NI lemma derived

in the previous section.

Lemma 12. [60] (LPV NI lemma) Consider a finite-dimensional, square, LPV

system ΣLP V , as described in (5.16), that satisfies assumptions A1 and A2. Suppose

A(ρmean) does not have any pole in the open right-half plane and there exist K + 1

real, symmetric matrices P0, P1, · · · , PK with P (ρ) = P0 + ρ1P1 + · · · + ρKPK, then the

following statements are the same

(a). ΣLP V is LPV NI

(b). There exist a continuous bounded matrix P (ρ) = P (ρ)T > 0 such that Ṗ (ρ) + A(ρ)T P (ρ) + P (ρ)A(ρ) P (ρ)B(ρ) − A(ρ)T CT

(P (ρ)B(ρ) − A(ρ)T CT )T −CB(ρ) − B(ρ)T CT

 ≤ 0. (5.17)
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(c). There exist a continuous, bounded matrix Pi = P T
i > 0 such that P (v)A(v) + A(v)T P (v) + P (e) − P0 P (v)B(v) − A(v)T CT(

P (v)B(v) − A(v)T CT
)T

−CB(v) − B(v)T CT

 ≤ 0 (5.18a)

and

 PiAi + AT
i Pi PiBi

BT
i Pi 0

 ≥ 0 (5.18b)

∀(v, e) ∈ V × C and ∀i ∈ {1, . . . , K}.

Proof. [60]

The equivalence between (a) and (b) can be established by realizing that if ΣLP V is

LPV NI then there exist a Lyapunov function V (x, ρ) = 1
2xT P (ρ)x such that 1

2 V̇ (x, ρ)−

ẏT u ≤ 0 holds. This can then be expressed as

1
2xT

(
Ṗ (ρ) + P (ρ)A(ρ) + A(ρ)T P (ρ)

)
x + xT P (ρ)B(ρ)u − xT A(ρ)T CT − uT B(ρ)T CT u,

which can also be written as

1
2

 x

u


T  Ṗ (ρ) + A(ρ)T P (ρ) + P (ρ)A(ρ) P (ρ)B(ρ) − A(ρ)T CT

(P (ρ)B(ρ) − A(ρ)T CT )T −CB(ρ) − B(ρ)T CT


 x

u

 ≤ 0.

Hence,

 Ṗ (ρ) + A(ρ)T P (ρ) + P (ρ)A(ρ) P (ρ)B(ρ) − A(ρ)T CT

(P (ρ)B(ρ) − A(ρ)T CT )T −CB(ρ) − B(ρ)T CT

 ≤ 0 since the above

is a quadratic function, which shows the equivalence of (a) and (b). Finally, the

equivalence between (b) and (c) can easily be established by using Theorem 3. ■

We will now present the LPV OSNI lemma which is a specialized result of LTV

OSNI lemma derived in Section 5.2.

Lemma 13. [60] (LPV OSNI lemma) Consider a finite-dimensional, square

LPV system ΣLP V , as described in (5.16), that satisfies assumptions A1 and A2.

Suppose CB(ρ) ≡ 0 and CA(ρ) ̸≡ 0 for all admissible ρ. Suppose further A(ρmean)

is Hurwitz. If there exist K + 1 symmetric matrices P0, P1, P2, · · · , PK such that

P (ρ) = P0 + ρ1P1 + · · · + ρKPK then the following statements are equivalent

1. ΣLP V is LPV OSNI
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2. CB(δ) = 0 and there exist continuous, bounded matrices P (δ) = P (δ)T > 0 and

Q(δ) = Q(δ)T > 0 such that

Ṗ (ρ) + A(ρ)T P (ρ) + P (ρ)A(ρ) < −Q(ρ) < 0 (5.19)

P (ρ)B(ρ) = A(ρ)T CT (5.20)

3.

P (v)A(v) + A(v)T P (v) + P (e) − P0 < 0 (5.21a)

P (v)B(v) = A(v)T CT and (5.21b) PiAi + AT
i Pi PiBi

BT
i Pi 0

 ≥ 0 (5.21c)

∀(v, e) ∈ V × C and ∀i ∈ {1, . . . , K}.

Proof. [60] The proof can be done in the same spirit of the proof of Lemma 12

and by following also Lemma 11 subjected to the additional assumptions imposed for

LPV OSNI systems. ■

Remark 12. In terms of numerical implementation of Lemmas 12 and 13, there may

be some feasibility issue when enforcing the multiconvexity constraint PiAi + AT
i Pi ≥ 0.

This is due to the fact that in most cases, the parameter ρi often appears in A(ρ)

sparingly which may lead to an Ai matrix with low rank. Hence, the feasibility set of

the P0, · · · , PK matrices might be a null space because PiAi + AT
i Pi ≥ 0 is not a strict

condition.

However, there is a simple trick to overcome this problem. This can be done by

replacing PiAi + AT
i Pi ≥ 0 with PiAi + AT

i Pi + ϵI ≥ 0 and P (v)A(v) + A(v)T P (v) +

P (e) − P0 ≤ 0 with P (v)A(v) + A(v)T P (v) + P (e)(∑
i ϵiv

2
i )I < P0, ∀(v, e) ∈ V × C and

some small enough ϵi > 0 [11]. The resulting LMIs can now be solved by commercially

available SDP solvers without feasibility problem.

Finally, we derive a sufficient condition for ensuring global asymptotic stability of

the positive feedback interconnection (Fig. 5.1) comprised of a stable LPV NI system

Σ1 and an LPV OSNI system Σ2 having minimal state-space realizations (A1(ρ1),

B1(ρ1), C1) and (A2(ρ2), B2(ρ2), C2), respectively, for all ρj = [ρj,1, ρj,2, · · · , ρj,K ] ∈

RK with j ∈ {1, 2} where ρj,i ∈
[
ρ(j,i)min , ρ(j,i)max

]
and ρ̇j,i ∈

[
γ(j,i)min , γ(j,i)max

]
are
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known ∀i ∈ {1, 2, · · · , K}. We also define sets of vertices Vj = {(vj,1, vj,2, · · · , vj,K) :

vj,i ∈ {ρ(j,i)min , ρ(j,i)max} ∀i} with j ∈ {1, 2} corresponding to ρ1 and ρ2 and Cj =

{(ej,1, ej,2, · · · , ej,K) : ej,i ∈ {γ(j,i)min , γ(j,i)max} ∀i} with j ∈ {1, 2} corresponding to ρ̇1

and ρ̇2.

Theorem 7. [60] Consider Σ1 and Σ2 be two finite-dimensional, square, stable LPV

systems, as described in (5.16), that satisfy the assumptions A1 and A2. Let Σ1 be

observable for all admissible ρ1 and A1(ρ1mean), A2(ρ2mean) be both Hurwitz. Also let

B2(ρ2) has full column rank, C2B2(ρ2) ≡ 0 and C2A2(ρ2) ̸≡ 0 for all admissible

ρ2. Assume there exist real, symmetric matrices P1,0, P1,1, P1,2, · · · , P1,K such that Σ1

satisfies (5.18a)–(5.18b) ∀(v1, e1) ∈ V1 × C1 and P2,0, P2,1, P2,2, · · · , P2,K such that Σ2

satisfies (5.21a)–(5.21c) ∀(v2, e2) ∈ V2 ×C2. Then the origin is a globally asymptotically

stable equilibrium point of the unforced positive feedback interconnection of Σ1 and Σ2

shown in Fig. 5.1 if

 P1(v1) −CT
1 C2

−CT
2 C1 P2(v2)

 > 0 ∀(v1, v2) ∈ V1 × V2.

Proof. [60] This theorem can be readily established by specializing the proof of

Theorem 6 to the interconnection of a stable LPV NI and an LPV OSNI systems upon

applying Lemmas 12 and 13 instead of Lemmas 10 and 11. ■

5.5 Case Study

Here, we consider a potential problem of controlling the rectilinear motion of a body

with time-varying mass (which prototypes the fuel dynamics of a rocket) being moti-

vated by a similar example taken in [13]. The time-varying mass is expressed by the

relation m(t) = m0 + mf e−αt where m(t) is the total mass of the body, mf is the

initial mass, m0 is the rest mass and α > 0. The equation of motion is given by

Σm : {m(t)q̈(t) + (ṁ(t) + c + k2) q̇(t) + k1q(t) = u(t) (5.22)

where the terms k1q(t) and cq̇(t) are additionally embedded within the system, to be

compatible with the LTV NI framework. The parameter c > 0 represents the static

drag of the body and k2 > 0 is chosen such that k2 > max
t≥0

(
1
2αmfe−αt − c

)
. Now

choosing position q(t) = x1 and velocity q̇(t) = x2, the augmented dynamics (5.22) can

be represented in the state-space form ẋ(t) = A1(t)x(t) + B1(t)u(t) and y(t) = C1x(t)
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where A1(t) =

 0 1
−k1
m(t)

−(ṁ(t)+c+k2)
m(t)

, B1(t) =

 0
1

m(t)

, C1 =
[

1 0
]

and x =

[x1 x2]T . First, we will show that the augmented dynamics (5.22) satisfies the LTV

OSNI property. Consider the Hamiltonian function H(t, x) = 1
2k1x1(t)2 + 1

2m(t)x2(t)2

associated with Σm. It can be verified that H(t, x) > 0 ∀t ∈ R≥0 and H(t0, 0) = 0 for

any t0 ≥ 0. The time derivate of H(t, x) is computed as Ḣ(t, x) = u(t)x2 − 1
2ṁ(t)x2

2 −

cx2
2 − k2x

2
2 − k1x1x2 + k1x1x2. Integrating this with respect to t from 0 to T ∈ [0, ∞),

we have
∫ T

0

(
u(t)x2 − 1

2ṁ(t)x2
2 − cx2

2 − k2x
2
2

)
dt = H(T, x(T )) − H(0, x(0)) ≥ β ∀T ∈

[0, ∞) denoting β = −H(0, x(0)) ∈ (−∞, 0] and since H(T, x(T )) ≥ 0 ∀T . The above

expression can be rearranged into
∫ T

0
ẏT u(t) dt ≥

∫ T

0

[1
2ṁ(t) + c + k2

]
ẏ(t)2 dt + β (5.23)

which implies LTV OSNI property via Definition 18 with δ = min
t≥0

{1
2ṁ(t) + c +

k2} > 0. Next, we will show that there exists a differentiable and bounded ma-

trix P1(t) = P1(t)T > 0 ∀t ∈ R≥0 such that Σm satisfies Lemma 11. We se-

lect P1(t) =

 P11(t) P12(t)

P21(t) P22(t)

 =

 k1 + e−t 1
t
η

+a0
0

0 m(t)

 where k1 ≥ 1, a0 > 0

and η = 2δ. It is evident that P1(t) = P1(t)T > 0 and P1(t)B1(t) = A1(t)T CT
1

∀t ∈ R≥0 since P1(t)B1(t) =

 P11(t) P12(t)

P12(t) P22(t)


 0

1
m(t)

 =

 0

1

 and A1(t)T CT
1 =

 0 1
−k1
m(t)

−(ṁ(t)+c+k2)
m(t)


T  1

0

 =

 0

1

. We then simplify the expression

Ṗ1(t) + P1(t)A1(t) + A1(t)T P1(t) =

 Ṗ11(t) 0

0 ṁ(t)

 +

 P11(t) 0

0 m(t)


 0 1

−k1
m(t)

−(ṁ(t)+c+k2)
m(t)

 +

 0 1
−k1
m(t)

−(ṁ(t)+c+k2)
m(t)


T  P11(t) 0

0 m(t)



=

 Ṗ11(t) P11(t) − k1

P11(t) − k1 −ṁ(t) − 2(c + k2)

 . (5.24)

Now on taking Schur complement with respect to the term −[ṁ(t)+2(c+k2)] of (5.24),

which remains negative ∀t ∈ R≥0 via choice of k2, we find that Ṗ11(t) + (P11(t)−k1)2

ṁ(t)+2(c+k2) =

− e−t

t
η

+a0
− 1

η( t
η

+a0)2 [e−t − e−2t] < 0 ∀t ∈ R≥0 since k1 ≥ 1, η = 2δ > 0, a0 > 0 and



CHAPTER 5. LINEAR TIME-VARYING NI SYSTEMS 91

e−t−e−2t ≥ 0 ∀t ∈ R≥0. Therefore, via Schur Complement Lemma, (5.24) is guaranteed

to be negative definite ∀t ∈ R≥0 and hence, the augmented dynamics Σm is an LTV

OSNI system via Lemma 11.

Finally, in order to ensure robust stability of Σm, we choose a simple LTI OSNI

controller K(s) = 1
s + 1 with a minimal state-space realisation (A2, B2, C2, D2) =

(−1, 1, 1, 0). K(s) satisfies Lemma 11 with P2 = 1. We will now check whether

Theorem 6 holds in this case or not. Inequality (5.13) holds ∀t ∈ R≥0 since, via Schur

Complement Lemma, P2 = 1 and P1(t) − CT
1 C2P

−1
2 CT

2 C1 =

 k1 + e−t

t
η

+a0
0

0 m(t)

 −

 1 0

0 0

 > 0 ∀t ∈ R≥0 on noting that m(t) > 0 and k1 + e−t

t
η

+a0
> 1 as k1 ≥ 1 via

design.

Matlab Simulation Results

We choose m0 = 1.5kg, mf = 1kg, α = 0.1, c = 10−2Ns/m, k2 = 0.1Ns/m and

k1 = 5N/m. Fig. 5.3a and Fig. 5.3b show a comparative study of the step response

(position and velocity) of the closed-loop dynamics (5.22) in presence of the LTI OSNI

controller K(s) = 1
s+1 [indicated by the Blue curves] and with only unity positive

feedback [indicated by the Red curves]. The figures suggest that due to the influence

of the controller, the dynamic response has improved to a significant extent compared

to that obtained by using only unity feedback (used as an arbitrary baseline for

comparison). Fig. 5.2a and Fig. 5.2b depict respectively the phase portraits (x2 vs. x1)

of the closed-loop dynamics (5.22) in presence of the controller K(s) and with only

unity feedback. In Fig. 5.2a, the rate of convergence of the phase trajectory is much

faster than shown in Fig. 5.2b. Apart from the phase portrait analysis, we have also

analysed the rate of decay of a standard cost function J = x2
1 + x2

2 evaluated along the

closed-loop dynamics (5.22). From Fig. 5.2c and Fig. 5.2d, it is evident that the rate

of decay of cost function J in presence of the LTI OSNI controller is much faster than

that with only unity positive feedback.
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Figure 5.2: Phase portrait (x2 vs. x1) of the closed-loop dynamics in presence of (a)
the LTI OSNI controller and (b) with only unity feedback. Level curves of the cost
function J = x2

1 + x2
2 evaluated in presence of (c) the LTI OSNI controller and (d) with

only unity feedback.



CHAPTER 5. LINEAR TIME-VARYING NI SYSTEMS 93

0 10 20 30 40 50
-3

-2

-1

0

1

2

3

4
with OSNI controller
with unity feedback

(a)

0 10 20 30 40 50
-4

-2

0

2

4
with OSNI controller
with unity feedback

(b)

Figure 5.3: Closed-loop step responses of the body with time-varying mass: (a) Position
(x1 = q) and (b) Velocity (x2 = q̇).

5.6 Conclusions

In this chapter, we extended the NI theory to LTV systems. The chapter started with

the time domain definition of LTV NI and OSNI systems. These definitions were given

with respect to a supply rate using the input and the derivative of the output. The LTV

OSNI systems presented are similar to the LTI OSNI systems introduced in [5,6]. The

chapter then addressed the issue of state-space characterization of LTV NI and OSNI

systems, which provide DLMI conditions for testing these properties and conditions for

global uniform asymptotic stability of LTV NI-OSNI positive feedback interconnection

were also presented. Furthermore, the LTV results were specialized to LPV systems,

where the state-space characterizations were given in terms of LMIs rather than DLMIs

as the former can easily be solved using commercial SDP solver packages. Finally, we

considered a numeric example to show the efficacy of the presented results.



Chapter 6

Dynamic Output Feedback

Controller Synthesis for Negative

Imaginary Systems Using Internal

Model Control Principle

All the materials presented in this chapter were submitted for publication

in [61].

6.1 Introduction

In this chapter, we focus on the NI synthesis problem where the aim is to synthesis

a controller that possess the NI (respectively SNI) property such that it robustly

stabilizes an SNI (respectively NI) plant.

For a nominal, stable, minimum phase plants, the IMC design principle provides a

simple method for designing robust controller by simply ensuring the Youla parameter

is also stable. But this nice property does not extend to uncertain dynamical systems.

However, almost all practical systems are uncertain and therefore, this design principle

cannot be applied to such systems.

In the literature, it was shown that IRC was an SNI type of controller in [20],

without providing a method for obtaining the parameters of the controller. However,

in [55], a nonlinear optimization procedure was provided for obtaining the controller

94
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parameters. However, nonlinear optimization is difficult to solve, which makes this

design procedure non-appealing.

Due to the aforementioned limitations of the existing NI controller synthesis tech-

niques, this chapter utilises the classical IMC [62,63] framework to design an appropri-

ate controller for the class of stable and minimum phase NI plants. The IMC scheme

shown in Fig. 6.1 has the primary control objective to design a stable Q(s), known as the

Youla parameter, such that good nominal performance is achieved and closed-loop sta-

bility is maintained even in the presence of a model mismatch [i.e. when Gm(s) ̸= G(s)].

This chapter proposes a positive feedback IMC scheme (refer to the equivalent block

diagram in Fig. 6.3) where the controller C(s) = Q(s)
[
I + Gm(s)Q(s)

]−1
is designed

to be either a stable NI/SNI/SSNI system depending on the degree of strictness of the

NI plant. By combining IMC design principle and the NI theory, we extend the nice

robustness property of the IMC design to uncertain, stable and minimum phase NI

systems.

A frequency domain approach and a numerically tractable LMI-based technique

will be presented for designing the IMC controller. The frequency domain approach

seeks to solve a constrained least-square problem, while the LMI-based technique

requires choosing a stable polynomial d(s) such that 1
d(s)Gm(s)−1 becomes strictly

proper. We also provide detailed guidelines on how to choose the required polynomial.

The LMI-based design technique facilitates easy implementation of the scheme via the

Matlab-based SDP solver packages (e.g. CVX, SeDumi, Yalmip) [95]. An in-depth

simulation case study (in Section 6.3) on the vibration control problem of a lightweight

cantilever beam (inspired by a real-world control problem of a vibration suppressor, as

shown in Fig. 6.2) is considered in this chapter to show the usefulness of the NI-based

IMC scheme.

Therefore, the major contributions of this chapter can be summarized as follows.

• Provide frequency domain based NI/SNI controller synthesis technique for stable

and minimum phase NI systems using the IMC principle by solving a constrained

least-square problem.

• Provide an LMI-based SSNI controller synthesis technique for stable and mini-

mum phase NI systems using the IMC principle.
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( )mG s

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
( )r t ( )y t

( )e t

Figure 6.1: Block diagram of the classical IMC scheme.

• Provide guidelines for choosing d(s), which is used as a tuning variable in the

LMI synthesis technique to improve the nominal performance.

• Provide a controller synthesis technique that ensures nominal set-pointing track-

ing in addition to robust stability using the NI framework.

6.1.1 IMC Principle in Brief

The classical IMC scheme has been adopted in this chapter from [62] and is shown in

Fig. 6.1. An IMC problem seeks to design a stable Q(s), known as the Youla parameter

[62], such that the closed-loop scheme shown in Fig. 6.1 has good nominal performance

and remains closed-loop stable when G(s) ̸= Gm(s). Conventionally, an IMC scheme

works with negative feedback. However, in this chapter, we have considered a positive

feedback IMC scheme to fit into the NI framework. The performance of an IMC scheme

highly relies on the accuracy of the model Gm(s) of the plant G(s) to be controlled.

Fig. 6.1 can equivalently be drawn as in Fig. 6.3 where the red-dotted block plays the

role of the internal model controller C(s) = Q(s) [I + Gm(s)Q(s)]−1.

The Youla parameter is often designed as Q(s) = Gm(s)−1F (s), where F (s) behaves

as a low-pass filter to be determined. The filter dynamics significantly affects shaping

the set-pointing tracking or regulatory response of an IMC scheme.

6.1.2 Problem Formulation

Given a stable and minimum phase NI (or SNI) plant G(s) and a reasonably accurate

mathematical (or identified) plant model Gm(s) that closely replicates the plant be-

haviour, design an NI/SNI/SSNI controller C(s) such that the positive feedback IMC



CHAPTER 6. CONTR. SYNT. FOR NI SYSTEMS USING IMC PRINCIPLE 97

A custom-made vibration suppressor

Figure 6.2: A custom-made vibration suppressor developed in the CDR Lab, Control
Systems Centre, University of Manchester, for testing the NI controller synthesis
algorithms.
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1( ) ( ) ( )m fQ s G s G s

( )u t

Figure 6.3: Equivalent block diagram of the classical IMC scheme shown in Fig. 6.1.

scheme shown in Fig. 6.3 [which is equivalent to Fig. 6.1] remains robustly stable and

facilitates perfect nominal constant reference input tracking.

In the next section, we will present a frequency domain and an LMI-based design

methodology for constructing the NI-based IMC controller C(s), as shown in Fig. 6.3,

for any stable and minimum phase NI plant G(s) with a known G(0) and having an

identified stable NI plant model Gm(s) satisfying Gm(0) ≥ G(0).

6.2 Controller Design Methodologies for Stable NI

or SNI Systems using the IMC Principle

Our objective is to develop an IMC scheme for SNI or stable NI systems (both SISO

and MIMO) utilising the NI property and the closed-loop stability result of an NI-SNI

interconnection (Theorem 4). The proposed idea builds on the classical IMC framework
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shown in Fig. 6.3 and offers a frequency domain and an LMI-based design methodology

to synthesize a stable NI/SNI/SSNI controller C(s) such that the positive feedback

closed-loop interconnection of G(s) and C(s) in Fig. 6.3 remains asymptotically stable.

6.2.1 A Frequency Domain Approach for the NI-Based IMC

Design

Before we present the frequency domain design technique for synthesizing the controller,

we want to recall the standard polynomial factorisation principle in terms of its even

and odd terms. A frequency domain polynomial P (s) can be factored as

P (s) = P0 + P2s
2 + . . .︸ ︷︷ ︸

Peven(s2)

+s (P1 + P3s
2 + . . . )︸ ︷︷ ︸

Podd(s2)

such that if P (jω) = Pr(ω)+jPi(ω), then Pr(ω) = Peven(−ω2) and Pi(ω) = ωPodd(−ω2)

for all ω ∈ R. Using this factorization, the plant model Gm(s) can be decomposed as

Gm(jω) = Nm(jω)
Dm(jω) = Nmr(ω) + jNmi(ω)

Dmr(ω) + jDmi(ω) .

The following lemma offers a sufficient-type frequency domain condition involving

a scalar parameter k > 0 for designing the controller C(s) via the positive feedback

IMC scheme shown in Fig. 6.3. It suggests that an SNI (stable NI) controller C(s) =
kDm(s)

(s + 2k)Nm(s) can stabilise a SISO, minimum phase, stable NI (or SNI) plant G(s)

having relative degree 0 or 1. It also facilitates perfect steady state tracking when

Gm(0) = G(0), as discussed in Remark 13.

Lemma 14. [61] Let G(s) be a SISO, minimum phase, stable NI (or SNI) plant with

a known G(0) and Gm(s) be a stable NI (or SNI) model of the plant having relative

degree 0 or 1 with Gm(0) > 0. Let F (s) = k

s + k
, with k > 0, be the desired nominal

closed-loop transfer function. Then, the controller C(s) = kDm(s)
(s + 2k)Nm(s) is SNI (or

stable NI) and the positive feedback interconnection between C(s) and G(s), shown in

Fig. 6.3, is closed-loop stable if Gm(0) ≥ G(0) and

kω
[
Dmr(ω)Nmr(ω) + Dmi(ω)Nmi(ω)

]
+ 2k2

[
Dmr(ω)

Nmi(ω) − Dmi(ω)Nmr(ω)
]

> 0 (≥ 0) ∀ω ∈ (0, ∞) . (6.1)

Furthermore, when r(∞) exists, y(∞) = ( G(0)
Gm(0))

2−( G(0)
Gm(0))

r(∞), where y(t) and r(t) are

the output and reference signals as shown in Fig. 6.3.
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Proof. [61] We begin the proof on noting that Gm(jω) = Nm(jω)
Dm(jω) = Nmr(ω) + jNmi(ω)

Dmr(ω) + jDmi(ω) .

Utilising this decomposition, the proposed controller transfer function C(s) can be

expanded as:

C(jω) = k (Dmr(ω) + jDmi(ω))
(jω + 2k) (Nmr(ω) + jNmi(ω)) . (6.2)

In order to establish the SNI (or stable NI) property of the controller C(s), we expand

its imaginary-Hermitian part as follows:

j [C(jω) − C(jω)∗]

= j

[
k (Dmr(ω) + jDmi(ω))

(jω + 2k)(Nmr(ω) + jNmi(ω)) − k(Dmr(ω) − jDmi(ω))
(−jω + 2k)(Nmr(ω) − jNmi(ω))

]

= α(ω)
β(ω) > 0 (≥ 0) ∀ω ∈ (0, ∞),

where α(ω) = 2kωDmr(ω)Nmr(ω)+4k2Dmr(ω)Nmi(ω)+2kωDmi(ω)Nmi(ω)−4k2Dmi(ω)Nmr(ω)

and β(ω) = ω2N2
mr(ω) + ω2N2

mi(ω) + 4k2N2
mr(ω) + 4k2N2

mi(ω).

Now, β(ω) > 0 ω ∈ (0, ∞) since it has all squared terms with positive signs and

α(ω) is restricted to positive (or non-negative) values for all ω ∈ (0, ∞) via (6.1).

Hence, C(s) is SNI (or stable NI) by construction. Furthermore, since Gm(0) > 0, it

follows that C(0) > 0. Moreover, the proposed controller stabilises the stable NI (or

SNI) plant G(s) in a positive feedback loop as the DC loop gain condition is satisfied:

C(0)G(0) ≤ C(0)Gm(0) = kDm(0)
2kNm(0) × Nm(0)

Dm(0) = 1
2 < 1. In addition, we can easily show

that y(∞) = ( G(0)
Gm(0))

2−( G(0)
Gm(0))

r(∞) when r(∞) exists. This completes the proof. ■

The following lemma offers another sufficient-type frequency domain condition

involving two scalar parameters k, b > 0 for the IMC controller design. Lemma 15

puts forward an SNI (or stable NI) controller having a particular stricture C(s) =
kDm(s)

Nm(s)(s2 + bs + 2k) that can stabilise a SISO, minimum phase, stable NI (or SNI)

plant G(s) having relative degree 2. Similar to Lemma 14, it also depends on the

identified plant model Gm(s) and facilitates perfect steady state tracking when Gm(0) =

G(0) [see Remark 13]. However, to ensure robust stability, it also requires Gm(0) ≥

G(0).

Lemma 15. [61] Let G(s) be a SISO, minimum phase stable NI (or SNI) plant with

a known G(0) and Gm(s) be a SISO, stable NI (or SNI) model of the plant having

relative degree 2 with Gm(0) > 0. Let F (s) = k

s2 + bs + k
, with k, b > 0, be the desired
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closed-loop transfer function. Then, the controller C(s) = kDm(s)
Nm(s)(s2 + bs + 2k) is SNI

(or stable NI) and the positive feedback interconnection between C(s) and G(s), as

shown in Fig. 6.3, is closed-loop stable if Gm(0) ≥ G(0) and

2k2
[
Dmr(ω)Nmi(ω) − Dmi(ω)Nmr(ω)

]
+ ωkb

[
Dmr(ω)Nmr(ω) + Dmi(ω)Nmi(ω)

]
+ ω2k

[
Dmi(ω)Nmr(ω) − Dmr(ω)Nmi(ω)

]
> 0 (≥ 0) ∀ω ∈ (0, ∞). (6.3)

Furthermore, whenever r(∞) exists, y(∞) = ( G(0)
Gm(0))

2−( G(0)
Gm(0))

r(∞), where y(t) and r(t)

are the output and reference signals as shown in Fig. 6.3.

Proof. [61] Similar to the proof of Lemma 14, we begin this proof by recalling

the transfer function decomposition Gm(jω) = Nm(jω)
Dm(jω) = Nmr(ω)+jNmi(ω)

Dmr(ω)+jDmi(ω) . The filter has

been considered to be F (s) = k

s2 + bs + k
. Then, the controller transfer function can

be expressed as:

C(jω) = k(Dmr(ω) + jDmi(ω))
(Nmr(ω) + jNmi(ω))(−ω2 + jωb + 2k) . (6.4)

To show that the proposed controller C(s) satisfies the SNI (or stable NI) property, we

proceed as follows:

j [C(jω) − C(jω)∗] = α(ω)
β(ω) , where

α(ω) = 4k2(Dmr(ω)Nmi(ω) − Dmi(ω)Nmr(ω)) + 2ωkb(Dmr(ω)Nmr(ω)+

Dmi(ω)Nmi(ω)) + 2ω2k(Dmi(ω)Nmr(ω) − Dmr(ω)Nmi(ω)) and

β(ω) = ω2b2N2
mr(ω) + (ω2Nmr(ω) − 2kNmr(ω))2 + ω2b2N2

mi(ω)+

(ω2Nmi(ω) − 2kNmi(ω))2

Now, β(ω) > 0 ∀ ω ∈ (0, ∞) has all squared terms with positive signs and α(ω) is

restricted to be positive (or non-negative) values for all ω ∈ (0, ∞) via (6.3). Hence,

C(s) is SNI (or stable NI) via design with C(0) > 0 as Gm(0) > 0. C(s) also stabilises

the stable NI (or SNI) plant G(s) in a positive feedback loop satisfying the DC loop

gain condition C(0)G(0) ≤ C(0)Gm(0) = kDm(0)
2kNm(0) × Nm(0)

Dm(0) = 1
2 < 1. It can also be

readily shown that y(∞) = ( G(0)
Gm(0))

2−( G(0)
Gm(0))

r(∞) when r(∞) exists. This completes the proof.

■
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Remark 13. It can be readily shown that a SISO IMC controller C(s) synthesized

via Lemma 14 or Lemma 15 achieves perfect nominal steady state reference input

tracking even in the case of a model mismatch as long as the DC gains of the plant

and its model remain the same [i.e. G(0) = Gm(0)]. This is an advantage of the

proposed scheme because in practice, it is nearly impossible to identify a perfect model

of the plant, however, the DC gain of the plant can be measured with a high degree

of accuracy. From Fig. 6.3, the closed-loop transfer function T (s) from the reference

input R(s) to the output Y (s) is given by T (s) = G(s)C(s)
1−G(s)C(s) , where C(s) = Q(s)

1+Gm(s)Q(s)

and Q(s) = Gm(s)−1F (s). Hence, T (0) = G(0)Gm(0)−1F (0)
[1+F (0)−G(0)Gm(0)−1F (0)] = 1 on noting that

Gm(0) = G(0).

Remark 14. The frequency domain approach offers complete freedom in choosing the

filter dynamics F (s) by solving a simple constrained least-square estimation problem.

As the closed-loop response y(t) of the IMC scheme (Fig. 6.3) subjected to r(t) is mainly

governed by the filter, the frequency domain approach can be conveniently used to design

an IMC controller satisfying the desired transient performance criteria. However, this

method may not be effective for higher-order or MIMO systems since the procedure

involves a lengthy hand-driven calculation. These calculations arise in setting up the

constrained least-square estimation problem which is used to ensure that α(ω) is positive

or non-negative ∀ ω ∈ (0, ∞) depending on the controller to be synthesized.

6.2.2 An LMI-Based Approach for the NI-Based IMC Design

Here, we present the LMI-based synthesis technique.

Theorem 8. [61] Let G(s) ∈ RHm×m
∞ be a minimum phase NI plant and Gm(s) ∈

RHm×m
∞ be a minimum phase NI-model of the plant with Gm(0) ≥ 0. Choose a

stable polynomial d(s) such that H(s) = 1
d(s)Gm(s)−1 is strictly proper. Let H(s) have

a minimal state-space realisation

 AH BH

CH 0

 with a full-rank CH matrix. Suppose

there exists real matrices Ā, B̄, C̄, D̄, Y = Y ⊤ and X = X⊤ of appropriate dimensions
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such that  Φ11
(
Ā⊤ + AH

)
(
Ā⊤ + AH

)⊤
Φ22

 < 0, (6.5a)

 Φ13

B̄ + ĀC⊤
H

 = 0, (6.5b)


Φ11

(
Ā⊤ + AH

)
Y C⊤

H(
Ā⊤ + AH

)⊤
Φ22 C⊤

H

CHY CH −Im

 ≤ 0, (6.5c)

 Y In

In X

 > 0 and (6.5d)

Gm(0) 1
2
[
CHY C⊤

H

]
Gm(0) 1

2 < Im, (6.5e)

where the following shorthand

Φ11 = AHY + Y A⊤
H + BHC̄ + C̄⊤B⊤

H ,

Φ13 = BHD̄ + AHY C⊤
H + BHC̄C⊤

H ,

Φ22 = XAH + A⊤
HX,

(6.6)

has been used in (6.5a)-(6.5c).

Construct an auxiliary system Σ(s) as Σ(s) = DΣ + CΣ
(
sI − AΣ

)−1
BΣ where

DΣ = D̄,

CΣ = C̄N−⊤,

BΣ = M−1(B̄ − XBHD̄),

AΣ = M−1
(
Ā − XAHY − XBHC̄

)
N−⊤,

(6.7)

and M and N are square and non-singular solutions of the algebraic equation NM⊤ =

In − Y X. Then, the controller C(s) = H(s)Σ(s) is SSNI and robustly stabilises G(s)

when G(0) ≤ Gm(0).

Proof. [61] We begin the proof on noting that C(s) = Q(s)
[
I + Gm(s)Q(s)

]−1
in

the proposed IMC scheme shown in Fig. 6.1, where the Youla parameter matrix Q(s)

is parametrised as Q(s) = Gm(s)−1F (s). F (s) plays the role of a low-pass filter, which

is to be determined. The proof proceeds through the following nine steps.
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Step 1: We choose a stable polynomial d(s) such that 1
d(s)Gm(s)−1 is strictly proper.

Accordingly, Q(s) = Gm(s)−1F (s) is modified to Q(s) = 1
d(s)Gm(s)−1F̄ (s) where

F (s) = 1
d(s) F̄ (s). Now, F̄ (s) is to be determined instead of F (s). Denote H(s) =

1
d(s)Gm(s)−1 and let H(s) have a minimal state-space realisation

 AH BH

CH 0

.

Step 2: We then obtain the expression of the controller C(s) = Q(s)
[
I+Gm(s)Q(s)

]−1
=

H(s)
(

F̄ (s)
[
I + F (s)

]−1
)

substituting Q(s) = H(s)F̄ (s). Denote Σ(s) = F̄ (s)
[
I +

F (s)
]−1

and let Σ(s) have a minimal state-space realisation

 AΣ BΣ

CΣ DΣ

. After

that, we derive the state-space representation of the controller C(s) = H(s)Σ(s) as Ac Bc

Cc Dc

 =


AH BHCΣ BHDΣ

0 AΣ BΣ

CH 0 0

.

Step 3: Now, C(s) =

 Ac Bc

Cc Dc

 is SSNI if (Ac, Cc) is observable and there exists

Y = Y⊤ > 0 such that 
AcY + YA⊤

c < 0 and

Bc + AcYC⊤
c = 0

(6.8)

via Lemma 8.

Since the conditions (6.8) are not in an LMI form due to the presence of the terms

containing products of the unknown controller variables, a linearising change in the

controller variables is required to transform (6.8) into an LMI form.
Step 4: We partition, as in [73], the closed-loop Lyapunov matrix Y and Y−1 as

follow:

Y =

 Y N

N⊤ •

 and Y−1 =

 X M

M⊤ •

 , (6.9)

where Y = Y ⊤ ∈ Rn×n and X = X⊤ ∈ Rn×n and the symbol • represents the matrices

that are not explicitly used in the linearisation process. Note Y−1 exists since Y > 0

via (6.5d), which has been explained subsequently in Step 5. Note also that X, Y , M ,

N are not independent LMI variables but must satisfy NM⊤ = In − Y X (see [73] for
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details). Since M and N are square and non-singular, the following block matrices

Π1 =

 In X

0 M⊤

 and Π2 =

 Y In

N⊤ 0

 (6.10)

are also non-singular. Π1 and Π2 are related through the expression

YΠ1 = Π2, (6.11)

which has been obtained from the fundamental relationship YY−1 = I.

Step 5: The positive definiteness of the Lyapunov candidate matrix Y =

 Y N

N⊤ •


is guaranteed by (6.5d) via the congruence transformation, as shown below:

Π⊤
1 YΠ1 =

 Y In

In X

 > 0. (6.12)

Step 6: Applying an appropriate congruence transformation on (6.8) with the help of

the block diagonal matrix diag{Π1, I}, we get
Π⊤

1

(
AcY + YA⊤

c

)
Π1 < 0,

Π⊤
1

(
Bc + AcYC⊤

c

)
= 0;

(6.13)

and then, inserting a new set of LMI variables

Ā = MAΣN⊤ + XAHY + XBHCΣN⊤,

B̄ = MBΣ + XBHDΣ,

C̄ = CΣN⊤,

D̄ = DΣ;

(6.14)

into (6.13), we obtain

 Φ11
(
Ā⊤ + AH

)
(
Ā⊤ + AH

)⊤
Φ22

 < 0 and

 Φ13

B̄ + ĀC⊤
H

 = 0.

These two conditions are linear in Ā, B̄, C̄, D̄, Y > 0, X > 0 and they are indeed the

same as (6.5a) and (6.5b).

Step 7: The pair (Ac, Cc) is observable via (6.5c) since the associated Observability

Gramian [12] condition PAc + A⊤
c P + C⊤

c Cc ≤ 0 ⇔ AcY + YA⊤
c + YC⊤

c CcY ≤ 0,

where Y = P−1 > 0, is equivalent to (6.5c) via a congruence transformation with

respect to diag{Π1, Im} and taking a Schur complement [12]. Note also that the
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matrix Cc =
[

CH 0
]

has full row-rank since rank[CH ] = m via assumption. This

implies from the expression Bc +AcYC⊤
c = 0 that Bc has full column-rank, since Y > 0

and Ac is Hurwitz via (6.5a). Hence, the LMI conditions (6.5a)–(6.5d) jointly ensure

that C(s) is SSNI (via Lemma 8).

Step 8: Reconstruct the auxiliary filter Σ(s) = DΣ + CΣ
(
sI − AΣ

)−1
BΣ via



DΣ = D̄,

CΣ = C̄N−⊤,

BΣ = M−1(B̄ − XBHD̄),

AΣ = M−1
(
Ā − XAHY − XBHC̄

)
N−⊤,

where M and N are square and non-singular solutions of the algebraic equation NM⊤ =

In−Y X. From the knowledge of Σ(s), retrieve the filter F (s) relying on the relationship

F (s) = 1
d(s)Σ(s)

[
I − 1

d(s)Σ(s)
]−1

. Finally, we also construct the Youla parameter

Q(s) = Gm(s)−1F (s) and the desired controller C(s) = Q(s)
[
I + Gm(s)Q(s)

]−1
=

H(s)Σ(s) = 1
d(s)Gm(s)−1Σ(s).

Step 9: The inequality condition (6.5e) is equivalent to Gm(0) 1
2 C(0)Gm(0) 1

2 < I

since C(0) = CcYC⊤
c = CHY C⊤

H . This, in turn, is equivalent to λmax[C(0)Gm(0)] < 1

via [15]. As Gm(0) ≥ G(0) via assumption and C(0) ≥ 0 via construction, the preceding

condition implies λmax[C(0)G(0)] < 1. Therefore, the positive feedback interconnection

(in Fig. 6.3) of C(s), being SSNI, and G(s), being a stable and minimum phase NI

system, satisfies all the assumptions of Theorem 4, as well as the DC loop gain condition.

Hence, the interconnection is robustly stable. This completes the proof. ■

Remark 15. Unlike the frequency domain approach, the LMI-based approach can

efficiently handle higher-order and MIMO systems. However, in the LMI approach,

the filter F(s) is not explicitly selected by the designer. It is reconstructed from the

variables obtained from the solution of the LMIs. Therefore, we cannot guarantee the

fulfilment of all desired closed-loop performance criteria "a priori" via this approach.

In this situation, the choice of the stable polynomial d(s) becomes crucial as it is the

only design parameter that can be selected "a priori" to achieve a desired closed-loop

response.

Remark 16. A necessary and sufficient condition for the stability of an IMC scheme
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where the open-loop system G(s) is stable is that the Youla parameter Q(s) must be sta-

ble. In the proposed NI-based IMC scheme in Fig. 6.3, Q(s) = C(s) [I − Gm(s)C(s)]−1,

which is a positive feedback interconnection between C(s) and Gm(s), can be readily

shown to be stable. Since Gm(s) is stable NI and C(s) is designed to be SNI/SSNI

(either via the frequency domain approach or via the LMI-based methodology) satisfying

the condition λmax[C(0)Gm(0)] < 1, Theorem 8 guarantees the internal stability of the

NI-based IMC scheme in Fig. 6.3, which, in turn, implies the stability of Q(s).

6.2.3 Set-Pointing Tracking Performance of the LMI-Based

(NI) IMC Scheme

The following lemma shows that under a reasonable and practically feasible assumption

Gm(0) = G(0), perfect steady state reference input tracking can be achieved by the

proposed scheme if the inequality condition (6.5e) is replaced by the equality condition

Gm(0) 1
2 CHY C⊤

HGm(0) 1
2 = 1

2I, keeping (6.5a)–(6.5d) intact.

Lemma 16. [61] Let G(s) ∈ RHm×m
∞ be a minimum phase NI plant with a known

G(0). Suppose Gm(0) = G(0) > 0. Then, the NI-based IMC scheme, developed

in Theorem 8, achieves perfect set-point tracking (i.e. lim
t→∞

[
−r(t) + y(t)

]
= 0) for

a constant reference signal r(t) if the condition (6.5e) in Theorem 8 is modified to

Gm(0) 1
2

[
CHY C⊤

H

]
Gm(0) 1

2 = 1
2Im.

Proof. [61] The closed-loop transfer function matrix from the reference input r to

the output y of the IMC scheme, shown in Fig. 6.3, is given by T (s) = G(s)C(s)
[
I −

G(s)C(s)
]−1

. Now, substituting the expression C(s) = Gm(s)−1F (s)
[
I + F (s)

]−1
and

upon simplifying, we get T (s) = G(s)Gm(s)−1F (s)
[
I + F (s) − G(s)Gm(s)−1F (s)

]−1
.

This readily implies T (0) = F (0) when Gm(0) = G(0). Also, Gm(0) 1
2

[
CHY C⊤

H

]
Gm(0) 1

2 =
1
2Im ⇔ Gm(0) 1

2 C(0) Gm(0) 1
2 = 1

2Im ⇔ Gm(0)−1F (0)
[
I + F (0)

]−1
= 1

2Gm(0)−1 ⇒

F (0) = I. This hence ensures that yss = lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

sT (s)R(s) =

lim
s→0

sF (s) R(s) = F (0) lim
s→0

sR(s) = rss, since F (0) = I and on noting that lim
s→0

sR(s) =

rss is constant. ■

Remark 17. Lemma 16 proves that the NI-based IMC scheme proposed via Theorem 8

facilitates perfect steady state reference tracking when r(∞) exists despite a model
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mismatch [i.e. when Gm(s) = G(s)] as long as Gm(0) = G(0). This is not an overly

restrictive assumption because, in practice, it is possible to measure the steady state

gain (i.e. the DC gain) of a plant accurately. In that case, it is also possible to identify

a reasonably accurate plant model Gm(s) having the same DC gain as that of the real

plant. However, the robust stability of the IMC scheme (in Fig. 6.3) remains unaffected

in the presence of a model mismatch as long as G(0) ≤ Gm(0) since the closed-loop

stability depends only the DC loop gain condition λmax[C(0)G(0)] < 1, as established

in Theorem 8.

6.2.4 Guidelines on How to Choose the Polynomial d(s)

The choice of the stable polynomial d(s) that we suggest in the proposed IMC design

methodology is based on empirical analysis rather than a theoretical analysis. We have

considered four different models Gm1(s), Gm2(s), Gm3(s) and Gm4(s) of a cantilever

beam conforming with the practical setup shown in Fig. 6.2. The first model considered

is a second-order system Gm1(s) = 1
s2+0.2s+1 , which has its resonant mode at ω =

1 rad/s. The next model we consider is still a second-order system Gm2(s) = 13
s2+0.1s+358 ,

but it has a higher resonant frequency ω = 19 rad/s. Next, we consider a fourth-order

model Gm3(s) = 1
s2+0.2s+2 + 4

s2+0.23s+9 having two resonant modes at ω = 1.41 rad/s and

ω = 3 rad/s respectively. Finally, we consider a sixth-order model Gm4(s) = 1
s2+0.2s+2 +

4
s2+0.23s+9 + 7

s2+0.15s+13 having three resonant modes at ω = {1.37, 2.93, 3.6} rad/s

respectively.

For each plant model, we have chosen thirty different d(s) candidates as men-

tioned in Tables A.1–A.4 [Appendix A] and then found thirty controller transfer

functions {C1(s), C2(s), · · · , C30(s)} for each model Gmj
(s) ∀j ∈ {1, 2, 3, 4} subject to

{d1(s), d2(s), · · · , d30(s)}, using the LMI-based design algorithm. Fig. 6.4a, Fig. 6.5a,

Fig. 6.6a and Fig. 6.7a show the Bode plots of the closed-loop transfer functions

{T1(s), T2(s), · · · , T30(s)} computed for each of the thirty Ci(s) ∀i ∈ {1, 2, . . . , 30}

obtained for each plant model Gmj
(s). Similarly, Fig. 6.4b, Fig. 6.5b, Fig. 6.6b and

Fig. 6.7b show the impulse responses of the closed-loop systems Ti(s) ∀i ∈ {1, 2, . . . , 30}

as mentioned before. The choice of each set of polynomials {d1(s), d2(s), · · · , d30(s)}

depends primarily on the resonant modes of the plant model and they are constructed

such that some of the roots are real and slower, some of them are real and faster and
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the rest are complex. This wide range of test cases and their comparative study with

respect to the time domain performance criteria (e.g. peak overshoot, settling time,

bandwidth, etc.) help us to suggest useful guidelines for selecting an effective d(s) for

a given plant model.

The following summarize our findings on the effect of d(s) on the performance of

the closed-loop response.

• Bandwidth: A leftward-shift of the negative real roots of d(s) or an increase in

the natural frequency of complex roots increases the bandwidth of the closed-loop

system;

• Settling time: A leftward-shift of the roots of d(s) decreases the settling time

of the step (or impulse) response. However, a substantial left-shift may also

increase the settling time as the closed-loop system becomes more oscillatory.

On the other hand, changing the imaginary parts of the complex roots of d(s)

whilst keeping the real parts unchanged does not have any significant impact on

the settling time;

• Peak overshoot: A leftward-shift of the negative real roots of d(s) or an increase

in the natural frequency of complex roots increases the speed of the step and

impulse responses, but at the cost of an higher peak overshoot;

• Fastest controller pole: A leftward-shift of the real or complex roots of d(s)

drives the controller poles to be faster. However, this causes an increase in the

control input demand.

Let the notation D
[
Gm(s)

]
be Gm(s)−1. From the extensive simulation studies

shown in Fig. 6.4a–6.7a and Fig. 6.4b–6.7b and Tables A.1–A.4, we observe that a

choice of d(s) = (s + a)D
[
Gm(s)

]
, where the parameter a is selected as the frequency

of the first resonant mode of Gm(s), offers an acceptable trade-off between the speed

of response and the settling time. It also does not result in controller poles that are

too fast, which inevitably demands higher control effort. However, this choice may

increase the peak of the impulse response. In applications where a reduction in the

peak overshoot is preferable over the other time domain performance criteria, one could

choose the real root s = −a of d(s) at one or two decade(s) of frequency below the

first resonant mode of Gm(s).
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Figure 6.4: (a) Bode plots of the closed-loop transfer function Ti(s) = Gm1 (s)Ci(s)
1−Gm1 (s)Ci(s) ∀i ∈

{1, 2, . . . , 30} corresponding to {d1(s), d2(s), · · · , d30(s)} as mentioned in Table A.1;
(b) Impulse responses of Ti(s) for all i.
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Figure 6.5: (a) Bode plots of the closed-loop transfer function Ti(s) = Gm2 (s)Ci(s)
1−Gm2 (s)Ci(s) ∀i ∈

{1, 2, . . . , 30} corresponding to {d1(s), d2(s), · · · , d30(s)} as mentioned in Table A.2;
(b) Impulse responses of Ti(s) for all i.
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Figure 6.6: (a) Bode plots of the closed-loop transfer function Ti(s) = Gm3 (s)Ci(s)
1−Gm3 (s)Ci(s) ∀i ∈

{1, 2, . . . , 30} corresponding to {d1(s), d2(s), · · · , d30(s)} as mentioned in Table A.3;
(b) Impulse responses of Ti(s) for all i.
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Figure 6.7: (a) Bode plots of the closed-loop transfer function Ti(s) = Gm4 (s)Ci(s)
1−Gm4 (s)Ci(s) ∀i ∈

{1, 2, . . . , 30} corresponding to {d1(s), d2(s), · · · , d30(s)} as mentioned in Table A.4;
(b) Impulse responses of Ti(s) for all i.
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Remark 18. The choice of d(s) = (s + a)D
[
Gm(s)

]
introduces the inverse dynamics

of the model Gm(s) into the closed-loop system. If the plant model has poorly damped

zeros, we can instead choose d(s) = (s + a)p, where the parameter a is selected as the

frequency of the first resonant mode of Gm(s) and p ≥ (n−m)+1 such that 1
d(s)Gm(s)−1

becomes strictly proper (preferably with relative degree equals one). This choice of d(s)

results in a reduced overshoot of the closed-loop step/impulse response, but at the cost

of compromising the speed.

6.3 Simulation Case Study

ADC

Voltage 
Amplifier

DC motor

Pulley

Slider

Cantilever 
beam

Slider rail

PC (controller)

MFC sensor
MFC actuator

Belt 
Charge 

Amplifier

dSPACE

DAC

Figure 6.8: Schematic diagram of the proposed closed-loop control for the vibration
suppressor using dSPACE platform.

This section will apply the proposed NI-based IMC scheme for the vibration control

of a lightweight cantilever beam attached to a fixed end. The schematic diagram of

the closed-loop control set-up of the vibration suppressor is shown in Fig. 6.8. The

beam is equipped with a pair of collocated Macro Fiber Composite (MFC) sensor

and actuator patches. This set-up prototypes the custom-made vibration suppressor

shown in Fig. 6.2. A simplified, finite-dimensional, minimum phase, stable NI transfer

function model of the lightweight cantilever beam in Fig. 6.2 and Fig. 7.1 is given by

[refer to Subsection 7.2.2 for identification details]

Gm(s) = 30050(s2 + 1.996s + 7631)
(s2 + 1.108s + 6350)(s2 + 28.43s + 2.21 × 105) . (6.15)
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We now test the usefulness of Lemma 14, Lemma 15 and Theorem 8 in designing

an IMC scheme for stable NI/SNI plants. It can be readily verified that a minimal

state-space realisation of Gm(s) satisfies the NI lemma (i.e. Lemma 6) with

Y =



0.0026 −0.0000 −0.0039 0.0001

−0.0000 0.0155 −0.0005 −0.0333

−0.0039 −0.0005 0.0334 −0.0001

0.0001 −0.0333 −0.0001 0.0856


> 0,

which indicates that Gm(s) is NI. For a graphical interpretation, we have also included

the Bode plot of Gm(s) in Fig. 6.9, which confirms the NI property of the plant model

Gm(s).
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Figure 6.9: Bode plot of the plant model Gm(s).

6.3.1 Frequency Domain Approach for IMC Design

Following the ideas presented in Subsection 6.2.1, we can decompose the plant model

as Gm(jω) = Nm(jω)
Dm(jω) = Nmr(ω) + jNmi(ω)

Dmr(ω) + jDmi(ω) where

Dmr(ω) = ω4 − 2.272 × 105ω2 + 1.41 × 109,

Dmi(ω) = 4.017 × 105ω − 29.75ω3,

Nmr(ω) = 2.293 × 108 − 30050ω2 and

Nmi(ω) = 5.998 × 104.
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Since the plant model Gm(s) has relative degree 2, we choose the filter F1(s) =
k

(s2 + bs + k) and the controller C1(s) = kDm(s)
Nm(s)(s2 + bs + 2k) following Lemma 15.

The controller parameters b, k > 0 need to be selected such that C1(s) becomes SNI

(or stable NI). According to Lemma 15, C1(s) is SNI (or stable NI) if

2k2(−8.34 × 105ω5 + 5.27 × 109ω3 − 7.5 × 1012ω)+

ωkb(−30050ω6 + 7.06 × 109ω4 − 9.45 × 1013ω2+

3.23 × 1017) + ω2k(8.34 × 105ω5 − 5.27 × 109ω3

+ 7.5 × 1012ω) > 0 (≥ 0) ∀ω ∈ (0, ∞).

The polynomial in the left-hand side of the above inequality

(8.34 × 105k − 30050kb)ω7+

(7.06 × 109kb − 1.67 × 106k2 − 5.27 × 109k)ω5+

(1.05 × 1010k2 − 9.45 × 1013kb − 7.5 × 1012k)ω3+

(3.23 × 1017kb − 1.50 × 1013k2)ω

remains positive ∀ω ∈ (0, ∞) if the coefficients of all the ω terms take on positive

values, which can be mathematically formulated as

0 30050

1.67 × 106 −7.06 × 109

−1.05 × 1010 9.45 × 1013

1.51 × 1013 −3.23 × 1017


 k

b

 ≤



8.34 × 105

−5.27 × 109

−7.5 × 1012

0


.

This can be considered a constrained, linear, least-square problem, which can readily

be solved using the commercially available SDP solver packages. We set the lower

bounds for k and b as 100 and 20, respectively, so that the filter poles can be placed

at s1,2 = −10. This choice of the filter poles is an arbitrary one to ensure that the

closed-loop system is neither too sluggish nor too fast. Solving the least-square problem

using CVX [95], we get a feasible solution k ≤ 4.2891 × 105 and b ≤ 20. The filter is

obtained as F1(s) = 1
s2 + 20s + 100 and the desired SNI controller is given by

C1(s) = α1(s)
β1(s) , (6.16)

where α1(s) = 3.3278 × 10−3(s2 + 1.108s + 6350)(s2 + 28.43s + 2.21 × 105) and β1(s) =

(s2 + 20s + 200)(s2 + 1.996s + 7631). We then verify the DC loop gain condition
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C1(0)Gm(0) = 3.0599 × 0.1634 = 0.4999 < 1. Hence, the NI-based IMC scheme shown

in Fig. 6.3 is guaranteed to be internally stable via Theorem 4. Figure 6.10 confirms

the SNI property of the synthesized controller.

Figure 6.10: Nyquist plot of the controller C1(s) designed via the frequency domain
approach.

6.3.2 LMI-Based Approach for IMC Design

To proceed with the controller design methodology according to Theorem 8, we choose

the polynomial d(s) = (s + 80)D
[
Gm(s)

]
since the plant model Gm(s) has the first

resonant peak at ω = 80 rad/s. Upon solving the set of LMI conditions (6.5a)–(6.5e),

we obtain the desired SSNI controller

C2(s) = 14.383(s + 1429)
(s + 80)(s + 83.97) (6.17)

and reconstruct the filter transfer function

F2(s) = α2(s)
β2(s) ,

where α2(s) = 4.3222 × 105(s + 1429)(s2 + 1.996s + 7631), β2(s) = (s + 132.1)(s +

24.99)(s2 + 4.647s + 6394)(s2 + 31.79s + 2.234 × 105) and C2(s) = Gm(s)−1F2(s)
[
I +

F2(s)
]−1

. The Nyquist plot of C2(s) in Fig. 6.11 confirms that C2(s) is SSNI since its

phase angle contribution ϕc ∈ (−π, 0) ∀ω ∈ (0, ∞) and lim
ω→∞

ϕc(ω) = −π
2 . It can be
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readily verified that the DC loop gain is less than one [C2(0)G(0) = C2(0)Gm(0) =

3.0599 × 0.1634 = 0.5000 < 1], which guarantees the closed-loop stability of the IMC

scheme shown in Fig. 6.3.

Figure 6.11: Nyquist plot of the controller C2(s) designed via the LMI-based approach
for d1(s) = (s + 80)D[Gm(s)].

6.3.3 Simulation Results

This subsection presents the Matlab simulation results and analyses the regulatory

and tracking performances of the controllers C1(s) and C2(s) in response to a pulse

input of amplitude 1 and duration of 0.1 s and to a unit step input. The responses

of the open-loop system to the pulse and step inputs are shown in Fig. 6.12a and

Fig. 6.12b. The open-loop pulse response has a peak value of 0.272 cm, while the open-

loop step response has a steady state value of 0.1639. Fig. 6.12d shows that in the

ideal case [i.e. G(s) = Gm(s)], both the LMI-based and the frequency domain (IMC)

controllers achieve perfect steady state tracking. Also, C1(s) results in a well-damped

closed-loop response with no overshoot, while the closed-loop with C2(s) exhibits some

overshoot. However, the latter offers a remarkable improvement in the settling time

than the former. The closed-loop with C2(s) achieves a settling time of 0.29 s, while the

closed-loop with C1(s) achieves a much higher settling time of 0.58 s. To analyse the

disturbance (subject to a pulse input) rejection capacity of the controllers, Fig. 6.12c

shows that C2(s) achieves a settling time of 0.62 sec and a peak overshoot of 0.3537
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Figure 6.12: [Simulated responses considering Gm(s) = G(s)] (a) Open-loop response
to a pulse input; (b) Open-loop response to a unit step input; (c) Closed-loop pulse
response using the controllers C1(s) [via frequency domain approach] and C2(s) [via
the LMI-based approach]; (d) Closed-loop unit step response achieved by C1(s) and
C2(s); (e) Control effort demanded in the case of pulse response; and (f) Control effort
demanded in the case of step response.
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cm. Note that the peak overshoot can be reduced by choosing an appropriate d(s),

as outlined in Subsection 6.2.4, but at the cost of an increased settling time. On the

other hand, C1(s) causes a peak overshoot of 0.2789 cm and a settling time of 2.56

sec. Hence, we can conclude that the performance achieved by the frequency domain

design technique is less effective compared to the LMI-based design methodology.

6.3.4 Impact of a Model Mismatch

Now, we consider the case where the plant (i.e. the cantilever beam) G(s) is different

from its identified model Gm(s). However, we impose a reasonable and practically

feasible assumption G(0) = Gm(0). Let the transfer function of the beam be chosen

as:

G(s) = 1502.5(s2 + 1.996s + 3816)
(s2 + 2.108s + 1270)(s2 + 10.43s + 2.763 × 104) . (6.18)

In this subsection, our objective is to test the robustness of the designed controllers
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Figure 6.13: Bode plot of the cantilever beam G(s) that is different from Gm(s).

C1(s) and C2(s) against the model mismatch [i.e. G(s) ̸= Gm(s)]. It can be readily

verified that G(s) is a stable and minimum phase SNI transfer function. Moreover, its

Bode plot (in Fig. 6.13) shows that G(s) satisfies also the SNI property. The closed-loop

stability of the desired controllers remains preserved for both the designed controllers

C1(s) and C2(s) since the DC loop gain condition holds in both the cases: C1(0)G(0) =

3.0599 × 0.1634 = 0.5000 < 1 and C2(0)G(0) = 3.0599 × 0.1634 = 0.5000 < 1.
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Figure 6.14: [Simulated responses considering a perturbed plant G(s) ̸= Gm(s)] (a)
Open-loop response to a pulse input; (b) Open-loop response to a unit step input; (c)
Closed-loop pulse response using the controllers C1(s) [via frequency domain approach]
and C2(s) [via the LMI-based approach]; (d) Closed-loop unit step response using the
controllers C1(s) and C2(s); (e) Control effort for the pulse response; and (f) Control
effort for the step response.
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Fig. 6.14a–Fig. 6.14d show the open-loop and closed-loop responses of the perturbed

plant G(s) subject to the same pulse and unit step inputs considered in Fig. 6.12a–

Fig. 6.12d. The time responses in Fig. 6.14c and Fig. 6.14d reveal that the controllers

C1(s) and C2(s) ensure closed-loop stability despite the model mismatch [i.e. Gm(s) ̸=

G(s)]. However, the achieved transient performance in Fig. 6.14c and Fig. 6.14d is not

that impressive as observed in Fig. 6.12c and Fig. 6.12d due to the model mismatch.

In both Fig. 6.14a and Fig. 6.14b, the peak values of the responses are around 0.30

cm. Fig. 6.14c reveals that although the reduction in the peak value is negligible,

the decay of oscillation is significant. Besides, it also reveals that C2(s) designed

via the LMI-based approach performs better than C1(s) obtained via the frequency

domain design approach. Fig. 6.14d indicates that both C1(s) and C2(s) achieve

perfect steady state tracking although C2(s) offers a faster dynamic performance than

C1(s). However, C2(s) produces almost 23% peak overshoot, while C1(s) results in a

type of critically-damped response. Fig. 6.14e and Fig. 6.14f show the control effort

demanded by the controllers C1(s) and C2(s) during the pulse response and the step

response respectively. The figures confirm that the demanded control effort remain

within the allowable range. However, in both the cases, C2(s) requires more control

effort than that of C1(s). The same observation applies to Fig. 6.12e and Fig. 6.12f as

well, pertaining to the case when Gm(s) = G(s). Note that both C1(s) and C2(s) are

able to achieve perfect steady state step input tracking despite the model mismatch (as

reflected in Fig. 6.14d) only due to the fact that Gm(0) = G(0). When Gm(0) ̸= G(0),

to eliminate the inevitable steady state error, an additional feed-forward control input

can be designed following the ideas given in [63] and [62].

6.4 Conclusions

In this chapter, we introduced an NI controller synthesis using the IMC framework.

We introduced two different methods; the first is a frequency domain approach which

involves the solution of constrained least-square problem. The second approach is an

LMI-based approach that can easily be solved using commercially available SDP solvers.

We also showed that the synthesized controllers can achieve nominal tracking in addition

to robust stability as long as the certain DC gain conditions are satisfied. Furthermore,



CHAPTER 6. CONTR. SYNT. FOR NI SYSTEMS USING IMC PRINCIPLE 122

the LMI-based controller can be tuned to improve the nominal performance of the

closed-loop system and we provided guidelines on how to choose the particular tuning

parameter. Finally, we used the model of a flexible structure to show the usefulness of

the proposed synthesis technique via the simulation studies by considering the pulse

and step responses of the closed-loop system.



Chapter 7

Active Vibration Suppression of a

Flexible Structure

All the materials presented in this chapter were submitted for publication

in [61].

7.1 Introduction

Flexible structures can be found in quite a number of important applications such as

the wing of an aircraft, UAV, robotic systems, hard disk drives, space satellites, to

mention but a few. The flexible structures are prone to high amplitude oscillations when

subjected to slight external disturbances because they are highly resonant systems [55].

This pose a safety concern in many applications and can affect the structural integrity

of the whole system. It is therefore always desirable to mitigate or outrightly eliminate

the high amplitude oscillations.

When flexible structures have collocated force actuators and position sensors, the

underlying transfer function has the NI property. However, flexible structures have an

infinite number of lightly damped modes because their dynamics are usually described

by Partial Differential Equations (PDEs) [55,56]. But the PDE model is approximated

to a finite order model for control purpose. This gives rise to what is referred to as the

spillover dynamics, which can degrade the performance of the closed-loop system or

in some cases lead to instability.

In this problem, we use a collocated MFC for sensing and actuation. MFC has many

123
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advantages compared to the tradionally used PZT. This include better flexibility, more

durability and reliability and ease of attachment to the surface of structures [54]. An NI

model of the flexible structure will first be obtained using Matlab system identification

toolbox. A controller will then be designed which will guarantee robust stability using

the NI theory. The controller will also improve the damping of the flexible structure.

The main contribution of this chapter is the validation of the LMI-based NI con-

troller synthesis presented in Chapter 6. The designed controller should be able to

maintain robust stability in the presence of the spillover dynamics of the flexible struc-

ture. Moreover, the designed controller should also improve the damping performance

of the closed-loop system.

7.2 Experimental Validation

7.2.1 Description of the Vibration Suppressor

The designed vibration suppressor system shown in Fig. 7.1 consists of a lightweight

aluminium beam, whose properties are given in Table 7.1, clamped at one end and

mounted on a solid plate. The plate sits on top of a moving rail powered by a 12 V, 251

rpm metal-geared DC motor. The motor has a stalling current of 7 A and a no-load

current of 350 mA. The motor is controlled by a PWM signal injected through a motor

driver. In this application, we used an MD10C R3 motor driver capable of sustaining

the motor input voltage up to 30 V and a maximum current of 13 A. The motor driver

is powered by a WATSON POWER-MAX-65-NF power supply. The cantilever

Table 7.1: Specifications of the beam used in our experiment

Parameter Value
Length 350 mm

Thickness 1.8 mm
Width 22.5 mm
Density 2.8 × 103 kg/m3

Young Modulus 7.0 × 1010 N/m2

beam has been equipped with a pair of collocated MFC sensor and actuator patches.

We used an M0714-P2 MFC for sensing and an M2814-P1 MFC for actuation. The

properties of the MFC patches are given in Table 7.2. We implemented the designed
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Figure 7.1: Closed-loop control set-up of the vibration suppressor using the dSPACE
platform.

Table 7.2: Specifications of the MFC sensor and actuator patches

Parameter M0714-P2 M2814-P1
Active length

mm 7 28

Active width
mm 14 14

Free strain
ppm ±10% −540 1160

Blocking force
in N ±10% −57 146

Allowable
voltage range −60 to 360 V −500 to 1500 V

controller using a dSPACE board connected to a 200× HVA 1500/50-2 high voltage

amplifier, as shown in Fig. 7.1. The maximum positive and negative voltages of the

amplifier were +1500 V and −500 V respectively.

7.2.2 System Identification of the Vibration Suppressor

To obtain a non-parametric model of the cantilever beam, we applied a chirp signal

to the MFC actuator patch for 30 s over the frequency range 0–200 Hz. We used a

sampling frequency of 250 Hz for the data acquisition. The corresponding output was

recorded via dSPACE using the MFC sensor patch. ControlDesk was used to store the

data. For the system identification, we used the Matlab System Identification Toolbox
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Figure 7.2: Bode plots of the physical plant G(s) and its identified model Gm(s).

to transform the time domain data into frequency domain and obtained a fourth-order

model of the system given by

Gm(s) = 30050(s2 + 1.996s + 7631)
(s2 + 1.108s + 6350)(s2 + 28.43s + 2.21 × 105) .

Gm(s) is indeed a stable and minimum phase transfer function having relative degree

2. This model was used in Section 6.3, as given in (6.15), for the simulation case study.

Fig. 7.2 reveals that the identified model Gm(s) is indeed a good representation of

the physical plant (i.e. the vibration suppressor shown in Fig. 6.2), especially at the

low-frequency range. Moreover, the identified model Gm(s) is stable NI, as confirmed

by the red-coloured Bode plot in Fig. 7.2.

7.2.3 Experimental Validation Results

In this subsection, we will test the feasibility and performance of the NI-based IMC

controller C2(s), designed by the LMI-based methodology, in response to a pulse signal

applied directly at the input of the beam and a disturbance produced by the belt-

pulley-motor assembly of the vibration suppressor system (Fig. 7.1). We will also test
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the robustness of the designed controller C2(s) against a deliberate model mismatch.

7.2.3.1 Response of the System to a Pulse Signal

Fig. 7.3a shows the open-loop and closed-loop responses of the practical vibration

suppressor system, shown in Fig. 7.1, to a pulse signal of amplitude 2 applied directly

at the input of the beam for 0.5 s. The pulse input signal has a start time of 0.5 s.
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Figure 7.3: [Experimental validation results] (a) Open-loop and closed-loop [achieved
by C2(s)] responses of the vibration suppressor subject to a pulse signal applied at the
input of the beam; and (b) Demanded control effort pertaining to case (a).

We can see that the controller design scheme in this paper ensures closed-loop

stability of the vibration suppressor system and significantly increases the speed of

vibration attenuation as shown in Fig. 7.3a. The settling time of the closed-loop

response is 1.85 s compared to 8.59 s in the case of open-loop configuration. The figure

suggests that although the reduction in the amplitude of vibration is negligible, the

improvement in the settling time is note worthy. The performance of the controller

in this case is similar to what was observed in the simulation study. Fig. 7.3b shows

that the demanded control effort by C2(s) remains within the allowable limit [which is

−500 to 1500 V] of the MFC actuator patch used in our experiment.
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7.2.3.2 Regulatory Response Subject to a Disturbance Produced by the

Belt-Pulley-Motor Assembly

The regulatory response of the vibration suppressor system was tested by shaking the

base unit (i.e. the fixed end) of the system mounted on a rail, through the belt-pulley-

motor arrangement as shown in Fig. 7.1. A PWM signal was applied to the input of

the motor for a duration of 0.5 s to produce a jerk causing the vibration in the beam.

The PWM signal had a start time of 0.5 s. The open-loop response and the closed-loop

regulatory response are depicted in Fig. 7.4a. Figure 7.4a reveals that the controller
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Figure 7.4: [Experimental validation results] (a) Open-loop and closed-loop [achieved
by C2(s)] responses of the vibration suppressor subject to the disturbance produced
by the belt-pulley-motor assembly; (b) Control effort demanded by C2(s) during the
disturbance attenuation.

C2(s), designed via the LMI-based algorithm, has remarkably improved the vibration

attenuation performance in the closed-loop in response to the disturbance produced by

the belt-pulley-motor assembly. The closed-loop regulatory response has a decaying

time of 2.17 s and a peak overshoot of 2.036 cm compared to the open-loop response

having a decaying time of 11.50 s and a peak overshoot of 3.2190 cm.

7.2.3.3 Robustness to Model Mismatch

To test the robustness of the proposed NI controller design scheme against model

mismatch, we attached an external weight of 5 g mass to the cantilever beam of the

existing vibration suppressor system (shown in Fig. 7.1) to shift its resonant modes.
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The beam has a mass of 30 g, making the total mass of the beam and weight 35 g.

Fig. 7.5a shows the open-loop and closed-loop regulatory responses of the vibration

suppressor system being burdened with the additional weight attached with the beam.

Moreover, we notice a significant (almost 4 times) improvement in the settling time of

the closed-loop response, which is 2.49 s compared to the open-loop response, which

has a settling time of 9.14 s. This hence confirms that the designed controller is robust

to this model mismatch and achieves satisfactory disturbance rejection performance

despite the model mismatch due to attaching an additional weight with the beam.
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Figure 7.5: [Experimental validation results] (a) Open and closed-loop response,
achieved by C2(s), of the vibration suppressor [burdened with an external weight
attached to the beam] subject to a pulse signal applied at the input of the beam; (b)
Control action demanded by C2(s).

We also evaluate the robustness of the controller subject to external disturbance

generated from the motor.

Fig. 7.6a shows the open-loop and closed-loop regulatory responses of the vibration

suppressor system being burdened with an additional weight attached with the beam

subject to the disturbance produced by the belt-pulley-motor assembly. It can be seen

that the controller also has good performance in this case. The open-loop response

has a decaying time of 12.93 s and a peak of 3.815 cm. The controller reduces the

decaying time of the closed-loop response to 2.05 s and the peak to 2.4170 cm.
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Figure 7.6: [Experimental validation results] (a) Open and closed-loop response,
achieved by C2(s), of the vibration suppressor [burdened with an external weight
attached to the beam] subject to the disturbance produced by the belt-pulley-motor
assembly; (b) Control action demanded by C2(s).

7.2.3.4 Effect of the Choice of d(s) on the LMI-Based Design

In this subsection, we analyse the effect of varying the real root (i.e. at s = −a) of

the polynomial d(s) in the closed-loop performance achieved from the experimentation.

We have considered two different choices a1 = 0.8 and a2 = 8 fixed respectively at two

decades and one decade below the first resonant mode (at ω = 80 rad/s) of the identified

plant model Gm(s). We seek to redesign the controllers C3(s) and C4(s) corresponding

to the two new polynomials d2(s) = (s+0.8)D
[
Gm(s)

]
and d3(s) = (s+8)D

[
Gm(s)

]
via

the LMI-based controller design methodology (i.e. Theorem 8). The new controllers

are obtained as:

C3(s) = 5.9357(s + 0.8385)
(s + 0.8)(s + 2.033) (7.1)

and

C4(s) = 10.941(s + 12.56)
(s + 8)(s + 5.615) . (7.2)

The Nyquist plots of C3(s) and C4(s) shown in Fig. 7.7a and Fig. 7.7b confirm the SSNI

property of the controllers. This design also relies on the same identified plant model

Gm(s), as mentioned in (6.15), which has its first resonant mode at ω = 80 rad/s. Note

that C3(s) and C4(s) contain slower poles than C2(s), which have been dictated by the

factor (s + 0.8) in d2(s) and (s + 8) in d3(s). The internal stability of the controller

scheme design is still guaranteed since both the new controllers C3(s) and C4(s) satisfy

the DC loop gain condition, as verified here: C3(0)Gm(0) = 3.0592×0.1618 = 0.4950 <

1 and C4(0)Gm(0) = 3.0596 × 0.1618 = 0.4951 < 1. Fig. 7.8a and Fig. 7.8b portray
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(a) (b)

Figure 7.7: (a) Nyquist plot of the controller C3(s) designed via the LMI-based ap-
proach for d2(s) = (s + 0.8)D

[
Gm(s)

]
; and (b) Nyquist plot of the controller C4(s)

designed via the LMI-based approach for d3(s) = (s + 8)D
[
Gm(s)

]
.

the closed-loop regulatory responses, subjected to the disturbance generated by the belt-

pulley-motor assembly, achieved by the new controllers C3(s) and C4(s). Comparing

Fig. 7.8a, Fig. 7.8b and Fig. 7.4a, it can be asserted that C2(s) offers the best vibration

attenuation performance. The settling time (considering a 2% tolerance band) in case

of C2(s) is even less than 2 s in contrast to 8.5 s achieved by C3(s) and 4 s achieved

by C4(s). Therefore, we can conjecture that as the value of the parameter a > 0

in the polynomial d(s) = (s + a)D
[
Gm(s)

]
increases, the speed of response improves.

Regarding the amplitude reduction of the vibration, C4(s) and C2(s) reduce the open-

loop peak vibration of 3.2 cm to 1.95 cm (shown in Fig. 7.8b) and 2.095 cm (shown

in Fig. 7.4a) respectively. However, the degree of vibration attenuation in the case of

C3(s) is much less than that achieved by C2(s) and C4(s). On the other hand, a faster

controller (for instance, C2(s)) requires a larger control effort than a relatively slower

controller (for instance, C4(s) or C3(s)), as reflected through Fig. 7.4b, Fig. 7.8d and

Fig. 7.8c. It is evident that the control effort demanded by C2(s) is significantly higher

than that of C4(s) and C3(s). This may be regarded as the cost of achieving more than

five times improvement in the settling time with respect to the open-loop response

(in Fig. 7.4a). The experimental results indicate that the real root (at s = −a) of

d(s) should not be placed more than a decade below the first resonant mode of the

plant model Gm(s). In practical applications, depending on the physical capacity of

the actuators, a control designer needs to choose a trade-off between a high degree of
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Figure 7.8: [Experimental validation results] (a) Open-loop and closed-loop [achieved
by C3(s)] responses of the vibration suppressor subject to the disturbance produced
by the belt-pulley-motor assembly; (b) Open-loop and closed-loop [achieved by C4(s)]
responses of the vibration suppressor subject to the disturbance produced by the belt-
pulley-motor assembly; (c) Demanded control effort pertaining to case (a); and (d)
Demanded control effort pertaining to case (b).
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dynamic performance and the demanded control effort.

7.3 Conclusions

In this chapter, we validated the LMI-based controller synthesized in Chapter 6 on a

vibration attenuation problem of a flexible structure system. We started by obtaining

an LTI finite-dimensional NI transfer function model of the flexible structure system.

We then used the model to design a controller that ensures robust stability and sig-

nificantly improve the damping performance of the closed-loop system. We used two

different disturbance signals; one is a pulse disturbance at the input of the plant and

the other one was a disturbance generated by the motor connected to the rail on which

the beam is clamped. In both cases, the controller was able to achieve good nominal

performance of the closed-loop system. Finally, the we finished the chapter by showing

the effect of the tuning variable d(s) on the performance of the closed-loop system.



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we set out to provide a solution to the NI synthesis problem. We divided

this problem into two different categories viz: synthesizing a controller such that the

closed-loop system NI and is robust to an NI uncertainty. The second approach is that

of synthesizing a controller that is itself NI and robustly stabilizes an uncertain NI

plant. In the first approach, neither the plant nor the controller is required to be NI,

but the closed-loop system and the uncertainty both have to possess the NI property.

Furthermore, it was our aim to provide synthesis methods that also improve the

performance of the closed-loop system. It is worth noting that the performance we

considered in this thesis is not the traditional type of performance such as H∞ or H2

performance measures commonly considered in the NI literature. Our performance

measures are time domain performance such as decay rate, settling time, damping

and overshoot of the closed-loop system. Moreover, it was our that these synthesis

techniques should be appealing for application to practical systems due to ease of

synthesis.

In Chapter 4, we were able to address the first type of NI synthesis problem. First,

we provided a definition for α− SNI systems and then used the α− SNI framework

to successfully provide an LMI-based dynamic output feedback controller synthesis

technique. The controller renders the closed-loop system α− SNI and robustly stabilizes

it against a class of NI uncertainties. In this synthesis technique, we used the dacay

rate of the closed-loop system, which is dictated by the parameter α, as a measure of

134
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the closed-loop system performance.

In Chapter 6, we addressed the second type of the NI synthesis problem. In this

approach, we were able to successfully combine the IMC design principle with the NI

systems theory to provide a dynamic output feedback controller synthesis technique

that produce an NI controller robustly stabilizes an uncertain NI system. We were

able to provide two different synthesis technique for this solution to the NI synthesis

problem. The first method was a frequency-based approach that allows the designer to

decide the closed-loop dynamics based on the dynamics of a chosen filter dynamics. The

second method was an LMI-based synthesis approach which uses a design parameter

to improve the closed-loop performance. Both methods also facilitate perfect constant

set-point tracking.

Hence, in these two chapters, we were able to successfully address the NI synthesis

problem that improve the performance of the closed-loop system. We were also able to

provide simple design technique using LMIs that can easily be solved to obtain these

controllers.

As most of the works in the field of NI controller synthesis in the literature were

purely theoretical, it was also our aim to validate some of the synthesis technique

we provided with an experimental validation. Hence, we addressed the vibration

attenuation problem of a lightly damped flexible structure. First, we successfully

built a custom-made flexible structure, which is in the form of a cantilever beam

mounted on a metal rail and subjected to external disturbances. We used the first two

resonant modes of the cantilever beam for controller design and considered the other

modes as unmodelled system dynamics. We successfully designed a robustly stabilizing

controller for the beam using the LMI-based NI IMC controller synthesis technique

that attenuates the vibration of the flexible structure as it is subjected to external

disturbance.

Although the NI literature has seen a significant amount of contribution over the

years, there were still some systems that possess the NI property which were yet to

be captured in the NI literature. So, our aim was also to extend the NI literature

to account for such systems. We were able to successfully do that by providing a

definition of LTV and LPV NI and OSNI systems. We also provided a state-space

characterisation for all the systems. Moreover, we successfully provided a stability
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result for the positive feedback interconnection of LTV OSNI-NI and LPV OSNI-NI

system.

Therefore, the main contributions of this thesis are as follows.

In Chapter 4, We provided a definition for a new class of systems called α− SNI

system (Definition 16). We showed that these are asymptotically stable systems with

pole location dictated by α. We also showed how those systems are different from

the SSNI systems that existed in the literature. We then used that definition of α−

SNI system to propose an LMI-based dynamic output feedback controller synthesis

technique that renders the closed-loop α− SNI systems and remains robustly stable

to a class of NI uncertainty satisfying the NI DC gain condition(Theorem 5).

In a similar theme to Chapter 4, in Chapter 6 we provided a frequency domain-

based NI/SNI (Lemma 14 and Lemma 15) and an LMI-based SSNI controller synthesis

technique (Theorem 8). We also showed that both techniques can facilitate constant

set-point tracking and can also improve the performance of the closed-loop system.

Moreover, we were able to design the controller for the vibration attenuation of a

flexible structure system in Chapter 7.

In Chapter 5 where we provided a theoretical extension to the NI systems literature,

we were able to propose a definition for LTV NI (Definition 17) and OSNI (Defintion

18) systems. We also provided a state-space characterization of LTV NI (Lemma 10)

and OSNI (Lemma 11) systems. Stability condition for LTV OSNI-NI interconnection

was also provided (Theorem 7). Finally, these results were extended to account for

LPV NI systems in (Lemma 12), (Lemma 13)and (Theorem 7).

8.2 Future Work

Although the aims and objective of this project were achieved, there are more research

areas in the field of NI theory yet to be explored. The following can be considered as

possible research areas for future work.

• In the α− controller synthesis method introduced in this thesis, there is no

systematic approach of choosing the α. It is therefore desirable to extend the

work and provide a more established method of choosing the variable. For

example, recasting the controller synthesis problem as a maximisation problem
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of α subject to LMI constraints. Moreover, the synthesis technique proposed

was only a sufficient condition. Therefore, the result can be strengthened to a

necessary and sufficient condition.

• In the state-space characterisation of the LTV and LPV NI, only sufficient con-

ditions were proposed. Moreover, the stability result for both the LTV and

LPV feedback interconnection were also sufficient conditions. It will therefore be

desirable if these results are strengthened to necessary and sufficient conditions.

Also, LTV OSNI systems were restricted to systems with a relative degree of two.

A possible future work is to relax that restriction to account for wider class of

systems.

• Recently, the NI theory was extended to nonlinear systems. However, there are

many areas yet to be explored in the nonlinear NI theory. This include controller

design for nonlinear NI systems and also proposing a systematic necessary and

sufficient conditions for characterizing the systems based on the state vectors of

the system. The study of such systems is important as they occur in real life.

For example, all Hamiltonian systems with force actuator and position sensor

exhibit the nonlinear NI property.

• It is common knowledge that linear control techniques are usually used to control

nonlinear systems by linearizing the nonlinear systems about an operating point.

This is due to the fact that the literature of linear systems is more documented

and it is easier to control linear systems compared to their nonlinear counterpart.

Hence, it will be desirable to be able to establish the relationship between linear

and nonlinear NI systems. For example, the linearized dynamics of a simple

pendulum, where the measured output is the horizontal position has the loseless

NI property though the underlying nonlinear system dynamics does not have

nonlinear NI property.



Appendix A

Table with Performance Parameters

for Different Choice of d(s)

Let Γ(s, zi) = (s + zi)(s + z̄i).

Table A.1: Quantitative information of the performance parameters of the closed-loop

impulse response of the plant model Gm1 subject to the choice of the pole polynomials

{d1(s), d2(s), · · · , d30(s)}.

Choice of d(s) Bandwidth
Impulse response

settling time

Peak of impulse

response

Farthest controller

pole

d1(s) = (s + 0.5)Γ(s, 0.5 + j) 1.018 26.474 0.484 −5.911

d2(s) = (s + 0.5)Γ(s, 0.5 + 2j) 1.052 35.207 0.545 −34.710

d3(s) = (s + 0.5)Γ(s, 0.5 + 3j) 0.964 38.718 0.499 −32.533

d4(s) = (s + 0.5)Γ(s, 0.5 + 4j) 0.981 38.272 0.512 −39.526

d5(s) = (s + 1)Γ(s, 1 + j) 1.051 34.994 0.538 −36.433

d6(s) = (s + 1)Γ(s, 1 + 2j) 0.991 37.108 0.511 −34.295

d7(s) = (s + 1)Γ(s, 1 + 3j) 0.858 43.075 0.440 −56.949

d8(s) = (s + 1)Γ(s, 1 + 4j) 0.883 42.331 0.461 −63.009

d9(s) = (s + 2)Γ(s, 2 + j) 0.448 42.349 0.484 −75.035

d10(s) = (s + 2)Γ(s, 2 + 2j) 0.881 42.153 0.455 −77.485

d11(s) = (s + 2)Γ(s, 2 + 3j) 0.891 41.910 0.463 −81.548

d12(s) = (s + 2)Γ(s, 2 + 4j) 0.776 47.642 0.400 −152.346

d13(s) = (s + 3)Γ(s, 3 + j) 0.888 42.220 0.463 −112.141

d14(s) = (s + 3)Γ(s, 3 + 2j) 0.717 45.156 0.363 −225.809

d15(s) = (s + 3)Γ(s, 3 + 3j) 0.847 44.215 0.442 −156.8465

d16(s) = (s + 3)Γ(s, 3 + 4j) 0.574 48.655 0.286 −458.572

d17(s) = (s + 4)Γ(s, 4 + j) 0.569 49.046 0.283 −523.863

d18(s) = (s + 4)Γ(s, 4 + 2j) 0.559 49.712 0.278 −569.341

d19(s) = (s + 4)Γ(s, 4 + 3j) 0.534 51.637 0.262 −683.768

d20(s) = (s + 4)Γ(s, 4 + 4j) 0.535 51.756 0.263 −691.803

d21(s) = (s + 5)Γ(s, 5 + j) 0.597 53.713 0.301 −617.6388

d22(s) = (s + 5)Γ(s, 5 + 2j) 0.606 53.183 0.307 −597.666

Continued on the next page
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Table A.1 – Continued from previous page

d(s) Bandwidth
Impulse settling

time

Peak of impulse

response

Farthest controller

pole

d23(s) = (s + 5)Γ(s, 5 + 3j) 0.618 52.458 0.313 −576.443

d24(s) = (s + 5)Γ(s, 5 + 4j) 0.605 53.389 0.306 −599.979

d25(s) = (s + 1)D
[

Gm(s)
]

1.054 24.714 0.491 −15.136

d26(s) = (s + 1)3 0.997 27.596 0.486 −7.511

d27(s) = (s + 0.5)3 1.048 29.637 0.488 −9.414

d28(s) = (s + 2)3 0.865 42.384 0.445 −74.781

d29(s) = (s + 3)3 0.877 42.664 0.457 −114.690

d30(s) = (s + 4)3 0.858 43.775 0.449 −185.911

Table A.2: Quantitative information of the performance parameters of the closed-loop

impulse response of the plant model Gm2 subject to the choice of the pole polynomials

{d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse response

settling time

Peak of impulse

response

Farthest controller

pole

d1(s) = (s + 15)Γ(s, 15 + j) 0.087 37.684 0.162 −15

d2(s) = (s + 15)Γ(s, 15 + 2j) 0.087 37.641 0.162 −15

d3(s) = (s + 15)Γ(s, 15 + 3j) 0.088 37.573 0.163 −15

d4(s) = (s + 15)Γ(s, 15 + 4j) 0.088 37.473 0.163 −15

d5(s) = (s + 16)Γ(s, 16 + j) 0.162 20.262 0.304 −16

d6(s) = (s + 16)Γ(s, 16 + 2j) 0.162 20.252 0.304 −16

d7(s) = (s + 16)Γ(s, 16 + 3j) 0.162 20.240 0.304 −16

d8(s) = (s + 16)Γ(s, 16 + 4j) 0.162 20.220 0.304 −16

d9(s) = (s + 17)Γ(s, 17 + j) 0.171 19.200 0.320 −17

d10(s) = (s + 17)Γ(s, 17 + 2j) 0.171 19.186 0.321 −17

d11(s) = (s + 17)Γ(s, 17 + 3j) 0.171 19.164 0.321 −17

d12(s) = (s + 17)Γ(s, 17 + 4j) 0.171 19.130 0.322 −17

d13(s) = (s + 18)Γ(s, 18 + j) 0.181 18.114 0.340 −18

d14(s) = (s + 18)Γ(s, 18 + 2j) 0.181 18.101 0.340 −18

d15(s) = (s + 18)Γ(s, 18 + 3j) 0.181 18.077 0.340 −18

d16(s) = (s + 18)Γ(s, 18 + 4j) 0.182 18.042 0.341 −18

d17(s) = (s + 19)Γ(s, 19 + j) 0.177 18.558 0.332 −19

d18(s) = (s + 19)Γ(s, 19 + 2j) 0.177 18.553 0.332 −19

d19(s) = (s + 19)Γ(s, 19 + 3j) 0.177 18.541 0.332 −19

d20(s) = (s + 19)Γ(s, 19 + 4j) 0.177 18.525 0.332 −19

d21(s) = (s + 20)Γ(s, 20 + j) 0.190 17.223 0.357 −20

d22(s) = (s + 20)Γ(s, 20 + 2j) 0.190 17.224 0.357 −20

d23(s) = (s + 20)Γ(s, 20 + 3j) 0.190 17.224 0.357 −20

d24(s) = (s + 20)Γ(s, 20 + 4j) 0.190 17.223 0.357 −20

d25(s) = (s + 19)D
[

Gm(s)
]

1.671 5.585 2.372 −19

d26(s) = (s + 15)3 0.087 37.689 0.162 −15

d27(s) = (s + 16)3 0.162 20.261 0.304 −16

d28(s) = (s + 17)3 0.171 19.204 0.320 −17

d29(s) = (s + 18)3 0.181 18.119 0.340 −18

d30(s) = (s + 19)3 0.177 18.561 0.332 −19
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Table A.3: Quantitative information of the performance parameters of the closed-loop

impulse response of the plant model Gm3 subject to the choice of the pole polynomials

{d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse settling

time

Peak of impulse

response

Farthest controller

pole

d1(s) = (s + 0.5)Γ(s, 0.5 + j) 0.187 21.613 0.180 −0.500

d2(s) = (s + 0.5)Γ(s, 0.5 + 2j) 1.113 9.935 0.438 −2.204

d3(s) = (s + 0.5)Γ(s, 0.5 + 3j) 0.933 10.962 0.378 −2.788

d4(s) = (s + 0.5)Γ(s, 0.5 + 4j) 0.994 11.247 0.399 −3.160

d5(s) = (s + 1)Γ(s, 1 + j) 1.258 11.625 0.547 −2.398

d6(s) = (s + 1)Γ(s, 1 + 2j) 0.938 10.981 0.380 −2.875

d7(s) = (s + 1)Γ(s, 1 + 3j) 0.819 15.026 0.387 −4.3269

d8(s) = (s + 1)Γ(s, 1 + 4j) 1.013 25.767 0.535 −13.631

d9(s) = (s + 2)Γ(s, 2 + j) 1.035 24.387 0.533 −14.170

d10(s) = (s + 2)Γ(s, 2 + 2j) 1.051 24.261 0.539 −14.418

d11(s) = (s + 2)Γ(s, 2 + 3j) 1.000 31.285 0.559 −19.215

d12(s) = (s + 2)Γ(s, 2 + 4j) 0.948 31.772 0.559 −21.571

d13(s) = (s + 3)Γ(s, 3 + j) 0.971 31.574 0.572 −23.823

d14(s) = (s + 3)Γ(s, 3 + 2j) 0.711 37.441 0.412 −49.524

d15(s) = (s + 3)Γ(s, 3 + 3j) 0.703 44.379 0.424 −58.237

d16(s) = (s + 3)Γ(s, 3 + 4j) 0.720 43.426 0.438 −58.267

d17(s) = (s + 4)Γ(s, 4 + j) 0.753 41.711 0.462 −60.540

d18(s) = (s + 4)Γ(s, 4 + 2j) 0.750 42.160 0.461 −61.670

d19(s) = (s + 4)Γ(s, 4 + 3j) 0.765 41.233 0.472 −60.913

d20(s) = (s + 4)Γ(s, 4 + 4j) 0.798 44.505 0.499 −62.081

d21(s) = (s + 5)Γ(s, 5 + j) 0.736 49.277 0.470 −148.413

d22(s) = (s + 5)Γ(s, 5 + 2j) 0.742 48.953 0.475 −147.945

d23(s) = (s + 5)Γ(s, 5 + 3j) 0.754 47.966 0.484 −146.765

d24(s) = (s + 5)Γ(s, 5 + 4j) 0.640 49.269 0.381 −174.383

d25(s) = (s + 1.41)D
[

Gm(s)
]

1.445 20.512 0.846 −15.706

d26(s) = (s + 1.41)3 0.955 11.146 0.384 −3.056

d27(s) = (s + 3)D
[

Gm(s)
]

1.445 16.041 0.839 −32.709

d28(s) = (s + 3)3 0.974 31.521 0.572 −23.508

d29(s) = (s + 1.41)2(s + 3) 0.995 11.387 0.398 −3.458

d30(s) = (s + 1.41)(s + 3)2 1.062 27.553 0.547 −15.706

Table A.4: Quantitative information of the performance parameters of the closed-loop

impulse response of the plant model Gm4 subject to the choice of the pole polynomials

{d1(s), d2(s), · · · , d30(s)}.

Choices of d(s) Bandwidth
Impulse response

settling time

Peak of impulse

response

Farthest controller

pole

d1(s) = (s + 0.5)Γ(s, 0.5 + j) 1.197 15.725 0.438 −7.769

d2(s) = (s + 0.5)Γ(s, 0.5 + 2j) 0.745 16.0688 0.330 −15.272

d3(s) = (s + 0.5)Γ(s, 0.5 + 3j) 0.899 25.163 0.427 −30.813

d4(s) = (s + 0.5)Γ(s, 0.5 + 4j) 0.906 30.061 0.450 −40.171

d5(s) = (s + 1)Γ(s, 1 + j) 0.921 15.558 0.390 −12.305

d6(s) = (s + 1)Γ(s, 1 + 2j) 0.573 21.040 0.255 −23.090

d7(s) = (s + 1)Γ(s, 1 + 3j) 0.856 26.372 0.405 −34.181

d8(s) = (s + 1)Γ(s, 1 + 4j) 0.518 41.412 0.242 −97.868

d9(s) = (s + 2)Γ(s, 2 + j) 0.755 24.216 0.358 −54.891

d10(s) = (s + 2)Γ(s, 2 + 2j) 0.636 28.746 0.300 −88.390

d11(s) = (s + 2)Γ(s, 2 + 3j) 0.587 36.184 0.271 −87.837

Continued on the next page
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Table A.4 – Continued from previous page

d(s) Bandwidth
Impulse settling

time

Peak of impulse

response

Farthest controller

pole

d12(s) = (s + 2)Γ(s, 2 + 4j) 0.582 39.256 0.281 −104.549

d13(s) = (s + 3)Γ(s, 3 + j) 0.642 34.516 0.295 −86.870

d14(s) = (s + 3)Γ(s, 3 + 2j) 0.617 42.560 0.295 −115.381

d15(s) = (s + 3)Γ(s, 3 + 3j) 0.483 45.954 0.239 −180.854

d16(s) = (s + 3)Γ(s, 3 + 4j) 0.476 47.855 0.248 −190.276

d17(s) = (s + 4)Γ(s, 4 + j) 0.485 45.965 0.240 −199.757

d18(s) = (s + 4)Γ(s, 4 + 2j) 0.428 51.235 0.207 −347.180

d19(s) = (s + 4)Γ(s, 4 + 3j) 0.386 46.667 0.181 −404.683

d20(s) = (s + 4)Γ(s, 4 + 4j) 0.261 48.585 0.112 −779.683

d21(s) = (s + 5)Γ(s, 5 + j) 0.306 53.346 0.134 −685.419

d22(s) = (s + 5)Γ(s, 5 + 2j) 0.424 63.030 0.217 −729.551

d23(s) = (s + 5)Γ(s, 5 + 3j) 0.437 61.940 0.226 −714.432

d24(s) = (s + 5)Γ(s, 5 + 4j) 0.377 59.740 0.183 −739.188

d25(s) = (s + 1.37)D
[

Gm(s)
]

1.418 20.982 0.998 −30.837

d26(s) = (s + 1.37)3 0.645 15.785 0.289 −14.587

d27(s) = (s + 2.93)D
[

Gm(s)
]

1.445 16.041 0.839 −32.709

d28(s) = (s + 2.93)3 0.523 33.702 0.238 −119.702

d29(s) = (s + 3.6)D
[

Gm(s)
]

1.430 20.048 1.101 −83.771

d30(s) = (s + 3.6)3 0.501 44.872 0.250 −181.865
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