978 research outputs found

    Rank-based camera spectral sensitivity estimation

    Get PDF
    In order to accurately predict a digital camera response to spectral stimuli, the spectral sensitivity functions of its sensor need to be known. These functions can be determined by direct measurement in the lab—a difficult and lengthy procedure—or through simple statistical inference. Statistical inference methods are based on the observation that when a camera responds linearly to spectral stimuli, the device spectral sensitivities are linearly related to the camera rgb response values, and so can be found through regression. However, for rendered images, such as the JPEG images taken by a mobile phone, this assumption of linearity is violated. Even small departures from linearity can negatively impact the accuracy of the recovered spectral sensitivities, when a regression method is used. In our work, we develop a novel camera spectral sensitivity estimation technique that can recover the linear device spectral sensitivities from linear images and the effective linear sensitivities from rendered images. According to our method, the rank order of a pair of responses imposes a constraint on the shape of the underlying spectral sensitivity curve (of the sensor). Technically, each rank-pair splits the space where the underlying sensor might lie in two parts (a feasible region and an infeasible region). By intersecting the feasible regions from all the ranked-pairs, we can find a feasible region of sensor space. Experiments demonstrate that using rank orders delivers equal estimation to the prior art. However, the Rank-based method delivers a step-change in estimation performance when the data is not linear and, for the first time, allows for the estimation of the effective sensitivities of devices that may not even have “raw mode.” Experiments validate our method

    Evaluation and optimal design of spectral sensitivities for digital color imaging

    Get PDF
    The quality of an image captured by color imaging system primarily depends on three factors: sensor spectral sensitivity, illumination and scene. While illumination is very important to be known, the sensitivity characteristics is critical to the success of imaging applications, and is necessary to be optimally designed under practical constraints. The ultimate image quality is judged subjectively by human visual system. This dissertation addresses the evaluation and optimal design of spectral sensitivity functions for digital color imaging devices. Color imaging fundamentals and device characterization are discussed in the first place. For the evaluation of spectral sensitivity functions, this dissertation concentrates on the consideration of imaging noise characteristics. Both signal-independent and signal-dependent noises form an imaging noise model and noises will be propagated while signal is processed. A new colorimetric quality metric, unified measure of goodness (UMG), which addresses color accuracy and noise performance simultaneously, is introduced and compared with other available quality metrics. Through comparison, UMG is designated as a primary evaluation metric. On the optimal design of spectral sensitivity functions, three generic approaches, optimization through enumeration evaluation, optimization of parameterized functions, and optimization of additional channel, are analyzed in the case of the filter fabrication process is unknown. Otherwise a hierarchical design approach is introduced, which emphasizes the use of the primary metric but the initial optimization results are refined through the application of multiple secondary metrics. Finally the validity of UMG as a primary metric and the hierarchical approach are experimentally tested and verified

    Convolutional Mean: A Simple Convolutional Neural Network for Illuminant Estimation

    Get PDF
    We present Convolutional Mean (CM) – a simple and fast convolutional neural network for illuminant estimation. Our proposed method only requires a small neural network model (1.1K parameters) and a 48 × 32 thumbnail input image. Our unoptimized Python implementation takes 1 ms/image, which is arguably 3-3750× faster than the current leading solutions with similar accuracy. Using two public datasets, we show that our proposed light-weight method offers accuracy comparable to the current leading methods’ (which consist of thousands/millions of parameters) across several measures

    Semantik renk değişmezliği

    Get PDF
    Color constancy aims to perceive the actual color of an object, disregarding the effectof the light source. Recent works showed that utilizing the semantic information inan image enhances the performance of the computational color constancy methods.Considering the recent success of the segmentation methods and the increased numberof labeled images, we propose a color constancy method that combines individualilluminant estimations of detected objects which are computed using the classes of theobjects and their associated colors. Then we introduce a weighting system that valuesthe applicability of the object classes to the color constancy problem. Lastly, weintroduce another metric expressing the detected object and how well it fits the learnedmodel of its class. Finally, we evaluate our proposed method on a popular colorconstancy dataset, confirming that each weight addition enhances the performanceof the global illuminant estimation. Experimental results show promising results,outperforming the conventional methods while competing with the state of the artmethods.--M.S. - Master of Scienc
    corecore