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Abstract

Illuminant estimation and correction (white-balance) is a fundamental
process in camera image processing pipelines. This thesis examines the
problem of white-balance when a scene contains two illuminants. This
is a two-step process: 1) estimate the two illuminants; and 2) correct the
image. Existing methods addressing this problem attempt to estimate
multiple illuminants to produce a spatially varying illumination map.
However, their results are still error prone and the resulting illumination
maps are too low-resolution to be used for proper spatially varying
white-balance correction. In addition, the spatially varying nature of
these methods make them computationally intensive.

Our approach is to show that this problem can be effectively addressed
by not attempting to obtain a spatially varying illumination map, but
instead by detecting and estimating two illuminants, namely indoor
and outdoor illuminants, by performing single illuminant estimation
on large sub-regions of the image. Our approach is able to detect when
distinct illuminants are present in the image and accurately measure
these illuminants. Since our proposed strategy is not suitable for spa-
tially varying image correction, two user studies have been performed
to see if there is a preference for how the image should be corrected
when two illuminants are present, but only a global correction can be
applied. The user studies show that when the illuminants are distinct,
there is a preference for the outdoor illuminant to be corrected resulting
in warmer final image. We use these collective findings to demonstrate
an effective two illuminant estimation scheme that produces corrected
images that users prefer.
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Chapter 1

Introduction

In this chapter we are going to give an overview on the problem of white-balance.

Then we will categorize the methods proposed to address this problem, present our

motivation towards addressing this problem, and state our contributions achieved

to resolve the problem.

1.1 White-Balance Problem

Color constancy is the ability to perceive the true colors or reflectance of objects

despite the illumination falling on them. Our human visual system is equipped

with a well-developed ability to perform this [McCann et al. 1976]. However, color

constancy is a challenging problem facing computer vision systems that depend

on colors as prominent features. Hence, computational color constancy needs to

be applied to reduce the color cast caused by illumination on images and videos.

Color constancy is often simplified to aim at correcting image colors such that white

objects appear to be white, hence the notion of white-balance.

1



Chapter 1. Introduction

(a) 2550K (b) 3550K (c) 4550K

Figure 1.1: An example showing the effect of simulating different illuminations on
an image. The values below images indicate illuminant temperatures in Kelvin.
On the images, the RGB values of a white pixel are indicated, ideally the values
should be such that R = G = B if the image is correctly white-balanced.

Besides computer vision systems, white-balance is also required for image re-

production. Although the human viewer can compensate for the scene illumina-

tion, the illumination present in a photograph cannot be compensated. As a result,

white-balance serves as the first step before image reproduction or enhancement

in the camera image processing pipeline. Figure 1.1 shows an example of the same

physical scene under different simulated colored illuminants. Next, we categorize

the approaches to addressing the white-balance problem.

1.2 Categories of White-Balancing Methods

We can categorize white-balancing methods based on the number of estimated

illuminants into three main categories as shown in Figure 1.2:

1. Single illuminant estimation methods: these methods lay the assumption

that a scene is uniformly illuminated by a single illuminant and they try to

estimate this illuminant and correct the image accordingly.

2. Multiple illuminant estimation methods: these methods assume that a scene

is illuminated by more than one illuminant or even if there is only one illumi-

2



Chapter 1. Introduction

White-balancing
methods

Two illuminant
estimation

(our method)

Single
illuminant
estimation

Multiple
illuminant
estimation

[Land and McCann 1971]
[Buchsbaum 1980]

[Forsyth 1990]
[Finlayson et al. 2001]

[Finlayson and Trezzi 2004]
[Van De Weijer and Gevers 2005]

[Van de Weijer et al. 2007]
[Chakrabarti et al. 2012]

[Finlayson 2013]
[Cheng et al. 2014]
[Cheng et al. 2015]

[Land et al. 1977]
[Hsu et al. 2008]

[Ebner 2009]
[Bleier et al. 2011]
[Riess et al. 2011]

[Gijsenij et al. 2012b]
[Boyadzhiev et al. 2012]

[Beigpour et al. 2014]
[Bianco and Schettini 2014]

[Joze and Drew 2014]
[Yang et al. 2015]

Figure 1.2: Categorization of color constancy methods showing the position of our
approach, two illuminant estimation.

nant, it is not spatially uniform. Hence, these methods try to estimate either

a number of illuminants or a spatially varying illuminant map, where in the

extreme case there is one illuminant per pixel.

3. Two illuminant estimation method: this is our proposed method to address

the white-balancing problem where we recommend estimating either one or

two illuminants at most. More details come in Chapter 2.

1.3 Motivation

Most white-balance methods assume the imaged scene is uniformly illuminated

by a single light source, these methods are listed under “single-illuminant esti-

mation” in Figure 1.2, however, it is not uncommon for a scene to be illuminated

3



Chapter 1. Introduction

(a) RAW image. (b) Image corrected by
outdoor illuminant.

(c) Image corrected by
indoor illuminant.

Figure 1.3: An example scene with two different illuminants (outdoor and indoor).
The color of the original RAW image is biased by both illuminants. (b) and (c)
show the image corrected by each of the illuminants respectively.

by more than one light as shown in Figure 1.3. That led to the proposal of many

approaches that attempt to estimate multiple illuminants, these methods are listed

under “multiple-illuminant estimation” in Figure 1.2. Such methods usually use a

sliding window strategy or image segmentation to perform local illuminant esti-

mation. This results in a spatially varying illumination map over the image. Such

illumination maps are typically low-resolution (e.g. 15 × 20) and their effective-

ness in subsequent white-balance correction is often not demonstrated. Moreover,

these methods tend to be slow and require prior knowledge that the imaged scene

contains more than one illuminant.

For the above drawbacks of multiple illuminant estimation methods, we advo-

cated a different strategy for addressing the two illuminant estimation problem.

Specifically, we found it more effective not to attempt to estimate a spatially vary-

ing illumination map. Instead, we will show that applying a single-illuminant

estimation method on a relatively small number of large sub-images in the input

image can not only detect if two distinct illuminants are present, but also provide

accurate estimations for these illuminations.

4



Chapter 1. Introduction

1.4 Contributions

This thesis presents a set of contributions and findings towards the estimation and

correction of images containing either one or two illuminants. First, an efficient

method for accurately estimating one or two illuminants from a single image is

proposed in Chapter 3. Second, two user studies were performed revealing that

users do have a strong preference for a particular correction when two distinct

illuminations are present in the image, this is discussed in Chapter 4. To the

best of our knowledge, these are the first user studies eliciting user preferences

for white-balancing. Third, we demonstrate how to combine findings from (first)

and (second) into a framework for correcting images containing scenes with two

illuminations, this is beneficial as there is still no clear demonstration of white-

balance correction in the case of two or more illuminants, this is discussed in

Section 4.3. Finally, most prior works use synthetically generated two-illuminant

images as test cases. As part of our work, we provide a new image data set

extracted from existing illumination and image processing data sets in which the

ground truth for the two illuminants has been manually identified. This data set

can be used in further evaluations of two-illuminant or multi-illuminant estimation

algorithms. We believe the findings in this thesis will be beneficial in helping to

develop further approaches for multi-illuminant estimation and subsequent image

correction.

5



Chapter 1. Introduction

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 provides a fundamen-

tal background along with related work on the white-balancing problem. Our

approach for two-illuminant estimation is discussed in Chapter 3 along with ex-

perimental results and discussion. In Chapter 4, we discuss our approach to global

image correction along with experimental comparison with other methods. Finally,

Chapter 5 concludes the thesis with a short discussion on possible future research

directions.

6



Chapter 2

Background and Related Work

This chapter starts by providing a background on the white-balancing problem

and its position in the camera image processing pipeline. Then, we will discuss

the available existing approaches for single-illuminant and multiple-illuminant

estimation and image correction.

2.1 Camera Image Processing Pipeline

Digital color cameras are tristimulus color systems, inspired by the human visual

system. To simulate the effect of the human vision system, e.g., outputting images

which can be perceived by humans, it has an on-board process pipeline as shown

in Figure 2.1. This pipeline is generic and may be adapted differently by various

camera manufacturers. These various stages in the pipeline affect the final output

image to different extent. However, the first and third stages, RAW image sensor

response and white balancing, are the key to the topic of this thesis and we are

going to explore them in more details.

7
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RAW image

Pre-processing:
black level offset,

normalization, bad
pixel mask, etc.

White balance Demosaicing

Post processing:
noise reduction,
sharpening, etc.

Color trans-
formation

Color rendering:
tone mapping,

gamma cor-
rection, color

manipulation, etc.

Display, compres-
sion, and storage.

Figure 2.1: The generic steps applied onboard a camera, adapted from [Ramanath
et al. 2005; Karaimer and Brown 2016]. Different camera manufacturer implemen-
tations can vary, however, most of these steps will be included and in a similar
processing order.

2.1.1 RAW image formation

The light reflected on or emitted from the scene (i.e. scene radiance) goes through

the camera lens, followed by the color filters and hits the cameras photosensors,

causing RAW sensor responses. Generally, these color filters above the photosensors

are composed from three different color filters: red, green and blue, thus resulting

in an RGB tristimulus camera RAW responses. These color filters are generally

arranged according to a particular pattern, named the Bayer pattern, where 50%

of the filters are green filters, 25% are red and the other 25% are blue. Due to

the presence of these color filters, only the response value of one color channel is

recorded for each pixel. Therefore, a process called demosaicing must be applied to

interpolate the other missing two values of each pixel from the neighboring pixels

to generate a full color image. Without considering the effect of demosaicing,

the physical formulation of RAW responses is similar to the tristimulus image

8
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formation of the human retina [Wyszecki and Stiles 1982]:

ρi =

∫
λ∈Ω

l(λ) si(λ) dλ, i ∈ {R,G,B}, (2.1)

where [ρR, ρG, ρB]T are the camera RAW responses, l(λ) is the spectral distribution

of the light incident arriving on the photosensor, and si(λ) is the effective sensitivity

of the camera photosensors under the ith type of color filter at wavelength λ.

2.1.2 Scene Illumination

Focusing on the RAW image sensor response, we see that there are two important

physical factors that contribute to the image formation; (1) the varying surface

reflectance of the objects existing in the scene, and (2) the illumination condition

under which the scene is viewed. The term l(λ) in Equation 2.1 is the result of

the illuminant signal e(λ) interacting with the surface being viewed. Ideally, it is a

linear function of the incident light and the reflectance of the surface, as well as the

direction of the illumination and the direction of the camera, which is expressed

as the bidirectional reflectance distribution function (BRDF). However, the BRDF is a

function of four geometric parameters, measuring the BRDF for even one surface

is very tedious. It is clear that we need simpler models.

The simplest possible form of the BRDF is a constant. This corresponds to a

perfectly diffuse reflection, also referred to as Lambertian reflection. A Lambertian

reflector appears equally bright, regardless of the viewing direction. As a result,

the interaction of surface, light and sensor can be elucidated as

ρi(x) =

∫
λ∈Ω

e(λ) r(λ, x) si(λ) dλ, i ∈ {R,G,B}, (2.2)

9
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e(1)(λ)

e(2)(λ)

e(3)(λ)

Three different
illuminants

Scene reflectance
r(λ)

Sensitivity of
photosensors

{sR(λ), sG(λ), sB(λ)}

ρ(2) =
∫
λ∈Ω

e(2)(λ) r(λ) s(λ) dλ

ρ(1) =
∫
λ∈Ω

e(1)(λ) r(λ) s(λ) dλ

ρ(3) =
∫
λ∈Ω

e(3)(λ) r(λ) s(λ) dλ

Three different
RAW responses

Figure 2.2: Illustration of Lambertian image formation model, adapted from [Cheng
2015].

where each RAW response (R,G, and B) at pixel location x is an integrated signal

resulting from the sensitivity of photosensors s(λ), the scene reflectance r(λ, x) and

the scene illumination e(λ) over the visible spectrum Ω. Figure 2.2 shows an illus-

tration of this simple Lamertian image formation model. The Lambertian model

here assumes that the scene is illuminated by one single light source uniformly

as e(λ) is constant for different pixel locations x. The observed color of the uniform

illuminant ρe depends on the spectral power distribution of the light source e(λ) as

well as the effective sensitivity of the camera photosensors s(λ):

ρe
i =

∫
λ∈Ω

e(λ) si(λ) dλ, i ∈ {R,G,B}, (2.3)

10
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2.2 White-Balance

As discussed in the previous sections, the camera’s RAW sensor responses di-

rectly depend on the scene illumination. Achieving color constancy is significantly

important to many computer vision applications as well as photo reproduction.

Therefore, the goal of computational color constancy, especially white-balance, is

to diminish the effect of the illumination to obtain data which more precisely reflects

the physical content of the scene.

The aim of white balancing process is to correct images such that they appear

as if taken under a canonical lighting condition, usually a D65 illuminant. This is

a two-step process, (1) illuminant estimation, and (2) image correction, which we

discuss in the following subsections.

2.2.1 Illuminant Estimation

The step of illuminant estimation is to infer the prevailing illumination on the

imaged scene. It is the key to computational color constancy, as the next step,

image correction, is considered to be straightforward.

If we consider the simplest case, where the illuminant is uniform and its color

is depending only on the spectral power distribution of the light source and the

camera sensitivity (Equation 2.3), it is still hard to solve the illuminant estimation

problem. Suppose an image with N pixels is captured under a uniform illuminant,

there will be 3N + 3 unknowns (N surfaces at every pixel location and 1 global

illuminant, each with 3 RGB channels), but only 3N RGB measurements are known.

Even if we consider it unnecessary to recover the brightness of the light (magnitude

of the RGB tristimulus), thus the number of unknowns is reduced to 3N+2 and this

11
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is still less than the number of known quantities. As such, illuminant estimation

is an ill-posed problem that remains a challenge to solve. We dedicate the next

section 2.3 for the review of illuminant estimation methods.

2.2.2 Image Correction

One common simple model of image correction for different illuminants is a single

linear transformation, where each pixel value of the image taken under the unknown

illuminant, ρU = [ρU
R , ρ

U
G , ρ

U
B ]T, is mapped to the corresponding color as if the image

was taken under the canonical illuminant, ρC = [ρC
R, ρ

C
G, ρ

C
B]T, by

ρC = MρU (2.4)

where M is a single 3 × 3 matrix used for all pixels. It is clearly that this linear

transformation is only an approximation as some information has been lost during

the mathematical projection/integration from high dimensional space of spectral

power distribution to a much lower dimensional RGB space as in Equation 2.2.

The M in Equation 2.4 can be further restricted to be a diagonal matrix. This

approach is attributed to von-Kries [von Kries 1878] as a model for human eye

adaptation and is thus often referred to as the von-Kries diagonal model, or diagonal

model for short. This diagonal model maps the image taken under one illuminant

to another by simply scaling each channel independently:

ρC(x) = diag(
ρC

ρU ) ρU(x) (2.5)

where diag(·) indicates the operator of creating a diagonal matrix from a vector.

12
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This model has been used for most computational color constancy algorithms

where the neutral colors should remain achromatic in the camera’s color space.

However, the ability of this diagonal matrix to correct non-neutral colors is ignored.

Other models that address the correction of non-neutral colors are beyond the

scope of this thesis, the reader may refer to [Cheng 2015] for further study. In

the next section 2.3 we will review prior single-illuminant and multiple-illuminant

estimation methods.

2.3 Illuminant Estimation Methods

In this section we focus our review on the key illuminant estimation methods in

the literature. For the purpose of our work, we categorize them into two main

categories: single-illuminant and multiple-illuminant estimation methods. Also,

we make a quick discussion on the drawbacks of the multiple-illuminant estimation

methods which we are going to overcome by our approach in Chapter 3. For more

details and further study on illuminant estimation literature, the reader may refer

to [Cheng 2015; Gijsenij et al. 2011].

2.3.1 Single-Illuminant Estimation Methods

Perhaps the simplest general approach to illuminant estimation is to compute a

single statistic of the image, such as the average or mean color, and this led to the

Grey-world assumption [Buchsbaum 1980]. In physical terms, the assumption is

that the average reflectance in a scene under a neutral light source is achromatic,

therefore any deviation from achromaticity in the average scene color is caused by

the illuminant. This implies that the color of the light source ρe can be estimated

13
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by computing the average color in the image. This method is extremely simple,

however, it is very sensitive to large uniformly colored surfaces, which often leads

to scenes where this assumption obviously fails.

To overcome the sensitivity to large uniformly colored surfaces, the average

color could be computed among regions as opposed to pixels [Gershon et al. 1987]

where the image is segmented before computing the scene average color among

the segmented regions.

An important early work in color constancy is the Retinex theory [Land and Mc-

Cann 1971]. The Retinex theory presumes that slowly spatially varying frequency

in an image is related to the scene illumination. If the illumination is assumed to be

uniform, then the Retinex theory amounts to the White-patch assumption, where

the maximum response in the RGB-channels is caused by a perfect reflectance on

a white surface. A surface with perfect reflection will reflect the full range of light

that it captures. Consequently, the color of this perfect reflectance is exactly the

color of the light source. In practice, the assumption of white-patch is alleviated

by finding the maximum values of the color channels separately, especially after

applying a smoothing step on the image [Shi and Funt 2012].

In [Finlayson and Trezzi 2004], the white-patch and the grey-world algorithms

are shown to be special instances of a more general Minkowski framework:

( ∫
ρp

i (x) d(x)
)1/p

i ∈ {R,G,B} (2.6)

where substituting p = 1 gives the grey-world assumption (average color), and

when p = ∞ results in the white-patch assumption (maximum color). To obtain

better performance, the value of p is tuned for the data set to reach the optimal

14
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value. This is referred to as the shades-of-gray.

Instead of using color distribution, [Van De Weijer and Gevers 2005] incorpo-

rated high-order image spatial information based on the Grey-edge assumption;

that the average of the reflectance differences in a scene (i.e. image gradient) is achro-

matic. A general computing framework can be formulated as:

( ∫ ∣∣∣∣∣∂nρi,σ(x)
∂xn

∣∣∣∣∣p d(x)
)1/p

i ∈ {R,G,B} (2.7)

where | · | indicates the Frobenius norm, p is the Minkowski norm, and derivatives

of the image are defined as convolving the images with Gaussian derivative filters

with scale parameter σ. Later, weighting schemes were applied on different types

of edges, resulting in the weighted grey-edge method [Gijsenij et al. 2012a].

The gamut-mapping algorithm was introduced in [Forsyth 1990] based on an

assumption that in real world natural images and for a particular illuminant, only

a limited number of colors can be observed, called the observable colors. The set

of observable colors under the canonical illuminant is called the canonical gamut.

As a result, any variations in the observed colors of an image are caused by the

presenting illuminant and this unknown illuminant can be found by mapping the

sensor responses to the canonical gamut.

The discussed statistics-based methods have the clear advantage that they are

simple and fast, but often they do not perform well. That is why recent state-of-the-

art methods employ learning-based techniques to get better performance. Several

methods [Gijsenij and Gevers 2007; Bianco et al. 2008; Bianco et al. 2010; Gijsenij and

Gevers 2011], imitating the human vision system, have proposed to adopt learning

of semantic information into the estimation of the illuminant, examples of such

15
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information are indoor-outdoor classification, image categorization, or complex

image features from decision trees. These methods tend to combine multiple

illuminant estimation algorithms and use different strategies to fuse the algorithms

or select the most suitable one. Other methods use high-level visual information as

priors, such as colors of specific object categories [Van de Weijer et al. 2007; Rahtu

et al. 2009] or, more reliably, colors of human faces [Bianco and Schettini 2012].

With large amounts of accessible images, artificial neural networks played

a big rule in illuminant estimation [Funt et al. 1996; Cardei et al. 1998; Cardei

et al. 2002], especially with kernel regression [Agarwal et al. 2006] and thin-plate

spline information [Shi et al. 2011]. In [Joze and Drew 2012; Joze and Drew 2014],

training data was used from surface regions segmented from the images and a K-

nearest neighbor approach was used to estimate the final illuminant from multiple

candidates. In [Finlayson 2013], the final illuminant estimate is proposed to be a

direct linear mapping from image statistical moments.

Most of the discussed learning-based methods rely on complex features and

have long evaluation and training times. Trying to come up with simplified and

efficient algorithms for white balancing, Cheng et al. [Cheng et al. 2014] developed

an illumination estimation method that chooses bright and dark pixels using a

projection distance in the color distribution and then applies principal component

analysis (PCA) to estimate the illumination direction only from these pixels. Re-

cently, Cheng et al. [Cheng et al. 2015] presented a learning-based method based on

four simple color features and use these features with an ensemble of regression

trees to estimate the illumination.
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2.3.2 Multiple-Illuminant Estimation Methods

One of the first methods to consider non-uniform or multiple illuminations is the

Retinex theory [Land et al. 1977] that assumed illumination smoothly varies across

a scene and abrupt changes in an image’s content are caused by changes in scene

reflectance properties. This assumption was used by [Ebner 2009] to propose a

method that computes the local average color as the local scene illumination by

convolving the image with a Gaussian or exponential kernel. This method can

be interpreted as applying Grey-world [Buchsbaum 1980] locally at every pixel.

While simple, this approach established a common framework adopted by many

later methods: namely, divide an image into local patches or regions, apply single

illuminant estimation methods locally, and post process the local results to obtain

an illumination map.

Bleier et al. [Bleier et al. 2011] proposed to segment an image into super-

pixels and then applied multiple single-illuminant estimation algorithms for each

super-pixel. These per super-pixel estimations were fused to obtain the final local

estimates. In a similar approach [Riess et al. 2011], an improved version of the

physics-based illuminant estimation method [Tan et al. 2004] was applied on images

segmented into homogeneous regions.

A general framework was proposed by [Gijsenij et al. 2012a] where they propose

to use local image patches selected by different sampling methods (grid-based,

keypoint-based, or segmentation-based sampling). After sampling each of the

patches, single-illuminant estimation techniques are applied to obtain local illumi-

nant estimates. These initial estimates are clustered into two groups and spatial

filters are applied to smooth the illuminant distributions. Similarly, [Beigpour et al.
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2014] formulated a multi-illuminant estimation within a conditional random field

framework over a set of local illuminant estimates from single-illuminant estima-

tion algorithms.

Although many works adapt this general framework, the results are often not

satisfactory as they are bounded by the quality of the single-illuminant estimation

methods being used. Such single-illumination methods tend to perform poorly on

local regions. Another drawback is that these local methods are computationally

intense. As a result, the spatial resolution used by these methods are lowered to

reduce the computational time, leading to the result of illumination maps that are

too coarse to be practical, e.g. approximately 30 super-pixels in [Bleier et al. 2011]

and an illumination map of size 15× 20 in [Beigpour et al. 2014]. In addition, most

of these methods do not demonstrate how to use the estimated illumination map

for image correction. The ability to perform good spatially varying illumination

correction is still unclear.

There have been a number of bottom-up single-illuminant estimation methods

that have been adopted to handle multi-illuminant images. The approaches by

[Bianco and Schettini 2014] and [Joze and Drew 2014] respectively extended the

face-based and exemplar-based color constancy algorithms to deal with a known

number of multiple illuminants. Yang et al. [Yang et al. 2015] proposed to identify

grey pixels to estimate single and multiple illuminants. For these methods, the

type of image (single or multiple illuminant) must be given explicitly.

There are works that focus only on correcting scenes with multiple illumina-

tion with user assistance. Hsu et al. [Hsu et al. 2008] proposed treating two-

illumination image correction as a mixture estimation problem using background-

foreground matting where examples of illumination in the scene were provided
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by user markup. Boyadzhiev et al. [Boyadzhiev et al. 2012] extended this matting

approach to handle more illuminants with the addition of more user markup used

to indicate neutral color, correct color, and homogenous scene regions.

As discussed in Chapter 1, the approach in this thesis takes a departure from all

the reviewed methods in this chapter, where all of these methods are just variances

of attempting to estimate multiple local-illuminants. This departure decision is

made for a number of reasons. First, the nature of the aforementioned local ap-

proaches makes the algorithms computationally intensive for practical purposes,

especially for smartphone cameras. More importantly, the resulting illumination

estimations have not been shown to be sufficiently dense to support high-quality

spatially varying illumination correction. As a result, it is felt that focusing on

a computationally efficient method that can reveal only one or two illuminations

in the scene, even without useful spatial information, is desirable as users likely

have a preference of which illuminant they would prefer to be corrected, as will be

shown in Chapters 3 and 4.

2.4 Summary

In this chapter we provided some background on the camera image processing

pipeline and the white-balancing problem. And we reviewed key important single

and multiple illuminant estimation methods, discussing the drawbacks of the latter

category which we will address by our approach to solving the white-balancing

problem in Chapters 3 and 4 .
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Chapter 3

Two Illuminant Estimation

In this chapter we present our two illuminant estimation approach to address

the problem of white-balancing. Departing from multiple illuminant estimation

paradigm, we advocate a different strategy, we show that applying a single-

illuminant estimation method on a relatively small number of large sub-images

of the input image can not only detect if two distinct illuminants are present, but

also provide accurate estimations for these illuminants. Then, we describe a new

image data set, extracted from existing illumination and image processing data

sets, which we used to evaluate our approach. Experimental comparisons with

prior works and a discussion will be also presented in this chapter.

3.1 Two Illuminant Estimation Method

The main idea is to use a single illuminant estimation method on a number of large

sub-images of an image to obtain several candidate illuminant estimations. If these

candidate estimations show little variation, it is assumed the image contains a single
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Figure 3.1: This figure provides an illustration of the regression trees method
proposed by Cheng et al. [Cheng et al. 2015]. This method produces a set of
reliable candidate estimates in the 2D rg-chromaticity space. The median of the
candidates is used as the final estimate.

illuminant. Conversely, if the candidate estimations show large variation, it is likely

there are two distinct illuminants among the candidates that can be extracted.

The accuracy of this strategy depends highly on which single illumination

method is used. When we were determining the most suitable method, it was

desirable to have a method that is not only fast and accurate, but also provides the

ability to determine if a candidate estimation for a sub-image was reliable or not.

To this end, we decided to use the recent work by [Cheng et al. 2015]. As will be

discussed, not only is this method fast, but its design based on multiple classifiers

provides a suitable mechanism to determine if a candidate estimation is reliable or

not. We first provide a brief overview of the method by [Cheng et al. 2015] and

then we describe the full procedure next.

Single Illuminant Estimation using Simple Features. Figure 3.1 illustrates the

method proposed in [Cheng et al. 2015] that used simple color features and regres-

sion trees. Given a RAW image, four features from the camera-specific RGB color

distribution are extracted: f1: average color; f2: brightest color; f3: dominant color
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and f4: chromaticity mode of the color palette. These four features are supplied to

a bank of K regression trees (K = 30) to get illuminant candidate estimates. Each

regression tree is indicated by Ii(fj), where i ∈ {1, ..., 30} indicates the index of the

tree and j ∈ {1, ..., 4} indicates the feature.

These regression trees are trained using labeled images with known illumi-

nations from a single camera. Given a new input image, the four features are

computed on the input and the features are evaluated on the 30 regression trees to

produce illuminant estimation candidates in the 2D rg-chromaticity space1. Note

that each tree produces four candidate estimations, one for each feature. A cross-

feature consensus is used to identify potential candidates per tree. In particular,

when any three out of four results for a particular tree are sufficiently similar,

these results are kept, otherwise they are rejected. The final estimate for the entire

method is the median of all kept estimates from the 30 trees.

As noted in [Cheng et al. 2015], there are cases when all of the estimates are

rejected. There are also cases when the results that were kept have a great deal of

discrepancy. In these cases, [Cheng et al. 2015] uses the median of all the 30 trees

as the final output. However, in our case, we can use these scenarios to reject this

result due to not being reliable for the current sub-image.

Two Illuminant Estimation Method. The overall framework of our method is

illustrated in Figure 3.2. The image is divided into sub-images (e.g. 4 × 6, the effect

of different sized sub-images is discussed later). For each sub-image, the multiple

regression trees [Cheng et al. 2015] method just described is applied. Cross-feature

1The 2D rg-chromaticity space is a simple projection from the normalized 3D RGB space obtained
by dividing the three values of R, G, and B components by the sum of their values, then using only
the resulting r and g components to represent the illuminant on a 2D plane. Note that the b value
can be easily restored as (1 − r − g) [Martinkauppi and Pietikäinen 2005].
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Figure 3.2: An overview of our two-illuminant estimation method. The image
is divided into sub-images. A single-illuminant estimation method ([Cheng et al.
2015]) is applied on each sub-image. If the illuminant estimate candidates obtained
per sub-image are similar, the estimate result is kept (denoted with a X, otherwise
they are rejected denoted with an ×). The final set of reliable estimations (i.e. those
kept) are examined to see if they form one or two clusters, which are used as the
final illuminant estimations.

consensus is examined on these initial candidates and only candidates in agreement

are kept. If the regression tree approach does not obtain a consensus or the collective

candidates from the trees have too high variance (set to 0.0001 in rg-chromaticity

space in our approach), the results for this sub-image are ignored, otherwise the

median of the results is kept as the estimate for that sub-image. Figure 3.2 shows

an example, where rejected sub-images are marked with an × and those that have

passed are marked with a X.

After the sub-images have been processed, we are left with a set of 2D illuminant

estimates in the rg-chromaticity space of the input image. We then compute the

pair-wise distance of all candidate estimates. If the average pair-wise distance is less

than 0.025, it is assumed there is only a single illumination in the scene and the

median of all the candidates is reported as the illuminant estimation. Otherwise,
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the image is classified as having two illuminations, and k-means (k = 2) clustering

is applied and the centroids of the two clusters are taken as the estimates of the

two illuminants.

Efficiency. The efficiency of the proposed approach is highly dependent on the

underlying single-illuminant estimation algorithm being used. Most of processing

time is consumed in applying the single-illuminant estimation algorithm to the sub-

images. Then, an almost fixed amount of time is consumed in determining whether

we have a single or double illuminants, which is a simple k-means clustering step.

Hence, we used the single-illuminant estimation algorithm by [Cheng et al. 2015]

which has been evaluated against many state-of-the-art methods and proved to be

the most efficient. This supports our claim that our proposed approach is highly

efficient.

3.2 Two-Illuminant Data Set

In this section, we describe how we obtained the images with two illuminations.

Interestingly, we found a large number of such images in the Gehler-Shi data

set [Gehler et al. 2008; Shi and Funt 2010], which is a data set intended and often

used for single illuminant estimation. It has been noted by others (e.g. [Joze and

Drew 2014]) that many of the images in fact contain two illuminations. We identi-

fied 66 of the 568 images from the Gehler-Shi data set as having two illuminants.

Almost all of these images contain distinct illuminations of indoor and outdoor

light. The original ground truth was measured by the neutral patches on the color

checker chart, and it is typically positioned such that it measures the indoor illu-

minant. For the ground truth of the other illuminant, we manually marked it from
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the image by finding neutral objects in the scene. While our manual marking is

arguably not as accurate as having a color checker chart, we believe it provides a

sufficiently accurate ground truth for studying this problem.

To enlarge our two-illuminant evaluation data set, we included some images

from the RAISE data set [Dang-Nguyen et al. 2015]. This data set contains a large

number of RAW images from various cameras that are used for image forensics.

We examined this data set and found 34 images that are clearly containing two

illuminants, mainly indoor and outdoor. The RAISE data set is not intended for

illuminant estimation evaluation, so its images do not contain a color chart to get

the ground truth illuminant. So, for this set of images, we estimated the two

illuminants by manually selecting a small patch from each image that contains

neutral material under the different illuminants.

Figures 3.3 and Figure 3.4 show some examples from the two-illuminant images

from the Gehler-Shi data set and the RAISE data set, respectively. It is worth noting

that the double-illuminant images targeted by the proposed method are quite

common, an immediate indication to this is that the Gehler-Shi data set which is

intended to contain only single-illuminant images and used for evaluating single-

illuminant estimation algorithms, surprisingly, it contains 66 double-illuminant

images out of 568 (about 12%) which were oversighted by many researchers. The

following sections in this chapter provide details on our experimental results and

findings.
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Figure 3.3: Example images from our collection of two illumination images from
Gehler-Shi data set [Gehler et al. 2008; Shi and Funt 2010].

Figure 3.4: Example images from our collection of two illumination images from
RAISE data set [Dang-Nguyen et al. 2015].

3.3 Experimental Results

In this section, we evaluate the performance of the proposed illuminant estimation

method. First, we describe the evaluation setup. Then, we describe the assessment

criteria. Then, we discuss some parameter setting and method adaptation details.

Finally, we discuss the performance results.

Evaluation Setup. We evaluate our method using the regression trees method

by [Cheng et al. 2015] and with alternative designs using different single illuminant
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estimation methods, namely: Grey-world [Buchsbaum 1980] and the learning-

based Corrected-Moment method [Finlayson 2013]. We denote these two methods

as “Locally applied Grey-world” and “Locally applied Corrected Moment”, respectively.

We also modify an existing multi-illuminant method by Gijsenij et al. [Gijsenij

et al. 2012b] to fit our framework for comparison, denoting it as “Adapted Gijsenij

et al.”. Our evaluation is performed on images containing both two illuminations

and those with single illumination.

We note that Cheng et al. [Cheng et al. 2015] and the Corrected-Moment method

[Finlayson 2013] require training. Since our proposed framework uses sub-images,

we train these methods on sub-images instead of full images. For each method,

we train using images from the Gehler-Shi data set that only contain a single

illumination. This gives us the ground truth illuminant for every sub-image. For

each training image, we randomly sample 40 sub-images from the original image

for training. To evaluate the whole data set, we follow the standard three-fold cross

validation procedure.

Assessment Criteria. Given an image to detect if it contains a single or double

illuminants and to measure them, there are four possible outcomes:

• Case 1: If the input image is a single-illumination and is detected correctly as

a single-illumination image (denoted as single-single or SS), only one estimate

is given and there is only one angular error with respect to the ground truth.

• Case 2: For an image containing two illuminations, if it is correctly detected

as having two illuminants (denoted as double-double or DD), we sort the two

illuminant estimates according to their temperature and compare with the

ground truth respectively: illuminant 1 represents the outdoor and illuminant
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2 represents the indoor illuminant.

• Case 3 and 4: For images detected incorrectly; a single-illuminant image de-

tected as two-illuminant (denoted as single-double or SD) or a two-illuminant

image detected as single-illuminant (denoted as double-single or DS), we test

to see if the method computed one illuminant estimate correctly, that is why

we report the minimal angular error and maximal angular error.

We use N with a subscript of these four cases to represent the number of each

outcome, e.g. NSS indicates the number of single-illuminant images that are that

have been detected correctly as single-illuminant images. Recall (R), Precision (P),

and F-Measure (F) are common metrics for classification tasks and in the context

of single illumination image detection problem, they can be defined as:

PS =
NSS

NSS + NDS
(3.1)

RS =
NSS

NSS + NSD
(3.2)

FS = 2 ·
PS · RS

PS + RS
, (3.3)

while in the context of the double illumination image detection, they can be defined

as:

PD =
NDD

NDD + NSD
(3.4)

RD =
NDD

NDD + NDS
(3.5)

FD = 2 ·
PD · RD

PD + RD
. (3.6)
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Parameter Setting and Method Adaptation. We evaluate our method and

other adapted methods by breaking an image into different numbers of sub-images:

4 × 6 and 8 × 12. We choose this ratio (2 : 3) for the dimensions of the sub-images

grid because all images in the data set have dimensions with the same ratio. The

chosen number of sub-images is related to the reason why we advocate the global

correction. As discussed earlier, existing multi-illuminant color constancy methods

often only give a low-resolution illuminant map that are not practical for spatially-

varying correction. Thus, we proposed to estimate the local illuminants on large

sub-regions. Using larger sub-image sizes, e.g. 2 × 3, would be too coarse for the

two-illuminant scenes, thus we chose to start from 4 × 6 in the experiment. And

from the comparison we will show that 8 × 12 doesn’t improve the performance

and 4 × 6 is generally enough. That is why we did not go through all possible

sub-image sizes, from one pixel to the whole image.

We have evaluated the classification performance of our proposed method with

different values of the threshold on the average pair-wise distance of all sub-image

candidate illuminant estimates. These values range from 0.01 − 0.1, at intervals of

0.001. Figure 3.5 shows the change in Precision (P), Recall (R) and F-Measure (F)

with the different threshold values. As it can be seen, for single illuminant images,

these three metrics are quite stable, while for the double illuminant image, although

the precision gets higher with a higher threshold, the recall gets lower. With the

threshold of 0.02, the F-measure is at its largest which means it gives the best

balanced classification between single and double illuminant images. The cross-

feature candidates consensus threshold in [Cheng et al. 2015] was 0.025, which is

very close to 0.02, thus we used this value (0.025) as the final parameter value to

calculate our final results.
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Single illuminant images Double illuminant images

Threshold Threshold Threshold

Figure 3.5: Precision, Recall, and F-Measure curves for our proposed method.
Curves are shown for single and double illuminant images with varying values
used as threshold on the average pair-wise distance of all candidate illuminant
estimates.

It is worth noting that [Buchsbaum 1980] and [Finlayson 2013] have no mecha-

nism to reject outliers, so the result from all sub-images are used to compute the final

result. Finally, the method by [Gijsenij et al. 2012b] estimates the results on small

local windows. We use all of these local window results and apply the pair-wise

test, as described in Section 3.1, to determine the final illuminant estimates.

Experimental Results and Discussion To compare the general performance of

our proposed method and other methods while achieving their best performance,

different values of the average pair-wise distance of all sub-image candidates were

used to determine the number of illuminants. The Precision, Recall and F-Measure

curves are shown in Figure 3.6 using the values of threshold from 0.01 − 0.1 at

intervals of 0.001. Note that, for some large values of the threshold, our proposed

method and the locally applied corrected moment method [Finlayson 2013] detect

all images as single illuminant images, which makes the Recall and Precision both

result in zero and the F-Measure undefined. Results for such threshold values are

not shown in the figures.
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As can be seen from the figures, the proposed method constantly achieves the

best Recall performance for single illuminant images and also achieved constantly

the best Precision performance for double illuminant images. In terms of a com-

bined performance metric, the F-Measure for the proposed method is constantly

better than the other methods for both single illuminant images and double illumi-

nant images. The results show that the proposed method gives the best balanced

classification for single/double illuminant images for all the threshold values.

Table 3.1 reports the performance results of our method compared to other state-

of-the-art methods. All methods are reported with the threshold value that gives

the best double illuminant images F-Measure (0.025 for the proposed method, 0.03

for locally applied Corrected-Moment [Finlayson 2013], 0.04 for locally applied

Grey-world [Buchsbaum 1980] and 0.05 for adapted Gijsenij et al. [Gijsenij et al.

2012b]) as per Figure 3.6c.

As shown in the Table 3.1 the proposed method achieves the highest F-Measure

for both single and double illumination images. When we apply our proposed

method in a finer scale (2nd row), however, it does not improve the performance.

The chance of correctly detecting the two-illumination image may increase, but

it drops quickly for single illumination images; thus the F-measure gets slightly

worse, as can be seen in Figure 3.6c. Angular error of the illuminant estimates is

also worse for smaller sub-images.

Compared with our proposed method using multiple regression illuminant

estimation [Cheng et al. 2015], it is not surprising that the local Grey-world and

Corrected Moment methods tend to mis-classify the number of illuminants, espe-

cially the single illumination images. However, we can see that the learning-based

method (Corrected-Moment) gives better illuminant estimates than the statistical
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Table 3.1: Performance results of our method compared to state-of-the-art methods:
Grey-world [Buchsbaum 1980], Corrected-Moment [Finlayson 2013], and Adapted
Gijsenij et al. [Gijsenij et al. 2012b]. L1 and L2 are the two illuminants.

Method Image
Type

Total
#

Detected
#

F-
Measure

Error for
Correct

Detections

Error for
Incorrect

Detections

L1 L2 Min
Error

Max
Error

Proposed
(4 × 6)

Single 502 477 0.9578 1.34 - 1.79 11.28
Double 66 49 0.7000 1.87 2.05 2.33 15.48

Proposed
(8 × 12)

Single 502 464 0.9450 1.53 - 2.35 14.77
Double 66 50 0.6494 2.32 2.33 2.51 16.48

Locally applied
Grey-world

Single 502 352 0.8000 4.60 - 4.31 14.27
Double 66 40 0.3125 8.89 6.04 4.22 13.29

Locally applied
Corrected Moment

Single 502 393 0.8656 1.88 - 2.76 14.16
Double 66 53 0.4649 3.83 7.64 2.87 10.32

Adapted
Gijsenij et al.

Single 502 256 0.6615 4.92 - 4.57 18.03
Double 66 50 0.2762 9.23 7.44 4.94 13.56

method (Grey-world). In contrast to our proposed method of estimating the illu-

mination on big sub-images, the traditional spatially varying illuminant map in

[Gijsenij et al. 2012b] obtains the worst result on almost every metric.

3.4 Summary

In this chapter we described our two illuminant estimation approach to address

the problem of white-balancing. We showed that applying a single-illuminant

estimation method on a relatively small number of large sub-images of the input

image can not only detect if two distinct illuminants are present, but also provide

accurate estimations for these illuminations. We showed with experimental results

the better performance of our method compared to other state-of-the-art multi-

ple illuminant estimation methods as well as other single-illuminant estimation

methods adapted to fit our two-illuminant estimation framework.
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Figure 3.6: Precison, Recall, and F-Measure curves for single and double illuminant
images for the four different methods evaluated with the same set of threshold
parameter values.

34



Chapter 4

User-Preferred Image Correction

After the estimation of scene illumination in an image, the next step is to correct

the image. In this chapter we will present our approach for global image correction

and how we have come to it through conducting user studies. Also, we will

present how to combine the two steps from this chapter and Chapter 3 for efficient

white-balancing application.

As demonstrated in Chapter 3, the proposed approach is able to estimate two

illuminants that are sufficiently distinct; however, there does not exist a corre-

sponding illumination map and thus spatially varying white-balance correction is

not possible. As such, we seek to determine, given two illuminants, which illu-

minant do users prefer to be corrected. To answer this, we carried out two user

studies to elicit users’ preferences. For the user studies we used images from two

publicly available data sets, Gehler-Shi data set [Gehler et al. 2008; Shi and Funt

2010] and RAISE data set [Dang-Nguyen et al. 2015]. Details about our collected

two illuminant images were discussed in Section 3.2. The following sections detail

our experiments and findings.
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Cat. I
Distinct 

illuminants

Cat. II
Similar 

illuminants

𝑳𝟏 𝑳𝟐 =
0.75𝐿1 + 0.25𝐿2

𝑳𝟑 =
0.50𝐿1 + 0.50𝐿2

𝑳𝟒 =
0.25𝐿1 + 0.75𝐿2

𝑳𝟓
RAW
image

Illuminants used for correction

Figure 4.1: An example of image categories with 5 different illuminant corrections.
The two rows represent images with two distinct indoor and outdoor illuminants
(Cat. I) and images having two similar illuminants (Cat. II), such as sun and shade
illuminants. The first column shows the raw image with the following columns
showing the image corrected using 100%–0%, 75%–25%, 50%–50%, 25%–75%, and
0%–100% weights of the identified two illuminants, respectively.

4.1 User Study 1 (Two Choices)

For this study we used 33 images that contain two distinct illuminations (namely

indoor and outdoor). The number of participants in this study was 39. We carried

out the experiments in an indoor room with standard fluorescent light and cali-

brated monitors, that is to avoid any effects from outdoor lights, or difference in

indoor lights, on the visual appearance of the viewed images. Also, the monitor

calibration process is necessary because uncalibrated monitors are likely to change

the visual appearance of the white-balanced images.

Procedure. For each image, the two illuminants L1 and L5 were estimated by

manually selecting a small patch from each image that contains neutral material

under the different illuminations (the second illuminant is termed L5 in this study

as we will use more in-between illuminants in the next study). Each image was

corrected (white-balanced) using the two estimated illuminants, generating a pair

of differently white-balanced images. In Figure 4.1, the second and last columns
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Figure 4.2: User preferences for image correction by (a) two distinct illuminants
(user study 1) and (b) five different illuminants (user study 2). The second user
study is carried out with images containing distinct as well as similar illuminants.

show sample images corrected using the two illuminants. Each user was shown the

33 pairs of differently white-balanced images in random order. They were asked

to choose the image they prefer. The images were viewed on the same screen and

in the same place to avoid the effects of different lighting conditions on the visual

appearance of the images.

Outcomes. The choices of the users were averaged. The results showed a higher

user preference (almost 75%) of images corrected using illuminant L5, which was

the outdoor illumination. This is shown in Figure 4.2a. This means that users

preferred the outdoor color casts to be corrected, which results in the indoor color

casts in the image being kept. This has the effect of producing a “warm” (reddish)

output image. We also performed statistical testing over the user choices to make

sure they are statistically significant, which resulted in the 95% confidence interval
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shown as error bars in Figure 4.2a.

4.2 User Study 2 (Five Choices)

The first user study only gave the users two choices. In that test, the results

correcting one of the illuminants was strongly preferred. For the next user study,

we wanted to see if the users would prefer some mixture of the results. We used the

same images as user study 1, but also added some extra images that contain similar

illuminants. We added these to see if we observed a similar preference trend when

the images did not have distinct illuminations. This means we have two categories

of images: Cat. I, two distinct illuminants (indoor and outdoor), and Cat. II, two

similar illuminants, such as sun and shade illuminants.

Procedure. Images were sought to have sufficient neutral materials in the scene

that we could accurately identify the two illuminations. In the end, we obtained

24 images from Cat. I, and 5 images from Cat. II. Since our main concern was two

distinct illumination images (Cat. I), we selected more images from this category.

We enlisted 34 users for the study, their average age was 22 years, with 26 males

and 8 females.

For each image, two illuminants were estimated by manually selecting a small

patch that contains neutral material to provide an estimation of the illumination.

We label these two illuminants L1 and L5. We then generated mixtures of these two

illuminations. Specifically, illuminant values for labels L1-L5 are computed using:

Li = αiL1 + (1 − αi)L5, (4.1)
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where αi is set to 1.0, 0.75, 0.50, 0.25, and 0.0 for L1, L2, L3, L4, and L5 respectively.

Each image Ik was corrected (white-balanced) using the 5 different illuminants.

This results in five white-balanced images {I(L1)
k , ..., I(L5)

k }, for each image k, where

I(Li)
k means the correction of image Ik using illuminant Li. Figure 4.1 shows some

example images from both categories.

We used a two-alternative forced choice approach within a game-based strategy

as recommended by [Hacker and von Ahn 2009]. A two-player game is used where

both players are shown 50 randomly-selected pairs of images {I(Li)
k , I(L j)

k } at the same

time, where i, j ∈ {1, ..., 5} and i , j. In other words, each pair are the same image

corrected using two different illuminants picked randomly from the 5 illuminants

for this image. Each pair is viewed in random order. Instead of asking each player

to choose the image they prefer, each player is asked to select the image they think

their partner (the other player) would prefer. This game-based strategy has been

shown to be more effective in eliciting user preferences from such studies [Hacker

and von Ahn 2009]. The same pair of images appear at least 4 times through the

whole user study. The total number of image pair comparisons was 1700, where

each of the 5 images appears for comparison at least 16 times.

As there are 5 different illuminant corrections for each image, and these cor-

rections are shown to the users in pairs, the total number of comparisons needed

to cover all 5 images in a pair-wise manner is
(5

2

)
= 10 comparisons. To combine

the relative user choices into an overall score that represents the user preference

for each of the five corrected versions of the same image, we count the number of

times each corrected version of the image I(Li)
k is preferred over any other corrected

version of the image I(L j)
k , then normalize it by the total number of pair-wise com-

parisons for this image. It is worth noting that in all user studies, we used color

39



Chapter 4. User-Preferred Image Correction

calibrated monitors [DataColor 2016] under the same lighting conditions to avoid

environmental biases.

Outcomes. The average user choices of each of the 5 illuminant corrections for

each category of images are shown in Figure 4.2b along with their 95% confidence

intervals represented by error bars. From this result, we see that Cat. I (two distinct

illuminations) have a clear preference leaning towards the correction using a higher

weight of the outdoor illuminant (i.e. the L4 = 0.25L1 + 0.75L5 illuminant). For Cat.

II (two similar illuminations) the preference is less pronounced and slightly favors

an average result. This is consistent with the finding in [Finlayson et al. 2005] that

visual difference illuminant corrections within 3◦ is not noticeable.

4.3 Two-Illuminant Estimation Application

Our combined findings in Chapter 3 and the previous two sections point to an

approach for handling images that potentially contain two illuminations. Naming,

run the algorithm in Section 3.1 to determine if two distinct illuminants exist. If so,

correct the image with a 75%-25% mixture weighting the outdoor correction more.

Figure 4.4 shows some examples for two-illumination images. To have a compar-

ison, the Corrected Moment [Finlayson 2013] and weighted Grey-edge [Gijsenij

et al. 2012a] methods were used to represent single illuminant estimation methods.

We can see that for these images, the Corrected Moment method and the weighted

Grey-edge method tend to give the indoor illuminant estimation or the mixture of

indoor/outdoor. These illuminant estimates make the corrected images bluish in

nature. In contrast, our correction results are close to the user preferred correction.

Failure Cases. Figure 4.3 shows some failure cases for our approach. There
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Ground truth 
correction

Our correctionRAW image Corrected Moments

Figure 4.3: Example images that our method fails to correctly determine the number
of illuminant(s). The first row shows example images that have a single illuminant,
but our method estimated two illuminations. The second row shows images having
two illuminants, but our proposed method can only detect one.

are two types of failure cases: single illumination image detected as multiple

illumination image (first row) and the multiple illumination image detected as

single illumination (second row). For the first case, this is usually because the image

contains a large homogeneous region, making it hard to estimate the illuminant.

For these images, the state-of-art single illuminant estimation methods also tend

to fail. Although the illuminant classification is wrong, our method can still detect

one of the illuminants correctly. Thus the image correction is still biased towards

this illuminant. The second type of failure occurs when the image contains two

illuminants, but where one illuminant is significantly more prominent. For these

images, our method often estimates the dominant illumination.
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Corrected moments User preferred correctionOur correctionRAW image

Weighted GE User preferred correctionOur correctionRAW image

Figure 4.4: Visual comparison of image global correction. Top three images are from
the Gehler-Shi data set [Gehler et al. 2008; Shi and Funt 2010] while the bottom
three are from the RAISE data set [Dang-Nguyen et al. 2015]. For the images from
the Gehler-Shi data set, the Corrected moment [Finlayson 2013] result is compared
and for the images from the RAISE data set, the weighted Grey-edge [Gijsenij et al.
2012a] result is compared.
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we proposed a simple and fast algorithm to determine if there is one

or two illuminants in an imaged scene, and to estimate these illuminants. The key

to our method is to use a high quality single illumination estimation algorithm

on large sub-images for robust estimation instead of small patches as in previous

methods. We only use the spatially varying estimates to decide if there are one or

two illuminants and to globally estimate the illuminants present in the scene. Given

the difficulty of local image correction, we performed the first user studies to see

whether users have a preference for correcting one illuminant or the other. Indeed,

our studies showed that users have a clear preference for correcting the outdoor

illuminant to produce warmer images. For two illuminant detections, we perform

a global correction based on this user preference. Additionally, we have provided

a new evaluation data set of images containing two illuminations. This image data

set is collected from other existing widely-used illumination and image processing
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data sets. We believe the findings in this thesis will be beneficial in helping to

develop further approaches for multi-illuminant estimation and subsequent image

correction.

5.2 Future Work

Our two illuminant framework is general and works with any single illumination

estimation method, ideally one that provides a confidence measure so that erro-

neous estimates can be discarded. The results of our two illuminant detection and

correction will potentially improve in the future by using improved single illumi-

nant estimation methods. This work focused on images where there are reasonably

large areas that are illuminated mainly by each illuminant. Our method will fail

when the illuminants are significantly mixed almost everywhere in an image. It

will be interesting to see if our method can be improved to handle such cases and

to see if the user preference to correct towards warmer images remains.

Up to the time of writing this thesis, we have no theoretical justification for

the mixture ratio of the two illuminants that we used for image correction (the

75% − 25% for outdoor and indoor illuminants). In the case of only two choices, it

was a 75% preference for outdoor correction. The 5-choice experiment was carried

out to test if this preference still holds when other options are provided (e.g. do

users simply prefer a 50% − 50% blend?). However, we see that the preference

still remains clearly in favor of the outdoor illumination, but not at the extreme.

Also, we believe scene content may play a role in this preference. Thus, it is worth

further exploring this user preference for image correction in the future.
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