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Abstract

We present Convolutional Mean (CM) – a simple and fast convolutional neural net-
work for illuminant estimation. Our proposed method only requires a small neural net-
work model (1.1K parameters) and a 48× 32 thumbnail input image. Our unoptimized
Python implementation takes 1 ms/image, which is arguably 3-3750× faster than the
current leading solutions with similar accuracy. Using two public datasets, we show
that our proposed light-weight method offers accuracy comparable to the current leading
methods’ (which consist of thousands/millions of parameters) across several measures.

1 Introduction
In computer vision, estimating the color of the scene illuminant is a fundamental problem
which is commonly known as illuminant estimation. The color cast caused by illumina-
tion is usually discounted to support color-based computer vision applications such as image
recognition [20, 38], medical image analysis [3, 32] and general scene understanding [8].
Illuminant estimation is also useful for “auto white balance” – an essential feature of the
modern digital camera. Auto white balance produces natural looking photos by removing
the color cast from a raw photo which looks dark and greenish. There have been several
hand-crafted methods/features and recent neural network based approaches to tackle this
problem. Some of them are simple and efficient however lack accuracy. Other convolution-
based methods (e.g. [6, 11, 37] and advanced statistics based methods (e.g. [21, 23, 39])
can achieve better accuracy but they are not fast enough and thus not immediately useful
for industrial applications. We conclude that there are mainly three main requirements for
deploying an illuminant estimation algorithm to embedded platforms:
Processing speed The bundle of all the algorithms running on a digital camera should run
at least 30 FPS (frames per second), esp. for video recording or real-time preview. Besides
many other tasks, such as object/face detection and artistic image filters, the simple task of
illuminant estimation should not take more than 10% of the total computational time which
is about 5 milliseconds per frame [7].
Initialization time Users would not prefer loading delay when turning on a camera. A
practical learning-based illuminant estimation model should contain only a small number of
parameters so loading can be instant.
Thumbnail input Higher-resolution images are required by most illuminant estimation al-
gorithms for good estimation accuracy. However, processing such large images is costly and
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impractical for real-time usages. In practice, 8-bit thumbnail images (e.g. 48×32 pixels) are
usually desirable [7].

In this paper, we propose a simple, but effective illuminant estimation algorithm, which
is named “Convolutional Mean” (CM). CM addresses the above mentioned practical require-
ments. We see this as an alternative for application scenarios whereby processing speed is
prioritized. CM is a small and fast convolutional neural network which offers comparable
estimation accuracy on thumbnail input images. Our unoptimized python implementation
processes images at 1 milliseconds per image – arguably 3×faster than FFCC [7] and 250-
4000× faster than the current leading methods [6, 17, 37]. These features would make CM
particularly suitable for embedded deployment (e.g. smartphones).

The design of CM (depicted in Figure 1) is surprisingly simple and is inspired by the
famous gray world [13] and gray edge [39] illuminant estimation algorithms. The design
can be briefly summarized as two convolutional layers followed by a weighted per-channel
global average pooling layer making use of the mean of all input intensities. Compared with
the traditional methods such as gray edge [39], our features are not hand-crafted but learned
from data. This nature allows for more accurate illuminant estimation at a higher processing
speed.

In Section 2, we review the related work on illuminant estimation based on hand-crafted
and machine-coded features. In Section 3, we present our new algorithm design and show
how to train a light-weight neural network for illuminant estimation. Experiments are pre-
sented in Section 4. The paper concludes in Section 5.

2 Related work
There have been a lot of literature on illuminant estimation. These methods can be roughly
summarized into two categories: (1) Methods based on hand-crafted features. These meth-
ods estimate the illuminant by using image statistics or physics assumptions. They include
mappings between colors statistics (e.g. [13, 14, 39]) and bias-correction [2, 21, 22], bio-
logically inspired features (e.g. [28, 30]), spatial and frequency-domain features from the
image and scene illuminations [9, 15, 27], and specularity/shading [12, 23]. Some of these
methods (e.g. gray world [13]) are based on computationally cheap features offering great
computational efficiency. However, they generally lack accuracy. The others rely on more
advanced features which improve accuracy but at the cost of a lot more computational re-
sources (usually for pre-processing); (2) Methods based on machine-coded features. Given
a labelled illuminant ground-truth dataset, researchers train machine learning models for
illuminant estimation using supervision. Machine-coded features generally require consid-
erably more encoding parameters and can provide significantly better accuracy compared
with hand-crafted features. However, if not handled properly, methods based on machine-
coded features would risk over-fitting that the trained models would only work well for the
similar data which they have “seen”. A large-size model can also incur a considerable com-
putational cost (e.g. model loading time and processing time) which makes it unsuitable for
real-world deployment. As our proposed method also falls into this category, we particularly
review some methods based on machine-coded features in the following paragraphs.

The majority of machine-coded features for illuminant estimation have been learned us-
ing Convolutional Neural Networks (CNN) which has achieved great success in many com-
puter vision tasks, e.g. object recognition [19] and optical flow estimation [19]. Bianco et
al. [10] first attempted to adopt a CNN for illuminant estimation which consists of some con-
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volutional layers followed by two fully-connected linear layers. Although the model is heavy
and its performance is in fact not better than many methods based on hand-crafted features
(e.g. [17]), it has shown potential to adopt CNN for illuminant estimation. This attempt has
been followed by recent convolution-based methods which provide substantially improved
accuracy. Similar to an earlier Apple patent proposed by Hubel et al. [34], Barron [6] has
shown that, in the space of 2-D log-chromaticity, convolutional filters can be learned for more
accurate illuminant estimation. In his work, illuminant color is re-formulated as a global 2-
D translation in the log-chromaticity space. Barron and Tsai [7] later extended [6] by using
FFTs (Fast Fourier Transform) to perform the convolution that filters the log-chromaticity
histogram. This method named FFCC is not always more accurate than Barron’s previous
method – “Convolutional Color Constancy” (CCC) [6] – but its processing speed is sig-
nificantly improved. However, both of Barron’s methods require a pre-processing step of
histogram generation which can be costly. Shi et al. [37] proposed a branch-level ensemble
of neural networks consisting of two interacting sub-networks, i.e. a hypotheses network and
a selection network. The selection network picks for confident estimations from the plausi-
ble illuminant estimations generated from the hypotheses network. Shi’s method produces
accurate results however the model size is huge and its processing speed is slow. The most
relevant work to this paper is a confidence-weighted pooling method (named FC4) which is
proposed by Hu et al. [33]. They adopted transfer-learning to train a deep neural network
which estimates a per-sub-region illuminant map and a weight map for each sub-region. The
illuminant color is the global mean of the weighted per-pixel product between the illuminant
map and its weight map. They have achieved some competitive results however their model
is huge and significantly slower than FFCC [7].

3 Illuminant Estimation by Convolutional Mean
Assuming that an image I is captured by a linear RGB color camera with dark current and
saturated pixels removed, the channel c (c ∈ {R,G,B}) intensity Ic for a Lambertian surface
at pixel x can be formulated as the integral of the product of the illuminant spectral power
distribution E(x,λ ), the surface reflectance S(x,λ ) and the sensor response function Qc(λ ):

Ic(x) =
∫

Ω

E(x,λ )S(x,λ )Qc(x,λ )dλ (1)

where λ is the wavelength and Ω is the visible spectrum. According to the Von Kries coeffi-
cient law [12], Equation 1 can be simplified as:

Ic(x) = Ec×Rc(x) (2)

where E is the RGB illumination and R is the RGB intensity of reflectance under pure white
illumination. For the task of single illuminant estimation, the goal is solving for the global
3-vector illuminant E.

In this section, we present Convolutional Mean (CM) for illuminant estimation. Our pro-
posed network is a fast and light-weight CNN-based solution. It directly accepts an 8-bit
48×32 thumbnail input image without any significant pre-processing, e.g. histogram gener-
ation (adopted in [6, 7]) or homogeneous log-chromaticity intensity conversion (adopted in
[6, 7, 37]). For industrial applications, our proposed network provides an excellent balance
between accuracy and processing/initialization speed.
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Figure 1: Convolutional Mean (CM) network architecture. CM contains two 3× 3 filter
convolutional layers (Conv1/2) which are followed by a 2× 2 max pooling and a ReLU.
At the end, there is a weighted global averaging layer which is implemented as an 1× 1
convolutional layer (Conv3) with ReLU and per-channel global average pooling. In this
diagram, P and S denote padding and stride respectively. The other four numbers shown
in the Conv blocks represent "Filter Size 1 × Filter Size 2 × #Input Channel × #Output
Channel" whose product is the total number of filter parameters.

3.1 Convolutional Mean

Our network design is inspired by gray-world [13] and gray-edge [39] which assume that
the average RGB intensity or edge difference in a scene is achromatic. Their major issue is
that not all pixels in an image are useful for illuminant estimation. Despite this significant
limitation, gray-world [13] has gained great popularity because of its low computational cost.
In this paper, we attempt to improve this average achromatic intensity idea. Our hypothesis
is that through training some shallow non-linear convolutional filters, we could generate
selective features for illuminant estimation by simple per-channel global average pooling.
The additional non-linearity is introduced by the ReLU and max pooling operators.

Our simple neural network only consists of two convolutional filter layers and a per-
channel weighted global average pooling layer using the means of the intermediate outputs
produced by the previous convolutional layer. Figure 1 shows the detailed network architec-
ture of our proposed CM structure. In the figure, Conv1 and Conv2 generate the machine-
coded features for illuminant estimation which are further “selected” by the Max-Pooling +
ReLU operators. In the last layer of “weighted per-channel global average pooling”, we first
weight each output feature channel after Conv2 (e.g. see Figure 3) by using a 1×1 convolu-
tional filter (followed by a ReLU) and obtain a 3-channel output (each channel respectively
denotes R, G and B). Finally, we perform the “gray world” operation [13] – per-channel
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global average pooling. Mathematically, we can represent our network f () as follows:

g(I) = ReLU(MaxPool2×2(I)) (3)

h(I) = GW(ReLU(I ∗F3
1×1×14×3)) (4)

f (I) = h(g(g(I ∗F1
3×3×3×7)∗F2

3×3×7×14)) (5)

where I denotes a multi-channel input array (e.g. for f (), it denotes a 3-channel input image),
g() is a non-linear function formed by a 2× 2 kernel Max-Pooling and a ReLU, h() is the
non-linear weighted averaging function described above, GW denotes the “gray-world” per-
channel averaging, ∗ denotes a convolution operation (without a bias term) followed by a
set of kernels (e.g. F1−3 whose subscripts follow the same definition described in Figure 1).
Note that the resulting 3-vector estimation E is up to a scale (which could be linked to
exposure difference) and therefore we normalize E by dividing its L2-norm. As shown
in Figure 1, our total number of parameter is 1,113. By default, we also normalize the
intensities of I by dividing by its global maximum intensity – a scalar.

3.2 Network training
We have adopted the same training image datasets used by FFCC [7] and CCC [6]. In their
pre-processed datasets, all the image regions belonging to the color/gray checkers have been
masked out (wiped as black – 0 intensity). A common limitation in these datasets is that
their numbers of samples are too small relative to the number of model parameters required.
Therefore, data augmentation is required for training. Although our neural network works
for images in different resolutions, we still specify a standard working resolution of 48×32.
Given a higher-resolution 384× 256 training image, we first randomly re-size it to a scale
between 0.125 to 1 of the original size (using bi-linear interpolation). Then, we randomly
crop a 48×32 (i.e. standard working resolution) image patch from the previously re-scaled
image. This cropping step finalizes the pre-processing for training. Note that these pre-
processing steps of data augmentation are not required for execution. Figure 2 shows an
example of this procedure.

Random Scaling Random Cropping

Training

Figure 2: Training patch cropping procedure. The yellow frame indicates the cropped patch.

In the training phase, we adopt the popular optimization algorithm – Adam [18] – using
the following settings: 1) learning rate = 10−3; 2) batch size = 16; 3) number of epoch =
2000; 4) loss function = L1-norm. We have tried the other loss functions such as L2-norm or
angular error. In practice, L1-norm gives the best results; 5) weight initialization: Kaiming
normal distribution [31]. The training dataset is too small and the additional dataset slicing
for testing would not be practical. To avoid over-fitting, we still require a test set that in each
epoch we test the accuracy of the trained model. Since only the small randomly cropped
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thumbnail-size patches are used for training, the thumbnail version of all the uncropped
training images are visually different from the cropped images and they have been adopted
as the test set to compute the test error for the trained model of each epoch. The model
which produces the minimum test error is then selected as the final model (e.g. for 3-fold
cross-validation). In summary, given a higher-resolution training image, we have used its
randomly cropped thumbnail-size patches for training and its uncropped thumbnail image
for testing. There is no overlap between training/testing images and validation images. We
will show that this tactic is effective in the following section of evaluation.

4 Evaluation
We have implemented our neural network using PyTorch [1]. Following the similar eval-
uation carried out in FFCC [7], we evaluate our method – CM – using two popular color
constancy datasets: the NUS dataset [16] and the Gehler-Shi dataset [26] reprocessed by
Shi and Funt [36]. We adopt 3-fold cross-validation for our evaluation. Note that all the
measurements are calculated using the concatenated errors of the three folds.

4.1 Experiment results and discussions
The results are shown in Tables 1 and 2 where angular error is used to report the results.
Angular error e is defined as follows:

e = acos
(

E ·Egt

‖E‖‖Egt‖

)
(6)

where Egt denotes the illuminant ground truth – a 3-vector, ‖.‖ denotes an L2 norm.
In our evaluation, we focus on the processing accuracy for thumbnail resolution (48×32)

8-bit images which are practical for deploying a white-balance system on embedded devices.
The evaluation results of the other listed methods are based on their recommended image
resolutions and bit depth reported in the corresponding papers. As seen in Table 1, our illu-
minant estimation accuracy (esp. for mean and median) is close to the leading methods such
as [6, 7, 17, 33, 37] and the overall results in Table 2 are somewhat worse than the leading
methods [6, 7, 33, 37]. It is worth noting that FFCC [7] and our CM only take 8-bit 48×32
(thumbnail) resolution input images while the others take 16-bit original resolution input
images. Our CM is also end-to-end without requiring any pre-processing (e.g. histogram
generation used in FFCC [7] or transferred feature extractor [33]).

Our method requires fewer model parameters and it provides a leading balance between
accuracy and speed. As for model size, we show a comparison with some leading methods in
Table 2. Our model parameter size is 157% of CCC [6], 14% of FFCC [7], 0.021% of Deep
Specialized Network [37], 0.025% of FC4 [33], and 0.00003% of Regression Tree [17]. Note
that although CCC [6] requires fewer parameters, it is significantly slower than ours. The
number of model parameters affects the initialization time of the imaging system (e.g. for
loading parameters to memory). Assuming that we adopt 32-bit floating numbers for storing
our model parameters, the initialization of our model would require loading 4.4 KB data
which is fairly light (i.e. an unnoticeable delay). In terms of processing speed, our unopti-
mized python implementation takes 1ms (on a Tesla K40m GPU) to process an image which
is 3× faster than the unoptimized FFCC [7] (2.37 ms/image), 312× faster than Regression
Tree [17] (0.25s/image), 650× faster than CCC [6], 31× faster than FC4 [33] (GPU) and
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Algorithm Mean Med. Tri. Best Worst
25% 25%

White-Patch [12] 9.91 7.44 8.78 1.44 21.27
Pixels-based Gamut [29] 5.27 4.26 4.45 1.28 11.16
Grey-world [13] 4.59 3.46 3.81 1.16 9.85
Edge-based Gamut [29] 4.40 3.30 3.45 0.99 9.83
Shades-of-Gray [23] 3.67 2.94 3.03 0.98 7.75
Bayesian [26] 3.50 2.36 2.57 0.78 8.02
Natural Image Statistics [28] 3.45 2.88 2.95 0.83 7.18
LSRS [25] 3.45 2.51 2.70 0.98 7.32
2nd-order Gray-Edge [39] 3.36 2.70 2.80 0.89 7.14
1st-order Gray-Edge [39] 3.35 2.58 2.76 0.79 7.18
General Gray-World [5] 3.20 2.56 2.68 0.85 6.68
Spatio-Spectral Statistics [15] 3.06 2.58 2.74 0.87 6.17
Corrected-Moment [21] 2.95 2.05 2.16 0.59 6.89
Bright-and-Dark Colors PCA [16] 2.93 2.33 2.42 0.78 6.13
Color Dog [4] 2.83 1.77 2.03 0.48 7.04
Homography [22] 2.55 1.70 - - 5.78
APAP-LUT [2] (GW) 2.52 1.83 - 0.60 5.62
CCC [6] 2.38 1.48 1.69 0.45 5.85
Deep Specialized Net [37] 2.24 1.46 1.68 0.48 6.08
Regression Tree [17] 2.18 1.48 1.64 0.46 5.03
FC4 [33] (AlexNet) 2.12 1.53 1.67 0.48 6.08
FFCC [7] (Model Q) 2.06 1.39 1.53 0.39 4.80
CM (Proposed) 2.25 1.59 1.74 0.50 5.13

Table 1: Performance on the dataset from Cheng et al. [16]. We present five error metrics
ranked by mean error. As was shown in [6, 7], we present the average performance (the
geometric mean) over all 8 cameras in the dataset. The best scores are made bold. “Tri.” and
“Med.” refer to Trimean and Median respectively.

3750× faster than Deep Specialized Network [37] (GPU). Note that this speed comparison
is based on modern PC platforms for all methods and the fine-grained CPU/GPU differences
are not considered. However, given the much simpler model and the faster speed compared
with the unoptimized PC version of FFCC [7], we believe that our CM can arguably take
less than 5% computational budget to support at least a 30-60 FPS embedded imaging sys-
tem (estimated according to the optimized performance of FFCC [7]). This computational
efficiency would be desirable for embedded deployment. We remark that future rigorous
tests are still required for comparing the actual performance on embedded platforms.

As for its variants, we have tried the following options based on the Gehler-Shi dataset [26,
36] (listed in Table 2):
A) Without ReLU. The overall results are worse; B) Without max pooling. The overall results
are worse; C) Single convolutional layer. We use the similar number of parameters how-
ever they are assigned to a single convolutional layer with more channels (38 channels) that
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Algorithm Mean Med. Tri. Best Worst Test Para.
25% 25% Time No.

SVR [24] 8.08 6.73 7.19 3.35 14.89 - -
White-Patch [12] 7.55 5.68 6.35 1.45 16.12 0.16 -
Grey-World [13] 6.36 6.28 6.28 2.33 10.58 0.15 -
1st-Order Gray-Edge [39] 5.33 4.52 4.73 1.86 10.03 1.1 -
2nd-Order Gray-Edge [39] 5.13 4.44 4.62 2.11 9.26 1.3 -
Shades-of-Gray [23] 4.93 4.01 4.23 1.14 10.20 0.47 -
Bayesian [26] 4.82 3.46 3.88 1.26 10.49 97 -
Yang et al. 2015 [41] 4.60 3.10 - - - 0.88 -
General Gray-World [5] 4.66 3.48 3.81 1.00 10.09 0.91 -
Natural Image Statistics [28] 4.19 3.13 3.45 1.00 9.22 1.5 -
CART-Based Combination [9] 3.90 2.91 3.21 1.02 8.27 - -
Spatio-Spectral Statistics [15] 3.59 2.96 3.10 0.95 7.61 6.9 -
LSRS [25] 3.31 2.80 2.87 1.14 6.39 2.6 -
Pixels-Based Gamut [29] 4.20 2.33 2.91 0.50 10.72 - -
Bottom-up+Top-down [40] 3.48 2.47 2.61 0.84 8.01 - -
Cheng et al. 2014 [16] 3.52 2.14 2.47 0.50 8.74 0.24 -
Exemplar-based [35] 2.89 2.27 2.42 0.82 5.97 - -
Bianco et al. 2015 [10] 2.63 1.98 - - - - 0.15M
APAP-LUT [2] (GW) 2.96 2.22 - 0.59 6.58 0.011 256
Corrected-Moment [21] 2.86 2.04 2.22 0.70 6.34 0.77 57
Charkrabarti et al. 2015 [14] 2.56 1.67 1.89 0.52 6.07 0.30 -
Regression Tree [17] 2.42 1.65 1.75 0.38 5.87 0.25 31.5M
FFCC [7] (Model Q) 2.01 1.13 1.38 0.30 5.14 0.0024 8.2K
CCC [6] 1.95 1.22 1.38 0.35 4.76 0.52 0.7K
Deep Specialized Net [37] 1.90 1.12 1.33 0.31 4.84 3 5.3M
FC4 [33] (AlexNet) 1.77 1.11 1.29 0.34 4.29 0.025 4.34M
CM (Proposed) 2.48 1.61 1.80 0.47 5.97 0.001 1.1K
CM-A (Without MaxPool) 2.56 1.70 1.87 0.48 6.15 0.001 1.1K
CM-B (Without ReLU) 2.66 1.79 1.96 0.51 6.34 0.001 1.1K
CM-C (Single Conv. Layer) 2.49 1.67 1.83 0.50 5.87 0.001 1.1K
CM-D (rgb Chroma. Input) 3.03 2.14 2.34 0.68 6.90 0.001 1.1K
CM-E (Without a Test Set) 2.62 1.73 1.91 0.49 6.30 0.001 1.1K

Table 2: Performance on the Gehler-Shi dataset [26, 36] in the same format as Table 1. We
present the test time (in seconds) for evaluating a single image, when available. The best
scores are made bold. K and M denote thousand and million respectively. “Tri.” and “Med.”
refer to Trimean and Median respectively.

Equations 4 and 5 are replaced with the follows:

h(I) = GW(ReLU(I ∗F3
1×1×38×3)) (7)

f (I) = h(g(I ∗F1
3×3×3×38)) (8)

The results are worse in all the measures. We did not attempt to make our network deeper
than two convolutional layers as deeper networks would be more difficult to train and are
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not necessarily more efficient for illuminant estimation compared with simpler structures;
D) rgb chromaticity input. Instead of using RGB input images, we convert the RGBs to their
rgb chromaticities. However, the results are significantly worse. This could be caused by
the loss of shading information which has been used as an important cue for some previous
methods (e.g. gray edge [39]). Through the test of CM variants, we can conclude that the
introduced non-linearity, additional depth, and the preserved shading information are helpful
for improving illuminant estimation accuracy; E) Without a test set. We found that CM tends
to over-fit (i.e. poorer accuracy) when the test set images – uncropped thumbnail images –
are not used in training.

4.2 Learned Knowledge

Since the final weighted per-channel global average pooling layer is essentially a fusion
of all filtered image features, visualizing these filtered image features would be helpful to
understand what has been learned. In Figure 3, given some inputs, we visualize the first 3
(of 14) channels of the learned intermediate features. We have observed both sparse features
and smooth features, e.g. Feature 3 looks relevant to colorfulness.

Since the final output is computed by per-channel averaging the last 3-channel network
responses (after Conv2), most of the filtered pixel intensities should be close to the illuminant
ground truth and the brighter pixels should contribute more to the final estimate. We convert
the last 3-channel response image to a gray-scale image by taking a channel-wise average.
In this gray-scale image, the brighter regions are more focused by our trained model for
illuminant estimation. Some of these examples are shown in Figure 3. The trained model
seems to focus on grayer surfaces for illuminant estimation. This pixel selectivity which
CM offers is one of the fundamental differences compared with gray world [13] and gray
edge [39].

5 Conclusion

We have presented Convolutional Mean (CM) – a simple and fast algorithm for illuminant
estimation. Our proposed method accepts 48×32 thumbnail input images for real-time pro-
cessing (at least 30-60 frames per seconds with 5% computational budget) which is arguably
3-4500× faster than the other leading solutions. We have also shown that our proposed
light-weight method offers accuracy comparable to the leading methods’ (which are rela-
tively more parameter-demanding) across several measures. Future work would be a further
reduction of model parameters, a full performance verification on embedded platforms, and
a trail of other efficient statistics combined with machine-coded features.
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Thumbnail Input Machine Focus Feature 1 Feature 2 Feature 3 …
1

0

Figure 3: Features learned by our CM. The first column is the original input image. In the
last three columns, we show the first three channels of the learned features. In the second
column, we show the normalized machine-focus map wherein the reddish pixels indicate the
areas which contribute more to illuminant estimation. All the images are up-sampled for
visualization.
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