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In order to accurately predict a digital camera response to spectral stimuli, the spectral sensitivity func-
tions of its sensor need to be known. These functions can be determined by direct measurement in the lab
- a difficult and lengthy procedure - or through simple statistical inference. Statistical inference methods
are based on the observation that when a camera responds linearly to spectral stimuli, the device spectral
sensitivities are linearly related to the camera rgb response values, and so can be found through regres-
sion. However, for rendered images, such as the jpeg images taken by a mobile phone, this assumption
of linearity is violated. Even small departures from linearity can negatively impact the accuracy of the
recovered spectral sensitivities, when a regression method is used.
In our work, we develop a novel camera spectral sensitivity estimation technique that can recover the
linear device spectral sensitivities from linear images and the effective linear sensitivities from rendered
images. According to our method, the rank order of a pair of responses imposes a constraint on the shape
of the underlying spectral sensitivity curve (of the sensor). Technically, each rank-pair splits the space
where the underlying sensor might lie in two parts (a feasible and infeasible region). By intersecting the
feasible regions from all the ranked-pairs, we can find a feasible region of sensor space. Experiments
demonstrate that using rank orders delivers equal estimation to the prior-art. However, the Rank-based
method delivers a step-change in estimation performance when the data is not linear and, for the first
time, allows for the estimation of the effective sensitivities of devices that may not even have ’raw mode’.
Experiments validate our method. © 2016 Optical Society of America

OCIS codes: (150.1488), Calibration; (330.1690), Color; (330.1710), Color, measurement; (330.1715), Color, rendering and
metamerism; (330.1730), Colorimetry; (040.1490), Cameras; (130.6010), Sensors; (000.4430), Numerical approximation and analysis;
(110.2960), Image analysis; (150.1135), Algorithms; (110.5200), Photography

1. INTRODUCTION

Knowledge of a camera spectral sensitivity functions is impor-
tant for many applications including multi-spectral imaging
[1, 2], spectral reflectance and illuminant estimation [3–5], colour
correction [6, 7] and colour constancy [8, 9]. Since these functions
are not available from the camera manufacturers, they must be
measured or estimated.

In the lab, a camera sensor spectral sensitivities are measured
by recording the device’s rgb response to light for narrow-band
stimuli at a range of wavelengths across the visible spectrum.
The narrow-band stimuli might be produced by a monochro-
mator [10], integrating sphere [11] or sets of narrow band inter-
ference filters [12, 13]. However, this lab-based method is both
time-consuming and expensive to carry out, and moreover is
not available to most users.

There has been a sustained interest in the digital imaging
community in developing estimation methods for recovering
device sensitivities. The idea is to infer the spectral shape of
the r, g and b spectral sensitivity curves given known spectral
measurements of the light entering the camera and the corre-
sponding recorded camera rgb values. Assuming the image is
linear - i.e. when light is doubled the response is doubled - the
estimation problem can be posed as a linear regression. Thus,
we can solve for the spectral function of the sensor mechanisms
over the visible spectrum [14–16].

Of course, nowadays most images - for example, from mobile
phones - are not linear but rather they are rendered. The dif-
ference between raw and rendered is shown in Figure 1. To a
tolerable first approximation, raw images are mapped to ren-
dered counterparts in two stages. First the raw rgb is mapped to
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Fig. 1. Image of the Macbeth SG colour chart. Left: Raw
(colour corrected), Right: Rendered camera output.

a corresponding display RGB via a 3x3 matrix transform. This,
so called, colour correction transform accounts for the display
and colour preference [17]. The colour corrected RGB values
are then mapped by an increasing function f () which accounts
for gamma, tonality and preference [18–21]. In this paper, for
rendered images, we are also interested in recovering the ef-
fective device spectral sensitivities which we define to be the
device sensors multiplied by the (unknown) colour correction
transform.

Our method is based on rank orders of the R, G and B pixel
values in an image. Our observation is that if the response for
one patch in a colour target is larger than that measured for a
second patch, then this places a constraint on the shape of the
spectral sensitivity curve (of the sensor).
Let us illustrate this concept in a simple example. Suppose that
we have two surfaces, one of which is a red patch, which is
highly reflective in the red part of the visible spectrum, and the
other a purple patch which is slightly less reflective in the long
wavelengths but has significant reflectivity in the shorter wave-
lengths. Now, we measure the red reflectance (illuminated by
white light) with a red sensitive sensor. The red patch response is
larger than that recorded for the purple patch. This makes sense,
as the red sensor is most sensitive to longer wavelengths. In
contrast, if the sensor were sensitive only to short wavelengths,
then we would record an opposite rank order i.e. the response
to the purple reflectance would be greater than for the red one.
Thus, by looking at a single rank ordering of two reflectances we
can immediately distinguish - albeit in coarse terms - whether a
sensor is more likely to be long-wave or short-wave sensitive.
Of course, we actually know whether we are trying to calibrate
a red or blue sensor but this rank ordering idea turns out to be
very powerful in determining the shape of the underling spec-
tral sensitivity curve (of the sensor). We show that each pairwise
rank ordering splits the space of all spectral sensitivities into
two parts: a feasible and an infeasible region. The intersection
of feasible regions (computed for pairs of responses) delimits a
feasible region of sensor space from which we pick our overall
sensor estimate.

By construction, our Rank-based method is invariant to any
increasing function that is applied to the raw rgb values of an
image (since the application of an increasing function will not
change the pair-wise rank orders). It follows then that the Rank-
based method applied to rendered images can recover the effec-
tive device linear spectral sensitivities (the actual raw spectral

sensor sensitivities multiplied by the colour correction matrix).
We benchmark the spectral sensitivities recovered by differ-

ent algorithms against the spectral sensitivity functions of a
Nikon D5100 and a Sigma SD1Merill cameras that we measured
at the National Physical Laboratory [10]. When the camera re-
sponse is linear, we demonstrate that the proposed Rank-based
method provides estimated spectral sensitivity functions that
are equally accurate as those returned by cited antecedent spec-
tral sensitivity estimation methods. However, when camera
response is non-linear, Rank-based spectral estimation is shown
to provide a step change in our ability to estimate the effective
camera spectral sensitivities.

In section 2, we review colour image formation along
with prior-art camera spectral sensitivity estimation algorithms.
Rank-based spectral sensitivity estimation is described in section
3. We evaluate our method on linear and rendered images in
section 4. The paper concludes in section 5.

2. BACKGROUND

The camera response at jth pixel from ith sensor can be modelled
as:

pij =
∫

ω
E(λ)Sj(λ)Qi(λ)dλ , i = {R, G, B} (1)

where pij denotes the camera response, E(λ) is the spectral
power distribution of the scene illuminant, Sj(λ) is the surface
reflectance imaged at pixel j and Qi(λ) is ith spectral sensitivity
function. In sensor estimation it is more useful to operate on
spectral functions as discrete vectors. For example, let us sample
spectral quantities at every 10 Nanometre intervals [22], starting
from 400 and ending at 700 Nanometres, and replacing integral
by a summation. That is, each spectral function is represented
as a 31-vector. In general, we can do this for any sampling
interval ∆λ resulting in an N-vector spectral function, where

N =
700− 400

∆λ
+ 1. Thus, we can rewrite the integral in Eq. 1 as:

pij =
N

∑
l=1

E(λl)S
j(λl)Q

i(λl)∆λ, i = {R, G, B} (2)

where λl = 400 + (l − 1) ∗ ∆λ Nanometres. Here and through-
out this paper underlining denotes vector quantities. We
will also, henceforth, assume that ∆λ is incorporated into the
vector of spectral sensitivity measurements. Denoting light, re-
flectance and sensor by the vectors E, Sj and Qi we rewrite (2) as:

pij =
N

∑
l=1

ElS
j
l Q

i
l , i = {R, G, B} (3)

We combine the light multiplied by reflectance into a single spec-
tral quantity, the colour signal, denoted by C(λ) = E(λ)S(λ).
In the discrete representation where spectral quantities are
represented by vectors, the colour signal for the jth reflectance,
cj, is computed as:

cj = diag(E)Sj (4)

where the operator diag transforms any m × 1 vector into an
m× m diagonal matrix (the diag operator draws attention to the
fact that component-wise vector multiplication is not in simple
linear algebra). We are now in a position to rewrite the integral
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in Equation 1 using the language of linear algebra. For a single
pixel, the sensor response is the dot-product of the colour signal
spectrum and the sensor; or the transpose of the colour signal
spectrum multiplying the sensor.

pij = cj.qi = [cj]tqi (5)

Let C denote the n× N matrix of colour signal spectra (one per
row). The corresponding n responses are written as:

P = Cq (6)

In spectral sensitivity estimation, it is assumed that the colour
signal matrix C and the camera responses are known. This
restriction is not overly onerous since we might probably know
the spectral reflectances in a colour target and we can calibrate
our camera under a light source. We can solve for the sensor
spectral sensitivity by minimising:

min
q
‖ Cq− P ‖2 (7)

The least-square closed-form solution to Equation 7 is written as:

q = C+P. (8)

where the matrix C+ = (CtC)−1Ct is the Moore-Penrose pseudo
inverse [23]. Equation 7 is a simple, elegant but ultimately,
naive formulation of spectral sensitivity estimation. In the
top of Figure 2 we show our ground truth measured Nikon
camera sensitivities. The results, by simple linear estimation
using the raw image in the left side of Figure 1 together with
corresponding rendered colour signal spectra, are the ‘jaggy’
sensitivities shown at the bottom of Figure 2.

At the heart of the Moore Penrose pseudo inverse is the raw
cross product CtC. This matrix is only stably invertible if it
has full rank (the jaggy recovery shown in Figure 2, in essence
informs us that the matrix doesn’t meet this condition). The
raw cross product matrix is full rank if and only if, the set of
colour signal spectra spans the set of all possible spectra. In
practice, this is unlikely to be the case, since surface reflectance
are inherently smooth [24]. Parkkinen [25], amongst others
[13, 26], estimates that the dimensionality of spectral reflectance
is between 6 and 9. When the raw-cross product matrix has
low rank this means that very small perturbations to the
measurements (in this case P) result in very different regression
results. Both the Ground-truth and jaggy sensors in Figure 2
describe the data very well. There exists a small perturbation to
P, that would result in the correct ground-truth sensors being
recovered.
A specific and interesting condition which, immediately, forces
CtC to be rank deficient, is when the number of measurements
are less than the dimensionality of the matrix. When we have
fewer known variable than unknowns, there are (infinitely)
many sensors that exactly account for the data. A classic
approach is to find the ’least-norm’ sensor from amongst
these sensors. Suppose we assume that the sensor q is in the
row-space of C i.e. q = Ctc. Clearly, one solution for c would be:

c = (CCt)−1P (9)
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Fig. 2. Top: Spectral response function of Nikon camera mea-
sured at NPL [10]. Bottom: Jaggy (high norm) spectral re-
sponse function estimated using Eq. 7 on 140 reflectance
patches of Xrite SG chart.

In other words, the sensor is defined as q = Ct(CCt)−1P. It is
straightforward to show that this solution, compared against
all others, has least-norm [27]. This idea of solving for a sensor
while implementing a secondary constraint, in the case of least
norm, is often useful in spectral sensitivity estimation. Referring
back to Figure 2, the norm (magnitude) of the actual sensor is
much less than the simple least-squares estimation since the
more jaggy the sensor the higher its norm. This idea is exploited
by the prior-art estimation algorithms.

A. Prior-art estimation algorithms

I Regularisation: Equation 7 is regularised by adding a penalty
term on the norm:

min
q
‖ Cq− P ‖2 +γ ‖ Tq ‖2 (10)

where γ > 0 is a user defined Regularisation parameter and T
is a linear transform. Where T is equal to the N × N identity
matrix, Eq. 10 attempts to minimise both the least-squares fitting
error and the norm of q. This procedure is known as Tikhonov
Regularisation [28]. Alternatively, a 2nd order derivative matrix
operator [29] can be used to define T as:
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T =



1 −1 0 0 · · · · · · · · · · · · 0

−1 2 −1 0 · · · · · · · · · · · · 0

0 −1 2 −1 · · · · · · · · · · · · 0

...
...

...
. . .

. . .
. . . · · · · · ·

...

0 0 0 0 · · · 0 −1 2 −1

0 0 0 0 · · · 0 0 −1 1


. (11)

The regularised least-squares solution to spectral sensitivity re-
covery is written in closed form as:

q = (CtC + γTtT)−1CtP. (12)

A natural question arising upon the application of either Regu-
larisation methods, is how to set γ. A good solution is one which
makes both the least-squares error and the norm, simultaneously
small. The best compromise solution is usually determined by
trying a variety of different γ values and then applying a statis-
tical criterion to choose the best gamma overall [30].
II Subspace Methods: Suppose, the spectral sensitivity of
sensors is described by a low-dimensional linear model:

Q(λ) =
m

∑
k=1

αkBk(λ) (13)

where Bk(λ) denotes the kth basis function and αk is a scalar
coefficient. Equivalently, q = Bα where B is a N × m matrix
where the kth column is the discrete sampled version of a basis
function. Here α is an m-vector of basis weights. Substituting
q = Bα into Equation 7, sensor estimation involves finding the
best basis weights α for:

min
α
‖ CBα− P ‖2, (14)

The least-squares solution of Equation 14 is

α = [CB]+P (15)

In [11, 31] linear models were derived by the principal com-
ponent analysis (PCA) of measured spectral sensitivities of 28
different Nikon and Canon camera models. Remarkably, it was
found that even using just the first 2 principal components of
this data-set, it was sufficient to account for their data. Zhao [32]
proposed using a simple Sine basis expansion, where between 7
and 10 basis functions were used.
III Convex Optimisation: Equation 10 is constrained by incor-
porating soft penalties into the problem formulation. However,
there are also strong constraints which we might usefully
apply. For example, we know that the spectral sensitivities
of the devices are zero at both ends of the visible spectrum
and also they tend to have one, or at most two peaks. These
“harder” constraints are often described using linear equalities
or inequalities. Optimising a linear objective such as Equation
6 subject to linear equality/inequality constraints is a convex
optimisation.
In [33] sensor estimation is posed as minimising a linear
objective function subject to linear constraints and the sensors

are found using linear programming. Finlayson and Hordley
[14] proposed that assuming a known peak sensor response at
the zth sample point, the spectral sensitivity is estimated as:

min
q
‖ Cq− P ‖2

Subject to the constraints:

q = Bα

ql ≥ 0

ql ≤ ql+1, l = 1, ..., z− 1

ql > ql+1, l = z, ..., m

(16)

The standard Fourier basis is used for B which up to a given band
limited frequency composed of Sine and Cosine basis functions.
The formulation in Equation A is a quadratic programming
problem, (quadratic objective with linear constraints). The global
best solution for QP and linear programming problems can be
solved by efficient simplex-type search algorithms.

B. Measured spectral sensitivity functions
In this article, we use the measured spectral sensitivities of
Nikon D5100 and Sigma SD1Merrill cameras as the benchmark
to evaluate spectral estimation algorithms. The camera were
rigorously measured at the the National Physical Laboratory
[10].The resulting measured spectral response functions for both
Nikon and Sigma, are illustrated in Figure 3 and are also accessi-
ble online [34].
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Fig. 3. Measured Nikon (Top) and Sigma (Bottom) camera
sensitivities from NPL calibration facility [10, 34].
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3. THE RANK-BASED METHOD

In this section, we show how we can use a single image of a
colour chart to estimate the camera spectral sensor sensitivities
irrespective of whether the image is linear or rendered (non-
linear). That we can solve the latter case, is an improvement
over all the prior-art.

A. Rank-based spectral estimation
The rank order of two single-channel linear responses pa and pb
is encapsulated by writing an inequality:

pa > pb. (17)

We note that, if we apply a monotonically increasing function
f () to both sides of the above inequality, the rank order will still
be preserved:

f (pa) > f (pb), (18)

Let us revisit our vector-based model of image formation, Eq. 5,
and write the pair-wise rank order of two responses:

ca.q > cb.q⇒ (ca − cb).q > 0, (19)

where ca, cb and q denote respectively the colour signals for
reflectances a and b and the spectral sensitivity of the sensor.
Given n colour samples we can choose (n

2) pairs of responses
(and the corresponding pairs of colour signal spectra) to form
a set of rank orders, each with the form shown in Equation 19.
Notice, that each pair-wise constraint is the dot-product of the
difference in a pair of colour signal spectra against the spectral
sensitivity of a sensor we would like to estimate. Let us now
denote the jth colour signal difference vector as dj,

dj.q > 0. (20)

Equation 20 has a useful geometric interpretation. It teaches
us that q must belong in one half of the space of all sensors.
In other words, if q satisfies the inequality, then −q does not.
Geometrically, Eq. 20 defines a half-space constraint. We denote
this half-space as H(dj). The intersection of all the half-spaces
delimits an unbounded feasible convex region of sensor space.
According to rank orderings, the actual true spectral sensitivity
must lie in this feasible set. Mathematically, we write:

q ∈
⋂

j
H(dj). (21)

Let us visualise Eq. 20, by assuming the (grossly over) simplified
problem, where we seek only to estimate spectral sensitivities at
two wavelengths. With respect to this simplification, each half-
plane constraint of Eqn. 20, divides the Cartesian plane into two
halves. In Figure 4 we show 4 half-plane constraints where solid
arrows show which side of the line is the feasible half-space. The
overall bounded feasible convex cone is the hatched area shown.
In this paper, we are assuming that our spectral sensitivities are
31-vectors (the value of the sensor at 10Nm sampling intervals
for the visible spectrum of 400 to 700Nm). Thus, the feasible set
is a 31-dimensional unbounded convex cone. The unbounded
cone, encapsulates the idea that with rank ordering constraints
alone, we can constrain the shape (or, vector orientation) but not
its scale (not the vector magnitude).

Fig. 4. Illustration of the intersection of 4 half planes with blue
diagonal stripes.

B. The Rank-based method for rendered images
To a tolerable approximation [18] raw rgb values are mapped to
rendered counterparts in two steps. First, the raw rgb values are
mapped by a 3x3 colour correction matrix M (which accounts
for the display primaries [35] and preference [17]), resulting in
RGB values. The effective sensitivities for a rendered image, Q
are defined as:

Q = QM (22)

In a second step, an overall, or per channel, transfer function f ()
is applied to the colour corrected RGB values. Every transfer
function is increasing and implements display gamma and tone
adjustment [17]. The mathematical model for rendered image is
written as:

pi = fi(ctQi) (23)

where Qi denotes the ith column of Q. Returning to our rank
ordering idea, for rendered images:

pi
a > pi

b ⇒ fi(ct
aQi) > fi(ct

bQ
i)⇒ (ct

a − ct
b)Q

i > 0, (24)

Note, we drop f () because this function is increasing (does not
change the ranks of the responses). For rendered images we can
only recover the effective sensitivity Qi.

C. Implementation
In spectral sensitivity estimation, in general, we attempt to
recover the spectral sensitivities of a camera by taking a single
picture of a colour target (e.g. see Figure 1) where we assume
that the reflectances of the colour target are known and that the
prevailing illuminant spectral power distribution is measured.
In Rank-based estimation, each pair of responses (per channel)
can be related to a colour difference signal and a linear inequality
of the form in Equation 19. Taken together the set of inequalities
delimits an overall feasible region of sensor space where the
spectral sensitivity must be. To choose a single member from
this set, we seek a sensor that has zero response at theboth
ends of the visible spectrum and integrates to 1. Also inspired
by the work of Zhao [32], we seek for a sensor that spans a
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7-dimensional Sine basis. By these, we assure that the chosen
sensor has the commonly addressed usual characteristics of
spectral sensor sensitivity functions. The Rank-based spectral
sensitivity is recovered by minimising the following quadratic
program

min
q
‖ Cq− P ‖2

Subject to the constraints:

dj > 0 j = 1, 2, · · ·N

q1 = 0

qN = 0

q = Bα

∑i qi = 1

(25)

where B is an N × 7 matrix of Sine basis functions. Note that
for the case of rendered image, where we are effectively solving
for Q = QM, we remove the positivity constraint from the
formulation.

D. A cautionary remark
Potentially, the rendering Equation 23, is actually yet more
complex [18]. In particular, it is often the case that cameras
implement a gamut mapping step which we haven’t included
in our model. The need for gamut mapping is due to the fact
that the colour correction matrix M will map raw image colours
outside the gamut, which cannot be displayed. Assuming
display RGB is the unit cube (all values between 0 and 1), some
of the mapped colours might be negative or greater than 1.
Gamut mapping [36] moves colours, in a proprietary non-linear
way, towards the neutral axis so that all the colours in an image
are displayable i.e. all colours lie in the unit cube. Denoting the
gamut-mapping function as Γ(), rendered image formation is
written as

pi = fi(Γ(ctQi)) (26)

However, in rendering, the colour correction matrix and per
channel functions fi() provides most of the heavy lifting and in
fact, if the gamut mapping step is left out, the resulting image is
a tolerable approximation of the gamut mapped version. This
is especially true for image colours which are not saturated (as
the effect of any gamut mapping step can be ignored for colours
that lie near the neutral axis).

Empirically, we found that the gamut mapping step did not
change the rank-order of the responses. But, equally, we found
that restricting ourselves to less saturated colours still provided
a strong Rank-based constraint and our method continued to
work well.

4. EXPERIMENTS AND RESULTS

A. Data Acquisition
We took an image of a 140 colour chip Xrite SG colour checker
chart using the Nikon D5100 and Sigma SD1Merril cameras.
This will give us 9730 colour pairs. The chart is imaged in Veri-
Vide cabinet, facing upwards towards the D65 light source at

an angle of approximately 45 degrees. The P140×3 matrix of rgb
values is the average camera response for the central 10x10 pixel
region of each checker patch. We made sure that the images are
non-clipped, by adjusting the exposure level of the camera. The
dark current noise level is measured (by taking a picture with
the lens cap on) and is subtracted from the raw image.
A PR670 spectroradiometer was, in analogy to the camera cap-
ture conditions, positioned approximately at 45 degrees relative
to the colour checker facing the VeriVide cabinet. The spectro-
radiometer - which measures the spectrum of light at a single
spot in the image - was held fixed. That is, the colour checker
was moved so that each colour patch was measured at the same
location (with respect to the same 45 degree viewing geometry).
The per-chip spectral measurements comprise the matrix C140×N
(there are 140 chips in the colour checker and we measure the
visible spectrum, 400 to 700 Nm, at a 10Nm sample interval).

We benchmark spectral sensitivity estimation against mea-
surements made at the National Physical laboratory presented
in 2.B. The effective sensitivities - see section 3.B. for a discus-
sion - of the Nikon and Sigma camera are found via radiometric
calibration method [18].
We test three cited antecedent methods: Tikhonov based on
derivatives [29], the Subspace method [11] (using just 2 basis
functions per sensor class) and Quadratic programming [14]. In
the data tables that follow these methods are respectively de-
noted ’Regularisation’, ’Subspace’ and ’QP’. Finally, we compute
recovery statistics for our new method ’Rank-based’.

B. Error Metrics
A. Percentage Spectral Recovery Error. Let q and q̂ denote the

actual and estimated sensor. The percentage spectral recovery
error is calculated as:

SE = 100×
||q− q̂||
||q|| (27)

Although intuitive, the percentage spectral error tends to be
sensitive to small spectral shifts in the position of the estimated
sensor. The spectral error between a sensor and a duplicate
that is shifted 10Nm towards the longer wavelengths can be
very large despite the fact that both sensors have an integrated
response that is similar. This discrepancy has led researchers to
measure the goodness of a recovery in terms of how well they
predict actual sensor values.
B. The Vora Value Metric. This metric was designed to compare
two sensors in terms of how similar they integrate all theoreti-
cally possible spectra [12, 21]. Suppose that p

i
and p̂

i
denote

the actual and predicted rgb camera response. The percentage
Response Error is calculated:

RE =
||p− p̂

i
||

||p|| (28)

A key insight of Vora is that we might be able to reduce the RE
errors by colour correcting the measured rgb values:

RE =
||p−Mp̂

i
||

||p|| (29)

Where M denotes a 3× 3 matrix. The Vora value calculates the
average RE (for the optimal M) over all possible spectra. Below,
we recapitulate the formula for the Vora value.



Research Article Journal of the Optical Society of America A 7

Vora = 100(1− (
trace(QQ+Q̂Q̂+))

3
) (30)

Q and Q̂ respectively denote the actual and estimated sensitivi-
ties, trace() returns the sum of the diagonal of a matrix and Q̂+

indicates the Moore-Penrose pseudo inverse. Vora values that
are close to 0 indicate estimated sensors close to the measured
ground truth data. The derivation of Equation 30 is given in
[21].
C.The CIE Lab ∆E Error Metric. The CIE Lab formula provides
a measure for how close two reflectances appear to a human ob-
server under a known illuminant. The error metric is designed
for the XYZ colour space (which to a good approximation is a lin-
ear transform from the cone sensitivities in the eye). To calculate
the ∆E error, the 3-vectors of XYZ responses are measured from
two surfaces and then converted to corresponding Lab triplets.
The Eucildean distance between these triples roughly correlate
with our perception of colour difference with a ∆E error of one
signifying, on average, just a noticeable difference [37].

Before we can use the metric for camera sensitivities we need
to - via a calibration procedure - best map the camera rgb re-
sponses to corresponding XYZ coordinates and then to Lab val-
ues. We adopt the methodology defined in [38]. Taking the
1995 reflectances measured in [39] and CIE D65 illumination we
numerically calculate using Equation 2 the rgb values of actual
versus estimated rgb values and transform these into Lab Errors.
The mean, median and 95% quantile errors are then used to
assess how well we have estimated the camera sensors.

C. Spectral Estimation for Raw Images
In Figure 5, the ground truth spectral sensor sensitivity functions
[10] from Nikon (top) and Sigma (bottom) are plotted in solid
lines. The recovered sensors using our Rank-based method
are plotted with dashed lines. All sensors are scaled to have a
maximum sensitivity of one. Overall curve (of the sensor) of the
estimated spectral sensitivity curve (of the sensor) are similar to
the NPL ground truth data throughout the spectrum.
We evaluate the sensitivity estimation returned by the Rank-
based method with the prior-art in Table 1. The first 5 columns
of this table show, respectively, the spectral recovery error for the
R, G and B colour channels; the average spectral recovery over
all channels and the Vora Value. Bold-face numbers denote the
best statistic for each column. The method with smallest statistic
is the Subspace method of [11]. This method uses Equation
14 where a 2-dimensional sensor basis is used (derived by a
PCA analysis of spectral sensitivity functions of 28 cameras). By
chance the measured Nikon camera is very well modelled by
this basis set.

However, we see that all methods have a low Vora Value
indicating that the rgb values modelled by the recovered sensors
are close to those of ground truth sensors. Encouragingly, the
average spectral recovery method of the Rank-based method
(excluding the 2-d subspace method) is similar to the prior-art.
That is, a method that uses only the rank orders of the responses,
works equally well as methods which fit the recorded data (we
achieve the same performance using fewer of the degrees of
freedom in the data).
In columns 6 to 10 of Table 1, we summarise the recovery per-
formance for the Sigma Merill camera. Again the Rank-based
method works well and performs similar to Quadratic program-
ming, in terms of the Vora Value. Notice that for this data set,

the subspace method works least-well (because the Sigma sensi-
tivities are not in the assumed subspace).
Table 2 reports the CIE Lab error. Again the Rank-based method
delivers good performance. Broadly, it supports performance
similar to the prior-art.

D. Spectral Estimation for Rendered Images
As described in section 3.B. a rendered image (a typical jpeg
from a smart phone) is non-linear. To a tolerable approximation
the raw image colours are mapped by a 3x3 colour correction
matrix and then tone-curves are applied to the colour corrected
rgb values to make the final image (see Figure 1 for a raw and
rendered pair). Because the Rank-based method is based on rank
orders only, it should be able to recover the effective sensitivi-
ties of a rendered image. Effective sensitivities are the camera
sensors multiplied by the colour correction matrix.

To evaluate how well we can recover the effective sensitiv-
ities we use the rendered image of the SG Macbeth - shown
in the right of Figure 1 - colour chart as an input to the Rank-
based method resulting in the estimated sensors illustrated with
dashed lines in Figure 6. Here the ground truth spectral sensitiv-
ity functions (solid lines) are the NPL sensors [10], multiplied
by a colour correction matrix M which was found using a cal-
ibration procedure described in [18]. Visually, the Rank-based
method is able to recover the effective sensitivities of our two
cameras.
Table 3 reports the error metrics (in the same format of Table 1).
For both Nikon and Sigma cameras, we observe high spectral
recovery errors and Vora values for all the three cited antecedent
methods. This illustrates their inability to recover effective sen-
sitivities in the face of the non-linearity present in a rendered
image. However, the Rank-based method continues to work
well. The CIE Lab errors are reported in Table 4 reaffirm this
result. Rank-based delivers good estimation. In contradiction,
all the prior-art are unable to accurately model colour outputs,
when the calibration data is non linear.

5. RANK-BASED VERSUS LINEARISATION

The reader might wonder whether the poor performance of the
prior-art methods working on rendered data might be mitigated
by linearising the data first. We test this idea here. We consider
two type of linearisation. First, we assume that a rendered image
might be made approximately linear by undoing the gamma
(e.g. undoing the sRGB gamma [35], roughly raising the image
to the power 2.2). Second, we use the achromatic colours in
a colour checker - here the 6 patches in the central part of the
SG colour checker - to linearise the data. With respect to the
second method, the idea is to plot the camera responses against
the % spectral reflectance for the different grey-reflectances. Us-
ing linear interpolation we can define a function that, at least
approximately, linearises the data (for more discussion see [40]).

In Table 5 we show the recovery errors for the prior-art meth-
ods for the simple gamma-only linearisation. It is clear this
method is not sufficient for linearising the data (the sensor spec-
tral estimation is poor). In Table 6, the 6 patch linearisation is
shown. While the sensor spectral sensor estimation is improved,
the recovery still has large errors. Neither linearisation recovers
the effective sensitivities as well as the Rank-based method (last
row of Table 3).

Initially, we were surprised that linearising the data with
the achromatic scale led to such poor sensor estimation. After
all, the prior-art does work tolerably well on actual linear data.
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Fig. 5. Solid lines, the Nikon D5100 (top) and Sigma spectral sensor sensitivities and estimated Nikon spectral sensor sensitivities
(bottom). Dashed lines are the sensors recovered by Rank-based spectral estimation.

Nikon Sigma

Spectral Estimation SER SEG SEB µ(SE) Vora SER SEG SEB µ(SE) Vora

Regularisation 30 9 34 24 9 34 16 11 20 11

Subspace 11 6 7 8 1 46 42 54 47 56

QP 32 9 13 18 5 23 11 7 14 5

Rank-based 27 15 20 21 4 20 16 15 17 4

Table 1. The percentage spectral error of each channel, the average across all channels, and the Vora values are shown for raw
images from Nikon (first 5 columns) and Sigma (last 5 columns) cameras.

Nikon Sigma

Spectral Estimation Mean Median 95% percentile Mean Median 95% percentile

Regularisation 2 1.4 5 3.9 2.9 9.7

Subspace 1.8 1.1 5.4 18.3 12.7 49.5

QP 1.8 1.1 5.6 2.3 1.6 6.6

Rank-based 2 1.2 6 2.3 1.5 7

Table 2. CIE Lab ∆E errors between the predicted and estimated camera responses to the 1995 sample reflectances [39] under the
D65 light [38] from Nikon (first 3 columns) and Sigma (last 3 columns) cameras.
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Fig. 6. Solid lines, the Nikon D5100 (top) and Sigma spectral sensitivities and estimated Nikon spectral sensor sensitivities (bottom).
Dashed lines are the sensors recovered by Rank-based spectral estimation using rendered image.

Nikon Sigma

Spectral Estimation SER SEG SEB µ(SE) Vora SER SEG SEB µ(SE) Vora

Regularisation 77 77 50 68 50 44 65 54 54 31

Subspace 68 42 18 43 20 53 20 23 32 15

QP 73 69 53 65 48 53 61 49 54 25

Rank-based 39 16 21 25 8 27 19 16 21 5

Table 3. The percentage spectral error of each channel, the average across all channels, and the Vora values are shown for rendered
images from Nikon (first 5 columns) and Sigma (last 5 columns) cameras.

Nikon Sigma

Spectral Estimation Mean Median 95% percentile Mean Median 95% percentile

Regularisation 8.3 5.9 20 4.4 3.1 10.2

Subspace 4.1 3 11.6 4.1 3 11.9

QP 5.8 3.3 17.1 5.3 3.2 15.2

Rank-based 2.3 1.6 6.9 1.8 1.2 5.6

Table 4. CIE Lab ∆E errors between the predicted and estimated colour corrected camera responses to the 1995 sample reflectances
[39] under the D65 light [38] from Nikon (first 3 columns) and Sigma (last 3 columns) cameras.
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Nikon Sigma

Spectral Estimation SER SEG SEB µ(SE) Vora SER SEG SEB µ(SE) Vora

Regularisation 62 64 71 66 45 42 83 50 58 37

Subspace 72 30 34 45 30 51 56 50 52 30

Quadratic programming 54 60 55 57 37 38 67 58 54 34

Rank-based 38 16 21 25 8 27 19 16 21 5

Table 5. The percentage spectral error of each channel, the average across all channels, and the Vora values are shown for rendered
images linearised by gamma correction from Nikon (first 5 columns) and Sigma (last 5 columns) cameras.

Nikon Sigma

Spectral Estimation SER SEG SEB µ(SE) Vora SER SEG SEB µ(SE) Vora

Regularisation 58 47 41 48 27 43 51 54 49 25

Subspace 77 36 41 51 37 41 25 26 31 13

Quadratic programming 63 13 19 32 16 57 28 28 38 20

Rank-based 38 16 21 25 8 27 19 16 21 5

Table 6. The percentage spectral error of each channel, the average across all channels, and the Vora values are shown for rendered
images linearised by interpolation from Nikon (first 5 columns) and Sigma (last 5 columns) cameras.

Our results would suggest that a small departure from linearity
would hamper the prior-art from recovering the sensors. To test
this idea we wished to measure how well a method recovers
the spectral sensitivities of a camera as a function of increasing
non-linearity.

Using our raw data as a starting point we made the data
slightly non-linear by raising it to the power ρ. When ρ = 1
our data is linear and the recovery results shown in Table 1
hold. Now, we can increase or decrease the power, ρ = 1.1 or
ρ = 0.9, and in either case the data remains quite linear. Even
larger, or even smaller powers (ρ = 2 or ρ = 0.5) make the data
progressively non-linear. In the left panel of Figure 7, for each of
the 3 prior-art methods, we plot the Vora Value of the recovered
sensitivities as a function of the ρ power. It is immediately
clear how sensitive the prior-art is to the linearity of the data.
Even small departures from linearity has a marked affect on the
accuracy of the spectral sensitivity estimation. In the right of
Figure 7 we plot the same result as a function of average Spectral
Estimation error.

For each of the prior-art methods, even very small non-
linearities can lead to a doubling in recovery error. Of course,
the Rank-based method continues to work well in the face of
small and large non-linearities. For the non-linearities there is
no change in the Rank-based estimated sensors.

6. CONCLUSION

In this paper, we have shown how the rank order of camera
responses is a powerful tool for estimating the camera spectral
sensitivity functions. We have described how the rank orders
of image rgb values impose half-space constraints as ranked
pair splits the space where the spectral sensor sensitivity must
lie in one of the two parts. A plausible sensor estimate, lies
in this region where all half-space constraints intersect which
can be found using constrained quadratic programming. The
Rank-based method works well on linear raw (as well as prior

Power
0 0.5 1 1.5 2

V
o

ra
 %

0

10

20

30

40

50

60

70

Power
0 0.5 1 1.5 2

S
E

 %

0

20

40

60

80

100

120
Regularisation
Subspace
Quadratic programming

Fig. 7. Plot of Vora (left) and averaged spectral error (right)
calculated for Nikon raw image when raised to power values
indicated on the x axes.

art), but delivers a step change in performance given non-linear
data. A key example of the latter is rendered images (e.g. normal
Jpegs) where we show we can deliver the estimated sensitivities
of a camera. In contradiction, the prior art does not work for
rendered data even when it is linearised.
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