336,390 research outputs found

    Extraction of airway trees using multiple hypothesis tracking and template matching

    Get PDF
    Knowledge of airway tree morphology has important clinical applications in diagnosis of chronic obstructive pulmonary disease. We present an automatic tree extraction method based on multiple hypothesis tracking and template matching for this purpose and evaluate its performance on chest CT images. The method is adapted from a semi-automatic method devised for vessel segmentation. Idealized tubular templates are constructed that match airway probability obtained from a trained classifier and ranked based on their relative significance. Several such regularly spaced templates form the local hypotheses used in constructing a multiple hypothesis tree, which is then traversed to reach decisions. The proposed modifications remove the need for local thresholding of hypotheses as decisions are made entirely based on statistical comparisons involving the hypothesis tree. The results show improvements in performance when compared to the original method and region growing on intensity images. We also compare the method with region growing on the probability images, where the presented method does not show substantial improvement, but we expect it to be less sensitive to local anomalies in the data.Comment: 12 pages. Presented at the MICCAI Pulmonary Image Analysis Workshop, Athens, Greece, 201

    Autonomous exploration system: Techniques for interpretation of multispectral data

    Get PDF
    An on-board autonomous exploration system that fuses data from multiple sensors, and makes decisions based on scientific goals is being developed using a series of artificial neural networks. Emphasis is placed on classifying minerals into broad geological categories by analyzing multispectral data from an imaging spectrometer. Artificial neural network architectures are being investigated for pattern matching and feature detection, information extraction, and decision making. As a first step, a stereogrammetry net extracts distance data from two gray scale stereo images. For each distance plane, the output is the probable mineral composition of the region, and a list of spectral features such as peaks, valleys, or plateaus, showing the characteristics of energy absorption and reflection. The classifier net is constructed using a grandmother cell architecture: an input layer of spectral data, an intermediate processor, and an output value. The feature detector is a three-layer feed-forward network that was developed to map input spectra to four geological classes, and will later be expanded to encompass more classes. Results from the classifier and feature detector nets will help to determine the relative importance of the region being examined with regard to current scientific goals of the system. This information is fed into a decision making neural net along with data from other sensors to decide on a plan of activity. A plan may be to examine the region at higher resolution, move closer, employ other sensors, or record an image and transmit it back to Earth

    A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis

    Get PDF
    Large-scale (large-area), fine spatial resolution satellite sensor images are valuable data sources for Earth observation while not yet fully exploited by research communities for practical applications. Often, such images exhibit highly complex geometrical structures and spatial patterns, and distinctive characteristics of multiple land-use categories may appear at the same region. Autonomous information extraction from these images is essential in the field of pattern recognition within remote sensing, but this task is extremely challenging due to the spectral and spatial complexity captured in satellite sensor imagery. In this research, a semi-supervised deep rule-based approach for satellite sensor image analysis (SeRBIA) is proposed, where large-scale satellite sensor images are analysed autonomously and classified into detailed land-use categories. Using an ensemble feature descriptor derived from pre-trained AlexNet and VGG-VD-16 models, SeRBIA is capable of learning continuously from both labelled and unlabelled images through self-adaptation without human involvement or intervention. Extensive numerical experiments were conducted on both benchmark datasets and real-world satellite sensor images to comprehensively test the validity and effectiveness of the proposed method. The novel information mining technique developed here can be applied to analyse large-scale satellite sensor images with high accuracy and interpretability, across a wide range of real-world applications

    Extracting Tree-structures in CT data by Tracking Multiple Statistically Ranked Hypotheses

    Full text link
    In this work, we adapt a method based on multiple hypothesis tracking (MHT) that has been shown to give state-of-the-art vessel segmentation results in interactive settings, for the purpose of extracting trees. Regularly spaced tubular templates are fit to image data forming local hypotheses. These local hypotheses are used to construct the MHT tree, which is then traversed to make segmentation decisions. However, some critical parameters in this method are scale-dependent and have an adverse effect when tracking structures of varying dimensions. We propose to use statistical ranking of local hypotheses in constructing the MHT tree, which yields a probabilistic interpretation of scores across scales and helps alleviate the scale-dependence of MHT parameters. This enables our method to track trees starting from a single seed point. Our method is evaluated on chest CT data to extract airway trees and coronary arteries. In both cases, we show that our method performs significantly better than the original MHT method.Comment: Accepted for publication at the International Journal of Medical Physics and Practic

    Connectivity-Enforcing Hough Transform for the Robust Extraction of Line Segments

    Full text link
    Global voting schemes based on the Hough transform (HT) have been widely used to robustly detect lines in images. However, since the votes do not take line connectivity into account, these methods do not deal well with cluttered images. In opposition, the so-called local methods enforce connectivity but lack robustness to deal with challenging situations that occur in many realistic scenarios, e.g., when line segments cross or when long segments are corrupted. In this paper, we address the critical limitations of the HT as a line segment extractor by incorporating connectivity in the voting process. This is done by only accounting for the contributions of edge points lying in increasingly larger neighborhoods and whose position and directional content agree with potential line segments. As a result, our method, which we call STRAIGHT (Segment exTRAction by connectivity-enforcInG HT), extracts the longest connected segments in each location of the image, thus also integrating into the HT voting process the usually separate step of individual segment extraction. The usage of the Hough space mapping and a corresponding hierarchical implementation make our approach computationally feasible. We present experiments that illustrate, with synthetic and real images, how STRAIGHT succeeds in extracting complete segments in several situations where current methods fail.Comment: Submitted for publicatio

    Hybrid image representation methods for automatic image annotation: a survey

    Get PDF
    In most automatic image annotation systems, images are represented with low level features using either global methods or local methods. In global methods, the entire image is used as a unit. Local methods divide images into blocks where fixed-size sub-image blocks are adopted as sub-units; or into regions by using segmented regions as sub-units in images. In contrast to typical automatic image annotation methods that use either global or local features exclusively, several recent methods have considered incorporating the two kinds of information, and believe that the combination of the two levels of features is beneficial in annotating images. In this paper, we provide a survey on automatic image annotation techniques according to one aspect: feature extraction, and, in order to complement existing surveys in literature, we focus on the emerging image annotation methods: hybrid methods that combine both global and local features for image representation

    Vehicle pose estimation using G-Net: multi-class localization and depth estimation

    Get PDF
    In this paper we present a new network architecture, called G-Net, for 3D pose estimation on RGB images which is trained in a weakly supervised manner. We introduce a two step pipeline based on region-based Convolutional neural networks (CNNs) for feature localization, bounding box refinement based on non-maximum-suppression and depth estimation. The G-Net is able to estimate the depth from single monocular images with a self-tuned loss function. The combination of this predicted depth and the presented two-step localization allows the extraction of the 3D pose of the object. We show in experiments that our method achieves good results compared to other state-of-the-art approaches which are trained in a fully supervised manner.Peer ReviewedPostprint (author's final draft
    • …
    corecore