17 research outputs found

    Framework For Performance Analysis of Optical Circuit Switched Network Planning Algorithms

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb Ecole Polytechnique Fédérale de Lausann

    All Optical Signal Processing Technologies in Optical Fiber Communication

    Get PDF
    Due to continued growth of internet at starling rate and the introduction of new broadband services, such as cloud computing, IPTV and high-definition media streaming, there is a requirement for flexible bandwidth infrastructure that supports mobility of data at peta-scale. Elastic networking based on gridless spectrum technology is evolving as a favorable solution for the flexible optical networking supportive next generation traffic requirements. Recently, research is centered on a more elastic spectrum provision methodology than the traditional ITU-T grid. The main issue is the requirement for a transmission connect, capable of accommodating and handling a variety of signals with distinct modulation format, baud rate and spectral occupancy. Segmented use of the spectrum could lead to the shortage of availableness of sufficiently extensive spectrum spaces for high bitrate channels, resulting in wavelength contention. On-demand space assignment creates not only deviation from the ideal course but also have spectrum fragmentation, which reduces spectrum resource utilization. This chapter reviewed the recent research development of feasible solutions for the efficient transport of heterogeneous traffic by enhancing the flexibility of the optical layer for performing allocation of network resources as well as implementation of optical node by all optical signal processing in optical fiber communication

    Framework For Performance Analysis of Optical Circuit Switched Network Planning Algorithms

    Get PDF
    Projecte final de carrera realitzat en col.laboració amb Ecole Polytechnique Fédérale de Lausann

    Physical Layer Impairments Aware Dynamic Lightpath Provisioning In Mixed Line Rate Wdm Networks

    Get PDF
    Tez (Doktora) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2014Thesis (PhD) -- İstanbul Technical University, Institute of Science and Technology, 2014Bu tez çalışmasında, fiziksel katman bozukluklarını dikkate alarak, çoklu veri iletişim hızlı ağlarda dinamik olarak gelen bağlantı istekleri için ısıkyolu kurma problemi ele alınmıştır. Problemde verilenler; dinamik olarak gelen farklı kapasitelerde bağlantı istekleri, fiziksel topoloji, fiziksel hatların taşıyabildiği dalgaboyu miktarı, ağın anlık durumu ve fiziksel katman bozukluklarını dikkate alırken kullanılacak olan parametrelerdir. Problemde istenilen ise; gelen bağlantı isteklerinin mümkün olduğu kadar fazlasını kurabilmek maksadı ile uygun yol ve dalgaboyunun bulunmasıdır. Bunu gerçekleştirirken, hem kurulacak olan ışıkyolunun sinyal kalitesinin kabul edilebilir bit hata oranını karşılaması, hem de sistemde daha önceden kurulmuş olan ışıkyollarının sinyal kalitesinin kabul edilebilir sınırların altına inmesini engellemek gerekmektedir. Bu tez çalışmasında, kurulabilen ışıkyolu miktarını artırmak maksadı ile ışıkyolunun sisteme giriş gücü de ayrıca ele alınmıştır.In this thesis, we studied the impairment-aware lightpath provisioning problem for dynamic connection requests in MLR networks. Given, a dynamic connection request with a given rate, physical topology, number of wavelengths carried by each fiber, current network state, and PLI parameters, our aim is to determine the route and wavelength over which the lightpath should be set up, in order to be able to maximize the number of established connections while satisfying the given bit-error rate (BER) for the incoming connection, and to avoid disrupting the existing lightpaths. We also evaluate the launch power of the lightpath to maximize the established connections.DoktoraPh

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Control plane routing in photonic networks

    Get PDF
    The work described in the thesis investigates the features of control plane functionality for routing wavelength paths to serve a set of sub-wavelength demands. The work takes account of routing problems only found in physical network layers, notably analogue transmission impairments. Much work exists on routing connections for dynamic Wavelength-Routed Optical Networks (WRON) and to demonstrate their advantages over static photonic networks. However, the question of how agile the WRON should be has not been addressed quantitatively. A categorization of switching speeds is extended, and compared with the reasons for requiring network agility. The increase of effective network capacity achieved with increased agility is quantified through new simulations. It is demonstrated that this benefit only occurs within a certain window of network fill; achievement of significant gain from a more-agile network may be prevented by the operator’s chosen tolerable blocking probability. The Wavelength Path Sharing (WPS) scheme uses semi-static wavelengths to form unidirectional photonic shared buses, reducing the need for photonic agility. Making WPS more practical, novel improved routing algorithms are proposed and evaluated for both execution time and performance, offering significant benefit in speed at modest cost in efficiency. Photonic viability is the question of whether a path that the control plane can configure will work with an acceptable bit error rate (BER) despite the physical transmission impairments encountered. It is shown that, although there is no single approach that is simple, quick to execute and generally applicable at this time, under stated conditions approximations may be made to achieve a general solution that will be fast enough to enable some applications of agility. The presented algorithms, analysis of optimal network agility and viability assessment approaches can be applied in the analysis and design of future photonic control planes and network architectures

    Advances in Optical Amplifiers

    Get PDF
    Optical amplifiers play a central role in all categories of fibre communications systems and networks. By compensating for the losses exerted by the transmission medium and the components through which the signals pass, they reduce the need for expensive and slow optical-electrical-optical conversion. The photonic gain media, which are normally based on glass- or semiconductor-based waveguides, can amplify many high speed wavelength division multiplexed channels simultaneously. Recent research has also concentrated on wavelength conversion, switching, demultiplexing in the time domain and other enhanced functions. Advances in Optical Amplifiers presents up to date results on amplifier performance, along with explanations of their relevance, from leading researchers in the field. Its chapters cover amplifiers based on rare earth doped fibres and waveguides, stimulated Raman scattering, nonlinear parametric processes and semiconductor media. Wavelength conversion and other enhanced signal processing functions are also considered in depth. This book is targeted at research, development and design engineers from teams in manufacturing industry, academia and telecommunications service operators
    corecore