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Haydar ÇUKURTEPE
(504052507)

Bilgisayar Mühendisliği Anabilim Dalı
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PHYSICAL LAYER IMPAIRMENTS AWARE
DYNAMIC LIGHTPATH PROVISIONING

IN MIXED LINE RATE WDM NETWORKS

SUMMARY

The increase in diversity of traffic demands on the Internet requires migration from
legacy (10G) optical backbone networks to higher (40G/100G) line rates. Since it is
impractical and perhaps even undesirable to upgrade all 10G transmission components
to higher line rates at once, WDM optical networks support mixed line rates (MLR) to
meet the requirements for both diversity and capacity increase, together. MLR refers
to an architecture where different line rates on different wavelengths can coexist on the
same fiber.

MLR architectures can be built over transparent, as well as translucent or opaque
optical networks. In opaque networks, transmission occurs over point-to-point links,
where the signal is regenerated at every node. In translucent networks, the signal
remains in optical domain as much as it can. In transparent networks, the transmission
occurs in optical domain. The optical channels cannot be processed at intermediate
nodes on optical level but can be switched. Along the transparent optical path,
a signal undergoes a number of physical-layer impairments (PLI), and its quality
degrades as it travels through several optical components. A major impairment is the
accumulated noise, mainly due to amplified spontaneous emission (ASE) and crosstalk
(XT). Dispersion, attenuation and power loss due to optical components are some of
other linear impairments on a signal. Optical transmission channels are also affected
by non-linear impairments such as self-phase modulation (SPM) and cross-phase
modulation (XPM), which are the shifts in the phase of a signal caused by the change
in intensity of the signals itself or on the neighboring wavelengths, respectively.

In dynamic traffic scenario, a connection request comes to the network, stays for
a while, and terminates. A lightpath is set up for each connection request as it
arrives, and it is released after the requested amount of time. Finding an appropriate
route and assigning a wavelength to a given connection request is called the Routing
and Wavelength Assignment (RWA) problem. The objective of the problem is to
set up lightpaths and assign wavelengths in a manner that minimizes the amount
of connection blocking, or that maximizes the number of connections that are
established in the network at any time. Lightpath provisioning, in addition to RWA,
deals with connection management and quality of signal. Impairment-aware (IA)
lightpath provisioning problem is a cross-layer optimization problem, which finds the
appropriate path and wavelength at the network layer and assures the acceptable signal
quality at the physical layer.

For 10G line rate signals, on-off keying (OOK) with direct detection is the most
commonly used transmission technique. Higher bandwidth results in a linear increase
in noise level of the intensity modulated channel. Thus, higher line rates (e.g.,
40G, 100G) require advanced modulation techniques such as: differential quadrature
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phase shift keying (DQPSK) and dual-polarization quadrature phase shift keying
(DP-QPSK). DQPSK and DP-QPSK modulated signals are highly susceptible to PLIs.
Moreover, coexistence of OOK signals with advanced modulation formats induces
high XPM on xPSK signals. So, accounting for PLIs during the provisioning phase,
which is an important problem in single-line-rate WDM networks acquires even
larger importance in MLR networks. Hence, for MLR networks, the well-known
impairment-aware lightpath provisioning problem must account for these two new
dimensions: the XPM effect of OOK channels on advanced modulation formats, and
the trade-off between capacity and optical reach.

Although various valuable studies exist on the network design problem for MLR
networks considering the static traffic case, there are only a few studies on
impairment-aware dynamic lightpath provisioning in MLR networks. In this thesis, we
studied the impairment-aware lightpath provisioning problem for dynamic connection
requests in MLR networks. Given, a dynamic connection request with a given rate,
physical topology, number of wavelengths carried by each fiber, current network
state, and PLI parameters, our aim is to determine the route and wavelength over
which the lightpath should be set up, in order to be able to maximize the number
of established connections while satisfying the given bit-error rate (BER) for the
incoming connection, and to avoid disrupting the existing lightpaths. We also evaluate
the launch power of the lightpath to maximize the established connections.

In this thesis, we propose various heuristic algorithms to solve the problem. We first
investigate the effects of inverse multiplexing (IM), which is a technique that tries to
exploit the advantage of transmitting the signals with low line rates, where the high
line rate is not possible due to impairments. The network layer applications enable
to inversely multiplex the connection requests with high line rates into smaller line
rates at the source node, propagate them separately over a transparent MLR network,
and then combine them back at the destination node. We propose various IM-based
schemes to account for impairment-aware dynamic lightpath provisioning in MLR
optical networks. The proposed schemes use three different path-selection algorithms:
shortest path (SP), minimum hop (MH) path, and least congested path (LCP). We
employed two different wavelength-assignment schemes with each path-selection
algorithms: Best BER (BB) and maximum spectral distance (MSD).

We also propose two novel approaches for the IA dynamic lightpath provisioning
problem. The first approach, Fixed Wavelength-Interval Allocation (FWIA), partitions
the wavelengths into groups, assigns each group to a different line rate, and establishes
lightpaths with different modulation formats over the assigned wavelength groups.
This approach exploits the advantage of placing different modulation formats into
separate channels and they have adjacency with other modulation formats only at
the boundaries of intervals. The second algorithm is the Weighted-RWA (W-RWA),
which captures the instantaneous state of the network and assigns weight values
according to affecting impairments using an auxiliary graph. The algorithm works
for minimizing the effects of XPM and leaves more feasible wavelengths for future
requests, while avoiding damaging already established lightpaths. Since the weight
assignment process can be made off-line, the W-RWA makes use of idle time before
any request comes. We evaluated our algorithms through simulations, and compared
with existing methods.
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Another important parameter for signal quality is the launch power of both the actual
signal and the neighboring signals. In the last part of the thesis, we evaluated the
effects of launch power, and proposed two practical approaches for appropriate launch
power determination to maximize the established connections. In Worst-case Best-case
Average (WBA), average optical reach for worst and best cases is used to determine
the launch power. In Impairment-Aware Launch Power Determination (I-ALPD),
impairments along the path are considered in a practical way to determine the launch
power. I-ALPD tracks the current state of the network, and assigns weight values
to the wavelengths according to the impairments. I-ALPD uses an auxiliary graph
to capture the PLIs on channels with a weight assignment scheme. The proposed
algorithms are compared with existing approaches. The results indicate that overall
network performance can be improved by selecting the appropriate launch powers to
establish the lightpaths, considering the current state of the network.
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FİZİKSEL KATMAN BOZUCU ETKİLERİ GÖZETİLEREK
ÇOKLU VERİ İLETİM HIZLI DALGABOYU BÖLÜMLEMELİ ÇOĞULLAMA

AĞLARINDA DİNAMİK IŞIKYOLU KURULUMU

ÖZET

Artarak yayılan İnternet kullanımı ve yeni uygulamalar, İnternette bağlantı
ihtiyaçlarını ve ihtiyaçlardaki çeşitliliği artırmaktadır. Bu artış omurga ağlarda
kullanılan iletişim hızlarında iyileştirmeler gerektirmektedir, örneğin 10G yerine
40G/100G kullanılması. Ancak ağ bileşenlerinin tümünün aynı anda iyileştirilmesi
mümkün olmadığı gibi her zaman istenilen bir şey de değildir. Artan bantgenişliği
ihtiyacını Dalgaboyu Bölümlemeli Çoğullama (Wavelength Division Multiplexing,
WDM) ile karşılayan servis sağlayıcılar, artan çeşitliliğe çözüm olarak, herbir
dalgaboyunda farklı veri iletişim hızında iletişim yapılmasını mümkün kılan Çoklu
Veri İletim Hızlı (Mixed Line Rate, MLR) ağları kullanmaya başlamışlardır. MLR,
farklı veri iletim hızlı kanalların aynı ağ üzerinde yer alabilmesini sağlayan mimariye
verilen isimdir.

MLR mimarisi saydam, yarı-saydam ve opak ağlarda kurulabilir. Opak ağlarda,
iletişim noktadan-noktaya hatlar üzerinden gerçekleştirilir. Herbir düğümde sinyal
yeniden üretilir. Yarı-saydam ağlarda sinyal mümkün olduğu kadar optik katmanda
kalır. Saydam ağlarda ise sinyal ara düğümlerde işlenmez, yalnızca anahtarlanır.
Saydam ağlarda, optik sinyal fiziksel katmandaki bozucu etkilere maruz kalır. Bu
bozucu etkiler sinyalin ilerlediği yol boyunca birikerek sinyal kalitesinin azalmasına
sebep olur. Bu kalite kaybı, hedef düğümde sinyalin doğru olarak okunamamasına
sebep olabilir. Gürültü bu bozuklukların en önemlilerindendir ve esas olarak yükselteç
gürültüsü ve hat karışımından kaynaklanır. Fiziksel katmandaki diğer bozukluklara
örnek olarak; sönümleme, dispersion ve diğer kayıplar sayılabilir. Bunların dışında
sinyal, doğrusal olmayan bozukluklardan da etkilenir. Bunlara örnek olarak da, kendi
faz modülasyonu (self-phase modulation, SPM), çapraz faz modülasyonu (cross-phase
modulation, XPM) karışımı vb. sayılabilir. Bu bozukluklar sırasıyla kendi veya komşu
sinyalin yoğunluğunda oluşan değişimlerin sinyal fazında yarattığı bozulmaları ifade
eder.

Dinamik ortamlarda, bağlantı istekleri gelirler, belirli bir süre sistemde kalırlar ve
sona erdirilirler. Her bir bağlantı isteği için bir ışıkyolu kurulur ve bu ışıkyolu talep
edilen bağlantı süresi bitiminde sonlandırılır. Gelen bağlantı istekleri için, ağın o
anki durumunu dikkate alarak uygun yol ve dalgaboyunun atanmasına yönlendirme
ve dalgaboyu atama (Routing and Wavelength Assignment, RWA) problemi denir.
Amaç uygun yol ve dalgaboyunu seçerek, kurulabilecek ışıkyolu sayısının mümkün
olduğu kadar artırmak, diğer bir ifade ile bağlantı isteklerinin reddedilme oranının
azaltmaktır. Işıkyolu kurma problemi, yönlendirme ve dalgaboyu atama problemine
ilave olarak, bağlantı yönetimi ve sinyal kalitesi ile de ilgilenir. Fiziksel katmandaki
bozucu etkilerin gözetilerek ışıkyolu kurulumu problemi, ağ katmanında uygun yol
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ve dalgaboyu bulunması ile fiziksel katmanda sinyal kalitesinin kabul edilebilir
seviyede olmasını sağlaması sebebiyle birden fazla katmanı ilgilendiren bir iyileştirme
problemidir.

Omurga ağlarda, 10G veri iletim hızı için aç-kapa modülasyonu (on-off keying,
OOK) yaygın olarak kullanılmaktadır. Bu modülasyon tekniği ile yüksek kapasiteli
veri iletimi yapılmak istendiğinde sinyal üzerindeki gürültünün etkisi daha da
artmaktadır. Bu sebeple yüksek kapasiteli veri iletişimi için gelişmiş modülasyon
teknikleri uygulanır, örneğin; "differential quadrature phase shift keying (DQPSK)"
ve "dual-polarization quadrature phase shift keying (DP-QPSK)". Bu modülasyon
teknikleri fiziksel katmandaki bozucu etkilere karşı oldukça hassastırlar. Ayrıca OOK
kanalların, bu modülasyonlar üzerinde yarattığı XPM etkisi önemli bir bozucu etkidir.
Bu sebeple, zaten tek iletim hızlı ağlarda önemli olan fiziksel katmandaki bozucu
etkilerin gözetilerek ışıkyolu kurulması problemi, çoklu veri iletim hızlı ağlarda
daha da önem kazanmaktadır. Problemin iki ilave boyuta daha çözüm getirmesi
gerekmektedir; aç-kapa modülasyonlu sinyallerin gelişmiş modülasyonlu sinyaller
üzerindeki XPM etkisi ve kapasite-erim dengesi.

Çoklu veri iletim hızlı ağlarda, statik trafik durumu için tasarım problemi konusunda
pek çok çalışma olmasına rağmen, dinamik durumlara yönelik yapılmış çalışma
sayısı çok fazla değildir. Bu tez çalışmasında, fiziksel katman bozukluklarını dikkate
alarak, çoklu veri iletişim hızlı ağlarda dinamik olarak gelen bağlantı istekleri için
ışıkyolu kurma problemi ele alınmıştır. Problemde verilenler; dinamik olarak gelen
farklı kapasitelerde bağlantı istekleri, fiziksel topoloji, fiziksel hatların taşıyabildiği
dalgaboyu miktarı, ağın anlık durumu ve fiziksel katman bozukluklarını dikkate
alırken kullanılacak olan parametrelerdir. Problemde istenilen ise; gelen bağlantı
isteklerinin mümkün olduğu kadar fazlasını kurabilmek maksadı ile uygun yol ve
dalgaboyunun bulunmasıdır. Bunu gerçekleştirirken, hem kurulacak olan ışıkyolunun
sinyal kalitesinin kabul edilebilir bit hata oranını karşılaması, hem de sistemde daha
önceden kurulmuş olan ışıkyollarının sinyal kalitesinin kabul edilebilir sınırların
altına inmesini engellemek gerekmektedir. Bu tez çalışmasında, kurulabilen ışıkyolu
miktarını artırmak maksadı ile ışıkyolunun sisteme giriş gücü de ayrıca ele alınmıştır.

Problemin çözümüne yönelik çeşitli sezgisel algoritmalar önerilmiştir. Öncelikle
tersine-çoğullama (inverse multiplexing, IM) temelli yaklaşımlar değerlendirilmiştir.
Bu yaklaşımda, yüksek veri iletim kapasiteli bağlantı isteğinin, fiziksel katman
bozuklukları sebebi ile kurulamaması durumunda, bu istek, daha düşük kapasiteli,
birden çok veri iletişim kanalı yardımı ile kurulur. Ağ katmanındaki uygulamalar,
tersine-çoğullama tekniği kullanarak, gelen bağlantı isteğinin kaynak düğümde daha
düşük bağlantı isteklerine bölünmesini, bu isteklerin herbirinin ayrı iletişim kanalı
üzerinden iletilmesini ve hedef düğümde birleştirilmesini mümkün kılmaktadır.
Önerilen tersine-çoğullama yaklaşımlı yöntemler üç farklı yol bulma yöntemi kullanır:
En kısa yol (Shortest Path, SP), en az sekme (Minimum Hop, MH) ve yoğunluğun en
az olduğu yol (Least Congested Path, LCP-BB). Herbir yol bulma yöntemi ile iki farklı
dalgaboyu atama yaklaşımı uygulanmıştır: En iyi bit hata oranı (Best BER, BB) ve en
uzak aralıklı dalgaboyu (Maximum Spectral Distance, MSD).

Fiziksel katman bozukluklarını dikkate alarak dinamik ışıkyolu kurulumu problemi
için önerilen diğer sezgisel yöntemler ise; farklı veri iletişim hızlarına sabit dalgaboyu
aralığı atama (Fixed Wavelength-Interval Allocation, FWIA) ve ağırlıklı yönlendirme
ve dalgaboyu atama (Weighted-RWA, W-RWA) yaklaşımlarıdır. Bu yaklaşımların
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ilkinde, herbir veri iletişim hızı için belli bir dalgaboyu aralığı önceden belirlenir,
tahsis edilir. Burada amaç farklı modülasyonların birbirleri üzerindeki, özellikle de
OOK kanalların diğer modülasyonlar üzerinde etkilerini en aza indirmektir. Ağırlıklı
yönlendirme ve dalgaboyu atama yaklaşımda, ağın anlık durumu takip edilir ve bir
yardımcı graf kullanılarak fiziksel katmandaki bozukluklara karşılık ağırlık ataması
yapılır. Bu yöntem, XPM etkisinin azaltılmasını, var olan ışıkyollarının en azının
etkilendiği yolun bulunmasını ve daha sonra gelecek olan bağlantı istekleri için
daha fazla uygun yol bırakılmasını hedeflemektedir. Ağırlık ataması, ışıkyollarının
kurulması veya serbest bırakılması durumunda yapılacağından, sistemin boşta olduğu
zamanı kullanarak yapılması mümkündür. Önerilen algoritmalar var olan algoritmalar
ile karşılaştırılmıştır.

Sinyalin kalitesini etkileyen önemli bir faktör de hem sinyalin kendisinin, hem de
komşu sinyallerin sisteme giriş gücüdür. Tez çalışmasının son bölümünde sinyalin
sisteme giriş gücünün etkisi değerlendirilmiştir. Sinyal giriş gücünün doğru seçilmesi
ile bozucu etkileri azaltmak ve kurulabilecek ışıkyolu sayısının artırmak mümkündür.
Sinyal giriş gücünün doğru seçilmesi maksadı ile iki yeni yöntem önerilmiştir.
Önerilen yöntemler; iyi-durum kötü-durum ortalaması (Worst-case Best-case Average,
WBA) ve fiziksel katman bozukluklarını dikkate alan giriş gücü belirleme (Impairment
Aware Launch Power Determination, I-ALPD) yöntemleridir. Bu yöntemlerden
ilkinde, kötü durum ve iyi durum senaryoları için ışıkyolunun kurulabileceği en uzun
mesafeler bulunur. Bulunan mesafelerin ortalaması ve kurulacak ışıkyolunun uzunluğu
bilgisi kullanılarak atanacak giriş gücü tespit edilir. Önerilen bir diğer yöntem olan,
fiziksel katman bozukluklarını dikkate alan giriş gücü belirleme yönteminde, yol
boyunca etkili olan bozukluklar pratik bir şekilde hesaba katılırlar. Bu yöntemde
ağın anlık durumu takip edilir ve bir yardımcı graf kullanılarak fiziksel katmandaki
bozukluklara karşılık ağırlık ataması yapılır. Önerilen algoritmalar var olan yöntemler
ile karşılaştırılmıştır. Sonuçlar, ağın anlık durumu dikkate alınarak uygun sinyal
giriş gücü seçilmesinin, gelen istekleri reddetme oranı açısından performans artışı
sağladığını göstermiştir.
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1. INTRODUCTION

Network operators are facing a continuous increase in terms of diversity of both traffic

demands and bandwidth due to new services and bandwidth-consuming applications

on the Internet. Since it is impractical and perhaps even undesirable to upgrade all

legacy (10G) transmission components to higher line rates (e.g., 40G, 100G) at once,

WDM optical networks support mixed line rates (MLR) to meet the requirements for

both diversity and capacity increase, together. MLR refers to an architecture where

different line rates on different wavelengths can coexist on the same fiber.

MLR architectures can be built over transparent, as well as translucent or opaque

optical networks. In opaque networks, data transmission occurs over point-to-point

links so that the signal is regenerated at every intermediate node along transmission

channel. The regeneration of optical signal is done using optical-electronic-optical

(OEO) conversion. In translucent architecture, regenerators are placed sparsely. It

eliminates much of the electronic process and allows a signal to remain in the optical

domain as much as it can [1].

In transparent networks, OEO conversions are not used at the intermediate nodes. The

transmission occurs in optical domain. The optical channels cannot be processed

at intermediate nodes on optical level but can be switched. Along the transparent

optical path, a signal undergoes a number of physical-layer impairments (PLI)

and its quality degrades as it travels through several optical components [1]. A

major impairment is the accumulated noise, mainly due to amplified spontaneous

emission (ASE) and crosstalk (XT). Optical transmission channels are also affected

by non-linear impairments such as self-phase modulation (SPM) and cross-phase

modulation (XPM), which are the shifts in the phase of a signal caused by the change

in intensity of the signals itself or on the neighboring wavelengths, respectively.

In optical WDM networks, end users communicate with one another via all-optical

WDM channels, which are referred to as lightpaths [2]. In dynamic traffic case,

a lightpath is set up for each connection request as it arrives, and it is released
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after some finite amount of time. Finding an appropriate route and assigning

a wavelength to given connection requests is called the Routing and Wavelength

Assignment (RWA) problem. The objective of the problem is to set up lightpaths in

a manner that minimizes the amount of connection blocking, or that maximizes the

number of connections that are established in the network at any time. Lightpath

provisioning, in addition to RWA, deals with connection management and quality

of signal. Impairment-aware (IA) lightpath provisioning problem is a cross-layer

optimization problem, which finds the appropriate path and wavelength at the network

layer and assures the acceptable signal quality at the physical layer.

For 10G line rate signals, on-off keying (OOK) with direct detection is the most

commonly used transmission technique [3]. Higher bandwidth results in a linear

increase in noise level of the intensity-modulated channel. Thus, higher line rates (e.g.,

40G, 100G) require advanced modulation techniques such as: differential quadrature

phase shift keying (DQPSK) and dual-polarization quadrature phase shift keying

(DP-QPSK). DQPSK and DP-QPSK modulated signals are highly susceptible to PLIs.

Moreover, coexistence of OOK signals with advanced modulation formats induces

high XPM on xPSK signals [4, 5]. Accounting for PLIs during the provisioning

phase, which is an important problem in single-line-rate WDM networks acquires

even larger importance in MLR networks. In MLR networks, the problem has two

additional dimensions: the disruptive interaction of different modulation formats, and

the trade-off between capacity and optical reach1.

In this thesis, the impairment-aware lightpath provisioning problem is studied for

dynamic connection requests in MLR networks. We first investigate the effects of

inverse multiplexing (IM), which is a technique that tries to exploit the advantage of

transmitting the signals with low line rates, where the high line rate is not possible

due to impairments. The network layer applications enable to inversely multiplex the

connection requests with high line rates into smaller line rates at the source node,

propagate them separately over a transparent MLR network, and then combine them

back at the destination node. We propose various IM-based schemes to account

for impairment-aware dynamic lightpath provisioning in MLR optical networks.

1Reach is the distance an optical signal can travel before the signal quality degrades to a level that
necessitates regeneration [6].

2



The proposed schemes use three different path-selection algorithms: shortest path

(SP), minimum hop (MH) path, and least congested path (LCP). Two different

wavelength-assignment schemes are employed with each path-selection algorithms:

Best Bit Error Rate (BB) and maximum spectral distance (MSD).

We also propose two novel approaches for IA lightpath provisioning problem. The first

approach, Fixed Wavelength-Interval Allocation (FWIA), partitions the wavelengths

into groups, assigns each group to a different line rate, and establishes lightpaths

with different modulation formats over the assigned wavelength groups. The second

algorithm is the Weighted-RWA (W-RWA) scheme, which captures the instantaneous

state of the network and assigns weight values according to affecting impairments. The

algorithm works for selecting the wavelengths which are less exposed to impairments

while trying to leave feasible wavelengths for future requests, and avoiding damaging

the existing lightpaths. Since the weight assignment process can be made off-line, the

W-RWA makes use of idle time before any request comes.

Another important parameter for signal quality is the launch power of both the actual

signal and the neighboring signals. We also evaluate the effects of launch power and

propose two practical approaches for appropriate launch power determination. In the

Worst-case Best-case Average (WBA), average optical reach for worst and best cases,

in terms of impairments, is used to determine the launch power. In Impairment-Aware

Launch Power Determination (I-ALPD), impairments along the path are considered in

a practical way to determine the launch power. I-ALPD tracks the current state of the

network, and assigns weight values to the wavelengths according to the impairments.

I-ALPD uses an auxiliary graph to capture the PLIs on channels with a weight

assignment scheme.

The outline of this thesis is as follows: A brief explanation on the enabling technologies

of MLR optical WDM networks and optical transmission are given in Chapter 2. PLIs

and BER estimation model used to evaluate the signal quality are also given in this

chapter. In Chapter 3, the formal definition of the problem, and previous studies

related to the subject of this thesis are given. In Chapter 4, the effects of IM in

MLR networks are evaluated and proposed six IM-based approches are explained.

Proposed approaches are compared with one another and the algorithms without IM. In

Chapter 5, two novel approaches proposed for IA lightpath provisioning are discussed.
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The performances of the proposed approaches are compared with other PLI-aware

MLR lightpath provisioning algorithms. In Chapter 6, we present the effects of

launch power on signal quality. Two approaches to determine appropriate launch

power in MLR networks are discussed. The performances of proposed launch power

determination approaches are compared with existing approaches. Chapter 7 concludes

the thesis.
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2. OPTICAL WDM TRANSMISSION

2.1 Introduction

In optical Wavelength Division Multiplexing (WDM) networks, the optical

transmission spectrum is carved up into a number of non-overlapping wavelength

channels on which each channel can carry a single communication (Figure 2.1(a)).

End users communicate with one another via WDM channels, which are referred

(a) Lightpaths at different wavelengths. (b) Different line rates sharing the same link.

Figure 2.1: MLR on WDM optical networks.

to as lightpaths [2]. Modulated signals are put on the channels from one end by

a laser transmitter (TX) to be received by the receivers (RX); those are tuned to

the same wavelength at the other end of the communication channel (Figure 2.1(a)).

Each channel may transport different types of traffic, such as SONET/SDH over one

wavelength, ATM over another, and TDM voice, video or IP over another, using the

same infrastructure. In opaque networks, data transmission occurs over point-to-point

links so that the signal is regenerated at every intermediate node along transmission

channel. The regeneration of optical signal is done using optical-electronic-optical

(OEO) conversion. In translucent architecture, regenerators are placed sparsely. It

eliminates much of the electronic process and allows a signal to remain in the optical

domain as much as it can. In transparent networks, the transmission occurs in

optical domain. The optical channels are not processed at intermediate nodes. The
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number of wavelengths, which each fiber can carry simultaneously, is limited by the

physical characteristics of the fiber and the optical technology used. WDM makes it

possible to transfer data at different bit rates, over different channels on the same link

(Figure 2.1(b)), which is called Mixed (or Multi) Line Rate (MLR) [7, 8]. The terms

Optical Network and Optical WDM Network are used interchangeably throughout this

thesis.

An Optical Network consists of optical nodes interconnected with fiber links. Optical

networks are conceptually segmented in three as: Access, metro, and core/backbone

networks. The access segment of the network refers to the portion between customer

location and its central office. Interconnected central offices constitute metro areas for

carriers. The backbone segment interconnects metro segments. In optical backbone

networks, single mode (SM) fibers and intermittently placed in-line amplifiers are used

for connecting nodes, called reconfigurable optical add-drop multiplexers (ROADM).

Figure 2.2 shows the architecture of two different broadly used ROADM types.

(a) Degree-4 WSS Node [9]. (b) 3×3 OXC with 4 wavelengths.

Figure 2.2: Different node types.

A Wavelength Selective Switch (WSS) ROADM (Figure 2.2(a)) consists of WSS,

channel monitor, and amplifier. WSS is a device that extracts and inserts the

light. WSSs use Fiber Bragg Gratings (FBG) to separate the wavelengths. FBGs

are prism like devices that separate the light into component colors. WSS uses

different switching technologies to select the frequency. Currently, the two major

switching technologies are micro electro mechanical systems (MEMS) and liquid

crystals (LCoS). Channel monitors continuously monitor the optical power level of

wavelengths.
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An Optical Cross Connect (OXC) switches optical signals from input ports to output

ports. It consists of demultiplexers (DeMUX), optical switches, and multiplexers

(MUX) (Figure 2.2(b)). In order to route each wavelength separately, each input fiber

is connected to demultiplexers which spatially separate the wavelengths on the fiber.

A typical n×n OXC connects n input fibers, each carrying W different wavelengths to

n output fibers using W optical switches, each for one wavelength. Each wavelength is

switched accordingly, and all the wavelengths going through the same output port are

multiplexed on to the output fiber. The optical switch can have strictly nonblocking

active-splitter active-combiner architecture [10].

In ROADM systems, the flexibility of the mesh network is extended by Colorless,

Directionless, and Contentionless features of optical nodes. Colorless feature at an

add/drop port is the ability of tunable transponders to have transparent wavelength

access to all WDM network ports. Directionless feature is ability of tunable

transponders to have non-blocking access to all ports. Contentionless is ability to avoid

contention.

The optical signal loses its power along the path it travels. Optical Amplifiers make

long distance optical transmission possible by providing a power boost to the signals.

Optical signal is not converted into the electrical domain but its power is increased.

Erbium-Doped Fiber Amplifiers (EDFA) are commonly used, where the channels on

the fiber are required to be amplified. The part of a link between amplifiers is called a

span, and its length is nearly 80 km. The main disadvantage of an EDFA is the noise

it adds to the signal. The noise at an EDFA is spontaneous emission, thus it is called

amplified spontaneous emission (refer to Section 2.2.1).

2.1.1 Transmission of a signal

Wave Theory describes light as an electromagnetic wave. Electromagnetic waves have

four basic properties: intensity, wavelength (or frequency), polarization, and phase.

For ideal conditions, these properties for an optical carrier are constant, except for

modulation.

Intensity can be referred to as power of the optical carrier. It is a measure of the energy

flux (rate of transfer of energy through a surface), averaged over a certain time period.

To find the intensity, energy density (that is, the energy per unit volume) multiplid by
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the velocity at which the energy is moving. The resulting vector has the units of power

divided by area (i.e., W/m2). Greater intensity means more photons but the energy of

each is exactly the same.

Polarization describes the orientation of oscillations for waves. The polarization of

light is described by specifying the orientation of the wave’s electric field at a point

in space over one period of the oscillation. The phase of a wave is the fraction

of a complete cycle corresponding to an offset in the displacement from a specified

reference point at time t = 0.

The wavelength (λ ) is the spatial period of a sinusoidal wave, the distance over which

the wave′s shape repeats. The frequency is the number of oscillations per second.

Wavelength is inversely proportional to the frequency of a sinusoidal wave moving

Figure 2.3: Wavelength and frequency relation.

at a fixed wave speed; waves with higher frequencies have shorter wavelengths, and

lower frequencies have longer wavelengths. The wavelength λ of a sinusoidal light

traveling at constant speed is given by:

λ =
c
f

(2.1)

where c is the velocity of light (3× 108m/s), f is the frequency (hertz), and λ is

the wavelength (meters). The speed of light in fiber is nearly 2× 108m/s, and the

wavelengths are correspondingly different. Frequency or wavelength terms can be used

to characterize an optical WDM signal. Wavelength is measured in units of nanometers

(nm) or micrometers (µm or microns). In WDM networks, a fiber carries a number

of optical signals simultaneously in or around C-band (1530-1565 nm). These optical
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signals must obviously be at different carrier wavelengths. Thus, it is convenient to

refer to the available bandwidth as a set of channels. Each optical signal is allotted

a distinct channel, and each channel has sufficient bandwidth to accommodate the

modulated signal. In order to avoid interference between different optical signals,

each channel is separated from the other channels by a certain minimum bandwidth

called channel spacing. Channel spacing is also measured in units of wavelengths or

frequencies. The relationship between the frequency spacing ∆ f and the wavelength

spacing ∆λ is given as [11]:

∆ f =
c

λ 2
0

∆λ (2.2)

Wavelength spacing of 0.8 nm corresponds to a frequency spacing of 100 GHz, at

wavelength λ0 = 1550 nm.

2.1.2 Modulation

Modulation is the process of encoding an electrical signal onto the carrier. The optical

carrier wave is formulated as [12]:

E(t) = êAcos(ω0t +ϕ) (2.3)

where E is the electric field vector, ê is the polarization unit vector, A is the

amplitude, ω0 is the carrier frequency, and ϕ is the phase. Thus, it is possible to

choose one of the variables to modulate a signal: amplitude, frequency, or phase.

The modulation techniques are called amplitude-shift keying (ASK) (Figure 2.4 (a)),

frequency-shift keying (FSK) (Figure 2.4 (b)), and phase-shift keying (PSK) (Figure

2.4 (c)), depending on whether the amplitude, frequency, or phase is modulated.

(a) ASK (b) FSK (c) PSK

Figure 2.4: Different keying techniques.

Amplitude Shift Keying is the simplest and the most common technique, which

consists of changing the signal power (intensity) between two levels, 1 and 0 levels.

The laser used for transmission is either on or off depending on the value of the signal;
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therefore it is also called On-Off Keying (OOK) [12]. The information can be coded

in two symbols 0 and 1, using only the amplitude. OOK is commonly used for lower

(≤10G) transmission rates.

Capacity and flexibility of optical networks can be increased using higher line rates

(≥40G). Using amplitude modulation for high line rates increases the requirement for

bandwidth. Higher bandwidth results in linear increase at the noise power level of

the communication channel. Increased noise results in shorter optical reach, and more

regenerators for longer distances. Increasing the laser power will not work because of

increasing non-linear effects. Thus, channel bit rate can be increased using advanced

modulation formats.

Phase Shift Keying is the modulation using the phase of the signal. This can be

achieved simply by defining a relative phase shift from the carrier. Phase modulation

is used for higher line rates.

Quadrature Phase Shift Keying is a form of PSK in which two bits are modulated at

once, selecting one of four possible carrier phase shifts (0, π/2, π , 3π/4).

Differential Quadrature Phase Shift Keying (DQPSK) encodes information in the

differential optical phases (∆φ ) between successive bits, where ∆φ may take one of

four values [0, π/2, π , 3π/4]. Since each symbol transmits two bits of information,

the symbol rate is half of the total bit rate. Spectral efficiency of this modulation

technique makes it suitable to carry 40 Gbps channels [13].

Dual Polarization-Quadrature Phase Shift Keying (DP-QPSK) decomposes a

signal into two polarizations of the same frequency at 90◦ from each other in order

to avoid mutual interaction as they are being launched into the fiber. One signal is

transmitted in the horizontal polarization and the other in the vertical polarization.

These two signals can be combined or split up using an optical polarization beam

splitter. By combining the effects of dual polarization and DQPSK, we can have

four bits per symbol: one from each polarization and two from QPSK. This makes

DP-QPSK suitable for 100 Gbps [5], and within the bandwidth requirements of

existing WDM grid.
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2.2 Physical Layer Impairments (PLI)

The PLIs can be classified into two categories: linear and non-linear [1]. Linear

effects are static in nature, and they are independent of signal power. They affect each

wavelength individually. Their effects on end-to-end lightpaths can be estimated using

link parameters; hence, linear impairments can be handled as a constraint on routing

or other optical WDM network problems. Non-linear effects, on the other hand, are

dynamic in nature and are more complex because they not only affect each optical

channel individually but also cause disturbance and interference between them.

The PLIs can also be classified according to the scope of the effects, such as

single-channel effects and inter-channel (or multi-channel) effects. The single-channel

effects can be estimated using the channel (bit rate, wavelength, modulation format,

etc.) and the path characteristics (fiber loss, chromatic dispersion, amplifiers power,

etc.). On the contrary, the inter-channels effects depend not only on the channel and

path parameters, but also on other lightpaths deployed in the network at the specific

time. The single and inter-channel impairments are summarized in Table 2.1.

Table 2.1: Single and inter-channel impairments.

Physical-layer
impairments

Single-channel effects Inter-channel
effects

Linear Impairments Attenuation, CD, ASE,
Insertion Loss, PMD

XT

Non-Linear
Impairments

SPM, SBS, SRS XPM, FWM

2.2.1 Linear impairments

Attenuation is the decrease in power of an optical signal as the signal travels along the

path (Figure 2.5). When determining the maximum distance that a signal can be sent

for a given transmitter power and receiver sensitivity, attenuation must be considered.

Receiver sensitivity is the power required by a receiver to detect a signal. Let P (L) be

the power of the optical pulse at distance L (km) from the transmitter, and let α be the

attenuation (loss) constant of the fiber (dB/km). Attenuation is characterized in [1] by:

P(L) = 10αL/10Pin (2.4)

where Pin is the signal power at transmitter. To keep the power of signal within the

acceptable range, optical amplifiers are intermittently placed in the optical networks.
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Figure 2.5: Attenuation of optical signal.

Amplified spontaneous emission (ASE) is the noise produced by optical amplifiers.

This noise accumulates as the amplifiers cascade along the lightpath. ASE noise occurs

in both the forward and reverse directions, as shown in Figure 2.6. Forward ASE is

a direct concern to system performance because that noise will co-propagate with the

signal to the receiver. Backward ASE can lead to degradation of incoming signal

power, which can easily be compensated.

Figure 2.6: ASE noise production.

ASE noise is one of the major contributors to the total optical noise for long haul

transmission systems. ASE noise power measured over a given spectral bandwidth B0

can be calculated using the following formula [11]:

PASE = 2nsp.h. f .B0(G−1) (2.5)

where PASE : Average amplifier ASE noise power, W
nsp : spontaneous emission factor (or population inversion parameter)
h : Plank’s constant 6.626069×10−34js
f : center frequency, assuming 193.30 THz (1552.12 nm)
B0 : Optical channel bandwidth
G : Gain of amplifier

Dispersion is the time-domain spreading or widening of a pulse duration as it travels

through a fiber. As a pulse gets wider, its shape changes. Dispersion limits the

bit spacing and the maximum transmission rate on an optical channel. Too much

dispersion in the network leads to degradation of signal quality and loss of data. On
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the other hand, having zero dispersion leads to non-linear impairments (i.e., FWM) in

WDM networks.

Optical pulse has different components (wavelength, polarization state). The

difference in velocity caused by wavelength is called chromatic dispersion, and the

difference in velocity caused by different polarization modes is called polarization

mode dispersion.

Polarization Mode Dispersion (PMD) occurs when two different polarizations of light

in a waveguide, which normally travel at the same speed, travel at different speeds

due to birefringence (double refraction) effect of light. Birefringence is a property of

optical materials for which light, polarized along the x axis, experiences a different

index of refraction, and travels at a different speed than does light polarized along the

y axis. PMD causes inter-channel-interference (ICI), as shown in Figure 2.7.

Figure 2.7: PMD effect on channels of fiber.

PMD becomes a problem for higher rates (≥40G), and long distances. On a transparent

transmission, PMD effect can be evaluated using the following formula [14]:

B×

√√√√ M

∑
k=1

D2
PMD(k)×L(k)≤ δ (2.6)

where B is the bit rate, transparent segment of the lightpath consists of M spans, and kth

span has length of L(k). DPMD(k) represents the PMD coefficient of the kth span, which

is measured in ps/
√

km. The parameter δ represents the fractional pulse broadening

caused by PMD, which is typically less than 10% of a bit’s time slot for which the

PMD can be tolerated [1]. PMD values vary from fiber to fiber in the range of 0.01-10

ps/
√

km [15].

Chromatic Dispersion (CD) is pulse spreading due to the fact that different

wavelengths of light propagate at slightly different velocities through the fiber.
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Chromatic dispersion can be defined as the frequency dependence of the refractive

index n f . When an electromagnetic wave interacts with the bounds of transmission

medium, the response of the medium differs depending on the optical frequency f . It

yields pulse broadening, which accumulates along the path. CD induces inter-symbol

interference (ISI), as shown in Figure 2.8. Chromatic dispersion is deterministic and

Figure 2.8: Effects of chromatic dispersion.

linear. It is not affected by the environment. Thus, it can be predicted and compensated.

Dispersion compensating fibers (DCF) have negative dispersion (i.e., -85 ps/nm.km)

to compensate the positive dispersion of standard single mode fiber (SSMF). But

compensation is made for only the center channel of the band of wavelengths. Other

WDM channels are left with residual dispersion. So, WDM network design requires

knowledge of end-to-end CD as a function of wavelength, especially for long distances.

Insertion Loss is introduced by the optical components, such as couplers, filters,

multiplexers/demultiplexers, and switches. It is usually independent of wavelength.

Loss amount at a switch is dependent upon the number of switching elements that

a signal must pass through. A P×P switching element is composed of 1×P active

splitting elements and P×1 active combining elements, in which basic building block

is a 2×2 crossbar switch. The active splitter half of the P×P switch consists of log2 P

stages of 1×2 elements, and similarly combiner half of the P×P switch consists of

log2 P stages of 2×1 elements. In this architecture, all signals have to pass through

the same number (2log2 P) of individual switch elements. Each switch element has

a characteristic loss, Ls in dB, associated with it. An additional attenuation occurs

during the on-off transfer process of the signal. This waveguide/fiber coupling loss

is represented by Lw and includes the reflection losses and mismatch losses. Thus

insertion loss of P×P switch is given by [10]:

2 log2 PLs +4Lw (2.7)
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Crosstalk (XT) is signal noise, which occurs due to the non-ideal isolation of

demultiplexers, switching elements and multiplexers inside an OXC. It is the leakage

from neighboring wavelength or same wavelength at different input port. Linear

crosstalk depends on the ratio of the optical powers of two channels. There are two

different types of switch crosstalk: intraband and interband crosstalk. Due to non-ideal

isolation of the switching element of OXC, lightpaths crossing the same node over

same wavelength of actual lightpath incur some noise, called intraband crosstalk (see

Figure 2.9 (a)). It cannot be removed by optical filters and therefore accumulates

through the network. Also the neighboring lightpath coming from the same input of the

OXC with adjacent wavelengths induce some noise, referred to as interband crosstalk

(see Figure 2.9 (b)). The crosstalk noise power of each OXC can be formulated as

Figure 2.9: Switch crosstalk types.

follows [10]:

XTk,λ =
N

∑
n=1

XTswPkνλ ,n +XTdmxPkνλ∓1 (2.8)

where N is the input port number, Pk is the signal power of affecting port at the

given node. XTsw and XTdmx account for isolation factor of switch and dumultiplexer,

respectively. νλ ,n and νλ∓1 are binary variables indicating the existence of the related

interband and intraband crosstalk. First part of the equation gives the total crosstalk

caused by the lightpaths which have the same wavelength. The last part of the equation

gives the crosstalk caused by the signals from the same input port, due to non-ideal

demultiplexer isolation. Considering gains and losses along the lightpath, accumulated

crosstalk power at the destination node (k+1) can be calculated recursively using the
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approach given in [10]:

PXT (k+1,λ ) = PXT (k,λ )L f (k,k+1)Gin(k+1,λ )

.Ldm(k+1)Lsw(k+1)Lmx(k+1)Gout(k+1,λ )L2
tap

+XTk,λ (2.9)

where Lx indicates the loss values of different components, and Gin and Gout indicate

the gain values due to pre/post-amplifiers.

2.2.2 Non-linear impairments

The non-linear impairments in optical fiber occur due to either change in the refractive

index of the medium with optical intensity (power) or stimulated scattering [3].

Stimulated scattering arises due to the interaction of light waves (optical signals)

with photons (molecular vibrations) in the silica medium. This leads to intensity

dependent gain or loss. The two main effects in this category are Stimulated Brillouin

Scattering (SBS) and Stimulated Raman Scattering (SRS). SBS occurs when an optical

signal in fiber interacts with the density variations (such as thermally driven density

fluctuations and acoustic phonons) and changes its path. Raman scattering arises from

the interaction of light with the vibrational modes of the constituent molecules in

the scattering medium; equivalently this can be considered as the scattering of light

from optical phonons. SRS and SBS are quite similar non-linear effects. The main

difference between the two is that optical phonons participate in SRS, while acoustic

phonons participate in SBS.

Another set of non-linear effects arises due to the dependence of the refractive index

on the intensity of the applied electric field, which is called Kerr Effect. There are

three different main categories of this effect: Self-phase modulation, cross-phase

modulation, and four-wave mixing. Increasing WDM channel capacity, decreasing

channel spacing, and increasing optical power increase these non-linear effects.

Four-Wave Mixing (FWM) is interaction between three wavelengths that produces

a 4th wavelength. In a WDM system using the angular frequencies ω1,ω2, ...ωn, the

intensity dependence of the refractive index not only induces phase shifts within a

channel but also gives rise to signals at new frequencies such as 2ωi−ω j and ωi +

ω j−ωk. This phenomenon is called four-wave mixing. Four-wave mixing effect is
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independent of the bit rate but is critically dependent on the channel spacing and fiber

chromatic dispersion. Decreasing the channel spacing increases the four-wave mixing

effect, and so does decreasing the chromatic dispersion.

Self-Phase Modulation (SPM) is the non-linear interaction of a channel with itself.

The Kerr Effect of a fiber leads to a phase shift of an optical signal due to its own

intensity. The refractive index of the silica, n, increases with the optical power, P:

n = n0 +n2
P

Ae f f
(2.10)

where n0 is the linear refraction index at low powers, and Ae f f is the effective area of

optical mode in the fiber (typical single-mode fibers is 50-80 µm). The coefficient n2

is typically ∼2.6 x 10-20m2/W in standard single-mode fiber [16]. Variations in the

power of an optical signal result in variations in the phase of the signal. Instantaneous

variations in a signal’s phase will result in instantaneous variations of the frequency

around the signal’s central frequency. In the frequency domain, this effect can be seen

as a spectral broadening of a signal. For very short pulses, the additional frequency

components generated by SPM combined with the effects of chromatic dispersion

also lead to spreading or compression of the pulse in the time domain, affecting the

maximum bit rate and the BER. Optical phase shift ∆φSPM results after propagation

over distance L is given by [16]:

∆φSPM = γ.P.Le f f (2.11)

where γ is the fiber non-linear coefficient, and defined as: γ = n2ω0
cAe f f

. ω0 is the optical

carrier frequency of the pulse, c is the speed of light. The effective length, Le f f takes

the fiber loss, α into account, and is defined as:

Le f f =
1− e−αL

α
(2.12)

Cross-Phase Modulation (XPM) is a shift in the phase of a signal caused by the

change in intensity of a signal propagating at a different wavelength. XPM can lead

to asymmetric spectral broadening, and combined with SPM and dispersion may also

affect the pulse shape in the time domain. In XPM, the phase of the signal in one

channel is altered by the intensity fluctuations of the other channels. Its impact of

XPM depends on the modulation format, power and transmission rate of the involved
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signals. Several approaches based on analytical approximations have been investigated

[4,17–19]. We will go with the simplified model used in [19], in this thesis. The noise

contribution of an interfering OOK signal j to channel i is given as [19]:

σ
2
i, j =

φ 2
i, jτi, j

Tj

{
K +1

K
c1−

c2

K2

K

∑
h=1

hexp
(
−hT

τi, j

)
− 1

K2

K′

∑
h=1

hc3(h)

}
(2.13)

where φi, j is the phase shift, τi, j is the group delay of channel j with respect to channel

i, K is the filtering effect, T is symbol time, and Tj is the pulse width. c values give the

spectral shape of the OOK channel. τi, j,K′, c1,c2, and c3 are given as:

τi, j =

∣∣Di∆λ j
∣∣

αi

K′ =
⌈
Tj/T

⌉
−1

c1 = exp
(
−

Tj

τi, j

)
+

Tj

τi, j
−1

c2 = 2
[

cosh
(

Tj

τi, j

)
−1
]

c3(h) = 2
[

sinh
(

hT −Tj

τi, j

)
−

hT −Tj

τi, j

]
(2.14)

The phase shift φi, j induced on channel i by channel j due to XPM is given as:

φi, j =
2γi.Pi, j

αi
(2.15)

where γ is the fiber non-linear coefficient, α is the attenuation coefficient, and Pi, j is

the power of the interfering channel j.

2.3 Quality of Transmission (QoT)

Along the transparent optical path, a signal undergoes various PLIs and its quality

degrades as it travels through optical components. The receiver makes decision about

the transmitted bit whether it is 1 or 0, and it could make a wrong decision due to low

signals quality. So it is necessary to evaluate the signal quality at the receiver side.

BER is an appropriate criterion to decide the quality of the signal. It is the probability

of incorrect decision of a bit by the decision circuit of the receiver. Actually,

BER value is not available before the lightpath is set up. Even calculating BER

value instantaneously is not easy. A 10−12 BER means that one bit is received in
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error for every terabit of transmitted data bits. It will take days to get reasonable

sampling data. Thus, BER is estimated using the statistical and analytic models of

physical-layer impairments, those taken into consideration. MLR networks adopt

different modulation schemes, and each modulation scheme requires different BER

evaluation models.

OSNR is the ratio between the total signal power and the noise power on the reference

bandwidth.

2.3.1 Optical signal-to-noise ratio (OSNR)

OSNR is the strength of the signal compared to the level of noise. It is used to evaluate

the power of signal and the power of noise over specific bandwidth.

OSNR =
Preceived

Nlinear +Nnon−linear
(2.16)

where Preceived denotes the signal power at the receiver, and Nlinear and Nnon−linear

denotes the undesired linear and non-linear noise power accumulated along the path.

For a given lightpath from source to destination, output power of signal (Pout) is ruined

with three main noise components: the inline amplifiers noise, node noise, fiber noise.

Node noise includes switch crosstalk, and ASE noise of EDFA amplifiers. A node also

has other loss sources that affect the OSNR, such as demultiplexer (Ldmx), multiplexer

(Lmx), tap (Ltap), and switching element (Lsw). Besides, the signal is amplified to

a certain power level before (Gin, pre-amplification), and after it is switched (Gout ,

post-amplification). Optical amplifier noise (NASE) and FWM are the noise factors on

the fiber. Noise factors within the node are NASE ,XTDMX ,XTMX ,XTSW , losses induced

by components (Ldmx,Lmx,Ltap,Lsw), and the amplifier gains (Gin,Gout).

In order to evaluate linear and non-linear noise factors, we employed the staged OSNR

model as in Equation 2.17 [11]:

1/OSNR = ∑1/OSNRstages (2.17)

Since the OSNR on a lightpath varies, an iterative method based on the current network

state is needed to calculate the signal and noise powers propagating through the

lightpath. The output noise power (Nout) of (k+1)th stage can be considered iteratively
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as:

Nout(k+1) = Nout(k)
G(k,λ ).e−αdk

LdmxLswLmx

+
G(k,λ )e−αdk

LdmxLsw

hv(λ )B0

2

×
(

Fampk +
Fampk

e−αdkG(k,λ )

)
+

G(k,λ )
LswLmx

m

∑
j=1

PFWMk(λ )

+ε

s

∑
j=1

Pswk+1, j(λ ) (2.18)

The output signal power of (k+1)th stage is:

Pout(k+1) = Pout(k)
(

G(k,λ ).e−αdk

LdmxLswLmx

)
(2.19)

2.3.2 Bit-error rate (BER) estimation

BER differs according to modulation formats.

OOK modulation is affected mostly by ASE, CD, PMD, and SPM. BER can be

approximated for OOK modulated signals as [19]:

BER≈ 1
2

er f c
(

Q√
2

)
≈ exp(−Q2/2)

Q
√

2π
(2.20)

where Q-factor is related to signal to noise ratio as:

Q =
2ρ√

M+
√

M+4ρ
(2.21)

where M = 2B0T , B0 is the optical filter bandwidth, and T is the symbol time. The

relation with OSNR is as:

ρ = nBre f T.OSNR (2.22)

where Bre f is the reference bandwidth, n is the ratio between number of noise and

signal polarizations.

DQPSK modulation is commonly used for 40 Gbps transmission [18]. Most

detrimental impairments for this type of modulation are ASE, CD, PMD, SPM, and

XPM [19]. Especially, when a signal is transmitted adjacent to an OOK channel, XPM

becomes the most detrimental effect on this signal. BER estimation for this modulation

can be approximated as [19]:

BER =
3
8
− ρ

4
e−ρ

∞

∑
m=1

[
Im−1

2

(
ρ

2

)
+ Im+1

2

(
ρ

2

)]2
× sin(mπ/4)

m
e−m2σ2

NL/2 (2.23)
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where Ik(x) is the k-order modified Bessel function of the first kind. ρ is the signal to

noise ratio and related to OSNR through Equation (2.22). Variance of non-linear phase

noise is given as:

σ
2
NL = σ

2
SPM +σ

2
XPM (2.24)

SPM contribution of phase noise is approximated as:

σ
2
SPM ≈ 4φ

2
SPM/(3ρ) (2.25)

φSPM is discussed in section 2.2.2. σ2
XPM is given detailed in Equation (2.13).

DP-QPSK is the candidate modulation for 100G line rates [4]. DP-QPSK is also

affected by ASE, CD, PMD, SPM, and XPM [19]. OOK neighboring channels have

detrimental XPM effect on DP-QPSK channels. BER estimation for this modulation

can be approximated as [19]:

BER =
3
8
− 1

2

√
ρ

π
e−ρ/2

∞

∑
m=1

[
Im−1

2

(
ρ

2

)
+ Im+1

2

(
ρ

2

)]
× sin(mπ/4)

m
e−m2σ2

NL/2 (2.26)

SPM contribution of phase noise for this modulation is approximated as:

σ
2
SPM ≈ 2φ

2
SPM/(3ρ) (2.27)

Gaussian Approximation: In QPSK systems, errors occur when the received signal

phase is different from transmitted one by more than π/4. With the assumption of

phase noise being Gaussian, phase rotation induced by noise exceeds a given value

(θ ) approximately by Q(
√

2ρ sinθ). Using this information, it is possible to use BER

evaluation model given in Equation (2.20), instead of Equations (2.23) and (2.26) with

the following formula for Q-factor [19]:

Q =
π/4√

S
2ρ
( θ

sinθ
)2 +σ2

NL

(2.28)

where S stands for effected term number (1 and 2 respectively, for QPSK and

DP-QPSK). θ is used as ( [19]):

θ = (π/4)/(S+2ρσ
2
NL) (2.29)

Guard Band (GB) is the number of wavelengths between two lightpaths, beyond

which the effect of a lightpath on the other can be neglected. GB is obtained from

the minimum spectral separation value that guarantees to have negligible detrimental
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effects (e.g., noise less than 0.1 dB) induced by neighboring lightpaths. The spectral

separation of channel i from affecting channel j can be found using following formula

[20]:

∆λGB >

√√√√160ρTjT gD(K)∑
i

γ2
i P2

i, j

D2
i

(2.30)

where ρ is the signal to noise ratio and related to OSNR through Equation (2.22),

K is the filtering effect due to differential detection in phase shift keying modulation

formats. gD(K) is differential or coherent detection with phase estimation and for large

group delays it is defined as [20]: gD(K) = 2K+3+(1/K)
6 .

Optical Power and Loss: In optical communication, decibel units (dB) are used to

measure the power and signal levels. Logarithmic decibel units are used to represent

relative values, instead of absolute values. The standard reference value for optical

communication is 1 milliwatt (mW) [11]. Suppose the transmitted signal has power of

P watts (W). In terms of dBm units, it is denoted as [3]:

PdBm = 10log
(

PmW

1mW

)
(2.31)

For example, a power of 1 mW corresponds to 0 dBm and 1µW corresponds to -30

dBm. A power of 5 mW corresponds nearly to 7 dBm.

As the signal propagates through the fiber, its power decreases due to loss occurred at

optical components and attenuation on fiber. The loss ratio, Tr is defined as:

LossRatio = Tr =
Pout

Pin
(2.32)

where Pout and Pin are fiber or component output and input powers at a specific

wavelength, respectively. Loss ratio is always less than or equal to 1. If Pout/Pin ratio

is greater than 1, than it is referred to as gain.

The optical loss represented with logarithmic scale value is standardized in dB units.

Since Tr is always less than 1, then the optical loss is represented as a positive number

or 0:

(α)dB =−10 log Tr =−10 log
(

Pout

Pin

)
(2.33)

As an example, if Pin is 1 mW and measured receiver power (Pout) is 0.05 mW, the

optical loss value would be:

α = −10 log
(

0.025
1

)
α = 13.01 dB.
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In this context, a signal being attenuated by a factor of 1000 would equivalently

undergo a 30 dB loss.

The optical loss for fiber link is usually measured per km (dB/km). So, for example, a

signal traveling through 120 km of fiber with a loss of 0.25 dB/km would be attenuated

by 30 dB.

The minimum power requirement of the receiver is called the receiver sensitivity, (R).

We must ensure that the transmit power is high enough so that it can maintain signal

power > R at the receiver end. That does not mean that we can increase the transmit

power as much as we want to send bits across long distances. High input power causes

more non-linear impairments. In addition, an upper acceptable signal power limit

exists for every receiver. Therefore, the maximum input power that we can launch

into the fiber, thus the reach is limited.
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3. IMPAIRMENT-AWARE LIGHTPATH PROVISIONING IN MLR
NETWORKS

3.1 Introduction

Impairment-aware (IA) lightpath provisioning is a cross-layer optimization problem

which aims to maximize the established connections at the network layer, while

assuring signal quality at the physical layer.

In MLR networks, advanced modulation techniques (e.g., DQPSK, DP-QPSK) are

used for high line rates. On the other hand, DQPSK and DP-QPSK modulated signals

are highly susceptible to PLIs; therefore we have to take into account the trade-off

between capacity and signal quality. Accounting for PLIs during the provisioning

phase, which is an important problem in single-line-rate WDM networks, acquires

even larger importance in MLR networks. In MLR networks, the problem has two

new dimensions: the disruptive interaction of different modulation formats, and the

trade-off between capacity and optical reach.

We first investigate the effects of inverse multiplexing (IM), which is a technique that

tries to exploit the advantage of transmitting the signals with low line rates, where the

high line rate is not possible due to impairments. The network layer applications enable

to inversely multiplex the connection requests with high line rates into smaller line

rates at the source node, propagate them separately over a transparent MLR network,

and then combine them back at the destination node. We propose various IM-based

schemes to account for the IA dynamic lightpath provisioning problem in MLR

optical networks. The proposed schemes use three different path-selection algorithms:

shortest path (SP), minimum hop (MH) path, and least congested path (LCP). We

employed two different wavelength-assignment schemes with each path-selection

algorithms: Best-BER (BB) and maximum spectral distance (MSD).

We also propose two novel schemes for dynamic lightpath provisioning in MLR

networks which consider various linear and non-linear impairments. The proposed
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weighted-RWA (W-RWA) scheme captures the instantaneous state of the network

by assigning weight values according to affecting impairments. The algorithm tries

to minimize the effects of XPM and leave more feasible wavelengths for future

requests, while avoiding damaging already established lightpaths. Since the weight

assignment process can be made off-line, the W-RWA makes use of idle time before

any request comes. The proposed Fixed Wavelength-Interval Allocation (FWIA)

approach considers PLIs implicitly. This approach exploits the advantage of placing

different modulation formats into separate channels which have adjacency with other

modulation formats only at the boundaries of intervals.

3.2 Related Works

Various studies have been reported on the design of MLR networks considering static

traffic. The authors in [21] deal with the design of MLR networks. A novel node

architecture, where transparent Etherpaths (i.e., Ethernet tunnels on lightpaths) are

established between these nodes, is proposed. The work in [22] shows that MLR

networks are more cost-effective than SLR networks, and presents design methods

for MLR networks. In [23], the authors aim to reduce the network cost in MLR

networks using multiple modulation formats. They consider the tradeoff between

susceptibility of higher line rates to impairments and the volume discount1 of these

line rates. In [24], the authors study protection in MLR networks. They propose

cost effective transparent virtual topology design schemes for MLR networks which

provides dedicated protection. In [25], the authors investigate the planning of 10/40

Gbps MLR networks, considering nonlinear interferences between 10 and 40 Gbps

channels. The authors also present a set of tests to observe the trends in MLR planning

for different network sizes. In [26], the authors present RWA algorithms to adapt the

transmission reach of a connection, according to the modulation formats/line rates in

the network. The algorithms allow planning the network so as to alleviate cross-rate

interference effects. In [27], the authors present different path computation element

(PCE) architectures, and experimentally evaluate these architectural solutions. The

architectures perform RWA with either combined or separate impairment estimation,

with on-line and off-line computation of impairment validated paths, and with the

1The discount given to a customer who buys a large quantity of goods.
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possible utilization of a novel PCE Protocol (PCEP) extension. Traffic engineering

performance, path computation delivery time, and amount of exchanged PCEP

messages are used as the performance metrics to evaluate the architectures. In [28],

design algorithms for MLR translucent networks considering energy efficiency are

proposed. In [29], design and planning of translucent MLR networks are presented,

considering multiple modulation formats with different reaches. In [30], tha authors

investigate the effects of channel spacing and launch optical power for static traffic

case. In [31], a differentiated quality of protection scheme is evaluated in terms of

energy efficiency for MLR and orthogonal frequency-division multiplexing (OFDM)

based networks. The authors study the problem of regenerator site selection and

regenerator placement for mixed line rate translucent optical networks in [32, 33].

In [34], simultaneous transmission of 111, 43 and 10.7 Gbps channels is studied.

Results of field trials are used to demonstrate the feasibility of transmitting 100G,

40G, and 10G together with 50 GHz channel spacing. Polarization-multiplexed,

return-to-zero, differential quadrature phase-shift keying (POLMUX-RZ-DQPSK) is

used to transmit 111 Gbps in parallel with 43 Gbps DPSK and 10.7 intensity modulated

channels. The authors conclude that a 111 Gbps channel, neighboring with 43 and/or

10.7 Gbps channels, can be transmitted over long fiber links (>1000 km), with a careful

choice of launch power (about 2 dBm). They also present the results of PMD effect

on transmission with different network configurations. They conclude that the 111

Gbps channel is able to sustain 23 ps mean differential group delay with the help

of digital processing in coherent detection. In [5], the authors present the impact of

XPM impairments on simultaneous transmission of 111-Gbps POLMUX-RZ-DQPSK

with 10.7 and 43 Gbps channels at 50 GHz channel spacing on field deployed fiber,

with different launch powers. They find that the high data rates are more susceptible

to launch power of neighboring channels than low data rates, in terms of XPM

impairment. In [35], it is shown that coherent reception combined with digital signal

processing can significantly increase the 100 Gbps system’s tolerance against linear

impairment effects, including polarization-mode dispersion and chromatic dispersion.

In [36], it is shown that 16.4 Tbps capacity is possible with coherent detection, over a

distance of 2500 km.
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While various studies exist on the design of MLR networks with static traffic, there are

only a few studies on the impairment-aware dynamic lightpath provisioning problem

in MLR networks. In dynamic traffic case, lightpaths are established on demand, and

stay in the system for their holding time. On the other hand, in static traffic case, a

predetermined set of connections is given as input to the design phase that optimizes

a defined objective. The authors in [37] consider the dynamic RWA problem in MLR

networks without considering the impairments. The impairments are handled in [38]

with the assumption of dynamic launch power capability, and a launch power control

algorithm is proposed to improve the performance in terms of blocking probability.

A PCE architecture to implement impairment-aware RWA is presented in [39]. In

[19, 20, 40], the authors investigate impairment-aware RWA in MLR networks based

on PCE. They propose various schemes for dynamic RWA based on worst-case and

guard-band. In the worst-case scenario, a phase modulated (DQPSK and DP-QPSK)

lightpath has OOK lightpaths on both neighboring wavelengths. Among the various

proposed schemes, the one (first-fit worst-case with guard band, FF-W-GB) which

exploits the benefit of both approaches, obtains the best performance. In [41], a scheme

for dynamic grooming and RWA in translucent MLR networks is proposed.

3.3 Problem Definition

In this thesis, we consider the lightpath provisioning problem for dynamic traffic in

MLR optical WDM networks, subject to physical-layer impairments. The problem

can be formally stated as follows:

Given:

• A dynamic connection request with a given rate,

• Physical topology,

• Number of wavelengths carried by each fiber,

• Current network state, and

• PLI parameters.

The goal is to determine:
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• Route over which the lightpath should be set up, and

• Wavelength to be assigned.

The objective of the problem is to maximize the number of established connections

while satisfying the given BER for incoming connection, and to avoid disrupting the

existing lightpaths. The problem is NP-hard, since it contains the NP-hard RWA

problem [42] as a special case.

Proposed heuristic algorithms are given in the following two chapters.
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4. INVERSE MULTIPLEXING BASED LIGHTPATH PROVISIONING
ALGORITHMS

Inverse multiplexing (IM) is a technique that makes use of splitting higher line rate

into smaller line rates, and transmitting signals at smaller line rates, where the high

line rate is not possible due to PLIs. For high-line-rate requests (e.g., 40G, 100G),

when the estimated BER of the selected path and wavelength exceeds the acceptable

threshold, the request is split into sub-requests. These inversely-multiplexed requests

can either be transmitted over the same wavelength on the same path, or they can

be transmitted over a different wavelength on a different path. For example, if a

100G request (Figure 4.1 (a)) is not feasible on the shortest path, then the request

would be split into 2×40G and 2×10G sub-requests (Figure 4.1 (b)), keeping the other

properties of the connection request the same.

(a) Unfeasible 100G. (b) Inverse-multiplexed 100G request (2×40G,
2×10G).

Figure 4.1: Inverse multiplexing.

The network layer applications (e.g., [43]) enable to inversely multiplex the connection

requests with high line rates into smaller line rates at the source node, propagate

them separately over a transparent MLR network, and then combine them back at the

destination node.

As a part of this thesis, we investigate the IM gain in MLR networks for the

impairment-aware dynamic lightpath provisioning problem. The details and the results

of this study are presented in Appendix C. The results of the study indicate that the

approaches employing IM can improve lightpath provisioning performance. In this
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Table 4.1: Proposed algorithms using IM.

BB MSD
Shortest path SP-BB SP-MSD
Minimum hop MH-BB MH-MSD
Least congested path LCP-BB LCP-MSD

thesis, we propose various IM-based schemes to account for the impairment-aware

dynamic lightpath provisioning problem in MLR optical networks. The performances

of the proposed schemes are evaluated through simulations for different network

topologies.

4.1 Algorithms

In this thesis, we propose various schemes based on IM to account for lightpath

provisioning in MLR optical transparent networks. Three path selection algorithms

are used to compute a path for a connection request from source s to destination d:

shortest path (SP), minimum hop (MH) path, and least congested path (LCP). Two

wavelength-assignment schemes are employed with each path-selection algorithms:

Best-BER (BB) and maximum spectral distance (MSD). Overall, the proposed

schemes are summarized in Table 4.1.

4.1.1 Path selection schemes

The proposed schemes use three different path-selection algorithms: SP, MH, and

LCP. SP ensures the shortest distance from s to d, while MH minimizes the number

of nodes on the selected path to minimize linear XT effect. The LCP method is a

modified version of the LCP algorithm introduced in [44]. The algorithm used in

this thesis selects the appropriate path among k-shortest paths [45]. The algorithm

first finds k-shortest paths, and then selects the path that has the maximum number

of available wavelengths. Note that in a transparent WDM network, wavelength

conversion at intermediate nodes is not allowed. LCP aims to minimize the effects of

linear and non-linear XT.
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4.1.2 Wavelength assignment schemes

Best-BER (BB): This scheme is a modified version of the BB algorithm introduced

in [46, 47]. It aims to assign the wavelength having the minimum BER on the selected

path. All available wavelengths on the selected path are sorted in ascending order

according to their BER value. If BER of the selected wavelength is above a threshold,

the wavelength is selected.

Maximum Spectral Distance (MSD): This scheme selects the appropriate wavelength

that has the MSD on the selected path. Spectral distance is the distance between

xPSK and the closest OOK channels, on the same path. For xPSK signals, MSD of a

wavelength w on a path from s to d is computed as:

Maxs,d(Min(δλ
w,w′

(i, j) )) (4.1)

where δλ
w,w′

(i, j) is the number of wavelengths between wavelengths w (xPSK channel)

and w’ (OOK channel) on link (i,j). MSD computation is depicted in Figure 4.2.

(a) Spectral distance on a link. (b) Spectral distances on a path.

Figure 4.2: Maximum spectral distance calculation.

In Figure 4.2 (a), spectral distance of the projected link is 5, where, λn and λn−5 are

occupied with different line rates. The minimum of these values along the path gives

the spectral distance of the path. The path having largest spectral distance is selected

by MSD. Given the wavelengths, and the existing lightpaths in Figure 4.2 (b), MSDλn

is 4 (that is: for the given wavelength λn, along the path from s to d, spectral distance

between xPSK and OOK channels is 4), and MSDλk
is 3. The wavelength λn, with

spectral distance of 4, is selected by MSD.

In MSD wavelength assignment scheme, all the available wavelengths on the selected

path are sorted in descending order according to their MSD value. This wavelength

assignment scheme aims to minimize the XPM effect of OOK signals on xPSK
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signals. MSD differs from the wavelength selection approach given at [48] in that

MSD dynamically looks for the wavelength that is most separate than the occupied

wavelengths.

A generic algorithm that employs IM is used to evaluate the performance of proposed

schemes (see Algorithm 1). If the BER value for the requested line rate is not

Algorithm 1 Generic algorithm to implement proposed schemes with IM.

I- Find appropriate path and wavelength (candidate lightpath) using one of the proposed
schemes.

• If a path with an available wavelength does not exist, reject the request.

II- Compute BER value for the candidate lightpath with requested line rate.

III- Check if BER of the candidate lightpath is below acceptable BER threshold.

• If the estimated BER is above the threshold, then inversely multiplex the request
into sub-requests.

• Take these sub-requests as new requests and run the algorithm for each.

• If any of sub-requests cannot be established, then reject the whole request.

IV- Verify existing lightpaths with candidate lightpath(s).

• If any of them becomes infeasible, reject the request.

V- Set up the lightpath(s).

VI- Release the connection(s) after holding time.

acceptable on the selected wavelength, then IM is applied to the request. If a

sub-request is not feasible, then IM is applied to the sub-request, as well. If the line

rate of the rejected request is minimum (i.e., 10G), then no IM is considered. In case

any sub-request is rejected, the whole request is rejected.

After finding the candidate route and wavelength with acceptable BER, existing

lightpaths are also verified. If any existing lightpath is weakened to have BER value

more than acceptable threshold, then the candidate lightpath is not allowed to be

established.

4.2 Illustrative Numerical Examples

In this study, we consider an optical WDM network in which each node can support

transmission at 10, 40, and 100G line rates. NSFNET, EON and a simple topology
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with 6 nodes (see Appendix B) are used to evaluate the performance of the proposed

schemes. EON has shorter link distances (average ≈550 km) than NSFNET (average

≈930 km), and the 6-node topology has same average link distance with NSFNET.

Each node has limited number of transponders and receivers for each line rate.

Physical links have inline (EDFA) amplifiers every 82 km, with 70 km standard

single mode fiber, and 12 km dispersion compensation fiber. Fixed grid with 100

GHz channel spacing and carrying 40 wavelengths is employed, and wavelength

continuity constraint is applied for intermediate nodes. For LCP-based algorithms,

we used k=3 to find k-shortest paths. Connection requests arrive according to Poisson

distribution with exponentially-distributed holding times. Requests for different line

rates are dynamically generated according to uniform distribution. For each line rate,

transceiver numbers are given in advance and the algorithms are not allowed to exceed

these numbers. We ran the simulations for one million connection requests. For

different random number generator seeds, we obtained consistant results. Other system

parameters are given in Appendix A.

An incoming request can be rejected due to non-sufficient network resources (resource

blocking) or affecting impairments (physical-layer blocking) [1]. We evaluated

the physical-layer blocking and resource blocking performances of the algorithms

separately to see the effects of IM. We also implemented the same impairment-aware

provisioning schemes without IM, using the same parameters, to see how the

performance is changed with IM. Among impairment-aware provisioning schemes

without IM, Shortest-Path Best-BER (SP-BB-noIM) shows the best performance in

terms of blocking; thus we show the results of SP-BB-noIM as a baseline in the figures

for comparison with the schemes using IM.

Figure 4.3 shows the blocking ratio due to PLIs for NSFNET topology. The traffic

load is given in Erlangs. PLIs induced by established lightpaths increase in parallel

with increasing traffic load; thus, the blocking ratio increases for all algorithms. The

SP-MSD shows the best blocking probability performance for all traffic loads. The

LCP-MSD shows good blocking probability performance for lower traffic loads, but it

experiences a performance decrease with increasing traffic load. This performance

decrease has two reasons: the algorithm hardly finds a distant wavelength along

the path, and average length of selected paths increases while selecting the path
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Figure 4.3: Blocking ratio due to PLIs (NSFNET topology).

that has more available wavelengths. Although it becomes difficult to find distant

wavelengths between xPSK and OOK signals for high traffic loads, MSD experiences

better performance than BB for all routing schemes. The SP-based algorithms

experience regular decrease in performance while the traffic load increases. Although

the MH-based schemes using IM show better performance than not using IM, their

performances are below the SP and LCP-based schemes. The difference between

SP-BB-noIM and SP-BB shows that using IM yields a good performance increase

in terms of blocking probability due to PLIs.

Figure 4.4 shows the blocking ratio due to PLIs for EON topology. The EON topology

Figure 4.4: Blocking ratio due to PLIs (EON topology).

has shorter link distances than NSFNET, so the blocking ratio due to PLIs for this

topology is less than NSFNET. On the other hand, increasing average hop-count of

paths increases linear XT in this topology. Increasing average hop-count also increases

the wavelength-link usage, so resource blocking becomes higher for medium and high

traffic loads (see also Figure 4.6) and blocking ratio due to PLIs becomes lower.
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SP-MSD shows the best blocking performance in this topology for all traffic loads.

LCP-MSD shows good performance for low traffic, but it experiences performance

decrease with traffic-load increase.

Figure 4.5 shows the blocking ratio due to PLIs for the 6-node topology. Although

this topology has longer link distances than EON topology, it has less blocking ratio

than EON due to increased connectivity. The other reasons for better blocking ratio

performance are: less average hop-count and lower average lightpath length. In

this topology, LCP-MSD shows better performance than the other schemes in terms

of PLI blocking for low and medium traffic loads. For high traffic loads, since

Figure 4.5: Blocking ratio due to PLIs (6-node topology).

the resource blocking increases, the performance difference between IM-employing

and not employing schemes diminishes. Figure 4.6 shows the total (physical-layer

and resource) blocking ratio for both IM-employing and not employing schemes for

different topologies.

The algorithms having the same path-selection scheme show similar total blocking

performance for all topologies. Although the LCP-based algorithms do not have best

performance in terms of PLI blocking for high traffic loads, LCP-BB and LCP-MSD

have best performance for total blocking performance for all traffic loads. Total

blocking performances of the algorithms show that signal quality is highly dependent

on the state of the network. Thus, LCP-based algorithms, where the path having

maximum number of available wavelength is selected among k-shortest paths, show

the best blocking ratio performance.

The results for SP-BB-noIM and SP-BB algorithms show that blocking ratios decrease

with IM for low traffic loads, but their performances come closer with increasing traffic
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(a) NSFNET.

(b) EON topology.

(c) 6-node topology.

Figure 4.6: Total (physical-layer and resource) blocking ratio results of proposed
schemes for different topologies.

load. IM increases the performance of blocking due to PLIs, but resource blocking

becomes the dominant factor determining the total blocking performance for high

traffic loads.
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Pure blocking probability considers all requests as the same, but blocking a request

with 100G causes 10 times more throughput loss than a 10G request. Bandwidth

blocking ratio (BBR) is defined as the amount of bandwidth blocked over the amount

of bandwidth offered [49]. We also evaluated the BBR performance of inverse

multiplexing scheme. Figure 4.7 shows the total BBR performances of proposed

schemes.

The algorithms show similar performance with total blocking ratio performance

for all topologies. The results for NSFNET topology indicate that MSD-based

approaches have better results for lower traffic, where distant wavelengths for different

modulation formats are selected. For higher traffic loads, the performance of BB-based

approaches have less blocking ratio, because MSD-based approaches fail to find

distant wavelengths. LCP-based algorithms show better BBR performance than other

schemes.

The SP-based scheme employing IM (SP-BB) shows better performance than

SP-BB-noIM up to a level, where it hardly finds network resources for inversely

multiplexed requests. After that, IM does not help to increase the achieved throughput

because IM uses more wavelengths to accommodate the requests, and the BBR due to

insufficient resources increases.

The main drawback of IM is the additional network resource consumption, in terms

of wavelength-links. Figure 4.8 gives the additional network resource usage ratio

( Wavelength−linkIM
Wavelength−linkTotal

) for NSFNET. The numerator of the fraction is the wavelength-links

of established lightpaths using IM, representing the total amount of wavelength-links

which are occupied due to infeasible high line rates. The denominator of the fraction

is the total wavelength-links of established lightpaths. For example, instead of an

infeasible 100G lightpath with 3 wavelength-links from s to d, an algorithm using IM

establishes 2×40G and 2×10G lightpaths on the same path. Thus, the algorithm with

IM consumes 9 additional wavelength-links for the same request. For low traffic loads,

IM leads to high additional network resource consumption, because the network has

free wavelengths to be assigned for inversely-multiplexed requests. The IM schemes

occupy more wavelength-links up to 1/3 of total wavelength-links of lightpaths.

LCP-MSD experiences the highest additional wavelength-links consumption for all

traffic loads. Together with total blocking performance (see Figure 4.6), it can be
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(a) NSFNET.

(b) EON topology.

(c) 6-node topology.

Figure 4.7: Bandwidth blocking ratio results of proposed schemes for different
topologies.

said that LCP-MSD increases the blocking performance with a cost of additional

network resource usage. Additional wavelength-links usage of MH-MSD is high for

low traffic loads, but it decreases with increasing traffic. SP-BB causes less additional

wavelength-links usage for all traffic loads. For high traffic loads, the additional
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Figure 4.8: Additional network resource (wavelength-links) usage of the proposed
schemes for NSFNET.

network resource consumption ratio of IM-based schemes decrease due to insufficient

resources.

Figure 4.9 gives the additional network resource usage ratio of the approaches at a

certain level of blocking probability. The approaches using MSD wavelength selection

Figure 4.9: Additional resource usage at certain blocking ratio.

scheme use more additional wavelength-links than BB-based approaches to achieve the

given blocking ratio. Since MH selects the path that uses minimum wavelength-link,

any performance increase using IM leads to more wavelength-link usage.

4.3 Conclusion

In this chapter, we presented the performance of inverse multiplexing based lightpath

provisioning schemes in MLR networks. IM is employed where high line rates are

infeasible due to PLIs. Employing IM causes gain in terms of blocking probability due

to PLIs, but after reaching a level where network resources do not let the algorithm

to find an available path and wavelength, blocking probability performance of IM gets

closer to the scheme that does not employ IM [50].
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We proposed various approaches (SP-BB, SP-MSD, MH-BB, MH-MSD, LCP-BB,

and LCP-MSD) employing IM for the problem. The proposed schemes use SP, MH,

and LCP algorithms to find the appropriate path. Wavelength assignment is done

according to BB or MSD approaches. Within these algorithms, IM is employed where

high line rates are not feasible due to PLIs.

Our algorithms are evaluated through simulations. The results indicate that the

performances of the algorithms differ according to topologies and traffic load. But in

all cases, algorithms employing IM outperform the algorithms that are not employing

IM in terms of blocking ratio.

The performance increase obtained from IM comes with a trade-off. The algorithms

employing IM use more wavelength-links to accommodate the same amount of

request. LCP-based algorithms employing IM experience the worst performance in

terms of additional wavelength-links usage. To improve the performance in terms

of blocking ratio, network operators can use adaptive schemes, which consider the

resources they have and the state of the network.
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5. DYNAMIC LIGHTPATH PROVISIONING ALGORITHMS

In this chapter, we propose two novel approaches to handle PLIs in lightpath

provisioning for MLR networks. The first approach takes PLIs into account implicitly.

It partitions the wavelengths into groups, assigns these groups to line rates, and

establishes lightpaths with different modulation formats over the assigned wavelength

groups. The second approach handles the problem with a novel weight assignment

scheme that accounts for PLIs. The details of the proposed algorithms are explained in

the following sections.

5.1 Fixed Wavelength-Interval Allocation (FWIA)

Linear and non-linear noise accumulated along the path degrades the optical signal

quality. This noise depends on various system parameters (e.g., symbol rate, number

of channels, channel spacing, fiber type). Interchannel nonlinearities are particularly

important to advanced modulation formats at high (40G/100G) bit rates. Although

every optical channel induces interchannel nonlinearity on neighboring channels,

adjacency of OOK channels has more detrimental effects on advanced modulation

formats. To prevent, especially, OOK channels to negatively affect high bit rate

channels, FWIA partitions wavelengths into groups, where each group is assigned

to a different modulation format. This kind of wavelength allocation considers PLIs

implicitly, and avoids assigning adjacent channels to different modulation formats.

The number of wavelength groups is equal to the number of different line rates (see

Figure 5.1). The proposed algorithm is given in Algorithm 2.

The algorithm first finds the shortest path, and then looks for an appropriate

wavelength. For an incoming request, from source (s) to destination (d), a wavelength

is selected from the group allocated for the requested line rate. The algorithm starts

searching for an appropriate wavelength from the center wavelength of the allocated

group of wavelengths. It aims to find the one that is less exposed to XPM, and to

leave more feasible-wavelengths for future requests. The search goes towards the
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Figure 5.1: Fixed Wavelength-Interval Allocation.

Algorithm 2 Fixed Wavelength-Interval Allocation (FWIA) Scheme.

1. Partition the total wavelengths into intervals.

2. Get the request.

3. Find shortest path from s to d with an available wavelength,

• If a path with an available wavelength does not exist, reject the request.

• Else find an appropriate wavelength:

– Start from the center wavelength of the interval.
– Search towards the sides of the interval.

4. Validate the path for minimum BER requirements (candidate).

5. Verify existing lightpaths:

• If any of the existing lightpaths’ BER becomes unacceptable,

– Look for another wavelength (multiple-attempt).
– Reject the request (single-attempt).

6. Set up the lightpath.

7. Tear down the lightpath after holding time.

sides. First, one half of the interval which does not cause (or expose) to XPM effect

is searched. If there is not an available wavelength in this half of the interval, the

algorithm searches the other half of the interval, again beginning from the center.

After finding an available wavelength, BER is estimated for this path-wavelength,

considering the current state of the network. If the estimated BER is acceptable, then

this path-wavelength pair is called the candidate lightpath. After finding a candidate
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lightpath, existing lightpaths are examined. If any of the existing lightpaths is damaged

by this candidate lightpath, the algorithm searches for another wavelength. This is

called multiple-attempt scenario. In single-attempt scenario, if the candidate lightpath

damages any existing lightpath, the request is rejected without looking for another

wavelength.

5.2 Weighted Routing and Wavelength Assignment (W-RWA)

In this approach, we use an auxiliary graph G(V,E) to keep track of impairments. This

auxiliary graph is constructed by replicating the network’s original graph G0(V0,E0)

for each line rate. The auxiliary graph is used to assign weight values to the

wavelengths to account for the impairments in MLR networks.

5.2.1 Auxiliary graph construction

To construct the auxiliary graph G(V,E), we first replicate the physical nodes (V0) as

the number of line rates. The ith vertex of the auxiliary graph (Fig. 5.2(a)) is denoted

by {V i
0,V

i
1, ...,V

i
k , ...,V

i
R}, where R is the number of line rates.

Then, the physical links (E i, j
0 ) connecting nodes (V i

0,V j
0 ) are replicated. The links of

the new graph (Fig. 5.2(b)) are denoted by {E i, j
0 ,E i, j

1 , ...,E i, j
k , ...,E i, j

R }.

Each wavelength on a link is considered separately and associated with a weight value

(W λ
i, j,k), which is assigned according to the current state of the network (Fig. 5.2(c)).

This weight value represents the propagation penalty of transmitting the signal over a

specific wavelength (λ ) on that physical link (i, j) with specific line rate (k).

The weight values are initialized before any connection request comes, according to

linear impairments (ASE, losses, CD, and PMD). After each lightpath is established or

released, the weight values are recalculated along the path (s to d) for the wavelengths

within the guard band (GB) of the newly established lightpath. The weight values are

calculated as discussed in the following section.

5.2.2 Weight assignment

We propose a novel weight assignment scheme to capture the PLIs. The weight values

represent linear and non-linear impairments that occur on the physical links (ASE,
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(a) Physical nodes are replicated. (b) Physical links are replicated.

(c) Each wavelength on a link associated with
a weight value.

Figure 5.2: Auxiliary graph construction.

losses, CD, and SPM), and on the nodes (XT and losses). Unlike OOK modulated

channels, DQPSK and DP-QPSK channels are also affected by the intensity variations

of neighboring channels. XPM effect of OOK signals on DQPSK and DP-QPSK

channels is neglected after GB. Weight assignment for impairments induced at nodes

and links are evaluated as described below.

Weight assignment for a vertex: The weight of a node represents the propagation

penalty due to crosstalk within that node. Two different types of switch crosstalks

(inter and intra-band crosstalk, see Section 2.3) are considered in this study.
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Each vertex j of the auxiliary graph is assigned a weight value (W λ

V j
k
) for each

wavelength of the input/output port, where k is the requested line rate. Let N be

the number of ports (input/output) of each node, then crosstalk values at node V j
k on

wavelength λ are taken into account as vertex weight value (W λ

V j
k
) as follows:

W λ

V j
k
= ω

λ
XTa

.ν
j,λ∓1

XTa
+

N

∑
p=1

ω
λ
XTb

.ν
j,λ ,p

XTb
+κ (5.1)

where ωλ
XTa

and ωλ
XTb

indicate the predefined weight factors of the crosstalk

components; ν
j,λ∓1

XTa
and ν

j,λ ,p
XTb

are the binary variables indicating the presence of a

lightpath causing crosstalk on port p of node j on wavelength λ ; and κ is the adjusting

weight value indicating the losses caused by the taps, demultiplexers, switching

elements, and multiplexers inside the node.

The weight caused by node j is accounted with the link i, j for specific wavelength λ .

The parameters used in node weight evaluation model are given in Appendix A.

Weight assignment for a link: Each wavelength (λ ) on the edge (E i, j
k ) of the graph

(G(V,E)) is assigned a weight value W λ
i, j,k. The initial weight values are calculated

considering ASE and SPM using Equation (5.2). The weight value of the affected

wavelengths of the links along the path are recalculated each time a lightpath is

established or released.

Each link weight value encompasses various impairments, and dynamically changes

according to XT and XPM. The XT effect of the established lightpath is evaluated

using Equation (5.1). The wavelengths (λd) within guard band (+/-GB) are added a

weight value for XPM effect, depending on their distances (|λn−λd|) to the lightpath

established on λn. The XPM effect decreases with the ratio of 1
(∆λ )2 [19], where

∆λ gives the number of wavelengths between affecting signal and the actual signal.

Specifically, we define the weight-assignment scheme for a wavelength (λd) at bit rate

k on a link (E i, j
k ) as follows:

W λd
i, j,k = W λd

V j
k
+m.ωλ

ASE +ω
λ
SPM +

R

∑
k=1

λn+GB

∑
g=λn−GB

1
(∆λ )2 ω

k
XPM ·ν i, j,k

g +ζ (5.2)

where m is the number of spans within the link, R is the number of line rates,

ωλ
ASE , ωλ

SPM, and ωk
XPM are the predefined weight factors of ASE, SPM, and XPM,
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respectively. These values are assigned considering their effects on BER. These factors

can be static or they can be changed in time. ν
i, j,k
g denotes the existence of affecting

lightpaths on link i, j with rate k on wavelength g, and ζ stands for the adjusting weight

value for other impairments. Together with κ value in Equation (5.1), ζ is used to help

the algorithm to select the lower hop-count path when more than one path have same

total weight value. The parameters used in link weight evaluation model are given in

Appendix A.

Same modulation promotion: Another feature of the weight assignment scheme is the

same modulation promotion, which gives promotion points (Ξ) to adjacent channels

that use the same line rate (k) as the already established lightpaths. After each lightpath

is established, a promotion value is subtracted from weight of the wavelengths (λd)

within GB, according to their distances (|λn−λd|) to the established lightpath over λn.

This promotion value is relatively small compared to the weight values of impairments.

The weight value of a wavelength (λd) at a specific bit rate Rr on a link (i, j) is promoted

as:

W λd
i, j,k =W λd

i, j,k +(−1)e(−1)|λn−λd | ·Ξ (5.3)

With this promotion, the same modulation format is encouraged to be selected for

adjacent channels; therefore, the lightpaths using the same modulation format tend to

be closely located. The algorithm improves the awareness of the current state of the

network, minimizes the effects of XPM, and avoids degrading the signal quality of

already established lightpaths.

Weights, increased due to lightpath establishment, are decreased when the lightpath is

torn down (inverse update).

5.2.3 Algorithm

The W-RWA algorithm is given in Algorithm 3.

When a request comes, the algorithm looks for the minimum-weighted path over

the auxiliary graph. The algorithm guarantees the signal quality along the lightpath

by avoiding higher weighted paths. If a path cannot be found, then the request is

rejected (resource blocking). It is also possible to find more than one path with same
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Algorithm 3 Impairment-Aware Weighted-RWA (W-RWA) Scheme.

1. Initialize the Auxiliary Graph.

2. Get the request.

3. Find minimum-weighted path(s).

• If no available path exists:

– Reject the request.

• If more than one path available with same weight value.

– Choose the path with minimum estimated BER.
∗ If more than one have same estimated BER.

· Choose the candidate with maximum spectral distance to other
modulation formats.

• Validate the path for minimum BER requirements.

• Verify existing lightpaths.

– If any of existing lightpaths’ BER becomes unacceptable:
∗ Look for another minimum-weighted path (multiple-attempt)

4. Set up the lightpath.

5. Update the Auxiliary Graph.

• Add weight to adjacent wavelengths for other modulation formats.

• Add promotion points to neighboring wavelengths for the same modulation format.

6. Tear down the lightpath after holding time.

7. Update (Inverse) the Auxiliary Graph.

minimum-total-weight value. In this case, estimated BER values of these paths are

evaluated, and the path with minimum BER is selected.

For low traffic loads, it is possible to obtain same estimated BER values for different

wavelengths on the same route. In this case, the wavelength that has the maximum

spectral distance is selected (see Section 4).

After finding the appropriate path and the wavelength, the quality of signal is validated

using the BER evaluation models given in Section 2.3. The selected path and the

wavelength is called a candidate, if the estimated BER value is acceptable. Otherwise,

the request is rejected (physical-layer blocking). Before establishing the lightpath over

this candidate path and wavelength, the signal quality of existing lightpaths (only the

ones which are expected to be affected from the new lightpath) are also verified.
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Promotion points are added to neighboring wavelengths for the same modulation

formats.

Let V be number of vertices, and E number of edges, then the worst case complexity

of the W-RWA algorithm is O(w× (|V |logV + |E|) + OBER), where OBER is the

computational cost of BER calculation. Since all the wavelengths are associated with

a weight value, the W-RWA algorithm runs the shortest path algorithm w times. The

FWIA approach looks for the shortest path that has an available wavelength within the

allocated wavelength-interval. Thus it runs the shortest path algorithm w/r times for

worst case, where r is the number of line rates.

5.3 Illustrative Numerical Examples

In this thesis, an optical WDM network in which each node can support transmission

at 10, 40, and 100G line rates is considered. NSFNET network topology (see

Appendix B) is used to evaluate the performance of different schemes. Physical links

have inline (EDFA) amplifiers at every 82 km, with 70 km standard single mode fiber,

and 12 km dispersion compensation fiber. Fixed grid with 50 GHz spacing carrying 80

wavelengths is employed. Wavelength continuity constraint is applied for intermediate

nodes. Connection requests arrive according to Poisson distribution with exponentially

distributed holding time. Requests for different line rates are dynamically generated

according to both uniform and skewed traffic. In uniform traffic, each incoming request

may be 10, 40, or 100G with equal probability. Skewed traffic profile generates equal

total amount of bandwidth request for each line rate. Other system parameters are

given in Appendix A.

The quality of the signal is evaluated using the BER model in Section 2.3. In our

model, phase modulated (40/100G) channels do not have XPM effect on each other and

the predefined ASE, CD, and SPM weights are same for all wavelengths. In FWIA, the

number of wavelengths to be allocated for each line rate can be determined by network

operators according to statistical data on distribution of line rates of the requests. In

this study, requests for line rates are randomly generated using uniform distribution,

and wavelengths are equally partitioned among the line rates.
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We compared our proposed approaches (W-RWA and FWIA) with the First-Fit with

Worst-case scenario with GB (FF-W-GB) approach. In this approach, first XPM is

considered in worst-case scenario. If the estimated BER of the lightpath is acceptable

in worst-case, GB is not considered to establish the lightpath. If the BER is acceptable

only by neglecting XPM, neighboring wavelengths are reserved to be GB.

We also compared our approaches with the Shortest-Path with Best-BER (SP-BB)

algorithm. In SP-BB, first the shortest path is found, and then, BER value is estimated

for each wavelength on the shortest path, and finally the Best-BER (the one with the

minimum BER value) channel is selected. The shortest-path algorithm is modified

to find the shortest path with at least one available wavelength. This modification is

made to have a fair comparison with the Weighted-RWA approach. W-RWA selects the

minimum-weighted path, which is not necessarily the shortest path. If the estimated

BER value is within the acceptable threshold, then the path and wavelength found is

regarded as a candidate, otherwise, the request is rejected. After finding the candidate

path and wavelength, existing lightpaths, which are expected to be affected by the

candidate lightpath, are checked for signal quality.

Calculation of pure blocking probability treats all requests as the same, but blocking

a request with 100G causes 10 times more throughput loss than a 10G request. Thus,

blocking different requests with different line rates is not the same in terms of the

achieved throughput. Figure 5.3 shows the bandwidth blocking ratio (BBR) for

different lightpath provisioning schemes with uniformly distributed traffic.

In multiple-attempt scenario, FF-W-GB algorithm shows better performance than

the other approaches for low link utilization levels. It exploits the benefit of

putting guard band for higher line rates, but its performance degrades due to higher

wavelength utilization for high traffic loads. To use multiple attempts, W-RWA

picks the wavelengths having at most 1% more weight than the total weight of the

minimum-weight path. For high utilization levels, W-RWA shows better performance,

because W-RWA is rate aware and it aims to keep more feasible wavelengths for

future requests. FWIA shows fair performance for the multiple-attempt scenario.

Single-attempt scenario performances are similar to multiple-attempt scenario for all

approaches except FWIA. This approach suffers from XT effect of same modulation
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(a) Multiple attempt.

(b) Single attempt.

Figure 5.3: BBR of different schemes with (a) multiple-attempt and (b) single-attempt
scenarios, for uniformly-distributed traffic.

channels. These results show that, in the multiple-attempt scenario, W-RWA takes the

advantage of considering different physical paths having the same weight value.

We ran the simulations also for a skewed traffic profile. BBR for skewed traffic with

multiple-attempt scenario is given in Figure 5.4. Line-rate-aware approaches, W-RWA

Figure 5.4: BBR of different schemes with multiple-attempt scenario, for skewed
traffic.
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and FF-W-GB, give better BBR performance than the others. Since FWIA allocates

wavelengths for higher line rates, it shows better performance for very high traffic

loads.

Figure 5.5 indicates the maximum utilization levels of the network with different

algorithms for different traffic loads.

(a) Multiple attempt.

(b) Single attempt.

Figure 5.5: Network utilization with different schemes.

The network reaches the highest utilization level using W-RWA algorithm for all traffic

loads.

Although W-RWA exploits the benefit of considering different paths, it does not require

significantly longer paths than shortest-path based approaches. Results for average

lightpath length are shown in Figure 5.6. FWIA approach is susceptible to network

load in terms of lightpath length. W-RWA and SP-BB have similar average lightpath

lengths. The general tendency of average-length decrease for higher loads occurs

because of decreasing performance. The algorithms fail to establish lightpaths with

longer paths for higher loads. Shortest-path based FWIA and SP-BB approaches have

different average lightpath lengths because the shortest-path algorithm is modified to

find the shortest path that has at least one available wavelength. The difference comes
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Figure 5.6: Average length of established lightpaths.

from lightpath establishment performances of algorithms. The FF-W-GB approach

uses hop-count to find the appropriate path.

We also evaluated the average hop-count of established lightpaths (Figure 5.7). Each

hop means an assigned wavelength on a link. Thus, this metric gives an idea

about the performance of the algorithms in terms of network resource consumption.

Since FF-W-GB uses hop-count to find shortest path, this algorithm shows better

Figure 5.7: Average hop-count of established lightpaths.

performance than the others. The W-RWA algorithm shows better performance than

SP-BB for low loads and similar performance with SP-BB for high traffic loads.

W-RWA takes advantage of evaluating more than one path from source to destination,

where those paths may have less total weight than the shortest path. Although FWIA

gives close performance with SP-BB for low traffic loads, it is more susceptible to

traffic load. When we consider Figures 5.7 and 5.3 together, we observe that while

increasing the performance in terms of blocking, SP-BB uses more network resources

than W-RWA in terms of wavelength-links.
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All the algorithms are using the BER estimation model given in Section 2.3, W-RWA

makes additional BER calculation only when more than one path may have the same

total weight value. Let w be the number of wavelengths, then W-RWA makes w times

BER calculation for the worst case. This happens at the beginning, when the network

is empty. SP-BB algorithm makes w times BER calculations for the worst case. In

average cases, SP-BB makes BER calculations for all wavelengths on the selected path.

These extra calculations bring computational burden. Figure 5.8 shows the average

number of BER calculations per connection request. FWIA does not look for the

best BER valued wavelength, thus it makes much less BER calculation per connection

request. Since there are more available wavelengths for lower traffic loads, algorithms

Figure 5.8: Average BER calculations per connection request.

make more BER calculation at the beginning.

Simulation times for different algorithms show that FWIA approach takes less time

than others. Figure 5.9 shows the time that is spent for one connection request

by algorithms in same simulation environment. Considering the blocking and the

Figure 5.9: Time spent per connection request.
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computational time performance, we observe that FWIA is a practical approach,

especially for low traffic loads.

We also evaluated the W-RWA approach with and without same modulation promotion.

This amendment brings up to 0.8% improvement in blocking performance to the

proposed algorithm, which might be considered as minor.

5.4 Conclusion

In this chapter, we investigated the impairment-aware lightpath provisioning problem

in MLR networks. In our MLR model, the nodes are capable to operate at 10, 40, and

100 Gbps, which require OOK, DQPSK, and DP-QPSK modulations, respectively. We

proposed two different approaches (W-RWA and FWIA) for the problem. The FWIA

partitions all wavelengths into groups, and assigns each group of wavelengths to a

different line rate. The W-RWA is based on an auxiliary graph which is constructed

and updated according to PLIs, and the current state of the network.

Our algorithms are evaluated through simulations and compared with other methods.

The results of the simulations indicate that W-RWA outperforms others in terms of

BBR and pure blocking performance. Network utilization reaches maximum level

using W-RWA. We also evaluated the average length of lightpaths, and observed that

the W-RWA scheme selects slightly longer lightpaths to assure better signal quality.

Resource usage of the W-RWA algorithm is similar to shortest-path based approaches

in terms of wavelength-links. Overall, the performance of the W-RWA algorithm and

its success in making a part of the calculations off-line for on-line provisioning makes

it superior to others. The FWIA is a practical approach to consider PLIs implicitly. It

shows good performance, especially for lowly loaded networks, and its computational

burden is considerably lower than the others.
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6. LAUNCH POWER DETERMINATION

6.1 Introduction

In optical transmission, launch power is the one of the main parameters that affects

the signal quality at the receiver side. Increasing the launch power results in higher

resilience to noise, but it does not guarantee to improve the signal quality due to the

non-linear effects, i.e., the signal with high power will be distorted by fiber dispersion

and fiber Kerr nonlinearity (see Section 2.2). Increasing the power of a signal also

increases the linear and non-linear crosstalk on neighboring wavelengths. Therefore,

on a transparent optical path, the quality of the signal at the receiver site is dependent

on the launch powers of both the actual and the neighboring signals.

In this study, we investigate the problem of launch power determination for dynamic

connection provisioning in MLR networks. We propose two novel launch power

determination algorithms aimed at maximizing the number of established connections.

Our approaches consider the current state of the network and are PLI-aware. In

Worst-case Best-case Average (WBA), average value of optical reaches are computed

for worst and best cases, and used for launch power determination. In worst case,

the impairments induced by other lightpaths are at the highest level, and in best case,

the actual lightpath is not affected by any other lightpath. In Impairment-Aware

Launch Power Determination (I-ALPD), impairments along the path are considered

in a practical way to determine the launch power. The I-ALPD tracks the current

state of the network, and assigns weight values to the wavelengths according to the

impairments. The same auxiliary graph given in Chapter 5 is used to capture the

PLIs on each wavelength with the same weight assignment scheme. The I-ALPD

determines the launch power of the lightpath dynamically by comparing the total

weight on the selected path-wavelength with the weight thresholds.
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6.2 Related Works

Various studies have been reported on the design of MLR networks considering

static traffic (see Section 3.2), but there are only a few studies on the launch power

determination problem.

In [38], the authors propose a dynamic launch power control algorithm for MLR

networks. In order to guarantee acceptable QoT for each lightpath, appropriate

launch power is determined dynamically. They also investigate the optimum launch

power margin that helps to avoid QoT violations caused by interference of future

requests. The algorithm searches for appropriate launch power sequentially, starting

from minimum power value, until an acceptable BER is obtained.

In [51], the authors propose a dynamic launch power control algorithm that adjusts the

source power of certain channels upon the arrival of a new lightpath request. All source

powers are allowed to be adjusted, even after the lightpaths have been admitted to the

network and along the path. In the proposed model, all OXCs communicate with a

Network Management System (NMS) upon arrival of a connection request. NMS starts

the power adjustment procedure, and decides whether to establish the lightpath with a

minimum or a larger initial power. The power of a certain channel can be increased on

a part of a route by raising the clamping levels of the equalizers, or on the entire route.

In [52], the authors use a global optimization algorithm to find the optimum launch

powers and dispersion map of a single channel at various line rates.

In [53], the authors present a sensitivity study on how launch optical power can be

managed to control the capital expenditure (CAPEX) of a MLR network. The authors

investigate how the network cost (in terms of transceiver costs) varies with different

traffic volumes to determine an optimal combination of launch power that can lead

to the lowest network cost. The cost of capacity follows volume discount as the

cost scales up nonlinearly with capacity. It is observed in the study that the network

cost is a sensitive function of traffic and power variation, i.e., if 10G lightpaths are

established with lower launch powers, more volume discount can be exploited, as more

high-bit-rate lightpaths can be accommodated.
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In [54], the authors address the RWA problem from the energy consumption point of

view considering a single-line-rate network. They investigate the optimum path and

wavelength leading to minimum power consumption.

Not only the launch power of the actual signal, but also the launch power of

neighboring lighpaths affect the signal quality at the receiver. In [55], the authors

present the crosstalk effect of neighboring OOK channels over DQPSK channels. The

results show that a single OOK channel has a slight crosstalk effect on an adjacent 40G

channel, but even this slight effect may degrade the overall performance. On the other

hand, XPM effect of adjacent OOK channels is more severe.

The authors in [18] presented a theoretical model for the influence of XPM induced

non-linear phase noise from copropogating OOK channels. The XPM effects of

neighboring OOK signals are dependent on its launch power.

In [5] and [34], the authors present the effects of copropogating 10G, 40G, and 100G

to each other, on a field-deployed fiber. The results presented in [5] indicate that,

100G channels are highly susceptible to launch power of neighboring channels. They

suffer from XPM and linear crosstalk effects of copropogating channels. Especially,

10G channels have strong XPM influence on 100G channels, and this influence can

be significantly reduced by carefully choosing the launch power of the neighboring

channels. The performance of 40G channels also degrades due to both XPM and linear

crosstalk effects.

Our study is one of the few dealing with PLI-aware lightpath provisioning with

launch power determination. We propose two practical and efficient approaches,

which consider the current state of the impairments, and determine launch powers

dynamically. As a launch power determination algorithm, our approaches make BER

calculation only for the determined launch power, not for all possible launch power

values. Thus, our approaches do not bring additional computational burden and are

easy to implement.

6.3 Effects of Launch Power

The effects of the launch power are examined through a study using the BER evaluation

model given above. In this study, lightpath provisioning performance is evaluated with
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different launch powers (discrete values between -3 dBm and 3 dBm) for different line

rates (10G, 40G, and 100G). For each run of the simulation, launch power of a single

line rate is altered while launch power of the others are kept the same.

Shortest-path, first-fit (SP-FF1) algorithm is used to evaluate the performance. Same

amount of traffic load (≈50% utilization) is offered to the network for each run of the

simulation. Other system parameters are given in Appendix A.

The results of the study indicate that increasing the launch power increases the

resilience to noise and gives better performance. On the other hand, increasing

the launch power of a line rate decreases the lightpath provisioning performance of

the other line rates. DP-QPSK modulated channels with 100G line rate are more

susceptible to launch power of neighboring lightpaths, especially OOK channels.

Using the system parameters given in Appendix A, from blocking probability point

of view, the best performing (inducing minimum blocking ratio) combination of initial

powers is obtained as -2, 0, 2 dBm for 10G, 40G, and 100G, respectively. Worst

performing launch power combination, in terms of blocking probability and system

throughput is obtained as 2, -3, -3 dBm for 10G, 40G, and 100G, respectively.

Figure 6.1 shows the blocking ratio of two different line rates (40G and 100G) with

different launch powers on NSFNET. In Figure 6.1, launch powers of 10G lightpaths

are kept fixed (0 dBm) during simulation, and launch powers of 40G and 100G are

altered from -3 dBm to 3 dBm.

Figure 6.1: Blocking probability change according to launch power variation.
1SP-FF chooses the first available wavelength on shortest path.
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The results of this study and the other studies in the literature indicate that detrimental

effects of PLIs induced by neighboring lightpaths can be significantly reduced by

carefully choosing appropriate launch powers. PLI-aware approaches are needed to

determine the launch power of lightpaths in MLR networks. Due to the dynamic

nature of lightpath provisioning, the proposed approaches should be dynamic and easy

to implement. The proposed algorithms are given in the following sections.

6.4 Launch Power Determination Algorithms

In this chapter, we investigate the launch power determination problem of

impairment-aware dynamic lightpath provisioning. The problem defined in Section 3.3

is added a new dimention, and the goal becomes:

• Route over which the lightpath should be set up,

• Wavelength to be assigned, and

• Launch power to establish the lightpath for the requested connection.

We propose two different algorithms to determine the launch power of a lightpath,

in MLR networks: Worst-case Best-case Average (WBA) and Impairment-Aware

Launch Power Determination (I-ALPD). The details of algorithms are discussed in

the following subsections.

6.4.1 Worst-case best-case average (WBA)

WBA scheme takes impairments into consideration in an average manner. It calculates

the optical reaches for best and worst conditions, in terms of impairments, and uses

the average of reach values to compare with the length of the candidate lightpath. For

40G (and 100G), worst-case scenario occurs when the central wavelength is occupied

by the 40G (or 100G) signal while all the other wavelengths are occupied by 10G

OOK signals, along the path. In worst-case scenario, the neighboring OOK signals

have the highest possible launch power. For OOK signals in worst-case scenario,

neighboring wavelengths are occupied with signals having the highest possible launch

power. Best-case scenario is same for all line rates, i.e., the network is empty. This

approach provides a simple approximation for medium loaded networks. It is easy to
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implement, and it doesn’t bring computational burden. The WBA algorithm is given

in Algorithm 4. Before any request comes, the reaches for both (worst, best) cases

Algorithm 4 WBA algorithm.

1. Prior to any connection request, find the optical reaches for worst and best cases, and
constitute an average-reach table. After a connection request comes, and RWA algorithm
finds a candidate lightpath.

2. Get the length of the candidate lightpath.

3. Look up the average-reach table to find the appropriate power.

• Go down to the requested line rate.

• Search for the closest reach value to the lightpath length in this row.

• Select the matching power value.

4. If the candidate lightpath is accepted after BER evaluation, establish lightpath.

are calculated for each launch power value (in our case, from -3 dBm to 3 dBm). The

average of best and worst cases is calculated, and these average-reach (RPch
a ) values are

kept in a table (i.e., Table 6.1). When a request comes, first the RWA algorithm finds

a path from source s to destination d, and then, WBA determines the launch power. In

WBA, starting from the minimum power option (Pch(Min)), the differences between

path length and average reach are examined, and the power value having the minimum

difference between average reach and path length is selected:

MinPch(Min−Max)(| Lsd−RPch
a |) (6.1)

where Lsd is the length of the path, and RPch
a is the average reach with launch power

Pch.

The algorithm examines the average-reach values sequentially, and finds the closest

one to the path length, i.e., for a connection request with 40G line rate, let the length of

the path from s to d be 2100 km. Given Table 6.1, since the path-length average-reach

difference for -2dBm (|2000−2100|) is smaller than the difference for other power

values (i.e., for -1dBm |2500−2100|), -2 dBm is selected.

WBA algorithm constitutes the reach table before any request comes and it starts

working after the candidate lightpath is found. Apart from RWA algorithm, let P be
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Table 6.1: Sample average-reach table.

-3 -2 -1 0 1 2 3 (dBm)
Line Rate Average reach (km)

10G 2200 2800 3200 3600 4100 4200 4200
40G 1500 2000 2500 3000 3500 4000 4000

100G 800 1000 1200 1400 1600 1800 1800

the number of available launch powers, and R be the number of line rates, then finding

the appropriate launch power from the average-reach table has O(R+P) complexity.

6.4.2 Impairment-aware launch power determination (I-ALPD)

The I-ALPD algorithm keeps track of impairments on each wavelength-link, and

assigns weight values to the wavelengths according to the impairments. I-ALPD

determines the launch power of the lightpath according to the total weight accumulated

along the path on the selected wavelength. An auxiliary graph G(V,E) (Figure 5.2)

is used to monitor and track the current state of impairments. Auxiliary graph

construction is given in Section 5.2. The weight-assignment scheme given in

Section 5.2 is used to capture the PLIs. The weight values represent linear and

non-linear impairments that occur on the physical links (ASE, losses, and SPM), and

on the nodes (XT and losses). Weights are increased when a lightpath is established,

and decreased when the lightpath is torn down. The weight assignment process can be

made off-line, using the idle time between dynamic connection requests.

In I-ALPD, launch power is determined according to accumulated impairments along

the selected path. After finding the appropriate path and wavelength from source to

destination, the total weight on this path is calculated. I-ALPD algorithm is given in

Algorithm 5.

Total-weight thresholds (i.e., Table 6.2) are used to determine the launch power of the

lightpath. The algorithm examines the weight thresholds, and finds the closest one to

the total weight on the selected path, i.e., for a connection request with 40G line rate,

let the weight on selected path from s to d be 0.5. Since |0.4−0.5| < |0.7−0.5|, -1

dBm is selected.

I-ALPD algorithm calculates the total weight along the path in linear time, O(ELP),

where ELP denotes the edges of the candidate lightpath. Since weight caused by
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Algorithm 5 I-ALPD algorithm.

1. Update the auxiliary graph according to existing lightpaths.

2. Calculate the total weight on candidate lightpath.

3. Look up the thresholds table to find the appropriate power.

• Go down to the requested line rate.

• Search for the closest threshold value in this row.

• Select the matching power value.

4. If the candidate lightpath is accepted after BER evaluation,

• Establish the lightpath.

• Update the auxiliary graph.

Table 6.2: Sample weight thresholds.

-3 -2 -1 0 1 2 3 (dBm)
Line Rate Weight Thresholds

10G 0 0.5 1 2 3 4 5
40G 0 0.2 0.4 0.7 1 2 3
100G 0 0.1 0.2 0.4 0.6 0.8 1

vertex j is accounted with the edge i,j for specific wavelength λ , only edge weights

are considered. Let P be the number of available launch powers, and R be the number

of line rates, then finding the appropriate launch power from the weight threshold table

has O(R+P) complexity. The main computational burden of this algorithm is to update

the auxiliary graph with complexity of O((2×GB×R×ELP) + (N ×VLP)), where

2×GB denotes the affected wavelengths, and N denotes the number of ports at each

vertex. On the other hand, auxiliary graph, which is referred for on-line connection

requests is updated off-line, after a lightpath is established or released.

6.5 Illustrative Numerical Examples

In this study, we consider an optical WDM network in which each node can support

transmission at 10, 40, and 100 Gbps. NSFNET and EON (see Appendix B) are used to

evaluate the performance of the proposed schemes. In our network model, all nodes are

assumed to have adjusting launch power capability, but power sources are not allowed

to be adjusted after establishing the lightpaths. Once the lightpath is established, its
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launch power stays still during its lifetime. Physical links are assumed to have inline

(EDFA) amplifiers at every 82 km, with 70 km standard single mode fiber, and 12 km

dispersion compensation fiber. We considered 50-GHz spacing with 80 wavelengths.

Least congested path (LCP)-First Fit (FF) is used to find the appropriate path and

wavelength. The LCP method is a modified version of LCP algorithm introduced

in [44]. The algorithm first finds n-shortest paths [45], and then selects the path that

has the maximum number of available wavelengths. FF selects the first available

wavelength on the selected path. Wavelength continuity constraint is applied for

intermediate nodes. Launch power of this candidate lightpath is determined using one

of the launch power determination algorithms. BER evaluation is made to see whether

the candidate lightpath meets the minimum BER requirement with the selected launch

power. Signal quality of the existing lightpaths, which is affected from the candidate

lightpath, are examined before establishing the candidate lightpath. If the candidate

lightpath damages the signal quality of any existing lightpath and forces it to have an

unacceptable BER value, the lightpath is not established, and the connection request is

rejected.

The connection requests arrive according to Poisson distribution with

exponentially-distributed holding times, and they are uniformly chosen among

10G, 40G, and 100G. The traffic load is given in Erlangs. We ran the simulations for

one million connection requests. Discrete values from -3 dBm to 3 dBm are used for

launch powers. Other system parameters are given in Table A.2.

We compared our approaches with existing dynamic and fixed power approaches.

Dynamic power control (DPC) is a dynamic impairment-aware launch power

determination approach, which is a modified version of the algorithm proposed in [38].

DPC searches for appropriate launch power sequentially starting with the possible

minimum launch power, which is -3 dBm in this study. If the given launch power

is not sufficient to establish a lightpath, the algorithm increases the launch power by

minimum unit. This search goes up to maximum allowed launch power, which is 3

dBm in this study. The search ends either with finding the appropriate launch power

for the lightpath or reaching the maximum allowed launch power. We also compared

our approaches with Fixed Launch Power (FLP) approach, where launch powers are
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fixed for all alightpaths. We used 0 dBm for FLP, which is the median of power values

(-3 to 3 dBm) used in this study.

An incoming request can be rejected due to insufficient network resources (resource

blocking) or to PLIs (physical-layer blocking) [1]. LCP-FF algorithm finds an

appropriate path and wavelength first. If the algorithm cannot find an appropriate

path-wavelength pair, then the connection request is rejected due to resource blocking.

After finding an appropriate path-wavelength pair, the candidate lightpath is evaluated

for signal quality using the BER estimation model given in Section 2.3.2. If the signal

quality is not good enough to establish this lightpath, then the connection request is

rejected due to physical-layer blocking. We evaluated the physical-layer blocking

performance of the algorithms separately to study the effects of launch power.

Figure 6.2 shows the blocking ratio due to PLIs for NSFNET; the blocking ratio due

to insufficient network resources is not shown in this figure. Impairments induced

Figure 6.2: Blocking ratio due to PLIs (NSFNET).

by established lightpaths increase in parallel with increasing traffic load; thus, the

physical-layer blocking ratio increases for all algorithms. For medium and high traffic

loads, resource blocking becomes higher (see also Fig. 6.4), and blocking ratio due to

PLIs decreases (see also Fig. 6.3).

The proposed algorithms show better blocking probability performance than the others.

I-ALPD gives better results than WBA. DPC method has more blocking ratio than

others. There are two main reasons for high blocking ratio of DPC. The first reason

is the lightpaths established with high launch powers. DPC tries to establish each
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lightpath with minimum required launch power, but the search can go up to maximum

allowed launch power. Each lightpath with high launch power, especially the OOK

channels, affects other lightpaths and degrades the overall performance. The other

reason is that the candidate lightpaths are not allowed to be established if they disrupt

the existing lightpaths.

Figure 6.3 shows the blocking ratio due to PLIs for EON topology. EON has shorter

Figure 6.3: Blocking ratio due to PLIs (EON topology).

link distances than NSFNET; thus, the blocking ratio due to PLIs for EON is lower

than for NSFNET. On the other hand, EON has more number of nodes than NSFNET,

with less average node degree, which causes the average hop count being higher

than NSFNET. EON has also smaller connectivity than NSFNET. Increasing average

hop count of paths increases linear XT, on the other hand increasing average hop

count in this topology decreases the network resources in terms of wavelength-links;

thus, resource blocking becomes higher for medium and high traffic loads (see

also Fig. 6.4) and blocking ratio due to PLIs decreases. I-ALPD experience lower

blocking probability than others. The blocking ratio differs with this topology but the

performance of algorithms doesn’t change.

Figure 6.4 shows the total (physical-layer and resource) blocking ratio for different

schemes for different topologies. Again, I-ALPD experiences lower blocking

probability than the other approaches for both topologies. The performances get closer

with increasing traffic load. This is because resource blocking becomes the dominant

factor for medium and high traffic. WBA shows better performance than both FLP and
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(a) NSFNET.

(b) EON topology.

Figure 6.4: Total (physical-layer and resource) blocking ratio of proposed schemes for
different topologies.

DPC. All approaches have low blocking ratio for low traffic loads in EON topology, but

they all experience performance decrease with increasing traffic due to large resource

blocking.

Figure 6.5 shows the BBR for different lightpath provisioning schemes with uniformly

distributed connection requests. The algorithms show similar performances with total

blocking ratio performance for both topologies. I-ALPD experiences lower bandwidth

blocking ratio than the other approaches. In I-ALPD, weight threshold values for

each line rate are different, and it helps to give priority for higher line rate. The

performances of WBA and FLP are close to each other for all traffic loads, and they
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(a) NSFNET.

(b) EON topology.

Figure 6.5: Bandwidth blocking ratio of proposed schemes for different topologies.

have the average performances. Increasing impairments decrease the performance of

WBA, because WBA is based on the average value which can be considered as the

equivalent of medium traffic load.

The algorithms FLP, WBA, and I-ALPD make BER calculations only once for each

connection request. If the obtained BER is acceptable, then the lightpath is established.

In DPC, BER estimation can be made more than once for different launch powers.

To evaluate the computational burden of the algorithms, we monitored the BER

calculation of algorithms.
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Figure 6.6 shows the average BER calculations to establish a single lightpath. The

results are obtained by dividing the number of BER calculations to number of

established lightpaths.

Figure 6.6: BER calculation per lightpath.

The differences between FLP, WBA, and I-ALPD are not significant, but DPC makes

two or more times more BER calculation than the other algorithms per connection

request. Number of BER calculations per connection request increases with increasing

utilization for DPC. Figure 6.7 shows the average time consumption of algorithms

Figure 6.7: Simulation time per connection request.

per connection request in the same simulation environment. Simulation times for

algorithms show that FLP takes less time than others. DPC spends more time than

others, and I-ALPD takes slightly more time than FLP. While implementing on real

networks, I-ALPD can use idle times between connection requests to update the

auxiliary graph, but this figure includes the weight assignment times as well. WBA

shows slightly better results than I-ALPD in terms of simulation time.
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6.6 Conclusion

Signal quality at the receiver side depends on many factors, including launch power

of the actual signal, neighbouring signals, modulation technique, path length, etc.

Enhancing one of these parameters cannot be a proper way to get better signal quality.

In this chapter, we examined the effects of launch power on the signal quality in

optical MLR networks. The effects of the launch power cannot be isolated from

other parameters, but still blocking ratio performance can be improved by selecting

appropriate launch powers.

We proposed two heuristic approaches to select the appropriate launch power

for dynamic connection requests: Worst-Case Best-Case Average (WBA) and

Impairment-Aware Launch Power Determination (I-ALPD). To determine the

appropriate launch power, WBA uses the optical reaches for highest possible

impairment (worst-case) and without impairment (best-case) scenarios. I-ALPD

considers the instantaneous state of the network, and assigns weight values to the

wavelengths in accordance with the impairments. By comparing the weights on the

selected path-wavelength with the weight thresholds, I-ALPD determines the launch

power of the lightpath dynamically. The proposed algorithms are evaluated through

simulations, and compared with dynamic power control and fixed launch power

approaches. Our results indicate that I-ALPD outperforms the other approaches, in

terms of blocking probability and bandwidth blocking ratio.
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7. CONCLUSION

In this thesis, we investigated impairment-aware (IA) lightpath provisioning problem

in MLR networks. IA lightpath provisioning is a cross-layer optimization problem

which aims to maximize the established connections at the network layer, and assures

signal quality at the physical layer. In optical transmission, a signal undergoes various

physical-layer impairments, and its quality degrades as it travels. In MLR networks,

advanced modulation techniques (i.e., DQPSK, DP-QPSK) are required for high line

rates, and these modulation techniques are highly susceptible to PLIs, therefore there

is a trade-off between capacity and signal quality. Moreover, in MLR networks,

coexistence of OOK signals with advanced modulation formats induces higher XPM.

Accounting for PLIs during the provisioning phase, which is an important problem in

single-line-rate WDM networks, acquires even larger importance in MLR networks.

We first investigated the effects of inverse multiplexing (IM), which is a technique that

tries to exploit the advantage of transmitting the signals with low line rates, where the

high line rate is not possible due to impairments. We proposed various approaches

(SP-BB, SP-MSD, MH-BB, MH-MSD, LCP-BB, and LCP-MSD) employing IM for

the problem. The proposed schemes use shortest path, minimum hop, and least

congested path algorithms to find the appropriate path. Wavelength assignment

is done according to best-BER or maximum spectral distance approaches. IM is

employed where high line rates are not feasible due to PLIs. Our algorithms are

evaluated through simulations. The results indicate that the performances of the

algorithms differ according to topologies and traffic load. But in all cases, algorithms

employing IM outperform the algorithms that are not employing IM in terms of

blocking ratio. SP-MSD scheme shows the best blocking probability performance for

all traffic loads. LCP-MSD shows good blocking probability performance for lower

traffic loads, but it experiences a performance decrease with increasing traffic load.

Although the MH-based schemes using IM show better performance than not using

IM, their performances are below the SP and LCP-based schemes. The performance
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increase obtained from IM comes with a trade-off. The algorithms employing IM

use more wavelength-links to accommodate the same amount of request. LCP-based

algorithms employing IM experience the worst performance in terms of additional

wavelength-links usage. To improve the performance in terms of blocking ratio,

network operators can use adaptive schemes, which consider the resources they have

and the state of the network.

We also proposed two novel approaches for the IA lightpath provisioning problem:

FWIA and W-RWA. FWIA partitions the wavelengths into groups, assigns each group

to a different line rate, and establishes lightpaths with different modulation formats

over the assigned wavelength groups. W-RWA captures the instantaneous state of the

network and assigns weight values according to affecting impairments. The algorithm

tries to select the wavelengths which are less exposed to impairments while trying

to leave feasible wavelengths for future requests, and avoiding damaging the existing

lightpaths. Since the weight assignment process can be made off-line, W-RWA makes

use of idle time before any request comes. The proposed algorithms are evaluated

through simulations together with existing algorithms. The W-RWA shows better

performances in terms of blocking probability and bandwidth blocking ratio than the

others. We also evaluated the average length of lightpaths and the average hop count,

which indicate the additional resource usage in terms of wavelength-links. Our results

indicate that W-RWA selects slightly longer lightpaths to assure better signal quality.

Resource usage of W-RWA is similar to shortest-path-based approaches in terms of

hop count. Overall, the performance of W-RWA and its success in making a part of

the calculations off-line for on-line provisioning makes it superior to others. FWIA

algorithm seems to be a practical approach to consider PLIs implicitly. It shows good

performance, especially for lightly loaded networks, and its computational burden is

considerably lower than others.

Another important parameter for signal quality is the launch power of both the actual

signal and the neighboring signals. In this study, we also evaluated the effects

of launch power, and proposed two practical approaches to determine appropriate

launch power. In WBA, average optical reach for worst and best cases, in terms of

impairments, is used to determine the launch power. In I-ALPD, impairments along

the path are considered in a practical way to determine the launch power. I-ALPD
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tracks the current state of the network, and assigns weight values to the wavelengths

according to the impairments. I-ALPD uses an auxiliary graph to capture the PLIs on

channels with a weight assignment scheme. The proposed algorithms are evaluated

through simulations, and compared with dynamic power control and fixed launch

power approaches. Our results indicate that I-ALPD outperforms the other approaches,

in terms of blocking probability and bandwidth blocking ratio. We observed that the

network performance, in terms of blocking probability, can be improved by selecting

appropriate launch powers for lightpaths, considering the current state of the network.

This study is one of the few dealing with the dynamic impairment-aware lightpath

provisioning problem in MLR networks. The proposed approaches show better

provisioning performance than the existing ones. The proposed approaches are also

easy to implement and can be adapted to the needs of the network operators. They do

not bring additional computational burden. The results indicate that the success of an

algorithm depends on how much it considers existing lightpaths. In such a dynamic

environment, easy implementation of an algorithm is highly important. This thesis

may lead to new studies on IA lightpath provisioning studies in MLR networks.

Network components enabling MLR architectures have been deployed, and

modulation formats are expected to get more complex and become more susceptible

to PLIs. In dynamic lightpath provisioning problem, impairment awareness can be

expected to get more importance.
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APPENDIX A : System Parameters

Table A.1: System parameters for impairment-aware dynamic lightpath establishment
problem.

Parameters Value
BER threshold 10−4,10−5

Number of wavelengths, W 80, 40
Line Rates (Gbps) 10, 40, 100
Number of transceivers at each node 14, 13, 13
Signal Launch power (mW) 1
Gain of EDFA (Gin,Gout)(dB) 20.8, 19
Amplifier Noise Factor (F)(dB) 4
Fiber loss factor, αSMF ,αDCF(dB/km) 0.2, 0.6
Dispersion P., DSMF ,DDCF ps/(km.nm) 17, 92
PMD Coefficient, DPMD ps/

√
km 0.2

LSW ,LDMX ,LMX ,Ltap (dB) 5, 5.5, 4.5, 1
XSW ,XDMX ,XMX (dB) -45, -25,-25
Symbol Time (10,40,100) (ps) 100, 50, 40
Kerr Coefficient, n2 (m2/W ) 3
Ae f f SMF , Ae f f DCF (µm2) 80, 30
Filtering Effect (KDQPSK,KQPSK) 1, 7
ωλ

XTa
,ωλ

XTb
0.05, 0.01

ωλ
SPM, ωr

XPM 0.1, 0.5
ωλ

CD, ωλ
ASE 0.4, 1

κ , ζ , Ξ 0.01, 0.5, 0.05

Table A.2: System parameters for launch power detemination problem.

Parameters Value
BER threshold 10−4

Reference launch powers (10,40,100G) -2, 0, 2
Weight thresholds (10G) (W th,lower

OOK ,W th,upper
OOK ) 0.3, 3

Weight thresholds (40G) (W th,lower
DQPSK ,W th,upper

DQPSK ) 0.3, 1.8
Weight thresholds (100G) (W th,lower

DP−QPSK,W
th,upper
DP−QPSK) 0.2, 0.4

ωλ
XTa

,ωλ
XTb

0.2, 0.1
ωXPM 1
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APPENDIX B : Topologies

Figure B.1: NSFNET topology.

NSFNET topology has 14 nodes and 21 links. The average link distance is ≈930 km.

Figure B.2: 6-Node topology.

6-Node topology has 6 nodes and 10 links. The average link distance is ≈930 km.

Europian optical network (EON) topology has 28 nodes and 41 links. The average link
distance is ≈550 km.
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Figure B.3: European optical network topology.
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APPENDIX C : Inverse Multiplexing Evaluation

In this study [50], we investigate the inverse multiplexing (IM) gain in MLR networks
for the impairment-aware dynamic lightpath provisioning problem. To evaluate the
performance of IM in MLR networks with dynamic traffic, we modified the Best-BER
(BB) algorithm introduced in [47] using k-shortest path and employing IM, if needed.
The algorithm is given in Algorithm 6.

Algorithm 6 Best-BER on k-shortest path with inverse multiplexing.

1. Find k-shortest path from s to d.

2. Find available wavelengths on the paths.

• If a path with an available wavelength does not exist, reject the request (resource
blocking).

3. Estimate BER values for all available wavelengths.

4. Sort the wavelengths in ascending order according to estimated BER values.

5. Check if the path and wavelength pair with best BER value is below acceptable BER
threshold (physical-layer blocking).

• If the estimated BER is above the threshold, than inversely multiplex the request into
smaller requests.

• Take these sub-request as new requests and run the algorithm from the beginning, for
each.

• If any of sub-requests cannot be established due to resource or physical-layer
blocking, than reject the whole request.

6. Verify existing lightpaths with candidate lightpath(s).

• If any existing lightpath becomes infeasible, reject the request (physical-layer
blocking).

7. Set up the lightpath(s).

8. Release the connection(s) after holding time.

In the algorithm, k shortest paths from source (s) to destination (d) are found using
k-shortest path algorithm. For k=1 the algorithm considers only the shortest path.
After finding shortest path, BER value is estimated for each available wavelength on
these paths. The route and wavelength pair that is expected to have the best BER
is selected. If the estimated BER of the found route and wavelength exceeds the
acceptable threshold, the request is inversely multiplexed into smaller requests, starting
with the one level lower line rate. If the line rate of the request is the minimum, then the
request is rejected. In case any sub-request is rejected, the whole request is rejected.
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The algorithm also takes the existing lightpaths into account. After finding the
candidate route and wavelength with acceptable BER, existing lightpaths are also
verified. If any existing lightpath is weakened to have BER value more than acceptable
threshold, then the candidate lightpath is not allowed to be established.

Illustrative Numerical Examples

We used the same system parameters given in Section 4 to evaluate the lightpath
provisioning performance of the algorithm with and without IM.

Figure C.1 shows the blocking ratio due to impairments, for both IM-employing and
not employing schemes with different k values for k-shortest path.

(a) k=1 (b) k=2

(c) k=3

Figure C.1: Blocking ratio due to PLIs for uniform traffic.

The dashed lines indicate the IM-employing schemes. For high traffic loads,
impairments induced by established lightpaths increase, thus the blocking ratio
increases.

With the increase of k in k-shortest path algorithm, the algorithms find opportunity to
look for appropriate route and wavelength over more than one path. On the other hand,
establishing more lightpaths increases PLIs, and causes more requests to suffer from
physical-layer blocking.

The results given in Figure C.1 are obtained from uniform traffic; we also evaluated the
performances for skewed traffic profile. Bandwidth blocking ratio due to impairments
for skewed traffic is given in Figure C.2.

For all values of k, it is seen in Figure C.2 and Figure C.1 that IM increases the
performance in terms of blocking due to PLIs. For high traffic loads, since the resource
blocking increases, the difference between IM-employing and not employing schemes
decreases. Even in some high load cases, blocking ratio due to PLIs decreases due
to increasing resource blocking. Figure C.3 shows the total (physical and resource)
blocking ratio for both IM-employing and not employing schemes with different k
values for k-shortest path.
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(a) k=1 (b) k=2

(c) k=3

Figure C.2: Bandwidth blocking ratio due to PLIs for skewed traffic.

(a) k=1 (b) k=2

(c) k=3

Figure C.3: Total blocking ratio for uniform traffic.

The total blocking ratio of IM-employing and not employing schemes show similar
results for different topologies. In all cases, for low traffic load, the blocking ratio
performance increases with IM, but when network resources do not let the algorithm
to find available paths, performances come closer to each other. So, IM increases the
performance of blocking due to PLIs, but it does not help to improve the performance
in terms of total blocking ratio.

We evaluated the BBR performance of inverse multiplexing scheme. Figure C.4 shows
the total BBR, for both IM-employing and not employing schemes with different k
values for k-shortest path. The scheme that employs inverse multiplexing slightly
improves the performance up to a utilization level (≈ 40%). After this utilization
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(a) k=1 (b) k=2

(c) k=3

Figure C.4: Bandwidth blocking ratio.

level, IM does not help to increase the achieved throughput. For high utilization levels,
insufficient network resources become the main reason for blocking.

The performance increase obtained from IM, for lower traffic load, comes with a
tradeoff. IM makes the algorithm use more wavelengths to accommodate the same
amount of request. Figure C.5 gives the percentage of additional resources that are
used for IM, over total resources used to accommodate the requests, for NSFNET.

Figure C.5: Additional resource usage by IM.

The scheme that employs IM consumes up to 0.5% more network resources than the
algorithm that does not employ IM. For high traffic loads, the performance of IM gets
closer to the scheme that does not employ IM due to insufficient resources, thus the
additional resource consumption ratio decreases.
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