10 research outputs found

    Scalable WDM phase regeneration in a single phase-sensitive amplifier through optical time lenses

    Get PDF
    Scalable solutions for data regeneration of multiple parallel channels are elusive. Here the authors report a scalable wavelength-division multiplexing technique for phase regeneration and demonstrate the highest reported number of regenerated wavelength-division multiplexed channels in a single phase regenerator

    Nonlinear Photonic Signal Processing Subsystems and Applications

    Get PDF

    Properties and applications of injection locking in 1.55 μm quantum-dash mode-locked semiconductor lasers

    Get PDF
    Mode-locked semiconductor lasers are compact pulsed sources with ultra-narrow pulse widths and high repetition-rates. In order to use these sources in real applications, their performance needs to be optimised in several aspects, usually by external control. We experimentally investigate the behaviour of recently-developed quantum-dash mode-locked lasers (QDMLLs) emitting at 1.55 μm under external optical injection. Single-section and two-section lasers with different repetition frequencies and active-region structures are studied. Particularly, we are interested in a regime which the laser remains mode-locked and the individual modes are simultaneously phase-locked to the external laser. Injection-locked self-mode-locked lasers demonstrate tunable microwave generation at first or second harmonic of the free-running repetition frequency with sub-MHz RF linewidth. For two-section mode-locked lasers, using dual-mode optical injection (injection of two coherent CW lines), narrowing the RF linewidth close to that of the electrical source, narrowing the optical linewidths and reduction in the time-bandwidth product is achieved. Under optimised bias conditions of the slave laser, a repetition frequency tuning ratio >2% is achieved, a record for a monolithic semiconductor mode-locked laser. In addition, we demonstrate a novel all-optical stabilisation technique for mode-locked semiconductor lasers by combination of CW optical injection and optical feedback to simultaneously improve the time-bandwidth product and timing-jitter of the laser. This scheme does not need an RF source and no optical to electrical conversion is required and thus is ideal for photonic integration. Finally, an application of injection-locked mode-locked lasers is introduced in a multichannel phase-sensitive amplifier (PSA). We show that with dual-mode injection-locking, simultaneous phase-synchronisation of two channels to local pump sources is realised through one injection-locking stage. An experimental proof of concept is demonstrated for two 10 Gbps phase-encoded (DPSK) channels showing more than 7 dB phase-sensitive gain and less than 1 dB penalty of the receiver sensitivity

    Short-pulse propagation in fiber optical parametric amplifiers

    Get PDF

    Coherent Phase-Modulated Optical Fiber Communications with Linear and Nonlinear Phase Noise

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Dispositivos fotónicos para processamento de sinais ópticos e de RF

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaO presente trabalho tem por objectivo o estudo de novos dispositivos fotónicos aplicados a sistemas de comunicações por fibra óptica e a sistemas de processamento de sinais RF. Os dispositivos apresentados baseiam-se em processamento de sinal linear e não linear. Dispositivos lineares ópticos tais como o interferómetro de Mach-Zehnder permitem adicionar sinais ópticos com pesos fixos ou sintonizáveis. Desta forma, este dispositivo pode ser usado respectivamente como um filtro óptico em amplitude com duas saídas complementares, ou, como um filtro óptico de resposta de fase sintonizável. O primeiro princípio de operação serve como base para um novo sistema fotónico de medição em tempo real da frequência de um sinal RF. O segundo princípio de operação é explorado num novo sistema fotónico de direccionamento do campo eléctrico radiado por um agregado de antenas, e também num novo compensador sintonizável de dispersão cromática. O processamento de sinal é não linear quando sinais ópticos são atrasados e posteriormente misturados entre si, em vez de serem linearmente adicionados. Este princípio de operação está por detrás da mistura de um sinal eléctrico com um sinal óptico, que por sua vez é a base de um novo sistema fotónico de medição em tempo real da frequência de um sinal RF. A mistura de sinais ópticos em meios não lineares permite uma operação eficiente numa grande largura espectral. Tal operação é usada para realizar conversão de comprimento de onda sintonizável. Um sinal óptico com multiplexagem no domínio temporal de elevada largura de banda é misturado com duas bombas ópticas não moduladas com base em processos não lineares paramétricos num guia de ondas de niobato de lítio com inversão periódica da polarização dos domínios ferroeléctricos. Noutro trabalho, uma bomba pulsada em que cada pulso tem um comprimento de onda sintonizável serve como base a um novo conversor de sinal óptico com multiplexagem no domínio temporal para um sinal óptico com multiplexagem no comprimento de onda. A bomba é misturada com o sinal óptico de entrada através de um processo não linear paramétrico numa fibra óptica com parâmetro não linear elevado. Todos os dispositivos fotónicos de processamento de sinal linear ou não linear propostos são experimentalmente validados. São também modelados teoricamente ou através de simulação, com a excepção dos que envolvem mistura de sinais ópticos. Uma análise qualitativa é suficiente nestes últimos dispositivos.This work investigates novel photonic devices for optical fiber communication systems and microwave photonics. Such devices rely on linear and nonlinear optical signal processing. Basic linear optical devices such as the Mach-Zehnder delay interferometer enable delaying and adding optical signals with fixed or variable weights. Therefore, such device can be respectively used as an optical amplitude filter with two complementary optical outputs, or, as an optical phase filter with tunable group delay response. The first operation principle is explored in a novel instantaneous RF frequency measurement system, whereas the latter serves as basis to a novel photonic beamforming system for a phase array antenna, and also to a novel tunable optical dispersion compensator. Nonlinear optical signal processing is obtained when optical signals are delayed and mixed, instead of being linearly added. Such operation principle is behind electro-optical mixing, which is explored in a novel instantaneous RF frequency measurement system. All-optical mixing enables ultra-fast and thereby broad bandwidth operation. This operation principle is explored to obtain tunable wavelength conversion. An optical time division multiplexed signal with a large spectral width is parametrically mixed with two continuous wave pumps in a periodically-poled lithium niobate waveguide. Instead of continuous wave pumps, a pulsed pump in which each pulse has a tunable wavelength enables a novel routable optical time-to-wavelength division converter. The pump signal is parametrically mixed with the input optical signal in a highly nonlinear optical fiber. All the proposed linear and nonlinear optical signal processing devices are experimentally validated. In addition, theoretical modeling and simulations are presented in all concepts, with the exception of the ones which employ alloptical mixing. A qualitative analysis is sufficient for the latter devices
    corecore