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Summary

The exponentially-increasing growth of high-speed and high-capacity Internet traffics

sees that the spectral efficiency (SE) becomes more and more important in the devel-

opment of the backbone optical networks. To efficiently utilize the limited spectrum

of the optical fibers, coherent detection has revived to support advanced modulation

formats in optical transmission systems. Besides, the fullinformation of the received

electric field can be preserved in coherent receivers, thus enabling digital signal pro-

cessing (DSP) algorithms to compensate for the fiber transmission impairments.

This thesis studies the DSP techniques in such following areas: phase estimation

(PE) algorithms for laser phase noise and fiber nonlinear phase noise; frequency offset

estimator (FOE) to tackle the frequency offset between transmitter and local oscillator

(LO) lasers; and electrical compensation for the fiber nonlinearity.

Among these impairments, laser phase noise plays a significant role in affecting

the performance of coherent receivers. For example, a good PE is capable of allowing

for a laser with large linewidth, thus reducing the system cost. Although quite a few

DSP-based PE algorithms have been proposed in the literatures, they require either

nonlinear computations (M th-power operation and phase unwrapping) or the statistics

of the system noises (phase noise and additive noise). Nonlinear operations are likely to

increase the power consumption of coherent receivers whilethe statistics of such infor-

mation may be not known to the receiver especially in reconfigurable optical switching

systems. In view of the disadvantages, a computationally-linear decision aided (DA)

vi



CONTENTS

maximum likelihood (ML) PE was introduced to eliminate the nonlinear computations

while keeping or even improving the laser linewidth tolerance. We have conducted

in-depth analysis on the performance of DA ML in different modulation formats, and

observed that optimal memory length is related to the variances of the phase noise

and additive noise. The parallel and serial implementations of the DA ML PE were

also investigated to adapt itself to the high-speed opticalreceivers. Moreover, a coher-

ent polarization-division-multiplexing (PDM) quadrature phase-shift-keying (QPSK)

experiment was carried out to successfully demonstrate theDA ML PE which shows

to achieve the same performance as the conventional V&VM th-power method yet

requires less computational loads.

However, the DA ML is subjected to the block length effect (BLE) because of a

trade-off to average out the additive noise and phase noise.In order to address the BLE,

a first-order filter was introduced to the DA ML algorithm, thus adaptively adjusting

the filter gain based on the characteristics of the received signals. A Monte Carlo (M-

C) simulation indicates that the adaptive DA algorithm has apowerful self-adaptation

capability to acquire the optimal filter gain, resulting in optimal performance in all the

signal-to-noise ratio (SNR) regions for constant-amplitude PSK formats. The adaptive

DA algorithm was extended into theM-quadrature amplitude modulation (QAM) for-

mats, where it was found that it suffers from the constellation penalty. Analysis was

presented elaborately to show that the DA ML with the optimalmemory length has

a better performance than the adaptive DA at low and moderateSNRs. A long-haul

coherent PDM-QPSK experiment was demonstrated that the adaptive DA algorithm

can outperform the DA ML PE in the presence of nonlinear phasenoise.

Finally, two novel DSP algorithms were proposed to address the phase noises

originating from the frequency offset and fiber nonlinearity, respectively. A Gardner-

timing-based FOE was experimentally demonstrated to achieve a wide estimation range

from -5 GHz to 6 GHz. As for a joint self-phase-modulation compensation (SPMC)

vii
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scheme for fiber nonlinearity compensation, it is found thatthe joint-SPMC has a wider

dynamic input power range compared to other conventional methods.
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Chapter 1

Introduction

Optical communication refers to use optical fiber as a mediumto transmit optical signal

from the source to the destination. Since the 1990s the optical fiber has been widely

installed for metropolitan and trans-ocean communications from 45 Mbit/s to now 100

Gbit/s. Depending on the detection methods, optical communication systems can be

divided into two broad categories: direct detection and coherent detection. For direct

detection system, the data is mapped into the intensity of the optical signals to simplify

the system design and reduce the cost. Despite that the phaseinformation of the optical

signal can be modulated, the receiver complexity and cost will increase accordingly.

To meet the bandwidth demand of the exponentially increasing internet traffic in the

present and future, the capability of direct detection systems is extremely limited for

upgrading the data rate from 40×109 Gbit/s up to 100×109 Gbit/s or even higher.

Recent advances in high-speed analog-to-digital converters (ADCs) have revived

the coherent detection systems. When the received signals are sampled into digital

waveforms using ADCs, its full information, such as phase, amplitude and polariza-

tion, can be preserved in the receiver such that higher-order modulation formats can

be used to increase the transmission capacity. Besides, thebulky optical components

are replaced by small and compact digital signal processing(DSP) processors to com-
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1.1 Rebirth of Coherent Optical Communication

pensate for the fiber transmission impairments. This DSP functions make the digital

coherent detection universal and independent of the modulation formats.

In the following section, we will review the development of optical fiber commu-

nication, which actually sees the growth of “Global Village”, where information moves

faster and faster from one place to another!

1.1 Rebirth of Coherent Optical Communication

Coherent optical communication attracted considerable attentions in the 1980s, since it

can approach the theoretical limit of the receiver sensitivity, thus extending the trans-

mission reach of optical communication systems [1, 2]. In those days, experiments

phase-locked the phase of the local oscillator (LO) laser tothat of the incoming opti-

cal signals using an optical phase-locked loop (PLL). The scheme is called homodyne

detection, which demodulates the optical signal directly to the baseband, because the

LO laser has the same frequency as the signal optical carrierfrequency [1]. However,

it is complicated and unstable to use optical PLLs operatingat optical frequency in

practice [3, 4]. As a result, heterodyne detection was introduced to simplify the re-

ceiver design and relax the feedback delay of optical PLLs. The optical signal is first

downconverted into an intermediate frequency (IF), and then an electrical PLL is used

to track the phase of the IF signals at microwave frequency [5, 6]. It can be found

that most works focused on the simple modulation formats, such as binary phase-shift-

keying (BPSK), differential phase-shift-keying (DPSK) and amplitude-shift keying,

due to the wide laser linewidth and stringent requirement onthe loop delay of PLL-

s [7]. As claimed in [4], delays greater than a few tens of nanoseconds will result in

loop instability in a 10 Gb/s transmission.

To develop a stable yet low-cost optical system, the interest in coherent detection

cooled down and was shifted back to intensity modulation/direct detection (IM/DD)
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1.1 Rebirth of Coherent Optical Communication

scheme by resorting to erbium-doped fiber amplifiers (EDFAs)and wavelength-division-

multiplexing (WDM) technology in the 1990’s. The receiver sensitivity can be im-

proved by using an optical amplifier as a preamplifier while the transmission distance

can be up to thousands of kilometers by using cascaded EDFAs [8]. The capacity of

lightwave communication systems had been increased to the order of Terabits per sec-

ond with the aid of WDM technologies in S-band (1460 to 1530 nm), C-band (1530 to

1565 nm) and L-band (1565 to 1625 nm) ranges [9,10].

As Internet networks continued to boom, their backbone optical systems saw the

demanding requirement of spectral efficiency (SE) in the limited optical spectrum [11].

This contributed to the extensive researches on improving SE by using high-order mod-

ulation formats. Around the year 2000, differentially encoded phase-shift-keying (P-

SK) format was firstly demonstrated in experiments in conjunction with self-homodyne

detection [8]. The self-homodyne receiver consists of Mach-Zehnder delay interferom-

eters (MZDIs), which convert the phase difference between the current optical signal

and its one-symbol delayed version into optical intensity,and a pair of balanced pho-

todiodes [12]. The scheme removes an LO laser that is always present in a typical

coherent receiver and consequently relaxes the laser linewidth tolerance. Moreover,

SE can be raised in principle from 1 bit/s/Hz for IM/DD and DPSK to log2M bits/s/Hz

in M-DPSK modulation (M > 2) [13]. Nonetheless, the potentials for further SE

improvement have become limited within achievable receiver sensitivity by using the

higher-orderM-DPSK formats (M > 4), and the respective self-homodyne receiver

has become quite complicated to implement [14]. In addition, the MZDIs remove the

phase information of the current receivedM-DPSK signals (Note that MZDIs only

detects the phase change between two adjacent symbols). Note that those phase and

amplitude information of optical signals can be further used to compensate for the

transmission impairments, such as chromatic dispersion (CD) and polarization-mode

dispersion (PMD) [15].

3



1.1 Rebirth of Coherent Optical Communication

Recent advances in high-speed ADCs [16–18] have prompted extensive research-

es on coherent optical communication once again. Nowadays,the sampling speed of

commercial built-in ADCs can be as high as 50 GSamples/s [19], or even up to 80

GSamples/s for two channels [20]. Rather than improving thereceiver sensitivity only,

the primary motivations nowadays aim to further improve SE and system capacity by

using advanced modulation formats and schemes, such asM-PSK and 16-quadrature

amplitude modulation (16QAM) in conjunction with single-carrier or orthogonal fre-

quency division multiplexing (OFDM) techniques, and to compensate for the channel

distortions through DSP algorithms [21–26]. Generally, homodyne detection is pre-

ferred to downconvert the optical signal to or near the baseband instead of using the

heterodyne scheme, which requires quite a large bandwidth for subsequent electrical

components [27]. Compared to the early coherent receivers,there are two dramatic d-

ifferences in current ones. First, high-speed ADCs employed in current phase-diversity

coherent receivers sample the photocurrents, corresponding to the received optical sig-

nals, at the Nyquist rate or above so as to retain full information of the electric field,

which is lost in the self-homodyne scheme. Some papers have referred to it as a digital

coherent receiver [28]. Since the amplitude and phase information of the received op-

tical signals are preserved, both of them can be modulated simultaneously to increase

SE, and can be further utilized for compensation of linear and even nonlinear channel

impairments [15]. Second, bulky optical components are replaced by small and com-

pact DSP processors to compensate for the fiber transmissionimpairments. This DSP

functions make the digital coherent receiver universal andindependent of the modula-

tion formats [28]. In the future, customers may only set someparameters through the

interface of their DSP-enabled coherent receivers to retrieve data from any fiber port.

We did a literature survey about the SE and capacity achievedso far, as depicted in Fig-

ure 1.1. It can be observed that most of those experiments achieving the record system

capacity and SE were conducted using coherent detection with advanced modulation
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formats as well as polarization division multiplexing (PDM) techniques. The largest

capacity till the year 2010 is 69.1 Tb/s (SE is 9 bits/s/Hz) byusing PDM-16QAM

format, which is done by NTT Lab, Japan [29]. As can be seen from Figure 1.1, the

high capacity is driven by coherent detection and multiplexing technologies, including

time-, wavelength, polarization and even mode multiplexing. All these multiplexing

approaches are independent, thus enabling any combinationdepending on the system

requirements.
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Figure 1.1: The review on capacity and SE reported in the experiments till the year

2010.

1.2 Literature Review

One of the challenges in coherent optical systems is to recover the carrier phase, which

is perturbed, for example, by laser phase noise. An optical PLL is one solution to

track the carrier phase with respect to the LO carrier in the early days of coherent

optical communications. However, optical PLLs operating at optical wavelengths in

combination with distributed feedback lasers are quite difficult to implement because

of the large product of laser linewidth and loop delay [3]. Ithas been shown that delays

greater than a few tens of nanoseconds would lead to loop instability even at a 10 Gbit/s
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transmission [4].

Coherent detection can retain the information of the received electrical field. As

a result, its linear impairments, such as CD, first-order PMD, can be fully compen-

sated in principle. Instead of using bulky and complicated optical components, the

DSP algorithms now play an important role in compensating for the fiber transmission

impairments in digital coherent receivers [30]. With the aid of high-speed ADCs in

a digital coherent receiver, the carrier PE can be done in high-speed DSP units rather

than using optical PLLs for carrier phase tracking, allowing for a free-running LO

laser. Recent experiments have demonstrated that DSP-based PE techniques are very

effective to recover carrier phase. Based on a nonlinear transformation of received

M-PSK signals, the commonly-used Viterbi & Viterbi ( V&V )M th-power scheme is

capable of accurately tracking the unknown carrier phase [31]. Nevertheless, it relies

heavily on nonlinear computations, such as rectangular-to-polar/polar-to-rectangular

transformations. Despite thatM-th power operation can be simply performed block

by block [22], nonlinear functions likeM-th power and phase unwrapping are still

imperative such that risking increasing power consumptionand memory requirements.

ThisM th-power scheme is further extended to non-constant-amplitudeM-QAM for-

mats by using a subgroup of symbols with phase modulationπ/4 + nπ/2 (n=0, 1,

2, 3) [32]. Since only a fraction of received signals are usedto estimate the phase

reference in a QAM system, its system performance is severely degraded, thus mak-

ing the algorithm sensitive to laser phase noise [33]. A modifiedM th-power scheme

in [34,35] suggests utilizing all the symbols by sub-partitioning those symbols belong-

ing to the middle ring of 16QAM constellation into two QPSK groups. However, all

theM th-power schemes require nonlinear operations, such asarctan(·) function, sub-

grouping of symbols, and phase unwrapping. To address the nonlinear computations,

we will first introduce a computationally-linear decision-aided (DA) maximum like-

lihood (ML) phase estimation (PE) into coherent optical communication systems to
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eliminate the nonlinear operations while keeping or even improving the laser linewidth

tolerance.

Akin to theM th-power algorithm, DA ML is also subjected to block length ef-

fect (BLE) because of the trade-off between averaging over additive noise and phase

noises [36]. It is suggested that the optimal memory length of DA ML can be calculat-

ed provided that the statistics of the additive noise and phase noise are available [37].

However, the same prerequisite can be applied to other PE algorithms, such as Wiener

filter [4,38] and Kalman filter [39]. Note that such requirements may be impractical es-

pecially in a reconfigurable optical system. Therefore, a normalized least-mean square

(NLMS) PE is provided to handle this problem with a fixed step size. The optimum

step size needs to time-consumingly find out through either simulations or experiments,

thus making it not suitable for online processing. In this thesis, we propose to send a

sequence of training data to the receiver for acquiring the channel characteristics, and

a recursive algorithm is introduced to adjust the filter gainin an adaptive version of the

DA algorithm. The filter gain can enable the adaptive DA algorithm to operate at the

optimal or suboptimal state even without the knowledge of the system noises.

Besides, the frequency offset between the transmitter and LO lasers, and the fiber

nonlinearity can also lead to phase noise. This frequency offset can be as large as±

5 GHz due to aging, heating and fabrication of lasers [40]. Itis worth pointing out

that PE algorithms generally require that frequency offsetbetween the transmitter and

LO lasers should be no more than 10 percent of symbol rate [41], which translates to

be∼1 GHz for a 10 GBaud coherent optical system. Hence, an additional DSP-based

FOE is imperative to make sure PE algorithms work properly [42]. The conventional

frequency offset estimators (FOE) usually build upon the nonlinearM th-power opera-

tions [43–45] or decision feedback [46] to remove phase modulation. NonlinearM th-

power operations would restrict such FOEs to a smaller estimation range compared to

decision-feedback algorithms [46]. Meanwhile, decision-feedback FOEs suffers from
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the feedback delays, thus limiting its practical application especially in high-speed op-

tical systems. In view of those potential disadvantages, wewill propose an ultra-wide

feed-forward FOE without using nonlinearM th-power operations.

On the other hand, fiber self-phase modulation (SPM) effect limits the perfor-

mance of long-haul phase-modulated transmission systems through nonlinear phase

noise [47,48]. A simple phase-rotation scheme depending onthe received signal power

has been proposed to mitigate fiber SPM at the receiver end [49]. However, the method

is only effective in a dispersionless link or a specific dispersion map with small local

dispersion. In an optical transmission system with strong dispersion, the interaction

between fiber Kerr effect and CD causes this phase-rotation scheme to fail [47]. As a

result, SPM pre- and post-compensation techniques have been individually proposed

to reduce fiber nonlinearity effect [50–54]. The basic idea is to solve the inverse non-

linear Schrödinger equation (NLSE) to either restore the waveform of received signals

at the receiver side, or estimate the transmitted signals. It is observed that unknown

system noises would lead to divergence in the solutions to the inverse NLSE [47]. We

will propose a joint-SPM compensation (SPMC) at the transmitter and receiver side

simultaneously, such that mitigating this divergence problem.

Of significance is that all DSP algorithms are able to co-exist with forward-

looking all-optical signal regeneration approach, such asphase sensitive amplification,

which would render one of the most cost-effective ways to improve system perfor-

mance. In other words, with the aid of all-optical processing techniques, DSP algo-

rithm can further enhance the system performance. Considering the fact that real-time

coherent receivers are limited by the availability of high-speed ADCs, all-optical pro-

cessing technologies become even more practical at beyond 100Gb/s systems.

8



1.3 Contribution of the Thesis

1.3 Contribution of the Thesis

First of all, we successfully introduce the DA ML algorithm to recover the carrier phase

in coherent opticalM-PSK/QAM systems. Its phase error variance is analytically

derived in bothM-PSK/ QAM formats to explain the BLE of DA ML algorithm, thus

enabling optimal operation of the DA ML algorithm. In addition, the serial and parallel

implementations of DA ML algorithm are presented for the first time to operate it in

real-time.

To deal with the BLE of DA ML and prerequisite on the statistics of system nois-

es in other adaptive PEs (Wiener and Kalman filter), we introduce the adaptive DA

algorithm and extend it intoM-QAM formats. Its phase error variance is analyti-

cally obtained, and is subjected to the effect of constellation penalty. Moreover, we

compare three adaptive PEs (NLMS, Kalman and the adaptive DAalgorithm) in a

comprehensive analysis, and find out that they share the sameoptimal performance but

with difference in their approaches to determine stepsize.Experiments are also carried

out to demonstrate DA ML and adaptive DA algorithms in a polarization-multiplexing

(PolMux) quadrature phase-shift-keying (QPSK) system.

A novel FOE based on the Gardner timing recovery algorithm isproposed and ex-

perimentally demonstrated to track the frequency offset that keeps rotating the carrier

phase. Its estimation range is shown from−0.5Rs to 0.6Rs according to experimen-

tal results (Rs refers to the system symbol rate), which is the widest reported in the

literature to the best of our knowledge.

Last not the least, we have proposed a joint pre- and post-compensation scheme to

mitigate the fiber nonlinearity effect on the coherent receiver. The dynamic input pow-

er, leading to BER less than10−3, has been increased by 0.4 dB and 1.2 dB compared

to individual pre- and post-compensation algorithm.
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1.4 Thesis Outline

The remainder of this thesis is organized as follows.

In Chapter 2, we review the coherent optical communication system with the

methods to generate different modulation formats in the optical domain by using Mach-

Zehnder modulators (MZM). At the receiver side, a series of DSP algorithms are pre-

sented in detail to explain the principles how to compensatefor the CD, de-multiplex

polarization crosstalk, and recover carrier phase.

In Chapter 3, a DA ML PE is introduced to estimate the carrier phase perturbed by

the laser phase noises in different modulation formats, where its performance is first

investigated using Monte Carlo (MC) simulations. In addition, the implementation

of the DA ML algorithm is discussed in the scenario of serial and parallel receiver

structure.

In Chapter 4, to cope with BLE of DA ML, an adaptive version of the DA ML

algorithm is introduced to recover the carrier phase inM-PSK formats, and we further

develop the algorithm intoM-QAM formats. The performance of the adaptive DA

algorithm is experimentally demonstrated in a long-haul single-channel PolMux QPSK

system.

In Chapter 5, a novel Gardner-timing-recovery-based FOE and a joint pre- and

post-SPM compensation are proposed, respectively, to compensate for frequency offset

and fiber nonlinear phase noise.

Finally, conclusion and future work are presented in Chapter 6.
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Chapter 2

Fundamental Theory of Coherent

Optical Systems

In this chapter, an overview of the coherent optical communication systems is present-

ed in detail, including the transmitter design, transmission links, receiver structure as

well as the DSP algorithms.

The modulation techniques in coherent optical communication systems can be

further classified into single-carrier and multi-carrier or OFDM systems. They basi-

cally have the same optical modulators (such as I/Q MZM), transmission fibers and

coherent receivers. The difference lies in their DSP methods to modulate the transmit-

ted data and demodulate the received signals in the DSP modules, as depicted in Figure

2.1. As for the single-carrier system, DSP algorithms are generally not necessary at

the transmitter side, whereas OFDM transmitter requires digital-to-analog converters

(DAC) to perform OFDM modulation. To some extent, the maximum transmission

speed is limited by the speed of DAC in OFDM systems [55]. In this thesis, we focus

on single-carrier system in which optical transmitter is simpler than the one in OFDM

systems.
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Figure 2.1: Coherent optical system using an I/Q modulator and DSP algorithms

2.1 Advanced Optical Modulation Formats

Advanced modulation formats in optical communication are attributed to the devel-

opment of high-speed electro-optic modulators. Of importance is the development of

MZM working by the principle ofinterference, controlled by modulating the optical

phase. It is an essential component of I/Q modulators that are widely used in coherent

optical communication systems nowadays [56].

2.1.1 Channel Capacity of Multi-Level Signals

The SE provided by the simple on-off keying (OOK) modulationcannot exceed 1

bit/s/Hz without using PDM technique [22]. Hence, multi-level signalling is a superior

alternative to increase the SE of the optical transmission systems [28]. Besides, the

slower symbol rate in multi-level modulation formats can reduce the impact of CD and

PMD, compared to an OOK system with the equivalent bit rate.

The digital baseband representation of a phase- and/or amplitude-modulated sig-

nal can be expressed as [27]

X(k) = As(k) exp (jφs(k)), (2.1)

whereAs(k) andφs(k), respectively, denote the amplitude and the phase of the signal

X(k), j =
√
−1, andk stands for the symbol located at time period[kT, (k + 1)T ).

It is worth noting that various methods are available to generate multi-level signal-

s [57–61]. InM-PSK modulation formats, the phase is divided intoM even levels for

representingM different symbols, each encodinglog2M bits [62]. On the other hand,
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in M-QAM formats, two degrees of freedom (DOF), the amplitude and the phase, in

Eq.(2.1) are used for denotingM different symbols. Although there are other varia-

tions to useM different frequencies or onlyM different levels ofAs(k) [57,63], those

methods usually do not provide better SE thanM-PSK/QAM signals at low signal-to-

noise ratio (SNR) [27]. To illustrate the superior SE using multi-level signalling and

advantages ofM-PSK/QAM formats, we compute the channel capacity according to

the methods in [13].

X

N

Y = X+N

Figure 2.2: The schematic representation of the complex AWGN channel.

For a complex additive, white, Gaussian noise (AWGN) channel (see Figure 2.2)

with discrete inputs, the channel capacity in bits per symbol is shown to be [64]

C = max
E[|X|2]≤P

I(X ; Y ), (2.2)

subjected to the input power constraintE[|X|2] ≤ P . Here,I(X ; Y ) is the mutual

information of the channel inputX and outputY , andE[·] denotes statistical expecta-

tion. Note that Eq.(2.2) is maximized only when all the symbols are equiprobable in the

considered modulation formats [65]. The details about the calculation of the AWGN

channel capacity are provided in Appendix A in the case of discrete constellations.

Figure 2.3 shows the capacityC in bits/symbol for several commonly-used mod-

ulation formats. The Shannon limit is given byC = log2 (1 + γs) [64], whereγs refers

to SNR per symbol. The SNR per bit (γb) is defined as

γb =
γs

log2M
, (2.3)

for a constellation that encodeslog2M bits per symbol. It should be reminded that

the optical SNR (OSNR) are usually used to evaluate the system performance. The
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Figure 2.3: The capacity as a function of SNR per symbol for several modulation

formats.

relationship between OSNR and SNRb is shown to be [13]

OSNR=
Rb

2Bref
γb, (2.4)

whereRb is the information bit rate, andBref is the reference optical bandwidth, which

is commonly chosen to be 0.1 nm resolution, corresponding to12.5 GHz bandwidth of

optical spectrum analyzers at 1550 nm carrier wavelength.

We highlight some observations from Figure 2.3 as follows.

• At high SNR, all formats with an alphabet sizeM saturate tolog2M bits per

symbol, the maximum capacity of each respective constellation;

• Higher-order modulation formats are preferred to approachthe Shannon limit;

• At low SNRs, OOK and 4 amplitude shift-keying (ASK) formats are outper-

formed by BPSK and QPSK, respectively, due to the smaller Euclidean distances

in such intensity-modulated formats;
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• The constellations using both DOFs (phase and amplitude) approach their ca-

pacity limit much faster than those using only one DOF, for instance,M-QAM

formats versusM-PSK (M ≥ 16).

In this thesis, we hence focus on bothM-PSK andM-QAM signals capable of achiev-

ing better channel capacity at low SNRs but vulnerable to phase noise. It is worth

noting that the PDM technique can double the channel capacity in principle without

requiring more optical spectrum [13]. As further shown in Figure 1.1, the technique is

widely deployed in all historical transmission experiments.

2.1.2 The Principle of Mach-Zehnder Modulator

Ein Eout

 1

 2

V1 t

V2 t

Figure 2.4: The structure of an MZM.

The structure of an MZM is shown in Figure 2.4. A coupler splits the incoming

light Ein into two equal replicas, which pass through two identical optical waveguides

controlled by the drive signalsV1(t) andV2(t). Each replica experiences a phase shift

φ1 or φ2 due to the electro-optic effect of the waveguide materials [66]. Generally, the

phase shift, depending linearly on the drive signals, can berepresented by

φ1/2 =
1

2

V1/2

Vπ
π, (2.5)

whereVπ is defined as the required voltage switching the output lightintensity from

its maximum to its minimum value [67]. Note that the factor 1/2 accounts for the
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combined phase modulation for both two arms [27]. The two fields interfere at the

output coupler to generate the output as given by

Eout =
Ein

2
[exp (jφ1(t)) + exp (jφ2(t))]

= Ein cos

(

V1(t)− V2(t)

4Vπ
· π
)

· exp
(

j
V1(t) + V2(t)

4Vπ
· π
)

. (2.6)

Therefore, the output power of the MZM can be written as

|Eout|2 =
1

2
|Ein|2

[

1 + cos

(

V1(t)− V2(t)

2Vπ

π

)]

. (2.7)

It can be observed that the output power is related to the drive voltage difference

∆V (t) = V1(t) − V2(t). According to the characteristics of thecos (·) function, the

intensity of the output optical signals exhibits2π periodicity.

Figure 2.5: The power transfer function of an MZM.

As also shown from Eq.(2.6), there is a phase modulation(φ1(t) + φ2(t))/2 ac-

companying the intensity modulation. The ratio of phase to intensity modulation is

called chirp parameter [68], which can be used to compensatefor fiber dispersion [69].

In addition, this characteristic enables a single MZM to be used as an I/Q modulator to

independently modulate the phase and amplitude by carefully adjustingV1(t) + V2(t)

andV1(t) − V2(t) [70]. In digital optical communication, chirp is usually not desired
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for the sake of increasing the transmission reach [56]. As a result, MZMs are typically

operated at the push-pull condition,V (t) = V1(t) = −V2(t), thus yielding into

Eout = Ein cos

(

πV (t)

2Vπ

)

. (2.8)

Its sine-shape transfer function is depicted in Figure 2.5.The null point refers to the

Vπ voltage to turn off the optical output of the MZM. Of importance in the phase-

modulated systems is the electric field with respect to the electrical drive signalV (t).

The sign of the modulated optical field is capable of reflecting the change in drive

signalV (t), leading to the application of phase modulation. In contrast, the power

transmission as a function of the drive signal is the key principle in intensity-modulated

systems, in which the bias is normally set to the quadrature point, as indicated in Figure

2.5.

2.1.3 Generation ofM-PSK/QAM

This section discusses a typical method using an I/Q modulator to generateM-PSK/QAM

formats.

in

1

1 out

2
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Figure 2.6: The structure of an I/Q modulator and the constellation of QPSK.

An integrated optical I/Q modulator has a nested MZM structure capable of con-

verting the full complex plane of the optical field [67], as shown in Figure 2.6. The two
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sub-MZMs, operating at push-pull mode to achieve chirp-free signal, modulate their

respective lightwave independently according to the drivesignalV1(t) andV2(t). The

third modulator driving by a DCV3(t) introduces a constant 90◦ phase shift between

the two signals in upper and lower branch, thus putting them in quadrature to each

other. Recalling the transfer function Eq.(2.8) of a singleMZM, the output of the I/Q

modulator can be written as

Eout =
Ein√
2

[

cos

(

πV1(t)

2Vπ

)

+ j · cos
(

πV2(t)

2Vπ

)]

. (2.9)

This transfer function indicates that an I/Q modulator can directly generateM-PSK/

QAM formats when both the driving signalsV1(t) andV2(t) areM-level. As an exam-

ple illustrated in Figure 2.6, QPSK (±1,±j) can be generated using two binary drive

signals, 0 and2Vπ. The multi-level electrical signals can be obtained using arbitrary

waveform generator (AWG), in which the bit resolution and the speed of the DAC

limits the maximum modulation speed. Since binary drive signals can promise higher-

speed modulation formats and lower cost, serial MZMs implementation is another al-

ternative to achieve higher-orderM-PSK/QAM signals [28]. It is worth pointing out

that the drive signals ofV1(t) andV2(t) are not necessary evenly spacing for evenly

spacing signal points due to the nonlinear transfer characteristic of Eq.(2.9) [71]. In

addition, the bias should be properly applied to the I/Q modulator to remove the DC

of the input drive signals. For instance, when the biases of the two sub-MZMs are

set at null point (Vπ) in a QPSK I/Q MZM, the drive signalsV1(t) andV2(t) need to

swing from−Vπ to Vπ. Note that differential encoding of the drive signalV1(t) and

V2(t) is usually necessary to avoid phase rotation because of the phase ambiguity in

the systems, such as phase noise [72].
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Figure 2.7: The eye diagram of the two-level drive signal andthe generated output

intensity in an I/Q modulator.

2.1.4 Pulse Carver

Figure 2.7 displays the eye diagram of the two-level electrical drive signal and the

corresponding output intensity when using an I/Q modulatorto generate non-return-

to-zero (NRZ) QPSK signals. The drive signal has a peak-to-peak voltage2Vπ to

obtain the 180◦ phase shift in each arm. Intensity dips occur between some consecutive

symbols due to the transition between two levels [12]. A return-to-zero (RZ) pulse

carver is usually applied to cut out the intensity dips in order to reduce its impact on

the information-bearing optical phase [73]. Although RZ signals take up a broader

optical spectrum than NRZ, it can have superior fiber nonlinearity tolerance over NRZ

[74, 75]. The broader RZ signal spectrum, resulting in a ’soliton-like’ properties [76],

is shown to generally favor nonlinear transmission especially at high 10 Gb/s data rate

and above [56].

An RZ pulse carver can be implemented using an MZM driven by a sinusoidal

signal. Different duty cycle RZ pulses are obtained by changing the bias of an MZM

modulator, the frequency and the amplitude of the sinusoidal signal [77], as depicted

in Figure 2.8.

• 33% RZ: driving an MZM (bias at2Vπ) with a sinusoidal signal having peak-to-
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Figure 2.8: The illustration of generating 33%-, 50%- and 67%-duty cycle RZ pulse

shape.

peak amplitude2Vπ at half the symbol rate;

• 50% RZ: sinusoidally driving an MZM at the symbol rate with peak-to-peak

amplitudeVπ and bias at3Vπ/2;

• 67% RZ: sinusoidally driving an MZM at half the symbol rate with peak-to-peak

amplitude2Vπ and bias atVπ. This format is also called carrier-suppressed RZ.

2.2 Transmission Links

The optical fieldE from the transmitter propagates through fiber, which imposes power

attenuation, CD, PMD and fiber nonlinearity to the optical signals. When the other

effects, such as Raman and Brillouin scattering, are negligible, the signal propagation

in fiber can be described by the NLSE [78]:

∂E

∂z
=

(

D̂ + N̂
)

E (2.10)

D̂ = −j β2

2

∂2

∂t2
− α

2

N̂ = jγ|E|2
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2.2 Transmission Links

whereD̂ is a differential operator accounting for group velocity dispersion (GVD)β2

and attenuationα, andN̂ is a nonlinear operator governing the effect of fiber nonlinear-

ity γ. Note that higher-order dispersion, PMD and PDM are not taken into account here

for simplification. The propagation equations governing evolution of the two polariza-

tion components along a fiber are characterized by two coupled-mode NLSEs [78].

Fully understanding the impact of different parameters on the signal propagation in

optical fibers is helpful to design techniques to compensatefor the transmission im-

pairments in either optical or electrical domain.

2.2.1 Linear Fiber Impairments

We first study how the linear distortions, such as GVD and attenuation, affect the opti-

cal fieldE in the absence of the fiber nonlinearity (γ = 0). To solve the linear partial

differential NLSE, Eq.(2.10) is transformed into frequency domain, thus yielding in-

to [79]
∂E(z, ω)

∂z
=

(

j
β2

2
ω2 − α

2

)

E(z, ω), (2.11)

whereE(z, ω) is the Fourier transform of the optical electric fieldE(z, t) located at

distancez at the observation timet, andω is the angular frequency. Note that the

characteristic of Fourier transform∂
2

∂t2
F−→ (jω)2 is applied in deriving Eq.(2.11) [80].

The solution to the ordinary differential equation is easily to show as

E(z, ω) = E(0, ω) exp

(

j
β2

2
ω2z − αz

2

)

. (2.12)

The optical field at any distancez is obtained by converting the solution in Eq.(2.12)

back into time domain through inverse Fourier transform:

E(z, t) =
1

2π

∫ +∞

−∞
E(0, ω) exp

(

j
β2

2
ω2z − αz

2
− jωt

)

dω. (2.13)

• Fiber Loss
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2.2 Transmission Links

Eq.(2.12) indicates that fiber lossα reduces the signal power. The power of the

optical signal at distancez is given by|E(z, t)|2 = |E(0, t)|2 exp (−αz). It is custom-

ary to expressα in units of dB/km by using the relation [1]

α(dB/km) = −10
z

log10

( |E(z, t)|2
|E(0, t)|2

)

≈ 4.343α, (2.14)

and it is called the fiber-loss parameter. Fiber loss leads toexponential decay of the sig-

nal power, thus playing a critical role in the optical fiber communication. Attenuation

is caused by absorption, scattering, and bending losses in an optical fiber. The sophis-

ticated fabrication of the fiber has reduced the fiber loss from 20 dB/km in the early

days to 0.2 dB/km in 1979 [81] and even commercial∼0.17 dB/km at 1.55µm nowa-

days [82]! On the other hand, the advent of optical amplifiersin the 1990s enables that

transmission distances to easily exceed several thousandskilometers by compensating

for accumulated losses periodically [83].

• Fiber Dispersion

Although GVD only changes the phase of each spectral component, it is capable

of broadening the optical pulse, thus resulting in inter-symbol interference (ISI) [1].

This can be illustrated by considering the case of a Gaussianpulse traveling along a

dispersive fiber. The incident Gaussian pulse has the form

E(0, t) = exp

(

− t2

2T 2
0

)

, (2.15)

whereT0 is the half-width (at 1/e-intensity point). By using Eq.(2.12) and carrying out

the inverse Fourier transform like in Eq.(2.13), the electric field at distancez along the

fiber is characterized by

E(z, t) = − T0
√

(T 2
0 − jβ2z)

exp

(

− t2

2(T 2
0 − jβ2z)

)

. (2.16)
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Note that the Fourier transform of a Gaussian function is still a Gaussian, i.e.,exp (−at2)
F−→
√

π/a exp [−π2ω2/(4a)]. The dispersion parameterD, expressed in units of p-

s/(km · nm), is commonly used to characterize the dispersive feature in the fiber, and

is related to GVDβ2 through [78]

D = −2πc
λ2

β2, (2.17)

wherec andλ are the light velocity in the vacuum and optical carrier wavelength,

respectively.
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Figure 2.9: Dispersion-induced broadening of a Gaussian pulse in a fiber at different

distances (z=0, 10 km, 100 km and 300 km) and pulse width (T0=100 ps and 25 ps).

λ=1.55µm andD= 17 ps/(km·nm). (The unit of x-axis is ps.)

As illustrated in Figure 2.9, the extent of broadening depends on the initial pulse

width and transmission distance. Shorter pulses, corresponding to higher symbol rate,

experience more serious dispersion-induced broadening effects than wide pulses. As

a result, the broadened pulses spread into the neighboring pulses to cause serious ISI,

resulting in much shorter optical reach. When optical amplifiers are used to restore the

attenuated signal power in long-haul transmission systems, the accumulated dispersion

in the optical pulse becomes of serious concern. One solution is to reduce the symbol

rate of the optical systems by means of employing higher-order modulation formats,
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2.2 Transmission Links

which have smaller symbol rate to achieve the same bit rate compared to OOK formats

[84]. Further, considering that dispersion is a linear effect, dispersion management

is a superior solution to keep the average GVD of the entire fiber link quite low or

even zero [85,86]. For a dispersion map consisting of two fiber segments, as shown in

Figure 2.10 (a), Eq.(2.13) now becomes

E(L, t) =
1

2π

∫ +∞

−∞
E(0, ω) exp

(

j

2
ω2(β21L1 + β22L2)− jωt

)

dω, (2.18)

whereL = L1 + L2 is the dispersion-map period,β2i is the GVD parameter of the

fiber segment with lengthLi. It can be observed that the original optical field can be

restored, i.e.,E(L, t) = E(0, t), when the following condition is satisfied:

D1L1 +D2L2 = 0. (2.19)

Here, the GVDsβ2i are replaced by the commonly-used dispersion parameterDi

through Eq.(2.17). The prerequisite shows that the second fiber should have an op-

posite sign of the dispersionD1. The second fiber with a negative dispersion, capable

of fully canceling out the dispersion accumulated in the first span, is called dispersion-

compensating fiber (DCF). In practical systems, a DCF moduleis added at the site

of the optical amplifiers to compensate for the accumulated dispersion while the fiber

losses are addressed by the amplifier. However, the nonlinear effect in DCFs are con-

siderably enhanced due to the small effective mode area whenthe fiber input power is

still high [87]. Transmission link consisting of single-mode fiber (SMF) without DCF

(see Figure 2.10 (b)) becomes realistic only when the dispersion compensation is car-

ried out at the transmitter or receiver side. The advance in high-speed DAC or ADC

makes such compensation techniques feasible in current optical systems [88].

• Polarization-Mode Dispersion

SMF actually support two perpendicular polarizations of the original transmitted

signal (fundamental mode). The two perpendicular polarization components of the
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Figure 2.10: Transmission link: (a) dispersion-managed fiber; (b) uncompensated dis-

persion link.

signal light may travel at different velocities due to the imperfect cylindrical symmetry

in fibers [89]. Therefore, the two components arrive at the end of the fiber at different

times, leading to pulse broadening. This phenomenon is called PMD. PMD vector−→τ

can be expanded into Taylor series, given by

~τ ≈ ~τ(ω0) + ~τ (1)(ω0)∆ω, (2.20)

where~τ (1)(ω0) = d~τ/dω|ω=ω0
. The first (0th-order in frequency) term of this expan-

sion corresponds to the most widely used first-order PMD approximation [90]. Except

the broadening of the pulse, the random variation of the polarization states imposes

a performance degradation in coherent receiver. It is worthpointing out that the po-

larization state of light propagating in fibers would changerandomly along the fiber

during propagation. It is shown that PMD is a statistically random quantity [91].

The second-order PMD approximation adds the second term of the Taylor’s ex-

pansion (first-order frequency derivative) [90]. It indicates that the PMD vector~τ can

change either its direction or its magnitude. The change in the magnitude leads to a lin-

ear change in the group delay across the signal spectrum, i.e., CD. Pulses launched into

the two PSPs (which are parallel and anti-parallel to the PMDvector)~τ(ω0) and -~τ(ω0)

see different amounts of CD, with the difference being proportional todτ/dω [90].

In a PDM optical system, PMD will cause cross-talk between the signals in the

two polarization states in the presence of PMD and polarization dependent loss [15].
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Hence, some extra processing procedures are necessary to separate the two polarization

states.

2.2.2 Fiber Nonlinearity

The origin of fiber nonlinearity is that the refractive indexof silica fiber is power de-

pendent [78], given by

γ =
2πn̄2

Aeffλ
, (2.21)

wheren̄2 is the nonlinear index coefficient, andAeff is the effective mode area. In the

absence of GVDβ2, the general NLSE Eq.(2.10) can be rewritten as

∂E

∂z
= jγ|E|2E · exp (−αz), (2.22)

Here, the exponential factorexp (−αz) accounts for the fiber loss. The general solution

to Eq.(2.22) has the form ofE = V exp(jΦNL(z)), whereV is the signal amplitude.

Substituting the general solution to Eq.(2.22), we can have

∂V

∂z
= 0;

∂ΦNL(z)

∂z
= γV 2 exp (−αz). (2.23)

It means that the signal amplitudeV does not vary along the fiber length. The optical

electric field at the end of the fiber lengthL becomes

E(L, t) = E(0, t) exp (jΦNL(z)), (2.24)

where the nonlinear phase noise can be integrated analytically as

ΦNL(L) =

∫ L

0

γ|E(0, t)|2 exp (−αz)dz = γLeff|E(0, t)|2, (2.25)

with effective lengthLeff defined as

Leff =
1− exp (−αL)

α
. (2.26)

Eqs.(2.24)-(2.25) show that optical pulses experience intensity-dependent phase mod-

ulation, called SPM [92]. This SPM phenomenon will limit themaximum signal power
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launched into optical fibers, which is in contrary to the conventional wireless channels.

The temporally varying phase modulation also associates with the pulse shape, thus

resulting in spectra broadening [78]. It is worth pointing out that the SPM effect oc-

curs at the initial effective lengthLeff of a fiber because fiber nonlinearity has a strong

impact at high power [47]. Eventually, the attenuated signal power mitigates the effect

after the effective length.

In view of this simple characteristic between SPM and signalinput power, the

overall accumulated nonlinear phase noise after passing throughN amplifiers can be

approximated by [49]

φNL(t) =

N
∑

k=1

φNL(k, t)

= γLeff

N
∑

k=1

|E(k, t)|2

= γLeff{|E(0, t) + n1(t)|2 + |E(0, t) + n1(t) + n2(t)|2 + · · ·

+|E(0, t) + n1(t) + · · ·+ nN (t)|2} (2.27)

wherenk(t), k = 1, . . . , N are those AWGNs introduced bykth amplifier. Henceforth,

the received signal can be written as

Er(t) = E(N, t) · exp [jφNL(t)] (2.28)

Note that nonlinear phase noise is suggested beingχ2 distributed due to square addition

of the Gaussian ASE noises{n1, n2, . . . , nk, . . .}, which is verified by experiment data

in [93]. This nonlinear optical channel model has been well adopted to investigate per-

formances of different modulation formats [27, 72, 94], though it would overestimate

the penalty of fiber nonlinearity without taking into account the interaction between

CD and fiber nonlinearity [48].

The power-dependent refractive index can also lead to othernonlinear effects,

such as cross-phase modulation (XPM) [95], four-wave mixing [78], especially in WD-

M systems. All these nonlinear effects would interact with other linear fiber effects to
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severely limit the performance of long-haul lightwave systems [77]. Of importance is

that the SPM/XPM-induced phase shift would cause a severe performance degradation

in phase-modulated systems.

2.2.3 Split-Step Fourier Method

We have separately investigated the impact of fiber linearity and nonlinearity. In fact,

fiber dispersion and nonlinearity would interact with each other along the length of

the fiber, though a general analytical solution is not available for the NLSE Eq.(2.10)

[78]. Consequently, numerical approaches are necessary toemulate the optical pulse

evolution in the fiber for evaluating various fiber impairments. One approach that has

been used extensively to solve the pulse-propagation problem is the split-step Fourier

method [96] when both fiber dispersion and nonlinearity are taken into account.

h

h

Figure 2.11: The schematic illustration of: (a) split-stepFourier method; (b) sym-

metrized split-step Fourier method.

The split-step Fourier method obtains an approximate solution by assuming that

the dispersion and the nonlinearity factors can be treated separately in the propagation
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of the optical field over a small distanceh. The nonlinear section is first performed

in the time domain, as illustrated in Figure 2.11 (a). Through Fast Fourier transform

(FFT), the signal is then transformed into frequency domainwhere each spectral com-

ponent is multiplied by a phase shift due to the fiber GVD, as described in Eq.(2.12).

Note thatD̂(ω) = j β2

2
ω2. To further improve the accuracy of the split-step Fourier

method, fiber nonlinearity is evaluated in the middle of the segmenth instead of car-

rying out the step at the beginning of the segment (see Figure2.11 (b)) [97]. The

mathematical expression of the modified method can be represented by

E(z + h, t) ≈ exp

(

h

2
D̂

)

exp

(
∫ z+h

z

N̂(z′)dz′
)

exp

(

h

2
D̂

)

E(z, t). (2.29)

This scheme is called symmetrized split-step Fourier method because of the symmetric

form of the exponential operators in Eq.(2.29), in which theintegral is usually approx-

imated by the trapezoidal rule [98]:

∫ z+h

z

N̂(z′)dz′ ≈ h

2

[

N̂(z) + N̂(z + h)
]

. (2.30)

Note that higher-order dispersion is not included here. However,N̂(z+h) is unknown

at the middle of the segment located atz+h/2. An iterative procedure is introduced to

replace the term̂N(z+h) by N̂(z) at first. Eq.(2.29) is then used to estimateE(z+h, t)

which in turn is applied to calculate the neŵN(z + h). The procedure is repeated

several times until certain tolerance is satisfied, such as the maximum phase shift and

the loss of signal power during the segment. More efforts have been put to further

improve the computational efficiency and enhance the simulation accuracy [99]. It

is suggested that the fiber can be modeled as a concatenation of nonlinear and linear

sections, in which the propagation of the optical field is governed by the prescription

of Eq.(2.29) [78].
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2.3 Coherent Receiver

2.3 Coherent Receiver

Compared to direction detection, coherent detection can preserve full information of

the optical electric field, such as the amplitude, phase and polarization, which provides

modulation in more DOF for multi-level signalling [15] suchthat approaching Shan-

non capacity limit, as depicted in Figure 1.1. The application of high-speed ADCs in

coherent receivers has triggered extensive research in DSPalgorithms to compensate

for the fiber transmission impairments rather than using costly and complicated optical

components [24,100–103].
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Figure 2.12: A schematic setup of a single-polarization coherent receiver.

The structure of a single-polarization coherent receiver with balanced photode-

tector is shown in Figure 2.12. The received optical fieldE(t) is combined with an

LO laser in a 2× 4 90◦ optical hybrid, whose output signals are detected by two bal-

anced photodetectors corresponding to the in-phase (I) andquadrature-phase (Q) sig-

nals [104]. The optical hybrid is composed of four 3-dB couplers and an additional

90◦ phase shifter. The transfer matrix of the optical hybrid is given as [104]

S =
1

2



















1 1

1 −1

1 j

1 −j



















. (2.31)
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After the square-law photodetection, the photocurrents from the upper balanced detec-

tors can be written as [94]

I =
1

4
R |E(t) + ELO|2 −

1

4
R |E(t)−ELO|2 + ish(t)

= R ·Re [E(t)E∗
LO] + ish1(t) (2.32)

whereR is the photodetector responsitivity,ish1(t) represents the shot noise,Re[x] and

∗ denote the real part ofx and conjugation operation, respectively. Here

ELO =
√

PLO exp (jωLOt + jθLO(t)), (2.33)

wherePLO, ωLO andθLO(t), respectively, are the power, the carrier angular frequency

and the phase noise of the LO signal. Applying the same derivation as in Eq.(2.32),

the lower branch signal is derived as

Q =
1

4
R |E(t) + jELO|2 −

1

4
R |E(t)− jELO|2 + ish(t)

= R · Im [E(t)E∗
LO] + ish2(t), (2.34)

whereIm[x] denotes the imaginary part ofx and ish2(t) represents the shot noise.

As can be seen from Eqs.(2.32) and (2.34), the outputs of the two pairs of balanced

photodetectors correspond to the in-phase and quadrature of the received optical elec-

tric field. When sampling the signals at the Nyquist rate using ADCs, the digitalized

signals can be further processed by either real-time or offline DSP algorithms to com-

pensate for the transmission impairments [62]. This receiver structure is also universal

for any multi-level modulation formats [28]. Note that a dual-polarization coherent re-

ceiver can be realized by splitting the polarization of the incident optical field into two

orthogonal states, and each of them beats with the respective LO counterpart which

has the identical polarization state as the signal’s [41].

The impact of optical noises and the shot noises on the performance of a coherent

system is worthy of investigation. Due to the fiber loss, the transmitted signal are
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repeatedly amplified by optical amplifiers, which introduceASE noisesN(t) into the

transmitted signalEs(t). Hence, the received signal becomesE(t) = Es(t) + N(t).

The transmitted signal is assumed to have the form of

Es(t) =
√

Ps exp (jωct+ jφs(t) + jθ(t)), (2.35)

wherePs andφs(t) are the power and the signal phase,θ(t) is the phase noise associ-

ated with the source laser, andωc is the carrier angular frequency of the signal. The

spectral density of the received ASE noiseN(t) with NA-cascaded optical amplifiers

is given by [1]

SASE = NAnsp(G− 1)hν, (2.36)

wherensp andG are the spontaneous emission factor and gain of the optical amplifiers,

andhν is a photon energy. In terms of practical applications, of interest is homodyne

detection (ωc = ωLO) because the bandwidth of the electrical low-pass filter required

for heterodyne detection (ωc 6= ωLO) is Rs whereas one half of this bandwidth, i.e.,

Rs/2, is enough for the homodyne case [105]. Here,Rs is the symbol rate of a system.

By combining the in-phase and quadrature signals together,we can derive the base-

band complex signals as

r(t) = R ·Re [E(t)E∗
LO] + ish1(t) + j · (R · Im [E(t)E∗

LO] + ish2(t))

= R
√

PsPLO exp [j (φs(t) + θs(t)− θLO(t))] + iLO-ASE(t) + ish(t),(2.37)

where the LO-ASE beat noiseiLO-ASE(t) = R ·Re [N(t)E∗
LO] + j ·R · Im [N(t)E∗

LO],

whose two-sided power spectrum density (PSD) is found to be

SLO-ASE = R2PLOSASE. (2.38)

The shot noiseish(t) equals toish1(t) + j · ish2(t) having a two-sided PSDSsh of

eR(PLO + Ps), wheree is the electron charge. The signal power divided by the to-

tal noise power in the same band,Rs/2 in homodyne receivers, gives the SNR per
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symbol (γs) at the detector, as given by [94]

γs =
R2PLOPs

2 (R2PLOSASE + eR(PLO + Ps)) ·Rs/2
. (2.39)
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Figure 2.13: The PSD of different noises (LO-ASE beat noise and shot noise) as a

function of LO power in a coherent receiver atPs=10 dBm.

As illustrated in Figure 2.13, the shot noise is dominant over LO-ASE beat noise

only when the power of LO laser is very small. In practice, theLO power is always kept

at least above 0 dBm to improve the receiver sensitivity. Besides, the use of cascaded

optical amplifiers will enhance the LO-ASE noises. Consequently, the LO-ASE beat

noise is the major source of additive noises in coherent receivers, thus yielding the

ASE-limited SNR per symbol as [27]

SNRsym =
Ns

NAnsp
, (2.40)

becausePs = GRsNshν when assuming that the last optical amplifier acts as a pream-

plifier with gainG. Here,Ns is the average number of photons per symbol.

Other than the amplitude distortion, the received signals are also rotated by the

phase noiseθs(t)− θLO(t) from the transmitter and LO lasers. The power spectrum of
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laser linewidth∆ν has a Lorentzian line-shape, inducing a Gaussian-distributed phase

deviation with mean zero and variance [106]

σ2
p = 2π(2∆ν)Ts (2.41)

in a symbol intervalTs = 1/Rs. Note that2∆ν accounts for the total 3-dB linewidth

for both lasers.The laser phase noise keeps rotating the received signals, thus requiring

phase tracking in coherent receiver.

2.4 DSP Algorithms in Coherent Receivers

As reviewed in Section 2.2, the transmitted signal after fiber transmission will be de-

teriorated by the CD, PMD and fiber nonlinearity such that receivers are unable to

recover the original transmitted data if no specific measures are employed in the sys-

tems. A digital coherent receiver samples the in-phase and quadrature signals into

digital waveforms at Nyquist rate or above (see Section 2.3), consequently applying

DSP algorithms to fully recover the transmitted data [80]. Several benefits are seen

to using DSP-based algorithms in such coherent receivers: adaptive filters can provide

better performance and design versatility while a universal receiver structure can be

used for reception of different modulation formats by adjusting only the parameters of

digital filters [107].

The DSP algorithms in digital coherent receivers are divided into several step-

s [24], which may consist of clock recovery, re-sampling, CDcompensation (CDC),

polarization-demultiplexing, carrier phase recovery including frequency and phase es-

timation, symbol decision, differential decoding and error detector, as depicted in the

architecture of Figure 2.14. If nonlinear impairments suchas SPM or XPM are present,

additional fiber nonlinearity compensation is necessary toimprove the system perfor-

mance [47], which will be discussed in detail in Chapter 5.
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Figure 2.14: The architecture of the DSP algorithms in a polarization-multiplexing

digital coherent receiver.

2.4.1 Clock Recovery and IQ Imbalance

The four streams of digitalized data from ADCs, corresponding to the in-phase and

quadrature signals in two polarization states, are first re-sampled to 2 samples per

symbol [21], because the sample rate1/Tosc of a real-time oscilloscope may be not

exactly two times the symbol rate of an optical system. In a clock recovery module,

digital timing recovery algorithms are applied to correct the timing offset between the

clocks of transmitter and receiver, which can be performed in a real-time oscilloscope.

Commonly-used algorithms, such as the square timing recovery [108] and the Gardner

algorithm [109], are able to estimate the timing error, which is then used to re-sample

the data via an interpolator to obtain exactly 2 samples per symbol.

It is also worth mentioning that the normalization and IQ-imbalance compensa-

tion may be required when dealing with real experiment data [110,111] because of the

imperfections in optical front ends, where the amplitude ofhybrid outputs may be not

equal or the phase shifter in the hybrid (see Figure 2.12) maynot be exactly 90◦ [107].
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2.4.2 Channel Equalization

As noted in Section 2.2, fiber can be regarded as a linear system with only attenu-

ation, CD and PMD in the absence of fiber nonlinearity. In principle, all the linear

impairments can be fully compensated by using digital filters [62]. Since CD is a

time-invariant distortion and the residual CD may exceed several thousands of ps/nm

at the receiver end, it is desirable to use nonadaptive filterwith fixed taps for the com-

pensation [112]. Although infinite impulse response (IIR) filter requires less taps than

finite impulse response (FIR) filters, IIR filters tend to be unstable especially when the

residual CD is large [113]. This drawback limits its application in practical systems.

On the other hand, the PMD effect may be modeled by the Jones matrix, which varies

rapidly due to the fiber birefringence [89]. The compensation scheme of PMD should

be adaptive to continuously adjust the tap coefficients [30]. As a result, the channel

equalization in coherent receivers is split into two sub-steps: fixed-tap FIR filters for

CDC and a time-domain adaptive butterfly-like filter for PMD compensation.

Recalling the fiber dispersion effect on the transmitted signal in Section 2.2, the

fiber can be regarded as an all-pass filter only incurring a phase shift to different spec-

tral components. It suggests that an inverse function of theall-pass filter suffices to

fully compensate for the CD of a fiber link [114]. This approach can be realized in

either time-domain or frequency-domain [112].

The time-domain CDC in the DSP unit is a fractionally-spaced(Ts/2) FIR equal-

izer [115], as plotted in Figure 2.15. The tap coefficients are computed from the inverse

Fourier transform of the fiber transfer function (see Eq.(2.12)) [116], as given by:

H(f) = exp

(

−jπDλ2f 2

c
z

)

(2.42)

while changing the sign ofD to the opposite. Note that the number of filter taps

depends on the amount of the accumulated dispersion in the fiber link of lengthz. To

approach the desired phase responseF
−1{H(f)}, the tap coefficientsCk is computed
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Figure 2.15: A fractionally-spaced (Ts/2) FIR filter withN taps.

through sampling the inverse Fourier transform of the transfer function Eq.(2.42), i.e.

[116],

Ck =
kTs

2
h(t =

kTs

2
), (2.43)

where

h(t) =

∫ ∞

−∞
H(f) exp (j2πft)df

= ∆f ·
Ñ/2−1
∑

i=−Ñ/2

H(f = i∆f) exp (j2π(i∆f)t). (2.44)

Here, the integration is approximated by adding up those discrete components from

−1/Ts to 1/Ts with a stepsize∆f . If the accumulated dispersionDz and symbol rate

Rs are known, the FIR tap coefficients, as illustrated in Figure2.16, are determined

through Eqs.(2.43) and (2.44). In theory, CD can be completely compensated for if the

number of taps of the FIR equalizer is sufficiently large [30]. It is found that a FIR

with tap numberN = 4π|β2|LR2
s is sufficient to fully compensate for CD [117].

As for the frequency-domain equalizer, the re-sampled signals X(kTs/2) and

Y (kTs/2) are transformed into frequency domain through FFT. The frequency compo-

nents are then multiplied by the fiber transfer functionH(f) to cancel out the CD im-

pact, and are converted back into time domain for subsequentsignal processions. Gen-

erally, frequency-domain equalization is much faster thantime-domain equalizer due
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Figure 2.16: The tap coefficients of a fractionally-spaced (Ts/2) FIR filter withN=21,

accumulated dispersionDz= 1700 ps/nm, and symbol rateRs=10 GBaud.

to the FFT operation, especially when the number of FIR taps becomes large [103,112].

It is worth noting that fiber nonlinearity compensation is necessary if there exists strong

fiber nonlinearity effect. In this case, the fiber dispersionwill be simultaneously com-

pensated for through back-propagation of the received electric field [47, 118], which

will be addressed elaborately in Chapter 5.

After the nonadaptive FIR filtering for CDC, the subsequent butterfly-like FIR

filter aims to remove the cross-talk between two transmittedsignals in these two or-

thogonal polarization states, because of the PMD effect [30]. In a PolMux system,

the optical channel can be modeled as a 2×2 multi-input multi-output system [41], as

given by

Xout(k) = H
T
xx(k)Xin(k) +H

T
yx(k)Yin(k)

Yout(k) = Hxy(k)
T
Xin(k) +H

T
yy(k)Yin(k), (2.45)

whereHxx(k), Hxy(k), Hyx(k) andHyy(k) areN × 1 tap coefficient vectors of the
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butterfly FIR filter att = kTs,Xin(k) andYin(k) areN×1 input vectors att = kTs, and

(·)T denotes matrix transpose. Of importance is how to de-multiplex the two signals

from the two polarization states. The blind constant modulus algorithm (CMA) is

a popular method for constant-modulus modulation formats [119], such asM-PSK,

where the magnitude errors ofεx = 1−|Xout(k)|2 andεy = 1−|Yout(k)|2 are examined

to adjust the coefficient vectors through

Hxx(k + 1) = Hxx(k) + µεxXout(k)Xin(k) (2.46)

Hyx(k + 1) = Hyx(k) + µεxXout(k)Yin(k) (2.47)

Hxy(k + 1) = Hxy(k) + µεyYout(k)Xin(k) (2.48)

Hyy(k + 1) = Hyy(k) + µεyYout(k)Yin(k) (2.49)

whereµ is the step size of the CMA algorithm. Note that the tap vectors are updated

once every symbol. The decision-directed (DD) least-mean square (LMS) algorithm

can be introduced to improve the system performance once theCMA algorithm has

reached the steady state [23]. As for the non-constant-modulus QAM formats, this

CMA criterion is usually applied at the first stage to acquirea pre-convergence [120].

A modified CMA such as multi-modulus CMA, and DD-LMS [121], are carried out to

fully de-multiplex these two signals in conjunction with carrier phase recovery.

It is worth of pointing out that the higher-order dispersion, like dispersion slope,

can still be compensated once the dispersion slope and channel wavelength are known

to the receiver. Further, quite a few DSP algorithms [122] are already proposed to

compensate for XPM from inter/intra channels and references therein.

2.4.3 Carrier Phase Recovery

When ISI of the received signals is removed by the channel equalization, the remain-

ing distortions include only frequency offset, laser phasenoise and additive noises.

39



2.4 DSP Algorithms in Coherent Receivers

The signal now becomes the same as Eq.(2.37), and the sampledwaveforms are then

described as [4]

r(k) = I(kTs) + j ·Q(kTs)

= A0 exp (jφs(k) + jθ(k) + jk∆foffset) + n(k), (2.50)

whereA0 = R
√
PsPLO and∆foffset is the frequency offset between transmitter and LO

lasers. The additive noise is a complex AWGN, originating from LO-ASE beat noise

and shot noises, with a circular Gaussian distribution of mean zero and varianceN0.

The carrier phase recovery consists of FOE and PE, because both two factors would

lead to carrier phase rotation.

Frequency mismatch always exists between two different lasers due to fabrication,

heating and aging, thus resulting in a continuous phase increment in each symbol [46].

Conventional FOE algorithms can be implemented in either time-domain or frequency

domain. Here, we only review a commonly-used frequency-domain FOE [43], de-

scribed as

∆f̂offset =
Rs

M
arg max

|f̄0|<1/2

∣

∣

∣

∣

∣

1

N

N−1
∑

i=0

[r(i)]M exp (−j2πf̄0i)
∣

∣

∣

∣

∣

, (2.51)

Here, f̄0 is the normalized frequency offset andN is the number of symbols used in

the FOE. TheM-th power operation is to eliminate phase modulation in the received

M-PSK signals [31]. Note that the algorithm is also applicable in M-QAM formats

but suffers from inaccuracy issue due to their phase modulations are not exactlynπ/M

[44]. The accuracy of this FOE inM-QAM formats can be improved by incorporating

more symbols in Eq.(2.51).

In addition to frequency offset, laser phase noise is a Wiener process associated

with the 3-dB laser linewidth and system symbol rate, as shown in Figure 2.17a, and

thus keeps rotating the phase of transmitted signals. In digital coherent receivers, DSP-

based PE allows for a free-running LO laser rather than usingan optical PLL for carrier
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Figure 2.17: (a) Simulated Wiener laser phase noise at2∆νTs =1×10−4; (b) The esti-

mated phase referencêθ(k) using the V&VM th-power algorithm in a QPSK system

phase tracking [4]. To retrieve the phase modulationφs(k), the phase referencêθ(k)

needs to be first estimated through PE algorithms. A conventional nonlinear V&V

M th-power scheme is proposed in [31] to raise the receivedM-PSK signals to the
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M th-power for estimating the carrier phase.

In the V&V M th-power algorithm, a nonlinear transformation is performed to

extract the unknown carrier phase from receivedM-PSK signals:

r′(k) ≡ F [|r(k)|] exp [jM∠r(k)], (2.52)

whereF[·] denotes nonlinear transformation of the received signal amplitude. It has

been observed thatF[|r(k)|] = 1 or |r(k)|2 achieves a better performance than the

scenario ofF[|r(k)|] = |r(k)|4 for QPSK format. The nonlinear function ofF[|r(k)|] =

|r(k)|M is used throughout this thesis since we observe that there istrivial difference

in terms of laser linewidth tolerance between them at high SNRs.

Considering the scenario ofM-PSK signals, the received signalr(k) is raised to

theMth-power to remove the phase modulationφs(k), since

rM(k) = AM
0 exp [j(Mφs(k) +Mθ(k))] = AM

0 exp [jMθ(k)]. (2.53)

Here, for illustration purpose,the amplitude noise termn(k) is neglected and the non-

linear transformation is assumed to beF[|r(k)|] = |r(k)|M . Averaging over2L + 1

samples from(k − L)Ts to (k + L)Ts, the estimated phase reference att = kT in the

V&V M th-power algorithm can be given as

θ̂(k) = arctan





(k+L)Ts
∑

l=(k−L)Ts

rM(l)



/M (2.54)

The argument of the received signalr(k) is then subtracted by the estimated reference

θ̂(k) before symbol decoding. In the decoder, the phase differencearg (r(k))− θ̂(k) is

discriminated amongM states in theM-PSK constellation. It can be observed that the

phase referencêθ(k) is obtained from dividing the sum of2L + 1-symbol longM-th

power ofr(k). It indicates that the phase referenceθ̂(k) will lie between−π/M and

π/M due to thearctan(·) function. Therefore, whenever the trajectory of the laser

phase exceeds the range between±π/M , an instantaneous phase jump of±2π/M
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would occur, leading to irreducible symbol errors [123], asillustrated in Figure 2.17b.

In order to avoid such phase jump, the phase estimateθ̂(k) must be compared to the

previousθ̂(k−1). If the difference in the phase estimate between two adjacent symbols

is within (−π/M, π/M), the estimated phase referenceθ̂(k) is valid, otherwise it must

be added or subtracted by multiple2π/M . The phase unwrapping process forM-PSK

using V&V M th-power algorithm is summarized as [22]:

θ̂(k) =































θ̂(k) + 2π
M
, if θ̂(k)− θ̂(k − 1) > π

M

θ̂(k)− 2π
M
, if θ̂(k)− θ̂(k − 1) < − π

M

θ̂(k), else

. (2.55)

Figure 2.17b demonstrates that the phase unwrapping is capable of accurately track-

ing the actual time-varying phase noise. However, phase unwrapping can cause cycle

slips, which is a highly nonlinear phenomenon [4,72]. Although the V&VM th-power

scheme is implemented in the constant-amplitudeM-PSK formats, it has been ex-

tended to 16-QAM format by using a subgroup of symbols with phase modulation

π/4 + nπ/2(n = 0, 1, 2, 3) [32].

2.4.4 Symbol Detector

After recovering the carrier phase, the symbol decision is made before carrying out dif-

ferential decoding. It is important that the data is differentially encoded to avoid phase

ambiguity or cycle slips [4, 33, 72]. Supposing thata(k) is the information symbol, d-

ifferentially encodedM-PSK symbolc(k) can be obtained fromc(k) = c(k − 1)a(k).

On the other hand, differentially encoded QAM symbols are generated by means of

the quadrant differential encoding rule [124]. The information symbola(k) can be

represented bya(k) = ρ(k)b(k) , whereρ(k) belongs to the first quadrant andb(n) ∈

±1,±j [125]. Differentially encoded QAM symbolc(k) is given byc(k) = ρ(k)d(k),
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whered(k) = b(k)d(k − 1). Note thatE[|a(k)|2]=1 for bothM-PSK/QAM format-

s. At the receiver side, to recover the original informationsymbola(k), differential

decoding is imperative to reverse the differential encoding process. The information

symbola(k) can be differentially decoded asa(k) = c(k)c∗(k−1)in M-PSK formats,

anda(k) = ρ(k)d(k)/d(k − 1) in M-QAM systems. Error detector is performed to

compare the recovered data with original transmitted data by counting bit errors. If

forward error control (FEC) coding is used to achieve highlyreliable communication

in an optical transmission system [126], a uncoded BER levelbetween10−3 ∼ 10−5 is

a reasonable reference to compare the performances of coherent receivers.

2.5 Conclusion

In this chapter, we have studied the system principles of coherent optical communi-

cation, including transmitters, fiber transmission and coherent receivers. Advanced

modulation formats are desirable to approach the Shannon limit in conjunction with

coherent detection and PDM techniques. The development of MZM and IQ modu-

lators facilitates optical communication systems to employ higher-order modulation

formats rather than only using OOK/ASK to further improve SE.

During the propagation of the transmitted signal along optical fibers, not only do

linear impairments, such as CD, PMD and fiber loss, deteriorate the signal, but the non-

linear SPM and XPM can become detrimental to the performanceof long-haul optical

communication systems at high input powers. Since coherentdetection can retain the

information of optical electric field, DSP algorithms are widely applied to compensate

for the fiber impairments instead of using bulky and complicated optical components.

The application of DSP CMOS chips render design versatilityand universal structure

to digital coherent receivers, which would be highly expected portable receivers in the

near future. Finally, a series of DSP algorithms are reviewed in detail for the sake of
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understanding the basic principles of digital coherent receivers.
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Chapter 3

Decision-Aided Maximum Likelihood

Phase Estimation

To allow a free-running LO laser for beating with the received optical signals in coher-

ent receives, DSP-based PEs are widely introduced to recover the carrier phase [127].

Meanwhile, PE algorithms can relax the laser linewidth requirements compared to

PLLs-based coherent receivers which are sensitive to the time delay in the feedback

loop [4]. Furthermore, the laser linewidth poses a criticallimit to the performance of

high-order modulation formats, which are nowadays often employed in coherent opti-

cal communications for the sake of improving SE and system capacity [29, 120, 128].

Therefore, a large linewidth tolerance is desirable for a good PE. Although various

PE algorithms, such asM th-power [31], blockM th-power [22, 32], NLMS PE [129],

Wiener filter-based PE [4, 38], Kalman filter-based PE [39], have been proposed to

recover the carrier phase, they require either nonlinear computations (M th-power op-

eration and phase unwrapping) or the statistics of the system noises (phase noise and

additive noise). Nonlinear computations may increase the power consumption of the

complementary metal-oxide-semiconductor (CMOS) processors in coherent receivers

while the statistics of such information cannot always be available, especially in re-
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configurable optical switching systems.

In this chapter, a computationally-efficient, DA ML PE will be derived to achieve

a comparable or even better performance than theM th-power scheme. The perfor-

mance of DA ML PE will be analytically conducted in differentmodulation formats.

Further, a real-time structure of the DA ML receiver will be proposed to estimate car-

rier phase reference online in optical coherent detection.

3.1 The Principle of DA ML Phase Estimation

In order to simplify notations in the following formula, Eq.(2.50) can be rewritten

as [37]

r(k) = m(k) exp (jθ(k)) + n(k) (3.1)

wherem(k) = A0(k) exp (jφs(k)) is the signal constellation pointCi. It is assumed

that frequency offset and ISI are fully compensated throughDSP algorithms as re-

viewed in Section 2.4 and all symbols are equiprobable. In a carrier-suppressed modu-

lation format, it is possible to arrange constellation points such thatCi = −C−i [130].

Transmitted symbols are then chosen from ensemble of these constellation points, ex-

pressed as

m(k) ∈
{

Ci : Ci = −Ci+M/2, i = 1, 2, · · · ,M/2
}

, (3.2)

whereM , a power of 2, is the total number of signal points in the constellation. The

SNR per symbol (γs) is re-written as

γs =
E [|m(k)|2]

N0
. (3.3)

The ML phase reference estimateθ̂ at timet = kT is computed over the immedi-

ate pastL received signals, i.e.,r(l), k − L ≤ l ≤ k − 1, whereL is called memory

length. The likelihood functionΛ(θ, k) is given by joint PDFp(r(k − L), · · · , r(k −

1)|θ). It is assumed that symbol timing is known, andθ is taken to be time invariant at
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least over an interval longer thanLT . Note that if there is no ISI affecting the samples

at t = kT , r(l) andr(j) are independent because of the independence ofn(l) and

n(j) when i 6= j. The removal of ISI can be realized through channel equalization

before carrying out PE algorithms. The PDFp(r(l)|θ) is obtained by writing it as the

sum over allM of p(r(l)|θ,m(l) = Ci)P (m(l) = Ci). The conditional PDF of the

received signalr(k) is given by [131]

p(r(k)| θ,m(k) = Ci) =
1

πN0

exp

(

−|r(k)− Cie
j θ|2

N0

)

. (3.4)

Through this arrangementCi = −Ci+M/2 of the constellation points, the log-likelihood

functionL(θ, k) = lnΛ(θ, k) can now be expressed as

L(θ, k) =

k−1
∑

l=k−L

ln





M/2
∑

i=1

exp (−Si) cosh qi(l, θ)



+ c (3.5)

Here,Si = |Ci|2/N0, qi(l, θ) = (2/N0)Re[r(l)C∗
i e

−jθ], andc is a constant indepen-

dent ofθ (see Appendix B for details). It is easy to derive the following equation for

the ML estimatêθ from the likelihood equation∂L(θ, k)/∂ θ = 0 at θ = θ̂(k) [130],

cos θ̂(k)

k−1
∑

l=k−L

·
∑M/2

i=1 exp (−Si) sinh qi(l, θ̂(k))Im [r(l)C∗
i ]

∑M/2
i=1 exp (−Si) cosh qi(l, θ̂(k))

= sin θ̂(k)
k−1
∑

l=k−L

·
∑M/2

i=1 exp (−Si) sinh qi(l, θ̂(k))Re [r(l)C∗
i ]

∑M/2
i=1 exp (−Si) cosh qi(l, θ̂(k))

(3.6)

Equation (3.6) is highly nonlinear and is hard to get an explicit solution forθ̂(k). Sup-

posing that we have obtained the ML phase estimateθ̂(k), the receiver uses it in the

detection of thekth data symbolm(k) as if it were the true valueθ. The receiver

declaresm(k) = Cd according to decision statistics [62]

qd(k) = max
i

Re

[

r(k)C∗
i exp (−jθ̂(k))

]

, i = ±1, · · · ,±M/2, (3.7)

in M-PSK formats, whereas inM-QAM formats the decision statisticqd becomes [37]

qd(k) = max
i

Re

[

r(k)C∗
i exp (−jθ̂(k))−

1

2
|Ci|2

]

, i = ±1, · · · ,±M/2. (3.8)
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Here, the receiver decision is denoted bym̂(k) at time t = kT . An explicit result

for θ̂(k) allows the decision statistics (3.7) to be easily computed,thus allowing a

completely digital receiver implementation.

Approximations are imperative to make Eq.(3.6) implementable. High SNR is

the case of most interest in practice. When considering the high SNR limit, decision-

feedback provides a nearly optimum implementation of the MLestimator (3.6) [132].

For instance, in BPSK format (M = 2), Eq.(3.6) reduces to

θ̂(k) = arctan

[

∑k−1
l=k−L Im[r(l)m̂∗(l)]

∑k−1
l=k−LRe[r(l)m̂∗(l)]

]

. (3.9)

whereC∗
i at time t = lT in Eq.(3.6) is replaced by the receiver decisionm̂(l) in

decision-aided PE. In the case of signal constellations with M > 2, for each fixed

l in Eq.(3.6), each of the summations overL is dominated in magnitude by the ter-

m whose index corresponds to the decision. For instance,|∑M/2
i=1 exp (−Si) sinh qi

(l, θ̂(k))Im [r(l)C∗
i ] | ≈ | exp (−Sd) sinh qd(l, θ̂(k))Im [r(l)C∗

d ] | if the decision is ei-

ther m̂(l|k) = Cd or m̂(l|k) = −Cd. Thus, Eq.(3.6) reduces again to Eq.(3.9) when

tanh (·) is replaced by sgn(·) andm̂(l|k) by m̂(l). The decision-feedback approxima-

tion is more accurate for BPSK (M = 2) thanM-PSK withM > 2. ForM > 2, the

accuracy of the approximation depends on the ”discriminability” between the signal

pointsCL’s, which improves with higher values of SNRSL’s [130].

In order to totally eliminate nonlinear operation in this PEalgorithm, we introduce

a complex vectorV asV , [Re V, Im V ] = [ĉ(k), ŝ(k)] such that Eq.(3.9) can be

rewritten as [94,130]

θ̂(k) = arctan

[

ŝ(k)

ĉ(k)

]

(3.10)

Therefore, from the comparison between Eq.(3.9) and Eq.(3.10), we can define

V (k) , U−1(k)

k−1
∑

l=k−L

r(l)m̂∗(l), (3.11)

whereU(k) =
∑k−1

l=k−L |m(l)|2, a factor used to normalize the reference phasor (RP)
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3.1 The Principle of DA ML Phase Estimation

V (k). The quantities[ĉ(k), ŝ(k)], respectively, are the in-phase and quadrature outputs

of the receiver. In the form Eq.(3.10), it is clear that theπ-radian ambiguity ofarctan(·)

function is resolved by the signs ofĉ(k) andŝ(k) if an initial training data is sent to start

up the receiver. Figure 3.1 summarizes the receiver structure and the signal processing

operations involved in DA ML algorithm for eitherM-PSK orM-QAM signals.
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Figure 3.1: The structure of the DA ML receiver forM-ary PSK/QAM systems.

Compared to theM th-power scheme, the contributions of introducing the RP

V (k) in a phasor form are significant when implementing PE algorithms. In theM th-

power scheme, nonlinear operations are necessary, such asarctan(·) operation and

theM th power operation of the received signals [33]. Besides, due to the fact that

arctan(·) operation limits estimated phase referenceθ̂(k) to an interval(−π/M, π/M),

as already illustrated in Section 2.4.3, an additional stepof phase unwrapping hence

needs to be performed [4] to avoid cycle slips. In contrast, the DA ML PE only re-

quires linear computations and there is no phase ambiguity.Note that the feedback in

DA ML would be subjected to decision-feedback errors, thus possibly causing error

propagation. The impact of decision-feedback errors is found to be negligible when

BER is less than 10−3. A detailed comparison between DA ML and theM th-power

schemes will be given in Section 3.2.
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3.2 The Performance of DA ML in M-PSK and QAM

3.2 The Performance of DA ML in M -PSK and QAM

To investigate the performance of the derived DA ML PE, we carry out MC simulations

in differentM-PSK and 16-QAM formats. Differential encoding is employedat the

transmitter for preventing error propagation due to past decision errors.
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Figure 3.2: Receiver sensitivity penalties at BER=10−4 versus the linewidth per laser

and memory lengthL for different modulation formats: (a) QPSK, (b) 8PSK, (c) 16P-

SK and (d) 16-QAM. Bit rate @ 40Gb/s.

As a performance measure, the contour plots of the receiver sensitivity penalty
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3.2 The Performance of DA ML in M-PSK and QAM

at BER=10−4 are depicted in Figure 3.2 for different modulation formatswith respect

to the linewidth per laser and different memory lengthsL. The reference is the SNR

per bit (γb) in ideal coherent detection of differentially encodedM-PSK/16QAM with

perfect carrier PE. The referenceγb at BER=10−4 are 8.8 dB, 12.1 dB, 16.6 dB and

12.5 dB for QPSK, 8PSK, 16PSK and 16-QAM, respectively. Notethat a certain

minimum memory lengthL is necessary to approach the ideal coherent performance

even in the absence of phase noise. For a small laser linewidth, which means the

phase noise varies slowly, a longer memory lengthL is preferred to average out the

additive noise. As the laser linewidth increases, the optimal memory lengthL becomes

smaller, because rapidly changing phase noise becomes lesscorrelated over the long

memory length, compared to the case of shortL. Generally, a trade-off exists between

averaging over the additive noise and over the phase noise. If a 1-dB γb penalty is

acceptable, the optimal memory lengths are found to beL = 6 for PSK formats andL

= 12 for 16QAM. From the above results, the faster the phase noise varies the shorter

the memory lengthL to be used. This is called block length effect (BLE) phenomenon

that exists in both DA ML and theM th-power schemes [32]. One alternative is to use

an adaptive PE technique to achieve the optimal performanceby adaptively adjusting

the phase estimator input gain [133], which will be addressed in Chapter 4.

It is also obviously observed that requirements for laser linewidth is more rigid if

there are more phase states in the modulation format. The receiver sensitivity penalty

at BER=10−4 is shown in Figure 3.3 versus the ratio of the linewidth per laser to the

symbol rate (∆νTs), for the four modulation formats with optimal memory length L.

The limitations of the ratio of linewidth per laser to symbolrate leading to 1 dB-penalty

are found to be2.2 × 10−4, 3.0 × 10−5, 8.8 × 10−6 and2.5 × 10−5 for QPSK, 8PSK,

16PSK and 16-QAM, respectively, which correspond to 4.4 MHz, 400 kHz, 88 kHz

and 250 kHz linewidth for each laser at 40 Gbit/s. In order to show the performance

improvement, we compare our results with the one using the V&V M th-power scheme.
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Figure 3.3: Receiver sensitivity penalty at BER=10−4 versus the ratio of the linewidth

per laser to symbol rate∆νTs using DA ML. Note: 16QAM* denotes the penalty

from the V&V M th power scheme (optimal block length: 64); 16QAM+ represents

the penalty from the modifiedM th power scheme (optimal block length: 16).

The optimal length forM-PSK and 16-QAM formats are found to be 8 and 64 in

[32]. As indicated in Table 3.1, the performance of DA ML consistently outperforms

the conventional V&VM th-power scheme. This performance improvement of DA

ML over the V&V M th-power becomes more evident as the number of phase states

increases. The advantage of using DA ML is to avoid the contribution from the higher

powers (≥ 2) of additive noise present in theM th power scheme [94,130].

In addition, as indicated in Figure 3.2, the optimal memory lengthL for 16QAM

is comparable to the PSK formats. This improvement is due to the fact that all symbols

are used to estimate the RPV (k) in DA ML method, whereas only subgroup symbols

(Class I) with modulation phases ofπ/4+ nπ/2 (n=0, 1, 2, 3) can be utilized to deter-

mine phase estimate in the V&VM th-power scheme [32], as depicted in Figure 3.4.

As a result, the requirement on laser linewidth for the V&VM th-power becomes worse
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Figure 3.4: The Class I symbols (marked as red) in 16-QAM format are used inM th-

power PEs. The blue symbols located on the middle ring belongs to Class II.

Table 3.1: The maximum tolerance to linewidth per laser leading to a 1-dBγb penalty

at BER=10−4 for DA ML and V&V M th-power PEs (MC Simulations)

QPSK 8PSK 16PSK 16-QAM

DA ML 4.4 MHz 400 kHz 88 kHz 250 kHz

V&V M th-power 4.4 MHz 330 kHz 50 kHz< 12.5 kHz

than our DA ML algorithm (Figure 3.3). The tolerance to laserlinewidth using DA M-

L is increased by more than 10 times in 16-QAM format comparedto the one using

V&V M th-power, as listed in Table 3.1. Additionally, a modifiedM th-power scheme

has been proposed in [34, 35], wherein all symbols are exploited to estimate carrier

phase in QAM systems. Figure 3.3 shows that its performance is comparable to DA

ML algorithm (the optimum block length of the modifiedM th-power is found to be

16 in our simulation). However, the complexity of the modified M th-power scheme

is relatively large through acquiring the phase information in those symbols belonging
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3.3 Performance Evaluation of DA ML

to the middle ring of QAM constellation (Class II): i)M th-power and phase unwrap-

ping are necessary. It can be observed that the modified scheme needs at least two

phase unwrapping processes, which are involved in the PE using Class I symbols and

Class II symbols; ii) the symbol decision and rotation are required in the sub-group

partition stage, which determines the sign of phase rotation ± arctan 1/3 when esti-

mating carrier phase [33]. Instead, DA ML PE is computationally linear and simple to

be implemented without involving any nonlinear computation and sub-step. Table 3.2

summarizes the complexity comparison between DA ML and V&VM th-power PEs.

In short, the proposed DA ML algorithm not only has a better performance than the

conventionalM th-power PEs, but requires less computational complexity.

Table 3.2: The Complexity Comparison between DA ML and V&VM th-power PEs

with Memory LengthL

Complex Complex Phase Argument

Multiplication Addition Unwrapping Operation

DA ML 2L1 L− 1 No No

V&V M th-power (M − 1)L L− 1 Yes Yes

3.3 Performance Evaluation of DA ML

3.3.1 Analysis of Phase Error

Phase error variance is usually used to evaluate the performance of PE algorithms. Not

only can it provide an insightful investigation on the impacts of different parameters

on the performance of PE algorithms, but it also indicates how to achieve the ultimate

12L denotes that2L numbers of multiplications.
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optimal performance [4,134]. The phase error is defined as [134]

∆θ(k) = θ(k)− θ̂(k), (3.12)

where θ̂(k) refers to the phase reference obtained from PE algorithms. In DA ML

PE, the phase referencêθ(k) is the argument of RPV (k), i.e., θ̂(k) = arg V (k). For

simplicity, we first assume that the receiver decision is correct (m̂(l) = m(l)) in a

constant-amplitudeM-PSK system. Replacingr(l) in Eq.(3.11) with Eq.(3.1), the

phase referencêθ(k) is yielded into

θ̂(k) = arg

[

k−1
∑

l=k−L

exp (jθ(l)) + n′(l)

]

, (3.13)

wheren′(l) ≡ n(l)/|m(l)|2 having a statistics with zero mean and varianceσ2
n′ = 1/γs.

Note that real factors in Eq.(3.13) have been removed since they do not affect the

argument value of a complex.

By pulling out the phaseθ(k − 1) out of the bracket in Eq.(3.13), the phase refer-

enceθ̂(k) can be re-written as [37]:

θ̂(k) = θ(k − 1) + arg

[

k−1
∑

l=k−L

exp (jθ(l)− jθ(k − 1)) + n′(l) exp (jθ(k − 1))

]

= θ(k − 1) + arg

[

k−1
∑

l=k−L

exp

(

−j
k−1
∑

i=l+1

ν(i)

)

+

n′(l) exp (jθ(k − 1))

]

. (3.14)

Here, the discrete Wiener laser phase noiseθ(k) is modeled by [4]

θ(k) =

k
∑

m=−∞
ν(m), (3.15)

whereν(m)’s are independent, identically distributed, Gaussian random variables with

mean zero and varianceσ2
p. Since|

∑k−1
i=l+1 ν(i)| ≪ 1, the approximation1 + jx ≈
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exp (jx) is applied, thus giving

k−1
∑

l=k−L

exp

(

−j
k−1
∑

i=l+1

ν(i)

)

≈
k−1
∑

l=k−L

(

1− j
k−1
∑

i=l+1

ν(i)

)

= L− j

L−1
∑

p=1

(L− p)ν(k − p)

≈ L exp

(

−j 1
L

L−1
∑

p=1

(L− p)ν(k − p)

)

. (3.16)

Substituting the approximation Eq.(3.16) into Eq.(3.14),the phase referencêθ(k) is

now simplified into

θ̂(k) ≈ θ(k − 1)− 1

L

L−1
∑

p=1

(L− p)ν(k − p) + arg

[

1 +
1

L
n′′(l)

]

, (3.17)

where

n′′(l) ≡ n′(l) · exp
(

jθ(k − 1)− j
1

L

L−1
∑

p=1

(L− p)ν(k − p)

)

. (3.18)

Note thatn′′(l) is statistically identical ton′(l) because of circularly symmetric char-

acteristics ofn′(l). The remaining argument in Eq.(3.16) can be further re-written into

the form as follows by using this approximation thatarg [1 + x] ≈ Im[x] for |x| ≪ 1:

θ̂(k) ≈ θ(k − 1)− 1

L

L−1
∑

p=1

(L− p)ν(k − p) +
1

L
Im[n′′(l)]. (3.19)

Therefore, the phase error is derived as [37]

∆θ(k) ≈ 1

L

L−1
∑

p=0

(L− p)ν(k − p)− 1

L
Im[n′′(l)]. (3.20)

Due to the independence between additive noise and phase noise, Eq.(3.20) leads to a

Gaussian approximation for∆θ(k) with moments [37]:

E [∆θ(k)] = 0, (3.21)

E
[

∆θ(k)2
]

=
2L2 + 3L+ 1

6L
σ2
p +

1

2L
σ2
n′ . (3.22)
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MC simulations are performed to verify the derived phase error in M-PSK for-

mats. Figure 3.5 proves that the mean of the phase error is zero. Besides, the PDF of

the phase error in DA ML can be well approximated by a Gaussiandistribution up to

the probability of10−6 even thoughγs is only 5 dB. The small difference at the tails is

due to the limited samples (106) in MC simulations. Figure 3.6 shows that the standard

deviation (STD) of the analytical phase error variance, where ideal decision feedback

is assumed, i.e.,̂m(k) = m(k). Excellent agreement can be observed between MC

simulations and the analytical approximation at differentmemory lengthL. This in-

dicates that we can rely on the analytical phase error to evaluate the performance of

differentM-PSK systems when using DA ML PE.

It is seen from Eq.(3.22) that the contribution of phase noise to the variance of

phase error∆θ is enhanced as memory lengthL increases, while the impact of addi-

tive noiseσ2
n′ is reduced. The expression for the variance of phase error∆θ explains

the tradeoff that is discussed previously based on those MC simulation results. As il-

lustrated in Figure 3.6, the STD of phase error atL=15 is much smaller than the one

using DA ML withL=5 at low and moderate SNR levels, whereas short memory length

becomes better to track phase noise at high SNR in which phasenoise is dominant over

additive noise, as explained in Section 3.2.

From Eq.(3.22), an optimalL can be obtained to give the minimum variance of

phase error∆θ and, hence, the smallest BER:

Lopt =

⌊

1

4

√

1 + 24
σ2
n′

σ2
p

− 3

4

⌋

, (3.23)

where⌊x⌋ denotes the largest integer less than or equal tox. It is seen from Figure 3.6

that DA ML with optimal memory lengthLopt always delivers a minimal phase error

variance, thus leading to the optimal BER performance.

In addition, though the analysis here is developed from constant-modulusM-PSK

formats, these conclusions are also applicable inM-QAM formats due to the average
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overL symbols [135]. MC simulations in Figure 3.7 verify that the analytical phase

error variance Eq.(3.22) is sufficient to characterize the performance of DA ML in any

order of QAM formats.
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Figure 3.7: The STD of the phase error of DA ML PE (L = 10) obtained from analysis

(line) and MC simulations (marker ’+’).σ2
p = 1× 10−4 rad2.

3.3.2 Impact of Decision Errors on DA ML

In the above simulations, the decision feedback is assumed to be error free. In fact,

this is not valid any more since there exist bit errors when receivers normally operate

at a low or moderate SNR to reduce power consumption and avoidfiber nonlinearity.

As illustrated in Figure 3.8, if RPV (k) deviates from the correct one byπ/2 rad or

more, due to incorrect decision feedback from previous decision errors, those subse-

quent received signalsr(k)’s would be constantly rotated byπ/2 or more, resulting in

cycle slips and error propagation in coherent detection of QPSK signals [72]. Although

feedforwardM th-power schemes are not affected by decision errors, theirphase am-

biguity still causes catastrophic error propagation [4]. Such problem can be avoided
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by using differential encoding (DE) [124] as the phase difference between two consec-

utive symbols is independent of a constant phase offset of RPV (k), though there is a

DE-induced performance penalty. For example, the BER of a DE-BPSK increases by

a factor of 2 at high SNR compared to a non-DE BPSK format [62].This performance

penalty can be even larger if fiber nonlinearity is present. Alternatively, periodic pilots

can be inserted to data sequence for the sake of correcting the possibly deviated RP and

thus phase offset [72]. Pilot is very efficient and does not take up much extra power

when pilots and data length are carefully selected.
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Figure 3.8: Effect of a RPV (k) error on the symbol decision in a QPSK constellation.

DB: decision boundary;r(k): received signal;Es: symbol energy.

The impact of decision error is further studied using MC simulations, as depicted

in Figure 3.9. Frequently occurring decision errors1 would keep rotating RPV (k)’s

from their correct ones, thus causing phase jumping and large STD of phase error in

DA ML. If neither DE nor pilots are employed in the system, error propagation will

occur in non-differential-encoded (NDE) systems [4]. As explained above, because

DE-QPSK is independent of constant phase offset of RPV (k), DE is able to avert

1In real optical system, the acceptable BER is about4.5 × 10−3 with the current commercial FEC

decoder whose output error less than1× 10−15 [136].
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catastrophic error propagation (see Figure 3.9). It is worth noting that the BER of

DE-QPSK is slightly worse than NDE-QPSK when BER is lower than 10−3, where

infrequently decision errors are not critical any more. DE is usually applied in coherent

M-PSK/QAM simulations and experiments to prevent error propagation due to its

simplicity [24]. In our thesis it is still called coherentM-PSK/QAM instead of DE

M-PSK/QAM for short notation unless specified clearly in certain context.

3.3.3 Analytical Performance of DA ML in Non-DE M-PSK/QAM

In view of the good agreement between MC simulations and analytical results, we

can now resort to analytical tools which are more efficient and powerful compared to

extensive MC simulations to evaluate the performance of DA ML.

In the presence of a phase error∆θ, the BERPb(e) of M-PSK/QAM can be
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numerically evaluated as [62]

Pb(e) =

∫ π

−π

Pb(e|∆θ)p(∆θ)d∆θ, (3.24)

wherePb(e|∆θ) stands for the BER of differentM-PSK/QAM signals conditioned on

a fixed value of the phase error∆θ, andp(∆θ) is the PDF of the phase error∆θ, as

given in Eqs.(3.21) and (3.22) for DA ML PE.

The well-known expressionPb(e|∆θ) of BPSK, QPSK and 8PSK can be found in

many literatures [137–139], which are listed as:

Pb(e|∆θ) =
1

2
erfc(

√
γb cos∆θ) (3.25)

for BPSK, where erfc(x) = 2/
√
π ·
∫ +∞
x

exp (−t2)dt;

Pb(e|∆θ) =
1

4

[

erfc
(√

γs sin
(π

4
−∆θ

))

+ erfc
(√

γs sin
(π

4
+ ∆θ

))

]

(3.26)

for QPSK; and

Pb(e|∆θ) + Pb(e| −∆θ)

=
1

3
erfc

[√
γs sin

(π

8
−∆θ

)]

+
1

3
erfc

[√
γs sin

(π

8
+ ∆θ

)]

+
1

6
erfc

[√
γs cos

(π

8
−∆θ

)]

· erfc
[√

γs sin
(

∆θ − π

8

)]

+
1

6
erfc

[√
γs cos

(π

8
+ ∆θ

)]

· erfc
[

−√γs sin
(

∆θ +
π

8

)]

(3.27)

for 8PSK. Note that the integration range in Eq.(3.24) for 8PSK is reduced to[0, π)

since a pair ofPb(e|∆θ) andPb(e| −∆θ) are used in Eq.(3.27).

Recent researches in optical communication have focused onother high-order

modulation formats, such as 16-PSK and 16-QAM [59, 120], capable of further in-

creasing SE. It is worthy of investigating the tolerance of such systems to phase noise.

Here, we have derived thePb(e|∆θ) expressions for 16-PSK and 16-QAM in the pres-

ence of the phase error∆θ [135], as described elaborately in Appendix C.
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and 16QAM formats through numerical integration and MC simulations with the opti-
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To justify the validity of the analytical BER evaluation, the BER performances

of DA ML in different modulation formats are examined using MC simulations when

σ2
p = 1 × 10−4 rad2, as demonstrated in Figure 3.10. Note that the optimum memory

lengthL of DA ML is selected by minimizing the phase error variance ineitherM-PSK

(M=2, 4, 8, and 16) or 16-QAM format. MC simulation results conform well to the

numerical integration of Eq.(3.24) when the statistics of the phase error∆θ in DA ML

PE is applied. The excellent agreement indicates that the analytical performance can

be utilized to investigate the performance of DA ML in different modulation formats,

such as laser linewidth tolerance. Note that the analysis here does not take into account

the error propagation in the non-DE format. It is because we are interested in the BER

level less than10−3, where the error propagation is not of big concern for decision-

feedback algorithms.
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3.4 Implementation of DA ML Algorithm

The implementation of DA ML algorithm can be realized using either serial [94] or

parallel [140] structure. Serial structure is simple but requires high-speed processing

CMOS units, which are difficult to be fabricated based on the states-of-arts technolo-

gies. As a result, parallel processing is preferred in high-speed receivers to avoid the

bottleneck of CMOS processor speed, and thus reduce the costof receivers [141]. In

this section, we will simplify the serial processing for BPSK and QPSK formats. The

performance DA ML algorithm is then investigated in a parallel structure.

3.4.1 Simplified Serial Structure

As for BPSK, the decision statistic Eq.(3.7) can be reduced to

qd(k) = sgn(Re [r(k)V ∗(k)]) , (3.28)

due toC∗
i ∈ ±A0, which can be easily implemented using a slicer with the realpart

of r(k)V ∗(k) as input. Here sgn(·) is a sign function. In the case of QPSK format, the

decision statistic is equivalently expressed as

qd(k) = argmaxRe [2 exp (jπ/4)r(k)V ∗(k)C∗
i exp (−jπ/4)]

= argmaxRe [µ(k)m′∗(k)] . (3.29)

Here,µ(k) ≡ 2 exp (jπ/4)r(k)V ∗(k), andm′(k) ≡ C∗
i exp (−jπ/4) ∈ (±1± j)A0/

√
2 are rotated symbols in a 45◦-tilted QPSK constellation. The scale factor of 2 in

Eq.(3.29) does not affect the decision rule, because the decision statistics take indexi

only when the real part is the maximum. The scaling will guarantee a simple imple-

mentation of DA ML algorithm, as illustrated in the following steps. It can be observed

that the decision in Eq.(3.29) over the tilted constellation reduces to decisions on the
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signs of the real and imaginary parts ofµ(k) [142]:

m̂′(k) =
sgn(Re[µ(k)]) + j · sgn(Im[µ(k)])√

2
. (3.30)

The decision on variablesRe[µ(k)] andIm[µ(k)] can be implemented using two sign-

decision devices or two slicers. Althoughm′(k) is a complex rotated signal which is

different from the previousm(k), the gray bit mapping of the QPSK signals is still

preserved after symbol decision:

√
2m̂′(k) = ±1± j ∈

√
2 exp (jπ/4){1, j,−1, j} ←→ {00, 10, 11, 01}. (3.31)

As forM-PSK/QAM (M > 4), the decision rule cannot be easily simplified into taking

the sign of the decision statistics. An alternative is to usehigh-speed ADCs to conduct

the decision statistics in Eq.(3.7) or Eq.(3.8) in DSP processors, which also make the

real-time implementation ofM-PSK/QAM(M > 4) more difficult compared to BPSK

and QPSK formats.
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Figure 3.11: A simplified serial structure of DA ML algorithmfor QPSK format (L=2).

D: Time delay. Note that the input complex signal is formed byits real and imaginary

parts.

Here, we use the analog devices to implement the simplified serial DA ML struc-

ture for BPSK/QPSK modulated signals. By considering the QPSK simplified decision
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3.4 Implementation of DA ML Algorithm

statistics in Eq.(3.29), decision variableµ(k) should be fed into the slicer to decode the

received signals, so a four-quadrant complex multiplexer (CM) is required to perform

multiplications of the form [94]:

µ(k) = (Re [2 exp (jπ/4)r(k)] + j · Im [2 exp (jπ/4)r(k)])

· (Re [V ∗(k)] + j · Im [V ∗(k)]) , (3.32)

where the term2 exp (jπ/4)r(k) = (1+j) ·(Re[r(k)]+jIm[r(k)]) can be realized by

using complex-controlled inverters (CCIs), whose controlbit inputs are fixed to{1, 1}.

The transfer function of a CCI is given by

yre
out(t) = (2b̄0 − 1)xre

in − (2b̄1 − 1)xim
in ,

y im
out(t) = (2b̄1 − 1)xre

in − (2b̄0 − 1)xim
in , (3.33)

where{xre
in, x

im
in } are the real and imaginary parts of input signals to the CCI and

{yre
out, y

im
out} are the counterparts of its output signals,{b̄0, b̄1} are the control bits (binary

inverted) to realize the multiplication between±1± j andxre
in + jxim

in [142]. Since CCI

is a specialized complex multiplier with±1 ± j, its implementation is considerably

simpler than that of a general four-quadrant CM. Furthermore, the decision-feedback

RPV (k) is generated by the decision-feedback loop, which consistsof 2L time delay

(T ) of the slicer output. Since

√
2V ∗(k) =

[

k−1
∑

l=k−L

√
2r(l)m̂′∗(l)

]∗

=

k−1
∑

l=k−L

√
2r∗(l)m̂′(l) exp (−jπ/4)

=
k−1
∑

l=k−L

[r′(l)]∗m̂′(l), (3.34)

phase referenceV ∗(k) can be obtained by two adders andL CCIs. V ∗(k) times the

rotated received signalr′(k) =
√
2r(k) exp (jπ/4) to generate the decision variable

µ(k), which is the input signal to the slicer for decoding the received signalr(k).

From the previous explanations, the scale factor of 2 is split into two factors of
√
2
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so thatr′(k) can be generated through a simple CCI not a four-quadrant CM,in order

to reduce the complexity. As for BPSK signals, the difference is that the received

r(k) does not require a 45◦ rotation and the slicer can decode the received signals

based on the real part ofr(k)V ∗(k). A simplified structure of DA ML algorithms for

QPSK format with memory lengthL = 2 is plotted in Figure 3.11. Note that this

QPSK DA ML serial structure with memory lengthL comprises2L + 1 CCIs, 4L

time delays, two adders, one CM and one slicer. A similar structure for differentially

encodedM-PSK signals is shown in [142] in conjunction with several pairs of optical

delay interferometers (ODIs) with respective time delays and phase shifters. However,

such a receiver structure with a window lengthD needsD-1 pairs of complex ODIs,

and it requires data be differentially encoded. In our receiver structure, there is no

requirement for data to be differentially encoded, thus delivering a better performance.

3.4.2 Parallel Structure

The current speed of a CMOS processor is limited to less than afew GHz. As a result,

a parallel structure is necessary in 10 Gbit/s and higher optical systems to split ultra-

high-speed data stream into several lower-speed branches,in which CMOS processors

can implement DSP algorithms online [143]. Current commercial FPGA chips are able

to deliver up to 2.8 Tb/s serial bandwidth [144]. It is desirable to have no feedback

in the PE scheme for real-time operation [141]. In this subsection, we will propose

a parallel DA ML PE for real-time processing, and will examine its performance in

differentM-PSK formats.

The serial DA ML structure suggested in Section 3.4.1 can only operate at symbol

rate, thus making it difficult to implement by using current commercial CMOS proces-

sors. Here, we use the same RP from previous frame to adapt ourDA ML to a parallel

implementation, as shown in Figure 3.12. Since the whole DA ML PE algorithm can-
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Figure 3.12: A schematic of a parallelized DA ML receiver with pipeline stagesl=4.

Conj(·) stands for a complex conjugation, and
∑

denotes summation of all its inputs.

not be realized completely within one clock cycle, those intermediate results need to be

stored in registers (represented by black square boxes in Figure 3.12). This process is

called pipelining [141]. The high-speed data stream is de-multiplexed intop branches,

whose signals are rotated using the same RP from the previousp symbols [140], i.e.,

V =
∑k−(l+1)p+1

i=k−lp r(i)m̂∗(i), when taking into accountl pipeline stages. Note that the

received signalsr(k)’s andV are first conjugated to save conjugation operations in the

parallel structure, as illustrated in Figure 3.12. A pipelining stage ofl = 4 is found to

be sufficient for a parallel DA ML PE [140].

It can be observed that this common RPV is used for the entirep symbols in

each frame. The performance will be degraded due to this delayed phase tracking,

compared to the symbol-rate one in Section 3.4.1. The phase error ∆θ of the parallel

DA ML is analytically investigated on the center symbol, i.e., r(k− (p− 1)/2), which

thus accounts for an average performance over the entirep branches. The phase error

in the parallel DA ML is defined as

∆θ ≡ θ(k − (p− 1)/2)− arg V. (3.35)

Following the same approach as described in Section 3.3, theargument of the RPV in
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the parallel DA ML can be written as

θ̂ ≡ arg V = arg





k−(l+1)p+1
∑

i=k−lp

{exp [jθ(i)] + n′(i)}



, (3.36)

which is further simplified into [140]

arg V ≈ θ(k − lp)− 1

p

p−1
∑

i=1

(p− i)ν(k − lp− i+ 1) +
1

p

k−(l+1)p+1
∑

i=k−lp

Im[n′(i)]. (3.37)

Consequently, the phase error variance of the parallel DA MLis easily derived as

E
[

∆θ2
]

=
(6l − 1)p2 + 1

6p
σ2
p +

1

2p
σ2
n′. (3.38)

To justify our analysis results, both the mean and the variance of the phase error

are measured using MC simulations inM-PSK formats. In our simulations, the vari-

ance and mean of phase errors are obtained by averaging over those entirep branches.

The assumption on the zero-mean phase error is found to be still reasonable even at a

large parallelism degree (p =20) and the number of pipelines (l =20), and linewidth as

high as 20 MHz per laser at 10 GSymbols/s for illustration. The parallelism degree (p

=10) and the number of pipelines (l =4) are selected at 10 GSymbols/s. As shown in

Figure 3.13, the average phase error variance from MC simulations conforms well to

the analytical results based on the center symbol despite anincreasing laser linewidth.

The feedback delay of the parallel DA ML can be defined as∆T = (l − 1) · p +

(p+1)/2 [141]. It can be observed from Figure 3.14 that there exists an optimum delay

∆T for each pair ofσ2
p andσ2

n′, and the number of pipeline stages (l), thus minimizing

the variance in Eq.(3.35). The results point out that a certain degree of parallelism

is actually beneficial to the performance of a parallel DA ML.Besides, it is found

from Eq.(3.35) and Figure 3.14 that the number of pipeline stages (l) affects the phase

error more seriously than parallelism degree (p), because the phase error is linearly

proportional to the number of pipeline stages.
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Figure 3.15: The SNR per bit (γb) penalty at BER=10−4 versus different parallelism

degrees (p) in a 40 Gbit/sM-PSK system with 100 KHz linewidth of each ECL (l =5).

In addition, we performed BER analysis in 40 Gbit/s BPSK, QPSK and 8PSK

systems by using the approach illustrated in Section 3.3. The linewidth of each laser

is assumed to be 100 KHz for emulating external cavity lasers(ECL), andl=5 as sug-

gested in [141] for realistic reason. Theγb penalty at BER=10−4 as a function of

parallelism degree (p) is plotted in Figure 3.15. The SNR per bit (γb) penalty is with

respect to ideal coherent detection of eachM-PSK with perfect PE, given by

γb =
1

log2M

[

erfc−1(log2M · BER)
sin (π/M)

]2

(3.39)

for M-PSK withM > 4. Note that the well-known BER of BPSK and QPSK in the

absence of phase error is given byγb = [erfc−1(2 · BER)]2. It is seen from Figure 3.15

that the performance degradations of a parallel DA ML in BPSKand QPSK are limited

within 0.2 dB and 0.5 dB, respectively. However, the penaltyrises sharply in 8PSK

and even high-order formats. One reason is that higher-order M-PSK is more sen-

sitive to phase noise, thus imposing a rigid feedback delay of DA ML algorithm. In
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general, the parallel DA ML is feasible for coherent real-time receiver provided that

laser linewidth, the degree of parallelism (p) and the number of pipelining stages (l)

are carefully selected.

3.5 Filtering Effect

Although significant researches have been carried out to analyze PEs in coherent de-

tection [4,37,127], they did not take into account filteringeffect as suggested in [145].

In communication theory, the matched filter would offer highSNR at the sampling

point [62], thus ensuring better receiver sensitivity. In this section, the filtering pro-

cess of DA ML algorithm is studied by assuming a matched filterat the receiver side.

Therefore, the filteredM-PSK signal can be represented by [138]

r(k) =
√

Es exp [jφs(k)] ·
∫ (k+1)T

kT

exp [jϕ(t)]

T
dt+ n(t), (3.40)

whereϕ(t) is the laser phase noise that is a Wiener process withE[ϕ(t)] = 0 and

E[ϕ(t1)ϕ(t2)] = σ2
0 min(t1, t2), andσ2

0 = 2π(2∆ν). Here, the matched filter is as-

sumed to have a rectangular pulse shape.

Replacingr(l) in the RPV (k) given in Eq.(3.11) with Eq.(3.40), it yields into

V (k) =
1

L
√
Es

k−1
∑

l=k−L

z(l) + exp [−jφ̂s(l)]n(l), (3.41)

where

z(l) ≡
√

Es exp [jϕ(lT )] ·
∫ (l+1)T

lT

exp [jϕ(t)− jϕ(lT )]

T
dt. (3.42)

To facilitate the analysis here, the phase-noise exponent commutation theory in [145]

is applied to give the subsequent approximation:

z(l) =
√

Es exp [jθ(l)] · exp
[

j

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt

]

=
√

Es exp [jθ(k)] · exp
[

−j
k
∑

i=l+1

ν(i) + j

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt

]

. (3.43)
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Here,θ(l) ≡ ϕ(lT ) = θ(l − 1) + ν(l), andθ(l) = θ(k) −
∑k

i=l+1 ν(i). The additive

noise terms are not taken into account temporally for simplicity. In fact, the additive

noise term can be simply added into the final equation as described in [37], and will be

included later. Using the similar approach as illustrated in Section 3.3, the argument

of the RPV (k) in the presence of the matched filter can be expressed as

θ̂(k) ≡ arg V (k) = θ(k) + arg

[

k−1
∑

l=k−L

exp

[

−j
k
∑

i=l+1

ν(i) + j

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt

]]

≈ θ(k) + arg

[

k−1
∑

l=k−L

[

1− j

k
∑

i=l+1

ν(i) + j

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt

]]

≈ θ(k) +
1

L

k−1
∑

l=k−L

[

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt−

k
∑

i=l+1

ν(i)

]

. (3.44)

Thus, the statistic of the phase error variance becomes

E
[

(∆θ(k))2
]

= E





1

L2

(

k−1
∑

l=k−L

[

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt−

k
∑

i=l+1

ν(i)

])2


 . (3.45)

The details to derive the final expression of the phase error variance can be found in

Appendix D, where the phase error variance is shown as

E
[

(∆θ(k))2
]

=
L

3
σ2
p +

1

2Lγs
. (3.46)

Recalling that the phase error variance without filtering is2L2+3L+1
6L

σ2
p+

1
2L
σ2
n′ , as given

in Eq.(3.22). It is found that the phase error variance with filtering is smaller than the

one without filtering (refer to Figure 3.16). This may be due to the fact that filtering

makes the phase noise vary slower. The result shows that filtering is helpful to mitigate

the impact of phase noise on coherent receivers. In addition, a longer memory length

L is able to reduce the phase error difference between the DA MLwith and without

matched filtering but in the sacrifice of enhancing absolute phase error variance due to

the BLE phenomenon.
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Figure 3.16: The difference between the STD of phase error with and without a

matched filtering at different memory lengthL (γs = 10 dB).

3.6 Experiment

An experiment was conducted to verify the performance of theintroduced DA M-

L algorithm. An 8-channel 42.8-Gbit/s WDM coherent PolMux-QPSK system setup

is shown in Figure 3.17 [146]. Note that 7% overhead accountsfor the FEC over-

head in 40 Gbit/s data transmission, resulting in total 42.8Gbit/s per channel. A

42.8-Gbit/s PolMux-QPSK transmitter modulated eight 100 GHz-spaced tunable E-

CLs with linewidth about 100 kHz. The PolMux-QPSK transmitter consisted of an

IQ-modulator, an additional MZM as a pulse carver, and a polarization-multiplexing u-

nit. The IQ-modulator was driven by 10.7 Gbit/s215-1 pseudo random binary sequence

data, while the MZM carved the optical pulse into 50%-RZ-QPSK signals. Note that

the two polarization states of 21.4 Gbit/s data signals werede-correlated by intro-

ducing different bit delays with respect to each other in a polarization-multiplexing

unit. The transmission link comprised 10 spans of 80 km standard SMF (average
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Figure 3.17: Experimental setup for an 8-channel WDM 42.8 Gbit/s coherent PolMux-

QPSK system. AWG: arrayed waveguide grating; PC: polarization controller; VOA:

variable optical attenuator.

span loss around 17.3 dB) and EDFA-only optical amplification. No dispersion com-

pensation fiber was used in this experiment. The total power (after the boost EDFA)

launching into the transmission fiber was kept at 9 dBm. At thereceiver end, the mea-

sured 42.8 Gbit/s signal was selected by one optical tunablefilter (OTF) with 0.5 nm

bandwidth. After down-converting the selected optical signal by a tunable ECL LO

(about 100 KHz linewidth) in a polarization-diversity coherent receiver, the outputs

from four single-ended photodetectors were sampled by using a 4-channel digital stor-

age scope with 50 GSamples/s sample rate. The captured data (1 million symbols)

was then post-processed using a desktop PC. A series of standard DSP algorithms as

illustrated in Section 2.4 of Chapter 2 were carried out involving CDC, polarization

de-multiplexing, FOE and so on. Note that the unequal optical spectrum (inset of

Figure 3.17) after transmission was due to the EDFA amplifierunequal gain profile.

Figure 3.18 (a) shows the back-to-back (B2B) BER performance of DA ML and

V&V M th-power as a function of OSNR in 0.1 nm for center channel 5 (1549.5 nm).

According to the SNR penalty contour in Figure 3.2, the optimal memory lengthL

should be greater than 5 to mitigate the impact of the major distortion from receiv-
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Figure 3.18: Experimental results: (a) measured B2B BER performance; (b) measured

BER performance after 800 km SSMF transmission

er additive noise. In our experiment,L was selected to be 21 when considering the

small laser linewidth of ECLs. As can be seen, the computationally-linear DA M-

L algorithm is able to achieve a comparable performance as the conventional V&V

M th-power at much lower computational complexity. The insetof Figure 3.18 depict-

s the recovered constellation of PolMux-QPSK signals usingDA ML. After 800km

standard SMF transmission, DA ML is still effective to recover the carrier phase by

observing Fig 3.18 (b). The results of other channels are omitted because of the simi-

lar performances. Although a larger laser linewidth tolerance is observed in Section 3.2

using DA ML compared with V&VM th-power, the laser around a few MHz was not

available in the lab such that the performance of laser linewidth tolerance cannot be

experimentally proved. Due to the limited resources, no QAMexperiments were car-

ried out to further demonstrate the advantages of DA ML overM th-power algorithm.

In addition, the data processing was performed in offline, thus making the compari-

son of time consumption not meaningful from this point of view. This comparison of

complexity has already proved in the Table 3.2 through rigidmathematics derivation.

In this experiment, linear phase noise is of particular interest to investigate. With
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high input power, nonlinear phase noise would become dominant in the system, which

will be examined in the next chapter. Moreover, the number ofchannels would not

affect the performance of phase estimation much if their channel spacing is 50 GHz or

above and the input channel power is low to keep fiber impairments within the linear

region. However, when the input power goes up, the XPM would introduce additional

phase noise to the testing channel. It would be desirable to apply additional DSP

algorithms, like XPM compensation [122], to address those nonlinear phase noise.

Those nonlinear compensation algorithms will be further elaborated in Chapter 5.

3.7 Conclusion

In this chapter, we have analytically introduced a computationally-linear DA ML PE

algorithm to recover the carrier phase instead of the conventional V&V M th-power,

which suffers from nonlinear computational complexity. Its performance was inves-

tigated in both analysis and MC simulations, and was found tohave a comparable or

even larger laser linewidth than the V&VM th-power algorithm. Only limited symbol-

s does the V&VM th-power utilize to estimate the carrier phase inM-QAM formats.

As a result, the laser linewidth tolerance is much smaller than DA ML, in which all

symbols are used. In addition, the memory lengthL plays an critical role in averaging

over additive noise and over phase noise, thus affecting theperformance of DA ML.

This is called block length effect: the optimal memory length L becomes smaller as

laser linewidth increases, because rapidly changing phasenoise becomes less corre-

lated over the long memory length compared to the case of short L, and vice versa.

Subsequently, the analysis was carried out to evaluate the phase error of DA ML in

different modulation formats, and pointed out that the optimal memory length of DA

ML is related to the ratio of laser phase noise and additive noise. With the knowledge

of the phase error variance of DA ML algorithm, we can analytically evaluate the per-
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formance of DA ML in different modulation formats. Generally, the analytical BERs

give the lower bound of the DA ML performance at high BER levels (> 10−3) due to

the fact that error propagation of non-DE modulation formats occurs from the frequent

decision errors.

Moreover, the issues of serial and parallel implementationof DA ML algorithm

were extensively studied. A simplified serial structure forBPSK and QPSK was p-

resented to reduce the complexity. As a result of the bottleneck of electrical CMOS

processors, it is desirable to implement algorithm in a parallel structure especially in

high-speed coherent optical receivers. The analysis showsthat parallel DA ML is quite

feasible in BPSK/QPSK formats whereas in higher-order formats the laser linewidth,

the degree of parallelism (p) and the number of pipelining stages (l) should be careful-

ly selected for on-line processing. The performance of DA MLPE in the presence of a

matched filter suggests that filtering is helpful to mitigatethe impact of phase noise on

coherent receivers, which may be attributed to the fact thatfiltering makes phase noise

vary slower. Finally, an experiment was carried out to demonstrate DA ML algorithm

in an 8-channel 42.8-Gbit/s WDM coherent PolMux-QPSK system.
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Chapter 4

Adaptive Decision-Aided Phase

Estimation

The proposed DA ML PE in Chapter 3 can outperform the conventional V&V M th-

power method; however, it suffers from the impact of BLE likeM th-power algorithm-

s [36]. Although the optimal memory lengthLopt can be determined when the statistical

information of laser phase noise and additive noise becomesknown to receivers [37],

as illustrated in Section 3.3, these parameters may not be available especially in recon-

figurable optical systems. In consequence, it is desirable that the phase estimator be

adaptive to estimate the carrier phase without the aid of such information, and without

BLE. We will introduce an adaptive DA PE in this chapter to meet the aforementioned

motivations.
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4.1 The Principle of Adaptive Decision-Aided Phase Estimation

4.1 The Principle of Adaptive Decision-Aided Phase Es-

timation

The adaptive DA PE algorithm has been proposed forM-PSK signals in the work

[133]. Here, we extend that work to include both constant-amplitude and non-constant-

amplitude signals, e.g., QAM. A first-order DA adaptive filter is introduced to assign

weightsα and1−α to the previous RPV (k) and the current RP, i.e.,r(k)m̂∗(k)|m̂(k)|−2,

respectively, so that the RP for demodulating the(k + 1)th symbol can be represented

as

V (k + 1) = αV (k) + (1− α)
r(k)m̂∗(k)

|m̂(k)|2

= αV (k) + (1− α)
r(k)

m̂(k)
. (4.1)

The filter gainα is chosen at each timek based on the observations{r(l), 0 ≤ l ≤ k}

to minimize the conditional risk functionR(k) [133], i.e., the conditional expectation

of the cost, where

R(k) = E

[

k
∑

l=1

|r(l)− V (l)m̂(l)|2
∣

∣

∣

∣

{r(l)}kl=1

]

. (4.2)

Minimizing R(k) for each sample of observations{r(l), 0 ≤ l ≤ k} results in min-

imizing the average riskE[R(k)]. The optimal value,̂α(k), of α at each timek, is

obtained by solvingdR(k)/dα = 0, given as [37]:

α̂(k) = A(k)/B(k), for k ≥ 1, (4.3)

where

A(k) =A(k − 1) + |m̂(k)|2 ·
[

|g(l− 1)|2 −Re

[

V (l − 1)g∗(l − 1)− g(l)·

[V ∗(l − 1)− g∗(l − 1)]
]

]

; (4.4)

B(k) = B(k − 1) + |m̂(k)|2 · |V (l − 1)− g(l − 1)|2. (4.5)
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Here, we haveg(k) ≡ r(k)m̂−1(k). The detailed derivation of̂α(k) is given in Ap-

pendix E. Since|m̂(k)| is constant inM-PSK modulation formats, it can be removed

simultaneously from the numerator and denominator of Eq.(4.3), yielding the same

adaptive gain derived in [133] forM-PSK signals. Of importance is that the numer-

ator and denominator in Eq.(4.3) are formed recursively, thus requiring little memory

and low computational complexity. In operating the adaptive filter Eq.(4.1), the initial

conditionα̂(0) = 0 is selected to give the maximum gain of one to the first received

signalr(0)m̂−1(0) (This is done by settingA(0) = B(0) = 1 as the initial conditions

in Eq.(4.3).). The subsequent weightsα̂(k) are then adaptively adjusted based on the

received signalsr(k) for k ≥ 1. An initial preamble ofK known symbols (training

data) is used to aid in acquiring a steady-state value ofα̂(k), enabling better tracking

of the phasorexp (jθ(k)).
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Figure 4.1: The trajectory of the filter gain̂α(k) with ideal decision feedback̂m(k) =

m(k) in a simulated QPSK system (σ2
p = 1× 10−3 rad2).

The trajectory of the first-order filter gain̂α(k) versusk for different SNRγb is

shown in Figure 4.1. Simulation shows that starting fromα̂(0)= 0, α̂(k) increases to

a steady-state value between 0 and 1, ask increases. Thus, the gain1 − α̂(k) on the
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4.1 The Principle of Adaptive Decision-Aided Phase Estimation

inputr(k)m̂∗(k)|m̂(k)|−2 decreases from one atk = 0 to a steady-state value less than

one. Figure 4.1 clearly shows that the higher the SNR, the smaller the valueα̂(k),

becauser(k)m̂∗(k)|m̂(k)|−2 gives much more information on the RPV (k + 1) than

the previous one at high SNR [37]. As SNR goes to infinity, the steady-statêα(k)

goes to zero, and the receiver becomes a differential detector. In this limit each signal

sampler(k) is almost noiseless, and it becomes unnecessary to do noise smoothing by

taking the weighted average of the past samples [133]. It canbe observed that the time-

varying gainα̂(k) is similar to the adaptive NLMS one-tap filter, though our adaptive

DA receiver requires no preset parameters like the step sizein the NLMS scheme. The

generalized adaptive DA receiver not only inherits the merits of the DA ML receiver:

no phase unwrapping and nonlinear operations, but also operates without the statistical

knowledge of phase noise and additive noise. These characteristics make the adaptive

receiver very suitable in a reconfigurable network.
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Figure 4.2: The adaptation process ofα̂(k) from actual decision-feedback, ideal

decision-feedback (̂m(k) = m(k)), and optimalα̂o Eq.(4.12), in a 16QAM system

atγs=15 dB.2∆νT = 5× 10−5. α̂(k) is obtained by averaging over 500 runs.

The impact of decision errors on the performance of the adaptive DA algorith-
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m is illustrated in Figure 4.2. After an initial 50-symbol training period, the adap-

tive DA algorithm switches to a decision-directed mode. As can be seen from Fig-

ure 4.2, the decision errors make the adaptation process slower than the ideal decision-

feedback case, where the decisionm̂(k) is identical to the transmitted one, i.e.,m̂(k) =

m(k). It can be observed that the risk functionR(k), ignoring the additive noise

term for high SNR, becomes
∑k

l=1 |1− exp (jǫ(l))|2 ≈
∑k

l=1 |ǫ(l)|
2, by using the

approximation1 + jx ≈ exp (jx) for |x| ≪ 1, in the case of ideal decision feed-

back. Note that the phase tracking errorǫ(l) in the adaptive DA algorithm is de-

fined asǫ(l) = θ(l) − θ̂(l). As a result, the adaptive filter tracks the carrier phase

by minimizing phase errors. However, decision errors in theactual decision feed-

back mode degrades the tracking performance by modifying the above risk function

into
∑k

l=1 |m(l)/m̂(l) exp (j∆φs(l))− exp (jǫ(l))|2, leading to a longer tracking pro-

cess to reach the steady-state value ofα̂(k) than that in the ideal decision feedback

case [37]. The phase difference∆φs(l) is the signal phase error due to the symbol

decision error, i.e.,∆φs(l) = φs(l)− φ̂s(l).

4.2 Performance Investigation

The performance of the adaptive DA algorithm is evaluated using analysis and M-

C simulations inM-PSK/QAM formats. In addition, the performance of DA ML is

plotted for comparison.

4.2.1 MC Simulations

Figure 4.3 shows the BER performance in a QPSK system for DA MLwith the op-

timum memory length (L = 6) for M-PSK formats, as suggested in the Section 3.2

of Chapter 2 and the adaptive DA algorithm. Note that one of the advantages of our
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Figure 4.3: Performance comparison in a QPSK system among the three different

PE algorithms: DA ML (L = 6, 14) and the adaptive DA algorithm. Ideal coherent

detection and differential detection are also indicated for comparison. Linewidth per

laser: 5 MHz @40 Gb/s.

adaptive DA algorithm is its self-adaptation capability without specifying any preset

parameters. When the linewidth of each laser is 5 MHz, the adaptive DA algorithm has

a significant performance improvement over the optimal DA ML. It is noted that the

selection of the memory lengthL in DA ML is pivotal to determine its BER perfor-

mance. For instance, DA ML withL = 14 performs very worse due to the fast-varying

phase noise. However, the adaptive DA algorithm does not suffer from the BLE as in

DA ML algorithm. Only 50 training data is necessary for the receiver to acquire chan-

nel characteristics. In addition, as illustrated in Figure4.3, the adaptive DA algorithm

can approach the performance of ideal coherent detection even if the laser linewidth is

as large as 5 MHz per laser!

The performance comparisons in 16-QAM systems are illustrated in Figure 4.4,

where the linewidth is assumed to be 250 KHz for each laser andthe optimalL is 12 for

DA ML. As can be seen, DA ML with optimalL can even outperform the adaptive DA
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Figure 4.4: Performance comparison in a 16-QAM system between the DA ML (L =

4, 12) and the adaptive DA algorithm. Linewidth per laser: 250KHz @40 Gbit/s.

receiver in 16-QAM system, though the performance improvement is not consistent. It

can be observed that the adaptive DA receiver gradually outperforms DA ML (L= 12)

when BER is less than10−7. This observation indicates that DA ML cannot always

be optimal due to its BLE, as explained in Section 3.2. Despite the small performance

degradation (< 0.1 dB compared to DA ML with optimalL = 12) for γb less than

16.5 dB, the adaptive DA algorithm can avoid the exhaustive search for the optimal

memory lengthL in DA ML algorithm. This feature renders the adaptive DA receiver

more suitable than DA ML in a reconfigurable optical system. It is worth pointing

out that DA ML with optimal memory lengthL in M-QAM formats is capable of

outperforming the adaptive DA algorithm at low and moderateSNR.

The maximum tolerance to the laser linewidth leading to a 1-dB γb penalty at

BER = 10−4 is listed in Table 4.1 for each modulation format. As can be seen, the

adaptive DA algorithm can improve the laser linewidth tolerance inM-PSK systems.

Also, we note from our simulation results that the adaptive receiver is consistently the

best inM-PSK modulation formats, whether with a small laser linewidth or a large

86



4.2 Performance Investigation

Table 4.1: Linewidth per laser tolerance at 1-dBγb penalty for DA ML and the adaptive

DA algorithms at BER=10−4 and 40 Gbit/s.

QPSK 8PSK 16PSK 16-QAM

DA ML 4.4 MHz 400 KHz 88 KHz 250 KHz

Adaptive DA 5 MHz 547 KHz 95 KHz 200 KHz

one. This shows the adaptive DA algorithm can effectively operate in a time-varying

and reconfigurable system without having to specify the memory length or search for

the optimal one. Note that the laser linewidth tolerance of the adaptive DA algorithm

is outperformed by DA ML with optimum memory lengthL. This issue will be ad-

dressed in the next section. Generally speaking, the adaptive DA algorithm is a very

good candidate for PE algorithms in coherent receivers due to its self-acquisition and

superior performance especially inM-PSK formats. On the other hand, the ultimate

performance of the adaptive DA algorithm is still the best, which can be only illustrated

through subsequent analytical works.

4.2.2 Phase Tracking Performance

As we have noted, the BER performance of the adaptive DA algorithm is not always

better than DA ML inM-QAM formats [37]. Besides, MC simulations cannot explore

the ultimate performance of the adaptive DA algorithm because it is time-consuming

and even impossible to evaluate BER less than10−91 using conventional MC simula-

tion techniques [134]. Here, we resort to analysis tools to investigate the reason behind

the performance degradation when using the adaptive DA algorithm in M-QAM for-

mats.
1Sometimes it is suggested to run the BER to below this level tocheck whether there is any error

floor in the algorithm.
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In the steady state, the RPV (k) can be well approximated byexp (jθ̂(k)). Thus,

at high SNR wherêm(k) = m(k), Eq.(4.1) can be re-written as [133]

exp
[

jθ̂(k + 1)
]

= α exp
[

jθ̂(k)
]

+ (1− α) [exp [jθ(k)] + n′(k)] , (4.6)

wheren′(k) ≡ n(k)/m(k)with mean zero and varianceE[|n′(k)|2] = N0E[|1/m(k)|2].

Taking into account the Wiener process assumed for the laserphase noise in Eq.(3.15)

in Section 3.3 of Chapter 3, and dividing both sides of Eq.(4.6) by exp [jθ(k)], the

phase error Eq.(4.6) can be further simplified into

exp [jν(k + 1)− ǫ(k + 1)] = αk exp [−jǫ(k)]+(1−αk) [1 + n′(k) exp [−jθ(k + 1)]] .

(4.7)

Note that the phase estimateθ̂(k) consists of two parts: the actual laser phase noise

θ(k) and the phase tracking errorǫ(k), i.e., θ̂(k) = θ(k) − ǫ(k). Using the approx-

imation1 + jx ≈ exp (jx) for |x| ≪ 1, Eq.(4.7) can be linearly expanded into the

form

ǫ(k + 1) ≈ ν(k + 1) + αkǫ(k)− (1− αk)Im [n′(k) exp [−jθ(k + 1)]] . (4.8)

It is easy to show thatE[ǫ(k + 1)] = αkE[ǫ(k)] by taking expectation of both sides of

Eq.(4.8). Thus we haveE[ǫ(k)] = 0 becauseαk 6= 0. Further, squaring both sides of

Eq.(4.8), the variance of the phase errorǫ(k) can be shown as

σ2
ǫ (k + 1) = α2

kσ
2
ǫ (k) + σ2

p +
1

2
(1− αk)

2E
[

|n′(k)|2
]

. (4.9)

The steady-state varianceσ2
ǫ is obtained through lettingσ2

ǫ = σ2
ǫ (k + 1) = σ2

ǫ (k) in

Eq.(4.9) whenk →∞, thus yielding [37]

σ2
ǫ =

σ2
p

1− α2
k

+
η

2γs
· 1− αk

1 + αk

, (4.10)
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where

η ≡ N0E[|1/m(k)|2]

=















1, M-PSK;

1.8889, 2.2283, and2.6854, M-QAM(M = 16, 32 and64);

(4.11)

is called constellation penalty [4]. It can be observed thatEq.(4.10) reduces to the same

as in [133] for constant-amplitudeM-PSK formats, where the constellation penalty is

1.

The optimal steady-stateα, denoted byαo, that minimizes the varianceσ2
ǫ is easily

derived as Eq.(4.12) by solving∂σ2
ǫ /∂α = 0:

αo = 1 + ξ − ξ
√

2ξ−1 + 1, (4.12)

whereξ ≡ γsσ
2
p/η. Substituting the optimalαo into Eq.(4.10), the minimum steady-

state varianceσ2
ǫ,min is given by

σ2
ǫ,min =

σ2
p

2ξ
[(

√

2ξ−1 + 1− 1
)

(1 + ξ)− 1
] +

σ2
p

2ξ
√

2ξ−1 + 1
. (4.13)

To justify the minimum steady-state variance derived in Eq.(4.13), we plot the

sample variance from simulations as a function of the SNR persymbol (γs) in Fig-

ure 4.5. As can be seen, at high SNR, the simulated phase errorvariances approach

their respective steady-state values forM-PSK and 16-QAM. In contrast, at a lower

SNR, the variances of the phase error from simulations deviate from the theoretical

σ2
ǫ,min, as a result of those frequently occurring decision errors.It is worth mention-

ing that the minimum varianceσ2
ǫ,min of 16QAM is larger than that ofM-PSK due to

the constellation penalty found in Eq.(4.11). In addition,the adaptive DA algorith-

m for 16-QAM is much more sensitive to decision errors compared to theM-PSK

scenario, as illustrated in Figure 4.5 within the range ofγs < 15 dB. This can be

explained as follows. The risk function in Eq.(4.2) for constant-amplitudeM-PSK
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formats can be rewritten as
∑k

l=1 |exp (j∆φs(l))− exp (jǫ(l))|2, after neglecting ad-

ditive noises. However, in the case ofM-QAM formats, this risk function is expressed

as
∑k

l=1 |m(l)/m̂(l) exp (j∆φs(l))− exp (jǫ(l))|2. Comparing these two forms of the

risk function, we see that both the magnitude and the phase ofthe decision symbol

would affect the risk function in QAM systems, thus degrading the phase tracking

performance more severely at low SNR region.
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Figure 4.5: The theoretical minimum varianceσ2
ǫ,min, and the sample variance from

simulation (ideal and actual decision feedback) versusγs in M-PSK and 16-QAM

formats.σ2
p = 3.41× 10−4 rad2.

4.2.3 Performance Comparison

In order to address the issue that the adaptive DA algorithm is outperformed by DA

ML at low and moderate SNR inM-QAM formats, the performance of the adaptive

DA algorithm is first compared with DA ML in different modulation formats. On

the other hand, there are some other adaptive PEs, such as NLMS and Kalman filter

PE, to estimate carrier phase. Their performances are also analytically investigated to
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show that they share the same performance as the adaptive DA algorithm, though the

difference lies in their approaches to determine the filter stepsize [147].

4.2.3.1 Adaptive DA versus DA ML Algorithm
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Figure 4.6: The comparison of STD between DA ML and adaptive DA PE inM-QAM

formats obtained from analysis.σ2
p = 1× 10−4 rad2.

Figure 4.6 compares the STD of DA ML with optimal memory length L and the

adaptive DA PE inM-QAM formats (M=4, 16, 32 and 64). The STD of DA ML al-

gorithm remains the same in higher-order QAM formats since its phase error variance

depends only on the SNR per symbol and memory lengthL. In contrast, due to the

constellation penaltyη in the adaptive DA algorithm, the adaptive DA algorithm is out-

performed by DA ML PE at low SNR region in non-constant modulus QAM formats

while it is expected to achieve a better performance inM-PSK formats. Furthermore,

the adaptive DA algorithm has the same performance as DA ML with the optimal

memory length at high SNR regardless of modulation formats.In a real optical sys-

tem with the aid of FEC, uncoded BER around10−3 is sufficient to achieve error-free

transmission. Additionally, it is desirable to operate optical systems at low SNR region
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to reduce fiber nonlinearity and channel crosstalk effects.Hence, of importance are the

performances of PEs at low and moderate SNR region. In other words, the adaptive

DA PE is more suitable inM-PSK format in view of the optimal performance, though

its self-adaptation characteristics renders it a superiorcandidate in reconfigurable sys-

tems [148].

4.2.3.2 Adaptive DA versus Other Adaptive PEs

Several adaptive PEs have been recently proposed in coherent optical communication

systems, such as Kalman filter and NLMS. Here, we take a quick analysis of the phase

error in both Kalman and NLMS PE to compare their performances.

• Kalman Filter

A canonical Kalman filter with stepsizeρ can be further simplified into the form [149]

θ̂(k + 1) = θ̂(k) + (1− ρ) arg
[

r(k) exp
(

−jθ̂(k)
)

m̂∗(k)
]

. (4.14)

With the assumption that decision feedback is error-free, the phase error variance of

Kalman filter at the steady state is shown as [147]

σ2
ǫ =

σ2
p + (1− ρ)2σ2

n′/2

1− ρ2
, (4.15)

by using the same analytical approaches as in Section 4.2.2.Here, the stepsizeρ =

(1 + ξ/2)−
√

(1 + ξ/2)2 − 1.

• NLMS Filter

The principle of PE using NLMS algorithm is given by [129]

c(k + 1) = c(k) +
µ

|r(k)|2e
∗(k)r(k); (4.16)

e(k) = m̂(k)− c∗(k)r(k), (4.17)
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Figure 4.7: The structure of NLMS PE.

wherec(k) is the coefficient of an one-tap filter, andµ is the stepsize of the NLMS

algorithm, which is manually set in advance between 0 and 1. Figure 4.7 depicts the

entire structure of the NLMS filter. Here, we demonstrate howto derive its analytical

phase error variance for the first time. Substitutingr(k) (see Eq.(3.1)) ande(k) into

Eq.(4.16), it becomes

c(k + 1) = (1− µ)c(k) +
µ

|r(k)|2 m̂
∗(k)r(k)

≈ (1− µ)c(k) + µ exp [jθ(k)] +
µ

m(k)
n(k). (4.18)

when |r(k)| ≈ m(k) is assumed. In the steady state, it is reasonable to assume that

the coefficientc(k) of the one-tap filters tracks the time-varying laser phase noiseθ(k),

which meansc(k) = exp (jθ̂(k)) [150]. Applying the similar method that the phase

estimate is given bŷθ(k) = θ(k)− ǫ(k) as demonstrated in Section 4.2.2, it is easy to

show that the phase error variance of the NLMS filter is expressed as

σ2
ǫ =

σ2
p + µ2σ2

n′/2

1− (1− µ)2
. (4.19)

The theoretically derived phase error variance of Kalman filter is verified using

MC simulations in 4-, 16- and 32-QAM formats. As shown in Figure 4.8, the STD

of the phase error in the Kalman filter through MC simulation agrees well with the

analytical STD from Eq.(4.15), especially at high SNRs. Thesmall deviation at low
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Figure 4.8: The STD of the phase error of Kalman PE in 4-QAM (black), 16-QAM

(red) and 32-QAM (blue) formats obtained from analysis (line) and MC simulations

(marker ’+’). σ2
p = 1× 10−4 rad2.

SNRs is due to the fact that the approximations that are made in the derivation of the

phase error are not very accurate at low SNRs. In addition, the NLMS PE is evaluated

in 32-QAM format atσ2
p = 10−3 rad2, as illustrated in Figure 4.9 (a). At low SNRs,

a smaller stepsizeµ is preferred to average out more additive noise; whereas a large

stepsizeµ performs better to track the fast-varying carrier phase at high SNRs. To

minimize the phase error variance, the optimal stepsizeµopt, by solving the equation

∂σ2
ǫ /∂µ = 0, is found to be

µopt = ξ
(

√

1 + 2ξ−1 − 1
)

. (4.20)

Note thatξ ≡ γsσ
2
p/η. Figure 4.9 (a) shows that the STD of the phase error from the

optimal stepsize is consistently minimal. Besides, Figure4.9 (b) indicates that error

floor may be avoided by selecting a suitable stepsize.

So far, we have obtained the phase error variances for these three adaptive PEs

considered in this chapter. It would be interesting to take adeeper look at their final

94



4.2 Performance Investigation

10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

γ
s
 (dB)

S
T

D
 o

f t
he

 P
ha

se
 E

rr
or

 (
de

g)

 

 

MC
Analysis

optimal µ

µ=0.9

µ=0.1

(a)

10 20 30 40 50
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

 γ
s
 (dB)

B
E

R

 

 

optimal µ

µ=0.9

µ=0.1

(b)

Figure 4.9: The STD of phase error of NLMS PE with different stepsizesµ = 0.1, 0.9

and optimalµ in a 32-QAM format from analysis (line) and MC simulations (marker

’+’). σ2
p = 1× 10−3rad2.

expressions Eqs.(4.10), (4.15) and (4.19): they have the same form with a minor dif-

ference in the selection of the stepsize (α = ρ = 1 − µ ). This relationship can also

be justified by comparing their optimal stepsizes. In other words, these three adaptive

PEs should have the same performance under the same circumstances (the same sys-

tem noises and stepsize). The difference lies in the processes by which they acquire

the optimal stepsize.

The stepsize in NLMS is normally fixed to estimate carrier phase [129] but with

possible performance degradation, as already illustratedin Figure 4.9. As a result,

it is necessary to put some effort to find the optimal stepsizeat the SNR of interest

and different laser linewidths. As for Kalman PE, it requires the exact statistics of

the system noises to compute state transition matrix [39, 151]. Therefore, the optimal

stepsize can be computed in advance such that Kalman PE operates at the optimal

state. However, the optimal stepsizes in the other two methods are also available if all

the information is known to the receiver, according to our analysis here.
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4.3 Experiments of Long-Haul Transmission

In contrast, the stepsizeα in the adaptive DA algorithm is dynamically obtained

by using a sequence of training data to acquire the knowledgeof a channel. Simulations

show that it can quickly approach the optimal stepsize [37].In addition, the algorithm’s

complexity during the adaptation process is reduced because of recursive computations

[133]. On the other hand, like NLMS, a fixed stepsize is expected to work in the

adaptive DA algorithm, though at the expense of possible performance loss [147]. In

short, it is more suitable in a reconfigurable optical systemthan the other two methods.

4.3 Experiments of Long-Haul Transmission

As explained in Section 3.6 of Chapter 3, the B2B experimentsare not presented be-

cause of the small laser linewidth, where they all have the same performances. Instead,

a long-haul transmission experiment was carried out to demonstrate the performance

improvement of the adaptive DA algorithm.
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Figure 4.10: The experimental setup for a long-haul PolMux-QPSK transmission with

a coherent receiver.

The system setup is illustrated in Figure 4.10. A typical PolMux RZ-QPSK trans-

mitter [26], centering at wavelength 1550.0 nm modulated by44 Gbit/s bit rate, was

coupled into the transmission loop. The other channels wereoccupied by CW lasers

for noise suppression in EDFAs. The fiber loop consisted of 6-span∼80 km dispersion
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4.3 Experiments of Long-Haul Transmission

managed fiber, resulting in a total 800 ps/nm residual chromatic dispersion after each

loop. The measured signal was transmitted over 5 loops, resulting in a total transmis-

sion length of 2,400 km. The spectra after 5-loop transmission are depicted in the inset

of Figure 4.10. The received signal was filtered through a 1nmoptical tunable filter,

and was then fed into a coherent receiver. The received signal power was kept at -5

dBm throughout all the measurements.

To realize the training transmission, two sequences of known bits were mapped

into a QPSK constellation, and differentially decoded offline to resolve the possible

phase ambiguity in received signals. The training bits for inphase and quadrature

branches were uploaded into two synchronized pulse patterngenerators (PPGs). The

conventional DSP processing was implemented before PE steps. To find the begin-

ning of the training data, cross correlations between the received bits and training in

both inphase and quadrature branches were calculated, as depicted in Figure 4.11. The

purpose of using both correlations was to monitor the possible run-off of the synchro-

nization of two PPGs. The length of the training bits was selected to 17,152, which

was originally served to decode low-density parity check (LDPC) codes.
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Figure 4.11: The illustration of the correlation between the recovered bits in each

branch and the training bits after 2,400 km transmission.Pt = −8 dBm.
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The first 50 symbols of the LDPC training were used for the acquisition process of

the adaptive DA algorithm, and the remaining training data were assumed to be payload

data for calculating BER. The conventional V&VM th-power and a commonly-used

blockM-th power PEs [22] were also plotted for comparison. There were 20 sets of

data having at least 2 groups of training data each set, thus resulting in around 1.2

million total bits for calculating BER, as shown in Figure 4.12.
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Figure 4.12: The experimental BER versus input power for different PEs: V&VM th-

power (N=11), blockM-th power (N=11), DA ML (L = 11), and the adaptive DA

algorithm. (a) X-polarization; (b) Y-polarization.

In the presence of fiber nonlinearity, the V&VM th-power performs better than

the DA ML algorithm whereas both of them have a comparable performance in the

B2B case when only small laser phase noise is dominant. It maybe due to the fact

that the V&V M th-power is capable of fully utilizing the pre- and post-symbols to

exploit carrier phase information. In contrast, the DA ML algorithm only relies on

the past symbols to predict the current phase information. As can be observed, the

adaptive DA algorithm outperforms DA ML even in the presenceof fiber nonlinearity

because it can adaptively adjust the filter gain according tothe received signals. The

commonly-used blockM-th power algorithm, which has less computational load than
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the V&V M th-power, has the same performance as DA ML PE. The common phase

estimatêθ for all theN symbols in the entire block degrades the performance of block

M-th power algorithm.

4.4 Conclusion

As demonstrated in Chapter 3, the DA ML algorithm exhibits BLE phenomenon which

requires extensive MC simulations to find out the optimal memory length. Alternative-

ly, the optimal memory lengthLopt can be determined if the statistics of the channel

noises are known to the receiver, though these parameters may not be available espe-

cially in reconfigurable optical systems. As a result, an adaptive DA PE in this chapter

was developed in differentM-PSK/QAM formats to eliminate BLE and even improve

system performance as well.

MC simulations indicate that the adaptive DA algorithm outperforms DA ML

PE inM-PSK formats, thus increasing laser linewidth tolerance. However, its per-

formance inM-QAM formats suffers from the constellation penalty due to the non-

constant-modulus characteristics, which was investigated through a comprehensive

analysis. Despite the fact that DA ML and the adaptive DA algorithms have the same

performance at high SNRs, DA ML is independent of modulationformats, thus ren-

dering DA ML algorithm a better choice inM-QAM formats at low and moderate

SNRs.

Compared with Kalman filter and NLMS algorithm, we find that the adaptive

DA shares the same performance as these two adaptive algorithms except that their

approaches to determine the filter stepsize. The analyticalresults of Kalman filter and

NLMS PE algorithms were presented for the first time to examine their performances

in different modulation formats. The optimal stepsize in Kalman filter can be computed

in advance once the exact statistics of the system noises areavailable; however, this
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4.4 Conclusion

prerequisite is also applied to the other two adaptive methods and even the DA ML

algorithm. As for NLMS PE algorithm, its stepsize is usuallyfixed to estimate carrier

phase in sacrifice of some possible performance degradation. In contrast, the stepsizeα

in the adaptive DA algorithm is dynamically obtained by using a sequence of training

data to acquire the knowledge of a channel. Simulations showthat it can quickly

approach the optimal stepsize, though training data shouldbe sent to the receiver to

acquire the channel information.

Finally, a 2,400 km-long 44 Gbit/s coherent PolMux-RZ-QPSKexperiment was

conducted to examine the performance of the adaptive DA algorithm in the presence

of fiber nonlinearity. The adaptive DA algorithm has the sameperformance as the

V&V M th-power performs, whose performances are better than the DA ML and the

commonly-used blockM-th power algorithm.
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Chapter 5

Study of DSP Algorithms for Large

Frequency Offset and Fiber

Nonlinearity

The aim of DSP-based PE algorithms is to recover carrier phase noise, thus allow-

ing using a free-running LO laser. In addition to laser phasenoise, frequency offset

between transmitter and LO lasers also leads to linear increment of carrier phases be-

tween two consecutive symbols, which is another form of phase noise1. This frequency

offset can be as large as± 5 GHz due to aging, heating and fabrication of lasers [40].

It is worth pointing out that PE algorithms generally require that frequency offset be-

tween the transmitter and LO lasers should be no more than 10 percent of symbol

rate [41], which translates to be∼1 GHz for a 10 GBaud coherent optical system.

Hence, an additional DSP-based FOE is imperative to make sure PE algorithms work

properly [42]. On the other hand, fiber nonlinearity would induce nonlinear phase

noise in the received signals through the interaction between fiber Kerr effect and ASE

1The constant frequency offset will add a phase offset between consecutive two symbols, which can

be regarded as a kind of phase noise.
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5.1 Dual-Stage FOE based on Gardner Timing Recovery Algorithm

noises of optical amplifiers [152]. Due to the access to the electric field through co-

herent receivers, we propose two novel DSP algorithms to address these two critical

factors, frequency offset and fiber nonlinearity, in a coherent optical system.

5.1 Dual-Stage FOE based on Gardner Timing Recov-

ery Algorithm

A proposed FOE is able to estimate frequency offset up to 8 GHzin a 43 Gbit/s Pol-

Mux QPSK system [153]; however, a feedback structure makes it difficult to imple-

ment in parallel processing. A feed-forward FOE is desirable to avoid performance

degradation when implementing with parallel processing [141] in a real-time coherent

receiver.M th-power operation is usually applied to remove data modulation in those

feed-forward FOEs. As a result, the maximal estimation range forM-PSK formats is

limited to [-Rs/2M , Rs/2M ] [43], whereRs refers to the system symbol rate. Taking

a 40 Gbit/s PolMux-QPSK system as an example, the maximum estimation range is

only [-1.25 GHz, 1.25 GHz] in an FOE that utilizesM th-power to remove data modula-

tion [45,46,154]. In this section, a novel, dual-stage, cascaded FOE scheme consisting

of a coarse FOE and a fine FOE will be presented. In a 42.8 Gbit/sPolMux-RZ-QPSK

system, the estimation range of the proposed dual-stage FOEwill be experimentally

shown to have 4 times that which can be achieved usingM th-power-based FOE [42].

The estimation range of the dual-stage FOE can be up to almost±0.9Rs in simula-

tion, and±0.5Rs in experiment. The achieved results have, to our best knowledge, the

largest range among FOEs reported so far in the literatures.
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Figure 5.1: Simulation results onS-curves (phase error output of Gardner algorithm)

versus timing offset at different frequency offsets in a coherent 42.8 Gbit/s PolMux-

RZ-QPSK system (OSNR=10 dB).

5.1.1 The Principle of Coarse FOE

Timing recovery using, for instance, Gardner algorithm [109], is usually necessary

to correct timing phase error between the transmitter and receiver clocks in coherent

receivers [24,112,155]. The simple Gardner algorithm can be applied to yield a phase

error output when only two samples per symbol are available.In a coherent PolMux

M-PSK system with Nyquist sampling rate (2 samples per symbol), Gardner algorithm

can be represented by [109]

Ut(2k) = I(2k − 1)[I(2k)− I(2k − 2)] +Q(2k − 1)[Q(2k)−Q(2k − 2)], (5.1)

whereU is a phase error, andI andQ are the samples of in-phase and quadrature-

phase, respectively, for each polarization state. Note that anS curve shows the rela-

tionship between phase errorUt and input signal timing errort [155]. By averagingUt

over a long sequence of samples, it gives a mean phase error corresponding to the cur-

rent sampling offsett. However, the performance of Gardner algorithm is subjected to
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Figure 5.2: Normalized MPE versus frequency offsets under different OSNRs.
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5.1 Dual-Stage FOE based on Gardner Timing Recovery Algorithm

frequency offset [155,156]. To investigate the impact of frequency offset on the phase

error output of Gardner algorithm, we first perform simulations to emulate a 42.8 G-

bit/s coherent PolMux RZ-QPSK system. The linewidth of bothtransmitter and LO

lasers is set to be 100 KHz for emulating ECLs. The outputs of balanced detectors are

passed through a 5th-order Bessel electrical low-pass filter with bandwidths at 75% of

symbol rate. The effective number of bits for ADCs is 8 in simulation.

A series ofS-curves, representing the phase error output of Gardner algorithm

from Eq.(5.1), is shown in Figure 5.1 when sweeping the sampling timing offsett and

tuning frequency offset (∆f ) in the system. It can be observed that thisS-curve be-

comes flat as frequency offset increases, which means the maximal phase error (MPE)

outputs of the Gardner algorithm drop. Thus, a non-zero frequency offset makes Gard-

ner timing recovery algorithm less sensitive to the sampling offset in coherent receiver-

s, conforming to the results in [155]. On the other hand, we may take advantage of this

underlying relationship between frequency offset and the MPE of Gardner algorithm

as a measure to estimate frequency offset in a system. Figure5.2 shows that normal-

ized MPEs under different OSNR levels exhibit almost the same trend within±9 GHz.

We use a 4th-order polynomial to well emulate the relationship between the normal-

ized MPE outputs and frequency offsets (|∆f | ≤ 9 GHz). It should be noticed that the

absolute value of MPE varies at different OSNRs so that normalization is required with

respect to those frequency-offset-free MPEs, which are stored firstly in a look-up table.

Therefore, we can rely on this fixed relationship between thenormalized MPE and fre-

quency offset to measure frequency offset in a system. The proposed FOE based on the

normalized MPE is called a coarse FOE, since it can only offera coarse estimation of

frequency offset (∆f̂c), as illustrated in Figure 5.3. The coarse FOE cannot accurately

estimate frequency offset around±1 GHz, because the MPE of Gardner algorithm is

less affected by such a small amount of frequency offset compared to the case when

|∆f̂ | ≥ 2 GHz, which is further justified by the smaller MPE curve slopearound zero
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5.1 Dual-Stage FOE based on Gardner Timing Recovery Algorithm

frequency offset in Figure 5.2.

5.1.2 Implementation of the Dual-Stage FOE

It can be observed that the emulated polynomial is an even function (see Figure 5.2).

In other words, MPE alone cannot identify the sign of frequency offset. To resolve this

sign ambiguity, we propose a sign identifier that monitors the maximum in the discrete

frequency domain of the received signals:

∆f̂c =















∆f̂c, 1 < imax≤ N/2;

−∆f̂c, otherwise

(5.2)

whereimax is the index corresponding to the maximum of FFT(x), x(k) = I(k) + j ·

Q(k) is the received samples in either X or Y polarization, FFT(·) is FFT operation

with size ofN . The principle of the sign identifier is to monitor the maximum of the

signal spectrum which is shifted by the frequency offset existing in a system. Based

on the characteristics of FFT operation and Fourier transform, if ∆f > 0, it means

the maximum of the received signals’ spectrum will move to the right-hand side of

zero frequency; otherwise, it will move to the left-hand side of zero frequency [80].

As displayed in Figure 5.3, the proposed sign identifier successfully addresses the sign

ambiguity in the proposed coarse FOE.

In addition, through scrutinizing the coarse frequency offset estimate of the coarse

FOE, i.e.,∆f̂c, its estimation error is limited to be within±1 GHz in our simulated

system. To tackle the residual frequency offset, a traditional FOE is introduced in cas-

cade with the coarse FOE, as shown in Figure 5.4. Since the traditional FOE involving

M th-power can only estimate∆f within±Rs/2M , it is called a fine FOE [42]. Here,

we choose an FFT-based FOE where data modulation is removed by M th-power, as

explained in Section 2.4.3 of Chapter 2. A possible structure of a dual-stage cascaded

FOE is proposed in Figure 5.4, where the polynomial between frequency offset and
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normalized MPE can be realized by using a look-up table. Through sweeping sam-

pling offset t from 0 to a symbol durationTs, MPE obtained in Gardner algorithm

Eq.(5.1) is normalized to estimate a coarse frequency offset (∆f̂c) while the residual

frequency offset can be recovered through the FFT-based FOE(∆f̂f ). The sign am-

biguity of the coarse FOE is resolved by the proposed sign identifier. To implement

the proposed FOE, as shown in Figure 5.4, the coarse FOE can work independently in

parallel with CMA, which is applied to de-multiplex two orthogonal channels. After

down-sampling the outputs of CMA to one sample per symbol, the output sample is

firstly de-rotated by the coarse frequency offset∆f̂c. The de-rotated signals will be

then used in the fine FOE to estimate the fine frequency offset∆f̂f , thus further com-

pensating for the residual frequency offset in those de-rotated samples. Of importance

is that the inputs to the fine FOE should be roughly compensated for through the coarse

frequency offset such that two numerically-controlled oscillators (NCO) are necessary.

In addition, in the presence of both PMD and CD effects, FIR filters can be introduced

to firstly compensate for CD before the dual-stage FOE and CMAare applied [30].

Figure 5.3 plots the estimated∆f̂ by single coarse FOE and dual-stage cascaded FOE
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5.1 Dual-Stage FOE based on Gardner Timing Recovery Algorithm

at OSNR = 9.5 dB. The results show that the proposed dual-stage FOE is capable of

accurately estimating a frequency offset up to±9 GHz, around±0.9Rs, the largest

frequency offset estimation range reported so far n simulations.

5.1.3 Experiment

Experiments were carried out to demonstrate this dual-stage cascaded FOE. The con-

figuration of a 42.8-Gbit/s coherent PolMux RZ-QPSK system was the same as the one

given in Figure 3.17 of Chapter 3.
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Figure 5.5: The experimentally measured normalized MPE versus frequency offsets at

OSNR= 11 dB and 13 dB.

Those normalized MPEs were measured under different frequency offsets (1 GHz

steps) at different OSNRs in 0.1 nm. It was found that a 4th-order polynomial can

also be applied to fit the trend in our experimental results and the estimation range of

cascaded FOE reduces to almost [-5 GHz, 6 GHz] for our experimental configuration,

as plotted in Figure 5.5. With the knowledge of the normalized MPE as a function

of frequency offset, we can set up a look-up table2 for the dual-stage cascaded FOE

2The size oflook-up table in our experiments was only 1 kb.
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for further data processing. We also plot the performance ofsingle FFT-based FOE

for comparison. Figure 5.6 shows the BER performance of dual-stage or single FFT-

based FOE used in the DSP processing of those captured data atdifferent frequency

offsets (-1 GHz and 3 GHz). Note that the BER of single FFT-based FOE at 3GHz

frequency offset is omitted since it does not work at a frequency offset exceeding its

theoretical limit (± 1.34 GHz for 10.7 GBaud). It can be seen that our proposed dual-

stage cascaded FOE consistently and accurately recovers the original data even though

frequency offset is 3 GHz without having any performance degradation. Furthermore,

Figure 5.7 illustrates theQ-factor against different frequency offsets. TheQ-factor is

directly calculated from BER through

Q =
√
2erfc−1(2× BER), (5.3)

where erfc−1(·) stands for the inverse function of erfc(·) function. TheQ-factor corre-

sponding to the enhanced FEC limit (2× 10−3) is also plotted for reference. These ex-

perimental results justify that this dual-stage FOE is capable of estimating a frequency

offset up to the range of around [−0.5Rs, 0.6Rs], which is almost 4 times the theoret-

ical limit of single FFT-based FOE usingM th-power. This excellent improvement is

attributed to the fact that the coarse FOE based on MPE of the Gardner algorithm can

well track frequency offset variations. System complexityis determined by counting

the number of gates to implement this dual-stage FOE, which requiresTs/∆T · Ns

multipliers andTs/∆T × 1.5Ns adders (∆T is the step of the scanned timing offset,

and the calculated phase error is averaged overNs symbols).

5.2 Joint SPM Compensation

PolMux QPSK with coherent detection is regarded as a promising technology for up-

grading optical networks up to 100 Gb/s per channel. Since coherent detection can
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retain the full electric field information of received optical signals, those linear distor-

tions accumulated in the transmission links can be totally compensated for by using

DSP techniques [21, 30, 115]. This leads to intensive investigation on pre- and post-

electrical CD compensation via linear equalizers [157]. Onthe other hand, fiber SP-

M effect limits the performance of such linear equalizers inlong-haul transmission

systems [47]. Therfore, SPM pre- and post-compensation techniques have been indi-

vidually proposed to reduce fiber nonlinearity effect [50–54]. As for pre-SPM com-

pensation (pre-SPMC), transmitted signals are pre-distorted by calculating the inverse

NLSE, such that trying to restore the waveform of received signals at the receiver side.

Post-SPM compensation (post-SPMC), well-known as back-propagation [47, 118], is

carried out at the received side by solving the inverse NLSE to estimate the trans-

mitted signals. When solving NLSE with many sections, noises will cause the solu-

tion of NLSE to diverge from the actual input signals. In thissection, we propose a

SPMC at both the transmitter and receiver sides, such that mitigating this divergence

problem [158]. Our results show that the proposed joint-SPMC can increase dynamic

power range compared to individual pre-SPMC and post-SPMC scheme. Due to the

limited resource, we were unable to perform the experimentsto verify our proposed

joint-SPMC algorithm.

5.2.1 Principle of Joint SPM Compensation

In a PolMux fiber transmission system, two orthogonal polarization componentsEx

andEy are governed by a coupled NLSE [78]:

∂Ex(y)

∂z
+ j

β2

2

∂2Ex(y)

∂t2
+

α

2
Ex(y) = jγ

[

|Ex(y)|2 +
2

3
|Ey(x)|2

]

(5.4)

Recalling that split-step method is applied to simulate a pulse propagation over fibers,

in order to compensate for fiber nonlinearity and dispersion, it is feasible to use the

same method to solve an inverse NLSE at either transmitter orreceiver side [50–54].
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5.2 Joint SPM Compensation

A proposed joint-SPMC here is to compensate for fiber nonlinearity simultane-

ously at transmitter and receiver sides. The desired PolMux-QPSK signalsEx(y)(t, L),

that have no CD and PMD, can be located at any point along the transmission link. In

other words, a pre-SPMC at the transmitter side is aiming to address fiber dispersion

and nonlinearity in the firstNtx spans. Meanwhile, fiber nonlinearity and dispersion

in the remainingNrx spans are compensated for by using a post-SPMC at the receiv-

er side [158]. For example, if the desired signalEx(y)(t, L) is at the transmitter side

(L = 0), and the whole fiber nonlinearity and dispersion are compensated in the re-

ceiver, it is called back-propagation. The parametersNtx andNrx need to be optimized

in order to achieve a better performance. The advantage of this proposed joint-SPMC

is to reduce the divergence when solving NLSE without knowing exact noises at those

locations of optical amplifiers. A coarse-step computationof inverse NLSE is applied

in the simulation for fast and simple calculation [47].

The pre-equalized optical waveform generated by this joint-SPMC at the transmit-

ter (see Figure 5.8 (a)) is computed as follows: the target optical signalsEx(y)(t, Ntx)

afterNtx-span transmission are used to compute the signals at the endof Ntx − 1 span

based on a coarse-step split-step method, as given by [158]

Ex(y)(t, Ntx − 1) = F
−1
{

F
[

Ex(y)(t, Ntx) · exp (−jD(f))
]}

(5.5)

Ex(y)(t, Ntx − 1) = Ex(y)(t, Ntx − 1)·

exp

[

−jξtxγLeff

(

|Ex(y)(t, Ntx − 1)|2 + 2

3
|Ey(x)(t, Ntx − 1)|2

)]

(5.6)

Here,F andF−1 represent the Fourier and inverse Fourier transformations, D(f) is

a dispersion function related to the considered fiber span,Leff is the effective fiber

length in each span, andξtx is a scaling factor ranging from 0 to 1. This procedure

will be repeatedly calculated until the pre-compensated signals are generated atL = 0.

Further, the driver signals of an IQ modulator are generatedby inverting its transfer
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function to obtain the exact electric field signals at the output of the IQ modulator [71],

as given by

Ix(y) =arccos

[

Re
[

Ex(y)(t, 0)
]

√
Pt

]

· 2Vπ

π
; (5.7)

Qx(y) =arccos

[

Im
[

Ex(y)(t, 0)
]

√
Pt

]

· 2Vπ

π
. (5.8)

Note that the driving voltages for the inverse equation of the IQ-modulator in VPI are

only half of the voltages given in Eq.(5.7) becauseVπ there is defined as the voltages

leading toπ-phase change.

The other joint-SPMC in the receiver (Figure 5.8 (b)) is carried out using the

same method as post-SPMC in Eqs.(5.5) and (5.6). Note thatξtx is replaced byξrx

to optimize the performance. The signals at the receiver endhave been sampled in

coherent receivers, and are then back-propagated to estimate the signals at the end of

Ntx spans.

5.2.2 Simulation

The proposed joint-SPMC scheme was evaluated in a single-channel 112 Gb/s PolMux-

QPSK system, where high-speed systems are more vulnerable to fiber nonlineari-

ty [13]. The transmitted sequences for those two polarization states were first fed

into a joint-SPMC to pre-compensate for SPM and CD in the firstNtx-span transmis-

sion link, as illustrated in Figure 5.8 (c). The transmission link consisted of 20×

100 km SMF with dispersion coefficient 17 ps/nm/km, fiber loss0.2 dB/km, and fiber

nonlinearity 1.31 W−1km−1. An optical amplifier fully compensates for fiber loss in

each span. Its noise figure was 5 dB. Laser linewidths for transmitter and LO lasers

were 100 kHz each, and ADC and DAC were assumed to be ideal. At the receiver end,

the other joint-SPMC for the remainingNrx span was conducted before polarization

de-multiplexing, carrier phase recovery and data decoding. Note thatNtx +Nrx = 20
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Figure 5.8: (a) The transmitter structure of the joint-SPMC; (b) the receiver structure

of the joint-SPMC; (c) simulated system setup where desiredsignals are located in the

middle of the link instead of at the end of the link.
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Figure 5.10:Q-factor versusNtx andNrx (Ntx +Nrx = 20,Pt=5 dBm.)

To determine the optimal scaling factorξtx andξrx , we scanned their values from

0 to 1 by settingNtx = Nrx = 10 spans in the simulated system. TheQ-factor was

obtained by using the same approach as reported in [159]. As shown in Figure 5.9, the

Q-factor was improved by 2.7 dB atξtx = 0.3 andξrx = 0.5, compared to no SPM

compensation scenario. The scaling factors were fixed to their optimal values in all the
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subsequent simulations.
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Figure 5.11: Constellation map of the recovered signals in a20× 100km transmission

system. (a) Pre-SPMC (Ntx=20,Nrx = 0); (b) Joint SPMC(Ntx = 10,Nrx = 10); (c)

Post-SPMC (Ntx = 0,Nrx = 20).Pt=5 dBm.

The parametersNtx andNrx were also swept to find the optimal solution to the

joint-SPMC. As displayed in Figure 5.10, the optimal span for pre-SPMC and post-

SPMC was suggested to be around half of the total length. Notethat these simulation

were also found to be quite similar at other input powers. Figure 5.11 shows recovered

constellation maps by using different SPMC schemes. It can be observed that the pro-

posed joint SPMC can outperform the pre- and post-SPMC by 1.1dB and 0.2 dB in

Q-factor improvement, respectively. This may be due to the fact that the joint-SPMC

is able to mitigate the divergence problem when solving the inverse NLSE through

splitting it into two parts: pre- and post-SPMC. Figure 5.12illustrates theQ-factor

performance of these three SPMC schemes. The input power dynamic range is defined

as the launch power allowing BER less than FEC limit (10−3) [160]. The dynamic

range of the proposed joint-SPMC can be as large as 10.2 dB. Compared to pre-SPMC

(9.8 dB) and post-SPMC scheme (9 dB), the joint-SPMC scheme increased the dy-

namic input power range by 0.4 dB and 1.2 dB, respectively. Inaddition, pre-SPMC

scheme cannot perform as good as joint-SPMC and post-SPMC since its inverse NLSE
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Figure 5.12: Performance comparison among the three SPMC schemes: pre-SPMC

(Ntx=20), joint-SPMC (Ntx = 10,Nrx=10) and post-SPMC (Nrx =20).

computation does not take into account system noises added by optical amplifiers. Al-

though the improvement in dynamic input power range is less than 1 dB, we believe

that this improvement will be even larger when more steps areperformed in each span

instead of one step each span during carrying out SPMC. Besides, the analog trans-

mitters has been gradually replaced by digital transmitter, thus the pre-SPMC can be

easily implemented through look-up tables.

5.3 Conclusion

Frequency offset and fiber nonlinearity would cause carrierphaser noise, which are

detrimental to system’s performance as well. It is desirable to apply independent D-

SP modules to address these problems separately. An FOE based on Gardner timing

recovery algorithm was proposed to deal with frequency offset. A underlying rela-

tionship between normalized MPE and frequency offset was utilized to obtain a coarse

estimate of frequency offset. The estimation range was found to be from 9 GHz to -9
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GHz in a simulated 40 Gbit/s PolMux-QPSK system. The residual frequency offset

was further addressed by a cascaded fine FOE based onM-power and FFT operations.

This dual-stage cascaded FOE was experimentally demonstrated in a 42.8 Gbit/s co-

herent PolMux-RZ-QPSK system. The estimation range was measured to be [-5 GHz,

6 GHz], where the estimation range of conventional FOE usingM th-power is limited

within [-1.34 GHz, 1.34 GHz].

As for fiber nonlinearity, SPM in a single channel was simulated in a 112 G-

bit/s PolMux-QPSK system to investigate its impact. Back-propagation algorithms are

mostly investigated at either transmitter or receiver side, though it is susceptible to di-

vergence when solving inverse NLSE. In our proposed joint-SPMC approach, we split

NLSE into two parts: fiber nonlinearity in the firstNtx-span was pre-compensated at

the transmitter side while the remaining fiber nonlinearityin theNrx-span was post-

compensated in coherent receivers. It was found that this joint-SPMC scheme can

enhance the tolerance of fiber nonlinearity in the simulatedsystem.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have conducted a systematic study on DA ML and adaptive DA

PE algorithms inM-PSK/QAM formats. Besides, the issues of frequency offset and

nonlinear phase noise were addressed by using those proposed DSP algorithms.

The performances of DA ML were investigated in different modulation formats.

It shows that this computationally-linear DA ML PE algorithm performs much better

than the conventional V&VM th-power methods inM-QAM formats. However, like

M th-power algorithm, it suffers from BLE due to the average over additive noises and

laser phase noise. The phase error variance of DA ML PE was analytically derived

to illustrate this trade-off in selecting the optimal memory lengthL. In addition, the

optimal memory length can be determined if the statistics ofphase noise and additive

noise are known to the receivers. On the other hand, the feedback in DA ML PE actu-

ally limits its application in a real-time coherent receiver, in which a parallel structure

is desirable to reduce receiver cost and complexity. In viewof those required features,

a parallel structure of DA ML algorithm was proposed to make itself operate online,

where it has a reasonable performance in both BPSK and QPSK formats. Finally, an
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experiment was demonstrated that DA ML algorithm has the same performance as the

V&V M th-power method but requires less computational efforts.

To avoid BLE in DA ML algorithm, a first-order filter, called the adaptive DA

algorithm, was introduced to adaptively adjust this filter gain, thus mitigating or even

eliminating BLE phenomenon. The adaptive DA algorithm was extended toM-QAM

formats, where it was found that its performance was degraded by constellation penal-

ty. Compared to DA ML algorithm, the adaptive DA algorithm ismore suitable in

constant-modulus PSK formats. It is also observed that the self-adaptation capabili-

ty makes the adaptive DA algorithm even more attractive inM-QAM formats without

spending amounts of time in finding the optimal memory length. Further, we examined

another two adaptive PE algorithms, NLMS and the Kalman filter, through a similar

analysis as deriving the phase error variance of the adaptive DA algorithm. Of interest

is that these three adaptive DA algorithms share the same performances but differen-

tiates from each other in the approach of determining their stepsizes. The adaptive

DA algorithm was then experimentally demonstrated in a long-haul PolMux coheren-

t QPSK system. It was found that the adaptive DA performed similarly as the V&V

M th-power method in the presence of fiber nonlinearity while DA ML and blockM th-

power algorithms had the same performance.

Asides from laser phase noise, frequency offset and fiber nonlinearity are also

those factors causing carrier phase noise, thus requiring additional DSP methods to

compensate before applying PE algorithms. Based on Gardnertiming algorithm, we

proposed a dual-stage cascaded FOE whose estimation range is as large as [-9 GHz,

9 GHz] in a simulated 40 Gbit/s PolMux-QPSK system. In a 42.8 Gbit/s coherent

PolMux-QPSK system, the experimentally measured estimation range reduced to [-

5 GHz, 6 GHz] because of the imperfect experiments setup. As for nonlinear phase

noise compensation, the proposed joint-SPMC was verified insimulation to increase

the dynamic power range at BER= 10−3 by 0.4 dB and 1.2 dB, compared to separate
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pre- and post-SPMC scheme.

6.2 Future Work

The following areas, from my point of view, may become the future hot topics in

coherent optical communication systems.

6.2.1 Estimation of the SNR and Phase Noise Variance

As demonstrated in Chapter 3 and 4, the optimal operation of PE algorithms is relat-

ed to the statistics of additive noise and phase noise, though these knowledge may be

not available at the receiver side. It is desirable to estimate those parameters through

those received signals, thus adjusting the memory lengthL of DA ML andM th-power

methods, or computing the optimal stepsize in the adaptive DA algorithm. Besides,

the estimated SNR and phase noise variance are helpful for designing the Wiener fil-

ter, which is shown to be an optimal minimum mean-square-error filter capable of

approaching the theoretical performance [4,151].

6.2.2 Joint Equalization and Phase Estimation

Nowadays, researches have pursued a standard to achieve higher data rate (112 G-

bit/s [24, 120], 400 Gbit/s [161] or even 1 Tbit/s [55]) to meet the increasingly de-

mand on traffic bandwidth. The bottleneck is the speed of electronic devices that are

far less than data rate [141]. Alternatively, higher-ordermodulation formats have be-

come candidates to support such ultra-high-speed transmissions, such as QAM for-

mats [162, 163]. In a PolMuxM-QAM format, polarization de-multiplexing butterfly

filters using DD-LMS algorithm and PE need to be conducted simultaneously due to

the non-constant-modulus of QAM signals [120]. InM-PSK format, CMA algorithm
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is sufficient to fully de-multiplex the signals of the two polarization states. Instead,

DD-LMS should be applied in QAM formats to fully equalize thecross-talk between

these two polarization states. Nonetheless, DD-LMS algorithm is sensitive to carrier

phase of the equalized signals. Of the importance is the issue that how to incorporate

PE modules into DD-LMS algorithm in order to obtain a better performance [128].

6.2.3 Mode Multiplexing

Recently, the successful demonstration of higher-order mode to increase fiber nonlin-

earity tolerance has triggered intense research on few-mode multiplexing/demultiplexing

technologies. How to separate those different modes at the transmitter side is a chal-

lenge issue, because the inter-mode delay is too large thus requiring a huge amount

of taps to de-multiplex those modes. Therefore, a reasonable DSP algorithm is neces-

sary to keep the de-multiplexing filters within certain limit of complexity for practical

implementation.

6.2.4 Coding

The advance of high-speed ADC and DSP processors enables more and more sig-

nal processing techniques to be employed in coherent optical communication systems.

Specifically, coding techniques provide a great advantage in the tolerance of fiber non-

linearity and channel capacity [126, 164]. Conventionally, only 7% overhead is used

for FEC coding which may limit its performance improvement.It has been suggested

increasing the overhead of FEC coding up to 20% for further performance improve-

ment [165]. In addition, more advanced coding techniques, such as LDPC and Turbo

codes, are still very powerful methods for increasing FEC limit from 10−3 to even

higher [166].
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Appendix A

Channel Capacity

In a complex AWGN channel (see Figure 2.2), the channel inputX and outputY are

complex random variables with

Y = X +N, (A.1)

whereN is the complex AWGN with a circular Gaussian distribution ofmean zero and

varianceσ2
n. Due to the independence between the channel inputX and noiseN , the

conditional PDF of the channel output can be written as

pY |X(y|x) =
1

πσ2
n

exp

[

−|y − x|2
σ2
n

]

. (A.2)

The mutual information of the channel inputX and outputY is given by [65]

I(X ; Y ) =

∫ ∫

pXY (x, y) log2

(

pY |X(y|x)
pY (y)

)

dxdy

= H(Y )−H(Y |X)

= H(Y )−H(X +N |X)

= H(Y )−H(N)

= H(Y )− log2
(

πeσ2
n

)

, (A.3)

whereH(Y ) andH(Y |X), respectively, represent the entropy of the random variable

Y and the average conditional entropy. The channel capacity in bits per symbol is
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defined as [64]

C = max
E[|X|2]≤P

I(X ; Y ), (A.4)

subjected to the input power constraintE[|X|2] ≤ P .

Research works suggest that it is suffices to consider digitized to approach the

ultimate capacity limits of noisy channels by using Shannon’s information theory [13].

As can be observed from Eq.(A.3), the PDFpY (y) needs to be derived in order to

compute the channel capacity. It can be shown that [131]

pY (y) =

i=0,··· ,M−1
∑

xi∈X
PX(xi)pY |X(y|xi), (A.5)

wherePX(xi) is the probability that the random variableX takes the valuexi, andM

refers to the alphabet size in the given modulation format. Therefore, the capacity is a

maximization ofH(Y ) overPX(xi), i = 0, · · · ,M−1. In fact, the optimal probability

distribution turns out to bePX(xi) = 1/M for all i [65], thus yielding

pY (y) =
1

Mπσ2
n

i=0,··· ,M−1
∑

xi∈X
exp

[

−|y − xi|2
σ2
n

]

. (A.6)

The entropyH(Y ) can be evaluated through

H(Y ) = E

[

− log2

(

1

Mπσ2
n

i=0,··· ,M−1
∑

xi∈X
exp

(

−|y − xi|2
σ2
n

)

)]

. (A.7)

To numerically compute the entropyH(Y ) in Eq.(A.7), we follow the similar methods

described in [13]. One million symbols are uniformly chosenover the considered

modulation formats with alphabet sizeM , and are then added by complex Gaussian

noises to emulate the AWGN channel. Finally, we average overthe received signals to

obtain the ultimate channel capacity from Eq.(A.3).
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Appendix B

Derivation of the log-likelihood

function L(θ, k) = ln Λ(θ, k)

The likelihood functionΛ(θ, k) is given by

Λ(θ, k) = p(r(k − L), · · · , r(k − 1)|θ) (B.1)

As explained in 3.1 of Chapter 3, ifi 6= j, r(l) and r(j) are independent due to

the independence ofn(l) andn(j). So (B.1) can be rewritten as products of these

PDFs [131]:

Λ(θ, k) =

k−1
∏

l=k−M

p(r(l)|θ) (B.2)

By using the law of total probability and PDF ofr(k) (3.4), the likelihood function is

expressed as

Λ(θ, k) =

k−1
∏

l=k−M

M/2
∑

i=−M/2

p(r(l)|θ,mi = Ci)P (Ci)

=
k−1
∏

l=k−M

M/2
∑

i=−M/2

1

MπN0
exp

[

−|r(l)− Cie
j θ|2

N0

]

=
k−1
∏

l=k−M

M/2
∑

i=−M/2

1

MπN0
exp

[

−|rl|
2 + |Ci|2
N0

]

exp

[

2Re[r(l)C∗
i e

−jθ]

N0

]
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=
k−1
∏

l=k−M

1

MπN0

exp

[

−|rl|
2

N0

] M/2
∑

i=−M/2

exp

[

−|Ci|2
N0

]

exp

[

2Re[r(l)C∗
i e

−jθ]

N0

]

(B.3)

Here,P (Ci) = 1/M because all symbols are equiprobable. In addition,Ci = −C−i,

so we can combine thoseCi andC−i terms in (B.3) intocosh (·)1.

Λ(θ, k) =
k−1
∏

l=k−M

1

MπN0

exp

[

−|rl|
2

N0

]M/2
∑

i=1

exp

[

−|Ci|2
N0

]

cosh

[

2Re[r(l)C∗
i e

−jθ]

N0

]

(B.4)

Therefore, the log-likelihood functionL(θ, k) = lnΛ(θ, k) can now be written as

L(θ, k) =

k−1
∑

l=k−M

ln





M/2
∑

i=1

exp

[

−|Ci|2
N0

]

cosh

[

2Re[r(l)C∗
i e

−jθ]

N0

]





+
k−1
∑

l=k−M

ln

[

1

MπN0
exp

[

−|rl|
2

N0

]]

(B.5)

Since the received signals{r(l), k − L ≤ l ≤ k − 1} are observed quantities and

independent ofθ andi, the second term on the right-hand side of (B.5) can be treat-

ed as a constantc. To make the equation shorter, letSi = |Ci|2/N0, qi(l, θ) =

(2/N0)Re[r(l)C∗
i

e−jθ]. Now, the log-likelihood functionL(θ, k) reduces to

L(θ, k) =

k−1
∑

l=k−L

ln





M/2
∑

i=1

exp (−Si) cosh qi(l, θ)



+ c (B.6)

1cosh (x) = e
x

+e
−x

2
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Appendix C

BER of 16-PSK/QAM in the Presence

of Phase Error

C.1 BER in 16PSK
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Figure C.1: Constellation map and gray bit mapping of 16PSK.
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Although BERs conditioned on different transmitted symbols in 16PSK are not

the same, the trivial difference especially at high SNR [167] can guarantee that our

analysis here is sufficiently accurate for investigating its BER. Constellation map and

bit mapping of 16PSK are given in Fig. C.1, where Gray coding is used. Supposing

that “0000” is transmitted, the BER conditioned on a phase error∆θ can be written as

Pb(e|∆θ) =
1

4

[

P (A1|∆θ) + 2P (A3|∆θ) + P (A2|∆θ) + 2P (A6|∆θ) + 3P (A7|∆θ)

+ 2P (A5|∆θ) + P (A4|∆θ) + 2P (A12|∆θ) + 3P (A13|∆θ)

+ 4P (A15|∆θ) + 3P (A14|∆θ) + 2P (A10|∆θ) + 3P (A11|∆θ)

+ 2P (A9|∆θ) + P (A8|∆θ)
]

, (C.1)

where eachAi denotes a decision region, andP (Ai|∆θ) is the probability of the re-

ceived signal vector falling in the decision regionAi. The order{A1, A3, A2, A6 · · · }

is arranged in the anti-clockwise direction as shown in Fig.C.1 for easier understand-

ing and derivation rather than using the order{A1, A2, A3 · · · }. Observing thatU1 =

A1

⋃

A3

⋃

A2

⋃

A6

⋃

A7

⋃

A5

⋃

A4

⋃

A12 andU2 = A12

⋃

A13

⋃

A15

⋃

A14

⋃

A10

⋃

A11

⋃

A9

⋃

A8, are half-planes, and thus Eq.(C.1) can be rewritten as

Pb(e|∆θ) =
1

4

[

P (U1|∆θ) + P (U2|∆θ) + P (A3|∆θ) + P (A6|∆θ) + 2P (A7|∆θ)

+ P (A5|∆θ) + 2P (A13|∆θ) + 3P (A15|∆θ) + 2P (A14|∆θ)

+ P (A10|∆θ) + 2P (A11|∆θ) + P (A9|∆θ)
]

. (C.2)

Similar to the method of deriving the BER of 8PSK as in [139], Eq.(C.2) can be sim-

plified into

Pb(e|∆θ) + Pb(e| −∆θ) =
1

2

[

P (U1|∆θ) + P (U2|∆θ) + P (U3|∆θ) + P (U4|∆θ)

+ P (A3 + A2|∆θ) + P (A7 + A5|∆θ)

+ P (A15 + A14|∆θ) + P (A11 + A9|∆θ)
]

, (C.3)
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where bothU3 = A6

⋃

A7

⋃

A5

⋃

A4 andU4 = A13

⋃

A15

⋃

A14

⋃

A10 are quadrants.

It is easy to show that

P (U1|∆θ) =
1

2
erfc

[√
γs sin

( π

16
−∆θ

)]

, (C.4a)

P (U2|∆θ) =
1

2
erfc

[√
γs sin

( π

16
+ ∆θ

)]

, (C.4b)

P (U3|∆θ) =
1

4
erfc

[

−√γs sin
( π

16
+ ∆θ

)]

· erfc
[√

γs cos
( π

16
+ ∆θ

)]

, (C.4c)

P (U4|∆θ) =
1

4
erfc

[

−√γs sin
( π

16
−∆θ

)]

· erfc
[√

γs cos
( π

16
−∆θ

)]

. (C.4d)

Now we derive those remaining terms in Eq.(C.3).P (A3 + A2|∆θ) can be expressed

as

P (A3 + A2|∆θ) = P (x′ ≥ 0, y0 ≤ y′ ≤ y0 + x′)

=
∫ +∞
0

1√
πN0

exp
[

− (x′−x0)2

N0

]

dx′ ·
∫ y0+x′

y0
1√
πN0

exp
[

−y′2

N0

]

dy′

= 1
2

∫ +∞
0

[

erfc
(

y0√
N0

)

− erfc
(

y0+x′

√
N0

)]

f(x′ − x0)dx
′, (C.5)

wherex0 =
√
Es cos (3π/16−∆θ), y0 =

√
Es sin (3π/16−∆θ), andf(x) = 1√

πN0

· exp (−t2/N0). Similar to the derivation inP (A3 + A2|∆θ), the other terms can also

be obtained as follows:

P (A9 + A11|∆θ) = 1
2

∫ +∞
0

[

erfc
(

y1√
N0

)

− erfc
(

y1+x′

√
N0

)]

· f(x′ − x1)dx
′, (C.6)

P (A14 + A15|∆θ) = 1
2

∫ +∞
0

[

erfc
(

y2√
N0

)

− erfc
(

y2+x′

√
N0

)]

· f(x′ + x2)dx
′, (C.7)

P (A5 + A7|∆θ) = 1
2

∫ +∞
0

[

erfc
(

y3√
N0

)

− erfc
(

y3+x′

√
N0

)]

· f(x′ + x3)dx
′, (C.8)

wherex1 =
√
Es cos (3π/16 + ∆θ), y1 =

√
Es sin(3π/16+∆θ), x2 =

√
Es sin(π/16

∆θ), y2 =
√
Es cos(π/16+∆θ), x3 =

√
Es sin (π/16−∆θ), andy3 =

√
Es cos(π/16

−∆θ). Therefore, the BER of 16PSK conditioned on the phase error∆θ is given from

Eqs.(C.3) to (C.8). The final expression ofPb(e|∆θ) + Pb(e| − ∆θ) for 16PSK is

omitted to save space.
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C.2 BER in 16QAM

The signal constellation and bit mapping of 16QAM are shown in Fig. C.2, where each

signal point is represented by a 4-bit symbol (i1,q1,i2,q2). Data bit stream is split into

inphase (I) and quadrature (Q) bit streams. TheI andQ components together are

mapped to complex symbols using Gray coding. Bitsi1 andq1 are the most significant

bits (MSB) ofI andQ, and bitsi2 andq2 are their least significant bits (LSB) [168].

The average symbol energy is̄Es = 10d2. Note that the two bit values of eachI and

Q are equally likely.

0000 0010

0001 0011

1010 1000

1011 1001

1111 1101

1110 1100

0101 0111

0100 0110

I

Q

d 3d

d

3d

o

Figure C.2: Constellation map and bit mapping of 16QAM.

Due to the symmetry of signal constellation, as well as the symmetry between

MSB and LSB, the average BER conditioned on a phase error∆θ can be represented

by [168]

Pb(e|∆θ) =
1

2
[PMSB(e|∆θ) + PLSB(e|∆θ)] , (C.9)

which accounts for the BER of eitherI or Q component. It can be observed that the

probability of MSB bit error conditioned oni1 = 0 is the same as that conditioned on
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i1 = 1. Without loss of generality, we use the four signal points located in the first

quadrant, i.e.,S0, S1, S2, andS3. It is easy to show that

PMSB(e|S0,∆θ) =
1

2
erfc

(√
2d · cos (π/4 + ∆θ)√

N0

)

, (C.10a)

PMSB(e|S1,∆θ) =
1

2
erfc

(√
10d · cos (arctan (3) + ∆θ)√

N0

)

, (C.10b)

PMSB(e|S2,∆θ) =
1

2
erfc

(√
18d · cos (π/4 + ∆θ)√

N0

)

, (C.10c)

PMSB(e|S3,∆θ) =
1

2
erfc

(√
10d · cos (arctan (1/3) + ∆θ)√

N0

)

. (C.10d)

Thus,PMSB(e|∆θ) can be computed fromPMSB(e|∆θ) = [PMSB(e|S0,∆θ) + PMSB

(e|S1,∆θ) + PMSB(e|S2,∆θ) + PMSB(e|S3,∆θ)]/4. Now the LSB bit error can be

dealt with using a similar approach as the MSB bit error, though PLSB=0(e, |∆θ) 6=

PLSB=1(e|∆θ). It can be shown that

PLSB=0(e|S0,∆θ) =
1

2
erfc

(

2d+
√
2d · cos (π/4 + ∆θ)√

N0

)

+
1

2
erfc

(

2d−
√
2d · cos (π/4 + ∆θ)√

N0

)

, (C.11a)

PLSB=0(e|S1,∆θ) =
1

2
erfc

(

2d+
√
10d · cos (arctan (3) + ∆θ)√

N0

)

+
1

2
erfc

(

2d−
√
10d · cos (arctan (3) + ∆θ)√

N0

)

, (C.11b)

PLSB=1(e|S3,∆θ) =
1

2
erfc

(√
18d · cos (π/4 + ∆θ)− 2d√

N0

)

− 1

2
erfc

(√
18d · cos (π/4 + ∆θ) + 2d√

N0

)

, (C.11c)

PLSB=1(e|S2,∆θ) =
1

2
erfc

(√
10d · cos (arctan (1/3) + ∆θ)− 2d√

N0

)

− 1

2
erfc

(√
10d · cos (arctan (1/3) + ∆θ) + 2d√

N0

)

. (C.11d)
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PLSB(e|∆θ) can be represented byPLSB(e|∆θ) = [PLSB=0(e|S0,∆θ)+PLSB=0(e|S1,

∆θ) + PLSB=1(e|S2,∆θ) + PLSB=1(e|S3,∆θ)]/4.

Combining Eq.(C.10a) through Eq.(C.11d), the BER conditioned on the phase

error∆θ in 16QAM is expressed as

Pb(e|∆θ) =

1

16

[

erfc

(√
2d · cos (π/4 + ∆θ)√

N0

)

+ erfc

(√
10d · cos (arctan (3) + ∆θ)√

N0

)

+ erfc

(√
18d · cos (π/4 + ∆θ)√

N0

)

+ erfc

(√
10d · cos (arctan (1/3) + ∆θ)√

N0

)

+ erfc

(

2d+
√
2d · cos (π/4 + ∆θ)√

N0

)

+ erfc

(

2d−
√
2d · cos (π/4 + ∆θ)√

N0

)

+ erfc

(

2d+
√
10d · cos (arctan (3) + ∆θ)√

N0

)

+ erfc

(

2d−
√
10d · cos (arctan (3) + ∆θ)√

N0

)

+ erfc

(√
18d · cos (π/4 + ∆θ)− 2d√

N0

)

− erfc

(√
18d · cos (π/4 + ∆θ) + 2d√

N0

)

+ erfc

(√
10d · cos (arctan (1/3) + ∆θ)− 2d√

N0

)

− erfc

(√
10d · cos (arctan (1/3) + ∆θ) + 2d√

N0

)]

. (C.12)

132



D. Phase Error Variance of DA ML PE with a Matched Filter

Appendix D

Phase Error Variance of DA ML PE

with a Matched Filter

When a matched filter is used at the receiver side, the phase error variance Eq.(3.45)

can be expanded into

E
[

(∆θ(k))2
]

=
1

L2

[

E

[

(

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt−

k
∑

i=l+1

ν(i)
)2
]

+

k−1
∑

l1=k−L

k−1
∑

l2=k−L
l2 6=l1

E

[

(

∫ (l1+1)T

l1T

ϕ(t)− θ(l1)

T
dt−

k
∑

i=l1+1

ν(i)
)

·
(

∫ (l2+1)T

l2T

ϕ(t)− θ(l2)

T
dt−

k
∑

i=l2+1

ν(i)
)

]

]

. (D.1)

Applying the important characteristics of Wiener processϕ(t), E[ϕ(t)] = 0 and

E[ϕ(t1)ϕ(t2)] = σ2
0 min(t1, t2) [131], the 1st term in Eq.(D.1) can be shown as:

E

[

(

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt−

k
∑

i=l+1

ν(i)
)2
]

= E

[
∫ (l+1)T

lT

∫ (l+1)T

lT

(ϕ(t1)− θ(l)) (ϕ(t2)− θ(l))

T 2
dt1dt2

− 2

k
∑

i=l+1

ν(i)

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt+

(

k
∑

i=l+1

ν(i)
)2
]
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=
σ2
p

3
− 2E

[

ν(l + 1)

∫ (l+1)T

lT

ϕ(t)− θ(l)

T
dt

]

+

k
∑

i=l+1

σ2
p

= (k − l − 2

3
)σ2

p. (D.2)

The 2nd term in Eq.(D.1) can be further divided into the following form through some

basic mathematical operations:

E

[

(

∫ (l1+1)T

l1T

ϕ(t)− θ(l1)

T
dt−

k
∑

i=l1+1

ν(i)
)

·
(

∫ (l2+1)T

l2T

ϕ(t)− θ(l2)

T
dt−

k
∑

i=l2+1

ν(i)
)

]

= E

[
∫ (l1+1)T

l1T

∫ (l2+1)T

l2T

(ϕ(t1)− θ(l1)) (ϕ(t2)− θ(l2))

T 2
dt1dt2

−
k
∑

i=l1+1

ν(i)

∫ (l2+1)T

l2T

ϕ(t)− θ(l2)

T
dt−

k
∑

i=l2+1

ν(i)

∫ (l1+1)T

l1T

ϕ(t)− θ(l1)

T
dt

+
k
∑

i1=l1+1

k
∑

i2=l2+1

ν(i1)ν(i2)

]

. (D.3)

As a result, now it is easy to demonstrate that

E

[
∫ (l1+1)T

l1T

∫ (l2+1)T

l2T

(ϕ(t1)− θ(l1)) (ϕ(t2)− θ(l2))

T 2
dt1dt2

]

=

∫ (l1+1)T

l1T

∫ (l2+1)T

l2T

σ2
0

T 2

[

min(t1, t2)−min(t1, l2T )−min(l1T, t2)

−min(l1T, l2T )
]

dt1dt2

= 0. (D.4)

The 2nd expectation in Eq.(D.3) is evaluated as

E

[

−
k
∑

i=l1+1

ν(i)

∫ (l2+1)T

l2T

ϕ(t)− θ(l2)

T
dt

]

= E

[

−
k
∑

i=l1+1

(ϕ(iT )− ϕ((i− 1)T ))

∫ (l2+1)T

l2T

ϕ(t)− θ(l2)

T
dt

]

=















E

[

− [ϕ((l2 + 1)T )− ϕ(l2T )]
∫ (l2+1)T

l2T
ϕ(t)−θ(l2)

T
dt

]

, l1 < l2;

0, l1 > l2
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=















−σ2
p/2, l1 < l2;

0, l1 > l2

(D.5)

Similarly,

E

[

−
k
∑

i=l2+1

ν(i)

∫ (l1+1)T

l1T

ϕ(t)− θ(l1)

T
dt

]

=















0, l1 < l2;

−σ2
p/2, l1 > l2

(D.6)

The expectation of the last term in Eq.(D.4) is obviously shown as

E

[ k
∑

i1=l1+1

k
∑

i2=l2+1

ν(i1)ν(i2)

]

= (k −max(l1, l2))σ
2
p (D.7)

By summing up the expectations from Eqs.(D.4) to (D.7) over the double summation

in Eq.(D.1) , together with the first expectation of Eq.(D.1), we can derive the phase

error variance of DA ML with a matched filter in the absence of additive noise, given

by

E
[

(∆θ(k))2
]

=
1

L2

[

L(L+ 1)

2
− 2L

3
− L(L− 1)

2
+

L(L2 − 1)

3

]

σ2
p =

L

3
σ2
p.

(D.8)

Note that phase noiseϕ(t) and additive noisen(k) are independent. In consequence,

the final phase error variance can be derived as

E
[

(∆θ(k))2
]

=
L

3
σ2
p +

1

2Lγs
. (D.9)
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Appendix E

Derivation α̂(k) from Risk Function

R(k)

In the risk functionR(k), given the observations{r(l), 1 ≤ l ≤ k}, we can remove

the expectation operation in Eq.(4.2) in Chapter 4. By substituting V (l) in R(k) with

Eq.(4.1), the risk function now can be rewritten as

R(k) = E

[

k
∑

l=1

|r(l)− V (l)m̂(l)|2
∣

∣

∣

∣

{r(l)}kl=1

]

=
k
∑

l=1

∣

∣

∣

∣

r(l)−
[

αV (l − 1) + (1− α)
r(l − 1)

m̂(l − 1)

]

m̂(l)

∣

∣

∣

∣

2

=
k
∑

l=1

∣

∣

∣

∣

r(l)− αV (l − 1)m̂(l)− (1− α)
r(l − 1)

m̂(l − 1)
m̂(l)

∣

∣

∣

∣

2

=

k
∑

l=1

{

|r(l)|2 + α2|V (l − 1)m̂(l)|2 + (1− α)2
∣

∣

∣

∣

r(l − 1)

m̂(l − 1)
m̂(l)

∣

∣

∣

∣

2

− 2αRe [r(l)V ∗(l − 1)m̂∗(l)]− 2(1− α)Re

[

r(l)

[

r(l − 1)

m̂(l − 1)
m̂(l)

]∗]

+ 2α(1− α)|m̂(l)|2Re

[

V (l − 1)

[

r(l − 1)

m̂(l − 1)

]∗]
}

(E.1)
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Through taking the first derivative ofR(k) with respect toα, i.e.,dR(k)/dα = 0, we

can get

dR(k)

dα
=

k
∑

l=1

{

2α|V (l − 1)m̂(l)|2 − 2(1− α)

∣

∣

∣

∣

r(l − 1)m̂(l)

m̂(l − 1)

∣

∣

∣

∣

2

− 2Re [r(l)V ∗(l − 1)m̂∗(l)] + 2Re [r(l)r∗(l − 1)m̂∗(l)/m̂ ∗ (l − 1)]

+ (2− 4α)|m̂(l)|2Re

[

V (l − 1)r∗(l − 1)

m̂ ∗ (l − 1)

]

}

= 0. (E.2)

The optimalα̂(k) can be obtained after some simple mathematics, as given by:

α̂(k) =
A(k)

B(k)
, (E.3)

where

A(k) =
k
∑

l=1

|m̂(l)|2 ·
{

∣

∣

∣

∣

r(l − 1)

m̂(l − 1)

∣

∣

∣

∣

2

+Re

[

r(l)

m(l)
V ∗(l − 1)− r∗(l − 1)

m̂∗(l − 1)
·

[

r(l)

m̂(l)
+ V (l − 1)

] ]

}

(E.4)

B(k) =

k
∑

l=1

|m̂(l)|2 ·
[

|V (l − 1)|2 − 2Re

[

V (l − 1)
r∗(l − 1)

m̂∗(l − 1)

]

+

∣

∣

∣

∣

r(l − 1)

m̂(l − 1)

∣

∣

∣

∣

2
]

.

(E.5)

It is seen that the numerator and denominator are formed recursively, thereforeA(k)

andB(k) can be re-written as shown in Eqs.(4.4) and (4.5) in Chapter 4.
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