939 research outputs found

    Localization Recall Precision (LRP): A New Performance Metric for Object Detection

    Get PDF
    Average precision (AP), the area under the recall-precision (RP) curve, is the standard performance measure for object detection. Despite its wide acceptance, it has a number of shortcomings, the most important of which are (i) the inability to distinguish very different RP curves, and (ii) the lack of directly measuring bounding box localization accuracy. In this paper, we propose 'Localization Recall Precision (LRP) Error', a new metric which we specifically designed for object detection. LRP Error is composed of three components related to localization, false negative (FN) rate and false positive (FP) rate. Based on LRP, we introduce the 'Optimal LRP', the minimum achievable LRP error representing the best achievable configuration of the detector in terms of recall-precision and the tightness of the boxes. In contrast to AP, which considers precisions over the entire recall domain, Optimal LRP determines the 'best' confidence score threshold for a class, which balances the trade-off between localization and recall-precision. In our experiments, we show that, for state-of-the-art object (SOTA) detectors, Optimal LRP provides richer and more discriminative information than AP. We also demonstrate that the best confidence score thresholds vary significantly among classes and detectors. Moreover, we present LRP results of a simple online video object detector which uses a SOTA still image object detector and show that the class-specific optimized thresholds increase the accuracy against the common approach of using a general threshold for all classes. At https://github.com/cancam/LRP we provide the source code that can compute LRP for the PASCAL VOC and MSCOCO datasets. Our source code can easily be adapted to other datasets as well.Comment: to appear in ECCV 201

    Lightweight Face Recognition: An Improved MobileFaceNet Model

    Full text link
    This paper presents an extensive exploration and comparative analysis of lightweight face recognition (FR) models, specifically focusing on MobileFaceNet and its modified variant, MMobileFaceNet. The need for efficient FR models on devices with limited computational resources has led to the development of models with reduced memory footprints and computational demands without sacrificing accuracy. Our research delves into the impact of dataset selection, model architecture, and optimization algorithms on the performance of FR models. We highlight our participation in the EFaR-2023 competition, where our models showcased exceptional performance, particularly in categories restricted by the number of parameters. By employing a subset of the Webface42M dataset and integrating sharpness-aware minimization (SAM) optimization, we achieved significant improvements in accuracy across various benchmarks, including those that test for cross-pose, cross-age, and cross-ethnicity performance. The results underscore the efficacy of our approach in crafting models that are not only computationally efficient but also maintain high accuracy in diverse conditions

    2017 Robotic Instrument Segmentation Challenge

    Get PDF
    In mainstream computer vision and machine learning, public datasets such as ImageNet, COCO and KITTI have helped drive enormous improvements by enabling researchers to understand the strengths and limitations of different algorithms via performance comparison. However, this type of approach has had limited translation to problems in robotic assisted surgery as this field has never established the same level of common datasets and benchmarking methods. In 2015 a sub-challenge was introduced at the EndoVis workshop where a set of robotic images were provided with automatically generated annotations from robot forward kinematics. However, there were issues with this dataset due to the limited background variation, lack of complex motion and inaccuracies in the annotation. In this work we present the results of the 2017 challenge on robotic instrument segmentation which involved 10 teams participating in binary, parts and type based segmentation of articulated da Vinci robotic instruments

    Face comparison in forensics:A deep dive into deep learning and likelihood rations

    Get PDF
    This thesis explores the transformative potential of deep learning techniques in the field of forensic face recognition. It aims to address the pivotal question of how deep learning can advance this traditionally manual field, focusing on three key areas: forensic face comparison, face image quality assessment, and likelihood ratio estimation. Using a comparative analysis of open-source automated systems and forensic experts, the study finds that automated systems excel in identifying non-matches in low-quality images, but lag behind experts in high-quality settings. The thesis also investigates the role of calibration methods in estimating likelihood ratios, revealing that quality score-based and feature-based calibrations are more effective than naive methods. To enhance face image quality assessment, a multi-task explainable quality network is proposed that not only gauges image quality, but also identifies contributing factors. Additionally, a novel images-to-video recognition method is introduced to improve the estimation of likelihood ratios in surveillance settings. The study employs multiple datasets and software systems for its evaluations, aiming for a comprehensive analysis that can serve as a cornerstone for future research in forensic face recognition

    A Vision-Based Automatic Safe landing-Site Detection System

    Get PDF
    An automatic safe landing-site detection system is proposed for aircraft emergency landing, based on visible information acquired by aircraft-mounted cameras. Emergency landing is an unplanned event in response to emergency situations. If, as is unfortunately usually the case, there is no airstrip or airfield that can be reached by the un-powered aircraft, a crash landing or ditching has to be carried out. Identifying a safe landing-site is critical to the survival of passengers and crew. Conventionally, the pilot chooses the landing-site visually by looking at the terrain through the cockpit. The success of this vital decision greatly depends on the external environmental factors that can impair human vision, and on the pilot\u27s flight experience that can vary significantly among pilots. Therefore, we propose a robust, reliable and efficient detection system that is expected to alleviate the negative impact of these factors. In this study, we focus on the detection mechanism of the proposed system and assume that the image enhancement for increased visibility and image stitching for a larger field-of-view have already been performed on terrain images acquired by aircraft-mounted cameras. Specifically, we first propose a hierarchical elastic horizon detection algorithm to identify ground in rile image. Then the terrain image is divided into non-overlapping blocks which are clustered according to a roughness measure. Adjacent smooth blocks are merged to form potential landing-sites whose dimensions are measured with principal component analysis and geometric transformations. If the dimensions of a candidate region exceed the minimum requirement for safe landing, the potential landing-site is considered a safe candidate and highlighted on the human machine interface. At the end, the pilot makes the final decision by confirming one of the candidates, also considering other factors such as wind speed and wind direction, etc
    • …
    corecore