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Face Comparison in Forensics
A Deep Dive into Deep Learning and Likelihood Ratios

Abstract

This thesis explores the transformative potential of deep learning techniques in the field
of forensic face recognition. It aims to address the pivotal question of how deep learning
can advance this traditionally manual field, focusing on three key areas: forensic face com-
parison, face image quality assessment, and likelihood ratio estimation. Using a compara-
tive analysis of open-source automated systems and forensic experts, the study finds that
automated systems excel in identifying non-matches in low-quality images, but lag behind
experts in high-quality settings. The thesis also investigates the role of calibrationmethods
in estimating likelihood ratios, revealing that quality score-based and feature-based calibra-
tions are more effective than naive methods. To enhance face image quality assessment,
a multi-task explainable quality network is proposed that not only gauges image quality,
but also identifies contributing factors. Additionally, a novel images-to-video recognition
method is introduced to improve the estimation of likelihood ratios in surveillance settings.
The study employs multiple datasets and software systems for its evaluations, aiming for a
comprehensive analysis that can serve as a cornerstone for future research in forensic face
recognition.
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1
Introduction

Face recognition technology has evolved substantially, transitioning
from manual methods to automated systems powered by machine learning and
deep learning algorithms. This thesis explores the advancements and challenges in

integrating face recognition into the domain of forensic science, specifically focusing on
the application of deep learning techniques. The study addresses several key research ques-
tions aimed at advancing the field of forensic face recognition. These include the efficacy
of deep learning in forensic face comparison, face image quality assessment, and the estima-
tion of likelihood ratios, which are statistical measures used to evaluate the strength of ev-
idence. Both manual and automated methods are examined, highlighting their respective
strengths, limitations, and potential for synergy. The thesis also delves into specialized top-
ics such as calibration techniques for likelihood ratio estimation and the challenges posed
by surveillance video data. By leveraging state-of-the-art deep learning technologies and
innovative methodologies, this work aims to contribute to the advancement of face recog-
nition as a reliable and efficient tool in forensic investigations, thereby aiding the pursuit
of justice.

1.1 Automated Face recognition in Forensics: Likelihood Ratios

The ability to recognize faces is deeply ingrained in our biological and social evolution [1].
It dates back to the earliest days of human history, when our ancestors could only rely on
facial features to recognize each other. Over time, with the emergence of photography in

1



1

1. INTRODUCTION

the 19th century, a paradigm shift occurred in the way we recognized and remembered
people, and also how identities were stored and verified. This shift was dramatically illus-
trated in the work of Alphonse Bertillon, a French police officer who developed a system
of identifying individuals based on a set of precise body measurements. His approach also
involved capturing two types of photographs, one frontal and one profile view, which has
influenced the practice of takingmug shots to this day [2]. FromBertillon’s work onwards,
face recognition no longer relied on human memory alone. This had a major impact on
how investigations of crimes were conducted, as suspects could now be compared to pho-
tographs. Face recognition became a critical component of forensic science [3].

Face recognition was historically a manual process, relying on human perception and
judgment to distinguish individuals based on their unique facial features. This could in-
volve comparing two or more photographs or sketches and looking for commonalities or
differences in features, such as the distance between the eyes, the shape of the nose, or
the contour of the lips. Bertillon’s system laid the groundwork for systematic identifica-
tion and documentation, even though it didn’t specifically involve facial recognition in the
modern sense [2]. Still, his principles of precision and repeatability echo in the automated
systems of today. Yet, the traditional face comparison process was time-consuming, labour-
intensive, and prone to errors due to the subjective nature of human observation [4].

With the advent of computer technology in the late 20th century, face recognition be-
gan to evolve into an automated process. Computers were programmed to identify and
compare various features of a face, thereby reducing the dependence on human experts
and increasing the speed and consistency of the process [3]. These traditional methods
focused on detecting facial landmarks and comparing distances and angles among them.
Automatic landmark based methods marked the dawn of a new era in face recognition,
setting the stage for the advanced technologies we see today [4].

The next major leap in face recognition came with the advent of machine learning and
artificial intelligence in the 21st century. Today, powerful algorithms can analyze and com-
pare millions of faces in a fraction of the time it would take a human expert. The level of
accuracy often surpasses human capabilities [4] but these are aggregated results. In many
difficult cases systems are not able tomake accurate decisions. See figure 1.1 for an example
of how difficult this can be. So, despite these technological advancements, it is essential to
remember that face recognition, at its core, is about the intricate art of identifying individ-
uals based on their unique facial features, a skill that humans have been refining since the
dawn of our species. Solutions for face recognition in difficult cases should leverage the
skills of both humans and machines.
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RATIOS

(a) (b)

(c) (d)

Figure 1.1: Illustration ofmisidentification by an automated system. Images (a) and (b) represent the same
individual, George Bush, erroneously identified as different individuals by the system. Conversely, images (c)
and (d) depict two distinct individualsmisclassified as the same individual, exemplifying an impostor scenario.

Transitioning from the generalized concept and applications of face recognition, we
now delve into its specific integration within the domain of forensic science. Forensic sci-
ence uses rigorous scientific methodologies to respond to inquiries within the legal system,
often involving the analysis of various types of traces uncovered at a crime scene. These
traces span fromDNA, fingerprints, and footprints, to other forms of physical and biolog-
ical evidence [5]. Particularly, visual evidence, such as images procured from surveillance
cameras, often holds significant importance in the field of Forensic Science.
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The application of face recognition technology within the field of forensic science in-
troduces a unique set of challenges and opportunities. It enables investigators to identify
individuals from surveillance footage by comparing their facial featureswith a repository of
known faces, or pinpointing the individuals behind a terrorist threat announced on social
media. This advanced use of technology has proven to be instrumental inmodern forensic
science, directly contributing to the pursuit of truth and justice. As we delve deeper into
this technological era, themethods of implementing face recognition in forensic science are
evolving, and the emphasis is now on enhancing accuracy and precision, setting the stage
for the next phase which explores both manual and automatic methods [6; 7].

As the use of face recognition in criminal cases continues to progress, the accurate assess-
ment and interpretation of face recognition results becomes increasingly critical to ensure
credible conclusions and uphold the integrity of forensic science. This precision is essential
for maintaining the reliability of forensic evidence, which forms the bedrock of many legal
adjudications [8; 9]. To move forward in face recognition in forensic science we should
consider howwe can improvemanual and automatic [6; 7] methods as well as their combi-
nation.

Manual face recognition depends on human experts visually analyzing facial features
and their variations across different images, including pose, expression, illumination, oc-
clusion, ageing, and disguise [7; 10]. This method is often carried out by forensic facial
examiners, who are trained to compare faces using standardized procedures and guide-
lines [8; 9]. These examiners may also call upon individuals with exceptional face recog-
nition abilities—often referred to as ”super-recognizers”—to assist them in their tasks. A
super-recognizer is a person who has an extraordinary ability to recognize faces, often re-
membering faces they’ve seen only once or in passing [9]. Additionally, dedicated software
designed to interactively annotate and measure facial features can provide additional sup-
port to human examiners, thereby enhancing the consistency and efficiency of the manual
face recognition process [7; 10]. Software to support manual face recognition is focused
on the analysis of an individual image.

Automatic face recognition, on the other hand, is grounded in the extraction of numer-
ical features from facial images and the comparison of these features through mathemat-
ical models and algorithms [11]. As indicated, initially, automatic methods focused on
detecting facial landmarks such as the eyes, nose, mouth, and jawline, and measuring the
distances and angles between these points. This approach essentially mimics the manual
assessment conducted by human experts, but with increased speed and consistency. Vari-
ous techniques have been developed to enhance this process. For instance, the Eigenfaces
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method uses principal component analysis (PCA) to reduce the dimensionality of face im-
ages and represent them as linear combinations of eigenvectors, or ’eigenfaces’. The sim-
ilarity between two faces is measured by the Euclidean distance between their eigenface
coefficients [12]. The Fisherfaces method extends Eigenfaces by using linear discriminant
analysis (LDA) to find the optimal projection thatmaximizes the between-class scatter and
minimizes the within-class scatter of face images. The similarity between two faces is mea-
sured by the Mahalanobis distance between their Fisherface coefficients [13]. Another ap-
proach uses Local Binary Patterns (LBP), which are local texture features from face images
which are extracted by dividing them into small regions and computing a binary code for
each pixel based on its neighborhood. The histogram of these codes is used as a feature
vector for each region. The similarity between two faces is measured by the chi-square dis-
tance between their LBP histograms [14]. The Scale-Invariant Feature Transform (SIFT)
method detects and describes local interest points in face images that are invariant to scale
and rotation. The SIFT descriptor is a 128-dimensional vector that captures the gradient
information around each interest point. The similarity between two faces is measured by
the sum of squared differences (SSD) or the ratio test between their SIFT descriptors [15].
Building upon these foundational techniques, themost recent advancements in automatic
face recognition are predominantly powered by deep convolutional neural networks (DC-
NNs).These artificial neural networks have the ability to learn complex patterns from large
volumes of data, leading to significant improvements in face identification tests over the
past few years [16; 17]. This continuous progress in the realms of artificial intelligence
and machine learning holds promise for further enhancements in the performance of au-
tomatic face recognition systems. Advancements in deep neural networks open the door
for systems to manage an expanding range of forensic scenarios, while also adapting to a
diverse array of conditions and constraints [17].

While bothmanual and automatic face recognition carry their respective strengths, they
also possess limitations and uncertainties when applied in forensic processes [18]. Manual
face recognition, beingmore subjective, is susceptible to human errors and biases [19]. On
the other hand, automatic face recognition depends not only on the on the performance of
the algorithms but also on the quality and volume of the training data [20]. It is worth not-
ing that automatic systems may also carry inherent biases, often stemming from the data
they are trained on. Thus, it becomes imperative to quantify the reliability and validity of
face recognition results in forensic processes, employing statistical methods to do so. Due
to their complementary abilities, the collaboration between human experts and automatic
systems in the process of face recognition can greatly enhance forensic science. Human ex-
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perts, with their ability to discern specific facial characteristics that may be difficult for al-
gorithms, can provide invaluable insights. The combination with other biometric features
from the body such as height, or shape of hands etc. will provide additional evidence. On
the other hand, automatic systems excel in handling large-scale data processing tasks with
efficiency [21]. A collaborative approach ensures that the strengths of both methods are
capitalized on, leading to more accurate and reliable outcomes in face recognition [9; 22].

In the field of forensic science, being able to reliably define the value of evidence is cru-
cial for appropriate decisionmaking. A range of statistical methods are utilized to enhance
the decision-making processes. Among these, likelihood ratios have found significant ap-
plications [18]. Likelihood ratios represent ratios of probabilities that measure the extent
towhich a piece of evidence supports or contradicts a given hypothesis [23]. In the context
of face recognition, likelihood ratios provide a means to express the probability that two
facial images belong to the same person or two different individuals, given their observable
degree of similarity or dissimilarity [24]. These ratios can be derived from both human
judgments and algorithm outputs. The concept and application of likelihood ratios have
been extensively studied, not only for face recognition, but also forDNA, fingerprints, and
other forms of physical andbiological evidence. Integrating likelihood ratios into the foren-
sic decision-making process can lead to more transparent and robust conclusions, thereby
reducing the risk of wrongful convictions and enhancing public trust in the justice sys-
tem [25].

While likelihood ratios can effectively be applied to still images in face recognition, the
landscape of forensic science frequently requires the analysis of video evidence. Videos
are prevalent sources of evidence in criminal investigations, with videos often providing a
richer context by capturing facial movements, expressions, gestures, and situational con-
text [8; 9]. However, video data presents additional challenges for face recognition, in-
cluding factors such as low resolution, compression artifacts, motion blur, occlusion, and
varying viewpoints. These factors require the development and application of more ad-
vanced techniques and tools for extracting and comparing facial features across different
frames and modalities [10; 26]. Multimodal approaches integrate information from vari-
ous sources, such as audio and contextual cues. They could potentially enhance the accu-
racy and reliability of face recognition in forensic applications [27]. This thesis will primar-
ily focus on the analysis of images and videos for face recognition.

In addition, to address the limitations and uncertainties of bothmanual and automatic
face recognition methods, enhancing accuracy and reliability in face recognition within
forensic science can significantly increase its potential to contribute to the pursuit of justice.
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This enhancement can be achieved through the development of new methods and stan-
dards. These may include advanced preprocessing techniques aimed at mitigating the im-
pact of low-quality images, and innovative feature extraction methods tailored to capture
facial details more effectively. Robust machine learning algorithms could be employed,
capable of handling diverse and challenging scenarios. Additionally, the establishment of
standardized protocols and best practices specifically for face recognition within forensic
science is crucial. Proper preprocessing, robust machine learning, and standardized pro-
tocols can all increase the reliability and credibility of face recognition as a crucial tool in
forensic investigations.

As face recognition technology continues to advance, its role within forensic science is
expected to expand and evolve. Successful integration and application of face recognition
in forensic science can only be achieved with careful implementation of statistical meth-
ods like likelihood ratios. This involves fostering a collaboration between human experts
andmachines, harnessing multiple sources of evidence, and encouraging the development
of newmethodologies and standards. The utilization of likelihood ratios in particular can
provide amore nuanced understanding of the results, allowing formore precise and robust
conclusions. By incorporating these elements, face recognition can become an increasingly
valuable and powerful tool in the ongoing quest for truth and justice. Ultimately, the effec-
tive incorporation of face recognition, bolstered by the thoughtful use of likelihood ratios,
can contribute to a more accurate, efficient, and fair legal system.

1.2 Research questions

With the rising tide of deep learning technologies, new opportunities are surfacing for ad-
vancements in various fields, one of which is forensic face recognition. Traditionally de-
pendent on manual identification methods, forensic face recognition now stands at the
precipice of a significant transformation led by deep learning algorithms. This thesis aims
to traverse this chasm and determine how these innovative technologies can revolutionize
the discipline. The pivotal question that spearheads this exploration is:

• In what ways can Deep Learning techniques advance the field of Forensic
Face Recognition?

Delving into the potential applications of deep learning techniques in this field, our pri-
mary focus lies in three key areas: forensic face comparison, face image quality assessment,
and likelihood ratio estimation. Each of these areas represents a crucial aspect of forensic
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face recognition, holding unique challenges and opportunities for enhancement through
deep learning. As an example of a difficult decision for the automated system to decide if
it is the same person or different ones, see figure 1.1.

Forensic face recognition plays a pivotal role in legal proceedings, providing crucial in-
sights to human investigators. A key part of this process involves the estimation of likeli-
hood ratios, a technique commonly employed in fields such as DNA or glass source com-
parisons. However, it remains an open question whether such an approach can be effec-
tively applied to the domain of forensic face recognition using deep learning. This leads to
the following subquestion:

• Canwe estimate Likelihood Ratios when performing Forensic Face Compar-
ison using Deep Learning?

To tackle this question, in chapter 2 we compare the performance of three open-source
automated systems—OpenFace, SeetaFace, and FaceNet—with that of forensic facial com-
parison experts. These systems, all based on convolutional neural networks, return either
a distance (OpenFace, FaceNet) or similarity (SeetaFace), which is then converted to a like-
lihood ratio using three different distribution fits: a parametric fit with aWeibull distribu-
tion, a nonparametric fit based on kernel density estimation, and isotonic regression with
the pool adjacent violators algorithm.

The results reveal that automated systems demonstrate superior performance in detect-
ing non-matches with low-quality frontal images, achieving 100% precision and specificity
in a confusion matrix compared to 89% and 86% respectively achieved by investigators.
However, with good quality images, forensic experts deliver superior results. Notably, a
rank correlation of around 80% was observed between investigators and software.

The estimation of likelihood ratios in forensic face recognition is influenced by the cali-
bration process, where scores are transformed into these ratios. An important aspect that
warrants investigation is the type of database used for calibration and its potential impact
on the accuracy of the estimated likelihood ratios. Specifically, it is essential to ascertain if
the calibration process is influenced by whether the calibrating pairs are random or share
similar features with the test subjects. This leads us to the following subquestion:

• How does the Calibration method affect Likelihood Ratio estimation?

To address this question, in chapter 3 we explore the performance of three distinct cali-
bration techniques - naive calibration, quality score-based calibration using typicality, and
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feature-based calibration. These techniques have been successfully applied in other foren-
sic disciplines but have not been thoroughly investigated within the context of facial image
recognition. Maintaining transparency is critical in forensic procedures. Therefore, we
compare the performance of state-of-the-art open software with a widely used commercial
system. Using the European Network of Forensic Science Institutes (ENFSI) Proficiency
tests as a benchmark, we evaluate the calibration results on three public databases: Labeled
Faces in the Wild, SC Face, and ForenFace. Our findings suggest that quality score-based
and feature-based calibrations outperform naive calibration. Yet, the commercial system
outperforms the open software in estimating these likelihood ratios. Despite the commer-
cial system’s superior performance, the transparency offered by open software underscores
the need for ongoing research to enhance the effectiveness and transparency of forensic
facial image comparison methodologies.

Figure 1.2: Calibration functions for same and different person. Images taken from XQLFW [28].

In forensic investigations, the extraction of suspects from surveillance footage is a cru-
cial yet challenging task, often complicated by variable observation conditions and volu-
minous data. One critical element to consider in this process is the Face Image Quality
(FIQ), a metric used to evaluate the utility of a face sample for facial recognition. Present
automated FIQ assessment methods, while productive, carry two significant limitations:
they yield only a scalar quality value without specifying the factors leading to low quality,
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and they are computationally demanding, which inhibits their efficacy in managing large
image volumes. An illustration of the calibration can be found in figure 1.2.

These limitations underscore the necessity for an FIQ assessment method that not only
determines the quality of a face sample but also elucidates the factors influencing that qual-
ity assessment. Such a method would foster a more comprehensive understanding of face
sample quality, rendering the assessment process more transparent and potentially more
effective. This need motivates the following question:

• Can we connect face image attributes to Face Image Quality?

To address this question, in chapter 4 we introduce multi-task explainable quality net-
works (XQNets). Unlike traditional methods, XQNets not only provide the quality value
but also identify the facial and environmental attributes contributing to that value, thereby
enhancing our understanding of the factors influencing a sample’s quality. During the
training process, XQNets autonomously learn how each attribute contributes to the qual-
ity value. Moreover, this studyproposes a dataset-agnostic qualitypairingprotocol (DAQP),
ensuring that sample pairs are balanced across different datasets and evaluations are fair.

Our experimental results on the LFW, SCface, and ForenFace benchmarks indicate that
the proposed approach can be generalized across different datasets and outperforms exist-
ing state-of-the-art methods. Consequently, the use of XQNets offers a more efficient
and explainable approach to FIQ assessment, making it particularly suitable for large-scale
forensic applications. Figure 1.3.illustrated face quality distribution.

Given thenumerous challenges posedby surveillance videos for face recognition in foren-
sic investigations, variations such as pose, illumination, and facial expressions can greatly
compromise the effectiveness of recognitionmethodologies. The need for robust solutions
that can accurately identify faces under these conditions is therefore critical. Prompted by
this challenge, the following question becomes essential:

• How can we improve the estimation of Likelihood Ratios in surveillance
videos for more effective face recognition?

In response to this question, in chapter 5 we propose a novel image-to-video face recog-
nition method. This method pairs face images with multiple attributes (soft labels) and
face image quality (FIQ), followed by the application of three distinct calibrationmethods
to estimate likelihood ratios.
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Figure 1.3: Quality distribution for XQLFW. Images taken from XQLFW [28].

The validation of this innovative approach is performed using the ENFSI proficiency
test 2015 dataset, with SCFace and ForenFace serving as calibration datasets. Three dif-
ferent embedding models—ArcFace, FaceNet, and QMagFace—are utilized in the eval-
uation. The results suggest that focusing on high-quality frames significantly improves
face recognition performance in forensic applications compared to using all frames. The
most favourable outcomes are achieved when the highest number of common attributes
between the reference image and selected frames is utilized, or when a single common em-
bedding is created from the selected frames, each weighted according to its face image qual-
ity. This chapter introduces a new method for estimating likelihood ratios in surveillance
videos, offering a significant contribution to the field of forensic face recognition and en-
hancing the practical applications and understanding of its implications.

An overview can be seen in figure 1.4.
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Image-to-Image

Images-to-Videos

Face Image Comparison

Quality assessment

LR Calibration

Database

LR Estimation

Figure 1.4: Likelihood ratio estimation outline. Reference images (usually ID or high quality pictures) are
compared against questioned images (usually surveillance or low quality). Then, using an external database
calibration is used to compute LR. Images taken from SCFace [29] and XQLFW [28].
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1.3 Contributions

In this thesis, the contributions are organized by chapter, detailing the co-authors and their
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• Chapter 2: Macarulla Rodriguez, A., Geradts, Z., & Worring, M. (2020). Likeli-
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ences, 65(4), 1169-1183.

Andrea Macarulla Rodriguez: All aspects
Zeno Geradts: Insight and supervision
Marcel Worring: Insight and supervision

• Chapter 3: Rodriguez, A. M., Geradts, Z., & Worring, M. (2022). Calibration of
score based likelihood ratio estimation in automated forensic facial image compari-
son. Forensic Science International, 334, 111239.

Andrea Macarulla Rodriguez: All aspects
Zeno Geradts: Insight and supervision
Marcel Worring: Insight and supervision

• Chapter 4: Rodriguez, A. M., Unzueta, L., Geradts, Z., Worring, M., & Elordi, U.
(2023). Multi-Task Explainable Quality Networks for Large-Scale Forensic Facial
Recognition. IEEE Journal of Selected Topics in Signal Processing.

Andrea Macarulla Rodriguez: All aspects
Luis Unzueta: Insight and supervision
Zeno Geradts: Insight and supervision
Marcel Worring: Insight and supervision
Unai Elordi: Technical implementation

• Chapter 5: ”Improved Likelihood Ratios for Surveillance Video Face Recognition
with Multimodal Feature Pairing”. Under submission to Forensic Science Interna-
tional. Authors: Macarulla Rodriguez, A., Geradts, Z., & Worring, M., Unzueta,
L.,

Andrea Macarulla Rodriguez: All aspects
Zeno Geradts: Insight and supervision
Marcel Worring: Insight and supervision
Luis Unzueta: Insight and supervision
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2
Likelihood Ratios for Deep Neural Networks

in Face Comparison

In this study, We aim to compare the performance of systems and forensic facial
comparison experts in terms of likelihood ratio computation to assess the potential
of the machine to support the human expert in the courtroom. In forensics, trans-

parency in the methods is essential. Consequently, state-of-the-art free software was pre-
ferred over commercial software. Three different open-source automated systems chosen
for their availability and clarity were as follows: OpenFace, SeetaFace, and FaceNet; all
three based on convolutional neural networks that return a distance (OpenFace, FaceNet)
or similarity (SeetaFace). The returned distance or similarity is converted to a likelihood
ratio using three different distribution fits: parametric fit Weibull distribution, nonpara-
metric fit kernel density estimation, and isotonic regression with pool adjacent violators
algorithm. The results show that with low-quality frontal images, automated systems have
better performance to detect non-matches than investigators. 100% of precision and speci-
ficity in confusion matrix against 89% and 86% obtained by investigators, but with good
quality images, forensic experts have better results. The rank correlation between investi-
gators and software is around 80%. We conclude the software can help reporting officers,
as it can do faster and more reliable comparisons with full-frontal images, which can help
the forensic expert in casework.
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2.1 Introduction

Face recognition is a powerful biometric technique to recognize a person due to its non-
intrusive characteristics [30]. Unlike other biometric recognition, such as fingerprints or
DNA, face recognition does not require cooperation from the suspect, making it a useful
source of evidence. Digital facial evidence can appear in CCTV footage, mugshots, mo-
bile devices, or images from social media sites [8; 31], which are now commonly used in
court [10]. An example use is a comparison between the ID image of a suspect and a face
image retrieved from CCTV footage. This 1:1 comparison is known as verification or au-
thentication. Organizations such as the European Network of Forensic Science Institutes
(ENFSI) stimulate reporting the assertiveness of the statement match/nonmatch, that is,
the verification stating whether it is the same person/different person or not, via a quantifi-
able amount [32]. To that end, ENFSI enforces the use of a likelihood ratio (LR) as the
mensurable method to express the confidence in the match/nonmatch decision [32; 33] as
also used in DNA or fingerprint comparison [34; 35].

LR is based on Bayes’ rule. It is defined as the ratio of the probabilities of two hypothe-
ses: the null hypothesis, here the hypothesis of the prosecution (Hp), and the alternative
hypothesis of the defense (Hd) [33]. These terms are considered before certain findings,
that is, the evidence E, are taken into account. Evidence in the case of face verification
would come in the form of assessment if the face verification would be a match or a non-
match. For face verification, we consider the null hypothesis a match, and the alternative
hypothesis a nonmatch. The LR is defined as follows:

LR(Hp,Hd,E) =
Pr(E|Hp)

Pr(E|Hd)
(2.1)

Would it be possible to obtain a valid LR in 1:1 face comparison suitable for forensics?
For that end, we use the proceedings to attain an LR based on a biometric score [36; 37].
For face comparison, the biometric score is the value obtained from an automated system
that can compute either the distance or dissimilarity between two given faces. Automated
face recognition startedwith the eigenfaces in 1991byM.Turk andA.Pentland [38]. Since
then, automated face recognition has been an active subject of research in the computer
vision community. In recent years, AI and Deep Learning have allowed progress and im-
provement in automated face recognition systems by leaps and bounds. In 2014,DeepFace
[39] reached 97.35% accuracy identifying faces in the benchmark dataset Labeled Faces in
theWild (LFW) [40] versus a human performance of 97.53%. The current state-of-the-art
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has boosted performance up to 99.80% [41]. Due to the improved performance, auto-
mated systems can become assistants of judgment in court [9; 42]. To assess this potential,
the LR obtained through the process must be validated for suitability in the forensic field
[23; 43].

The main contributions of this chapter consist of carrying out the process of a 1:1 veri-
fication end to end from an automated system to the final step of validation in the forensic
field. We use three different open-source automated systems: OpenFace [44], SeetaFace
[45], and FaceNet [46]. The reason to use these three automated systems is due to their
availability and transparency to the user. We obtain either a distance (OpenFace, Seeta) or
a similarity (SeetaFace) that is treated as a biometric score. We transform the score through
three statistical methods: Weibull distribution [47], kernel density estimation (KDE) [48],
and pool adjacent violators algorithm (PAVA) [49]. These methods use a set of scores to
generate a probabilistic density function (Weibull, KDE) or a cumulative density function
(PAVA). This process of obtaining such functions is commonly known as calibration. The
set of scores is obtained from 1:1 comparison in the benchmark LFW, which is publicly
available and contains a large set of unconstrained face images. After applying these steps,
the LR is obtained. Once the LR is obtained, validation is performed through a compar-
ison to the human expert. This conforms to our second contribution. The comparison
with the human experts is based on the yearly ENFSI face recognition proficiency tests.
These tests are performed by forensic experts giving a likelihood ratio to each pair of im-
ages analyzed, which may be of the same person or not. We will use these tests for both
evaluating the performance of the automated system (match/nonmatch success through
the Matthews correlation coefficient [50]) and the level of similarity to the forensic expert
using rank correlation. The last contribution comes in the conclusion in the form of indi-
cations of how the automated tools can be of assistance to the expert based on the results
found.

The chapter is organized as follows: First, we review the relatedwork, subdivided on the
use of likelihood ratio in forensics in general, automated face recognition advances, and like-
lihood ratio tied to face recognition. Second, we disentangle step by step the procedure of
assessing the likelihood ratio from an automated system score inMethodology. We explain
each of the open-source tools, themethods, and the dataset used. In theResults section, we
present the accuracy of the automated system reached with the different statistic methods,
that is, when it got better or worse combinations of match/nonmatch predictions and the
rank correlation with the human investigators. Finally, in the Discussion and Conclusion
section, the results are analyzed and the potential of the automated system to assess forensic
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decisions is evaluated.

2.2 RelatedWork

2.2.1 Likelihood Ratio in Forensics

The idea of presenting evidence evaluation in court using a Bayesian probabilistic frame-
work has been encouraged by institutions such as ENFSI in recent years as a suitable way
to report evidence to justice [32; 51; 52] as it helps to standardize reasoning. In Europe,
there have been initiatives to endorse this approach, for example, by the presentation of a
guideline [43]. As a result, forensic laboratories around the world use the likelihood ratio
as a means to summarize their findings [33].

The use of likelihood ratio to report results has been explored in several fields of foren-
sic research. DNA trace comparison is probably the area with the largest known use of LR
in Europe and has already frequently been used in court [34; 53]. There has been a study
in forensic speaker recognition by Ref. [54] that evaluates the performance of different
methods used for forensic automatic speaker recognition. In the reference, three methods
of speaker recognition (VQ, GMM, and i-vectors) are evaluated in accordance with the
methodical guidelines for best practice in forensic semi-automatic and automatic speaker
recognition. They conclude that in the experimental conditions of the paper, the three
methods compared produce similar results. In forensic fingerprint comparison, the per-
formance of LR for comparisons of fingerprints with fingermarks is studied in Ref. [55].
They conclude that the results obtained could be used as a reference for score-based LR
systems in other fields. In addition to applications in biometrics, LR computations have
also been done for drug comparison [56], glass analysis [57], and gasoline analysis [58].

General guidelines for validation of the likelihood ratio approach can be found in Refs
[23] and [43]. The proposed process of validation takes into account two ways of obtain-
ing likelihood ratios from a biometric comparison: score-based and feature-based. In our
chapter, we follow the majority of the work done in the biometric forensic field [31; 54]
where validation is based on scores.

2.2.2 Automated Face Recognition

Many methods for automated face recognition are available, coming both from industry
and academics [39; 44; 59; 60]. A survey carried out in Ref. [41] compares the current
open-source best-performing face recognition algorithms and their accuracies in bench-
marks [40]. The work concludes that, since 2014, all the best-performing algorithms are
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based on convolutional neural networks [46; 61]. This state-of-the-art software outper-
forms human recognition in the benchmark dataset Labeled Faces in the Wild [40].

Face recognition algorithms in general consist of three steps: face detection, face normal-
ization, and face identification or verification. Face detection aims to identify the presence
of people’s faces within an image [60]. It is very well developed and also commonly used,
for instance in autofocus in cameras. In the next step, face normalization, faces are aligned
by matching landmarks. Each picture is warped so that the eyes and lips are always in the
same place in the image. This will make the comparison a lot easier [62]. Finally, identifi-
cation tries to establish the identity of a person in an image by comparing it to a reference
database. In face verification, the model has to determine whether two images of a person
belong to the same individual [63].

2.2.3 Face Recognition and Likelihood Ratio

As indicated, face recognition has been widely researched in academia and industry, yet
there has been little research in the field of forensic face recognition [31].

There have been attempts to compare automated systems to human performance. For
instance, [9] researched groups of forensic experts (super-recognizers, i.e., people with sig-
nificantly better-than-average face recognition ability, and trained facial reviewers) and un-
trained recognizers. In their study, they acknowledge that the best algorithms perform in
the range of the best humans, that is, professional facial examiners.

The Carabinieri Forensic Investigation Department [42] in Italy carried out successful
experiments on comparing commercial system performance in both the ENFSI test and
130 cases, focusing on the accuracy in recognition. The results show that two of the three
automatic systems performed superior comparedwith themean of the forensic experts. As
a next step, the authors recommend computing likelihood ratios as recommended by the
ENFSI guideline for evaluative reporting in forensic science. In their paper, they state a
strongly optimistic view of the future use of support vector machines and convolutional
neural networks.

2.3 Methodology

The objective of this work was to compare the operation of automated facial recognition
systems with the way forensic experts assess their findings, and to determine whether auto-
mated systems can be helpful tools to the investigator.
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Whencomparing two images, the automated systemreturns a score or a scoreplus an em-
pirically calculated threshold. The score does not directly give informationwhether it is the
same person or not, rather the score of the system indicates the confidence of the system in
the similarity of the two images under consideration. Therefore, the software outputmust
be converted to LRvalues that facilitate the reporting of evidential value. To determine the
usefulness of the automated systems, the results provided by the researchers must be com-
pared with the LR values obtained from the automatic systems and the true relationship
between the images. To compute a LR starting from a score, first calibration of the au-
tomated system is required. For that, we need an automatic system that provides a score,
and then a statistical method to convert the score into a LR. This statistical method needs
a database to perform the calibration. This calibration is done using the public database
Labeled Faces in theWild. Once the LR is obtained, the performance of the automated sys-
tem is evaluated through the Matthews coefficient. The Matthews coefficient condenses
in a single number the quality of the classification based on the confusionmatrix. The next
step is to compare the LR obtained from the automated system to the LR provided by the
forensic experts. This comparison between the automated system and human experts was
performed with rank correlation. The overall process, and with that the structure of the
chapter, is illustrated in Fig. 2.1. In the process, the automated system and forensic experts
act as actuators that receive input (both a pair of images to compare) and expel an output,
scores, or distances in the case of the automated systems, and likelihood ratios in the case
of forensic experts. For the automated system to output likelihood ratios, it needs to be
calibrated through a reference database (in this case Labeled Faces in the Wild). The final
goal andmain contribution of this chapter is the comparison between the LR obtained by
the automated system and the forensic experts, both in accuracy and similitude.

2.3.1 Likelihood Ratio Obtained from ENFSI Tests

ENFSI prepares every year a facial comparison test where forensic experts assess the like-
liness of a match for face image pairs. Through the years, the subjects appearing in the
comparisons change in nationality, quality of the picture, pose (frontal or different angle),
different distances in 2011, or other challenges for face recognition such as compression of
the image (2011) different ages (2012) or objects partially covering the face (2013). The
characteristics of the tests evaluated can be found in Table 2.1.

In Table 2.2, the ENFSI criteria to determine the likelihood ratio associated with a cer-
tain pair of images are shown. Even though the true values of the likelihood ratio cover a
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Figure 2.1: Overview of the chapter. Black boxes symbolize data. LFWandENFSI tests are image datasets,
and LRAS and LRFE are the two sets of likelihood ratios obtained from the ENFSI tests from the automated
system and the forensic experts, respectively. Dash line indicates actuators, such as automated systems and
forensic experts, that receive input (both of them a pair of images to compare) and expel an output, scores,
or distances in the case of automated systems, and likelihood ratios in the case of forensic experts. A white
box with solid black contour signifies an operation. For the automated system to output likelihood ratios, it
needs to be calibrated through a reference database (in this case Labeled Faces in the Wild and the proficiency
tests). The final goal andmain contribution of this chapter is the comparison between the LR obtained by the
automated system and the forensic experts, both in accuracy and similitude.
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Table 2.1: Proficiency test characteristics for years 2011, 2012, 2013, and 2017.

2011 2012 2013 2017

Country organizing Sweden Sweden Sweden Netherlands
the test
Quality Decent Decent Low

(CCTV)
Good

Poses Frontal 3 angles Frontal Frontal
Conditions Distances Similar Similar Similar
Other comments Compression/

resolution
Up to 5 years
in between

With
glasses/scarves...

–

larger range, the experts in the ENFSI tests report them on a logarithmic scale for conve-
nience. In Table 2.2, the original LR value is reflected as LR, the reporter logarithmic LR
as LLR, and the verbal forensic report as verbal equivalence. For LR>1, a logarithmic scale
from 0 to +5 is used (LLR).When LR < 1, the LLRwill be equivalent but with a negative
value (from −5 to 0).

Samples from different years are shown in Fig. 2.2. They are referred to as match, that
is, both of the images belong to the same person, or nonmatch, which means the pictures
belong to different persons. Both the investigator and the automated system must report
if the comparison corresponds to match/nonmatch and the degree of certainty about it
through the likelihood ratio.

2.3.2 Likelihood Ratio Obtained from Automated Systems

Biometric Score Obtained fromOpen-source Automated Systems

In forensic science, transparency and explainability are important. Threemethods are cho-
sen due to their availability to the users since no license required and the source code is
available. This transparency makes OpenFace, SeetaFace, and FaceNet open-source sys-
tems suitable for forensic study, in contrast to commercial software that is not open for
examination. FaceNet is used due to its high performance in the dataset used to create the
LR from the scores (99.65% accuracy). OpenFace andFaceNet are bothbased onRef. [46],
butOpenFace has faster running time than FaceNet because of its lower number of dimen-
sions. In principle, a higher value of dimensions provides higher accuracy, but also more
computational power. Finally, SeetaFace is based onVIPLFaceNet [45], whichworks with
a different backbone network (the convolutional neural network that was trained to make
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Table 2.2: Likelihood ratio scale that forensic experts use to assess their comparisons. Table based on Ref.
(5) and ENFSI tests.

Values of likelihood ratio LLR
value Verbal equivalent

10,000–1,000,000 5 …provide very strong support for the first proposition
rather than the alternative
…are far more probable given…proposition…than
proposition…

1000–10,000 4 …provide strong support for the first proposition rather
than the alternative
…are much more probable given…proposition…than
proposition…

100–1000 3 …provide moderately strong support for the first
proposition rather than the alternative
…are appreciably more probable
given…proposition…than proposition…

10–100 2 …provide moderate support for the first proposition
rather than the alternative
…are more probable given…proposition…than
proposition…

2–10 1

The forensic findings provide weak support for the
first proposition relative to the alternative.

The forensic findings are slightly more probable
given one proposition relative to the other.

0.5–2 0

The forensic findings do not support one
proposition over the other.

The forensic findings provide no assistance in
addressing the issue.
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Figure 2.2: Samples of compared images. Match refers to a combination of two images that belong to the
same person, and nonmatch refers to different persons.

the faces classification), and thus, the performance may be different from the other two
software systems. All of them outperform human performance in the public database La-
beled Faces in the Wild [41].

The three systems execute a 1:1 verification. In these automated systems (all based on
a convolutional neural network), each detected face is represented as an N-dimensional
vector in the space resulting from embedding the high dimensional image space to an N-
dimensional feature space. Figure 2.3 shows a sketch of this procedure.

OpenFace is a Python andTorch implementation of face recognition and is based onRef.
[46]. The models are trained with a combination of the two publicly available face recog-
nition datasets: FaceScrub and CASIA-WebFace. The software used for this chapter is a
script that predicts a similarity score of two faces by computing the squared L2 distance be-
tween their representations, based on a normalized 128-dimensional embedding. A lower
score indicates two faces are more likely of the same person. The lower the distance, the
more similar the two faces are. It has accuracy on LFW of 92.92% [41]. The methods in
Ref. [44] also form the basis for FaceNet which is a TensorFlow implementation. It has
been trained on VGGFace2 [59], and face alignment has been done using MTCNN [64].
It does its calculations with a 512-dimensional normalized embedding and has an accu-
racy of 99.63% on LFW. It returns an L1 distance between 0 (same picture) and 2. Finally,
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Figure 2.3: How automated systems generate a score. N is the number of dimensions of the embeddings
for each representation. The distance measures how different the two embedded feature vectors are.

SeetaFace is a C++ face recognition engine, which can run on a CPU with no third-party
dependence. It contains three key parts, namely SeetaFace detection [65], SeetaFace align-
ment [66], and SeetaFace identification [45].

The image representation is a 2048-dimensional embedding, and the score provided for
the comparison between two images is calculated with the cosine similarity resulting in a
value between 0 (completely different) and 1 (same image). It reaches 97.1% accuracy on
LFW.

From Biometric Score to Likelihood Ratio

As indicated in the introduction, the LR is obtained from two conditional probabilities
namely the probability of the evidence conditional to the hypothesis of the prosecution
(the two faces belong to the same person) divided by the probability of the evidence condi-
tional to the hypothesis of the defense (the two faces belong to a different person). When
we use an automatic system to calculate the similarity between the two faces to be com-
pared, it returns a score. This score in itself has no forensic relevance and that is why we
aim to convert it to an LR.

In this chapter, we have chosen three methods commonly used in forensic literature
[36; 67] to convert biometric scores into an LR. Methods used are the Weibull model ap-
proach [47], a parametric method that approximates two probability distribution func-
tions (PDFs), kernel density estimation (KDE) [48], a parametric method that also gen-
erates two PDFs, and the nonparametric isotonic regression that computes a cumulative
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distribution function (CDF) [49].

TheWeibull distribution was chosen in the first place because it can assume the charac-
teristics of many different types of distributions. It is flexible enough to model a variety of
datasets. It can adapt to both skewed data and symmetric data. Weibull is a parametric dis-
tribution, which assumes parameters (defining properties) of the population distribution
from which the calibration data are drawn. Because of that, the second choice is a kernel
density estimation (KDE), which is a nonparametric test that does not make such assump-
tions. The third method chosen is isotonic regression commonly used machine learning
model for statistical inference.

In Weibull distribution approach, if we use a sufficiently large set of scores obtained
from comparisons between photographs that belong to the same person (within-source
variability, WSV) and comparisons that belong to different ones (between-source variabil-
ity, BSV), we can infer from these two sets two probability density functions (PDFs). Once
we have these two functions, if a new comparison were made (which would be what we
would consider evidence in a case), it would be enough to use the score obtained from the
automated system as input and plug it in into the PDFs. Thus, we obtain two values, one
for the prosecution hypothesis and another for the defense hypothesis. By dividing these
two values, we obtain the likelihood ratio. A summary of this concept can be seen in Fig.
2.4.

TheWeibull distribution is a continuous probability distribution thatwe fit the discrete
set of scores obtained from the calibration set (LFW [40]). To approximate our set of data,
we use the two-parameter Weibull, defined in Eq. 2.2.

fw(x, β, η) =
β
η

(
x
η

)β−1
e−

(
x
η

)β

(2.2)

The two-parameter Weibull distribution is commonly used in failure statistic studies
and fits well with the histograms obtained with scores provided by automated systems, as
seen in Fig. 2.5 The shape parameter (β) of the distribution changes the slope of the func-
tion, and the scale parameter (η) regulates the spread of the distribution. Their effects are
illustrated in Fig. 2.6

Once the calibrated data are grouped into bins on a histogram, probabilistic functions
have to be fitted to the data in order to calibrate. Using both Weibull functions (prose-
cution generated with BSV and defense generated with WSV), LR is calculated with the
following:
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Figure 2.4: Computation of an LR for a pair of biometric specimens consisting of the suspect’s biomet-
ric specimen and the trace biometric specimen. Figure based on Ref. [36]. The reference database is used to
calibrate the automated system. From the calibration, two sets of scores are obtained, one for the same source
pair of faces (Hp) and another one for different source pairs of faces (Hd). For each pair of question and refer-
ence image in the ENFSI test, the automated system will provide a score. The score is transformed to an LR
through the calibration methods Weibull, KDE, and isotonic regression.

Figure 2.5: Weibull and KDE approximations to histograms generated with calibration data.
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Figure 2.6: Different shape parameters (left figure) and scale parameters (right figure) in theWeibull distri-
bution. The shape parameter (β) of the distribution changes the slope of the function, and the scale parameter
(η) regulates the spread of the distribution.

LRw(s) =
Prw(s|Hp)

Prw(s|Hd)
=

f pw(s, βp, ηp)
f dw (s, βd, ηd)

(2.3)

In kernel density estimation, A kernel distribution iss a nonparametric representation
of the probability density function (PDF) of a random variable. It is used when a paramet-
ric distribution cannot properly describe the data, or when avoiding making assumptions
about the distribution of the data is desired. A kernel distribution is defined by a smooth-
ing function and a bandwidth value h, which controls the smoothness of the resulting den-
sity curve. In other words, it is a technique that lets you create a smooth curve given a set
of data [48]. It is given by the following equation:

fk(x, h,K) =
1
n

n∑
i=1

Kh(x− xi) =
1
nh

n∑
i=1

K
(x− xi)

h
. (2.4)

where K is the kernel and h is the bandwidth. The kernel smoothing function defines
the shape of the curve used to generate the probability distribution function. Similar to a
histogram, the kernel distribution builds a function to represent the probability distribu-
tion using the sample data. Unlike a histogram, which places the values into discrete bins,
a kernel distribution sums the component smoothing functions for each data value to pro-
duce a smooth, continuous probability curve. For this chapter, we will use a Gaussian
kernel for the calibrations. The bandwidth steers the smoothness of the resulting approxi-
mation. The effect of this parameter is illustrated in Fig. 2.7. It can be observed that small
bandwidth values (0.1) can generate overfitting.
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Figure 2.7: KDE with different bandwidth values (h). The bandwidth steers the smoothness of the re-
sulting approximation. Higher values of h smooth the curve, whereas the low values make the curve fit the
samples better. However, this can cause overfitting.
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Using both kernel functions (prosecution generated with BSV and defense generated
withWSV), LR is calculated with the following:

LRk(s) =
Prk(s|Hp)

Prk(s|Hd)
=

f pk (s, βp, ηp)

f dk (s, βd, ηd)
. (2.5)

Isotonic regression (pool adjacent violators algorithm) can be understood as approxi-
mating given series of 1-dimensional observations with a nondecreasing function which
has to lie as close to the observations as possible. Isotonic regression is given by the follow-
ing formula [68]:

min
g∈A

n∑
i=1

wi(g(xi)− f(xi))2 (2.6)

.
whereA is the set of all piecewise linear, nondecreasing, continuous functions and f is a

known function.
To apply the linear isotonic regression method, we use the pool adjacent violators algo-

rithm (PAVA).Applying PAVA, an increasing function from the scores of a distance (Open-
Face and FaceNet) or similarity (SeetaFace) is built. The input to feed the function is cal-
ibration scores from both WSV and BSV. In OpenFace and FaceNet, WSV corresponds
to low score values (WSV corresponds to a comparison of the same person) and BSV cor-
responds to high values (comparisons of different persons). The larger the distance value,
the higher the probability of the input being different persons. The relationships are com-
pletely the opposite of SeetaFace.

Each score obtained from the automated system is assigned a point in the xy plane. In
this plane, x is the value of the obtained distance (in OpenFace and FaceNet) or similarity
(in SeetaFace). The variable ywill be assigned a value of 0 if it belongs toWSVand a value of
1 if it belongs to BSV (OpenFace, FaceNet), and the opposite for SeetaFace. Figure 2.8 left
shows a scatter of this value allocation. To achieve isotonic regression, the requirements
yi + 1 ≥ yi for every xi + 1 > xi must be satisfied. As seen in Fig. 2.8, the distance values
obtained are discrete, they do not satisfy yi + 1 ≥ yi. To satisfy this term, PAVA is applied.
The outcome of PAVA is a nondecreasing function with yi + 1 ≥ yi.

There are points with x values that are equal (i.e., xi + 1 > xi is not satisfied). All the
points with the same x value are substituted by one that has the y value of the average. Also,
that point is assigned aweight equal to the number of original points for that x value. With
this step, a point cloud with different weights is obtained, but this time xi + 1 > xi is satis-
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Figure 2.8: Left figure: points (xi, ai), where ai = 0 or 1, depending on the scores obtained when the
person is the same (0) or different (1). Right figure: outcome of PAVA. This curve is the nondecreasing curve
which best fits the set of scores in the left figure.

fied for every i, as shown in Fig. 2.9. The next step is applying the pool adjacent violators
algorithm (PAVA) making sure the requirement yi + 1 ≥ yi is satisfied. Going from the
smallest x value in increasing order, if a violation of this requirement is encountered, the
value of the point yi + 1 (the violator) and the left adjacent points with the same y value
are changed to the average of all of them, considering the assigned weights. With that, the
decrease in the function is avoided at this point, augmenting the value of the violator and
decreasing the value of the adjacent left points. However, after this step, it is possible that a
new violator to the left of xi has been created. It is for that reason that after a change in the
value it is required to start from the smallest value of x again. The algorithm ends when all
the violators are eliminated, that is, the obtained points define a nondecreasing function
as shown in Fig. 2.8 right.

The resulting function can be considered an estimation of the probability of the com-
parison being two different persons, conditioned on a distance value or evidence. Also
defined as following:

y(x) = P(BSV|x). (2.7)

Hence, its complementary value to 1 corresponds to the probability that the two people
in the comparison are the same person, conditioned to a distance value (or evidence):

1− y(x) = P(WSV|x) (2.8)
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Figure 2.9: Point cloud with xi + 1 > xi satisfied. Data points indicated in Fig. 2.8 left are not suitable
for the PAVA. Points with the same value in the x-axis are substituted by a single weighted point. The result is
a cloud of points, all of them with different x values.
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The division of the two returns the LR *:

LRISO(s) ∗
P(Hp)

P(Hd)
=

1− y(s)
y(s)

(2.9)

Dataset for Calibration Data

To perform the actual calibration, a large dataset is needed from which we can learn the
required probability functions. We do so by employing the Labeled Faces in the Wild
database [40]. This is a database of face photographs designed for studying the problem
of unconstrained face recognition. The dataset contains more than 13,000 images of faces
collected from theWeb. Each face has been labeledwith the identity of the person pictured.
1680 of the people pictured have two or more distinct photographs in the dataset (13). It
is widely used as a benchmark for face recognition performance. With this dataset, two sets
of image pairs are generated: pairs of the same person (WSV) and a different person (BSV).
Around 137,000 comparisonswere performed in this dataset to achieve the calibration test.

2.3.3 Comparing ENFSI Investigators and Automated Systems

Correlation Between Automated Systems and Investigators

We now move to the comparison of the automated system and the human expert. This
comparison is done with the Spearman correlation coefficient (referred to as rank correla-
tion from now on). A graphical description of this comparison can be seen in Fig. 2.10.

The correlation between the n-dimensional vector LLR (logarithmic likelihood ratio)
given by an investigator (x) and the vector LLR computed by the software (y) is as follows:

ρxy = 1− 6
∑

d2√
n
∑

(n2 − 1)
(2.10)

where d is the difference between the ranks of the two vectors, and n is the length of
each vector. The possible values of this coefficient go from −1 (opposing criteria between
the investigator and the automated system) to +1, which expresses perfect concordance of
criteria. A value of 0 means no relation between them or randomness. We use the LLR
due to the nature of the ENFSI tests, in which the investigators provide LLR instead of
LR. For automated systems, the LLR is computed using the values in Table 2.2.

*Given equal numbers of match/mismatch pairs, the prior probabilities ratio P(Hp)

P(Hd)
equals 1.
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ConfusionMatrix

To get insight into the performance of a set of results, being it from an investigator or an
automatic system, we use a confusion matrix. The following terms play a role here:

TP: true positives—the number of cases where both images are considered belonging
to the same person and it was a match.

FP: false positives—the number of cases where both images are considered belonging
to the same person and it was not a match.

TN: true negatives—thenumberof caseswhereboth images are consideredbelonging
to different persons and it was not a match.

FN: false negatives— the number of cases where both images are considered belong-
ing to different persons and it was a match.

Actual
WSV BSV

Prediction Same person TP FP
Different person FN TN

Table 2.3: ConfusionMatrix

Fromthese values, a set of othermetrics canbe calculatednamely: Precision : TP/(TP+
FP)NPV : negative predicted value =TN/(TN+FN) Sensitivity : TP/(TP+ FN) Speci-
ficity : TN/(TN + FP) These values are expressed as percentages, and the classification is
better when they are near to 100%.

Matthews Correlation Coefficient

Based on the confusion matrix, we can compute another measure of classification namely
the Matthews correlation coefficient (MCC) given by

MCC =
TP ∗ TN− FP ∗ FN√

(TP+ FP) ∗ (TP+ FN) ∗ (TN+ FP) ∗ (TN+ FN)
(2.11)

This coefficient condenses in only one value the quality of the binary classification. The
absolute value of this coefficient is less or equal to 1. The higher the value, the better the
classification is. A value of zero means that the classification is as good as a random one.
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Figure 2.10: Correlation amongENFSI investigators and automated systems (AS). There are two logarith-
mic likelihood ratios (LLRs) obtained. First one from the forensic experts and the second one from automated
systems. They are compared through a correlation, and a matrix is obtained and is represented in graphs.

Log-Likelihood Ratio Cost (Cllr)

A final measure we consider is the log-likelihood ratio cost which is based on LR values
directly [37]:

Cllr =
1

2 ∗Np

∑
ip

log2

(
1+

1
LRip

)
+

1
2 ∗Nd

∑
jd

log2
(
1+ LRjd

)
, (2.12)

where Np and Nd are the number of cases, Hp and Hd are true, respectively, and LRp

and LRd are the likelihood ratios for these cases. This coefficient is always positive, and
the lower the value, the better the performance of LR values is. In this chapter, Cllr is only
used to compare calibration methods, not to compare them to forensic investigators.

2.4 Results

To present comparisons between the automated system and forensic investigators, corre-
lation graphics and boxplots will be used. Although ROC and FAR/FRR are commonly
used in literature, they do not apply to this chapter because they can only be obtained
from calibration data. The data obtained from investigators are not enough for this kind
of graph. We show for representation the correlation and results from ENFSI test 2011 in
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Figure 2.11: Correlation ENFSI vs automated systems, year 2011. These graphs show the correlation
between each of the three scores to LR methods (Weibull, KDE, and IR) and every one of the investigators
with the three types of automated system (OpenFace, SeetaFace, and FaceNet). Each figure represents one
automated system: on the left, OpenFace; on the center, SeetaFace; and on the right, FaceNet. Higher values
indicate higher concordance between the forensic expert and the automated software. The forensic experts are
ordered from left to right according to the highest to the lowest correlation.

Fig. 2.11, and the rest of the years (2012, 2013, and 2017) are available in the annex.

2.4.1 ENFSI Test 2011

Figure 2.11, Figures S1, S3, andS5 (in the annex) show the rank correlationbetween eachof
the three scores to LRmethods (Weibull, KDE, and IR) and every one of the investigators
with the three types of automated system described before. They present the investigators
ordered by their correlations concerning the three methods (Weibull, KDE, and IR).

Figure 2.12 (left figures, Figures S2, S4, S6) show the right (TP + TN) and wrong (FP
+ FN) answers of investigators (blue x) and automated systems (red triangles) and (right
figures) the individual values of confusion matrix with investigators results (boxplot) and
automated systems (red triangles).

For the experiments realized in the year 2011, one can see that out of the three software
programs, the highest correlation is presented by FaceNet, closely followed by OpenFace.
The three calibrationmethods have very similar results, except for Seeta, for whichWeibull
has less correlation than the other methods. Seeta has a higher number of wrong answers
for an equivalent number of right answers to OpenFace. In OpenFace case, the most accu-
rate method is the isotonic regression. In FaceNet, the number of correct answers signifi-
cantly higher resembles the investigators. The best procedures are Weibull and KDE.

OpenFace has several right answers similar to the researchers, but more failures. The
true positives of the three methods are equal to the researchers, and the true negatives
are somewhat inferior. But OpenFace has more false negatives and false positives than re-
searchers. Seeta hits all true negatives; however, it is below in the true positives. It has 0
false positives and high false negatives. FaceNet such as Seeta hits all the negatives but has
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Figure 2.12: Right and wrong answers. Binary classification results. Year 2011. In the figure, the graphs
are deployed as follows: Figures on the left correspond to right andwrong answers from the automated systems
and the forensic experts. Crosses represent experts, and triangles, automated systems. On the right, a boxplot
of the false positives, false negatives, true positives, and true negatives is shown. Boxplots are obtained from
the forensic experts’ data. The outcome from the three methods (Weibull, KDE, and isotonic regression) is
superimposed in the same graph.
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fewer false negatives. Weibull and KDE are as good as OpenFace to hit the true positives,
and they also have the 3 methods 0 false positives.

2.4.2 ENFSI Test 2012

From Figure S1, one can see that the correlation between the methods and the investiga-
tors reaches negative numbers for OpenFace which indicates opposite criteria to forensic
experts. With Seeta, correlation values stay positive but low. In two out of the three meth-
ods, Weibull performs better than the other two methods.

Looking at Figure S2 (left), it can be observed that OpenFace did not detect all of the
faces and consequently returned few outputs (13 out of 30). The number of right answers
is similar to the number of wrong answers. This software has poor quality results with
images taken in different poses. Seeta performs a good number of true negatives, but it
also has a high number of false negatives and low true positives. Nevertheless, investigators
had a higher number of false positives. FaceNet behaves very similarly to Seeta.

In year 2012 experiments, the researchers have a great dispersion with the true negatives
(Figure S2 right). Seeta and FaceNet have surpassed the researchers in the true negatives,
and the three types of software have had a terrible rating in true positives, well below hu-
mans. Seeta andOpenFace have no false positives; however, they havemany false negatives.

2.4.3 ENFSI Test 2013

With Figure S3, it can be noted that the correlations with FaceNet given by the three meth-
ods are very similar. However, with Seeta, Weibull calibration stands out among the other
two. Correlations are higher in FaceNet than the others and in Seeta-Weibull higher than
in OpenFace.

The number of right and wrong answers (Figure S4 left) with OpenFace is the same for
the three density estimation methods, and similar to the ones Seeta has. For Seeta, the best
density function model for calibration is Weibull. Seeta has less true positives and more
false negatives compared with investigators. Nevertheless, its performance is better than
investigators concerning true negatives and false positives. For FaceNet, isotonic regression
results in a goodnumber of truenegatives, but a badnumber of false negatives. Weibull and
KDE behave similarly with a good number of false positives and negatives, and moderate
numbers of true positives and negatives.

OpenFace has the highest rating in true positives, better than humans, and Seeta is the
best with true negatives, also surpassing humans. OpenFace has many false positives; how-
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ever, Seeta and FaceNet are at the same level as humans (Figure S4 right).

2.4.4 ENFSI Test 2017

For the year 2017 (Figure S5), Seeta calibration presents higher correlation values than
other years, but FaceNet is the automated system with the best results in terms of corre-
lation with investigators and KDE seems to be the best approximation. OpenFace has the
worst results and isotonic performs better thanWeibull and kernel.

The quality of results (right andwrong answers in Figure S6 left) is much better in Seeta
than OpenFace with any of the three methods. The three density function estimation
methods behave similarly in both Seeta and OpenFace. In FaceNet, the right answers and
wrong answers are similar to Seeta withWeibull being the best option.

FaceNet using theWeibull and KDEmethods is the one method with the highest num-
ber of true positives, equal to the majority of the researchers (median). However, the true
negatives have been detected by Seeta very well and OpenFace very badly. While Seeta
does not have any false positives, FaceNet and above all, OpenFace has many more than
researchers as can be seen in Figure S6 right.

In conclusion, in all the tested years (2011, 2012, 2013, and 2017), themethod that per-
forms better is not always the same and it depends on the quality and poses of the images.

2.4.5 ConfusionMatrix andMCCResults

A summary of the findings can be seen in the following Tables 3–5. From them, we can see
that the quality of classification by the investigators is better than the one by the automated
systems.

2.5 Discussion

When we compare images taken in frontal poses and lateral poses, the best results with
all the automated systems are obtained when poses are frontal. The three automated sys-
tem softwares give more incorrect answers when pose is lateral (45 Yaw, with a slight pitch
(“from above”) orwith the time difference (age) between reference and questioned images).
When the pose is 90° yaw, the software is unable to detect the face and returns an empty
answer. To detect the face, the currently used software looks for two eyes, and this is not
possible with a profile image.

With lateral poses, the correlation between software and human detection is random,
it contains positive and negative values, and the software returns about 50% of wrong re-
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Table 2.4: Confusion matrix values for OpenFace.

Openface Metric Weibull (%) Kernel (%) ISO (%) ENFSI (%)

2017

Precision 68 71 79 96
Negative predicted value 86 78 73 96
Sensitivity 93 86 79 98
Specificity 50 58 73 93
Matthews correlation coefficient 48 46 51 91
Cllr 99 97 82 -

2013

Precision 82 85 83 89
Negative predicted value 91 83 82 100
Sensitivity 95 89 83 100
Specificity 71 77 82 86
Matthews correlation coefficient 69 67 66 87
Cllr 80 82 138 -

2012

Precision 67 100 100 84
Negative predicted value 50 56 50 81
Sensitivity 33 33 17 83
Specificity 80 100 100 82
Matthews correlation coefficient 15 43 29 65
Cllr 138 123 175 -

2011

Precision 100 100 100 97
Negative predicted value 86 87 70 95
Sensitivity 83 83 57 96
Specificity 100 100 100 96
Matthews correlation coefficient 85 85 63 92
Cllr 53 51 66 -
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Table 2.5: Confusion matrix values for Seeta.

Seeta Metric Weibull (%) Kernel (%) ISO (%) ENFSI (%)

2017

Precision 100 100 100 96
Negative predicted value 75 71 70 96
Sensitivity 79 75 70 98
Specificity 100 100 100 93
Matthews correlation coefficient 77 73 70 91
Cllr 59 61 84 -

2013

Precision 93 93 100 89
Negative predicted value 77 71 69 93
Sensitivity 74 65 53 95
Specificity 94 94 100 86
Matthews correlation coefficient 69 62 61 82
Cllr 65 75 109 -

2012

Precision 100 100 100 84
Negative predicted value 61 59 56 81
Sensitivity 25 18 15 83
Specificity 100 100 100 82
Matthews correlation coefficient 39 33 29 65
Cllr 247 143 211 -

2011

Precision 100 100 100 97
Negative predicted value 67 67 61 95
Sensitivity 53 53 44 96
Specificity 100 100 100 96
Matthews correlation coefficient 60 60 52 92
Cllr 167 98 154 -
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Table 2.6: Confusion matrix values for FaceNet.

FaceNet Metric Weibull (%) Kernel (%) ISO (%) ENFSI (%)

2017

Precision 83 83 100 96
Negative predicted value 100 89 86 96
Sensitivity 100 95 87 98
Specificity 67 67 100 93
Matthews correlation coefficient 75 67 86 91
Cllr 59 58 50 -

2013

Precision 88 88 100 89
Negative predicted value 92 86 72 93
Sensitivity 94 88 53 95
Specificity 85 86 100 86
Matthews correlation coefficient 79 74 62 82
Cllr 60 57 76 -

2012

Precision 83 83 100 84
Negative predicted value 60 62 54 81
Sensitivity 38 38 7 83
Specificity 92 93 100 82
Matthews correlation coefficient 37 38 20 65
Cllr 164 138 163 -

2011

Precision 100 100 100 97
Negative predicted value 88 88 78 95
Sensitivity 88 88 71 96
Specificity 100 100 100 96
Matthews correlation coefficient 88 88 75 92
Cllr 58 43 60 -
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sponses, being isotonic regression the method with best results. Forensic experts provide
better results in these cases but they also present low correlation among them, values about
0.4 which means that they present difficulties to take decisions and their criteria are differ-
ent.

When the comparison is made only with frontal poses, the correlation between foren-
sic experts and software is better. When the quality of questioned images is high, forensic
experts have much better results (correct answers) and high values of correlation among
them (greater than 90% in many cases). In this case, software methods give as many right
answers as to when then image quality is low or decent. The method with best results and
correlation is Weibull but with no significant difference with respect to the others. So, for
frontal poses and low-quality images, the software systems are at the same level as forensic
experts, but when the quality of images is good, the experts obtain better results. We con-
jecture that automatic systems are not able to take advantage of little details such as scars
and freckles but, at the same time, are not sensitive to occlusions of the face by glasses, hats,
or microphones.

To perform the calibration, the LFW database was used, which is unrelated to the EN-
FSI tests. LFW is large butmaybe biased due tomost of the images being highquality and a
lot of them frontal images. That gives room to better results in the LR obtained computed
with scores in the case of fully frontal comparisons. Another public dataset, SC Faces was
tested but offered similar results as LFW. To check that a large unrelated database provides
better results than a small biased one, another experimentwasmade. The ENFSI tests were
not used only as a test, but also as themean to transform scores to LR.The number of com-
parisons was significantly reduced due to the number of pictures available (from 130,000
comparisons in LFW to 50 in ENFSI tests) resulting in score sets that are difficult to fit
with a function. Hence, the LR computed using the ENFSI report as a data generator pro-
vides worse results than using a big, unrelated database. We could conclude that it is better
to use a large unrelated dataset to the case material than to calibrate the system in data that
are closer to the case material but biased. As proven by the results, the machine behaves
more similarly to the forensic expert if the calibration dataset is large and unrelated to the
test data than if it is of the same characteristics of the test data but a small number of images
to calibrate. This can be seen in Fig. 2.13. The left graph corresponds to the results of a
calibration computed with the ENFSI tests themselves for the year 2013 (few samples for
both WSV and BSV), whereas in the right there are the results for calibration made with
the LFW dataset. The difference is over 10 % of more right answers in the right graph than
on the left.
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Figure 2.13: Right and wrong answers. Binary classification results. Year 2011. In the figure, the graphs
are deployed as follows: Figures on the left correspond to right andwrong answers from the automated systems
and the forensic experts. Crosses represent experts, and triangles, automated systems. On the right, a boxplot
of the false positives, false negatives, true positives, and true negatives is shown. Boxplots are obtained from
the forensic experts’ data. The outcome from the three methods (Weibull, KDE, and isotonic regression) is
superimposed in the same graph.

2.6 Conclusion

Observing the results obtained after comparing proficiency tests and likelihood ratios cal-
culated from the scores provided by OpenFace, Seeta, and FaceNet, one can say the soft-
ware can assist reporting officers, as it can do faster and more reliable comparisons with
full-frontal images. Although the software presents limitations, these should not dictate
what is feasible in terms of interpretation. It is expected that algorithmswill evolve to adapt
to all types of profiles and increase their performance. We have to think about it as a tool,
never as a constraint to limit its usage. The expert cannot be replaced by this tool, but be-
comes more efficient, because the computer can help to reduce the amount of info to be
managed doing appropriate filtering. If two independent experts conduct face comparison
doing the comparison independently, the thirdmight be an algorithm, and the experts can
evaluate their findings and the findings of the algorithm to draw a conclusion. Due to the
high accuracy of the automated systems in the full-frontal images, it makes this kind of
open-source system especially adequate to full-frontal images comparison, such as an ID
picture to a mugshot, which can be useful to forensic experts.
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3
Calibration of Score based Likelihood Ratio
estimation in automated forensic facial image

comparison

Forensic facial image comparison lacks amethodological standardization and
empirical validation. We aim to address this problem by assessing the potential of
machine learning to support the human expert in the courtroom. To yield valid

evidence in court, decision making systems for facial image comparison should not only
be accurate, they should also provide a calibrated confidence measure. This confidence is
best conveyed using a score-based likelihood ratio. In this study we compare the perfor-
mance of different calibrations for such scores. The score, either a distance or a similarity,
is converted to a likelihood ratio using three types of calibration following similar tech-
niques as applied in forensic fields such as speaker comparison and DNA matching, but
which have not yet been tested in facial image comparison. The calibration types tested are:
naive, quality score based on typicality, and feature-based. As transparency is essential in
forensics, we focus on state‐of‐the‐art open software and study their power compared to a
state-of-the-art commercial system. With the EuropeanNetwork of Forensic Science Insti-
tutes (ENFSI) Proficiency tests as benchmark, calibration results on three public databases
namely Labeled Faces in the Wild, SC Face and ForenFace show that both quality score
and feature based calibration outperform naive calibration. Overall, the commercial sys-
tem outperforms open software when evaluating these Likelihood Ratios. In general, we
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conclude that calibration implemented before likelihood ratio estimation is recommended.
Furthermore, in terms of performance the commercial system is preferred over open soft-
ware. As open software is more transparent, more research on open software is urged for.

3.1 Introduction

When face images are presented as evidence in court, the target most often is to interpret
the result of the comparison between trace and suspect images. No standard method is,
however, available for that task. The comparison technique, whether it is performed man-
ually or using an automatic system, must meet legal requirements which vary per country
[6; 37; 69]. Although the use of automatic systems is increasingly studied in the field of
facial image comparison, for legal deployment it lacks standardization and validation. This
is one of the reasons why cases of facial image comparison in court are currently still carried
out manually by specialized facial image comparison experts [6; 37]. Having a unified and
validated method for interpreting scores by experts andmachine can provide the standard-
ization needed in court.

The Likelihood Ratio (LR) comes as a possible solution [70; 71] for standardization,
expressing the decision as the ratio of the probability given the evidence of a match against
the probability of a non-match. Forensic experts endorse its use due to its compliance with
the requirements of evidence-based forensic science: it is scientifically sound in particular
it has transparent procedures, is testable, and it clearly separates the responsibilities of the
forensic examiner and the court [72; 73]. For evidence in speaker recognition, fingerprints
and DNA analysis, a distance or similarity based biometric Score likelihood ratio (SLR) is
being studied and used [74–76]. Here, we aim to realize a similar approach for facial image
comparison. As explored in chapter 2 and [36], automated systems for facial image com-
parison (especially when based on deep learning) combined with score-based likelihood ra-
tio estimation have a great potential to help the forensic expert in the evaluative process [6].

In this chapter, we make a number of contributions. We develop a pipeline that given
a score produces an LR estimation that can be compared to forensic experts and ENFSI
participants. This serves as an SLR evaluation and validation for both open and commer-
cial software. Thus we explore their differences and determine whether there is room for
improvement in open software automated systems. Secondly, we estimate the influence
of different LR calibrations in relation to resolution and image features, based mainly on
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Figure 3.1: Overview of themain topics addressed in this chapter. Dashed boxes correspond to evaluating
agents. Dotted boxes represent operations and double framed boxes correspond to data.

surveillance images which is a major source of evidence in forensic cases. Calibration has
been researched and used in speaker comparison [75; 77] for similar types of voices. As
identified in [6; 36] similar treatment in faces has yet to be researched. Thirdly, we com-
pare the Likelihood Ratio estimation from both open software as well as commercial soft-
ware to a set of forensic experts in the ENFSI Proficiency Face Comparison test (which
include case work related images such as surveillance) using the statistic elements of Cost
Log Likelihood Ratio (Cllr) [78; 79].

Figure 3.1 gives an overview of the main topics presented in this chapter.

3.2 Relatedwork

We study related work by first considering how likelihood ratios are used in forensic fields
other than facial image comparison. From there we consider how facial image comparison
is currently being done. Finally, we look at the core step in standardization namely the
calibration.

3.2.1 Likelihood Ratio in Forensics

Using a Bayesian probabilistic framework has been proposed in recent years as a logical
and appropriate way to report evidence to a court of law [73; 80; 81]. The work of [82]
states the requirements of evidence-based forensic science, which are: adoption of a basic-
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research model, design of experiments that test said model and the ability of experts to in-
form court about the relative strengths and weaknesses and suggestion on how that knowl-
edge applies to individual cases. They also recommend that for machine learning data
should be collected based on the frequency with which markings and attribute variations
occur in different populations. The LikelihoodRatio has been proposed in recent decades
as a method which addresses these requirements by providing transparent procedures and
being testable, as indicated in the introduction [73; 83]. When computed for a certain
benchmark, different methods such as Cllr and ECE can be used to assess its predictions,
see section 3.2.3 for more information about these methods. Score based procedures for
the calculation of forensic likelihood ratios are popular across different branches of foren-
sic science [84] especially in DNA [85], and speaker comparison [74; 75; 77]. They have
two stages, first a function or model which takes measured features from known-source
and questioned-source pairs as input and calculates scores as output, then a subsequent
model which converts scores to likelihood ratios [84]. LR based on biometric similarity
scores is referred to as Score based Likelihood Ratio (SLR) and defined as:

SLR =
P(s|Hp, I)
P(s|Hd, I)

, (3.1)

whereHp is the null hypothesis or the prosecution hypothesis (evidence originates from the
same source) andHd is the alternative hypothesis or defense hypothesis (evidence originates
from a different source). The value s is the score returned by the biometric system and I is
the background information available in the case apart from the evidence. Although LR
can be used for any type of forensic evidence (such as DNA or fingerprints), in our work it
corresponds to face evidence.

According to [86], efforts to model or compensate the effects of adverse conditions in
likelihood ratio computation should be improved. They evaluate the impact of these ad-
verse conditions on glass samples. The analysis of [86] shows that integration of advanced
machine-learning algorithms for the compensation of adverse conditions into forensic eval-
uation helps in this direction. They find this impact greatly affects calibrationperformance.
There is a lack of a similar study in case of facial image comparison.

In [23] and [70], different LR validation methods are explored and analysed. The first
question to consider is what and how to validate? In both papers, Cost Log LikelihoodRa-
tio and ECE plot validation [73; 78] are proposed as promising characteristics. ECE is ex-
posed in [87] as a methodwhichmeasures both discrimination and calibration, and shows
its potential. It also describes how other related measures such as Confusion Entropy
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(CEN) orMatthewsCorrelationCoefficient (MCC)workwith decision errors rather than
probabilities. This implies the selection of a threshold and therefore they do not consider
performance at different prior probabilities either. Other metrics are considered in [6],
such as Tipett plots, Detection error trade-off (DET) and equal error rate (EER). They
present an overview table summarizing the use and adequacy of these metrics for the as-
sessment of model performance. In this overview, the graphical representation that scores
the highest for both discrimination and calibration is again the ECE plot. In conclusion,
for this work and according to the studied literature, the best indicators of both discrimina-
tion and calibration performances are Cllr and the ECE plots (explained in 3.3.3) [23; 71]
which give a good view of both the calibration and discrimination power of the forensic
experts and the automated systems.

3.2.2 Facial image comparisonin Forensics

Facial image comparison in Forensics has been largely studied from a manual point of
view [83]. There have been tentative approaches on automated systems performing this
task, whether for intelligence, investigation, or evaluative purposes Zeinstra et al. [8]; Ali
[36]; Tistarelli and Champod [37]. And facial image comparison has proven to have po-
tential to help the forensic expert if the likelihood ratio estimation method is properly
standardized and validated (chapter 2). In manual comparison, four methods are typically
used to analyse and compare faces: holistic, morphological and photo-anthropometric pro-
cesses, along with direct superposition of the images [83].
Thesemethods are not exclusive and canbe combined inorder to carry out themost exhaus-
tive analysis with regard to the information available on the image. Recommendations in
ENFSI practices are: out of these fourmethods, holistic comparison is only recommended
when other more effective methods are not available, morphological (feature comparisons)
is useful and recommended for facial image comparison. Bothphoto-anthropometric com-
parison and superposition are not recommended when using uncontrolled imagery.
Current face recognition systems [46; 88; 89], already reach very high levels of accuracy
in public non-forensic benchmarks, and it is expected that in the coming years they will
keep improving. If this improvement is accompanied with a standardization and proper
validation in their decisions, they could become a powerful tool in Forensic Science [70].
An enforcement of this idea can be found in [6], where there is an extensive survey on the
role of these automated system nowadays in the forensic field. They propose to improve
the discussion between forensic expert, investigators and legal practitioners to best develop
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this method with respect to the needs and constraints of each.

3.2.3 Calibration in Forensics

The calibration state of amodel refers to the closeness of the computed value to the known
value. Therefore, the calibrationmeasures the extent to which the SLR points towards the
correct proposition. It has been used in other fields of Forensic Science such as speaker
comparison, DNA analysis or fingerprints [23; 73; 78]. In [71], the problem of incorrect
selection of databases is put forward. This problem is tackled in [90] for the speaker com-
parison case. It discusses what should be the implications of a good calibration and pro-
poses ECE as the preferred method of validation. For facial image comparison this implies
that ECEmethods for evaluation are adequate for detection if the performance of both the
automated model and the forensic participant are affected in the same way by the chosen
calibration population.

In literature, the term “calibration” is used to describe two different processes. It usu-
ally refers to SLR as described in the introduction, or it can more specifically point to the
subsequent process to adapt models which have high discriminating power but are poorly
calibrated [23]. As this second step is essential to enhance the overall performance of a
model, [6] poses that the term “calibration” should not differentiate between the steps
of score-to-SLR and SLR-to-calibrated SLR. Instead methods should cover every compu-
tation used from the initial score to the final reported SLR regardless of the number of
treatment steps needed. In this work, we evaluate the effects of selecting the database to
perform said calibration, for which the second step is not required. We evaluate the first
interpretation of the term, so score to likelihood ratio with no subsequent computations,
as they do in the work of [23; 73].

In [75], calibration on information extracted from speech is explored. It addresses the
main issues in calibrating data: limited training data and dataset shift when score distri-
butions change between calibration and test sets. Calibration in speaker recognition is
based on features namely duration of audio, distance, language, and gender [75]. Thework
of [77] studies the impact in forensic voice comparison of lack of calibration and of mis-
matched conditions between the known-speaker recording and the relevant-population
sample recordings.

A problem that could arise when calibrating [91; 92] is data scarcity. The references
indicate that the use of simulated data gives a big improvement in data scarcity situations,
but the testing of the validity of simulated databases for the operational use of systems in
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a real setup is still controversial. For face images this would imply that a solution for data
scarcity could be Generative Adversarial Networks (GAN) that generate realistic fake face
images [93]. However, forensic implications of simulating face data should be evaluated.

3.3 Materials andMethods

We aim for the validation of automated facial image comparison systems computing an
SLR. Referring again to figure 3.1, this validation has two parts. First is the SLR system
itself, which consists of a scorer and a calibrator. In this case the scorer is the biometric
system, i.e the facial image comparison automated system that will return either a distance
or a similarity which will be treated as a score. The other element, the calibrator, will take
a set of scores that either correspond to a group of facial images of comparisons within
the same person (within source variability or WSV) or comparisons in a set of face images
amongst different persons (between source variability or BSV). Having a set with different
people, each of them with several images of themselves and using the two sets of compar-
isons defined, a likelihood ratio can be estimated. Once the SLR is obtained, it must be
calibrated. A well calibrated LR will be accurate with its own predictions [71]. In the
final step, LR estimation will be validated. This validation is done using three measures
namely Cost Log Likelihood Ratio (Cllr) [78; 79]. Minimum Cost Log Likelihood Ratio
(Cllr min) and Empirical Cross-Entropy (ECE) [23; 71] and compared to experts that have
estimated a likelihood ratio for a series of tests issued each year [94–100].

3.3.1 Materials

Calibration of datasets: LFW, SC Face and ForenFace

The Likelihood Ratio is the ratio of two probabilities. As the probability functions of
WSV and BSV are unknown, it is necessary to obtain them empirically. Using the scorer
to generate multiple intermediate scores of both populations in which the ground truth
is known, histograms can be computed. Subsequently, the histograms are approximated
with probability functions through different methods, namely Isotonic Regression [101],
Kernel Density Estimation [102] and Logistic Regression [103]. There has been some dis-
cussion onwhich type of datasets are optimal for calibration [73; 77], where there are some
recommendations such as defining theWSV set with pairs that are highly similar (small dis-
tance between their embeddings) or choose aWSV setwith the same features as the compar-
ison at hand. The discrimination is robust independently from the dataset the system was
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calibrated with, but calibration itself is highly dependent on the conditions [76]. In partic-
ular, in the work of [76] the effect of duration, distance, language, and gender in speaker
comparison by using a variety of datasets makes a difference in the calibration results. In-
tuitively, the higher the number of comparisons and the more similar the dataset is to the
tested data, the better the calibration will be. In our setting the datasets used, in which
surveillance images predominate to be compliant with the forensic nature of the tests, are
described in table 5.1[29; 104; 105].

3.3.2 Methods

Obtaining the SLR

Following similar procedures as in DNA and speaker comparison [74; 75] and other face
recognition works in forensics such as [36; 106], the score obtained when comparing two
faces is transformed to a Likelihood Ratio. Although the process of calibration has been
studied and analysed in speaker comparison works such as [77] or [76], [36] and in facial
image comparison in [106] those studies in facial image comparison did not take into ac-
count how different calibration characteristics such as features affect the results. It is for
that reason that in this work we select different calibration types based on the work of
speaker comparison and test them against ENFSI tests. The following section gives details
on how this process is carried out.

The Scorer

The scorer is the system or person whose goal is to provide an estimation of a Likelihood
Ratio, possibly through the intermediate determination of a distance or similarity. This
scorer can e.g. be a pre-trained neural networkwhich is calibrated so the intermediate score
can be transformed to a Likelihood Ratio or a forensic expert who directly provides an
estimated likelihood ratio based on the visual comparison of the face features [83]. The
scorers used in this work are as follows:

Automated system The scorer compares two facial images and returns either a distance
or a similarity as intermediate score. The scores group in two sets. As mentioned
in 3.3.2, the first set is for estimating WSV in which two images corresponding to
the same person are compared and the second set in which the comparisons cor-
respond to different persons for estimating the BSV. Our open-source scorer uses
Deepface state-of-the-art face recognition built with Deep Learning [107]. Accord-
ing to [107], the supported models FaceNet-512 got 99.65%; ArcFace got 99.41%;
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Dlib got 99.38% and VGG-Face got 98.78%; accuracy scores on Labeled Faces in
the Wild benchmark whereas human beings could have just 97.53%. The commer-
cial automated system we use is FaceVACS version 5.5.2 [108] from Cognitec. Ths
commercial systemonly provides the final similarity score between two facial images.
Open software exposes the architecture and weights that output the representation
of each of the facial images in the n-dimensional space, which gives flexibility for
tasks such as clustering or comparison. Also, open software allows to change the
method to compute the similarity score between facial images. While the similarity
score of Cognitec is a number between 0 and 1, but not disclosed how it is exactly
computed, open software has different distance functions such as euclidean distance
or cosine similarity which can be computed and compared.

Forensic expert The forensicparticipants aremembers of theEuropeanNetworkofForen-
sic Science Institutes (ENFSI). Each year, a Proficiency Face Recognition test is dis-
tributed among laboratories within the organization and experts can assess which
factors affect face recognition and their own assessments on Likelihood Ratio esti-
mation. Themanual forensic facial comparison process is a pair by pair comparison
inwhich the experts estimate the likelihood ratio based on facial image features. The
experts use a structured method to reach matching/non-matching conclusions for
an image pair.

Calibration

Asmentioned, calibration is the process of obtaining aLikelihoodRatio froma score. Like-
lihood Ratio is defined in section 3.2.1.

Now, there are two questions that need to be addressed according to similar studies
where Score-based Likelihood Ratio is used for comparison assessment. First, which im-
ages to use for calibration? The whole dataset or just a subset having the most relevant
features? Second, how to model the WSV and BSV distributions given the available data
[6; 37; 73]?. Given that the performance of facial image comparison highly depends on
the quality of the data that a model is built with, the author in [109] suggests to use im-
ages having similar conditions to the real life facial image comparisons. Regarding the BSV
modelling, [36] uses what is known as “pseudo-traces“, that is using several pictures of
the reference individual in the comparison instead of generic pictures of the same person
not related to the case at hand. In their results, on average 59,2% of the cases using this
approach were more effective than the generic approach. In the case of BSV, no modeling
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other than generic between-source comparisons has been done [36; 106]. However, taking
this approach is paramount due to the importance of choosing the relevant population to
obtain a suitable P(E|Hd, I). According to [6], no study has yet shown the impact of vari-
ations in the choice of the relevant population for automatic face recognition. Moreover,
in speaker comparison, in works such as [76], they calibrate according to divisions of the
dataset with the same features, e.g. age or gender. It is for that reason, that in this chapter,
three types of BSV calibration were carried out attending the methods practiced in other
Forensic disciplines.

Naive calibration SC Face and ForenFace datasets image pairs were used indistinctly. In
this dataset, no filters according to scores or features (as done in [86; 90]) were ap-
plied when choosing the pairs for bothWSV and BSV distributions. This approach
is considered the “generic“ approach.

Quality Score calibration This type of calibration is an attempt of detecting how rare or
frequent it is to find a face similar to the suspect’s face in the relevant population, also
known as “typicality“. The calibration is performed in the followingway: first, each
image of the SC Face and ForenFace Dataset is compared against 1000 randomly
chosen images from Labeled Faces in the Wild. As all the identities in ForenFace
and SC Face with respect to Labeled faces in theWild correspond to a different per-
son, all the scores obtained will belong to the BSV distribution. What we will call a
“Quality Score“ is the average of the ten highest scoremismatches fromboth SCFace
and ForenFace with respect to Labeled faces in the wild. The higher that score, said
face (from either SCFace or ForenFace) is more easily confused against a “standard“
dataset (LFW) than another image with a lower score. This “Quality score“ will be
used to create different sets of calibration BSV corresponding to the Quality Score
of the compared test faces. In otherwords, later in the validation part of the pipeline,
faces will be compared in pairs. Each image of these pairs will be contrasted against
LFWand a quality Score will be assigned to said test pair. Then this pair will only be
calibratedwith images having the same “Quality Score“ For example, a test pair with
“Quality Score“ of 7 and 8 respectively, will generate a BSV inwhich the comparison
scores have been obtained with calibration pairs that are also a 7 and 8 in “Quality
Scores“.

Feature calibration For this type of calibration, more intuitive than the former, all im-
ages in the test pairswere labelled according to if they containheadgear, beard, glasses,
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yaw, pitch, resolution or other occlusions. The databases SCFace and ForenFace
have already this type of labeling so the BSV population was generated with only
the images that presented the same features as the test images.

Regarding theWSV population, [36] uses images from the same subject as the test pair
to generate the test WSV population. but in our work, the usecase is that only one image
of the suspect is available, as the suspect is not yet convicted. This is the case presented in
the ENFSI tests used to evaluate. Because of that, a generic approach was taken by gener-
ating the sameWSV for each calibration using pairs from the databases LFW, SCFace and
ForenFace with the same identity.

To obtain the Likelihood Ratio from a score, in this chapter we follow three types of
statistical methods to fit theWSV and BSV distributions. Three calibrationmethods were
evaluated, Isotonic Regression, Kernel Density Estimation and Logistic Regression. They
were chosen as two non-parametric (Isotonic regression and KDE), and one parametric
(Logistic Regression) method. The Logistic Regression was chosen in the first place be-
cause it can assume the characteristics of many different types of distributions. It is flexible
enough to model a variety of datasets. It can adapt to both skewed data and symmetric
data. It is a parametric distribution, which assumes parameters (defining properties) of the
population distribution from which the calibration data are drawn. Because of that, the
second choice is a kernel density estimation (KDE),which is a nonparametric test that does
not make such assumptions. The third method chosen is Isotonic regression commonly
used in machine learning models for statistical inference. The choice of one method or
another doesn’t seem to have a correlation with the performance of the different models
of LikelihoodRatio estimation. The software used for calibration computations was from
[110].

Isotonic regression a Free-form linear model that can be fit to sequences of observations
[101] and then used for prediction. A common algorithm to obtain the isotonic
regression is pool-adjacent-violators algorithm (PAVA). If we have the data

(x1, y1), . . . , (xn, yn) ∈ R,

isotonic regression looks for β1, . . . , βn ∈ R such that the βi approximate the yi
while being monotonically non-decreasing.
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minimize
β1,...,βn

n∑
i=1

(yi − βi)
2 (3.2)

For the Likelihood Ratio estimation, xi represents the score and yi = 0 if it is a
mismatch or yi = 1 if the pair comparison is amatch. Applying the PAVAalgorithm,
proceeds as follows: going from lowvalues of xi to high values of xi, we set βi = yi. If
this causes a violation ofmonotonicity (βi = yi < yi−1 = βi−1), replace both βi and
βi−1 with the mean yi−1+y1

2 . This could result in earlier violations. If this happens,
we average βi−1 and βi−2.

KDE Kernel Density Estimation is a non-parametric density estimator. It is an algorithm
which seeks tomodel the probability distribution that generated a dataset [102]. To
fit this distribution, itmakes use of twoparameters, which are the kernel, which spec-
ifies the shape of the distribution placed at each point, and the kernel bandwidth,
which controls the size of the kernel at each point.

Logistic regression models the probability of a certain class or event existing [103]. Lo-
gistic Regression is used when the dependent variable(target) is categorical. The
dependent variable is a binary variable that contains data coded as 1 (match) or 0
(mismatch). In other words, in this chapter, the logistic regression model predicts
the probability of match given a score P(Y = 1) as a function of X.

3.3.3 Validating LR

The validation (see section 3.2.3) for Likelihood Ratio assessments has been discussed in
[77; 79]. There threemetrics are introduced that consider not only if the decision taken by
the automated systemwas correct, but also penalizes if the system provides an inconclusive
answer. The metrics are Cllr, Cllr Min and ECE plot [23; 111]. Compared to equal error
rate or ROC curves, these metrics provide a better representation of both the discrimina-
tion power of the model and its calibration performance. These metrics can be used to
evaluate any set of Likelihood Ratio estimations, both for the automated systems and the
forensic experts. In this chapter we will use them to evaluate their performance on the
ENFSI Proficiency tests.
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Evaluation criteria

Forensic experts and automated system are compared with respect to their estimated Like-
lihood Ratios. As explained in 3.1, validation requires both assessment of discrimination
and calibration. In [71], proposes both Log-Likelihood Ratio cost (Cllr) and Empirical
Cross-Entropy (ECE) as adequate metrics for validating calibration on an incorrect selec-
tion of databases, a bad choice of statistical models, low quantity and bad quality of the
evidence. There are several methods that evaluate the model performance on discrimina-
tion and calibration, such as EER,DET,Tipett plots (see section 3.2). However, according
to [6] and [71], the ones that condense this information better are Cllr, Cllr min and ECE
plots, which are described in section 3.2.1.

The Cost likelihood ratio is defined as:

Cllr =
1

2Np

∑
ip

log2(1+
1

SLRip
) +

1
2Nd

∑
jd

log2(1+ SLRjd), (3.3)

where the indices ip and jd respectively denote summing over the computed LR scores
for each face pair comparison where each proposition (respectively prosecutor or defense)
is true. Minimizing the value of Cllr implies an improvement of both discrimination and
calibration performance of the automated system [73]. The value ranges from zero (per-
fect decision making), to infinity (completely wrong). A value of one indicates the system
makes a random selection. A value larger than one indicates that the system is making a
decision worse than random, i.e. supporting the prosecution hypothesis when it should
be supporting the defence hypothesis or vice versa.

Empirical Cross-Entropy in terms of prior odds and the SLR is given by [73]:

ECE(O(Hp), SLR) =
P(Hp|I)
Np

∑
ip

log2

(
1+

1
SLRi × O(Hp)

)

+
P(Hd|I)
Nd

∑
jd

log2
(
1+ SLRi × O(Hp)

)
,

(3.4)

where sip and sjd denote the scores from the same subject and different subject scores in
each of the facial image comparisons, whereHp orHd is respectively true. O(θp) is the value
of the prior odds.

To be more precise, the meaning of the ECE plot is as follows [73]:

LRs This curve is the ECE of the LR values in the validation set, as a function of the prior
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log-odds. The lower this curve, the more accurate the method. This curve shows
the overall performance of the LRmethod.

PAV LRs This curve is the ECE of the validation set of LR values after the application of
the PAV algorithm. This shows the best possible ECE in terms of calibration, and it
is a measure of discriminating power.

Reference This curve represents the comparative performance of a so-called neutral LR
method, defined as the one which always delivers LR = 1 for each forensic case
in the set of LR values. This neutral method is taken as baseline performance: the
accuracy should always be better than the neutral reference. Therefore, the solid
curve in an ECE plot should be always be lower than the reference curve, for all
represented values of the prior log-odds.

3.4 Results

We used the three following three types of calibration: naive, quality score and same fea-
tures calibration (see sections 3.4.1, 3.4.2 and 3.4.3).

3.4.1 Naive calibration

Calibration was performed with three datasets (LFW, SC face and ForenFace) with no fil-
ters related to the testing ENFSI tests. From the three datasets chosen, 10000 randompairs
were selected as a representative sample. In figures 3.2a and 3.2b the Cllr from both face
recognition and FaceVACs can be seen. In figures 3.3a and 3.3b ECE plots for the naive
calibration can be seen.

We can appreciate that the year 2020 has a very poor Cllr, which approximates 4. This
could be due to that year having identical twins in the ENFSI tests, which confused the
algorithm and led it to classify as matches what should have been mismatches. For the
year 2019, the Cllr is quite high, which indicates a poor performance, but it is in the same
interval as the forensic experts. This year the comparison of faces was among children so
both the algorithm and the experts had difficulties with the images.

For the years 2017 and 2018 theCllr is approximately 1, which indicates the power deci-
sion of a randomalgorithm. On the other hand, humanparticipantsmanaged to have their
Cllr below one in year 2011 (except 2 participants) and about two thirds of them had aCllr

below 1 in year 2018. For the rest of the years 2011, 2012 and 2013, both the commercial
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(a) Cllr computed for calibration of
naive calibration for FaceVACs.

(b) Cllr computed for calibration of
naive calibration for Dlib face

recognition.

Figure 3.2: Cllrs for naive calibration with Dlib and FaceVACs

software FaceVACs and the open software Face recognition present results comparable to
the best performing experts.

Regarding the ECE plots, both FaceVACs and Face Recognition seem to make less er-
rors in the prosecution priors than in the defence priors.

3.4.2 Quality score calibration

For each WSV pair of the calibration datasets (LFW, Sc and ForenFace) the correspond-
ing BSV (i.e. pairs that correspond to a mismatch) is chosen according to a ’quality-score’.
Through experiments, it can be seen that in higher resolutions there is a clearer threshold
inwhich the systemdistinguisheswhich comparisons are amatch andwhich ones are amis-
match. When the size of the image (measured in megapixels) is above 0.3, the similarity of
matched pairs is close to 1, and close to 0 in the case ofmismatches. As resolution of the im-
ages decreases, similarity for matched images also decreases and similarity for mismatches
rises for some cases.

In figures 3.4a, 3.4b, 3.5a, and 3.5b, the validation of the automated systems against
experts is checked. The results are shown for the years 2011, 2012, 2013 and 2017, 2018,
2019 and 2020 and both Cllr and Cllr min are plotted.

3.4.3 Feature calibration

The feature calibration was performed with pairs of the two datasets (SC face and Foren-
Face). For each test pair (from ENFSI tests), the set of features of image one and the set
of features of image two are considered to calibrate only with the pairs of the calibration
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(a) ECE plot computed for calibration
of naive calibration for FaceVACs.

(b) ECE plot computed for calibration of
naive calibration for face recognition.

Figure 3.3: ECE plots for naive calibration with Dlib and FaceVACs. LR curve is orange line. PAV LRs
correspond to dashed green curve and reference is the dotted blue curve.

(a) Cllr computed for calibration with
same quality score with FaceVACs

system.

(b) Cllr computed for calibration with
same quality score with Face

Recognition system.

Figure 3.4: Cllrs for same quality score calibration with Dlib and FaceVACs
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(a) ECE plot computed for calibration
with same quality score with FaceVACs

system.

(b) Cllr computed for calibration with
same quality score with Face

Recognition system.

Figure 3.5: ECE plot for quality score calibration with Dlib and FaceVACs

dataset that have the same set of features as these two images. The features to be consid-
ered were: glasses, beard, headgear, other occlusions, and low quality. The datasets were
manually annotated.

In figures 3.6a, 3.6b, 3.6c, and 3.6d, it can be seen that Cllr calibrating the system with
comparisons that have the same features has improved results with respect toCllr calibrated
with comparisons of the same quality score.
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(a) Cllr computed for calibration with
same with same yaw and pitch with

with FaceVACs system.

(b) Cllr computed for calibration with
same with same low quality with with

FaceVACs system.

(c) Cllr computed for calibration with
same yaw and pitch with face

recognition system.

(d) Cllr computed for calibration with
same low quality (manually annotated)

with face recognition system.

Figure 3.6: Cllrs for features calibration with Dlib and FaceVACs

In figures 3.7a and 3.7b ECE plots for both automated systems are plotted.
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(a) ECE plot computed for calibration
with same features with FaceVACs

system.

(b) ECE plot computed for calibration
with same features with face recognition

system.

Figure 3.7: ECE plot for features calibration with Dlib and FaceVACs

3.4.4 Overview

An overview of the results can be seen in table 3.2. For this results, the open source Dlib,
is compared to the commercial software FaceVACS and to the ENFSI participants. The
different results can be seen where the filters applied improve with respect to naive calibra-
tion. FaceVACS performs better than the open software system. The calibrator chosen for
the results in the table was Isotonic Calibrator, although calibrating with any of the three
would turn out to be similar to Cllr, the Isotonic seemed to outperform a bit with respect
to Logistic Regression and Calibration. However, further work is necessary to make any
recommendations on which cases each of the three calibration methods should be used.

Table 3.2: Cllr results summary for Dlib, FaceVACs (according to filters chosen) and participants.

Year Filters Dlib FaceVACs Average Participants

2011

No filters 0.22 0.11

0.40

Confusion Score 0.60 0.14
Yaw, Pitch 0.53 0.11
Glasses, Beard 0.60 0.08
LowQuality 0.63 0.09
Head Gear 0.56 0.20
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2012

No filters 1.51 4.70

0.93

Confusion Score 0.99 5.46
Yaw, Pitch 0.95 6.02
Glasses, Beard 0.94 3.67
LowQuality 0.95 4.16
Head Gear 0.96 5.10

2013

No filters 0.38 0.18

0.67

Confusion Score 0.80 0.26
Yaw, Pitch 0.70 0.05
Glasses, Beard 0.64 0.12
LowQuality 0.70 0.13
Head Gear 0.73 0.35

2017

No filters 0.99 0.76

0.35

Confusion Score 1.10 0.87
Yaw, Pitch 0.98 0.18
Glasses, Beard 0.81 0.53
LowQuality 0.83 0.54
Head Gear 1.00 1.24

2018

No filters 1.00 0.83

0.84

Confusion Score 1.23 0.93
Yaw, Pitch 1.06 0.18
Glasses, Beard 0.77 0.56
LowQuality 0.80 0.58
Head Gear 1.09 1.30

2019

No filters 1.36 1.45

1.88

Confusion Score 1.38 1.57
Yaw, Pitch 1.18 0.46
Glasses, Beard 0.82 1.07
LowQuality 0.87 1.03
Head Gear 1.23 2.21
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2020

No filters 2.59 2.74

0.78

Confusion Score 1.92 2.78
Yaw, Pitch 1.70 1.05
Glasses, Beard 1.00 2.01
LowQuality 1.05 2.08
Head Gear 1.71 3.74

3.5 Discussion

As we can see in the Cllr and ECE plots, the commercial software FaceVACs outperforms
both the open software face recognition and the experts for full frontal images. However,
the quality of images presented in the tests are easier for the automated system than the
material that is normally handled in cases. Most of the images (especially in the year 2017)
are frontal with little pose variation, which facilitates the task for the automated system.
Most of the wrong assessments provided by the automated system were due to occlusions
in the test images (caps,mics, scarfs) or to illumination. On the year 2011dataset, where the
illumination was constant but the images had different resolution and compression, there
was not significant improvement neither in FaceVACs nor face recognition with respect to
naive calibration or quality score and filtered base calibration, as the Cllr of the automated
systems was already close to zero in the naive calibration. On the other hand, there is a
significant improvement in the years 2018 and 2019 using the same features calibration
instead of the naive calibration. These years had as peculiarity that year 2018 had a lot of
variety in the test images (age variation, pose, quality...) and 2019 had pictures of children.
The year 2020 has low performance in all the cases due to photos of twin siblings being
present among the test images. The automated system had difficulty differentiating these
faces and gives them a high similarity score, making the calibration prone to error.

This study takes a step further the usability of automated facial image comparison sys-
tems in the forensic field. In the literature, such calibrations are performed normally as
suspect-anchored and trace-anchored [6; 73], however this type of calibration was not the
use case in this study due to only having one sample of each identity in the comparison
tests. This use case is givenwhen the suspect is not yet convicted and only one image of the
individual is available.

This has not impeded the automated system of reaching in most of the years the accu-
racy of the forensic experts. It may lead us to think that if on top of performing these cal-

66



3

3.6. CONCLUSION

ibrations with publicly available data-sets, data more relevant to the case was added (such
as more images of the suspect, images of the suspect and other relevant population resem-
bling the conditions in which the query image was taken) the results would only improve.

As future work, it would be convenient to indicate that the automated system perfor-
mance (both FaceVACS andDeepface) is less reliable if there are occlusions. When the face
was not detected by the automated system, it was not considered for the Cllr or ECE plot.
A possible alternative to this is to add the lack of face detection as an inconclusive LR (i.e.
LR = 1) which would drop the performance of the system in Cllr terms, as humans are
habitually more efficient when finding faces in a picture than a automated system can be.
As indicated, an important point made by [111] is that validation of Likelihood Ratio in
the forensic field should take into account not only accuracy (if it is right or wrong assess-
ment of match-mismatch) but also its calibration, i.e. the system capacity to make strong
assessments. If a system provides an LR of around 1 for a comparison corresponding to
a match, the assessment (i.e. discrimination power) is right, but the calibration and func-
tionality to help to take a decision is not very useful. On the other hand, a second system
that for the same match provides an LR of 1000 is both providing a high discriminating
power and good calibration. The article [111] warns that validation of LR systems should
check on both characteristics. For our work, measuring with Cllr and ECE plot has this
warning covered, because looking at both equations 5.4 and 3.4, the cost will increase for
those systems that provide wrong assessments or low discrimination power (LR close to
one).

Regarding the three calibratormethods chosen (LogisticRegression, KDE and Isotonic
Regression), none of them seemed to standout from the others. Although IsotonicRegres-
sion seemed to achieve slightly better results than the other two, future work is required
to assess in which use cases one calibration is better than the other. With respect to the
three calibrationmethods chosen, although both the confusion score and labeled filters im-
proved theCllr with respect to applying generic calibration, also further research is needed
to help the investigator to determine which method would suit best for each use case.

3.6 Conclusion

In conclusion, with this study it has been demonstrated that applying “filters“ such as
“Quality Score“ and calibration with the same features as the test images improves the per-
formance in the calibration, in terms of bothCllr and ECE. The results with open software
are inferior, but they are more transparent so more research should be conducted to bring
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open software at par with commercial vendors. On top of performing these calibrations
with publicly available data-sets, more relevant data to the case, such as more images of the
suspect, images of the suspect and other relevant population resembling the conditions in
which the query imagewas taken could be added. The results would only improve. The ex-
pert cannot be replaced by this tool, but becomes more efficient because the computer can
help to reduce the amount of information to bemanaged by doing appropriate filtering. If
facial image comparison is conducted by two experts doing the comparison independent
from each other, the third might be an algorithm, and the experts can evaluate their find-
ings as well as the findings of the algorithm to draw a conclusion.
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Multi-Task Explainable Quality Networks for

Large-Scale Forensic Facial Recognition

Identifying suspects from surveillance footage is a crucial task in forensic
investigations, but it is often hindered by the variable conditions of observation and
the large amounts of data. Face image quality (FIQ) is a metric that measures the

usefulness of a face sample for facial recognition. Existing methods for automated FIQ as-
sessment only provide a scalar value for quality, and do not indicate which factors are caus-
ing low quality. Additionally, these methods are computationally expensive, which makes
current FIQ assessment methods unsuitable for large numbers of images. To address these
issues, we introduce multi-task explainable quality networks (XQNets). XQNets provide
both the quality value and the associated facial and environmental attributes, and automat-
ically learn how each attribute contributes to the quality value during the training process.
We also propose a dataset-agnostic quality pairing protocol to ensure that sample pairs are
balanced across datasets and evaluations are fair. Our experiments on the LFW and SCface
benchmarks show that our approach generalizes well across different datasets and outper-
forms state-of-the-art methods. Our method offers a fast, explainable approach to FIQ
assessment, making it suitable for large-scale forensic applications.

4.1 Introduction
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Figure 4.1: Face Image Quality pipeline, where the suitabil-
ity of the image has to be assessed before face recognition analysis.
Non suitable images can be manually compared or rejected. Im-
ages extracted from [29].

Face recognition (FR) has im-
proved significantly due to ad-
vancements in facial recognition
algorithms andmethodologies [107;
112]. Despite the improvements,
recognition error rates remain
high in real-world forensic appli-
cations, particularly in challeng-
ing conditions such as CCTV
footage or ATM cameras [28;
113; 114]. As FR systems play an
increasingly larger role in crucial
decision-making processes, there
is a growing need to explain the
FR process to humans [115; 116].
As a solution, Face Image Quality
(FIQ) assessment methods have
been developed to output a qual-
ity score that can be represented
as a single scalar value or a vector
of values to explain how suitable a face image is for face recognition [59; 117; 118]. How-
ever, there have been few studies to explain these scores to users and provide an inter-
pretable cause for a face image’s low or high quality [117; 119]. An example of an explain-
able FIQ analysis pipeline is presented, where images with low quality scores are rejected
and accompanied by attributes that help humans understand the system’s decision [119].
This makes FR not only accurate but also explainable.

General image quality assessment algorithms such as BRISQUE [120], NIQE [121],
and PIQE [122] do not achieve satisfactory performance when applied to face images be-
cause they aim to assess images in terms of subjective (human) perceptual quality [113].
On the other hand, FIQ assessment algorithms are concerned with the assessment of the
biometric utility of facial images, which can be objectively defined in the context of specific
FR systems. Hence, FIQ assessment methods obtain more accurate results for FR applica-
tions [115; 123; 124]. This occurs because FIQ algorithms for the purpose of biometric
utility prediction can perform better than a general image quality assessment that has not
been developed with facial biometrics in mind.
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Predicting recognition utility in FR implies that the quality score has to indicate the “ac-
curacy” or “certainty” of comparison scores generated for a sample pair that includes the
assessed sample [115]. Thus, quality should be indicative of the face comparison perfor-
mance. Note that this entails that the output of a specific FIQ assessment algorithm may
be more accurate for a specific FR system. So the FIQ assessment utility prediction effec-
tiveness ultimately depends on the combination of both the FIQ assessment algorithm and
the FR system. According to [124], it is desirable to facilitate interoperability such that the
FIQ assessment algorithm is predictive of recognition performance in general for a range
of relevant systems instead of being dependent on only one.

FIQ measures enable various forensic applications. For example, in real-time recording
sessions, photos can be accepted or rejected based on their scalar image quality values. If
the image quality is too low, the system will reject it and collect a new image, which is
particularly valuable during first enrolment when a reference photo is not available [113].
Scalar image quality values can also be used as a management indicator by summarizing
the effectiveness of the collection process across different sites and conditions [125]. Ad-
ditionally, they can be used to select the best image from a set of photos [117]. It would
be useful to have an FIQ that can explain why an image cannot be used and which facial or
environmental attributes the subject needs to improve to increase the quality.

RegardingFIQassessment, literature often focuses onoptimizingquality scores onbench-
marks such as LFW or Adience [115; 116; 126]. However, there is a risk of saturation
on datasets such as LFW [28], which led to the proposal of XQLFW, a benchmark de-
rived from LFW with pairs of maximum quality difference [28]. The selection of images
for XQLFW is based on BRISQUE and SER-FIQ quality scores, but this selection may
introduce a bias towards SER-FIQ [28]. Additionally, LFW and XQLFW come with a
predefined set of 6000 pairs for evaluation, requiring the generation of a new set of pairs
for new datasets like SCFace or ForenFace. To overcome this issue, this study proposes a
dataset-agnostic quality pairing (DAQP) protocol to ensure a balanced representation of
the whole spectrum of qualities in pair generation. The study evaluates the widely used
datasets LFW [40], XQLFW [28], and DAQP on forensic datasets such as SCFace [29]
and ForenFace [105].

The overall FIQ value is related to descriptive facial attributes such as deviation from
the frontal pose or hot spots; and environmental attributes such as sharpness or deviation
from uniform illumination. One way to consider all these variables would be to process
each separately and combine the scores afterwards but this would not allow to learn the
common aspects and it would be inefficient. Learning paradigms such as multi-task learn-
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ing (MTL) [127] could help leveraging the domain-specific information in the training
signals of related tasks [128; 129], e.g., the FIQ value, and its related attributes to gener-
alize better across different FR models. Moreover, MTL provides several outputs with a
single forward inference, which allows accelerating the computation significantly. Thus,
in this work, we study howMTL can be exploited to build efficient explainable FIQ assess-
ment systems for large-scale forensic FR applications. More specifically, the contributions
we make in this chapter are:

1)Multi-task explainable quality networks (XQNets) to efficiently assess FIQ value
along with a set of facial and environmental image attributes that explain the calculated
FIQ.

2) A dataset-agnostic pairing (DAQP) protocol to evaluate explainable FIQ assess-
ment systems using the whole range of FIQ values in the test dataset ensuring that sample
pairs are balanced.

3) Experimental results with the LFW and SCface FR benchmarks, following the
DAQP protocol, demonstrating that XQNet has an accurate FIQ across different state-of-
the-art FR assessment methods in complex surveillance scenarios and with competitive
inference times.

The rest of the chapter is organized as follows: Section 2 describes prior related work;
Section 3 explains our proposed XQNet and DAQP protocol; Section 4 presents experi-
mental results with LFW and SCface FR benchmarks. Finally, Section 5 presents the con-
clusions and future lines of work.

4.2 RelatedWork

FIQ assessment algorithms can be classified as factor-specific and monolithic approaches.
The former comprisesmethods forfinding interpretable factors, such as blur and sharpness,
which could help an operator to avoid inadequate face imageswhen recapturing. The latter
outputs an overall FIQ value leading to comparatively opaque assessments/quality scores.

Factor-specific approaches to FIQ assessment are based on either facial attributes (e.g.
inter-eye distance, pose) or environmental attributes (e.g. illumination, blur) [117; 130–
132]. For example, in [130], the authors trained and compared ten features of quality esti-
mates of a single human to assess general image quality. In [131], the authors estimate only
the pose angle without producing a normalized quality score, demonstrating that pose es-
timation can be used for FIQ assessment. In [132], 17 parameters based on ICAO Doc
9303 requirements are used to evaluate FIQ, resulting in an 88% correct classification rate.
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In [117], FaceQvec is proposed as amethod to estimate the conformity of facial imageswith
ISO/IEC 19794-5, a quality standard for face images in official documents. The method
consists of 25 individual tests related to the standard and other image characteristics, with
accurate evaluation results. However, these methods tend to use high-quality images for
evaluation and little attention is given to forensic applications.

The monolithic approaches are divided into: human ground truth training, FR-based
ground truth training, FR-based inference and FR-integration. Hernandez-Ortega et al.
proposes the FaceQnet model[124] with versions v0 and v1. For both versions, as part
of the training data preparation, the BioLab-ICAO framework from [133] is employed to
select suitable high-quality images per subject, which are used to compute the ground truth
quality scores for the subjects’ remaining training images. This ground truth quality score
computation consists of the normalized Euclidean distances of embeddings produced by
a number of FR feature extractors (three for v1; and only one, FaceNet [46], for v0). Both
FaceQnet versions were based on a ResNet50 [134] model pretrained for FR using the
VGGFace2 dataset [59], replacing the final output layer with two fully connected layers
which are used for finetuning while the rest of the network weights were frozen.

SER-FIQ is a model proposed by Terhörst et al. with two variants: “same model“ and
“on-top model.“ Both variants estimate the quality of FR by comparing the embeddings
of randomly chosen subnetworks without ground truth quality labels. The “same model“
variant can be used on FR networks trained with dropout and the “on-top model“ vari-
ant uses a small additional network trained with dropout on top of the FR model. The
evaluations showed that the “on-top model“ variant mostly outperformed the baseline ap-
proaches and the “samemodel“ variant showed strong FNMRperformance improvement
for a fixed FMR of 0.001.

The MagFace model [116] integrates quality and FR, with quality directly indicated
by the magnitude of the FR feature vector. The model extends the ArcFace [88] train-
ing loss with a magnitude-aware angular margin and magnitude regularization, resulting
in larger magnitudes for higher quality images and smaller magnitudes for lower quality
images. The magnitude is bounded during training, and a normalized quality score can be
derived through linear scaling. The FR function after training remains unchanged from
ArcFace.

The Pixel-Level FIQ approach [119] allows evaluating the pixel-level attributes of a face
picture given an arbitrary FR network that does not require any training. Amodel-specific
quality value of the input picture is computed and utilized to develop a sample-specific
quality regressionmodel to do this. Using this technique, quality-based gradients are back-
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propagated and translated into pixel-level quality estimates. They evaluate the significance
of their suggested pixel-level features subjectively and quantitatively using actual and fake
disruptions and compare explanation maps on faces that do not meet ICAO rules. The
findings show that the suggestedmethod creates meaningful pixel-level characteristics that
improve the interpretability of the full facial picture quality in all cases.

Ou et al. proposed SDD-FIQA [123], a FIQ method that considers both the intrinsic
properties and the recognizability of the face image. They argue that a high-quality face im-
age should be similar to its intra-class samples and dissimilar to its inter-class samples. Thus,
their method generates quality pseudo-labels by calculating the Wasserstein distance be-
tween the intra-class similarity distributions and inter-class similarity distributions. With
these quality pseudo-labels, they are capable of training a regression network for quality
prediction. Their method shows good generalization across different recognition systems.
However, they do not provide the set of attributes that would affect the high or lowquality
of an image.

MTL has been applied to FR tasks such as landmark detection and anti-spoofing, but
not to FIQ estimation. In [135],MTL is used for landmark detection and improves perfor-
mance for faces with severe occlusion and pose variation. In [136], AENet uses rich seman-
tic annotations as auxiliary tasks to boost the performance of face anti-spoofing. In [137],
MHCNN is proposed for joint face detection, landmark detection, facial quality, and at-
tribute analysis, but it is only used for face detection, not recognition. To date, there are
noMTLmethods applied to FIQ estimation.

4.3 Methodology

The proposed multi-task learning model consists of 3 steps. First, for a given facial image,
the facemust be pre-processed to obtain an input image of (3, 112, 112). Second, the input
image is processed by the network, and third, the vector with facial and environmental
attributes output will be obtained. The framework of the proposed multitask learning
modelXQNet is shown infigure 4.2. Themodel consists of a bodywith several heads. Each
head processes one of the facial or environmental attributes. The loss function combines
all of the head attribute outputs assigning a weight to each. Finally, the model outputs the
target FIQ togetherwith facial and environmental attributes that contribute to thedecision
for such quality.

To choose a backbone for the network, one has to take into account that better accu-
racies tend to be obtained by more complex DNN architectures that require significant
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Figure 4.2: Multi-Task LearningModel architecture. First, the imagemust be prepossessed before feeding
it to a backbone with several heads, 6 regression heads (including quality) and 2 categorical heads. Then all of
their outputs are processed through a loss function that will output the vector for facial and environmental
attributes.

computational resources. In our context, it is desirable that the network is able to process
a large amount of images in a short time, and has a good trade-off between accuracy and
performance. It is for this reason that the backbones chosen are EfficientNet [138] and
ConvNext [139]. Vision transformers (ViTs) are another type of DNNs that are receiv-
ing the attention of the computer vision community recently, as they have demonstrated
superiority in accuracy over CNNs [140]. But they currently have higher computational
costs and therefore require further research on optimization techniques to efficiently de-
ploy them in resource-constrained processors [141].

For MTL we use the hard parameter sharing approach [142]. It is generally applied by
sharing the hidden layers between all tasks, while keeping several task-specific output layers.
Hard parameter sharing greatly reduces the risk of overfitting [143]. Themore tasks we are
learning simultaneously, the more our model has to find a representation that captures all
of the tasks and the less chance of overfitting on our original task, i.e. FIQ.

4.3.1 Training

The training pipeline is as follows: the landmarks of the facial image are first detected. In
the case of the face not being detected, the image is not considered for training. Then the
landmarks are used to crop and align the face in order to yield the appropriate shape (3,
112, 112) to be inserted into the network. In our method, we rely on detecting and align-
ing faces as the input to our model because the quality assessment should be performed
on an aligned face in order to ensure accurate results. The model expects an aligned face
as input in order to process the quality assessment in an adequate manner. The network
itself is formed by a backbone and several heads. The outputs of the heads go to the loss
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function. There are seven regression tasks to estimate the following variables: FIQ, num-
ber of hotspots, sharpness, deviation from uniform lightning, deviation from frontal pose,
and age. Regression tasks are those which output a continuous variable. Moreover, there
are two categorical variables to learn: ethnicity and gender. Category tasks are those which
output a class value. Each of these tasks are represented in the network as a head that comes
from the backbone.

The cost function is based on the work of [128] and has the weights as trainable param-
eters of the network. The loss function is defined as:

L(W, σ1, σ2) =
1
2σ21
L1(W) +

1
2σ22
L2(W) + log(σ1) + log(σ2), (4.1)

where σi is the observation noise. The variable σ1 represents the noise parameter for the
model output y1 (regression) and σ2 represents the noise parameter for the model output
y2 (categorical). The lossesL1 andL2 are defined by:

L1(W) =
∥∥y1 − fW(x)

∥∥2 , (4.2)

and:
L2(W) = − log Softmax(y2, f

W(x)). (4.3)

where fW(x) is the output of a neural network with weightsW on input x.

The equations 4.2 and 4.3 can be used for each of the regression and categorical tasks
of our model, allowing us to learn the relative weights. This loss is smoothly differentiable,
and it ensures that the task weights will not converge to zero. In addition to the model
of [128], we apply a GELU [144] function before introducing the weights in the valid loss,
both to ensure that the valid loss does not get in negative values and resulting in better
training results.

The model is trained using [145], which demonstrates an improvement in the learning
speed with regards to a cycle in which the learning rate (lr) and momentum are kept con-
stant. It consists of the following steps: first, we progressively increase our lr from lrmax/f
to lrmax and at the same time we progressively decrease our momentum frommommax to
mommin. Second, we do the exact opposite: we progressively decrease our lr from lrmax to
lrmax/f and at the same time we progressively increase our momentum from mommin to
mommax. Thirdly, we further decrease our lr from lrmax/f to lrmax/(fx100) and we keep
momentum steady atmommax.
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4.3.2 Evaluation protocols

As done in [115; 116; 126], we use EVRC to evaluate the performance of FIQ assessment
methods. The EVRC uses the partial area under the curve defined as:

pAUC =

∫ a

0
FNMR(ϕ)dϕ, (4.4)

where ϕ is defined as the percentage of images which are not considered and FNMR is
the False Negative Match Rate at the given ϕ. For convenience and to be able to compare
with The FNMR is defined as the number of false negatives (negative facial recognition
claimswhich should have been accepted) divided by the total amount of real positives (false
negatives or FN + true positives or TP) i.e.:

FNMR =
FN

FN+ TP
. (4.5)

FNMR is a usefulmetric for evaluating the performance of a face recognition system. In
face recognition, false negative errors refer to the situation where the system fails to match
a pair of face images that belong to the same person, i.e., it wrongly classifies them as dif-
ferent persons. A low FNMR indicates that the system is able to accurately match faces
that belong to the same person. FNMR is particularly relevant in security and surveillance
scenarios where failing to recognize a person can have serious consequences. For example,
a false negative error could result in a person being incorrectly denied access, while in a
criminal investigation, it could result in a suspect going undetected.

The use of the EVRC is beneficial because it demonstrates the effect of discarding low-
quality face images on FR performance, as measured by FNMR.This curve shows the rela-
tionship between FNMR and reject rates, allowing us to understand how FNMR changes
as an increasing amount of low-quality data is discarded. Using the EVRC curve is a fair
method to compare the performance of different FIQ assessment algorithms, as it is in-
dependent of the absolute quality score values and their range. Additionally, the use of
the ERVC provides a clear, visual representation of the relationship between FIQ and FR
performance, making it an informative and effective evaluation tool.

When evaluating LFW, 6000 randomly generated pairs were used as a benchmark. We
also used the 6000 pairs provided for XQLFW [28]. From each pair, the image with the
minimum quality is taken as the ’pair quality’. Performing FR in all the pairs, FNMR is
computed. Then 5% of the worse quality pairs are removed and FNMR recomputed. The
process is iterated until nomore pairs are left. However, thismethod does not contemplate
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73.05 57.89

(a) LFW example pair

23.46 73.20

(b) XQLFW example pair

63.95 63.95

(c) DAQP example pair

Figure 4.3: Examples of representative pairs with different evaluation protocols, each with its SDD-
FIQA [123] FIQ. Note that DAQP evaluation seeks pairs with similar (even equal) FIQ.

all the qualities in the database nor can it be extended to other databases that do not have
a standard set pairs to evaluate such as LFW or XQLFW. If a new database arises such as
SCFace [29], and it does not come with a preset evaluation of pairs. Should we generate
one ourselves randomly? Even if the pair set is already available such as in LFW. Is it the
most suitable for quality evaluation? XQLFW [28] proved that it is not, but they used
both SER-FIQ and BRISQUE quality to generate the pairs, which can make the method
biased. It is for this that we propose a new method which allows to extend the evaluation
to other databases that do not have pre-established pairs.

First, we compute the quality for each image in the dataset. After that, we compute a
histogram with n = 20 bins. For each bin, we compute the maximum number of pairs
of the same identity that are available. In this way, we make sure that when performing
face comparison pairs of similar quality are compared and not pairs that have very different
qualities. Another way to form these pairs would be to perform cross-bin comparisons so
that very high-qualities are compared against very low qualities, but as we are removing
pairs with the lowest quality, and to be fair in the comparison (the quality of the pair is the
minimum of the two image qualities), we decide to adopt this criterion of making pairs of
similar quality and not maximizing the difference.

Once the quality pairs are computed, the same number of different identity pairs are
obtained. Once this is done for all the bins in the histogram, we compute the FNMR 20
times each time removing the bin, the lowest quality. A summary of the DAQP algorithm
is found in algorithm 1. A graph showing the pair-quality distribution for the datasets of
LFW, XQLFW and DAQP is shown in figure 4.4. The FNMR performance of the FIQ
model using DAQB (now renamed DAQP) provides a more comprehensive understand-
ing of the model’s performance across a diverse range of image quality, as compared to
evaluating the model using randomly selected pairs. This is a crucial aspect in assessing
the generalization capability of the FIQ method. Samples of different evaluation pairs are
shown in figure 4.3.
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Figure 4.4: Set of qualities for all the state-of-the art methods used, including our own proposed method
XQNet-ConvNext and XQnet-EfficientNet

Algorithm 1 Dataset-Agnostic Quality Pairing (DAQP)
Input: Set of images annotated by quality I
Output: Set of evaluation pairs P

DAQP (I, n = 20)
Distribute I in n quantiles based on quality

for quantile = 1 to n do
si← all pair combinations of same identity
nsi = len(si)
di← nsi pair combinations of different identity

P← empty list
minp← findmin(nsi) in all the quantiles
P = P.add(si, di)where quartile(si, di) has minp

iterate over the rest of quantiles
for quantile = 1 to (n− 1) do
si = si.randomselect(minp)
di = di.randomselect(minp)
P = P.add(si, di)

return P
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4.4 Experiments

Weuse two types of databases: forensic-oriented, where the images have low-resolution, are
taken at a distance, or the subjets have very different poses such as SCface [29] and Foren-
face [105]), and standard databases used commonly in literature to test FIQ algorithms,
such as LFW [40], XQLFW [28] or UTKFace [146]. We use UTK Face for training and
for testing we use LFW, XQLFW, SCFace and ForenFace. LFW and XQLFW are both
public datasets, and although LFW almost reaches saturation in most FR systems [28], it
is still widely used in literature for FIQ evaluation. On the other hand, SCFace and Foren-
Face are closed datasets but much more focused in forensics, proposing more challenging
images for quality evaluation.

LFW [40] is a database of 13,000 images of faces collected from the web. 1680 of the
people pictured have two or more distinct photos in the data set. SCFace [29] is a database
in which images were taken in uncontrolled indoor environment using five video surveil-
lance cameras of various qualities. The database contains 4160 static images (in the visible
and infrared spectrum) of 130 subjects. ForenFace [105] contains video sequences and
extracted images of 98 subjects recorded with six different surveillance camera of various
types. Moreover, it also contains high resolution images and 3D scans for these subjects.
A subset of 435 images (87 subjects, five images per subject) has been manually annotated,
yielding a unique and very rich annotation containing almost 19.000 entries. It also con-
tains a training/testing protocol. The UTK face dataset [146] has a long age span (range
from 0 to 116 years old). It has of over 20,000 face images with annotations of age, gen-
der, and ethnicity. The images cover large variation in pose, facial expression, illumination,
occlusion, resolution, etc.

Figure 4.5: Sample of dataset annotations

The detector used isMTCNN[64] and
the face recognizers were ArcFace [88] and
FaceNet512 [46]. These face recognizers
where implementedusing the libraryDeep-
Face [107]. The annotations used are as
follows: the FIQ uses SDD-FIQA [123]
for ground truth annotation, due to be-
ing to our knowledge the state of the art
in quality estimation. Gender and Ethnic-
ity are taken from the annotatedUTK face
database [146]. In case the ethinicity out-
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put in UTK dataset was “others”, the software anotation used was [147]. The rest of the
annotations, which are: number of hotspots, sharpness, deviation fromuniform lightning
and deviation from frontal pose are estimated using the commercial software library Face-
VACs [108]. A sample of these annotations is shown in figure 4.5. A summary of the
attribute definitions is in table 4.1. The purpose of XQNet is to be open software, so new
training with other annotations and other databases is possible, making it less of the black-
box that FaceVACs commercial software is.

4.5 Results

The proposed explainable face quality estimation is analysed in four ways. It’s important
to note that determining what constitutes a “good enough“ image is not an absolute term
and depends on the desired FNMR and the specific dataset being evaluated. A higher FIQ
score generally indicates a higher quality image and a higher likelihood of successful per-
son identification, but the appropriate threshold will depend on the user’s specific require-
ments and desired trade-off between false negatives and false positives. First, we used the
pair-generationmethodDAQPalgorithm1 to compare theFNMRresults in threedatasets.
Second, we compare our pair-generationmethodDAQP against 6000 randomly generated
pairs from LFW and the algorithm of 6000 pairs used in XQLFW. Thirdly, as our method
is intended for forensic large-scale usage, we compare both CPU and GPU performance
times of different FIQ algorithms and fourthly, we show the attribute distributions pro-
duced by our explainability method in the different datasets.

Our pair-generation method DAQP algorithm 1 is used to compare the FNMR results
in three datasets, (SCFace, ForenFace and LFW). Moreover, to assess the generalization
against different Face Recognition systems, we perform the pair verification with ArcFace,
FaceNet512 and SFace. The qualitative results are shown in figure 4.6, whereas the quan-
titative results are shown in table 4.2. the numbers in the table represent the evaluation in
terms of partial area under the curve (pAUC) for reject fraction ranges from 5%, 15% and
35%. Lower values indicate lower FNMR, and thus, better performance of the model. For
each rejection range, we have marked in bold the minimum FNMR, which indicates the
best performance at that percentage of discarded images (see equations 4.5 and 4.4).

Our secondanalysis consists of comparingourpair-generation algorithmDAQPmethod
against the 6000 randomly generated pairs in LFW [40] and the algorithm for generating
6000 pairs in XQLFW [28]. Equally to the first analysis, the quantitative results are shown
in table 4.3.
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Figure 4.6: FNMR for quality bin pairs using DAQP. The lower the curve, the better the system.
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Table 4.2: Table of results for DABP pair-generation method in 3 datasets and 3 Face Recognizers.

pAUC (%) Ratio of
unconsidered images (%)

Quality
Method

Face
Recognizer Database 5 15 35

SER-FIQ [115] Facenet512 SCFace 2,80 8,34 18,92
LFW 0,39 1,11 2,40
ForenFace 2,89 8,94 21,52

SFace SCFace 3,29 9,83 22,78
LFW 2,93 8,79 20,27
ForenFace 3,36 10,26 24,46

ArcFace SCFace 1,37 4,34 11,27
LFW 1,71 5,14 12,00
ForenFace 0,91 2,89 7,63

EQFace [149] Facenet512 SCFace 2,26 6,64 14,63
LFW 0,31 0,87 1,91
ForenFace 2,71 8,42 20,31

SFace SCFace 2,87 8,58 20,05
LFW 2,99 8,99 20,94
ForenFace 3,34 10,33 24,96

ArcFace SCFace 0,95 3,02 7,97
LFW 1,63 4,88 11,18
ForenFace 0,72 2,27 6,03

SDD-FIQA [123] Facenet512 SCFace 2,44 7,14 15,30
LFW 0,50 1,28 2,35
ForenFace 2,52 7,70 18,38

SFace SCFace 2,77 8,26 18,71
LFW 3,08 9,12 20,74
ForenFace 3,33 10,18 24,40

ArcFace SCFace 0,94 2,94 7,57
LFW 1,82 5,35 11,98
ForenFace 0,58 1,83 4,85

XQNet Facenet512 SCFace 2,12 6,22 13,50
- LFW 0,39 0,99 1,75
ConvNext (Ours) ForenFace 2,52 7,80 18,45

SFace SCFace 2,75 8,28 19,13
LFW 2,95 8,79 20,18
ForenFace 3,25 10,03 24,05

ArcFace SCFace 0,85 2,68 7,08
LFW 1,78 5,29 11,99
ForenFace 0,67 2,12 5,62

XQNet Facenet512 SCFace 2,33 6,90 15,21
- LFW 0,38 0,98 1,92
EfficientNet (Ours) ForenFace 2,41 7,44 17,42

SFace SCFace 2,90 8,71 20,28
LFW 2,94 8,70 19,86
ForenFace 3,33 10,21 24,04

ArcFace SCFace 0,76 2,40 6,30
LFW 1,72 5,07 11,33
ForenFace 0,60 1,91 5,08
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Table 4.3: Table of results for DABP method in LFW agains random generated pairs and XQLFW gener-
ated pairs.

pAUC (%) Ratio of
unconsidered images (%)

Quality
Method

Face
Recognizer Database 5 15 35

SER-FIQ [115] Facenet512 LFW 0,69 2,02 4,56
XQLFW 3,01 9,25 22,23
DAQP 0,39 1,11 2,40

SFace LFW 2,87 8,58 19,89
XQLFW 3,15 9,70 23,49
DAQP 2,93 8,79 20,27

ArcFace LFW 1,77 5,29 12,18
XQLFW 2,54 7,84 19,09
DAQP 1,71 5,14 12,00

EQFace [149] Facenet512 LFW 0,69 1,98 4,20
XQLFW 3,01 9,23 22,36
DAQP 0,31 0,87 1,91

SFace LFW 2,88 8,56 19,73
XQLFW 3,15 9,67 23,59
DAQP 2,99 8,99 20,94

ArcFace LFW 1,77 5,25 11,96
XQLFW 2,54 7,82 19,18
DAQP 1,63 4,88 11,18

SDD-FIQA [123] Facenet512 LFW 0,68 1,89 3,76
XQLFW 2,98 9,00 21,17
DAQP 0,50 1,28 2,35

SFace LFW 2,88 8,58 19,68
XQLFW 3,12 9,46 22,50
DAQP 3,08 9,12 20,74

ArcFace LFW 1,77 5,22 11,82
XQLFW 2,51 7,65 18,34
DAQP 1,82 5,35 11,98

XQNet Facenet512 LFW 0,68 1,91 3,83
- XQLFW 3,00 9,15 22,06
ConvNext (Ours) DAQP 0,39 0,99 1,75

SFace LFW 2,88 8,60 19,79
XQLFW 3,14 9,60 23,30
DAQP 2,95 8,79 20,18

ArcFace LFW 1,77 5,27 11,92
XQLFW 2,53 7,74 18,91
DAQP 1,78 5,29 11,99

XQNet Facenet512 LFW 0,68 1,93 4,05
- XQLFW 2,99 9,08 21,56
EfficientNet (Ours) DAQP 0,38 0,98 1,92

SFace LFW 2,89 8,64 19,91
XQLFW 3,13 9,52 22,84
DAQP 2,94 8,70 19,86

ArcFace LFW 1,78 5,29 12,07
XQLFW 2,52 7,68 18,54
DAQP 1,72 5,07 11,33
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In both tables, the fraction of images that were deemed “unconsidered“ refers to the
percentage of images thatwere excluded (basedon their quality scores) from the calculation
of FNMR. If the qualitymodel is accurately assigning quality scores, then discarding lower
quality images for the computation of FNMR should result in improved performance and
thus, lower FNMR. Conversely, if the FNMR deteriorates upon discarding low quality
images, it suggests that these images were not in fact of low quality. In tables 4.2 and 4.3
best results for each database have beenmarked in bold. We observe that SDD-FIQA [123]
and EQFace [149] tend to have better performance on LFW and XQLFW benchmarks,
whereas XQNET (ours) has better performance with the DAQP evaluation protocol.

Thirdly, ourmethodmust be able to perform competitively in a large-scale dataset (such
as CCTV footage). It is for that reason we make a table (see table 4.4) with performing
times both with CPU and GPU. The CPU used was AMD EPYC 7B12, and the GPU
used was Tesla T4. As seen in the table, our method performs competitively against other
state-of-the-art algorithms such as SER-FIQ [115], EQFace [149] and SDD-FIQA [123].

Finally, we analyze the explainability component of the XQNets. The set of attributes
is predicted and plotted in 4.7 and 4.8. In Figure 4.7, the correlation between pairs of vari-
ables is depicted for each database. The visual representation of the correlation between
the variables can provide important insights into the relationship between the variables
under study. The more concentrated and circular the curves are, the greater the correla-
tion between the pair of variables. This can be seen in the quality/sharpness graph, where
the dataset LFW lines occupy a very small area of the plane, indicating a strong correla-
tion between these two variables. Conversely, in the hotspots/quality graph, the red curves
(SCFace database) are widely dispersed, covering a fairly extensive area, indicating a weaker
correlation between the two variables. This information can be used to make informed
decisions about the variables that are most important to focus on for a given study or anal-
ysis. In addition to the correlation between variables, the diagonal of the figure also pro-
vides information about the distribution of each individual variable. Some variables have a
pointed distribution, with a greater concentration around a dominant value, such as qual-
ity or hotspots in LFWdatabase. Other variables have a flattened distribution, showing an
almost uniform distribution within a range, such as age in LFW. Understanding the distri-
bution of each variable can inform data preprocessing and modelling decisions, as well as
provide insight into the underlying structure of the data.

Figure 4.8 displays the distribution of each categorical parameter value for each database.
For example, in the LFWdatabase, with regards to ethnicity and gender, it can be observed
that there are no samples of women from the Middle East, while the quality of those for
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Table 4.4: Computation times of different networks. N. Det. Imgs refers to Number of Detected images.

Database N. Det.
Imgs.

FIQ
Algorithm

CPU
Time

GPU
Time

SCFace 3841 SER-FIQ 18h 22’ 44” 15’ 20”
SDD-FIQA 8’ 23” 48.2”
EQ-Face 17’ 51” 1’ 18”
xQNet-ConvNext 3’ 56” 2’ 4”
xQNet-Efficientnet 3’ 0” 1’ 39”

LFW 13229 SER-FIQ 118h 5’ 17” 37’ 10”
SDD-FIQA 2h 35’ 42” 2’ 0”
EQ-Face 1h 14’ 3” 3’ 45”
xQNet-ConvNext 5’ 37” 42.7”
xQNet-Efficientnet 2’ 17” 37.8”

XQLFW 13140 SER-FIQ 112h 45’ 55” 52’ 0”
SDD-FIQA 2h 35’ 19” 1’ 58”
EQ-Face 1h 16’ 55” 3’ 42”
xQNet-ConvNext 5’ 31” 41.6”
xQNet-Efficientnet 2’ 21” 37.0”

ForenFace 2476 SER-FIQ 16h 20’ 0” 9’ 20”
SDD-FIQA 24’ 21” 31.8”
EQ-Face 12’ 12” 52.7”
xQNet-ConvNext 1’ 54” 49.2”
xQNet-Efficientnet 1’ 26” 48.3”
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Figure 4.7: Attribute regression predictions by XQNet

the same ethnicity formen is highly concentrated. The elongated and thick graphs with lit-
tle variation indicate a wide dispersion of the variable under study (quality), as can be seen
with the Indian ethnicity in the SCFace database. In addition to the information about
the distribution of each parameter value, figure 4.8 can also provide valuable insights into
the underlying structure of the data. The distribution of values for each parameter can re-
veal the presence of biases or imbalances in the data, which can affect the results of further
analysis andmodelling. Understanding these patterns can inform the development of data
preprocessing and balancing techniques, as well as provide guidance for future data collec-
tion efforts. Furthermore, the distribution of values for each parameter can also inform
decision-making in terms of model selection and performance evaluation.
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Figure 4.8: Attribute categorical predictions by XQNet

4.6 Discussion and Conclusion

Current definitions of face quality assessment are based on the suitability of a face image
for the task of face comparison. However if these FIQ applications are meant to be used by
humans, such as in forensics, this suitability score has to be accompanied with a sufficient
degree of explainability. This explainability can be achieved through pixel values, such as
the work of [119], or by measuring a set of standard attributes and weighting the contri-
bution of each of them such as the work of [117]. In this work, we have chosen to develop
a multi task learning model that jointly learns the suitability score with the facial and en-
vironmental attributes that contribute to it. The results show that FIQ highly correlates
with sharpness, frontal pose and age. This can help the user to get real-time feedback on
how to improve the quality of the image before further processing. Also, for forensic pur-
poses in large databases, clusters of images with different qualities and different attributes
can be produced to facilitate the investigation. As a caveat, it has to be mentioned that
in cases where proper face detection and alignment are not possible, these images cannot
be considered for computation. However, manual detection and alignment may be per-
formed with the use of adequate software. This is important because XQNet relies on de-
tecting and aligning faces as the input to our model because the quality assessment should
be performed on an aligned face in order to ensure accurate results. The model expects
an aligned face as input in order to process the quality assessment in an adequate manner.
Another limitation of our current work is that it depends on the availability of labeled data
for training and evaluating the model. This implies that the balance of the datasets used
of training can have an impact on the results, and the results obtained from our work only
apply to the datasets and embedding models used in the study and may not generalize to
other datasets or models. Another aspect of training the score together with the attributes
is that if the attributes are carefully chosen, unintended bias can be avoided. When the
suitability estimation (i.e. facial image quality) is built on the deployed face recognition al-
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gorithm, unintended bias can happen. Training several attributes can avoid this bias both
in the training and the datasets chosen. Additionally, we could consider handling non-
categorical variables that cannot be regressed directly. For example, continuous attributes
could be discretized into ordinal bins.

As a conclusion, this chapter proposes a novel FIQ assessment approach, which adds
explainability as FIQ annotation. The novelties of our algorithm are three-fold: First, we
are the first to train a Multi-Task learning model considering several attributes that affect
quality estimation of a face image. Second, we propose a newprotocol to evaluate the tradi-
tional benchmarks such as LFW, but with a larger number of pairs and equal distribution
of qualities. Third, an efficient implementation of multitask learning model shows that it
speeds up the label generation and has competitive inference times. Our proposedmethod
combines regression and classification, allowing it to be retrained for different labels (e.g.,
from quality to another type of float) or classes (e.g., from gender to another binary clas-
sification). This adaptability makes it suitable for tasks like person re-identification by ad-
justing labels and classes accordingly.
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Improved Likelihood Ratios for Face
Recognition in Surveillance Video by

Multimodal Feature Pairing

The ability to accurately recognize faces in real-world surveillance videos
based on a set of given images of a suspect and assess its value as evidence are
critical aspects of forensic investigation and security monitoring systems. This

task is affected by variations in pose, illumination, and facial expression that are commonly
present in such videos. Currently, in cases where face comparison results are presented in
court, manual facial comparison methods, such as holistic, morphological and photoan-
thropometric processes, are used. But these methods lack standardization and validation.
These complexities highlight a critical gap: existing automatic methods may not be suffi-
cient for robust face recognition in these challenging scenarios because of their suscepti-
bility to the aforementioned variations. So, how can we enhance the reliability of facial
recognition in forensic settings? We propose a method for image-to-video face recognition
in challenging forensic scenarios by utilizing a newmodel that pairs a face imagewithmulti-
ple attributes, such as pose and facial expression, and face image quality. To statistically as-
sess the strength of the evidence in a forensic investigation, we then apply three calibration
methods to estimate the likelihood ratio. We validate the results of our proposed method,
using the log-likelihood ratio cost (Cllr), on the ENFSI proficiency test 2015 dataset, us-
ing SCFace, XQLFW, ChokePoint and ForenFace as calibration datasets. We use three
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face recognition models: ArcFace, FaceNet and QMagFace. Our results suggest that while
using different viewpoints may improve recognition, focusing on higher quality frames
alone can enhance face recognition performance for forensic purposes compared to using
all frames. The best Cllr was achieved by employing the highest number of common at-
tributes of the reference image and selected frames. Compared to using the top 25% best
quality frames, this approach yields similar Cllr values. The second-best method involves
creating a single common embedding from the selected frames andweighting it by the qual-
ity of each frame’s face image. Upon preprocessing facial images with the super resolution
CodeFormer, we observed an unexpected increase in the log-likelihood ratio cost, reduc-
ing the reliability of the evidence. Consequently, we discourage the use of CodeFormer in
these forensic scenarios due to its detrimental impact on facial recognition performance.

5.1 Introduction

Automated Face recognition (FR) is a method that has become increasingly important in
recent years, particularly in the field of forensic investigation [114]. With the proliferation
of surveillance cameras and the capture of images of criminal events, the comparison of
faces has become a key tool for gathering intelligence, guiding investigations, and provid-
ing evidence in court [114][6]. While deep-learning based FRmethods have demonstrated
strong recognition performance for still images [150], such as those in the Labeled Faces
in the Wild (LFW) dataset [40], video-based FR has not been as widely developed by the
research community [151]. Video FR, however, offers additional information, such as tem-
poral details andmultiple views on the sameperson,which canbeused in conjunctionwith
frame based face recognition techniques to quickly identify subjects of interest in CCTV
footage [152].

Despite the potential benefits of video-based FR, the process of analyzing such a large
amount of data for each video is challenging due to the time needed to deal with all frames.
Not all the frames in the video might be of equal importance though. Some frames can
be useless for recognition due to low video quality, motion blur, occlusions, and frequent
changes in the scene [153; 154] (see figure 5.1 for examples). An obvious method would
then be to measure such characteristics and discard frames of low quality. Some works
focusing on face image quality (FIQ) [115; 116; 123], however, have indicated that using
human-based attributes for face image quality assessment might not be ideal. Aspects that
humans perceive as affecting the quality of an image, such as illumination or pose, may not
be the best characteristics for the face recognition system being used. The references above
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Reference Images

Surveillance video

Images-to-Video scenario

Figure 5.1: Example of images-to-video scenario. Images taken from [105]. The reduced quality in this
case is primarily attributed to the following factors: the challenging pose of the face, the subject wearing a cap,
and increased subject distance.

use the SER-FIQ, MagFace, and SDD-FIQA face image quality assessment deep learning
basedmethods to test on IJB-C [155] videos, and show that for 1:1 recognition on individ-
ual frames these assessment methods yield significant improvement. In current systems,
image quality measures incorporating spatio-temporal information are not used.
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So how to evaluate which method is best? In automated facial recognition systems, the
similarity between two samples is usually reported in one or several score values intrinsic to
each version of the facial recognition algorithmused [150]. To allow comparisons between
facial scores from different face recognition systems, as well as for such an automated com-
parison to be useful in an evaluative forensic framework, there is a need to map the output
scores to a Likelihood Ratio (LR) [73]. LR is defined as the probability of the evidence
given hypothesis H0 i.e., the probability of the reference being the same person as in the
video, divided by the probability of the evidence given the alternative hypothesisH1 i.e., the
probability of the reference being a different person than the one appearing in the video. A
possible approach to achieve this is use a score-to-LRmapping as a post-processing step in
an existing score-producing facial recognition system [24]. Once a model for score-to-LR
mapping has been set up, the forensic reporting can be presented using a level of conclu-
sion, where each grade on the scale is connected to an interval of LR values [6; 83].

In this chapter, which is an extension of our conference paper [156], we propose a novel
method for image-to-video face recognition in realistic forensic scenarios. We leverage a
model that pairs face images based on multimodal face feature data, such as face attribute
characteristics and FIQ. The aim is to accurately estimate likelihood ratios (LRs) for face
recognition systems in practical settings. Our particular focus is on scenarios where mul-
tiple reference images of a suspect are available, and to verify if this person is the same in-
dividual appearing in a surveillance video. Previous studies, such as the work of Molder et
al. [24], Rodriguez et al. chapter 3, and Jacquet et al. [6], have explored LRs in face recog-
nition in still images, employing different techniques and considering various scenarios.
Despite these contributions, there are still open questions, particularly regarding the accu-
racy of estimating LRs and their effective application in a forensic context. This chapter
aims to address these gaps by improving the accuracy of LR estimation in automated face
recognition using image-to-video comparisons, building on the work of researchers like
Zheng et al. [154] and Huo et al. [157]. We apply three calibration methods to estimate
LRs and validate the results using the log-likelihood ratio cost (Cllr). Our contributions
include the following:

1) MultiModal Feature Pairing using FIQ to select frames with the highest quality
and highest number of common attributes (soft labels), and combining them through a
weighted average.

2) Calibration involving selection of random pairs with the same attributes and same
FIQ as the test pairs.

3) Validation of the LR estimation system against a forensic test performed with hu-
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man experts.
4) Preprocessing with Super Resolutionmethod CodeFormer for preprocessing fa-

cial images and evaluate its effect on the Cllr.
The current study begins by providing an overview of the relevant literature pertain-

ing to the estimation of likelihood ratios, face recognition in video, and the incorporation
of FIQ in face recognition in images-to-video scenarios. Following this, the methodology
for pairing and calibration is presented. The experiments and associated results are then
discussed. Finally, the chapter concludes with a discussion of the findings and implica-
tions. The workflow for the computation of the Likelihood Ratio, giving a blueprint for
the chapter, is depicted in Figure 5.2.

Compared to our earlier conference paper [156], this study introduces several signif-
icant advancements. Firstly, we implement a new computational model, CodeFormer
[158], designed tooptimize face recognitionperformance. Secondly,we expandourdataset
collection to include XQLFW [? ] and ChokePoint [159], enriching the empirical foun-
dation of our research. We offer enhanced interpretability of our results by introducing
a sunburst diagram as a novel visualization tool to better understand the relationships be-
tween various facial attributes and image quality. Finally, the text has been significantly
extended to give more insight in the methodologies and results.
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Reference Images

Surveillance Videos

Images-to-Video scenarios

Multimodal feature pairing

Score (s)

Calibration

Images Database

Likelihood Ratio (LR)

Validation

ENFSI tests
18 Participants’ LR estimation

Cost-Log Likelihood Ratio (Cllr)

Data
Process

Figure 5.2: Workflowof theLRcomputation and validationprocess inENFSI 2015proficiency test [160].
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5.2 RelatedWork

Likelihood ratios (LRs) have been applied in the field of face recognition. Molder et al.
[24] test score-to-LRmodels in forensic data and find that the performance of the models
is highly dependent on the available training data. Rodriguez et al. (chapter 3) and Jacquet
et al. [6] also focus on this topic, with the formerusing facial attributes andquality scores to
improve LR estimation, and finding that current commercial software outperforms open-
source software. The latter reference explores the importance of LR in face recognition
and assesses the performance of the model with respect to its discriminating power and
calibration state. While these studies have made significant strides, the current state of LR
research in video-based face recognition remains incomplete. An open question is how to
accurately estimate LRs for face recognition systems in practice and how they can be effec-
tively deployed in a forensic context, particularly when analyzing video sequences rather
than isolated frames.

Spatio-temporal face recognition in videos has also been a topic of research. Zheng et
al. [154] propose a system for image-to-video face recognition inunconstrained conditions,
composed ofmodules for landmark detection, face association, and face recognition. They
perform experiments on video datasets and demonstrate that their system can accurately
detect and associate faces from unconstrained videos and effectively learn robust and dis-
criminative features for recognition. Huo et al. [157] tackle n-shot face recognition in
videos using metric learning methods and similarity ranking models, comparing a Siamese
network with contrastive loss to a Triplet Network with triplet loss. They show that fea-
ture representations learned with triplet loss are significantly better in their setting, and
that learning spatio-temporal features from video sequences is beneficial for face recogni-
tion in videos. Rivero et al. [161] propose an adaptive aggregation scheme based on or-
dered weighted average (OWA) operators, and develop two different implementations to
validate its suitability for image-to-video face recognition. Nevertheless, the current state of
spatio-temporal face recognition research is insufficient, as the problem of face recognition
in forensic videos is still open, and the results are not generalizable to real-world scenarios.

To avoid processing a whole video, keyframe extraction methods for face recognition
in videos have been developed. Abed et al. [151] propose a method based on face quality
and deep learning. The first step is the face detection using the MTCNN detector, which
detects five landmarks (the eyes, the two corners of the mouth, and the nose) and then lim-
its face boundaries to a bounding box and from there provides a confidence score. This
method involves two steps: the generation of face quality scores using three face feature
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extractors (Gabor, LBP, and HoG), and the training of a deep Convolutional Neural Net-
work to select frameswith the best face quality. Bahroun et al. [153] propose a keyframe ex-
tractionmethodbased on face image quality for video surveillance systems. Data is reduced
by rejecting frames without faces, and then face images are clustered by identity. A set of
candidate frames is then selected, and the face quality assessment is based on four metrics
(pose, sharpness, brightness, and resolution). The frame with the best face quality is con-
sidered a keyframe. Experimental tests were conducted on several datasets to demonstrate
the effectiveness of the proposed method compared to other state-of-the-art approaches.
The issue with some existing methods of face image quality computation is their depen-
dence on subjective or indirect measures of quality, which may not necessarily align with
the needs of face recognition systems. In contrast, these newer methods, as exemplified by
the works of Abed et al. [151] and Bahroun et al. [153], provide a more direct measure of
face image quality, which is closely tied to the performance of the face recognition model
itself.

Face image quality assessment for improving face recognition in videos has also been
considered. Terhorst et al. [115] propose the SER-FIQ (Subjective and Objective Quality
Factors of Images)method for assessing face image quality. They test the SER-FIQmethod
on the IJB-C [155] video dataset and show that it performs well in face recognition tasks.
Meng et al. [116] propose the MagFace method, which uses a multi-attention guided face
image quality assessment network to evaluate face image quality. They testMagFace on the
IJB-C videos and show it outperforms other state-of-the-art methods. Ou et al. [123] pro-
pose the SDD-FIQA (Single ShotDetector based Face ImageQualityAssessment)method,
which uses a single shot detector to evaluate face image quality. They test SDD-FIQA on
the IJB-C videos and show that it performs well in face recognition tasks. However, these
works only evaluate face image quality in 1:1 (face verification) image-to-video scenarios,
and do not consider the use of temporal information for face recognition as they use the
frames as if they were isolated images.

Blind face restoration,which refers to the taskof restoring faces in imageswithout knowl-
edge of the specific degradation processes they underwent, presents a complex challenge
due to the inherent uncertainty stemming from its ill-posed nature and the potential loss
of crucial details in degraded inputs. Together with super resolution techniques, they are
emerging as important tools in improving image quality for various tasks, including face
recognition. In a recent study, a novel approach has been proposed to handle the problem
of blind face restoration, which is typically a highly ill-posed problem. Zhou et al. [158]
introduces a learned discrete codebook prior in a small proxy space, reducing the uncer-
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tainty and ambiguity of restoration mapping by casting the process as a code prediction
task. The approach is called CodeFormer, a Transformer-based prediction network that
models the global composition and context of low-quality faces for code prediction. This
technique enables the discovery of natural faces closely approximating the target faces, even
with severely degraded inputs. The study showed that CodeFormer outperforms state-of-
the-art methods in both quality and fidelity, exhibiting superior robustness to degradation.
The results were validated on both synthetic and real-world datasets, further underscor-
ing the effectiveness of the method in addressing the challenges of face restoration and
super resolution. Despite these advancements, the use of such advanced preprocessing
techniques for image-to-video face recognition, particularly in the context of forensic in-
vestigations, is still an open research question.

5.3 Methodology

We propose a systematic workflow, illustrated in Figure 5.2, that is segmented into vari-
ous interconnected stages. The process commences with the curation of ‘Images-to-Video
scenarios‘ incorporating both reference images and surveillance videos. These inputs un-
dergo a ‘Multimodal feature pairing‘ stage, further detailed in Figure 5.3. In this stage, all
frames are compared to one another; frames of the highest quality are paired, as are frames
with shared attributes between the reference images and the video. Additionally, a frame
weighted by quality from the reference images is paired with a similarly weighted frame
from the video. After generating a biometric score s, theworkflow advances to the ‘Calibra-
tion‘ phase. During this stage, scores are calibrated using distributionmodels derived from
both within-source variability (WSV) and between-source variability (BSV). This calibra-
tion is done with data from an ‘Images Database.‘ Subsequently, the calibrated scores are
transformed into a ‘LikelihoodRatio (LR),‘ which is then subjected to a ‘Validation‘ phase.
During validation, external data from ‘ENFSI tests‘ involving the LR estimations of 18
participants, is incorporated. This offers a robust evaluationmechanism for the computed
LRs, utilizing the ‘Cost-Log LikelihoodRatio (Cllr)‘ as a metric to evaluate the strength of
our evidence [73]. We will proceed to further develop these concepts.

To estimate the LR as a measure of the strength of the evidence, the LR, expressed as
the Score based Likelihood Ratio (SLR), is defined as:

SLR(s) =
P(s|Hp, I)
P(s|Hd, I)

, (5.1)
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where s is the biometric score,Hp is the null hypothesis that the evidence originates from
the same source, andHd is the alternative hypothesis that it comes from a different source.
Logistic Regression is employed to fit the probability functions P(s|Hp, I) and P(s|Hd, I),
considering the background information available in the case.

The workflow involves face detection, pairing of reference images and video frames, cal-
ibration of biometric scores using WSV and BSV, and validation against human perfor-
mance. Following this methodology allows us to assess the likelihood of a person being
present in a surveillance video, thus assisting in forensic investigations.

We propose an enhancement to the methodology by processing all frames in the video
where a face is detected. For eachof these frames,we compute theFace ImageQuality (FIQ)
and create an embedding vector ei, which represents the compressed representation of fa-
cial features. The FIQ scores are then used to apply a weighting scheme when combining
the embedding vectors to form:

eface =

n∑
i=1

qi ∗ ei, (5.2)

This approach is applied to both the video frames and the reference images, allowing for a
more comprehensive representation of the facial information. By incorporating FIQ-based
weighting, we aim to improve the accuracy and reliability of face recognition in image-to-
video comparisons.

The question we aim to answer is: How likely is this person the same as the one appear-
ing in the surveillance video? To that end, we propose a workflow as seen in figure 5.2.
Our focus is on the comparison of several reference images of the same person to a video
in order to determine if the person appears in the video.

To estimate the likelihood ratio, the biometric score obtained from the comparison be-
tween the images and the video has to go through a process of calibration in which two
distributions are computed: the WSV and the BSV. In this chapter, we focus on two spe-
cific aspects of this process as it pertains to images-to-video comparisons: (1) methods for
pairing reference images with videos, and (2) the use of different types of images, such as
different qualities or different attributes, to create the WSV and BSV distributions during
the calibration step. The biometric score must be calibrated using these distributions to
estimate the likelihood ratio.
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5.3.1 MultiModal Feature Pairing

In this work, we aim to improve the accuracy of likelihood ratio (LR) estimation in auto-
mated face recognition using images-to-video comparisons. Examples are shown in figure
5.3.

Figure 5.3: Examples of multimodal feature-pairing

One approach is to employ score pairs derived from the shared attributes of the reference
image and the video frame. Let S(i, v) denote the score for a given image i and video frame
v. We define the score based on shared attributes:

S(i, v) =
∑
a∈A

δ(ai, av) (5.3)

where A is the set of all attributes, and δ is the Kronecker delta function. δ(ai, av) is 1 if
attribute a in image imatches attribute a in video v, and 0 otherwise.

Initially, we extract and calculate various attributes from all reference images and video
frames, encompassing gender (for simplicity only comprising the categoriesmanandwoman),
facial expression (includinghappy, angry, fear, andneutral), ethnicity (encompassingwhite,
Asian, black, andMiddle Eastern), yaw (representing frontal, slightly turned, and sideways
orientations), pitch (Up, slightly up, frontal, slightly down, down), roll (frontal, slightly
rolled, completely rolled), headgear, glasses, beard, and other occlusions (all of the latter
booleans with value yes or no). Subsequently, we compare the attributes of each reference
image with the attributes of every video frame, select pairs that exhibit the highest count
of shared attributes, and we conduct likelihood ratio estimation defined in equation 5.1.
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Byconsidering the attributes and iterating throughvariousnumbers of shared attributes,
the algorithm can make more informed decisions, potentially enhancing the accuracy of
the face recognition system. A summarized depiction of the algorithm can be found in
algorithm 2.

Algorithm 2 Pair frames with most attributes in common
Input: Surveillance video, reference images
Output: LR estimation
for each reference image do
Extract and compute attributes

for each video frame do
Extract and compute attributes

Initialize a list of all score pairs S(i, v) using the defined formula in 5.3
n←maximum number of attributes in common
while n > 0 do
Select all score pairs that have n attributes in common
Compute SLR for each selected pair using the defined formula
n← n− 1

return SLR estimate for the highest score

An alternative approach for performing the pairing is to match all the reference images
with all the video frames, and then order them according to their quality. Once sorted by
quality, the LR is calculated using all pairs. Subsequently, a process of pruning is applied,
starting with the removal of 10% of the pairs with the lowest quality, followed by the re-
moval of an additional 10% of the pairs, etc. The objective of this method is to determine
if the information lost by discarding pairs is valuable, i.e. the SLR improves, which would
indicate that the discarded images were noisy and thus detrimental to the face recognition
system. An algorithm for this method is presented in algorithm 3.

In addition, we propose to process all the frames in which a face is detected in the video,
compute the FIQ of each frame, and create a combined embedding vector for the video
using a weighting scheme based on the FIQ scores. Similarly, we process all the available
reference images. This method is based on the equation 5.2. This process is applied to
both the video frames and the reference images. A summary of this process can be found
in algorithm 4.

Analternate approach involves integrating the techniquesused inExperiments 1-4,while
also adding an extra stage of preprocessing through the use of the super resolution Code-
Former. Our goal is to evaluate how such sophisticated image preprocessing might influ-
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Algorithm 3 Pair only the highest quality frames
Input: Surveillance video, reference images
Output: LR estimation
Pair all reference images with all video frames
for each pair of frames do
Assign the lower image quality value to the pair

Sort pairs by quality (lower values first)
Compute LR using all pairs
p← 10%
while p ≤ 100% do
Discard an additional p% of the remaining pairs with the lowest quality
Compute LR using the remaining pairs
p← p+ 10%

return LR estimation

Algorithm 4Weight all references and frames by quality
Input: Surveillance video, reference images
Output: LR estimation
for each frame in video do
if face is detected then
Compute FIQ qi
Compute embedding ei of face image

Create combined embedding vector eface of video using Equation 5.2
for each reference image do
Compute FIQ qi
Compute embedding ei of face image
Create combined embedding vector eface of reference image using Equation 5.2

Compare eface of video and reference images to calculate LR estimation
return LR estimation
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ence the accuracy and dependability of face recognition. See example of pre-processing in
figure 5.4.

Figure 5.4: Example of super resolution image byCodeformer [158], on the left, the original, on the right,
the processed image

5.3.2 Calibration

To improve the accuracy of the LR estimation for automated face recognition in video, we
will consider three different approaches for selecting images from the calibration database
to use in the estimation process. The baseline consists of using random images from the
calibration database:

- Same attributes: Using images with the same attributes as the reference and video,
such as pose or facial expression.

-Quality pairs: Using pairs that have the same FIQ group for the reference face and the
combined face image qualities of the video frames. The FIQ group categorizes FIQ values
into very low quality, low quality, medium quality, high quality, and very high quality.

By implementing these approaches, we aim to improve the accuracy of the LR estima-
tion for automated face recognition in video.

5.4 Experiments

We will explore the workflow explained in section 5.3 doing experiments in the two parts
of the method: pairing and calibration.

104



5

5.4. EXPERIMENTS

5.4.1 Datasets

Our study encompasses multiple datasets: ENFSI proficiency test [160], ForenFace [105],
SCFace [29], and with respect to [156], we added the datasets XQLFW [? ], and Choke-
Point [159].

The ENFSI proficiency test 2015 focuses onmatchingmugshot images toCCTVvideo
and includes 18 individual participants in 17 comparisons. ForenFace contains video se-
quences and extracted images of 97 subjects recorded with six different surveillance cam-
eras. Its novelty lies in a subset of 435 imagesmanually annotated, yielding forensically rele-
vant annotation of almost 19,000 facial parts. SCFace has images taken in an uncontrolled
indoor environment using five video surveillance cameras, consisting of 4160 static images
and frames (in visible and infrared spectrum) of 130 subjects. TheXQLFWdataset is a vari-
ant of the well-known Labeled Faces in theWild (LFW) that focuses on cross-quality cases.
It emphasizes the quality difference by containing only more realistically degraded images
when necessary. It aids in assessing the robustness of face recognition models against vari-
ous image quality challenges. ChokePoint was designed for real-world surveillance condi-
tions. It was captured above several portals using an array of three cameras. The dataset
features variations such as illumination, pose, sharpness, and misalignment. It comprises
48 video sequences and 64,204 face images of 54 subjects.

All these datasets consist of video sequences and face images with variations in illumina-
tion, pose, and sharpness. The study’s objective is to train and test the performance of the
proposed method on these datasets, seeking the most effective method to enhance the ac-
curacy of the LR estimation for automated face recognition in video. A summary of these
datasets can be found in table 5.1.

5.4.2 Face recognition models and face quality models

We chose to use three face recognition models, ArcFace, Facenet, and QMagFace [126],
in our experiments, because they all have been proposed recently, have demonstrated state-
of-the-art performance, and all have different characteristics. ArcFace has a clear geometric
interpretation and significantly enhances the discriminative power. Facenet directly learns
a mapping from face images to a compact Euclidean space where distances correspond to
a measure of face similarity, which makes it highly generalizable. QMagFace combines a
quality-aware comparison score with a recognition model based on a magnitude-aware an-
gularmargin loss, making it suitable to enhance the recognition performance under uncon-
strained circumstances. We implemented ArcFace and Facenet from [107].
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Table 5.1: Summary of the five datasets.

Type Dataset Subjects/Images Cameras Description

C
ali
br
at
io
n ForenFace 97/4̃000 6 Forensic annotations

Video & images

SCFace 130/4160 5 Indoor images
Static imgs & frames

XQLFW 3743/7263 N/A
LFW [40] variant
Emphasizes FIQ
Degraded images

ChokePoint 54/64,204 3 Dif. Pose & illumination
Video sequences

Test ENFSI 18/NA N/A Mugshot and CCTV
Individual comparisons

We use two quality models, SER-FIQ [115] and SDD-FIQA [123], as they both are
unsupervised methods that have been shown to outperform state-of-the-art approaches in
face image quality assessment and have good generalization across different recognition sys-
tems. SER-FIQ is based on the robustness against dropout variations as a quality indicator,
and avoids the training phase completely. SDD-FIQA generates quality pseudo-labels by
calculating the Wasserstein Distance (WD) between the intra-class and inter-class similar-
ity distributions, which has been demonstrated to surpass state-of-the-art methods by an
impressive margin.

5.4.3 Experimental cases

-Experiment 1: HighestNumber ofCommonAttributes. Explained in algorithm2.
We aim to assess if using pairs that share attributes (multi-attribute, e.g., pairswith the same
pose or facial expression) outperforms pairs that have nothing in common. Weperform the
LR estimation with 10,000 random images from the calibration set and 0 to 6 attributes
in common (pitch, yaw, roll, facial expression, age, and gender).

-Experiment 2: Quality-Based Drop. Explained in algorithm 3. We aim to assess
the influence of using the highest-quality frames on the LR estimation. We perform the
experiment using 10,000 random images from the calibration dataset and compute the LR
estimation by dropping 10% of the poorest quality face images in each iteration. We use
the ENFSI test 2015 dataset for this experiment.

-Experiment 3: Weighted Face Quality Images. Explained in algorithm 4. We aim
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to assess the effect of weighting frames by quality on the LR estimation. We use 10,000
random images from the calibration dataset for this experiment.

-Experiment 4: Calibration. Explained further in the text. Once the comparison of
images-to-video is computed, we aim to assess the difference in calibration using random
images or images with the same FIQ as the test pair.

-Experiment 5: Super Resolution Preprocessing. In this experiment, we incorpo-
rate all the methods from Experiments 1-4 but with an additional layer of preprocessing
using super resolution CodeFormer [158]. We aim to assess the impact of advanced image
preprocessing on the face recognition accuracy and reliability.

5.4.4 Validation

To assess the performance of our proposedmethods, we use the log cost likelihood ratio as
a measure due to its capacity to represent both discrimination and calibration [73]. Cllr is
defined as:

Cllr =
1

2Np

∑
ip

log2(1+
1

SLRip
) +

1
2Nd

∑
jd

log2(1+ SLRjd), (5.4)

where the indices ip and jd respectively denote summing over the computed SLR scores
using equation 5.1 for each face pair comparison. Specifically, ip sums over cases where
the proposition for the prosecutor is true, while jd sums over cases where the proposition
for the defense is true. The variable N refers to the number of samples for each propo-
sition. Minimizing the value of Cllr implies an improvement of both discrimination and
calibration performance of the automated system [73]. The value ranges from zero (per-
fect decision making), to infinity (completely wrong). A value of one indicates the system
makes a random selection. A value larger than one indicates the system ismaking a decision
worse than random, i.e. supporting the prosecution hypothesiswhen it should support the
defense hypothesis or vice versa.

In addition,we alsouseboxplots to assess the impact of discardingpairs on the variability
of our results, for both ip (the summands corresponding to the prosecutor’s proposition)
and jd (the summands corresponding to the defense’s proposition). Specifically, we plot
boxplots on the Cllr metric for each quality drop, indicating the percentiles of 25, median,
and 75. The use of boxplots allows us to visualize the distribution of the Cllr metric and
better understand how discarding pairs impacts the variability of the results, measure our
approach for validating the performance of our proposed methods, and assess the impact
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of discarding pairs on the variability of the results.

5.5 Results

This section presents the findings of our investigation. The first subsection focuses on the
correlation between facial image quality and various attributes such as gender, pose, race,
and facial expression. The second subsection delves into the results of several experiments
aimed at understanding the effect of different pairing methods on SLR estimation.

5.5.1 Correlation Between Facial Image Quality and Attributes

To investigate the correlation between facial image quality and various facial attributes, Fig-
ure 5.5 presents the results of a study conducted on the test dataset ENFSI 2015. These
facial attributes include gender, pose (specifically yaw), race, and facial expression. The
results for the calibration datasets—SCFace, XQLFW, ForenFace, and ChokePoint—are
presented in Figures 5.8, 5.9, 5.10, and 5.11, respectively, which can be found in the ap-
pendix section.

To visually depict the intricate relationship between these attributes and the resulting
image quality, we chose to use a sunburst hierarchical graph. This type of graph offers a
compact and intuitive representation of hierarchical data across multiple dimensions. The
order of attributes in the sunburst graph was chosen strategically to reflect their relevance
and potential interactions. Gender, as the first attribute, is an important factor in face
recognition and analysis. Its inclusion allows us to examine if gender has a significant in-
fluence on the quality of facial images. Next, the attribute of yaw (pose) was selected to
explore the impact of different face orientations on image quality. Pose plays a vital role as
it can affect the visibility of facial features and details. Analyzing yaw within the sunburst
graph enables us to discern how different pose angles relate to image quality. Ethnicity, as
the third attribute, is crucial for understanding potential variations in image quality among
different racial or ethnic groups. Its inclusion in the graph allows us to identify patterns
or disparities that may exist in image quality based on ethnicity. Finally, facial expression
was chosen as the last attribute in the sunburst graph. Facial expressions are essential for
face recognition and emotional analysis. By including facial expression in the graph, we
can assess whether different expressions impact the quality of facial images.

The sunburst diagrams depicted provide a clear visual representation of the relationship
between these attributes and the resulting image quality. From the analysis, it is evident
that pose plays a significant role in the quality of facial images. Particularly, in terms of

108



5

5.5. RESULTS

recognition, profile poses are associated with lower quality images, indicating a potential
challenge in capturing sufficient detail and features in such poses.

Interestingly, gender does not appear to significantly influence the quality of facial im-
ages, suggesting that both male and female faces can be captured with comparable quality
under the same conditions.

In terms of race, a noticeable pattern is seen in the XQLFW dataset, where images of
individuals of Caucasian ethnicity seem to exhibit higher quality compared to other races.
This could be due to many factors, such as lighting conditions, camera characteristics, or
image processing techniques, and warrants further investigation.

Figure 5.5: Facial attributes in the ENFSI database according to quality model SER-FIQ [115].

Results of four experiments on the effect of using different pairing methods on LR es-
timation in face recognition in videos are presented in figure 5.6. The rest of figures are
included in the annex 5.8.

The outcome of applying super resolution is represented in figure 5.7. The former dia-
gram indicates an enhancement in the quality of face images as per the Face Image Quality
(FIQ) metric following the application of the super-resolution algorithm. Conversely, the
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Figure 5.6: Graphical representation of the Cllr (log-likelihood ratio cost) values after calibration with
attributes: yaw (top), pitch (middle), roll (bottom).

latter figure suggests the results deteriorate after the super-resolution processing.

5.5.2 Effect of PairingMethods on LR Estimation

-Results for Experiment 1. The results indicate that having a higher number of at-
tributes in common between the image pairs significantly lowers the Cllr value. This sug-
gests that multi-attribute pairing may be an effective strategy for improving the accuracy
of likelihood ratio (LR) estimation in biometric systems.

-Results for Experiment 2. Our findings reveal that using higher-quality frames leads
to lower Cllr values, thereby enhancing the performance of the LR estimation. However,
an interesting observation was that adding more frames does not uniformly improve Cllr.
In certain cases, incorporating lower-quality frames actually led to a worsened Cllr, high-
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Figure 5.7: Graphical representation of the Cllr (log-likelihood ratio cost) values after the application of
super-resolution processing (top). In the bottom graph, Cllr without pre-processing.

lighting the importance of frame quality in the estimation process.
-Results for Experiment 3. When all frames were used but weighted by their quality,

the Cllr values decreased, suggesting an improvement in the LR estimation. This finding
implies that taking quality into account in a weighted manner can improve the system’s
overall performance, even when low-quality frames are included in the mix.

-Results for Experiment 4. We found variability in the calibration based on the set
of images used. Using 20,000 images with the same attributes yielded a lower Cllr value
compared to using 20,000 random images or images of the same quality as the test pair.
This suggests that the choice of calibration set canhave a substantial impact on the resulting
Cllr and, by extension, on the performance of the LR estimation.

-Results for Experiment 5. Applying an advanced image preprocessing step through
super resolution CodeFormer actually had a negative impact on the face recognition sys-
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tem’s accuracy and reliability. The use of super resolution led to higher Cllr values, sug-
gesting that it may not be beneficial for improving the performance of the likelihood ratio
(LR) estimation in this specific context.

5.6 Discussion & Conclusion

In our experiments, we found that using higher quality frames improves the performance
of face recognition in video compared to using all frames. We explored different methods
for pairing reference images with video frames. We found that using images with the same
attributes as the reference and video, or similar FIQ score for the reference face and the
combined face image qualities of the video frames, can improve the likelihood ratio estima-
tion. Furthermore, we found that using aweighted quality average of all available reference
and video frames improved results even more. On the other hand, slightly poorer results
were obtained when pairing facial images based on the maximum number of common at-
tributes. Although SDD-FIQA[123] outperforms SERFIQ in the LFW [40] and IJB-C
[155] benchmarks, SERFIQ [115] seems more robust in our experiments. The Cllr ob-
tained in the best case is close to 1, which is worse than the 0.45 of the expert participants
in the ENFSI proficiency test [160]. This could be due to the difficulty and low face qual-
ity of the video frames used. Even discarding those with the poorest quality, the remaining
ones are not suitable for the face recognition system in this experiment (ArcFace). How-
ever, using Facenet as the face recognition system in our experiments, we achieved a Cllr

of 0.8, which is a better result. With QMagFace, we achieved even better results, with a
Cllr of 0.26 using the method of the weighted quality image, surpassing the human partic-
ipants in the ENFSI 2015 test, who scored a Cllr of 0.46. The best result was obtained by
QMagFace and SER-FIQ with the method of pairing the highest number of attributes in
common, with a Cllr of 0.13. This demonstrates the effectiveness of using FIQ as a met-
ric to improve the performance of automated face recognition in video surveillance. The
boxplots suggest there is less variability when more pairs are excluded.

It is worth noting that in surveillance settings, errors in attribute estimation can occur,
which may affect the accuracy of face recognition systems that rely on shared attributes to
select reference images and video frames. It is therefore crucial to investigate how errors
in attribute estimation impact the performance of the proposed method, which pairs the
highest number of attributes in common. It is also important to explore alternative ap-
proaches for selecting reference images and video frames that do not solely rely on shared
attributes, such as deep metric learning, which can learn discriminative features for face
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recognition directly from the data. Future work should also consider examining the pro-
posedmethods onmore diverse datasets, including those that present greater variability in
facial attributes, to ensure the generalizability of the findings. Our results show the poten-
tial for using FIQ, spatio-temporal information and additional information, such as gait,
clothes, or hair, to improve the performance of automated face recognition in video surveil-
lance. Further research could explore the use of additional metrics for keyframe selection,
and examine the performance of the proposed methods on a wider range of datasets and
face recognition algorithms.

Intriguingly, our experiments also showed that preprocessing video frames with the su-
per resolution Codeformer algorithm [158] did not lead to the anticipated improvement
in face recognition performance. In fact, it seemingly deteriorated the outcome. One plau-
sible explanation could be that the super-resolution process introduced some form of arti-
fact or noise into the images that adversely affected the face recognition algorithms. Super-
resolution algorithms likeCodeformer generate high-frequency details that are not present
in the original low-resolution image. If these details do not accurately represent the true
high-resolution image, this could lead to mismatches compared with the reference face im-
ages, thereby deteriorating recognition performance.

In our study, we’ve delved into the intricacies of facial image quality metrics, attribute-
based matching, and the impact of preprocessing techniques on face recognition. The
importance of selecting high-quality frames has been reaffirmed, offering a tangible path
forward for optimizing recognition performance in real-world scenarios. Our exploration
into attribute-based pairings has illuminated both its potential benefits and areas requiring
further study.

In conclusion, it is undeniable that facial image quality plays a pivotal role in face recog-
nition, especially within video surveillance scenarios. Our results showcased the efficacy of
using FIQ as a metric to enhance face recognition accuracy. Techniques such as utilizing
weighted quality average and pairing based on shared attributes have proven to improve
performance, underpinning the importance of considering these details in the recognition
process. While not all explored methods yielded the expected enhancements—like the su-
per resolution Codeformer algorithm, this exploration has provided valuable insights into
the inherent complexities of automated face recognition, allowing us to better understand
both its capabilities and limitations. These findings set a strong foundation for continuing
advancements in the field, paving the way for further exploration of facial attributes, FIQ,
and the potential integration of alternative super-resolution techniques.
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5.7 Datasets quality Appendix section

Figure 5.8: Facial attributes in the SCFace database according to quality model SER-FIQ [115].

114



5

5.7. DATASETS QUALITY APPENDIX SECTION

Figure 5.9: Facial attributes in the XQLFW database according to quality model SER-FIQ [115].
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Figure 5.10: Facial attributes in the ForenFace database according to quality model SER-FIQ [115].
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Figure 5.11: Facial attributes in the ChokePoint database according to quality model SER-FIQ [115].
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5.8 Results Appendix Section

Figure 5.12: Graphical representation of the Cllr (log-likelihood ratio cost) values after calibration of ran-
dom images
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Figure 5.13: Graphical representation of the Cllr (log-likelihood ratio cost) values after calibration with
quality filter.
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Summary and Conclusions

The transformative impact of facial recognition technologies is becom-
ing increasingly apparent across various high-stakes fields, including forensics
and security. This thesis offers a comprehensive exploration of key aspects that

influence the effectiveness of these technologies. It evaluates the potential for automation
tomatch or surpass expert human performance, highlights challenges related to the quality
of visual data and criteria-based selection, and explores methods to optimize performance
in dynamic settings like video surveillance. The research serves as a milestone, pointing to
promising directions for future advancements while identifying limitations that warrant
further inquiry.

6.1 Summary

InChapter 2, we conducted a detailed comparative study to evaluate the performance of
commercial and open-source face recognition systems against human experts. Our results
show that commercial software generally outperforms both open-source alternatives and
human experts, particularly for full-frontal images. However, the study also revealed that
these automated systems have limitations, especially when handling poor-quality images
or those with occlusions such as those caused by people wearing caps, mics, and scarfs.
This study is a significant step forward in understanding the application of automated face
recognition systems in the forensic field.

In Chapter 3, we investigated the impact of calibration techniques on the estimation
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of likelihood ratios. Utilizing ENFSI Proficiency tests as benchmarks, we found that qual-
ity score-based and feature-based calibrations surpass naive calibration methods. While
commercial software exhibits superior performance, the transparency of open-source sys-
tems underscores the importance of ongoing research to improve both effectiveness and
accountability in forensic facial image comparisons.

Chapter 4, focused on the critical issue of explainability in facial image quality assess-
ments. We developed a multi-task learning model that not only predicts suitability scores,
but also identifies facial and environmental attributes affecting these scores. The model’s
dual capability offers both high accuracy and explainability, attributes that are crucial in
forensic settings. This chapter emphasizes the importance of both suitability and explain-
ability in face recognition systems. Our findings demonstrate a high correlation between
facial image quality and attributes such as sharpness, frontal pose, and age. This dual ca-
pability of the model not only enhances the accuracy of the quality assessments but also
provides actionable insightswhich are particularly useful in forensic settings. However, the
model does have limitations; it requires well-labeled data for training and relies on proper
face detection and alignment for accurate assessment.

In Chapter 5, we explored methods to enhance face recognition in video surveillance.
The study found that the selective use of high-quality frames and their pairing with suit-
able reference images improves the likelihood ratio estimation. The chapter revealed that
using a weighted quality average of all available frames produces even better results. Im-
portantly, the chapter discussed the limitations and potential for improvement in different
face recognition algorithms, including the counter-intuitive finding that super-resolution
techniques might not always be beneficial, due to adding information and/or artifacts.

6.2 Conclusions

We structure our conclusions along a number of dimensions, reflecting the core research
questions outlined in the introduction. Each of these dimensions highlights an aspect of
forensic face recognition where deep learning technologies have a significant role to play.

6.2.1 Calibration Techniques

Responding directly to the research subquestion about the effectiveness of likelihood ratio
estimation through calibration techniques, we found these methods to be highly impact-
ful. Quality score-based and feature-based calibration techniques significantly elevate the
accuracy and reliability of automated facial recognition systems. Furthermore, the type of
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calibration method used has implications for the estimation of likelihood ratios. This ad-
vances our understanding of the question about the effect of calibration on likelihood ratio
estimation. We discovered that these methods have a potential impact on the accuracy of
these estimations, thereby making a case for their integration into standard forensic facial
recognition processes.

6.2.2 Facial Image Quality (FIQ)

Our research directly addressed the question about the correlation between face image at-
tributes and FIQ.We found that FIQ is an indispensable factor in the overall performance
of face recognition systems. The multi-task learning model deployed in our study not
only quantifies the quality of face images but also provides explainability. This layer of
explainability is crucial for forensic applicability, enhancing the system’s credibility and
transparency. It resonates with our research question by contributing a new dimension
to FIQ assessment. This is particularly important in high-stakes environments like foren-
sics, where a detailed understanding of FIQ canmean the difference between accurate and
misleading outcomes.

6.2.3 Video Surveillance

Turning to the subquestion about improving likelihood ratio estimation in video surveil-
lance, our findings reveal two critical elements: quality frame selection and attribute-based
pairing. These enhance the performance of facial recognition systems, especially in the
challenging environments posed by surveillance video footage. However, our research also
offers a cautionary note about the use of super-resolution algorithms. These do not consis-
tently lead to anticipated performance gains, thus responding to our initial concerns in the
research question about the effectiveness of different methodologies in video surveillance.
The major takeaway is that attribute and quality based frame selection play pivotal roles in
enhancing the performance and reliability of face recognition systems in video surveillance.

6.2.4 Limitations and Considerations

The limitations observed in current systems, especially their difficulty in handling images
with occlusions and poor quality, offer additional directions for future research. These
limitations should serve as cautionary notes for the deployment of such systems in high-
stakes environments like forensics and surveillance.
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6.2.5 Future Research Avenues

Our research has paved theway for several avenues for future research, shedding light on ar-
eas that need further investigation to maximize the capabilities of deep learning in forensic
face recognition. These avenues include, but are not limited to, further studies intomore ef-
fective calibrationmethods. Building onour discoveries, subsequent research could investi-
gate the suitability of advanced statistical models for likelihood ratio estimation in forensic
applications. This directly relates to the research subquestions about calibration methods
and their impact on likelihood ratio estimation, affirming the need for ongoing, compre-
hensive studies.

Additionally, our work has revealed a critical need for a deeper understanding of at-
tribute selection in video surveillance applications. By doing so, researchers may uncover
methods that elevate the reliability and effectiveness of real-world surveillance systems, a
finding that holds immense value in forensic settings. Lastly, there is an urgent need for ex-
panded and more diverse datasets to test the generalizability of our findings and forensics
face recognition in general. The broader the range of datasets, the more comprehensive
and conclusive future studies could be, thereby providing answers that are not only scien-
tifically compelling but also practically actionable. As we close this chapter on our con-
tributions to the field, we open new doors for future scholars to walk through, carrying
the torch forward in the quest for a more effective and accountable use of deep learning in
forensic face recognition.
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Samenvatting

InHoofdstuk 2 hebben we een gedetailleerde vergelijkende studie uitgevoerd om de pres-
taties van commerciële en open-source gezichtsherkenningssystemen te evalueren tegen-
over menselijke experts. Onze resultaten tonen aan dat commerciële software over het al-
gemeen beter presteert dan zowel open-source alternatieven als menselijke experts, vooral
voor foto’s van het volledige gezicht. De studie onthulde echter ook dat deze geautomati-
seerde systemenbeperkingenhebben, vooral bij het verwerkenvan afbeeldingenvan slechte
kwaliteit ofmet obstructies, zoals veroorzaakt doormensen die petten,microfoons of sjaals
dragen. Deze studie is een belangrijke stap vooruit in het begrijpen van de toepassing van
geautomatiseerde gezichtsherkenningssystemen in het forensische veld.

InHoofdstuk 3 onderzochten we de impact van kalibratietechnieken op de schatting
van aannemelijkheidsquotiënten (LikelihoodRatios). Metbehulp vanENFSI-proficientietests
als benchmarks, vonden we dat kwaliteitsscore-gebaseerde en kenmerk-gebaseerde kalibra-
ties de naïeve kalibratiemethoden overtreffen. Hoewel commerciële software superieure
prestaties vertoont, benadrukt de transparantie van open-sourcesystemen het belang van
voortdurend onderzoek om zowel de effectiviteit als de verantwoording in forensische ge-
zichtsbeeldvergelijkingen te verbeteren.

Hoofdstuk 4 richtte zich op het cruciale probleem van uitlegbaarheid in beoordelingen
van gezichtsbeeldkwaliteit. We ontwikkelden een multi-task leermodel dat niet alleen ge-
schiktheidsscores voorspelt, maar ook gezichts- en omgevingskenmerken identificeert die
deze scores beïnvloeden. De dubbele capaciteit van het model biedt zowel hoge nauw-
keurigheid als uitlegbaarheid, eigenschappen die cruciaal zijn in forensische omgevingen.
Dit hoofdstuk benadrukt het belang van zowel geschiktheid als uitlegbaarheid in gezichts-
herkenningssystemen. Onze bevindingen tonen een hoge correlatie aan tussen gezichts-
beeldkwaliteit en kenmerken zoals scherpte, frontale pose en leeftijd. Deze dubbele capaci-
teit van het model verbetert niet alleen de nauwkeurigheid van de kwaliteitsbeoordelingen
maar biedt ook bruikbare inzichten die met name nuttig zijn in forensische omgevingen.
Het model heeft echter beperkingen; het vereist goed gelabelde gegevens voor training en
is afhankelijk van juiste gezichtsdetectie en -uitlijning voor een nauwkeurige beoordeling.

In Hoofdstuk 5 verkenden we methoden om gezichtsherkenning in cameratoezicht
te verbeteren. De studie vond dat het selectieve gebruik van frames van hoge kwaliteit en
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het koppelen ervanmet geschikte referentiebeelden de schatting van het aannemelijkheids-
quotiënt verbetert. Het hoofdstuk onthulde dat het gebruik van een gewogen kwaliteits-
gemiddelde van alle beschikbare frames nog betere resultaten oplevert. Belangrijk is dat
het hoofdstuk de beperkingen enmogelijkheden voor verbetering in verschillende gezichts-
herkenningalgoritmen besprak, inclusief de tegenintuïtieve bevinding dat superresolutie-
technieken niet altijd voordelig kunnen zijn, vanwege het toevoegen van informatie en/of
artefacten.
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