4 research outputs found

    Discriminative tracking using tensor pooling

    Get PDF
    How to effectively organize local descriptors to build a global representation has a critical impact on the performance of vision tasks. Recently, local sparse representation has been successfully applied to visual tracking, owing to its discriminative nature and robustness against local noise and partial occlusions. Local sparse codes computed with a template actually form a three-order tensor according to their original layout, although most existing pooling operators convert the codes to a vector by concatenating or computing statistics on them. We argue that, compared to pooling vectors, the tensor form could deliver more intrinsic structural information for the target appearance, and can also avoid high dimensionality learning problems suffered in concatenation-based pooling methods. Therefore, in this paper, we propose to represent target templates and candidates directly with sparse coding tensors, and build the appearance model by incrementally learning on these tensors. We propose a discriminative framework to further improve robustness of our method against drifting and environmental noise. Experiments on a recent comprehensive benchmark indicate that our method performs better than state-of-the-art trackers

    An Information Fusion Perspective

    Get PDF
    A fundamental issue concerned the effectiveness of the Bayesian filter is raised.The observation-only (O2) inference is presented for dynamic state estimation.The "probability of filter benefit" is defined and quantitatively analyzed.Convincing simulations demonstrate that many filters can be easily ineffective. The general solution for dynamic state estimation is to model the system as a hidden Markov process and then employ a recursive estimator of the prediction-correction format (of which the best known is the Bayesian filter) to statistically fuse the time-series observations via models. The performance of the estimator greatly depends on the quality of the statistical mode assumed. In contrast, this paper presents a modeling-free solution, referred to as the observation-only (O2) inference, which infers the state directly from the observations. A Monte Carlo sampling approach is correspondingly proposed for unbiased nonlinear O2 inference. With faster computational speed, the performance of the O2 inference has identified a benchmark to assess the effectiveness of conventional recursive estimators where an estimator is defined as effective only when it outperforms on average the O2 inference (if applicable). It has been quantitatively demonstrated, from the perspective of information fusion, that a prior "biased" information (which inevitably accompanies inaccurate modelling) can be counterproductive for a filter, resulting in an ineffective estimator. Classic state space models have shown that a variety of Kalman filters and particle filters can easily be ineffective (inferior to the O2 inference) in certain situations, although this has been omitted somewhat in the literature

    Refined particle swarm intelligence method for abrupt motion tracking

    No full text
    Conventional tracking solutions are not feasible in handling abrupt motion as they are based on smooth motion assumption or an accurate motion model. Abrupt motion is not subject to motion continuity and smoothness. To assuage this, we deem tracking as an optimisation problem and propose a novel abrupt motion tracker that based on swarm intelligence - the SwaTrack. Unlike existing swarm-based filtering methods, we first of all introduce an optimised swarm-based sampling strategy to tradeoff between the exploration and exploitation of the search space in search for the optimal proposal distribution. Secondly, we propose Dynamic Acceleration Parameters (DAP) allow on the fly tuning of the best mean and variance of the distribution for sampling. Such innovating idea of combining these strategies in an ingenious way in the PSO framework to handle the abrupt motion, which so far no existing works are found. Experimental results in both quantitative and qualitative had shown the effectiveness of the proposed method in tracking abrupt motions.Comment: Accepted in Information Sciences, new abrupt motion (MAMo) dataset is introduce
    corecore