490 research outputs found

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change-and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose Historical Information for Smell deTection (HIST), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted on 20 open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72 and 86 percent, and its recall ranges between 58 and 100 percent. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system\u27s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers\u27 perception of poor design and implementation choices. We involved 12 developers of four open source projects that recognized more than 75 percent of the code smell instances identified by HIST as actual design/implementation problems

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change- and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose HIST (Historical Information for Smell deTection), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy.We evaluate HIST in two empirical studies. The first, conducted on twenty open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72% and 86%, and its recall ranges between 58% and 100%. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system’s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers’ perception of poor design and implementation choices. We involved twelve developers of four open source projects that recognized more than 75% of the code smell instances identified by HIST as actual design/implementation problems

    Mining Version Histories for Detecting Code Smells

    Get PDF
    Code smells are symptoms of poor design and implementation choices that may hinder code comprehension, and possibly increase change-and fault-proneness. While most of the detection techniques just rely on structural information, many code smells are intrinsically characterized by how code elements change over time. In this paper, we propose Historical Information for Smell deTection (HIST), an approach exploiting change history information to detect instances of five different code smells, namely Divergent Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy. We evaluate HIST in two empirical studies. The first, conducted on 20 open source projects, aimed at assessing the accuracy of HIST in detecting instances of the code smells mentioned above. The results indicate that the precision of HIST ranges between 72 and 86 percent, and its recall ranges between 58 and 100 percent. Also, results of the first study indicate that HIST is able to identify code smells that cannot be identified by competitive approaches solely based on code analysis of a single system\u27s snapshot. Then, we conducted a second study aimed at investigating to what extent the code smells detected by HIST (and by competitive code analysis techniques) reflect developers\u27 perception of poor design and implementation choices. We involved 12 developers of four open source projects that recognized more than 75 percent of the code smell instances identified by HIST as actual design/implementation problems

    What Java Developers Know About Compatibility, And Why This Matters

    Full text link
    Real-world programs are neither monolithic nor static -- they are constructed using platform and third party libraries, and both programs and libraries continuously evolve in response to change pressure. In case of the Java language, rules defined in the Java Language and Java Virtual Machine Specifications define when library evolution is safe. These rules distinguish between three types of compatibility - binary, source and behavioural. We claim that some of these rules are counter intuitive and not well-understood by many developers. We present the results of a survey where we quizzed developers about their understanding of the various types of compatibility. 414 developers responded to our survey. We find that while most programmers are familiar with the rules of source compatibility, they generally lack knowledge about the rules of binary and behavioural compatibility. This can be problematic when organisations switch from integration builds to technologies that require dynamic linking, such as OSGi. We have assessed the gravity of the problem by studying how often linkage-related problems are referenced in issue tracking systems, and find that they are common

    Change-centric improvement of team collaboration

    Get PDF
    In software development, teamwork is essential to the successful delivery of a final product. The software industry has historically built software utilizing development teams that share the workplace. Process models, tools, and methodologies have been enhanced to support the development of software in a collocated setting. However, since the dawn of the 21st century, this scenario has begun to change: an increasing number of software companies are adopting global software development to cut costs and speed up the development process. Global software development introduces several challenges for the creation of quality software, from the adaptation of current methods, tools, techniques, etc., to new challenges imposed by the distributed setting, including physical and cultural distance between teams, communication problems, and coordination breakdowns. A particular challenge for distributed teams is the maintenance of a level of collaboration naturally present in collocated teams. Collaboration in this situation naturally d r ops due to low awareness of the activity of the team. Awareness is intrinsic to a collocated team, being obtained through human interaction such as informal conversation or meetings. For a distributed team, however, geographical distance and a subsequent lack of human interaction negatively impact this awareness. This dissertation focuses on the improvement of collaboration, especially within geographically dispersed teams. Our thesis is that by modeling the evolution of a software system in terms of fine-grained changes, we can produce a detailed history that may be leveraged to help developers collaborate. To validate this claim, we first c r eate a model to accurately represent the evolution of a system as sequences of fine- grained changes. We proceed to build a tool infrastructure able to capture and store fine-grained changes for both immediate and later use. Upon this foundation, we devise and evaluate a number of applications for our work with two distinct goals: 1. To assist developers with real-time information about the activity of the team. These applications aim to improve developers’ awareness of team member activity that can impact their work. We propose visualizations to notify developers of ongoing change activity, as well as a new technique for detecting and informing developers about potential emerging conflicts. 2. To help developers satisfy their needs for information related to the evolution of the software system. These applications aim to exploit the detailed change history generated by our approach in order to help developers find answers to questions arising during their work. To this end, we present two new measurements of code expertise, and a novel approach to replaying past changes according to user-defined criteria. We evaluate the approach and applications by adopting appropriate empirical methods for each case. A total of two case studies – one controlled experiment, and one qualitative user study – are reported. The results provide evidence that applications leveraging a fine-grained change history of a software system can effectively help developers collaborate in a distributed setting

    A large-scale empirical exploration on refactoring activities in open source software projects

    Get PDF
    Refactoring is a well-established practice that aims at improving the internal structure of a software system without changing its external behavior. Existing literature provides evidence of how and why developers perform refactoring in practice. In this paper, we continue on this line of research by performing a large-scale empirical analysis of refactoring practices in 200 open source systems. Specifically, we analyze the change history of these systems at commit level to investigate: (i) whether developers perform refactoring operations and, if so, which are more diffused and (ii) when refactoring operations are applied, and (iii) which are the main developer-oriented factors leading to refactoring. Based on our results, future research can focus on enabling automatic support for less frequent refactorings and on recommending refactorings based on the developer's workload, project's maturity and developer's commitment to the project

    Meta-models and Infrastructure for Smalltalk Omnipresent History

    Get PDF
    International audienceSource code management systems record different versions of code. Tool support can then com- pute deltas between versions. However there is little support to be able to perform history-wide queries and analysis: for example building slices of changes and identifying their differences since the beginning of the project. We believe that this is due to the lack of a powerful code meta- model as well as an infrastructure. For example, in Smalltalk often several source code meta- models coexist: the Smalltalk reflective API coexists with the one of the Refactoring engine or distributed versioning system. While having specific meta-models is an engineered solution, it hampers meta-models manipulation as it requires more maintenance efforts (e.g., duplication of tests, transformation between models), and more importantly navigation tool reuse. As a first step to solve this problem, this article presents several source code models that could be used to support several activities and proposes an unified and layered approach to be the foundation for building an infrastructure for omnipresent version browsing
    • …
    corecore