
Institutional Repository - Research Portal
Dépôt Institutionnel - Portail de la Recherche

THESIS / THÈSE

Author(s) - Auteur(s) :

Supervisor - Co-Supervisor / Promoteur - Co-Promoteur :

Publication date - Date de publication :

Permanent link - Permalien :

Rights / License - Licence de droit d’auteur :

Bibliothèque Universitaire Moretus Plantin

researchportal.unamur.beUniversity of Namur

DOCTOR OF SCIENCES

A distributed collaborative model editing framework for domain specific modeling
languages

Koshima, Amanuel

Award date:
2016

Awarding institution:
University of Namur

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Jun. 2020

https://researchportal.unamur.be/en/studentthesis/a-distributed-collaborative-model-editing-framework-for-domain-specific-modeling-languages(e762992d-a593-4765-906f-009555dbdd43).html

A Distributed Collaborative Model

Editing Framework for Domain Specific

Modeling Languages

Amanuel Alemayehu Koshima

Faculty of Computer Science

University of Namur

Thesis submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the subject of Computer Science

PReCISE Research Center 12 January 2016

Doctoral Committee

Prof. Dr. Wim Vanhoof Chair

Faculty of Computer Science

University of Namur

Prof. Dr. Vincent Englebert Promoter

Faculty of Computer Science

University of Namur

Prof. Dr. Philippe Thiran Co-Promoter

Faculty of Computer Science

University of Namur

Prof. Dr. Anthony Cleve Internal Reviewer

Faculty of Computer Science

University of Namur

Prof. Dr. Tom Mens External Reviewer

Faculty of Sciences

University of Mons

Prof. Dr. Pieter Van Gorp External Reviewer

Faculteit Industrial Engineering & Innovation Sciences

Eindhoven University of Technology

Acknowledgements

First and foremost, I would like to thank God almighty for his abundance blessings and

supports that have made me who I am today. I also express my sincere gratitude to my

promoter Prof. Vincent Englebert and co-promoter Prof. Philippe Thiran for giving me an

opportunity to work under their supervision and accepting me as their teaching assistant.

I could not have succeeded in this PhD thesis work without their advice and support. I

specially thank them for gave me much freedom and encouragement to define the scope

of the PhD thesis and to become more autonomous and proactive in my research. I also

appreciate their reviews and feedback that I have received during writing different articles

and this PhD dissertation.

Next, I would like to thank the jury members of my PhD examination: Prof. Wim

Vanhoof, Prof. Anthony Cleve, Prof. Tom Mens, and Prof. Pieter Van Gorp. Many thanks

also to my current and old colleagues, in particular Prof. Patrick Heymans, Dr. Mohamed

Boukhebouze, Waldemar P. Ferreira Neto, Dr. Erbin Lim, Dr. Gilles Perrouin, Mihail-

Octavian Staicu, Dr. Fabian Gilson, and Dr. Ebrahim Khalil Abbasi. I would like to express

my sincere gratitude to Reddy Nababushana and Sophie Colpaert.

I am also thankful to my father Alemayehu Koshima, my mother Aberash Wakene, my

sisters and bothers for their encouragements and supports. Last but not the least, I would

also like to thank my wife Miheret Mulatu Meless for her abundance love and care. You

have been my encouragement and strength during this journey, I thank you so much for

testing and debugging the DiCoMEF framework with me ©.

Lastly, I would like to thank all reviewers who participated in reviewing our published

articles, your feedback was crucial for the realization of this PhD thesis work.

Abstract

Nowadays software solutions are becoming complex due to inherent complexities of prob-

lems they are dealing with (for example, a safety critical systems like a flight controller).

Besides time-to-market pressures, user requirement changes during and after a development

of software products, and evolution of the underlying software platforms increase complex-

ities to the already complex problems. To mitigate these complexities, the Model Driven

Engineering approach has been adopted by the software engineering community. Model

Driven Engineering adopts separation of concern principles that reduce complexity, im-

prove reusability, and ensure simpler evolution of modeling languages. It raises the level

of abstraction of software development from technological details (i.e., source code and

underlying platforms) to the problem domain. Indeed, it brings a new era of software de-

velopment by shifting trends of software engineering from code-centric to model-centric.

Model Driven Engineering uses Domain Specific Modeling Languages to describe concepts

in a specific domain.

Despite the fact that Domain Specific Modeling tools are becoming very powerful and

more frequently used, the support for their cooperation has not reached its full strength, and

demand for model management is growing. In cooperative work, the decision agents are

semi-autonomous and therefore a solution for reconciliating DSM after a concurrent evo-

lution is needed. Conflict detection and reconciliation are important steps for merging of

concurrently evolved (meta-)models in order to ensure collaboration. In this PhD thesis, we

present a distributed collaborative model editing framework that supports concurrent edit-

ing of models and meta-models. This framework also supports a hierarchical collaboration

among members of a collaborative ensemble. It captures edit operations of (meta-)model

v

whenever users adapt (meta-)models using a modeling language defined to capture history

of modifications. The sequence of edit operations are used as a means to communicate

work among members of a cooperative ensemble. In addition, the framework uses these

operations to compare (meta-)models and to detect conflicts. The framework detects syntac-

tic and static semantic conflicts, and it provides facilities to capture rationale of modifica-

tions using multimedia files that could help the conflict reconciliation process. Besides, the

framework supports a role-based conflict reconciliation mechanism, where the evolution of

(meta-)models is supervised by a human controller. In this framework, roles are dynamic

and easily assigned to different users.

vi

Résumé

Aujourd’hui, les solutions logicielles sont de plus en plus complexes en raison de la com-

plexité croissante des problèmes rencontrés (par exemple, la sécurité de systèmes critiques

comme les systèmes de commande de vol). En outre, la pression du marché, les modifica-

tions des exigences des utilisateurs avant voire après la phase de développement, ou encore

l’évolution des plates-formes logicielles ajoutent encore de nouvelles dimensions à cette

complexité. L’Ingénierie Dirigée par les Modèles (IDM) a été adoptée par la communauté

de l’ingénierie logicielle afin de mitiger cette complexité, en prônant la séparation des préoc-

cupations. L’IDM élève le niveau d’abstraction, en passant des détails technologiques (c-à-

d., les codes sources et les plates-formes sous-jacentes) vers des abstractions plus proches

du domaine d’application. À cette fin, l’IDM préconise l’usage de langages de modélisation

spécifiques (LMS) pour décrire des concepts dans un domaine spécifique.

Bien que les outils propres aux LMS deviennent de plus en plus puissants et fréquents,

il n’est pas aisé de les utiliser dans un contexte collaboratif alors que la demande se fait

de plus en plus pressante. Les agents impliqués dans des tâches coopératives prennent des

décisions de manière semi-autonome et une solution pour réconcilier des modèles spéci-

fiques est indispensable. La détection de conflits et la réconciliation de modèles sont des

étapes importantes pour la fusion de (méta)modèles qui sont subi des évolutions concur-

rentes. Dans cette thèse, nous allons présenter une plate-forme d’édition collaborative et

distribuée de modèles qui supporte l’édition concurrente de modèles et leurs méta-modèles.

Il supporte également un mode de collaboration hiérarchique. Il capture les opérations

d’édition des (méta-)modèles en utilisant un langage spécifique pour la représentation de

ce type d’historique. Les séquences d’opérations sont ensuite exploitées afin d’échanger

l’objet des tâches coopératives parmi les membres d’un groupe collaboratif. Ces opérations

sont également utilisées afin de comparer et détecter les conflits entre les (méta-)modèles.

Cette plate-forme est capable de détecter les conflits tant syntaxiques que sémantiques (sta-

tique) et facilite la capture des intentions des modifications par le recours à des annotations

multimedia qui sont ensuite utilisées pour aider le processus de réconciliation. Les utilisa-

vii

teurs de cette plate-forme sont caractérisés par des rôles dont l’attribution est dynamique et

peut être modifiée. Ils sont supervisés par un acteur jouant le rôle de superviseur.

Table of contents

List of figures xi

List of tables xiii

Nomenclature xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Problem Statement . 8

1.2.1 Research Restrictions . 13

1.2.2 Research Questions . 13

1.2.3 Methodology . 14

1.2.3.1 Model Management . 14

1.2.3.2 Communication Management 16

1.3 Contributions . 17

1.4 Thesis Organization . 19

2 Model Driven Engineering 20

2.1 Model Driven Engineering . 20

2.2 Model Driven Architecture . 21

2.3 Other Model Driven Engineering Initiatives 26

3 Computer Supported Cooperative Work 27

3.1 Computer Supported Cooperative Work 27

Table of contents ix

3.2 Classification of CSCW . 31

3.2.1 Centralized approach with modification controller 31

3.2.2 Centralized approach without modification controller 32

3.2.3 Decentralized approach with modification controller 33

3.2.4 Decentralized approach without modification controller 35

4 State-of-the-art of Collaborative Modeling 37

4.1 Management of Models . 37

4.1.1 Model Comparison . 38

4.1.1.1 State-based Comparison 38

4.1.1.2 Change-based Comparison 43

4.1.2 Conflict Detection . 46

4.1.3 Conflict Resolution . 53

4.1.3.1 Computational model conflict resolution 53

4.1.3.2 Model of human conflict resolution 57

4.1.4 Model Merging . 59

4.1.5 Model Versioning . 61

4.1.6 Model Transformation . 64

4.2 Communication Management . 73

4.2.1 Member Organization . 73

4.2.2 Repository and Mode of Communication 75

4.2.3 Awareness . 79

4.3 Related Work of Collaborative Modeling Environments 81

5 Distributed Collaborative Model Editing Framework (DiCoMEF) 88

5.1 DiCoMEF Architecture . 88

5.2 Model Management in DiCoMEF . 93

5.2.1 Formalization of Models . 93

5.2.1.1 Notation . 93

5.2.1.2 The Ecore Meta-meta-model 94

Table of contents x

5.2.1.3 Instantiation . 99

5.2.1.4 Reflexivity . 101

5.2.2 Definition of History Meta-model 103

5.2.3 Change Management . 112

5.2.4 Model Comparison . 114

5.2.5 Conflict Detection . 115

5.2.6 Conflict Resolution and Merging 123

5.2.7 Model Versioning . 124

5.2.8 Composite Operation Recovering and Detection Framework 124

5.3 Communication Management in DiCoMEF 134

6 Evaluation 137

6.1 Objectives . 138

6.2 Experimental Design . 139

6.3 Results and Discussion . 146

7 Conclusion and Future Work 151

7.1 Conclusion . 151

7.2 Future work . 155

References 157

Appendix A Publications 175

List of figures

1.1 A physical model example . 3

1.2 Isotypical mapping example . 4

1.3 Prototypical mapping example . 5

1.4 Prototypical mapping example in Javacript 6

1.5 Metatypical mapping example . 7

1.6 Example of MDE . 8

2.1 DSML Example . 22

2.2 Basic principles of MDA . 23

2.3 The four layered architecture of MDA . 24

3.1 Centralized approach with modification control 32

3.2 Centralized approach without modification control 33

3.3 Decentralized approach with modification control 34

3.4 Decentralized approach without modification control 35

4.1 EMF Compare: Three-way comparison 42

4.2 Three-way merge tool . 47

4.3 Model Transformation . 65

4.4 Example of Model Migration . 68

4.5 Structure of an activity . 74

5.1 DiCoMEF repository . 89

5.2 Architecture of DiCoMEF . 90

List of figures xii

5.3 DiCoMEF meta-model . 91

5.4 Main-line and Branch . 92

5.5 EMF/Ecore Meta-model . 95

5.6 Petri net meta-model . 98

5.7 Petri net instance model . 100

5.8 History Meta-model . 107

5.9 History of model adaptation in DiCoMEF 112

5.10 History of meta-model adaptation in DiCoMEF 113

5.11 Change propagation and local operations 116

5.12 DiCoMEF merge tool . 121

5.13 A Petri net meta-model and atomic meta-model adaptation operations . . . 126

5.14 A rule-based composite operation detection and recovery steps 130

5.15 Primitive operations represented as Jess facts 131

5.16 Composite operations expressed in Jess rules 132

5.17 DiCoMEF history representation using Jess templates 133

5.18 Extended DiCoMEF Architecture . 136

6.1 Automobile Meta-model Version0 . 140

6.2 Automobile Meta-model Version1 . 141

6.3 Automobile Meta-model Version2 . 142

6.4 Automobile Meta-model Version3 . 144

6.5 Automobile Meta-model Version4 . 145

6.6 Petri net meta-model base version . 146

6.7 Propagated Petri net net meta-model . 146

6.8 Local Petri net meta-model . 147

List of tables

4.1 Summary of state-of-the-art collaborative modeling tools and frameworks . 86

5.1 Comparison of EMFStore, Edapt, DiCoMEF. 105

5.2 Conflicting relation (ordered-multivalued). 122

5.3 Conflicting relation (unordered-multivalued). 122

5.4 Requires relation. 122

6.1 Objective 1: evaluating the effectiveness of DiCoMEF to support the coop-

erative design of meta-models for DSML 147

6.2 Objective 2: is the conflict detection mechanism accurate and complete? . . 148

6.3 Objective 3: evaluating the benefits of the reconciliation and merging pro-

cesses of DiCoMEF . 148

Nomenclature

API Application Programming Interface

BPMN Business Process Model and Notation

CASE Computer-Aided Software Engineering

CRUD Create, Read, Update or Delete

CSCW Computer Supported Cooperative Work

CV S Concurrent Versions System

DiCoMEF Distributed Collaborative Model Editing Framework

DMS Data Management System

DSL Domain Specific Language

DSM Domain Specific Model

DSML Domain Specific Modeling Language

ECL Epsilon Comparison Language

EMF Eclipse Modeling Framework

ER Entity Relationship

Nomenclature xv

GXL Graph eXchange Language

Jess Java Expert System Shell

JMS Java Message Service

MDA Model Driven Architecture

MDE Model Driven Engineering

MOF Meta-Object Facility

OCL Object Constraint Language

OMG Object Management Group

PIM Platform Independent Model

PNML Petri Net Markup Language

PSM Platform Specific Model

SOA Service Oriented Architecture

SV N Subversion

UML Unified Modeling Language

UUID Universal Unique Identifier

WY SIWIS What You See Is What I See

XMI XML Metadata Interchange

Chapter 1

Introduction

This chapter presents the motivation of the thesis in Section 1.1 and the problem statement in

Section 1.2. Section 1.2.1 and Section 1.2.2 describe research restrictions and research ques-

tions respectively. Next, Section 1.2.3 explains the methodology and Section 1.3 demon-

strates contributions of the thesis. In Section 1.4 we describe how the thesis is organized.

1.1 Motivation

Nowadays software solutions are becoming complex due to inherent complexities of prob-

lems they are dealing with (for example, a safety critical systems like a flight controller).

Besides, there is a need to produce a high quality software within a short period of time

(time-to-market pressure) and user requirements could evolve during and after a develop-

ment of software products [Sriplakich, 2007]. To mitigate the aforementioned complexities,

Model Driven Engineering (MDE) approach has been adopted by the software engineering

community. “MDE is about the use of relevant abstractions that help people focus on key

details of a complex problem or solution combined with automation to support the analysis

of both the problem and solution, along with the mechanism for combining the information

collected from the various abstractions to construct a system correctly” [Blackburn, 2008].

Abstraction is a natural cognitive process by which humans get a mental representation of a

reality [Brambilla et al., 2012]. It facilitates communication between different users through

1.1 Motivation 2

distinct views with various levels of detail [Blackburn, 2008]. Abstraction has been widely

used in science and technology for many years, and it is commonly known as modeling.

Modeling is an act and a science of creating an abstraction of parts of a system under-

study (SUS), a model. A model is a simplified or partial representation of a reality, and

defined for a particular purpose(s) [Brambilla et al., 2012; Gonzalez-Perez and Henderson-

Sellers, 2008]. The Collins English language dictionary 1 defines a model as “a model of an

object is a physical representation that shows how it looks like or how it works” [Sinclair

et al., 1987]. For example, Figure 1.1 shows a physical model of an automobile, which

is also another physical system. This definition has a limitation, since non-physical sys-

tems like software prototypes can also be considered as models of a system to be developed

(SUS). The Collins English language dictionary also provides another definition of a model,

which states “a model is a system that is being used and that people might want to copy

in order to achieve similar results”. For instance, software design patterns are considered

as models based on this definition. Software design patterns specify reusable solutions for

frequently occurring problems, such that users can copy and adapt the solutions so as to

achieve similar results. Furthermore, “a model of a system or process is a theoretical de-

scription that can help you understand how the system or process works, or how it might

work” [Sinclair et al., 1987]. This definition matches quite well with the usual definition of

models in software engineering: Class diagram model, ER model, BPMN model, Statechart

model, Petri Nets model, Enterprise Architecture model.

The structure of the model should be homomorphic with the structure of the SUS at some

relevant level of details in order to interpret the model [Gonzalez-Perez and Henderson-

Sellers, 2005, 2008]. Gonzalez-Perez at al. identify three kinds of interpretive mapping

between models and SUSs: isotypical mappings, prototypical mapping, and metatypical

mapping. Isotypical mappings states that there is one-to-one mapping between a model en-

tity and an SUS entity, hence, the correspondence between the model entity and the SUS

entity is straightforward. Figure 1.2 illustrates an isotypical mapping between the deploy-

ment model and the actual system to be developed, there is a one-to-one mapping between

1http://www.collinsdictionary.com/
2http://i.ytimg.com/vi/rZPE6yD3gPs/hqdefault.jpg

1.1 Motivation 3

Figure 1.1 A physical model of an automobile 2

the deployment model and the actual physical deployment of artifacts on nodes. Prototyp-

ical mapping establishes a one-to-many relationship between a model entity and a set of

SUS entities. The model entity specifies examples of the kind of SUS entities, which can be

matched with it. Figure 1.3 and Figure 1.4 demonstrate a prototypical mapping. Moreover,

metatypical mapping declaratively describes mappings between one model entity and a set

of SUS entities, it is an intensional definition. The SUS entities should satisfy properties

specified by the model so as to be mapped to it. Figure 1.5 shows an example of metatypical

mapping. Readers can find a detailed description about model in Chapter 2.

“The term Model-Driven Engineering (MDE) is typically used to describe software de-

velopment approaches in which abstract models of software systems are created and system-

atically transformed to concrete implementations” [France and Rumpe, 2007]. However,

abstraction is not new in computer science, for instance, it has existed and evolved with

computer programming languages [Blackburn, 2008]. Different abstractions of protocols of

3Course material: http://directory.unamur.be/teaching/courses/INFOM434
4source: http://www.agilemodeling.com/artifacts/uiPrototype.htm
5source: https://en.wikipedia.org/wiki/Prototype-based_programming
6Course material: http://directory.unamur.be/teaching/courses/INFOM434

1.1 Motivation 4

Figure 1.2 Isotypical mapping between the deployment model and the actual system to develop 3

communication, concurrency concepts such as threads, specialized interfaces to hardware,

and domain-specific functional details might be tangled together within a programming lan-

1.1 Motivation 5

Figure 1.3 Example of prototypical mapping 4

guages (e.g., spaghetti code), unless good development practices are applied to structure and

layer the program. But, models give a way to systematically separate these views (abstrac-

tions) in MDE, since different types of models can only provide certain types of informa-

tion. MDE also employs model transformation, model merging, automated model analysis,

model simulation, and model execution so as to produce some type of computationally-

based systems [Blackburn, 2008].

MDE shifts the level of abstraction of a software development from code-centric to

model-centric [Bézivin, 2005; Favre, 2004; Kent, 2002]. In early adoption of MDE, Unified

Modeling Language (UML) [Alanen and Porres, 2003], which is a general purpose model-

ing language, has been used to unify many modeling practices, however, the language has

grown to become extremely large and complex. Besides, “UML cannot fully define the re-

lationships between diagrams and detailed behavior is difficult to define in UML” [France

and Rumpe, 2007]. Domain Specific Modeling Languages (DSML) have emerged to de-

scribe concepts in a specific domain [Brambilla et al., 2012; Schmidt, 2006]. For instance,

1.1 Motivation 6

Figure 1.4 Javascript example of prototypical mapping 5

DSMLs are used for specifying structures, behaviors, and requirements as well as code gen-

eration, rapid prototyping, and automated testing within specific domains. DSML describes

a solution by directly using domain concepts rather than generic modeling languages. This

helps domain experts to focus on specific concepts which are related to their field of ex-

pertise instead of underlying platforms. As a result, this approach improves the quality of

software products, reduces the development costs, and increases the longevity of software

1.1 Motivation 7

Figure 1.5 Example of metatypical mapping 6

products [Frankel, 2003]. It reduces the cost of conception and development and improves

the productivity five to ten times [Kelly and Tolvanen, 2008].

MDE describes concepts at different levels of abstractions using models, meta-models,

and meta-meta-models. A model is an abstraction of a software system. A meta-model is a

DSML oriented towards the representation of software development methodologies and en-

deavors [Gonzalez-Perez and Henderson-Sellers, 2008]. A meta-meta-model is a minimum

set of concepts that define meta-models. Figure 1.6 illustrates the hierarchical relationships

among model, meta-model, and meta-meta-model. A detailed description about meta-model

and meta-meta-model is found in Chapter 2.

Modeling complex systems is far fetched for a single user to understand requirements

and produce a quality product. Hence, there is a need for a group of users with different

specializations to cooperate together. As stated by Zimmermann et al. [Zimmermann and

Bird, 2012], whenever a complexity of a problem increases, then the diversity of users

that are involved in a group increases. However, most of the DSM tools developed in the

1.2 Problem Statement 8

Figure 1.6 Example of MDE: model, meta-model, and meta-meta-model

past consider the modeling process as a single user task [Constantin et al., 2009]. This

hypothesis is too restricting with regards to how projects are managed, hence, DSM tools

should support collaborative modeling.

1.2 Problem Statement

As discussed in Section 1.1, modeling complex systems require collaboration among mul-

tiple users with different specializations. This means that (meta-)models need to be shared

among multiple users (i.e., (meta-)modelers). Besides, these shared artifacts could be edited

and could evolve concurrently throughout the development life cycle of the application.

Eventually, these models become inconsistent with each other. Inconsistency is the main

challenge that hinders collaborative modeling, because two inconsistent versions of (meta-

)models cannot interoperate. Hence, conflicts that cause inconsistencies should be identified

1.2 Problem Statement 9

and resolved. These conflicts could be textual, syntactic, or semantic [Altmanninger et al.,

2009; Mens, 2002].

Textual conflict detection approach compares two or more text documents in order to

detect conflicts between them. The granularity of the comparison might vary like a line of

text, a paragraph, a sentence, a word, or a character [Altmanninger et al., 2009; Mens, 2002].

Syntactic conflict detection takes the syntax of the language (a tree or a graph structure) into

account so as to detect conflicts [Altmanninger et al., 2009; Mens, 2002]. Refactoring of a

software system might cause conflicts even though the changes are semantically equivalent.

These conflicts need to be identified and resolved.

Static semantic conflicts could be specified with a formal language, afterwards, mod-

els are evaluated for conformance. For example, one static semantic constraint of a UML

class diagram [OMG, 2011] requires that each class must have a name and there must be

at most one class with a given name in the same package. This semantics is encoded as a

constraint in UML class diagram using Object Constraint Language (OCL) [Warmer and

Kleppe, 2003] and instances of the class (i.e., object) are evaluated to verify their confor-

mity. Behavioral semantic conflicts are detected based on the execution behavior (runtime

semantics) [Altmanninger et al., 2009; Mens, 2002]. In the literature, authors have used

denotational semantics, operational semantics, program dependency graph, and program

slicing to detect behavioral semantic conflicts.

Heterogeneity is another major factor that hampers interoperability (i.e. seamless coop-

eration among models, modeling tools) in collaborative modeling. In [Thiran et al., 1998],

Thiran categorized heterogeneity at different levels such as platform, data management sys-

tem (DMS), location and semantics. Platform level heterogeneity implies that the underly-

ing technology such as hardware, operating system, or networking could be different. DMS

level is about the technical detail of data implementation; data models might be defined

using different conceptual modeling languages (i.e. with different expressive power). Se-

mantics level heterogeneity occurs when equivalent concepts are modeled differently. Lo-

cation level heterogeneity refers to the place where the data model resides (e.g. central or

distributed).

1.2 Problem Statement 10

Ouskel et al. identify the two main problems of interoperability as system heterogeneity

and information heterogeneity [Ouksel and Sheth, 1999]. This classification is more elab-

orated in the context of model editing by Kühn et al. [Kühn and Murzek, 2006]. Model

heterogeneity (i.e. meta-meta-model, meta-model, model) is classified as information het-

erogeneity. This heterogeneity is caused by using different modeling languages, implemen-

tation platforms, versions of models, etc. For instance, users exchange their work using

method chunks or fragments [Ralyté and Roll, 2001] as a basis for communicating their

works. These method chunks could be expressed in standard format like GXL [Holt et al.,

2006], PNML 7, or XMI [OMG, 2007b]. Even though these tools define quite well the

structure of data model, they vary in their semantics. This results in a problem of inter-

operability among different CASE tools. Most of the time, these types of interoperability

problems are addressed using model transformations, specifically, exogenous model trans-

formations, where the source and the target models are expressed in different modeling

languages [Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Mens et al., 2005a]. On the

other hand, users can exchange models among the same family of CASE tools, specifically,

it is a model transformation performed between models of the same modeling language (en-

dogenous transformation) [Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Mens et al.,

2005a].

System heterogeneity concerns differences in access of services (i.e. API or files, stan-

dard format or proprietary), mechanisms (i.e. version management, multi language support,

model analysis, and simulation), implementation platforms, and persistency services (i.e.

durable storage). This PhD thesis considers a (meta-)model exchange between CASE tools

of the same family, and system heterogeneity is not part of the interest of this work.

As discussed above, multiple users are involved in collaborative modeling who modify

modeling artifacts in parallel. The collaborative modeling frameworks and environments

should provide a concurrency support and handle conflicts. A central repository with merge

mechanisms (optimistic approach) and locking facilities (pessimistic approach) are com-

monly used approaches to support concurrency, to handle inconsistency problems, and to

7http://www.pnml.org/

1.2 Problem Statement 11

ensure collaboration [Mougenot et al., 2009]. Unfortunately, locking technique is inade-

quate for a large number of users who work in parallel [Altmanninger et al., 2009; Mens,

2002]. Besides, in practice, this technique takes much time for users to resolve conflicts

[Altmanninger et al., 2009; Pilato et al., 2008]. In addition, this approach restricts users

to be dependent on one repository. It could also introduce administration of access rights

which might be cumbersome and cause user dissatisfaction.

Other modes of collaboration could consist in a group of people concerned by a cooper-

ative task that is large, transient, not stable or even non deterministic [Schmidt and Bannon,

1992]. Besides, the interaction pattern among members of a group could be dynamic and

users are semi-autonomous in their partial work. This type of collaboration allows each

member to have his/her own copy of a shared work (i.e. (meta-)model) and carry on his/her

activity in isolation with other users or a central authority. A user later communicates his/her

work by sending messages to other members [Mougenot et al., 2009]. Implementing the ex-

change of method chunks [Ralyté and Roll, 2001] could serve as a basis for this mode of

collaboration. This mode of collaboration gives users a better control over their data and

addresses the problem of being dependent on a single repository. But, it is challenging

to keep all copies of modeling artifacts consistent due to the fact that these modeling arti-

facts could be modified concurrently by users. In order to ensure collaborative modeling,

communication among members needs to be managed and conflicts should be detected and

reconciled.

A lot of research has been done in the past to mitigate complexities of software projects

and ensure collaborative software development. Ignat et al. [Ignat et al., 2007a] compared

different collaborative editing frameworks for text or tree based documents such as XML. In

[Dewan and Hegde, 2007; Dewan and Riedl, 1993], a collaborative framework was proposed

to edit source codes and collaboratively reconcile conflicts, and then merge the source codes

into a new source code.

In the context of model editing, Saeki [Saeki, 2006] introduces the use of a version-

ing system to control and manage models and meta-models, which evolve independently.

Saeki’s work is mainly focused on keeping consistency between the current version of mod-

1.2 Problem Statement 12

els with their respective meta-models. The author did not consider collaborative model

editing in his work. EMFStore is a model repository for collaboratively editing EMF mod-

els which is implemented based on the premise of a central repository with copy-merge

techniques [Koegel and Helming, 2010]. MetaEdit+ [Kelly, 1998] implements Smart Mode

Access Restricting Technology (Smart Locks ©) to support concurrent access of shared mod-

eling artifacts that are stored centrally.

In [De Lucia et al., 2007; Sriplakich et al., 2006], the authors present a collaborative

model editing framework, which is based on a central server. As it was stated above, this

type of collaboration limits developers to work on one central repository. In addition, devel-

opers sometimes prefer to work in isolation to avoid administrative hierarchy and interfer-

ences of other developers.

Constantin et al. propose a reconciliation framework for collaborative model editing

[Constantin et al., 2009]. In their work, they suggest a weakly coupled mode of collabora-

tion, where (meta-)models are managed in distributed fashion. But, the authors only provide

a theoretical reconciliation framework to support collaborative work without providing a so-

lution. In another work, Mougenot et al. [Mougenot et al., 2009] develop a peer-to-peer

collaborative model editing framework called D-Praxis. D-Praxis adopts operation-based

communication, where users exchange sequences of operations that adapt a meta-model.

Besides, it implements automatic conflict resolution based on delete semantics and Lam-

port’s clock [Lamport, 1978]. Nevertheless, this approach suffers from a similar problem of

“lost-update”. A user could lose his/her work because of a later modification performed by

another member.

This PhD thesis has aimed at developing a distributed collaborative modeling frame-

work. Of course, developing a collaborative modeling framework is complex [Benmouffok

et al., 2009]. Specifically, ensuring a distributed collaborative framework where every mem-

ber has his/her own local copy and working in isolation with other members makes the

development even more complex. Models and meta-models need to be replicated at every

member site and they could be edited concurrently. As a result, all replicas could be incon-

sistent. Therefore, the collaborative modeling framework should identify conflicts among

1.2 Problem Statement 13

different versions of (meta-)models. These conflicts should also be resolved, but conflict

resolution is a tedious and error prone task. Hence, the framework should assist users in

resolving conflicts and merging conflicting versions of (meta-)models into a new version.

Besides, since multiple engineers with different goals, strategies and experience levels are

involved in collaborative modeling, their communication needs to be controlled so as to

have effective collaborations. Users sometimes also need to work in a hierarchical mode

of collaboration, where they work together to standardize (meta-)models through interna-

tional standards, hence, the collaborative modeling framework should be flexible to support

a hierarchical mode of collaboration.

1.2.1 Research Restrictions

In this PhD thesis, we take the following research restrictions that allow us to focus on the

essence of the problem.

1. This work only considers models and meta-models. Source code files which could be

generated from a model and other text files (i.e. configuration files) are not part of this

study.

2. Models, which are supervised by different controllers, are considered as distinct (meta-

)models, this means that there is no explicit dependency between them.

3. Each model element has a universal unique identifier.

4. This work studies only syntactic and static semantic conflicts.

1.2.2 Research Questions

We believe that the following questions must be answered to provide the envisioned dis-

tributed collaborative model editing framework.

1. How can we manage concurrent modifications of model and meta-models? Mod-

els and meta-models should be shared among members of a collaborative ensemble.

1.2 Problem Statement 14

Besides, there should be a facility for users to edit and elaborate shared modeling

artifacts concurrently. Modifications of shared artifacts could raise conflicts. Hence,

conflicting modifications of models should be identified, reconciled and merged into

a new version.

2. How can we manage members of a cooperative group? the organizational structure of

the cooperative group should be modeled so as to manage activities of members and

their communications.

1.2.3 Methodology

This section presents the methodology adopted by this work to answer the research ques-

tions. In order to answer the first research question, “How can we manage concurrent modi-

fications of model and meta-models?”, we have used different model management activities

such as model comparison, conflict detection, conflict reconciliation, model merging, and

model versioning. To answer the second research question, “How can we manage members

of cooperative group?”, we adopted a role-based organization of social structure to man-

age communication of members in the cooperative ensemble. The following subsections

provide detail description about the methodology.

1.2.3.1 Model Management

Model comparison : Model comparison compares two models so as to drive their differ-

ences. State-based comparison and change-base comparison are the most commonly used

approaches [Altmanninger et al., 2009; Conradi and Westfechtel, 1998; Mens, 2002]. State-

based comparison takes states of two versions of models with a same ancestor as an input

and derive their differences. This process is commonly referred to as differencing, and it

is computationally expensive [Koegel et al., 2009c]. Change-based comparison keeps track

of changes whenever they occur, and then it stores them into a repository. As such, there is

no need to calculate deltas later [Altmanninger et al., 2009; Conradi and Westfechtel, 1998;

Koegel et al., 2009c; Mens, 2002].

1.2 Problem Statement 15

Operation-based comparison is a special type of change-based comparison where deltas

are represented as a sequence of change-operations [Conradi and Westfechtel, 1998]. Operation-

based comparison captures the exact time sequences of changes that could help to under-

stand changes and detect conflicts [Mens, 2002]. Besides, it can also express sets of opera-

tions that occurred in a common context as composite operations. According to Koegel et

al. [Koegel et al., 2009c], time sequences of changes and composite operations help users to

understand changes more easily in operation-based comparison than in state-based compari-

son. In this work, we opted for the second approach. We defined a domain specific modeling

language, DiCoMEF history meta-model, to capture edit operations of (meta-)model adapta-

tions (See Chapter 5 Section 5.2.2). Chapter 4 Section 4.1.1 provides a detailed description

of model comparison.

Conflict Detection and Resolution : According to [Altmanninger et al., 2009], conflicts

are a set of operations that cause an inconsistency. These conflicts could be textual, syn-

tactic, composite, or semantic conflicts [Mens, 2002]. In this work, we provide a formal

definition of conflicts using Set theory (see Chapter 5 Section 5.2.5), and our conflict detec-

tion approach detects syntactic and static semantic conflicts. These conflicts might be solved

manually, semi-automatically or automatically. Manual conflict resolution is time consum-

ing and error prone to deal with large and complex models. Automatic conflict resolution

is not applicable in most situations, because conflict detection and resolution is usually do-

main specific [Altmanninger et al., 2009]. Therefore, we adopt a semi-automatic conflict

reconciliation approach in this work. Chapter 4 Section 4.1.2 and Section 4.1.3 explains in

detail about conflict detection and reconciliation.

Model Merging : Merging is a process of integrating concurrently edited models that

have the same ancestor (i.e. the same base model), into a new (meta-)model. The most

commonly used merging techniques are raw merge, two-way merge and three-way merge

[Altmanninger et al., 2009; Mens, 2002]. The last one gives the better result as compared

to the other two approaches. Therefore, we adopted a three-way mergining technique in our

work. Chapter 4 Section 4.1.4 presents a detailed description about model merging.

1.2 Problem Statement 16

Model versioning : Model versioning is a crucial activity to manage the history of model

evolution and to ensure collaborative modeling [Conradi and Westfechtel, 1997, 1998; Roe-

buck, 2011]. A version space defines all versions of (meta-)models and their relationships.

The difference between two successive versions is represented as a delta. This delta could

be a symmetric delta and a directed delta [Conradi and Westfechtel, 1997, 1998]. The sym-

metric delta represents differences between the state of two versions of (meta-)models, and

it is a state-based versioning. On the other hand, the direct delta is an operation-based ver-

sioning that denotes a sequence of edit operations that adapt (meta-)models. In this work,

we adopted an operation-based versioning approach. Chapter 4 Section 4.1.5 presents a

detailed description about model versioning.

1.2.3.2 Communication Management

Member organization: We adopt a role based modeling of social structures and inter-

actions among members of the cooperative group. Modeling of social structures is impor-

tant to analyze users’ collaboration. Besides, it is helpful to reconcile conflicting activities

[Penichet et al., 2007]. Chapter 4 Section 4.2.1 describes in detail the organizational struc-

ture of member organization.

Communication of Members: In distributed collaborative environment, engineers can

communicate their activities in a peer-to-peer communication mode, but it is difficult to keep

all local models consistent due to concurrent modifications of models. Another mode of

change propagation is where every developer sends sequences of changes to a controller. Af-

terwards, the controller supervises modifications and propagates accepted changes to other

members. We adopted the second mode of communication and will investigate different

policies on how to apply propagated changes on all local copies. See Chapter 4 Section

4.2.2 for a detailed description about communication management.

1.3 Contributions 17

1.3 Contributions

This PhD thesis presents a distributed collaborative model editing framework called Di-

CoMEF. This framework manages any models based on EMF/Ecore meta-model. In Di-

CoMEF, both models and meta-models are freely distributed without having constraints

like a central repository. Engineers will be able to carry out their work independently with-

out prior consultation of other users of the same (meta-)model. DiCoMEF uses a role-based

modeling to represent a social structure of cooperative ensembles, which could facilitate

conflict reconciliation and avoid chaos. For instance, it relies on human agents (controllers)

to manage evolution of (meta-)model depending of their role in the cooperative work. The

model controller supervises evolution of models, whereas the meta-model controller man-

ages evolution of meta-models. Model (respectively meta-model) controller roles are flexi-

ble meaning that they can be assigned (delegated) to other members of a group as long as

there is one unique coordinator per group. This dynamic role assignment could lead people

to implement more elaborated strategies on top of DiCoMEF, i.e., a user can delegate his/her

role to another person. Although using a controller to manage collaborative modeling may

limit the scalability, it could be possible to implement different method engineering tech-

niques (e.g., delegation mechanisms, pooling) and strategies on top of DiCoMEF to address

the problem.

DiCoMEF captures elementary change operations (create, delete, and update) locally

whenever members of a group modify their local (meta-)models. It defines a DSML to cap-

ture histories of edit operations, by extending the history meta-model of Edapt 8. Edapt is an

operation-based model migration framework that migrates instance models after changing

a meta-model. These edit operations are used later as a means of communication among

members of a group. In DiCoMEF, a controller is a central hub of communication in a

cooperative ensemble, but members could still communicate with other colleagues directly.

Peer-to-peer communication could hinder convergences of all copies of (meta-)models. We

also formally define model, meta-model, edit operations, and conflicts using Set theory. Be-

sides, we provide a conflicting set table to detect structural conflicts (using edit operations).

8http://www.eclipse.org/edapt/

1.3 Contributions 18

Edit operations can be annotated with multimedia files to describe rationale of modifica-

tions, which could help to facilitate conflict reconciliation process. The framework also

detects static semantic conflicts by relaying on EMF validation framework.

DiCoMEF relies on two concepts (i.e., main-line and branches) to ensure the communi-

cation framework. The main-line stores different versions of a copy (meta-)model locally

at each editors site. Editors cannot modify (meta-)models stored on the main-line; they can

only adapt those stored on the branch and send then their local modifications to a controller

as “change requests” so as to commit changes on the main-line.

The DiCoMEF framework could be extended to support a large community of users,

where an editor acts as a virtual controller for other editors (side editors) working under

her/his supervision. These new roles (i.e., virtual controller and side editor) are transparent

for the DiCoMEF controller. Side editors could also modify (meta-)models concurrently

(e.g. by using the Cloud) but these modifications would be out of the scope of DiCoMEF.

Read Chapter 5 Section 5.1 for a detail description of DiCoMEF.

The DiCoMEF framework has been implemented as an Eclipse plugin (54K LOC) that

fully supports collaborative meta-modeling tasks. The support of instance models is still

under implementation. The plugin, screenshots and other publications of DiCoMEF can be

found in the DiCoMEF Web site 9. We evaluated the DiCoMEF framework with master

students with regards to the following criteria: (1) the feasibility of collaborative methods

and processes with DiCoMEF, (2) the correctness of conflict detection mechanisms (recall

and precision), (3) the usability of the merge tool and DiCoMEF framework, (4) measuring

user efforts (time) needed to merge concurrently edited meta-models either manually or

by using the DiCoMEF merge tool. This preliminary evaluation reveals overall positive

results. The results indicate that the collaborative process of DiCoMEF is feasible and that

the merge tool is usable (user friendly), correct, and helpful in the resolution of conflicts. In

future work, we will provide a full support for collaborative modeling of instance models.

Besides, more advanced collaborative workflows will be investigated and defined on top of

the DiCoMEF framework. Furthermore, we will continue to conduct more experiments and

9https://sites.google.com/site/dicomef

1.4 Thesis Organization 19

evaluations. We will also improve the framework based on feedback from the preliminary

evaluation results.

1.4 Thesis Organization

The remaining part of the thesis is organized as follows: Chapter 2 and Chapter 3 present

preliminaries of domain specific modeling languages and computer supported collabora-

tive work, respectively. Next, Chapter 4 presents a detailed overview of state-of-the-arts

of model management, members management, and collaborative modeling. Subsequently,

Chapter 5 and Chapter 6 describes the DiCoMEF framework and the evaluation of the frame-

work. Finally, Chapter 7 gives the direction of the future work and conclusions.

Chapter 2

Model Driven Engineering

This chapter presents Model Driven Engineering (MDE) in Section 2.1. Next Section 2.2

describes Model Driven Architecture (MDA), which is the OMG initiative of MDE. Finally,

Section 2.3 presents briefly about other MDE architectures proposed by different authors.

2.1 Model Driven Engineering

In today’s modern business, industries provide sophisticated enterprise-scale software solu-

tions, which deal with complex business domains. According to Tan et al. [Tan et al., 2007]

“Building enterprise-scale software solutions has never been easy. The difficulties of under-

standing highly complex business domains are typically compounded with all the challenges

of managing a development effort involving large teams of engineers over multiple phases

of a project spanning many months. The time-to-market pressures inherent to many of to-

day’s product development efforts only serve to compound the problems. In addition to the

scale and complexity of many of these efforts, there is also great complexity to the software

platforms for which enterprise-scale software are targeted.”

Model Driven Engineering (MDE) is a software engineering methodology that is adopted

to deal with an ever increasing complexity of software solutions. MDE adopts separation

of concern principles that reduces complexity, improves reusability, and ensures simpler

evolution of modeling languages [Tarr et al., 1999]. MDE raises the level of abstractions

2.2 Model Driven Architecture 21

of software development from technological details (i.e., source codes and underlying plat-

forms) to the problem domain. Indeed, MDE brings a new era of software development by

shifting trends of software engineering from code-centric to model-centric [Bézivin, 2005;

Bézivin, 2004; Favre, 2004; Kent, 2002].

In MDE, models are the principal artifacts that give full descriptions of software systems

and are used for analysis, simulation, and source code generation of a software system [Mey-

ers and Vangheluwe, 2011]- “everything is a model” [Bézivin, 2005]. Domain concepts are

defined using well-suited modeling languages at acceptable level of abstraction [Meyers and

Vangheluwe, 2011]. Indeed, G. Booch et al. said “the full value of MDA is only achieved

when the modeling concepts map directly to domain concepts rather than computer tech-

nology concepts” [Booch et al., 2004]. Then, specifying domain concepts using Domain

Specific Language (DSL) reduces accidental complexities [Brooks, 1987] that could arises

during development of software systems.

DSML specifies structures, behaviors and requirements of applications within a specific

domain. DSMLs are more close to the domain concepts that need to be modeled [Schmidt,

2006]. Therefore, domain experts concentrate on particular concepts which are related to

their field of expertise instead of underlying platforms (software/hardware). For instance,

in Figure 2.1, a domain expert (i.e., in micro-controller, mobile application, or SOA archi-

tecture) more easily understands concepts expressed using DSMLs than using a general

purpose languages like UML [OMG, 2007a]. As a result, the quality of the software prod-

uct improves and the development cost decreases and longevity of the software product

increases [Frankel, 2003].

2.2 Model Driven Architecture

Model Driven Architecture (MDA) is the MDE initiative of Object Management Group

(OMG® 1) [Frankel, 2003; Kleppe et al., 2003; OMG, 2001; Stahl et al., 2006]. MDA relies

on OMG® standards to provide open and vendor-independent solutions, which alleviate the

1http://www.omg.org/

2.2 Model Driven Architecture 22

Figure 2.1 DSML Example [Micro-controller and Mobile application, Kelly and Tolvanen, 2008]
[SOA architecture, Hohpe and Woolf, 2003]

aforementioned problems of complexities. The MDA uses a Platform Independent Model

(PIM) to represent business logic and functionality of a system [Kent, 2002]. The PIM

formally specifies the structure and behavior of an application without considering the un-

derlying platform or implementation details. This means that the PIM insulates the core of

an application from its technical details.

A Platform Specific Model (PSM) formally describes underlying platforms such as soft-

ware and hardware [Kent, 2002]. The PSM is derived from PIM by applying one or more

model transformations. Consequently, the source code is generated from PSM using model-

to-code (model-to-text) transformation (see Figure 2.2). Model transformation automati-

cally generates a target model from a source model based on a transformation definition

[Gomes et al., 2014; Kleppe et al., 2003; Mens and Gorp, 2006; Mens et al., 2005a; Stahl

et al., 2006]. The separation of specifications of system into PIM and PSM has advan-

2.2 Model Driven Architecture 23

Figure 2.2 Basic principles of MDA, [Stahl et al., 2006]

tages, for instance, the business logic and the underlying technology evolve separately. This

means that the business logic could be modified based on new requirements independent

of the underlying platform. Likewise, the platform can also be changed in response to new

technology arrivals.

Figure 2.3 demonstrates a four-layer architecture (i.e. meta-meta-model, meta-model,

model and instance) of OMG® standard, where each layer represents a different level of

model abstraction [Cicchetti, 2008; Gonzalez-Perez and Henderson-Sellers, 2008; OMG,

2002; Stahl et al., 2006]. According to Kühne “a model is an abstraction of a (real or

language-based) system allowing predictions or inferences to be made” [Kühne, 2006]. A

model is a description or specification of a system and its environment with an intended

goal in mind, and it answers questions in place of the actual system [Belaunde et al., 2003;

Bézivin and Gerbé, 2001].

Stachowiak identifies three basic features of a model such as mapping, reduction, and

pragmatic features [Stachowiak, 1973]. The mapping feature states that a model is based

on an original Subject Under Study (SUS). This feature holds for descriptive model, which

makes statements about the SUS. A descriptive model captures some knowledge about an

SUS so that it is used to perform a domain analysis [Kühne, 2006; Muller et al., 2012;

2.2 Model Driven Architecture 24

Figure 2.3 The four layered architecture of MDA, [Cicchetti, 2008]

Seidewitz, 2003]. In contrast, a specification model is a blueprint (construction plan) for

the SUS, since there is no original SUS to map to the model. This work adopts the term

“subject” instead of “original” as presented in [Kühne, 2006] to emphasis a model is based

on an existing or imaginary system.

The reduction feature states that a model is an abstraction of an SUS, which only con-

tains relevant features. According to Selic, “a model is always a reduced rendering of the

system that it represents” [Selic, 2003].

The pragmatic feature is about the use of a model for some purpose in place of subject.

Indeed, a model must be accurate and understandable to ensure the pragmatic feature [Selic,

2003]. An accurate model gives a true-to-life representation of an SUS. An understandable

model remains in a form that directly draws our intuition. The model can also be used to

correctly predict interesting features of an SUS that are not obvious for a user.

According to Gonzalez-Perez et al. [Gonzalez-Perez and Henderson-Sellers, 2005], a

model must be homomorphic with its SUS to ensure the pragmatic feature. Specifically,

2.2 Model Driven Architecture 25

each entity in the SUS (at some relevant level of detail) should have a corresponding entity

in the model that plays the same structural roles.

A model has a concrete syntax that facilitates communication among users. Fondement

et al. defined concrete syntax as “a concrete syntax is a surface language that acts as an

interface between the instances of the concepts, and the human being supposed to produce

or read them” [Fondement, 2007]. Users do not generally edit models directly, but they

interact with tools that present models with concrete syntax (i.e., text, graph, tree widget,

. . .). An abstract syntax of a model can be represented in one or more concrete syntaxes.

An abstract syntax of a model describes concepts of the languages and their relation-

ships [Fondement, 2007; Meyers and Vangheluwe, 2011]. Software artifacts are generally

governed by abstract descriptions (i.e, meta-model, grammar, ontology, . . .). An abstract

syntax of a model is specified by a meta-model. A meta-model is a model of models [Favre,

2005], it is a domain specific language oriented towards the representation of software devel-

opment methodologies and endeavors [Gonzalez-Perez and Henderson-Sellers, 2008]. Sim-

ilarly, as a grammar is used to specify a language, a meta-model constitutes a set of rules to

construct all valid instance models. A meta-meta-model (i.e. MOF [OMG, 2002], MetaL

[Englebert and Heymans, 2007], KM3 [Jouault and Bézivin, 2006], EMF/Ecore [Steinberg

et al., 2009] is a minimum set of concepts that defines meta-models. It provides an unam-

biguous definition (i.e. syntax and semantics) for meta-models. Some mechanism has to be

employed to terminate the hierarchy of meta-steps. A common approach is to define a meta-

meta-model in terms of itself [Atkinson and Kühne, 2001]. For instance, MOF, EMF/Ecore,

and MetaL are self-descriptive languages.

The semantics of a model describes the meaning of modeling concepts with respect

to the domain [Rose, 2011]. It is defined using a semantic mapping function that maps

each element of the abstract syntax to an element in a semantic domain [Harel and Rumpe,

2004; Meyers and Vangheluwe, 2011]. The semantic domain can be specified using formal

languages such as Z [Woodcock and Davies, 1996] and Petri nets [Peterson, 1981], or it

can be described in a semi-formal manner, which combines formal specification and natural

2.3 Other Model Driven Engineering Initiatives 26

languages [Rose, 2011]. For instance, the static semantics of a UML model is specified

using Object Constraint Language (OCL) [Warmer and Kleppe, 2003].

The meta-steps (meta- and meta-meta-) demonstrated in the four-layer architecture (see

Figure 2.3) are relative, not absolute [Favre, 2005]. For instance, a meta-model is an instance

model of a meta-meta-model if one considers the relationship between the meta-model and

the meta-meta-model.

2.3 Other Model Driven Engineering Initiatives

There are other architectures of MDE proposed by different authors, for instance, Henderson-

Sellers presents the three-layer architecture [Henderson-Sellers, 2006]. In [Gonzalez-Perez,

2005], Gonzalez-Perez demonstrates a new architecture that contains a modeling infrastruc-

ture orthogonal to the meta-level hierarchy. Atkinson et al. also present a deep-instantiation

meta-modeling approach [Atkinson and Kühne, 2002]. Interested readers are referred to

the aforementioned work and references for further information. This PhD thesis adopts a

strict meta-modeling approach [Atkinson and Kühne, 2002] as specified by the four-layer

architecture.

We will provide the formalization of model, meta-model, and meta-meta-model in Chap-

ter 5. In the following chapters, we use the term “model” to refer both models and meta-

models unless it is clearly specified.

Chapter 3

Computer Supported Cooperative Work

This chapter presents computer supported cooperative work (CSCW). The chapter presents

the four different categories of CSCW; Section 3.2.1 and Section 3.2.2 presents a centralized

approach with and without modification controller, respectively. Next Section 3.2.3 explains

a decentralized approach with modification controller. Finally, Section 3.2.4 illustrates a

decentralized approach without modification controller.

3.1 Computer Supported Cooperative Work

Software projects are naturally cooperative. They require collaboration among members of

a group so as to produce a large software system [Whitehead et al., 2010]. “Any software

project with more than one person is created through a process of collaborative software en-

gineering” [Whitehead et al., 2010]. Indeed, modeling of software systems usually requires

collaboration among members of a group with different scope and skills (i.e., middleware en-

gineers, human interface designers, database experts, and business analysts). Schmidt et al.

defines cooperative work as [Schmidt and Simone, 1996] “cooperative work is constituted

by the interdependence of multiple actors who, in their individual activities, in changing the

state of their individual field of work, and change the state of field of work of others and

who thus interact through changing the state of a common field of work”.

3.1 Computer Supported Cooperative Work 28

In the above definition of cooperative work, the term “common” implies that members

of the cooperative group share the same field of work (i.e. models, source codes, and doc-

uments). In this regard, software engineering collaboration can be considered as artifact-

based or model-based collaboration, where users coordinate their activity to produce new

models, to create shared meaning around models, and to remove errors and ambiguity within

models [Whitehead et al., 2010]. Likewise, the word “interdependence” indicates depen-

dencies between members of the cooperative group. Specifically, it states a work of one user

positively relies on the quality and timeliness of other users. A user benefits from skills and

knowledge of another user in the group.

Computer Supported Cooperative Work (CSCW) is a type of cooperative work in which

computer systems are used to support mutually interdependent work. According to Borghoff

et al., “CSCW is a generic term which combines the understanding of the way people work

in groups with enabling technologies of computer networking, and associated hardware,

software, services and techniques” [Borghoff and Schlichter, 2000]. On the contrary, group-

ware is a software system that is designed to support cooperative work [Johansen, 1988].

Collaborative modeling is a groupware in which computer systems are employed to support

collaborative model editing, to manage users users interactions, and to help articulation of

concurrently edited models.

Collaborative modeling is inherently distributed, where tasks are distributed among

members of the cooperative group [Borghoff and Schlichter, 2000]. Hence, interactions

among members of the group should be mediated and controlled in order to get the work

done. This means that, the work has to be allocated to each member of the cooperative

group, and a member has to be responsible and accountable to finish his/her work with a re-

quired criteria such as quality and time. The organizational structure ensures the allocation

of precise description of responsibilities (roles) to every member of the group and it guides

the relationship of the user with other members. According to Montes et al. [Montes et al.,

2006], “a key aspect for the development of cooperative system is to know how members of

the cooperative group are organized to achieve the common goal”.

3.1 Computer Supported Cooperative Work 29

The organization structure is built around roles [Montes et al., 2006], this structure

changes over time due to different reasons. Schmidt at al. [Schmidt and Bannon, 1992]

argue that a collaborative work group is transient, which is formed to handle a specific sit-

uation and dissolved later. Membership of collaborative work is also unstable and usually

non-predictable, since users can freely join or leave the group. Moreover, the interaction pat-

tern among members of a group could be dynamic depending on the requirements and the

constraints of the situation, and members are semi-autonomous in their partial work. The

roles are crucial to manage the information and process flows in the collaborative group [Zhu

et al., 2006]. The organizational structure of members in cooperative group is discussed in

detail in Chapter 4 Section 4.2.1.

“Awareness information is always required to coordinate group activities, whatever the

task domain” [Dourish and Bellotti, 1992]. Awareness of individual and group activities is

essential for a success of cooperative work [Dourish and Bellotti, 1992]. Knowledge about

activities of others provides a context information about the common field of work and the

way in which this field work is produced. A user can benefit from the context information

to ensure relevance of his/her individual contributions, and to measure his/her contributions

with respect to group goals and progress. The use of awareness information to manage

communication is presented in Chapter 4 Section 4.2.3.

Communication is a means to create awareness among members of cooperative group.

But, since multiple users are engaged in cooperative work, interactions between members

and applications are not predictable. For instance, members could have their own goals,

strategies, and experience levels that might lead to chaotic environment. Hence, policies

or communication protocols are required to precisely define mode of interactions among

members, and between members and applications in order to avoid conflicts and confusions

[Edwards, 1996]. A role-based access rights and assignment of different responsibilities (or

roles) to members of the cooperative group help to reduce chaos and improve coordination.

A shared and integrated repository is used to facilitate communication among members

of CSCW. In shared information systems, members edit common models, and create com-

mon meaning and understanding around the the models [Whitehead et al., 2010]. Of course,

3.1 Computer Supported Cooperative Work 30

the shared information system needs to use a common data model to ensure communication

among members. There are also other systems that use message exchange mechanisms to

ensure communication among the group. For example, a service provider web service and

a service consumer web service communicate by exchanging messages [Snell et al., 2001].

Likewise, members of a cooperative group may exchange messages to communicate their

activities.

The mode of communication among members of a cooperative work is either synchronous

or asynchronous. In synchronous collaboration, two or more members access and edit a

shared model simultaneously, and communicate their work in real time. These concurrent

modifications might conflict one another, hence, a protocol is required to ensure consis-

tency. For instance, token-passing, locking schemes, or floor-passing schemes can be used

to define the pessimistic communication protocol [Borghoff and Schlichter, 2000]. Some

groupware applications integrate WYSIWIS (What You See Is What I See) interfaces that

let users visualize parts of a concurrently edited model in exactly the same way in real time

[Bani-Salameh, 2011; Gallardo et al., 2012; Minör and Magnusson, 1993]. Synchronous

communication improves awareness of individual and group activities so that it helps to re-

duce conflicts and task completion times [Dewan and Hegde, 2007]. This style of working

is usually suitable to accomplish urgent tasks that need high frequency of communication

among members.

Members of a CSCW group may wish to have the option of disconnected workspaces to

work privately [Dewan and Hegde, 2007]. This means that they edit models in their local

workspace and integrate their activities later. This is an asynchronous mode of communi-

cation, where local activities are transparent from other users. In [Minör and Magnusson,

1993], the authors argue that complex software design and implementations are performed

asynchronously by different members. Of course, the shared modeling artifacts could be

edited and evolved concurrently throughout the development life cycle of a software appli-

cation by different users. As a result, they might not seamlessly work together or the final

result may not be what users want. In other words, modeling artifacts become inconsistent

with each other.

3.2 Classification of CSCW 31

Articulation work mediates and controls a set of distributed activities of the coopera-

tive group [Schmidt and Bannon, 1992; Schmidt and Simone, 1996]. The coordination of

interdependent activities is critical to achieve a goal [Borges and Pino, 1999]. Group com-

munication can be managed using role assignment, division of tasks, and organizational

structures, which can avoid confusions and conflicts among members. Besides, the reconcil-

iation of conflicting activities requires conflict detection, resolving of conflicts, and merging.

The reconciliation can be a a priori or posteriori. In a priori reconciliation mechanism, the

cooperative group agrees on common terms and communication protocols beforehand to

avoid confusion and disorder. But, it is practically impossible to anticipate all contingencies

in advance so that the posteriori reconciliation is also required to deal with such incidents.

Conflict detection, reconciliation work, and member organization are presented in Chapter

4 Section 4.1.2, Section 4.1.3, and Section 4.2.1.

3.2 Classification of CSCW

In [Boukhebouze et al., 2010], Boukhebouze et al. classify CSCW into four categories such

as a centralized approach with modification controller, a centralized approach without modi-

fication controller, a decentralized approach with modification controller and a decentralized

approach without modification controller. Their classification is based on the location of the

repository and the management of modifications (coordination process).

3.2.1 Centralized approach with modification controller

The centralized approach with modification controller has a central repository, which is

owned by a central authority who has a bird’s-eye view and controls modifications of models

(see Figure 3.1). The owner is the only one who can modify the model, whereas other

members send messages (modification requests) to the owner so as to change the model.

Modifications are performed in human-time. Moreover, this approach adopts roles like

controller, editor, project leader, or expert so as to facilitate collaboration among members.

For example, Barteit et al. provide a controller based collaborative task on top of the IBM

3.2 Classification of CSCW 32

rational Jazz1 [Barteit et al., 2009]. This mode of collaboration can also be implemented

on top of EMFStore [Koegel and Helming, 2010], such that a model configuration manager

manages the model evolution.

Figure 3.1 Centralized approach with modification control

3.2.2 Centralized approach without modification controller

As shown in Figure 3.2, the centralized approach without modification controller has one

central repository, but there is no controller who manages modifications. In other words,

all members have equal access rights (role) so that everybody can freely modify the model

(without informing his/her colleague). The modifications are performed in a real-time and

the central repository only stores the most recent modification (overwrite previous modi-

fication). In this type of CSCW, members are free to join or leave the group at any time

without going through any organizational structure or authority. As a result, a dynamism of

members of cooperative ensembles becomes very high as compared to the one with control.

1https://jazz.net/

3.2 Classification of CSCW 33

Furthermore, the frequency of interactions among members is also high in order to reach on

common agreement. More specifically, models are continuously modified by each member,

therefore, it is difficult to have a stable version. Hence, members need to communicate (i.e.

through shared information) until they agree on the semantics of model elements. Another

solution could be to partition models into distinct parts and allow only one member to mod-

ify a part at a time. For example, Cacoo2 and EMFStore [Koegel and Helming, 2010] are

centralized collaborative tools that do not support a central modification controller role.

Figure 3.2 Centralized approach without modification control

3.2.3 Decentralized approach with modification controller

Decentralized approach with modification controller is a distributed system that replicates a

clone of the master copy at each member site (see Figure 3.3). A mode of communication in

decentralized approach is inherently asynchronous, members modify their local copies and

communicate their activities later. Specifically, members communicate through a controller

2https://cacoo.com/home

3.2 Classification of CSCW 34

who plays the role of communication hub and manage the evolution of models. In other

words, a member cannot directly propagate his/her local modifications to other colleagues,

rather, s/he first sends a message (i.e. change request) to the controller in order to get ap-

proval of modifications. For instance, this change request could be sequence of create, read,

update or delete (CRUD) operations that are performed on the model elements [Koshima

et al., 2013; Mougenot et al., 2009]. Afterwards, the controller inspects modifications pro-

posed by a members and communicates accepted changes with other members. This mode

of collaboration can also be implemented on top of Git [Chacon, 2009] and model version-

ing frameworks (e.g., EGit3 and EMF Compare4).

Figure 3.3 Decentralized approach with modification control

The controller may group and consolidate accepted change requests and share with all

members, or s/he sends each change request to members in First In First Out (FIFO) order

[Cormen et al., 2009]. The later one creates competition among members to submit modifi-

cations first (i.e. the first one gets high power to determines the overall design work). This

might create inconvenience in collaborative work.

3http://www.eclipse.org/egit/?gclid
4http://www.eclipse.org/emf/compare/

3.2 Classification of CSCW 35

3.2.4 Decentralized approach without modification controller

Decentralized approach without modification control is characterized by a distributed model

management. This means that, models are distributed among members. Moreover, every

member can modify his/her local copy and send message (i.e. modifications) directly to

other members without a supervision of central authority. This approach gives a total free-

dom for each member to work in terms of time and space. However, keeping models glob-

ally consistent is challenging due to concurrent modifications of models. Therefore, some

policies (i.e. voting) could be implemented to facilitate the reconciliation of conflicting ac-

tivities. For instance, if the majority vote is “YES” for a given change request, then it is

applied on each local copy. Documentation of activities and partitioning of tasks could ease

the collaboration among members, however, studies show that this does not work in practice

[Dewan and Hegde, 2007]. See Figure 3.4 below. For example, D-Praxis [Mougenot et al.,

2009].

Figure 3.4 Decentralized approach without modification control

3.2 Classification of CSCW 36

In general, CSCW with modification control has a more stable cooperative group than

approaches without the controller. This is because, every member needs approval from the

controller to join or leave the group.

There are also other classifications of CSCW in the literature and interested readers can

refer to [Borghoff and Schlichter, 2000; Carstensen and Schmidt; Ellis and Wainer, 1999;

Mills, 2003; Omoronyia et al., 2007]. Chapter 4 section 4.2.2 presents the state-of-the-art

of collaborative modeling tools based on the categories presented in this chapter.

Chapter 4

State-of-the-art of Collaborative

Modeling

This chapter presents the current state-of-the-art approaches and tools that support collabo-

rative modeling. Besides, it provides a detailed analysis and limitations of these approaches.

4.1 Management of Models

As discussed in Chapter 1 Section 1.2 (problem statement), the management of shared mod-

eling artifacts is important to ensure collaborative modeling. Firstly, concurrently edited

models are compared to generate model differences and to identify conflicting modifica-

tions. Afterwards, conflicting modifications need to be visualized for users to facilitate a

reconciliation process. Finally, the conflicting versions of the model should be merged into

a new version.

Users edit models by interacting with the concrete syntax, which could be a textual or

a graphical representation of the model. A concrete syntax usually contains more informa-

tion than an abstract syntax. For instance, a graphical concrete syntax could contain design

information, quasi-design information, and graphical information [Rho and Wu, 1998]. The

design information stands for an abstract syntax of a model, which captures the essence of

the structure of the software design. On the other hand, the quasi-design information is a

4.1 Management of Models 38

documentation about the design (e.g., description about UML class diagram). The graph-

ical information is related to a graphical representation of an abstract syntax. It contains

different shapes, relationship between shapes, positions, and layout information. During

concurrent development of models, a design, quasi-design and graphical information could

be modified by different users. In this work, we do not consider the evolution of quasi-design

information and graphical information. We perform model comparison, conflict detection

and merging activities to manage the evolution of design information of models.

4.1.1 Model Comparison

Model comparison compares (meta-)models so as to derive their differences [Altmanninger

et al., 2009; Koegel et al., 2009c]. A two-way comparison approach compares two (meta-

)models, whereas a three-way comparison approach compares two (meta-)models and their

ancestor (meta-)model [Altmanninger et al., 2009; Koegel et al., 2009c]. In fact, in order

to compare two models, they should be defined using the same modeling language (the

meta-model definitions of both models need to be the same). The same holds true for meta-

models, meaning that their meta-meta-models need to be the same so as to compare two

meta-models. Model comparison can be classified into two different categories such as state-

based comparison and change-base comparison depending on the information available for

comparison [Altmanninger et al., 2009; Conradi and Westfechtel, 1997, 1998; Koegel et al.,

2009c; Lippe and van Oosterom, 1992b; Mens, 2002].

4.1.1.1 State-based Comparison

State-based comparison compares the state of two or three revisions 1 (variants 2) of models

to derive their differences [Altmanninger et al., 2009; Conradi and Westfechtel, 1997, 1998;

Koegel et al., 2009c; Lippe and van Oosterom, 1992b; Mens, 2002]. The comparison can

be a two-way comparison that only takes the state of two models or a three-way comparison

that considers the ancestor model in addition to the two models. The two-way comparison

1revisions: sequentially evolved models over a given time period to correct errors or improve the product
2variants: alternative (parallel) versions of models that are co-existing at a given time

4.1 Management of Models 39

cannot identify whether an element is created in one version or deleted in another version.

Besides, it cannot differentiate between modifications performed in versions [Altmanninger

et al., 2009; Mens, 2002]. Hence, two-way comparison is not suitable to support collabora-

tive modeling.

The three-way comparison addresses these problems; it differentiates modifications, cre-

ations and deletions [Altmanninger et al., 2009; Mens, 2002]. Indeed, the comparison con-

stitutes two steps such as matching and differencing. The matching step is performed to find

correspondences between elements of two models. In [Kolovos et al., 2009], Kolovos et al.

classify the matching approaches into four categories such as static identity-based match-

ing, signature-based matching, similarity-based matching, and custom language-specific

matching algorithm. The differencing step will be discussed later in this section. Static

identity-based matching relies on the universal unique identifier (UUID). It assigns a UUID

to each model element and to newly created model elements. It assumes that the UUID is

non-volatile and persistent [Kolovos et al., 2009; Ohst et al., 2003; Treude et al., 2007]. That

is, the UUID is not modified after it has been assigned to a model element.

Static identity-based matching approach creates a correspondence between two model

elements if and only if they do have the same UUID. This approach has been adopted by

Alanen et al. who propose a framework that uses UUIDs to perform a difference and union

of models [Alanen and Porres, 2003]. In another work, Vernadat et al. also use UUIDs

in TOPCASED to perform matching [Vernadat et al., 2006]. Furthermore, Sriplakich et al.

performs a UUID based matching in ModelBus : An Open and Distributed Environment

for Model Driven Engineering [Sriplakich, 2007]. The matching technique is fast and it

has a time complexity of O(1) [Koegel et al., 2009c; Treude et al., 2007]. Furthermore, it

can find a match between model elements even though they have had fundamental changes

[Altmanninger et al., 2009]. But, it cannot be applied for tools that do not provide facilities

to manage UUIDs. Besides, it might not be suitable for models which are created inde-

pendently or refactored [Kolovos et al., 2009; Treude et al., 2007]. It might also produce

difference models with bad quality [Treude et al., 2007].

4.1 Management of Models 40

Signature-based matching dynamically computes the identity of model elements based

on values of their features [Kolovos et al., 2009; Reddy et al., 2005] and signature types

specified by a user. A signature type is a user defined function that specifies a subset of

properties of a model element. For example, these sub properties could be attributes and

association ends of a class diagram. This approach solves the limitation of static identity-

based matching approach. It does not need each model element to have a global unique

id. Hence, it seamlessly works with independently created and evolved models. But, this

approach requires users to specify signature type functions manually. For instance, Reddy

et al. use signature-based matching to perform model composition [Reddy et al., 2005].

Similarity-based matching uses heuristic search algorithms to find matches between two

(or three) versions of models based on the aggregate similarity of their contents and their

graph structure [Kolovos et al., 2009]. Unlike Signature-based matching approach that re-

turns a boolean result, this approach returns a real number, which represents an aggregated

similarity. But, it does not take the semantics of the language into consideration so that it

might produce less quality results [Kolovos et al., 2009]. Besides, a matching algorithm is

computationally expensive. In [Chawathe and Garcia-Molina, 1997; Koegel et al., 2009c;

Kolovos et al., 2009], authors argue that a model matching problem can be reduced to the

graph isomorphism problem, which is an NP-hard problem in its full generality. Most

of model matching approaches deal with the computational complexity by employing a

modeling language specific algorithm or providing an approximation of the exact solution

[Kolovos et al., 2009]. For instance, UMLDiff [Xing and Stroulia, 2005], DSMDiff [Lin

et al., 2007], SiDiff [Treude et al., 2007], Epsilon Comparison Language (ECL) [Kolovos

et al., 2006], and EMF Compare 3 use a heuristic-based matching algorithm to find corre-

spondences between two (three) versions of model.

Custom language-specific matching algorithm is a special type of similarity-based match-

ing that uses domain specific information and tailored to a specific modeling language

[Kolovos et al., 2009]. This approach considers the semantics of the modeling language

to create matches. As a consequence, it produces more accurate results and reduces the

3http://www.eclipse.org/emf/compare/

4.1 Management of Models 41

search space by avoiding unnecessary comparisons [Kolovos et al., 2009]. For instance, in

UML, this approach could use the domain specific knowledge of class diagram to compare

two operations. It only compares these operations if it find a match between two classes that

contain these operations. There is some work that employed this algorithm such as SiDiff

[Treude et al., 2007], Epsilon Comparison Language (ECL) [Kolovos et al., 2006], and EMF

Compare.

Some tools combine static identity-based matching approach with similarity-based match-

ing or custom language-specific matching algorithm. As stated in EMF Compare — Devel-

oper Guide 4, the default behavior of EMF compare finds matching between model elements

based on their identifiers, if model elements have identifiers. Afterwards, it uses a similarity-

based matching or a custom language-specific matching algorithm to find matches for model

elements that do not have identifiers. The approach could improve the accuracy of the match-

ing result and reduce the time complexity of the computation.

After the matching step, the differencing step starts by taking the matching results as

input and computes differences between two (or three) versions of models [Altmanninger

et al., 2009; Conradi and Westfechtel, 1997, 1998; Koegel et al., 2009c; Kolovos et al., 2009;

Lippe and van Oosterom, 1992b; Mens, 2002]. The difference between models can be rep-

resented as a model itself. In [Cicchetti et al., 2007], Cicchetti et al. propose a model-based,

minimalistic, transformative, compositional, and meta-model independent way to represent

differences between models. The comparison is performed in linear time, O(n), for n model

elements. Of course, the abstract syntax of software artifacts determines the type of com-

parison approaches to be used in order to generate matching and differences. For instance,

SVN [Pilato et al., 2008] and Git [Chacon, 2009] use a line-based comparison approach to

compare text files. Line-based comparison cannot handle multiple changes on the same line

[Altmanninger et al., 2009; Koegel et al., 2009c; Lippe and van Oosterom, 1992b; Mens,

2002]. Modifications of a model are structural changes and a single change in the model

could be reported as many lines of modification in the line-based comparison. Nguyen et

al. express this incongruity as impedance mismatch [Nguyen et al., 2005]. Therefore, line-

4http://www.eclipse.org/emf/compare/documentation/latest/user/user-guide.html

4.1 Management of Models 42

based comparison is not suitable for models that are graphs in nature [Altmanninger et al.,

2009; Barteit et al., 2009; Koegel et al., 2009c; Koshima and Englebert, 2014; Koshima

et al., 2013; Nguyen et al., 2005; Westfechtel, 2010].

Figure 4.1 is an example of EMF compare that performed a three-way comparison

among Petri net meta-models expressed using EMF/Ecore. The original version of the meta-

model is labeled “(1)” in the top part. The two modifications are visualized on the left and

right sub-sections of the diagram. They are labeled “(2)” and “(3)”, respectively. The figure

shows the matching and modifications among the three meta-models.

Figure 4.1 EMF Compare: Three-way comparison

Lessons Learned

State-based comparison makes the modeling tools independent from the version control

system [Altmanninger et al., 2009; Conradi and Westfechtel, 1997, 1998; Koegel et al.,

4.1 Management of Models 43

2009c; Lippe and van Oosterom, 1992b; Mens, 2002]. As a result, the modeling tools

are not required to observe or record changes while they occur. Independently developed

and re-engineered models can also be used without difficulty. Hence, users can work with

their choice of modeling tools. However, this technique cannot catch the time order of

changes that are important to understand modifications, conflict detection, and facilitate

merging process [Altmanninger et al., 2009; Koegel et al., 2009c; Lippe and van Oosterom,

1992b; Mens, 2002]. Besides, it might not derive the difference (delta) correctly and the

computational complexity of computing deltas (i.e. matching and differencing) is expensive,

specifically, if the model is large in size [Koegel et al., 2009c]. Furthermore, it is inadequate

to derive group of changes that occur together (i.e. refactoring operations). Moreover, it is

less obvious for users to review and understand modifications [Koegel et al., 2009c]. Last

but not least, it is not possible to attach rationale of modifications to specific changes that

evolve models, rather, change requests and rationale of modifications are attached to the

final state of a model. Hence, users have to map the final state of a model to the rationale of

modifications and the change requests manually.

4.1.1.2 Change-based Comparison

Unlike state-based comparison that ignores edit operations and only considers the end-

result, change-based comparison keeps track of changes performed on software artifacts

(i.e., models and meta-models) [Altmanninger et al., 2009; Asklund, 1994a,b; Conradi and

Westfechtel, 1997, 1998; Koegel et al., 2009c; Lippe and van Oosterom, 1992b; Mens, 2002].

Changes are treated as first class concepts [Koegel et al., 2009c]. In [Conradi and Westfech-

tel, 1998; Mens, 2002], authors classify change-based approach into intensional and exten-

sional versioning. Extensional change-based versioning approach uniquely identifies each

version and annotates it with deltas (a sequence of change operations) relative to another

version (base-line). Deltas specify differences between two versions and they are used to

re-construct previous versions. This approach uses deltas as a documentation, hence, it is

called a change package [Conradi and Westfechtel, 1998].

4.1 Management of Models 44

Asklund et al. develop a collaborative software development environment that embeds

backward deltas so as to represent changes between two versions of a hierarchical structured

document [Asklund, 1994a,b; Magnusson et al., 1993a,b]. The collaborative software de-

velopment environment provides facilities for users to consult a revision graph (deltas) and

re-construct previous versions. Deltas help users to know the current status of a hierarchical

structured document and to identify a person who performed changes. In other work, Rho

et al. also use a change package approach to specify deltas between two versions of graphs

[Rho and Wu, 1998]. In [Steinberg et al., 2009], EMF framework also adopts a change

package (i.e., change model) to store backward deltas for each modifications and it employs

these backward deltas to perform undo operations.

Intensional change-based versioning lets changes to be assembled freely and indepen-

dently of a version on which they are going to be applied [Conradi and Westfechtel, 1998;

Mens, 2002]. This approach is flexible and helps to automatically construct different ver-

sions based on a set of change operations. In [Mens, 2002], the author refers this approach as

change set model. Intensional change-based versioning could be used for parallel software

development and versiong, and software maintenance [Mens, 2002].

Operation-based comparison is a special type of change-based comparison [Altman-

ninger et al., 2009; Conradi and Westfechtel, 1997, 1998; Koegel et al., 2009c; Lippe and

van Oosterom, 1992b; Mens, 2002] that depends on Intensional change-based versioning

[Conradi and Westfechtel, 1997, 1998; Mens, 2002]. It represents deltas as a sequence of

change-operations [Altmanninger et al., 2009; Conradi and Westfechtel, 1997, 1998; Koegel

et al., 2009c; Lippe and van Oosterom, 1992b; Mens, 2002]. So that, there is no need to

perform differencing activity because deltas are already identified [Koegel et al., 2009c]. A

set of operations are applied to the base version, V0, so as to obtain a new version V1. Com-

plex operations (i.e. refactoring operations, transactions) can also be used to describe deltas

[Altmanninger et al., 2009].

On the contrary to state-based comparison, operation-based comparison captures the

exact time sequence of modifications [Altmanninger et al., 2009; Asklund, 1994a,b; Conradi

and Westfechtel, 1997, 1998; Ignat and Norrie, 2004; Koegel et al., 2009c; Lippe and van

4.1 Management of Models 45

Oosterom, 1992b; Mens, 2002]. These traces of modifications could be helpful for users

to understand changes and to keep the intention of another user who performed changes

[Koegel et al., 2009c]. Besides, these change operations are used to detect conflicts and

merge concurrently edited models [Altmanninger et al., 2009; Lippe and van Oosterom,

1992b; Mens, 2002]. On the top of that, this technique can capture refactoring or complex

operations in the same context [Altmanninger et al., 2009; Koegel et al., 2009c; Mens, 2002].

Change operations can be annotated with multimedia files that describe the rationale of

modifications [Koshima et al., 2011, 2013]. In addition, it is possible to explicitly associate

change requests with a set of change operations (or composite operations) that implement

the proposed modifications [Conradi and Westfechtel, 1998].

According to Koegel et. al. [Koegel et al., 2009c], changes are more easily reviewed and

understood by users in operation-based comparison than state-based comparison. More-

over, operation-based comparison is more general than state based-comparison [Lippe and

van Oosterom, 1992b]. In fact, one can use operation-based comparison to perform every

possible operations that can be applied on state-based comparison by ignoring the stored

extra information [Koegel et al., 2009c]. However, this approach has a limitation that neces-

sitates a high coupling between modeling tools and change recorder [Altmanninger et al.,

2009; Koegel et al., 2009c]. Like state based-comparison, operation-based comparison also

needs to take into account the abstract syntax of software artifacts to capture edit operations.

For instance, FORCE [Shen and Sun, 2002] is a flexible operation-based revision control

environment that represents documents linearly; it does not keep in mind the abstract syntax

of the software artifacts. Hence, FORCE is suitable for text documents, but it is insufficient

to capture edit operations of tree or graph-based artifacts.

There are few operation based work that relies on the abstract syntax of software artifacts.

For instance, Asklund et al. develop a collaborative software development environment for a

hierarchically structured documents [Asklund, 1994a,b]. Ignat et al. also propose a flexible

way to collaboratively edit XML documents [Ignat and Norrie, 2006]. In addition, Ignat et

al. proposed a graphical editing framework for graph-based documents [Ignat and Norrie,

2004]. Furthermore, COPE/Edapt [Herrmannsdoerfer, 2009], D-Praxis [Mougenot et al.,

4.1 Management of Models 46

2009], and EMFStore [Koegel and Helming, 2010] are operation-based approaches that

capture edit operations of graph-based software artifacts.

Lessons Learned

Operation-based comparison stores additional information (i.e., exact time sequence of

modifications, complex operations, and rationale of modifications attached to changes) that

is not available in the state-based comparison [Altmanninger et al., 2009; Asklund, 1994a,b;

Conradi and Westfechtel, 1997, 1998; Ignat and Norrie, 2004; Koegel et al., 2009c; Koshima

and Englebert, 2014; Koshima et al., 2011, 2013; Lippe and van Oosterom, 1992b; Mens,

2002]. It keeps traces of changes whenever they occur, hence, there is no need to calculate

deltas [Koegel et al., 2009c]. This information is helpful to resolve conflicts, understand

modifications, and preserve intention of operations. Operation-based comparison performs

better than state-based comparison for large size models [Ignat and Norrie, 2004; Koegel

et al., 2009c]. However, this technique requires tight coupling between modeling tools and

change recorder. Besides, it cannot identified and match concurrently created equivalent

concepts. For instance, user1 and user2 simultaneously create two attributes called token

of type Integer in both Node and State classes in Figure 4.2. Although it creates matching

between Node and State based on their unique identifier, it fails to create a mapping be-

tween two attributes named token. Hence, some work combine state-based comparison and

operation-based comparison in order to benefit from the strongest side of the two worlds.

This could improve conflict detection and merging. For instance, Brosch et al. [Brosch et al.,

2009b] and Barrett et al. [Barrett, 2011] combine both model comparison approaches.

4.1.2 Conflict Detection

As discussed in Section 1.1 of Chapter 1, the main premise of the optimistic approach is

that it encourages users to work independently and to synchronize their local work with

other members later. In this approach, conflict detection and reconciliation are indispens-

able activities so as to facilitate collaborative work. In [Klein, 1991; Klein and Lu, 1989],

Klein classifies conflicts into competitive conflict and cooperative conflict. A competitive

4.1 Management of Models 47

Figure 4.2 Three-way merge tool

conflict arises when each member of a group only thinks in terms of his/her own benefits

rather than achieving a common objective of the group. Competitive conflict are difficult

to resolve, since members are not willing to find a compromise solution that does not add

personal benefit to them. On the other hand, a cooperative conflict occurs between a group

of users who are collaboratively working to achieve a common goal. Users are willing to

compromise less important goals and to find a mutual solution that satisfies their common

goal. This PhD work only focuses on detecting and resolving cooperative conflicts.

A cooperative conflict is a common type of conflict that rises in the cooperative work.

It occurs as a result of conflicting concurrent modifications (or overlapping changes) that

cause inconsistent software artifacts [Altmanninger et al., 2009; Conradi and Westfechtel,

1998; Koegel et al., 2009a, 2010; Mens, 2002]. For example, two users concurrently modify

4.1 Management of Models 48

models locally and synchronize their activities later. In fact, their local modifications might

conflicting each other, as a result, it might not be possible to merge their local modifications.

Conflicting modifications might result in different models depending on the order of appli-

cation of conflicting changes (e.g. renaming the same class differently). Besides, applying

one of the conflicting modification could violate the preconditions of the other modification,

as a consequence, it is not possible to consolidate into the new version. These conflicts are

refereed in the sequel as merge conflicts or merge inconsistency [Altmanninger et al., 2009;

Mens, 2002]. Hence, these conflicting changes need to be identified and resolved so as to

merge conflicting versions of software artifacts.

Mens classifies merge conflicts into textual, syntactic, and semantic conflicts [Mens,

2002]. Textual conflicts are detected between two or more text documents that are compared

using line-based comparison technique [Altmanninger et al., 2009; Mens, 2002]. Because

line-based comparison technique is too coarse-grained, it cannot handle concurrent modifi-

cations performed on the same-line of a text document [Altmanninger et al., 2009; Mens,

2002]. As a consequence, it might raise wrong textual conflicts. For example, suppose two

users, Alice and Bob, are concurrently editing a text document and they have started from

the base version that contains one line of text “Model Everything” 5. Afterwards, Bob adds

an exclamation mark at the end of the text (“Model Everything!”), whereas Alice adds a

new word “Explicitly” at the end of the text as well (“Model Everything Explicitly”). These

changes are not conflicting syntactically so that they can be consolidated together in the

merged document that contains a line “Model Everything Explicitly!”, however, the line-

based merging raises conflicting flags.

Line-based comparison cannot capture semantic conflicts so that the merged result might

not be semantically correct. For instance, Alice and Bob start editing a text document

that contains one line of text “I saw Henry”. Thereafter, Alice modifies the text to “I saw

Henry with a beautiful lady” and Bob also evolves the text document to “I saw Henry in a

bathroom”. The merged text could be like “I saw Henry with a beautiful lady in a bathroom”.

The merge result is syntactically correct, but it might not reflect the intentions of Alice and

5“Model Everything Explicitly” is the motto of Hans Vangheluwe to advocate modeling of everything
explicitly [Vangheluwe et al., 2007]

4.1 Management of Models 49

Bob (semantically incorrect). Therefore, the semantics of the software artifacts should be

taken into consideration in order to produce a correct merged result. However, such type of

semantics are difficult to capture and they reside in the users mind most of the time.

The granularity of the comparison might vary like a line of text, a paragraph, a sentence,

a word, or a character [Altmanninger et al., 2009]. Selecting the right level of granularity

could improve the result of conflict detection. Line-based merging technique is efficient,

scalable, and provides satisfactory results [Altmanninger et al., 2009; Mens, 2002]. As a

consequence, it is widely used and adopted technique by many version control systems such

as Git [Chacon, 2009], SVN [Pilato et al., 2008], and CVS [Vesperman, 2006]. However,

the textual merging fails to identify all conflicts, because it does not consider the syntax

and semantics of software artifacts [Altmanninger et al., 2009; Mens, 2002]. For example,

models are graph in nature and they have syntax and semantics that cannot be captured by

text.

Syntactic conflicts are identified by analyzing the syntax and structure (i.e., tree or graph

structure) of software artifacts [Altmanninger et al., 2009; Mens, 2002]. Syntactic merging

raises merge conflicts if a merged result of concurrent modifications violates the abstract

syntax of the language used to define the artifact [Altmanninger et al., 2009; Estublier et al.,

2005; Mens, 2002]. This conflict detection approach gives a better result than the textual

merging, because it considers the syntax of an artifact to compute conflicts [Altmanninger

et al., 2009; Buffenbarger, 1995; Estublier et al., 2005; Mens, 2002; Westfechtel, 1991].

Syntactic conflict detection requires domain-specific information about the syntax of the

language (abstract syntax) so as to identify conflicts [Altmanninger et al., 2009; Buffen-

barger, 1995; Westfechtel, 1991]. For example, changing the order of attributes (properties)

of a UML class does not cause any syntactic conflict, but textual merging could raise merge

conflicts. The second example is that the EMF/Ecore meta-model specifies every ERefer-

ence must have a type value assigned to an EClass. If a merged result generates a dangling

reference (a reference which have a null value as a type), then it violates the constraints

specified by the abstract syntax. Hence, the merge tool detects syntactic conflicts.

4.1 Management of Models 50

Composite operations (which are composed of atomic operations) can be used to rep-

resent refactoring or restructuring modifications performed on software artifacts [Altman-

ninger et al., 2009; Mens, 2002]. Fowler [Fowler, 1999] describes refactoring as “a change

made to the internal structure of software to make it easier to understand and cheaper to

modify without changing its observable behavior”. Concurrently executed refactoring oper-

ations on a software artifact by different users might lead to syntactic conflicts even though

the changes are semantically equivalent [Altmanninger et al., 2009; Mens, 2002]. For in-

stance, a pair of refactoring operations that are applied on the same variable such as move a

variable to a super-class and encapsulate a variable are conflicting. In [Mens, 2002], Mens

refers such type of conflicts as structural merge conflicts. In another work, Altmanninger et

al. consider such conflicts as syntactic conflicts. We also use the term syntactic conflicts to

refer this type of conflicts.

Some work has been done in the past to detect syntactic conflicts between composite

operations. For instance, Cicchetti et al. use a model-based pattern language to specify and

detect conflicts between composite operations [Cicchetti et al., 2008a]. Brosch et al. also

employ a language-specific information and refactoring operations to detect syntactic con-

flicts and improve the merge results [Brosch et al., 2009b]. Besides, Koegel et al. present a

conflict detection mechanism between composite changes in EMFStore framework [Koegel

et al., 2010]. Furthermore, Mens et. al. apply graph transformation and critical pair analysis

to detect conflicts in refactoring [Mens et al., 2005b, 2006].

Syntactic conflicts do not take the semantics of the language into account while detect-

ing conflicts, as a result, some conflicts could be hidden and undetected. Changes made

by independent developers could be syntactically correct and semantically incorrect at the

same time. In [Altmanninger et al., 2009; Mens, 2002], authors classify semantic conflicts

into static semantic conflicts and behavioral semantic conflicts. Static semantic conflicts

are conflicts that violate the constraints of the language. Concurrent modifications might in-

terfere with each other and produce semantically inconsistent merge result. [Altmanninger

et al., 2009; Mens, 2002]. Static semantics of the models can be specified using Object

Constraint Language (OCL) [Warmer and Kleppe, 2003], afterwards, the models are evalu-

4.1 Management of Models 51

ated for conformance. For example, one of the static semantics specified an EClass, which

is specified by the EMF/Ecore meta-meta-model, is that each class must have a name and

there must be at most one class with a given name in the same package. Any class without

name or classes that have the same name in the same package are reported as violating the

constraints.

Altmanninger et al. perform a semantic mapping between a modeling language and

a semantic domain [Altmanninger et al., 2010]. Model transformations are employed to

transform instance models into another models conform to the meta-model of the semantic

domain. Subsequently, the new models are analyzed to detect static semantic conflict. In

another work, Saeki et al. use ontology and reasoners to detect semantic inconsistencies in

models and meta-models [Saeki and Kaiya, 2006].

Behavioral semantic conflicts occur in software artifacts that have execution semantics.

This conflict can be detected by analyzing the execution behavior of the software artifacts

during the runtime. These types of semantic conflicts could occur in concurrent develop-

ment of software artifacts, specifically, the merge result of two versions might produce

unexpected results. For instance, a net salary calculation depends on income tax rate and

social security contribution. If one user modifies the income tax rate and social security and

another user uses these values to calculate the net income concurrently, then this might lead

to behavioral semantic conflicts. Mens uses a conditional graph rewriting approach to de-

tect behavioral semantic conflict [Mens, 1999a]. Maoz et al. develop an ADDiff framework

that transforms activity diagrams into finite automata and analyze the traces to detect behav-

ioral semantic conflicts [Maoz et al., 2011]. In the past, some work has been done to detect

behavioral semantic conflicts by using different techniques such as denotational semantics,

program slicing and dependency graph [Altmanninger et al., 2009; Mens, 2002].

Taentzer et al. classify conflict detection techniques into state-based conflict detection

and operation-based conflict detection [Taentzer et al., 2010]. State-based conflict detec-

tion validates the well-formedness of the merging result of concurrently modified artifacts

against a set of constraints [Taentzer et al., 2010]. Operation-based conflict detection iden-

tifies conflicts by analyzing change operations that have been modified the same part of an

4.1 Management of Models 52

artifact [Altmanninger et al., 2009; Mens, 2002; Taentzer et al., 2010]. It uses conflict tables

and conflict sets to detect conflicts [Mens, 2002]. Alanen et al. apply a conflict table to de-

tect syntactic conflicts between pair of modifications of models [Alanen and Porres, 2003].

In [Koegel et al., 2010; Koshima and Englebert, 2014], authors use conflict sets to detect

syntactic conflicts between concurrent modifications of EMF models. Taentzer et al. adopt

graph transformations and critical pair analysis to detect operation-based conflicts [Taentzer

et al., 2010]. As discussed in Section 4.1.1.2, operations capture sequence of edit operations

performed by users. These sequence of operations are traces of execution and they can be

used to detect static semantic conflicts as well. For instance, the sequence might represent

operational semantic of a statechart or Petri net model.

Cicchetti et al. use a difference model to represent a delta between two subsequent ver-

sions [Cicchetti et al., 2008a]. They firstly compute differences between two versions by

employing model comparison and differencing activities, afterwards, the delta is expressed

using Added, Deleted, and Changed operations in the difference model. The difference mod-

els that represent concurrent modifications can also be used to detect conflicts. Indeed, the

Added, Deleted, and Changed operations are analyzed to identify overlapping modifications.

Since the operations are used to identify conflicts, this type of conflict detection approach

can also be regarded as operation-based conflict detection.

Eclipse validation framework employs a state-based conflict detection technique to check

the consistency of EMF instance models [Steinberg et al., 2009]. EMF-IncQuery applies a

rule based pattern language on state of EMF instance models so as to detect constrain viola-

tion [Bergmann et al., 2011]. Taentzer et al. use graph conditions and graph constraints to

detect state based constraints resulted from graph modifications.

Lessons Learned

Conflict detection is a corner stone for the realization of optimistic collaborative work. Con-

currently modified software artifacts could raise different types of conflicts such as textual,

syntactic, static semantic and behavioral semantic conflicts. Textual conflict detection ap-

proach is widely used for its simplicity and generality (tool and platform independent) [Alt-

4.1 Management of Models 53

manninger et al., 2009]. It does not take the syntax of the language into account so as to

detect conflicts, as a result, it is not suitable for collaborative modeling. On the other hand,

syntactic merging relies on the underlying structure of software artifacts to identify con-

flicts. It verifies the well-formedness of an instance model with respect to its meta-model.

However, syntactic merging approach gives a false negative result due to its limitation to

identify semantic conflicts. Semantic conflicts could be static semantic conflicts and behav-

ioral semantics. Static semantic conflicts can be expressed using OCL or pattern languages

and instance models are evaluated to verify their consistency against constraints. Behavioral

semantic conflicts leads to unexpected behavior of the program or the model during runtime.

These conflicts are identified using denotational semantic, program slicing and dependency

graph [Altmanninger et al., 2009; Mens, 2002].

4.1.3 Conflict Resolution

Conflict resolution is a reconciliation phase that resolves conflicts identified using the meth-

ods discussed above. It is a critical requirement to merge two conflicting versions of models

into a new version and also to ensure collaborative work in general. In [Klein and Lu, 1989],

Klein classifies the conflict resolution work into a computational model conflict resolution

and a model of human conflict resolution. The computational model conflict resolution pro-

vides a technical solution to reconcile merge conflicts, but it gives less emphasis on human

conflict resolution behavior (i.e., group consensus, group interaction).

4.1.3.1 Computational model conflict resolution

Conflict resolution is usually done manually, but this process is time consuming and error

prone to deal with large and complex models [Altmanninger et al., 2009; Mens, 2002]. Due

to this, a tool support is required to assist users in reconciliation tasks. Different techniques

that provide computational model conflict resolution are categorized into automization, con-

flict dependencies, and recommendations [Altmanninger et al., 2009]. An automization can

be a semi-automatic conflict resolution or an automatic conflict resolution.

4.1 Management of Models 54

Automatic conflict resolution fully automates conflict reconciliation process [Altman-

ninger et al., 2009; Mens, 2002]. It detects and resolves conflicts automatically using dif-

ferent strategies. For instance, in multi-agent systems, autonomous agents resolve conflicts

automatically [Emami and Narimanifar, 2012]. Wollkind et al. propose automated conflict

resolution for air traffic management based on the negotiation model of multi-agent systems

[Steven Wollkind, 2004]. Autonomous agents use a monotonic concession protocol to ne-

gotiate and find a middle ground, which can be agreed upon by all agents. In a monotonic

concession protocol, each agent makes an initial proposal that is beneficiary for himself

or herself, afterwards, s/he incrementally revises and compromises her/his earlier proposal

to find a solution that is agreed by all agents [Endriss, 2006]. Edward proposes a promo-

tion strategy that automatically resolves conflicts in collaborative applications. This strat-

egy changes the order of sequences of operations in order to reduce dependencies among

change operations and avoid conflicts. It promotes operations that depend on the previous

operations into new operations that do not have any dependency on the earlier once. The

promotion strategy may not be applicable in different situations [Edwards, 1997]. In [Badr,

2002], Badr et al. present a service-oriented conflict resolution control architecture that

reconciles conflicts automatically in self-adaptive software.

Munson et al. [Munson and Dewan, 1994] present a flexible automatic three-way object

merging framework using different merge policies. The merge policies are defined based on

specific applications and collaboration contexts. In the context of model driven engineering,

Mougenot et.el. propose a peer-to-peer collaborative model editing framework called D-

Praxis [Mougenot et al., 2009]. D-Praxis resolves conflicts automatically based on delete

semantics and Lamport’s clock [Lamport, 1978]. For instance, if two operations are in

conflict, then it keeps the recent operation and cancels the earlier operation, unless the earlier

operation is a delete operation. This could result in lost-update problems meaning that

changes performed by a user can be overwritten due to changes of the other user without

his/her consent. Besides, the merged result might not reflect the intention of developers.

Automatic conflict resolution is not applicable in most situations, because conflict detection

and resolution is an intuitive process and domain specific [Altmanninger et al., 2009].

4.1 Management of Models 55

Semi-automatic conflict resolution provides facilities to resolve conflicts interactively

[Altmanninger et al., 2009; Lippe and van Oosterom, 1992b; Mens, 2002]. There is a great

deal of work that adopts the interactive conflict resolution approach. Mens et al. propose an

approach to automate detection and resolution of model inconsistencies using graph transfor-

mation and dependency analysis [Mens et al., 2006]. The authors use graph transformation

rules to express conflicts detection and resolutions. Besides, they apply a critical pair anal-

ysis to identify the potential dependencies between conflict detection and resolutions. This

is because the resolution of one model inconsistency could cause new inconsistencies.

In [Edwards, 1997; Mens and Van Der Straeten, 2007], the authors present an interactive

conflict resolution strategy called recursive acceptance strategy to reconcile conflicts in

collaborative software applications. In this strategy, a user reconciles conflicting changes

interactively and s/he removes either of conflicting operations in iterative fashion, until there

is no conflict left. The authors also use a conflict tolerance strategy, which tolerates some

type of conflicts. Hence, recursive acceptance strategy iterates until there is no conflict or

the existing conflicts are tolerable conflicts. In [Sattler et al., 2003], Sattler et al. present an

approach that interactively detects and resolves conflicts at the schema level and instance

level in federated database.

Lippe et al. propose a semi-automatic conflict reconciliation approach that assist users in

resolving conflicts interactively [Lippe and van Oosterom, 1992b]. SVN [Pilato et al., 2008],

Git [Chacon, 2009], and CVS [Grune, 1986; Grune et al., 1989] are line-based versioning

tools that provide interactive conflict reconciliation facilities. In the context of modeling,

Saeki [Saeki, 2006], Saeki et al [Saeki and Oda, 2005], Brosch [Brosch, 2009], Bartelt

[Bartelt, 2008], Sriplakich et al. [Sriplakich et al., 2006], Oda et al. [Oda and Saeki, 2005],

Odyssey-VCS [Oliveira et al., 2005], CoObRA [Schneider et al., 2004], AMOR [Altman-

ninger et al., 2008], EMF Compare 6, and EMFStore [Koegel and Helming, 2010] present

approaches that support interactive reconciliation facilities for conflicting versions of mod-

els. These interactive reconciliation tools return conflicts, and use icons and colors to high-

light conflicts so that the user can resolve conflicts interactively.

6http://www.eclipse.org/emf/compare/

4.1 Management of Models 56

Some semi-automatic reconciliation techniques provide recommendation to resolve con-

flicts. For instance, the explosion strategy automatically explores all possible valid solutions

that avoid conflicts, afterwards, it lets the user to select an appropriate solution. But, this

approach is computationally expensive and not scalable [Mens, 2002]. In [Brosch, 2009],

Brosch proposes a generic framework that guides the reconciliation process of model ver-

sioning by suggesting different resolution strategies. Zimmermann et al. apply data mining

techniques [Han, 2005] to version histories to guide the software development process [Zim-

mermann et al., 2004b]. This tool recommends possible changes that need to be performed,

and it shows warning messages for missing changes.

The merge tools should not display all conflicts to users in order to resolve conflicts

interactively. Although semi-automatic conflict resolution is helpful in guiding the reconcil-

iation process, it becomes tedious for the user to interactively resolve all detected conflicts.

As a consequence, most versioning tools support both automatic and semi-automatic conflict

reconciliation approaches. Edwards [Edwards, 1997] proposes a framework that provides

both automatic and semi-automatic conflict reconciliation as discussed above. EMFStore

[Koegel and Helming, 2010] also provides such a facility and it classifies conflicts based on

their severity level as hard conflicts and soft conflicts. Hard conflicts occur when conflicting

changes that cannot be applied on the model without losing the intention of the user [Koegel

et al., 2010]. For example, a delete operation and an update operation result in a hard con-

flict. Hence, there is a need for users interaction and EMFStore provides a semi-automatic

conflict resolution facility for hard conflicts. Whereas soft conflicts imply a set of conflict-

ing changes that cause inconsistencies, but they can be applied to the model without loss of

the intention of the users. For example, adding two different elements into a multi-valued

feature adds the two elements, but indexes (positions) of the elements in the list depend

on the serialization of the operations. EMFStore uses default or user defined strategies to

resolve soft conflicts automatically.

Conflict tolerance is sometimes necessary in some specific situations [Mens, 2002], for

example, at the early stage of development of a system, the requirements of the system

are not clear enough and users might have limited understanding about the system as well,

4.1 Management of Models 57

hence, s/he might want to tolerate some set of conflicts. Therefore, the collaborative devel-

opment tools should provide facilities to relax conflict detection and reconciliation process.

Edwards proposes a conflict tolerance technique in collaborative software applications [Ed-

wards, 1997].

Lessons Learned

Conflict reconciliation is an important activity to ensure model merging in particular and

collaborative modeling in general. The manual conflict resolution approach is time consum-

ing and error prone [Altmanninger et al., 2009; Mens, 2002]. On the other hand, the au-

tomatic conflict reconciliation approach automatically resolves conflicts based on different

strategies. But this approach is not applicable in most situations due to the fact that con-

flict resolution is a domain specific activity. The semi-automatic conflict approach resolves

conflicts interactively by asking users to encode domain knowledge. This approach is more

suitable for collaborative software development (modeling) compared with the above two

conflict resolution techniques.

4.1.3.2 Model of human conflict resolution

Much of the work on human conflict resolutions is dealing with competitive conflicts as

well as psychology of human participants, who have high-level cognitive skills [Klein and

Lu, 1989]. The psychological aspect of the participants and high-level cognitive skills are

abstractions that are difficult to encode into machine-based design agents. In addition, as

stated above, we are interested in cooperative conflicts that commonly occur during collab-

orative modeling. In this model, interactions among all concerned members of the collab-

orative group should be taken into account in order to identify and resolve conflicts (build

group consensus). However, most collaborative development tools adopt a “checkout” →
“modify” → “merge” workflow. This workflow puts all the burdens of conflict detection, rec-

onciliation, and merging tasks on a single user who commits lastly. Barteit et. al. [Barteit

et al., 2009] state conflict reconciliation tasks are too complex for a single user to merge

inconsistent models. The user might wrongly understand intentions of other modelers, who

4.1 Management of Models 58

performed changes that were already committed to the repository. As a consequence, the

integrated model might be inconsistent, hence, there is a strong need to participate other

members during conflict reconciliation process.

Consensus building, voting, and leadership are different human conflict resolution ap-

proaches that are adopted by a wide range of disciplines [Michigan State University, 2007].

In case of conflicts, a decision has to be made to accept one and reject the other solution,

or a compromise will be made to find an acceptable solution by all members. A consensus

building approach takes concerns and ideas of all members in order to reach an agreement

[Bressen, 2007]. This approach creates unity among members of a group rather than com-

petition and polarizing effects (winner/loser). Moreover, the decision can be effectively

implemented, because members are motivated to apply decisions that consider their inputs.

Besides, this approach produces higher quality decisions, which integrate the wisdom of

more people. However, this approach is time consuming, since it needs too much time

and efforts to create consensus (agreement) among all members of the group. Besides, one

member of a group could potentially block the whole reconciliation process. Hence, this

approach could not be suitable for collaborative modeling, where decisions are made a lot

of times throughout the development process.

Voting is one of a decision making approach, where users vote on conflicting decisions

and the majority wins. This approach is faster than the consensus building approach to

make decisions [Bressen, 2007]. However, voting creates friction and competition among

members of the group due to the fact that the minority of the group are always overruled

by the majority, regardless of the quality of their contributions. In collaborative modeling,

users have different expertise and domain knowledge so that the minority of users might

contribute a better proposal than the majority. But, the voting approach compromise the

quality of the decision (solution). In [Michigan State University, 2007], the use of voting

approach is discouraged for making decisions that are so important. Hence, the voting

approach could not be suitable for collaborative modeling. COMA [Rittgen, 2008] and

Collaboro [Cánovas Izquierdo and Cabot, 2012] are collaborative modeling tools that adopt

voting technique to resolve conflicts.

4.1 Management of Models 59

Leader based decision making approach is usually fast compared with voting and con-

sensus building techniques [Michigan State University, 2007]. Indeed, a leader of a group

should consult and take inputs from other members to make a decision. This improves the

quality of the solution and ensures effective collaboration. COMA [Rittgen, 2008] adopts

a leader based decision making approach, specifically, it uses a seniority rule to facilitate

the decision. Only the senior member of the group can make the decision during conflicting

modifications of models, but other members can indirectly influence the decision by com-

municating their concerns and ideas. Since the leader based decision making process is fast

and taking the seniority level of the user into consideration, it is suitable for collaborative

modeling that has users with different expertise and domain knowledge.

Lessons Learned

A human conflict resolution approach, which is based on consensus building, produces so-

lutions of good quality in their realization and increases members participation. Besides, it

creates unity among member of the group. However, it takes too much time and one mem-

ber of the group can veto the whole reconciliation process. As a result, it might not be a

suitable approach for collaborative modeling, which has a series of decision making stages

throughout the development life cycle. On the other hand, voting is fast, but it produces less

quality results. Leader based reconciliation approach is faster than the two decision making

approaches such as consensus building and voting. Moreover, it takes the seniority of the

user into account, hence, it is a convenient approach for collaborative modeling.

4.1.4 Model Merging

Merging is a process of integrating concurrently edited software artifacts such as models

into a new version of model. In [Altmanninger et al., 2009; Conradi and Westfechtel, 1998;

Mens, 2002; Westfechtel, 1991; Wuu, 1994], authors classify merging into three categories

such as raw merge, two-way merge, or three-way merge. Raw merge is a naive approach

that combines change operations performed by two modelers sequentially. Sequential appli-

cation of change operations could lead to conflicts. For example, suppose one user deletes

4.1 Management of Models 60

a model element, while another user renames the same model element. In raw merging, if

we apply the delete operation followed by the update operation, then the conflict will be

raised. Besides, this approach is susceptible to the “lost-update” problem, the previous mod-

ifications are lost as a result of recent modifications. The merged model does not reflect the

intention of the users, therefore, this approach is not suitable for collaborative modeling.

Two-way merge compares two concurrently modified models and integrates them into

a new version [Altmanninger et al., 2009; Conradi and Westfechtel, 1998; Mens, 2002;

Westfechtel, 1991]. This merging technique does not consider the ancestor model during

comparison phase, as a consequence, it is impossible to differentiate the modified model

elements in the two versions. In addition, there is not enough information to know whether a

new model element is created or deleted in these versions. Indeed, this information is crucial

for conflict detection and reconciliation. Hence, the quality of the merged model might

not be good. Therefore, this merging technique is not a good candidate for collaborative

modeling.

Like the two-way merge, three-way merge compares two versions (i.e. models) in order

to integrate them into a new version [Altmanninger et al., 2009; Conradi and Westfechtel,

1998; Mens, 2002; Westfechtel, 1991]. But, it also considers the base version (i.e. ancestor

model) to calculate deltas. The common ancestor helps to identify edit operations between

two versions of models more precisely. Moreover, this merging technique provides a better

conflict detection facilities, as a result, the merged result has a better quality. In general,

this merging technique mitigates the aforementioned drawbacks of two-way merge so that it

gives a better result. Hence, it is widely adopted technique in collaborative software devel-

opment and collaborative modeling. For example, EMF Compare, EMFStore [Koegel and

Helming, 2010], and AMOR [Altmanninger et al., 2008] support three-way model merging.

Based on the underlying model comparison approach, merging technique can be clas-

sified into textual, syntactic, semantic, or structural merging [Buffenbarger, 1995; Mens,

2002]. Textual merging relies on text-based comparison, whereas syntactic merging uses

syntactic model comparison. The semantic and structural merging techniques adopts se-

mantic and structural comparison approaches, respectively. The reader can consult Section

4.1 Management of Models 61

4.1.1 for detailed descriptions about textual, syntactic, semantic, and structural comparisons.

In [Ignat and Norrie, 2004; Kessentini et al., 2013; Lippe and van Oosterom, 1992b; Man-

soor et al., 2015; Mens, 2002], the authors categorize merging techniques into state-based

merging and change-based merging approaches. State-based and change-based merging

techniques employ state-based comparison and change-based comparison, respectively.

Mansoor et al. and Kessentini et al. consider model merging as an optimization problem,

and they apply search-based model merging techniques to produce a tentative merged model.

The authors use genetic algorithm [Goldberg, 1989] as a global heuristic search technique

[Kessentini et al., 2013; Mansoor et al., 2015]. However, we adopt the first classification

(i.e., raw merge, two-way merge, and three-way merge) in this work.

Lessons Learned

Raw and two-way merge techniques do not ensure a good quality for the integrated model,

therefore, they are not convenient approaches for collaborative modeling. In contrast, three-

way merge derives more accurate deltas and identifies conflicts that cannot be captured

by the previous ones. As a result, the quality of the merged result improves. Therefore,

collaborative modeling tools and techniques should adopt the three-way merge to ensure

better qualities of work.

4.1.5 Model Versioning

Model versioning is a crucial activity to manage the history of model evolution and to ensure

collaborative modeling [Conradi and Westfechtel, 1997, 1998; Roebuck, 2011]. In [Conradi

and Westfechtel, 1997, 1998], the authors use a version model which specifies software ar-

tifacts to be versioned and the organization of versions. Each version is uniquely identified

in the version model. The version model also describes a sequence of operations that are

necessary to construct a new version or to recover existing versions. The authors also clas-

sify the version model into product space and version space. The product space merely

describes models (model elements and their structural relationship) without taking version-

ing into account. Of course, it assumes there exists only one version of the model. The

4.1 Management of Models 62

models should be uniquely identified in the product space using either user defined unique

identifiers or system-generated unique identifiers. A coarse-grained model identification al-

locates a unique identifier to each model in the product space. In contrast, a fine-grained

model identification uniquely identifies each model element in the product space.

Version space defines all versions and their relationships [Conradi and Westfechtel, 1997,

1998; Langer, 2011]. A version is defined by a tuple, υ = (ps,vs), where ps and vs represent

a state of a model in the product space and a specific point in the version space, respectively

[Conradi and Westfechtel, 1997, 1998]. The point in the version space corresponds to a spe-

cific point in the development time-line. Versions can be further decomposed into revisions

and variants. The variant is one of the variability of the models that co-exist in parallel,

whereas a revision represents the evolution of a variant overtime [Conradi and Westfechtel,

1997, 1998; Seiwald, 1996]. Like software artifacts, versions should be also distinguished

using unique identifiers.

A delta specifies the relationship between two versions, specifically, it represents the

differences between these versions. Conradi et al. identify two types of deltas such as

symmetric delta and directed delta [Conradi and Westfechtel, 1997, 1998]. The symmetric

delta denotes differences between the state of two versions, this delta is derived using state-

based comparison technique, (υ1\υ2 ∪ υ2\υ1). In contrast, the directed delta represents

a sequence of edit operations that adapt models from one version (υ1) to another version

(υ2). For instance, EMFStore employs the directed delta technique to capture differences

between two versions.

Conradi et al. classify versioning into extensional and intensional versioning [Conradi

and Westfechtel, 1997, 1998]. In extensional versioning, each version is explicitly defined

and has been sequentially checked-in to the version control system. Extensional versioning

retrieves a specific version using its version identifier, afterwards, it apply changes to the

retrieved version so as to reconstruct one of the previously created version. Version iden-

tification, immutability, and efficient storage facilities are important to ensure extensional

versioning. Intensional versioning constructs different consistent versions automatically

from a large version space. This versioning technique is flexible and it constructs different

4.1 Management of Models 63

versions on demand. A user annotates a specific version by its properties and queries the ver-

sion space so as to construct a new version, which satisfies the query. Intensional versioning

is suitable for situational method engineering, where the queries select method fragments

which are later assembled together and produce situational methods [Brinkkemper et al.,

1999; Gupta and Dwivedi, 2012; Mirbel and Ralyté, 2006; Ralyté et al., 2003, 2007; Saeki,

2006; Saeki and Oda, 2005].

Depending on the representation of modeling artifacts and deltas, model versioning

is also categorized into state-based versioning and change-based versioning [Conradi and

Westfechtel, 1997, 1998]. State-based versioning represents models as a set of entities and

relations in the product space. It also describes the delta in terms of states of entities and

relations in first and second version of model. The entities and relations are marked in the

delta as present, if they exist in the second version. If not, they are noted as absent in the

delta. Change-based versioning expresses models using change operations, which are nec-

essary to produce the models. Like models, the delta is also represented using operations

that modify the model from one version to another.

Lessons Learned

Model versioning is crucial to manage a history of model evolution, the history records mod-

ifications of models, dates of modifications, and identities of users who created revisions

[Estublier, 2000] along with a comment (or rationale of modifications). Model versioning

also facilitates collaborative modeling by providing a versioning support. A version can be

a variant or revision, but we only consider revisions in this work. Furthermore, extensional

versioning explicitly enumerates all available versions in the versions set. It reconstructs

one of the previously created version by applying a sequence of changes to a reference ver-

sion, which is selected from the version set. Intensional versioning automatically constructs

new versions based on properties or queries. The list of versions are not known beforehand

in intensional versioning. This work only focuses on extensional versioning, where each

version is explicitly specified by the users. Moreover, state-based versioning approach is

4.1 Management of Models 64

suitable for frameworks that relies on state-based comparison, while change-based version-

ing is adopted by operation-based model collaborative modeling frameworks.

4.1.6 Model Transformation

Model transformation is the heart and soul of model driven software development [Sendall

and Kozaczynski, 2003]. A model transformation automatically generates a target model

from an input model based on a transformation definition [Gomes et al., 2014; Kleppe et al.,

2003; Mens and Gorp, 2006; Mens et al., 2005a]. Of course, both input and target mod-

els conform to their respective meta-model (see Figure 4.3). The transformation definition

(TD) specifies a set of transformation rules that define how the source model (Ma) is trans-

formed into the target model (Mb). The transformation definition is also a model, and it is

defined using the transformation language (MMt). For instance, ATL [Jouault et al., 2008],

ETL [Kolovos et al., 2008], and Henshin [Arendt et al., 2010] are model transformation

languages. The transformation rules are applied on either an abstract syntax or a concrete

syntax of the model [Syriani and Vangheluwe, 2009]. These rules are executed on the

transformation engine [Jouault et al., 2008]. Moreover, MMa, MMb, and MMt conform to

MMM (meta-meta-model e.g., EMF, MOF, . . .).

According to Mens et al. [Mens and Gorp, 2006; Mens et al., 2005a], endogenous

model transformation is a model transformation which has the same source (input) and

target (output) meta-models. For instance, a sequence of change operations adapt a model

from one version to another, while the meta-model remains the same, is an endogenous

model transformation. In exogenous model transformation, the source and target models

are expressed using different languages. For example, code generation, reverse engineering,

and migration are exogenous model transformations. Furthermore, the authors also classify

model transformations based on the level of abstraction as horizontal transformation and

vertical transformation.

A horizontal transformation is a model transformation between models at the same level

of abstraction. For example, an EMF/Ecore model should be transformed to a MOF model

so as to edit the model using MOF aware tools. This type of transformation is a horizontal

4.1 Management of Models 65

Figure 4.3 Model Transformation, [Jouault et al., 2008]

transformation. In contrast, a vertical transformation is a transformation between source and

target models that are at different level of abstractions. For instance, a transformation be-

tween platform independent model and platform specific model is a vertical transformation.

Moreover, model transformations further decompose into in-place and out-place transfor-

mations [Czarnecki and Helsen, 2006; Mens and Gorp, 2006; Mens et al., 2005a]. In-place

transformation is an endogenous model transformation, where the source and the target

models are the same. On the other hand, out-place transformation is an exogenous or an

endogenous model transformation, which uses different source and target models.

Model transformation languages adopt either a declarative, an operational, or a combi-

nation of operational and declarative approaches to specify transformations [Czarnecki and

Helsen, 2006; Mens and Gorp, 2006; Mens et al., 2005a]. The declarative approach only

describes what needs to be transformed into what without giving any details about how the

transformation is performed. Activities like navigation of the source model, creation of

4.1 Management of Models 66

target model, and managing the order of rule execution are handled by the transformation

engine. It is easier to write and understand by users, sine they only needs to define relations

between source and target models. In contrast, the operational approaches specify each steps

necessary to produce target models from source models. It is a convenient approach for con-

trolling sequences of execution of transformations explicitly. However, an implementation

of transformations using imperative languages is very complex task.

On the other hand, the hybrid approach, which combines both declarative and opera-

tional approaches, lets users to specify model transformations using mixtures of declarative

and operational approaches. This approach combines the strength of a declarative approach

(i.e., easy to write and understand transformations) and an operational approaches (i.e., con-

trolling the execution of model transformations). For instance, ATL [Jouault and Kurtev,

2006], QVT [OMG, 2005], and ETL [Kolovos et al., 2008] are hybrid model transformation

languages.

A model transformation has a specific intent. According to Amrani et al., “a model

transformation intent is a description of the goal behind the model transformation and the

reason for using it” [Amrani et al., 2012; Lúcio et al., 2014]. The authors identify differ-

ent catalogs of intents like refinement (i.e., synthesis and serialization), abstractions (i.e.,

abstraction, reverse engineering, restrictive query, and approximation), semantic definition

(i.e., translational semantics and simulation), language translation (i.e., translation and mi-

gration), constraint satisfaction (i.e., model finding and model generation), analysis, editing

(i.e., model editing, optimization, model refactoring, normalization, and canonicalization),

model visualization (i.e., animation, rendering, and parsing), and model composition (i.e.,

model merging, model matching, model synchronization).

A synthesis transformation produces an executable output which is specified using a

well-defined language format. For instance, a model-to-code generation is a synthesis trans-

formation. Likewise, a serialization transformation is also a refinement and its mere ob-

jective is to store models into the storage medium (e.g., serialization of an Ecore model to

XMI so as to store on hard drive) [Amrani et al., 2012; Lúcio et al., 2014]. Abstraction is a

vertical model transformation that abstracts models by hiding some detail information and

4.1 Management of Models 67

revealing other information. For example, a reverse engineering and an approximation trans-

formation are abstraction model transformations. An approximation transformation refines

a model m1 into a model m2 with some degree of errors, indeed, the error margin decreases

as long as the distance measure between the two models decreases [Amrani et al., 2012].

A translational semantic definition is a model transformation which expresses the mean-

ing of the source models in terms of other modeling languages with a wellknown semantics

[Amrani et al., 2012; Lúcio et al., 2014]. In other words, it transforms the abstract syntax

of a source model to the target semantic domain with a well-defined semantics. The output

of a translational semantic transformation is used to perform a model simulation. Language

translation is a model transformation that expresses concepts and semantics of one model-

ing language in terms of another target language [Amrani et al., 2012; Lúcio et al., 2014].

For example, a mapping from a UML class diagram to a relational database schema is a

translation model transformation. A model migration transforms models expressed in one

language to models conform to another language (new version language). Model migration

is a crucial activity in model management, for example, due to language evolution, mod-

els might not conform to a new version of the language, hence, instance models should be

migrated.

Model Migration

As the name suggests, DSML specifies systems in specific domains, therefore, the language

evolves due to new requirements, error corrections, and improvement of understanding

about the domain [Gruschko et al., 2007; Meyers and Vangheluwe, 2011; Wachsmuth, 2007;

Zhang, 2005]. Indeed, DSMLs evolve by modifying their respective meta-models in order

to satisfy new requirements. As a result, instance models might not anymore satisfy the

structures and constraints specified by new versions of their respective languages. It could

also be impossible to edit models using editors built for an old meta-model. Therefore,

models should be co-evolved with their respective meta-models in order to preserve the

conformance relation with the language [Herrmannsdoerfer et al., 2008]. For example, as

shown in (Figure 4.4), a model version Vm0 conforms with meta-model version V0, but it vi-

4.1 Management of Models 68

olates constraints defined by meta-model version V1. Therefore, a model version V m0 needs

to be migrated to version Vm1 so as to conform with evolved meta-model, Vm1 .

Figure 4.4 Example of Model Migration

Gruschko et. al. classify meta-model changes as “not breaking”, “breaking and re-

solvable”,and “breaking and unresolvable” changes [Gruschko et al., 2007]. Not breaking

changes are meta-model modifications that do not break the conformance relationship be-

tween a meta-model and its instance models. For example, adding optional attributes to

meta-model elements does not affect its instance model. On the other hand, renaming a

meta-model element has an impact on its model. This type of change is called breaking

and resolvable changes. The instance models can be automatically migrated in response

to resolvable changed. Furthermore, some changes require user inputs in order to resolve

conflicts and migrate instance models. This type of changes are breaking and unresolvable

changes. For example, introducing mandatory attributes to meta-model elements requires

a user to give initial values, since they cannot be derived from the information available in

models. It is even not possible to assign default values to these attributes sometimes.

In [Rose et al., 2009], authors identify three types of model migration strategies such

as manual specification, operator-based approach, and meta-model matching approach.

4.1 Management of Models 69

Graph transformation languages could also be used to migrate models, but as shown in

[Rose et al., 2012], they are not easy to understand and results of migration could be incor-

rect. The meta-model matching approach adopts a state-based model comparison technique

to drive the diff between the source and target meta-models, afterwards, it computes model

migration instructions automatically for breaking and resolvable changes. In addition, it

provides facilities to specify model migration instructions for unresolvable modifications.

In [Cicchetti et al., 2008b] and [Garcés et al., 2009], the authors present model migration

strategies based on a meta-model matching approach. However, this approach can not al-

ways automatically generate correct migration instructions [Rose et al., 2009]. Hence, it is

not suitable for domains that require completeness, correctness, and predictability.

The operation-based approach uses a set of reusable coupled operations, which are in-

tegrated with the modeling tools to adapt meta-models and to derive a migration strategy

at the model level. Coupled operations are high level operations (not CRUD operations)

that are enriched by model migration instructions, such that they capture model migrations

while adapting the meta-model [Herrmannsdoerfer, 2009; Herrmannsdoerfer et al., 2008].

The operation-based approach records a time sequence of modifications and keeps change

operations in a same context (change operations which are contained in a composite oper-

ation) while incrementally adapting meta-models. Hence, it captures intentions of a user.

For instance, COPE (recently called Edapt 7) captures sequences of meta-model adaptation

operations and couples them with model migration instructions [Herrmannsdoerfer et al.,

2008].

As discussed in Chapter 1 in Section 1.1, users most of the time develop models in

collaboration. They communicate their activities by exchanging models or edit operations

performed on models. Specifically, operation-based collaborative modeling frameworks

mostly normalize (canonize) sequences of modification operations, which are used as a

means of communication among members, so as to speed up the transfer and to reduce the

complexity of the merging process. Hence, operations can be superseded by new ones and

can thus be cleaned from the history. For example, a create operation will be removed if it

7http://www.eclipse.org/edapt/

4.1 Management of Models 70

is followed by a delete operation on the same object. Canonization could also be applied for

a library of coupled-operations defined [Koshima et al., 2013].

A coupled operation could be composed of one or many primitive operations (i.e. cre-

ate, delete, set, add and remove) and model migration instructions. For example, in the

Edapt framework [Herrmannsdoerfer et al., 2008], a Create Attribute coupled-operation is

composed of primitive operations that create an attribute and set values for name, type,

minimum and maximum cardinality, and default value of a newly created attribute. For

instance, if a Create Attribute coupled-operation is followed by a Change Attribute Type

coupled-operation, a primitive operation that sets a type of an attribute in Create Attribute

coupled-operation needs to be deleted due to canonization. As a result, the Create Attribute

coupled-operation becomes invalid; the canonized set of primitive operations do not sat-

isfy constraints that state a Create Attribute coupled- operation must set a type value of a

newly created attribute. Hence, sets of canonized primitive operations that are composed by

coupled-operations need to be re-grouped into new sets of valid coupled-operations. The re-

grouping of primitive operations are required to reuse existing model migration instructions

of coupled operations or derive new model migration strategies.

Users should manually specify model migration instructions for breaking primitive change

operations that are not composed by coupled operations. However, this is a tedious and error

prone task [Koshima et al., 2013]. Furthermore, some of primitive change operations might

need to be re-grouped into a set of coupled operations manually. This requires users to know

the structure and constraints of each coupled operation in order to create a correct coupled

operation. Besides, canonization also makes re-grouping more complex by removing some

primitive change operations. Removing of primitive operations could invalidate constraints

of a coupled operation. For example, a Create Attribute coupled-operation becomes incon-

sistent, if a Set Attribute Type operation is removed from it. Hence, model migration cannot

be applied due to inconsistencies.

In manual model migration, users specify model migration instructions manually [Rose

et al., 2009]. This approach does not require a library of coupled-operations so that users

define model migrations instructions using tools of their preferences. In addition, it gives a

4.1 Management of Models 71

better control for users to manage model migration. But, manual specification needs more

effort from a user to write model migration instructions and it could be error prone as well.

Besides, it does not reuse recurring patterns in the model migration. For example, Epsilon

Flock is a domain specific language to specify model migration instructions manually [Rose

et al., 2010], but it reduces manual efforts by employing a conservative copying algorithm,

which automatically copies only model elements that conform to a new meta-model. Be-

sides, it provides facilities to execute migration instructions. In the 2010 transformation

tool contest, it performed better in terms of correctness, conciseness, understandability, ex-

tensions, and appropriateness than other model migration techniques that participated in the

contest [Rose et al., 2012]. ATL [Jouault and Kurtev, 2006] and QVT [OMG, 2005] are also

manual model migration languages.

Last but not least, meta-model adaptation could also cause inconsistency in histories

of instance models [Koshima et al., 2013]. For example, if a class is deleted from a meta-

model, then instances of the same class type need to be deleted from the migrated model. As

a result, these history elements (i.e. change operations create, set and add) that manipulate

instance model elements are referring to classifiers that do not exist anymore in the modeling

language. Hence, that history also needs to be migrated along with its instance model. A

model migration instruction used to migrate instance model can also be used to migrate a

history as well. A change operations that refer a classifier or a feature that does not exist

should be removed.

Lessons Learned

Model transformation is the heart and soul of model driven software development [Sendall

and Kozaczynski, 2003]. It encompasses a wide range of model management activities such

as model refinements, abstraction, migration, refactoring, editing, simulation, visualization

and composition. Mens et al. identify classification criteria for model transformation as en-

dogenous vs exogenous transformation, horizontal vs vertical transformation, and in-place

vs out-place transformation. In collaborative modeling, users usually edit models in parallel,

while their respective meta-models do not change. These modifications are endogenous, hor-

4.1 Management of Models 72

izontal, and in-place model transformation. Sometimes, users also apply exogenous, verti-

cal, and out-place model transformations. For example, source code generation, refinement,

and abstraction activities are exogenous, vertical, and out-place model transformations.

Model migration is a special type of model transformation, which restores the confor-

mance relationships between models and their respective meta-models. Model migration

are classified as manual specification based model migration, operator-based model migra-

tion, and meta-model matching based model migration [Rose et al., 2009]. Meta-model

matching based model migration automatically derives model migration instructions from

deltas, which is the difference between the source and target meta-models. However, it

might generate incorrect migration instructions [Rose et al., 2009].

Operator-based model migration relies on library of coupled operations, which are in-

tegrated with modeling tools. A user adapts meta-models using coupled operations, af-

terwards, model migration instructions are generated from these operations. In operation

based collaborative modeling, canonization of change operations is important to reduce

complexities of merging process. However, canonization could result in a sequence of in-

consistent coupled operations, which hinder model migration. For example, in Edapt 8 [Her-

rmannsdoerfer, 2009; Herrmannsdoerfer et al., 2008], a Create Attribute coupled-operation

is composed of primitive operations that create an attribute and set values for name, type,

minimum and maximum cardinality, and default value of a newly created attribute. For

instance, if a Create Attribute coupled-operation is followed by a Change Attribute Type

coupled-operation, a primitive operation that sets a type of an attribute in Create Attribute

coupled-operation needs to be deleted due to canonization. As a result, the Create Attribute

coupled-operation becomes invalid; the canonized set of primitive operations do not sat-

isfy constraints that state a Create Attribute coupled-operation must set a type value of a

newly created attribute. Hence, sets of canonized primitive operations that are composed by

coupled-operations need to be re-grouped into new sets of valid coupled-operations. Primi-

tive operations are re-grouped into a coupled-operation in order to use model migration in-

structions defined by the coupled-operation. For primitive operations that are not composed

8https://www.eclipse.org/edapt/

4.2 Communication Management 73

by coupled operations and make instance models inconsistent, a model migration instruc-

tion should be written manually. Manually incorporating model migration instructions is a

tedious and error prone task [Koshima et al., 2013].

Manual model migration does not need a dedicated modeling tool, rather users use any

convenient modeling tools to update meta-models and to write model migration instructions

manually. This approach is flexible and provides a better control to manage model migra-

tion. However, it is time consuming and error prone. Therefore, a tool support is mandatory

to write correct and useful model migration instructions. Epsilon Flock [Rose et al., 2009]

is a model migration language, which provides tool support to specify model migration in-

structions manually. This language outperforms other languages in terms of correctness,

conciseness, understandability, extensions, and appropriateness in transformation tool con-

test 2010 [Rose et al., 2012]. Of course, the manual model migration approaches can be

augmented with a history of meta-model changes in order to improve the correctness and

usefulness of migration instructions. The history can correctly identify deleted, updated,

created and moved model elements, and guide users in writing correct model migration

instructions.

4.2 Communication Management

4.2.1 Member Organization

Modeling social structures and interactions in collaborative work is crucial to analyze users’

collaboration, besides, it helps to classify, organize, and represent users based on their roles

[Penichet et al., 2007]. According to Montes et al. [Montes et al., 2006], a social structure

is defined as “a collection of actors responsible for carrying out group tasks and set of

social dependencies among them”. User activities and interactions can be described using

activity theory. The basic unit of activity theory is a human activity [Georg, 2011; Kuutti

and Arvonen, 1992], which provides enough contextual information to analyze interactions

in the social structure (See Figure 4.5 9). Human activities are mediated by tool and rules.

9modified version of basic structure of activity [Kuutti and Arvonen, 1992]

4.2 Communication Management 74

The collaborative modeling environment provides tool support, which mediates interactions

between a user and a model. The user transforms the model into a product using the tool. In

addition, the interactions of users in community are mediated by rules and communication

protocols. The communication protocol can be specified using collaboration patterns for

software process development [Vo et al., 2015]. The interaction between the community

and the shared modeling artifacts is mediated by the division of labor. Roles can be used to

divide activities among members collaborative work.

Figure 4.5 Structure of an activity

Penichet et al. [Penichet et al., 2007] model the organizational structure of users using

concepts such as actor, user, role, instantiation relationships, group, and aggregation rela-

tionships. An actor is an instance of a role that can perform a task. It can be a person (a

user) or some other things (not users). A role is a group of actors that perform the same

tasks based on shared characteristics. It describes the relationship between actors and a

shared work object as well as their interactions with the community. It is specified in terms

of responsibilities and rights [Hamadache and Lancieri, 2009]. Indeed, it is assigned to an

actor such that the actor must perform actions to fulfill its responsibilities. An actor can

perform other actions provided that his/her rights allow him/her to do so. For example, an

editor role lets a user to modify a model, whereas an observer gives read only access to a

user. Instantiation relationships describes an instance of relationship between a role and an

4.2 Communication Management 75

actor, which plays such role. Aggregation relationships represents an association between

the whole and its parts.

According to [Dourish and Bellotti, 1992],“there is a further problem for role restrictive

CSCW systems, This is that, although explicit roles may allow for easier social organisation

of collaborative activity in conventional interactions and collaborations, one often observes

roles being negotiated and reassigned dynamically. This phenomenon has been identified

in other computer supported meeting situations where participants are released from the

tyranny of restricted access to shared work spaces”. Therefore, the roles should be dy-

namic in the collaborative modeling environments and a role-switching process should not

be complex and time consuming, which could hampers the negotiated process [Hamadache

and Lancieri, 2009]. A group consists of a number of users, who interact together to produce

an outcome. A group refers a community in the basic structure of an activity.

Lessons Learned

Modeling structures of collaborative modeling provides facilities to analyze the interactions

and organize users based on their roles. Roles also improve awareness of the character

of the activity in the collaborative group. Roles are usually re-negotiated throughout the

development process, hence, the collaborative environment should support dynamic role

assignment. Furthermore, rules or communication protocols should be specified a priori in

order to manage communication among members of a collaborative group. Of course, the

environment should be flexible to modify existing rules or to add new ones.

4.2.2 Repository and Mode of Communication

As discussed in Chapter 3, Boukhebouze et al. classify collaborative modeling into a central-

ized approach with/without modification management and a distributed approach with/with-

out modification management [Boukhebouze et al., 2010]. The centralized collaborative

modeling approach uses a central repository as the one source of truth, where all models,

histories, and files are stored. For example, EMFStore [Koegel and Helming, 2010], Mod-

elBus [Sriplakich et al., 2008], and MetaEdit+ [Kelly, 1998] are centralized version control

4.2 Communication Management 76

systems. In this approach, members of a collaborative work group communicate their work

either synchronously or asynchronously by adapting models.

The synchronous mode of communication allows members to concurrently edit a same

model in real-time. Approaches that employ synchronous mode of communication use lock-

ing mechanisms in order to avoid conflicting modifications and ensure consistency of mod-

els. However, the locking technique is not scalable [Altmanninger et al., 2009; Barteit et al.,

2009; Mens, 2002]. A fine-grained locking technique could mitigate some of the limitations

of locking techniques by locking only the minimal set of model elements. For instance, two

users could edit the same class diagram at same time, while one of the user edits the name

of the method, the other user could edit the parameters of the method at the same time.

Asynchronous communication employs “checkout” → “modify” → “merge” paradigm,

where users “checkout” models from the primary central repository into a local workspace.

Afterwards, they modify local models in isolation, and periodically synchronize their activ-

ities with other group members. The synchronization is done by committing modifications

to the central repository. In asynchronous communication, users are not interrupted by mod-

ifications from other members, since they can decide when to update their local workspace

[Ignat et al., 2007b]. Besides, they can chose either to communicate completed or partial

work with other members of the group. They can also work locally without having access

to any network connection. For example, EMFStore [Koegel and Helming, 2010] and Mod-

elBus [Sriplakich et al., 2008] support asynchronous mode of communication. In general,

tools and frameworks adopt locking and merging (“checkout” → “modify” → “merge”)

techniques to ensure concurrent development.

In the centralized approach with modification management, the modification manage-

ment role is assigned to a user who manages the evolution of models [Boukhebouze et al.,

2010]. This user plays a role of software configuration manager [Estublier, 2000]. In con-

trast, a centralized approach without modification management does not have any software

configuration manager. Hence, all users modify and reconcile their modifications by them-

selves. As described above in Section 4.1.3.2, a modification management role is crucial

to reconcile conflicts. The main limitation of a centralized approach is that it forces all

4.2 Communication Management 77

members to be dependent on a central repository (a single point of failure). In addition,

it might introduce unnecessary access right bureaucracy that could lead to dissatisfaction

among members [Boukhebouze et al., 2010; Koshima and Englebert, 2014; Koshima et al.,

2011, 2013]. Members do not have the entire history of model evolution that could help

them to improve understanding about a project. Furthermore, dynamic allocation of modifi-

cation management roles could be cumbersome and time consuming, since it might require

movements of all centrally stored modeling artifacts to a newly installed central server.

In the distributed approach, clones of a master copy of modeling artifacts are distributed

and stored at local repositories of each member of a group. This approach uses an asyn-

chronous mode of communication such that users work in isolation and synchronize their

activities later with other members. It provides users a better control of modeling artifacts

and mitigates the problem of being dependent on a central server. Besides, it is suitable

to ensure loosely coupled cooperative work, where users are free to join or leave the coop-

erative ensemble. In contrast, it might be difficult for a central change manager to leave

a group in centralized approach. However, it is challenging to keep all copies of models

consistent, since these shared models might be edited in parallel. A modification manage-

ment role is crucial to ensure convergence of concurrently edited models at some point of

the development process. For example, D-Praxis is a distributed peer-to-peer collaborative

model editing framework [Mougenot et al., 2009].

Federation of model repositories is another way of distributed collaboration, where

each organization have private repositories that link with publicly available repositories

[Di Rocco et al., 2015]. The collaborative modeling environment with federation mecha-

nisms should seamlessly aggregate modeling artifacts from different repositories to produce

a product. Modelio 10 is an open source modeling environment that supports federation

mechanisms. In [Iqbal et al., 2009], Iqbal et al. present a linked data driven software devel-

opment approach, where the relationship between different federated software artifacts are

made explicit and presented as a linked data. “Linked Data is simply about using the Web

to create typed links between data from different sources” [Bizer et al., 2009].

10https://www.modelio.org/

4.2 Communication Management 78

There is also a hierarchical mode of collaboration, where companies work together to

standardize models through international standards consortium like OMG 11, while develop-

ing their own models locally. Suppose SoftMDA and MDAGlobal are fictitious companies

that have different branches in Europe and North America. These two companies develop

DSMLs for financial systems and push their contribution to the fictitious standard agent,

Financial DSML Standard (FDSMLS). The two companies take clones of the standard

model and edit it locally, afterwards, they send local modifications (patches) to FDSMLS.

FDSMLS modifies the standard model based on the modification requests and communi-

cates the most recent version of the model with all members of the consortium. SoftMDA

and MDAGlobal have different cooperative groups internally (in Europe and North America)

that contribute to the development of the standard model. Indeed, the internal development

groups of SoftMDA are transparent from both MDAGlobal and FDSMLS, the same is true

for internal development groups of MDAGlobal. The collaborative modeling tool should

support hierarchical mode of collaboration among FDSMLS, SoftMDA, and MDAGlobal

as well as internal collaborative groups inside SoftMDA and MDAGlobal.

In recent years, cloud-based collaborative software development environment gains more

attention. Cloud computing abstracts the location of the repository [Armbrust et al., 2010;

Elzeiny et al., 2013; Hilley, 2009; Ju et al., 2011]. It stores data on multiple third-party

servers to ensure high availability. Modeling as a Service (MaaS) could be used to create

collaborative and distributed modeling tools, and to facilitate management of distributed

global models [Bruneliere et al., 2010]. Morse [Holmes et al., 2012], MDEForge [Bas-

ciani et al., 2014], AToMPM [Syriani et al., 2013], and WebGME [Maróti et al., 2014] are

cloud-based modeling environments. Cloud computing addresses a single point of failure

limitation of centralized approach. However, it does not provide a local clone of master

copy to each user site, which gives more power for users to manage their local data. This

might still introduce access right bureaucracy among the group.

11http://www.omg.org/

4.2 Communication Management 79

Lessons Learned

Modeling artifacts can be stored on a central repository or distributed repositories. Cloud

computing approach hides the location of the repositories, which could be local or remote.

In centralized approach, users rely on a central repository, where all modeling artifacts are

stored. This approach uses a pessimistic locking mechanism or → “modify” → “merge”

paradigms to ensure consistency of modeling artifacts. The locking technique might not

be salable, besides, it has a point-failure problem. It might also introduce access right

bureaucracy among members of a group. A role-switching process could be cumbersome

and consumes more time. Cloud computing based environments address limitations like

a single point of failure and role-switching problems by using multiple servers to provide

high availability. Cloud storage adopts a BASE (Basically Available, Soft state, Eventually

consistent) mechanism to ensure data consistency and integrity [Elzeiny et al., 2013]. A

distributed approach replicates clones of the master copy at each member site such that each

user has a better control of his/her local repository.

4.2.3 Awareness

According to Dourish et al. [Dourish and Bellotti, 1992], “awareness is an understanding

of the activities of others, which provides a context for your own activity.” Awareness is cru-

cial to successful collaboration among members of the collaborative group. There are differ-

ent types of awareness such as workspace awareness, informal awareness, group-structure

awareness, social awareness, and context awareness [Dirix, 2013; Omoronyia, 2008; Tacla

and Enembreck, 2006]. Workspace awareness refers to up-to-the-moment knowledge about

interactions of other members with the shared workspace. This knowledge helps members

to improve their individual contributions with respect to group goals and progress. Group-

structure awareness relates to knowledge about roles and status of users in a group. Informal

awareness relates to passive information that does not disrupt the current activity of the user.

For instance, information about who is around, where are they, and what are they doing.

4.2 Communication Management 80

Social awareness refers knowledge about attention, interest, emotional state, and activi-

ties of other users in shared collaborative environment. Users improve their social awareness

through conversation or activities in a shared environment. Context awareness relates to

knowledge about circumstances or facts that characterize particular activities and resources

in a shared environment. Users can use the context information to negotiate and adapt their

activities in the collaborative work. In addition, the context information is also useful to

renegotiate roles in the collaborative modeling environment.

Lessons Learned

Awareness is crucial to ensure successful collaboration among members of the collabora-

tive work group. Workspace awareness provides information about the current state of

the shared workspace. Besides, additional information that specifies interactions among

the shared workspace and users. Workspace awareness information like which modeling

artifact is modified, when, what are modifications, and who performs modifications are

crucial are critical information for model versioning and to ensure collaboration. More-

over, workspace awareness could help members to avoid conflicts and reduce a potential

time that might be lost due to double work. Therefore, collaborative modeling environment

must share such knowledge among members of a group. Group-structure awareness facili-

tates collaboration by providing information about roles and organizational structure of the

group. Collaborative environments could share group-structure awareness among members

in order to improve their efficiency. Informal awareness disseminates passive information

among members of the group, for example, information about available members of a group.

Group awareness simplifies interactions among members and improves coordination of ac-

tivities [Gutwin et al., 2004]. Context awareness is crucial for a user to execute an activity

in shared collaborative environment. Otherwise, s/he might perform inconsistent activity,

which could hamper collaboration. Hence, collaborative modeling environments must share

context information among members of a group.

4.3 Related Work of Collaborative Modeling Environments 81

4.3 Related Work of Collaborative Modeling Environments

In the past, much work has been done to support collaborative software development. How-

ever, most of this work focuses on collaborative merging of software codes, for instance,

CVS [Vesperman, 2006], SVN [Pilato et al., 2008], and Git [Chacon, 2009]. Ignat et al.

did a comparative analysis of different approaches that support collaborative editing of

text documents [Ignat et al., 2007a]. Dewan et al. [Dewan and Hegde, 2007] propose a

semi-synchronous distributed collaboration model that lets users create source codes asyn-

chronously. Additionally, the framework provides facilities to detect and resolve conflicts

synchronously.

In the context of collaborative modeling, Saeki [Saeki, 2006] introduces the use of a ver-

sioning system to control and manage models and metamodels, which evolve independently.

The author did not consider collaboration in his work. In [Alanen and Porres, 2003; Oliveira

et al., 2005], authors propose versioning of UML models, but they did not provide collabora-

tive support. Constantin et al. [Constantin et al., 2009] propose a theoretical reconciliation

framework for collaborative modeling, but they did not provide a solution. There are a

few frameworks available that support collaboration among DSML tools. We summarize

state-of-the-art tools and frameworks based on model management and user management.

Specifically, we use criteria like repository mode, concurrency management, comparison

mechanism, managed artifacts, role-based modification management, flexibility of roles,

and hierarchical support.

The repository mode classifies frameworks into a centralized collaborative modeling

approach (which uses a central repository) or a distributed model development approach

(where each member has his/her own local copy) as discussed in Section 4.2.2. The concur-

rency management identifies the technique adopted by the framework to ensure concurrent

development, which is either locking technique or merging (“checkout” → “modify” →
“merge” paradigm). The comparison mechanism describes the type of model comparison

approach that is used by the framework (see Section 4.1.1), such as a state-based model

comparison and an operation-based model comparison. As discussed in Section 4.2.1, a

role-based modification management is important to facilitate reconciliation process. A

4.3 Related Work of Collaborative Modeling Environments 82

controller manages the evolution of models, and s/he resolves conflicts in consultation with

a user who proposed modifications. The flexibility of roles indicates whether the role is flex-

ible or fixed. The flexibility of roles guarantees roles can be easily modified to cope with the

dynamicity of the cooperative group. Fixed roles cannot be (easily) changed. The hierarchi-

cal support describes whether the framework supports a hierarchical mode of collaboration

or not (see Section 4.2.2).

EMFStore

EMFStore12 is an operation-based and a centralized model editing framework for EM-

F/Ecore models [Koegel and Helming, 2010]. It uses a merging technique to ensure concur-

rent development. This framework manages models. In the previous version of EMFStore,

the tool that captures edit operations of model evolution is highly coupled with EMFStore

framework. Besides, it does not support meta-model adaptation. For instance, a movement

of an EAttribute from one EClass to another EClass generates an error in the old version of

EMFStore. The most recent version of EMFStore, which is part of the Eclipse distribution,

provides support for collaborative modeling of models and meta-models. The EClass and

the EAttribute are concepts of EMF/Ecore meta-model which will be discussed in the next

chapter. However, EMFStore does not support a role-based reconciliation mechanism, the

user who lastly commits modifications is responsible to resolve conflicts. Besides, it does

not provide a hierarchical collaborative modeling framework.

MetaEdit+

Like EMFStore, MetaEdit+13 [Kelly, 1998] is a centralized modeling framework, but it

implements Smart Mode Access Restricting Technology (Smart Locks ©) to support con-

current access of shared modeling artifacts that are stored centrally. As discussed in section

4.2.2, the limitations of centralized approaches are that locking technique is not scalable

[Mens, 2002]. MetaEdit+ [Kelly, 1998] employs a fine-grained locking technique to miti-

12http://www.eclipse.org/emfstore/index.html
13http://www.metacase.com/products.html

4.3 Related Work of Collaborative Modeling Environments 83

gate some of the problems related to locking technique. MetaEdit+ handles collaborative

editing of both models and meta-models. However, it does not support role-based recon-

ciliation mechanism. Even though locking techniques are used to avoid concurrent modifi-

cations of the same (meta-)model elements by different users, it cannot avoid changes that

might cause conflicts in users minds. Hence, the role-based reconciliation mechanism could

help to review modifications and to resolve conflicts. Like EMSStore, it does not provide a

hierarchical modeling environment.

ModelBus

ModelBus [Sriplakich et al., 2008] is a state-based and a centralized modeling framework.

It uses locking techniques and merging to manage concurrency. It manages versioning of

models and meta-models. Like EMFStore, it does not support a role-based reconciliation

mechanism and a hierarchical mode of collaboration. The last user who commits his/her

modifications is responsible to reconcile conflicts and merge conflicting versions.

Modelio

Modelio teamwork 14 is a state-based and a centralized modeling tool. This tool uses both

locking and merging techniques to ensure concurrent editing of models. But, it does not

manage versioning of meta-models. Unlike the above frameworks, Modelio provides a

federated collaborative modeling environment, where interconnected models are stored on

different repositories and each group contributes to their project without affecting the work

of the other project participants. Each group adopts a centralized mode of collaboration,

which relies on a central repository. Hence, we consider Modelio as a centralized approach.

Like other frameworks, it does not provide facilities such as a role-based reconciliation

and a hierarchical collaborative modeling environment. The last user who commits his/her

modifications is responsible to reconcile conflicts and merge conflicting versions.

14https://www.modeliosoft.com/en/modules/teamwork-manager.html

4.3 Related Work of Collaborative Modeling Environments 84

MagicDraw

Like ModelBus, MagicDraw teamwork 15 is a state-based and a centralized modeling tool.

Like Modelio, this tool uses both locking and merging techniques to manage concurrency.

It only manages versioning of models, not meta-models. Like other frameworks, it does

not provide facilities such as a role-based reconciliation and a hierarchical collaborative

modeling environment. The last user who commits his/her modifications is responsible to

reconcile conflicts and merge conflicting versions.

Visual Paradigm

Like ModelBus, Visual Paradigm teamwork 16 is a state-based and a centralized modeling

tool. Like Modelio, this tool uses both locking and merging techniques to manage concur-

rency. It only manages versioning of models, not meta-models. Like other frameworks, it

does not provide facilities such as a role-based reconciliation and a hierarchical collabora-

tive modeling environment. The last user who commits his/her modifications is responsible

to reconcile conflicts and merge conflicting versions.

D-Praxis

D-Praxis [Mougenot et al., 2009] is an operation-based and a peer-to-peer (distributed) col-

laborative modeling framework. This framework relies on merging technique to ensure

concurrency. It uses Lamport clock [Lamport, 1978] and delete semantics to automatically

solve conflicts. It supports concurrent editing of meta-models. This framework has a ‘lost-

update’ problem and we argue that the final results of an automatic reconciliation process

could not reflect the intention of users. Like other frameworks, it does not provide a hierar-

chical collaborative modeling environment.

Table 4.1 summarizes the state-of-the-art modeling tools and frameworks based on the

aforementioned criterion such as repository mode, concurrency management, comparison

15http://www.nomagic.com/products/magicdraw.html
16http://www.visual-paradigm.com/

4.3 Related Work of Collaborative Modeling Environments 85

mechanism, managed artifacts, role-based modification management, flexibility of roles,

and hierarchical support.

(R1) Repository mode : it describes whether tools and frameworks adopt a centralized

repository or a distributed repository.

(R2) Concurrency management : it describes the mechanism of concurrency manage-

ment

(R3) Comparison mechanism : it describes techniques adopted by modeling tools and

frameworks to compare (meta-)models.

(R4) Managed artifacts : it specify the type of modeling artifacts (i.e., model, meta-model)

that are managed by modeling tools and frameworks.

(R5) Role-based modification management : it specified the management of (meta-)model

evolution based roles.

(R6) Flexibility of roles : it specifies the dynamicity of roles. Can someone easily change

roles of a user?

(R7) Hierarchical support : it specifies whether modeling tools and frameworks support

a hierarchical mode of collaboration.

4.3
R

elated
W

ork
of

C
ollaborative

M
odeling

E
nvironm

ents
8

6

Table 4.1 Summary of state-of-the-art collaborative modeling tools and frameworks

Tools and Frameworks R1 R2 R3 R4 R5 R6 R7

MetaEdit+ Centralized Locking — Model/Meta-model — — —
EMFStore Centralized Merging Operation-based Model/Meta-model — — —
D-Praxis Distributed Merging Operation-based Meta-model — — —
Modelio Centralized Locking/Merging State-based Model — — —
MagicDraw Centralized Locking/Merging State-based Model — — —
Visual Paradigm Centralized Locking/Merging State-based Model — — —
ModelBus Centralized Locking/Merging State-based Model/Meta-model — — —
DiCoMEF Distributed Merging Operation-based Model/Meta-model Yes Yes Yes

4.3 Related Work of Collaborative Modeling Environments 87

In the next chapter, we present a distributed collaborative modeling framework called

DiCoMEF [Koshima and Englebert, 2014; Koshima et al., 2011; Koshima and Englebert,

2015b; Koshima et al., 2013]. It supports versioning of both models and meta-models. Be-

sides, modifications are controlled by human agents (not automatic), and the framework can

also support hierarchical collaborative modeling.

Chapter 5

Distributed Collaborative Model Editing

Framework (DiCoMEF)

In this chapter, we present a distributed collaborative modeling framework called DiCoMEF.

The chapter compiles materials published in different peer-reviewed journals, book chapters,

conferences, and workshops [Koshima and Englebert, 2015a, 2014; Koshima et al., 2011;

Koshima and Englebert, 2015b; Koshima et al., 2013].

5.1 DiCoMEF Architecture

DiCoMEF [Koshima and Englebert, 2014; Koshima et al., 2011; Koshima and Englebert,

2015b; Koshima et al., 2013] is an operation-based and a distributed collaborative modeling

framework for EMF/Ecore models and meta-models (see Figure 5.1), where each member of

a group has his/her own local copy of a (meta-)model (see Figure 5.2). The main concepts

used in DiCoMEF are group, user, role, role type, model, meta-model, copy model and

master model (see Figure 5.3). A master (meta-)model is the main (meta-)model which has

one or more copy (meta-)models that are distributed among editors and observers. A master

(meta-)model designates a (meta-)model that is stored on the main-line of a controller site,

whereas, copy models are stored on branches (editors and controller sites) and main-lines

of editors sites as well as observers sites. The main-line and branch concepts are discussed

5.1 DiCoMEF Architecture 89

later in this section. DiCoMEF uses a universal unique identifier (UUID) to differentiate

(meta-)model elements (i.e. classes, attributes, references) uniquely. Two (meta-)model

elements are considered as identical only if they have the same UUID.

A group contains one or more users who involve in collaborative modeling and it has one

controller (i.e. a user with a controller role). A user has a role, which is typed as a controller,

editor, or observer. A user who has an editor role can read and write his/her local copy

(meta-)models stored on the branch, but s/he has only a read access to copy (meta-)models

on the main-line. A controller is a special kind of editor who can modify master (meta-

)models. An observer role only gives a read access to a local copy (meta-)models. In fact,

there are two controller role types which are implemented in DiCoMEF such as a model

controller or a meta-model controller. Model (resp. meta-model) controllers are software

configuration managers who manage evolution of a master (resp. meta-)model. A controller

role type is dynamic meaning that it can be assigned (delegated) to other members of a

group as long as there is one unique coordinator per group.

Figure 5.1 DiCoMEF repository. DiCoMEF repository manages both models and meta-models

5.1 DiCoMEF Architecture 90

Figure 5.2 Architecture of DiCoMEF

DiCoMEF relies on two concepts such as main-line and branches in order to store mod-

els and meta-models. Besides, it uses these two concepts to facilitate communications

among members of a group (see Figure 5.4)1. The main-line stores different versions

of a copy (meta-)model locally at each editors site. An editor does not have a write access

to modify a copy (meta-)model stored on the main-line. Rather s/he first creates a branch

from the main-line and modifies the (meta-)model there. In order to communicate local

modifications with other members, s/he sends her/his local modifications to a controller as

a change request. The controller propagates accepted changes to all members of the group

and changes propagated from the controller are applied on the main-line. For example,

Figure 5.4 shows an evolution of a copy (meta-)model from version V0 to version V1 on

the main-line based on changes propagated from a controller. Besides, it indicates a local

1Although these terms are also used by SCM programs, our framework does not rely on a central SCM.

5.1 DiCoMEF Architecture 91

Figure 5.3 DiCoMEF meta-model

modification performed by an editor on the branch that evolves a copy (meta-)model from

version V0 to version V0.1; a branch was created before a copy (meta-)model on the main-line

evolves from version V0 to version V1.

The communication framework of DiCoMEF is organized around the controller that

acts as a central hub w.r.t. his/her (meta-)model for which he/she is responsible. This could

be a limitation of DiCoMEF, but at the same time it might be considered as its strength

as well. Indeed, DiCoMEF provides a technical framework over which different commu-

nication strategies can be employed using method engineering techniques (e.g., delegation

mechanisms, pooling). For example, a token can be used and whoever has a token is a

controller who can modify a (meta-)model and propagates changes.

In DiCoMEF, when members of a group modify (meta-)models locally, elementary

change operations (create, delete and updates) are stored locally in a local repository. These

elementary operations constitute a history that is used to propagate local modifications to the

5.1 DiCoMEF Architecture 92

Figure 5.4 Main-line and Branch

controller and secondarily to other members. Histories are defined by a history meta-model.

The history meta-model, conflict detection, and reconciliation are discussed later.

A change request is a set of local modifications that are performed by an editor and sent

to a controller in order to share local modifications with other members (commit changes). A

change request could be either accepted, rejected, or modified by a controller before being

committed to the main-line (and then shared with other members). A controller works

by consulting a rationale of modification or an editor who proposed the change request

in case of conflicts. Afterwards, if the change request is accepted, the controller sends a

change propagation to all members so as to evolve (meta-)models. (Meta-)models on the

main-lines evolve automatically, whereas (meta-)models on the branches evolve when users

update these (meta-)models based on the change propagation. For example, in Figure 5.4, a

copy (meta-)model evolves from version V0 to version V1 on the main-line based on changes

propagated from a controller. It also shows a branch that is created by an editor to modify

a copy (meta-)model locally from version V0 to version V0.1; a branch was created before a

copy (meta-)model evolves from version V0 to version V1.

5.2 Model Management in DiCoMEF 93

We have implemented DiCoMEF as an Eclipse plug-in that captures the history of (meta-

)model adaptation when a user edits (meta-)models using the EMF treeview editor [Stein-

berg et al., 2009] or the GMF editor2. The communication framework of DiCoMEF was

implemented using Java Message Service (JMS) [Richards et al., 2009] such that users ex-

change modifications via e-mail. DiCoMEF has a MessageListenerImp that implements an

IMessageListner interface and checks whether there is a new email message or not. If it

receives a new email message, it downloads the file and updates the DiCoMEF repository

automatically. Besides, it displays a pop-up window so as to inform users about the message

type (i.e., change request or change propagation message)

5.2 Model Management in DiCoMEF

The DiCoMEF framework supports collaborative editing of both models and meta-models.

In the following subsections, we present the formal specification of models and meta-models

using Set theory [Jech, 2013]. Besides, model comparison, conflict detection, reconciliation,

merging, versioning of (meta-)models are presented as well.

5.2.1 Formalization of Models

Some research work has been done in the past to formally specify an EMF meta-model

using graph theory [Taentzer et al., 2012]. In [Monperrus et al., 2009], the authors used

set theory to define an abstraction level of MOF [OMG, 2002]. This work used set theory

to formalize an EMF Ecore model [Steinberg et al., 2009], because we believe that most

people are familiar with the set theory, as a result, it is easy for them to understand and

reason about models.

5.2.1.1 Notation

In this work, we will use several ad-hoc notations that are defined in this preliminary section.

In a binary Cartesian product, identifying components are underlined: if R ⊆ A×B then

2https://www.eclipse.org/gmf-tooling/

5.2 Model Management in DiCoMEF 94

∀a ∈ A,∀b1,b2 ∈ B : (a,b1),(a,b2) ∈ R =⇒ b1 = b2 and we define R(a) = b , (a,b) ∈ R.

The presence of partial orders can be indicated with the < superscript: R ⊆ A×B< means

that tuples with a common element in first position are ordered (a,b1) < (a,b2) < (a,b3)

w.r.t. a and this information can be abbreviated as R(a) = [b1,b2,b3]. The position (index)

of an element in the list is represented with pos function as follows pos(b2,R(a)) = 1 and

[e1, . . . ,e2]− i , [e1, . . . ,ei−1,ei+1, . . . ,en]. If R is a binary relation ⊆ A×B, then we denote

R− the inverse relation ⊆ B×A: (a,b) ∈ R ⇔ (b,a) ∈ R− and we denote R⋆ its transitive

closure, i.e. {(a,b) | (a,b) ∈ R∨∃c : (a,c) ∈ R∧ (c,b) ∈ R⋆}. 2S denotes the powerset of a

set S and A 7→ B a mapping function from set A to set B.

5.2.1.2 The Ecore Meta-meta-model

The Eclipse Modeling Framework(EMF) is widely used to build tools and applications. It

generates code (i.e. classes for the meta-model and adapter classes for viewing and edit-

ing models) based on the structured data model [Steinberg et al., 2009]. A model can be

expressed using annotated Java interfaces, XML Schema, or UML modeling tools. EMF

provides a facility to generate one form of representation from the other (using the EMF

framework). EMF uses Ecore as a meta-meta-model to define different DSL languages and

itself. Figure 5.5 shows the UML class diagram of the Ecore meta-model. The associations

depicted with blue color are derived associations where as the black lines are non-derived

associations.

The root element of an Ecore meta-meta-model is an EPackage. An EPackage contains

zero or more sub-packages and EClassifiers (i.e. EClass, EDataType, EEnum). A model

class is represented by using an EClass, which is identified by a name and has zero or more

attributes and references. A class can have zero or more super types. It can have zero or

more operations. Properties (attributes) of a class are modelled using an EAttribute, which

has a name and a type. Associations are modelled by EReference(s). An EReference models

an end of an association between two classes; it has a name and a type (the EClass at the

3http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/doc-
files/EcoreRelations.gif

5.2 Model Management in DiCoMEF 95

Figure 5.5 EMF/Ecore Meta-model 3

opposite end of the association). A bi-directional navigable association is modelled using

two references that are related to each other by an eOpposite link. Besides, a composition

association is represented by setting a containment boolean property of an EReference to

true. The cardinality of a reference is modeled by setting lowerBound and upperBound

values. Like references, an attribute’s cardinality could be specified using lowerBound and

upperBound features. The Ecore meta-meta-model is attached in the appendix and we also

invite interested readers to refer to [Steinberg et al., 2009].

Semantics The semantics of the Ecore meta-meta-model is formally defined by a system-

atic mapping of its structural elements onto mathematical constructs.

5.2 Model Management in DiCoMEF 96

We define a set Σ that encompasses a set of constraints. For each class C in Ecore, we

define a set EC. For each association r between classes A and B in Ecore, we define a set

ρr ⊆ EA ×EB. Let’s observe that in all the Ecore meta-meta-model diagrams published so

far, the relations denote accessor methods and not sets of tuples as specified in the UML

standard [OMG, 2011]. For this reason, multiplicities in our mapping may not match the

cardinality of the accessor links in the diagrams published so far. The product denoting this

association is annotated with the . . . and < symbols depending on its semantics in Ecore: is

the association ordered? is it one-to-many, or many-to-many?. For each attribute a of type

T in class C, a set αa ⊆ EC ×T is defined where T ∈ ED.

Inheritance between classes is mapped to inclusion constraints between the correspond-

ing sets, hence, if A isa B, then the constraint EA ⊆ EB is added to Σ. When the superclass is

abstract, the inclusion is replaced with the equality operator. We bootstrap first the process

by defining some sets:

ED = {EString,EInteger, . . .}

EString = {‘’, ‘a’, ‘aa’, ‘ab’, . . .}

EInteger = {EInteger.min, . . .,−1,0,1, . . . ,EInteger.max}· · ·

ED elements are data types. In EMF, a data type denotes simple data types in Java,

classes, interfaces, and arrays that are not modeled by using with EC elements [Steinberg

et al., 2009]. We define Val as the union of all data type values: Val = ∪T∈ED
T .

Ecore classes in the meta-meta-model are mapped to sets: EC (aka EClass), ED (aka

EDataType), EP (aka EPackage), ER (aka EReference), EA (aka EAttribute), EE (aka EEnum),

EL (aka EEnumLiteral), EO (aka EOperation), EPA (aka EParameter), EAN (aka EAnno-

tation), Ene (aka ENamedElements), Eme (aka EModelElement), Ec (aka EClassifier), Ete

(aka ETypedElement), Es f (aka EStructuralFeature) and EOB (aka EObject). Lower case sub-

scripts denote abstract classes. For the sake of simplicity, EFactory and EStringToStringMapEn-

try are not considered in this work.

5.2 Model Management in DiCoMEF 97

The inheritance relationship between non-abstract class and its subtypes are modeled

using set inclusion constraints and the equality constraints (if the supertype is abstract). The

base class of all Ecore model elements is an EObject.

Eme ∪EOB EAN ∪Ene = Eme

Ete ∪Ec ∪EL ∪EP = Ene EO ∪EPA∪Es f = Ete

EC ∪ED = Ec EA ∪ER = Es f

EE ⊆ ED

In this formalization, we don’t consider associations that denote derived associations

or facilities to access objects neither opposite associations. Each relevant association is

translated as a relation between its ends.

ρeClassi f iers ⊆ EP ×Ec
<

ρeSubPackages ⊆ EP ×EP
<

ρeSuperTypes ⊆ EC ×EC
<

ρeSF ⊆ EC ×Es f
<

(eSF is a shortcut for eStructuralFeatures)

ρeIDAttribute ⊆ EC ×EA

ρeType ⊆ Ete ×Ec

ρeOpposite ⊆ ER ×ER

ρeKeys ⊆ ER ×EA
<

ρeOperations ⊆ EC ×EO
<

ρeParameters ⊆ EO × [EPA]
<

ρeExceptions ⊆ EO ×Ec

ρeLiterals ⊆ EE ×EL
<

ρeAnnotations ⊆ Eme ×EAN
<

ρdetails ⊆ EAN ×EM
<

5.2 Model Management in DiCoMEF 98

For sake of simplicity, we define owner(s f), ρ−
eSF(s f) and type(te), ρeType(te) as respec-

tively the owner of a structural feature and its type. Σ is completed with all the integrity

constraints defined for Ecore such as “EPackage must have unique names” or “the values of

the lowerbound attribute must less or equal than the value of the upperbound attribute for a

same class”,

An EMF/Ecore meta-model MM is thus defined as a tuple of sets:

(EC,EA, . . . ,ρeClassi f iers,ρeSubPackages, . . . ,αname, . . . ,Σ)

Example: A simple Petri net meta-model (Figure 5.6 depicts its class diagram) could be

defined as:

Figure 5.6 Petri net meta-model

5.2 Model Management in DiCoMEF 99

EC ={Pl,Tr,Nt,Ne}

EA ={Ne.name,Pl.tokens}

ER ={Pl.to,Pl. f rom,Tr. f rom,Tr.to,Nt.places,Nt.transitions}

EP ={PN}

ρeSF(Ne) =[Ne.name]

ρeSF(Pl) =[Pl.tokens,Pl.to,Pl. f rom]

ρeSF(Tr) =[Tr.to,Tr. f rom]

ρeSF(Nt) =[Nt.places,Nt.transitions]

αname ={(Pl, ‘Place’),(Tr, ‘Transiton’),(Nt, ‘Net’),

(Ne, ‘NamedElement’),(Ne.name, ‘name’),(Pl.tokens, ‘tokens’),

(Pl.to, ‘to’),(Pl. f rom, ‘ f rom’),(Tr.to, ‘to’),(Tr. f rom, ‘ f rom’),

(Nt.places, ‘places’),(Nt.transitions, ‘transitions’)}

· · ·

5.2.1.3 Instantiation

If MM is a meta-model, a model M compliant with MM (noted M/MM) is defined as a tuple

(J.KC,J.KA,J.KR,ΣM) where each component is defined hereafter (EOB denotes an infinite set

of objects):

• J.KC : EC 7→ 2EOB A class is modeled as a set of objects.

• J.KA : EA 7→ 2(EOB×T<) where T is the type of the attribute (T ∈ ED). An attribute

associates an object with values of type T .

5.2 Model Management in DiCoMEF 100

• J.KR : ER 7→ 2(EOB×EOB
<) Same for references, but with objects.

We define τ(o) : EOB 7→ EC the function that maps an object o to its class c ∈ EC such

that o ∈ JcKC ∧¬∃d ∈ EC : ρeSuperTypes(d,c)∧o ∈ JdKC.

Example: A Petri net instance model (depicted as an object diagram in Figure 5.7) can be

formalized as:

idle busy

dead

start

kill

Figure 5.7 Petri net instance model

JNtKC = {net}

JPlKC = {idle,busy,dead}

JTrKC = {start,kill}

JPl.nameKA = {(idle, ‘idle’),(busy, ‘busy’),(dead, ‘dead’)}

JTr.nameKA = {(start, ‘start’),(kill, ‘kill’)}

JPl.tokensKA = {(idle,1),(busy,0),(dead,0)}

JPl.toKR(idle) = [start,kill]

JPl. f romKR = {(dead,kill),(busy,start)}

JTr.toKR = {(start,busy),(kill,dead)}

JTr. f romKR = {(start, idle),(kill, idle)}

JNt.placeKR(net) = [idle,busy,dead]

JNt.transitionKR(Nt.transition)= [start,kill]

5.2 Model Management in DiCoMEF 101

As explained in Section 5.2.1.1, we used the notation R(a) = [b1,b2,b3] to summarize

(a,b1)< (a,b2)< (a,b3) for the JKR construct.

5.2.1.4 Reflexivity

Since the base class of all Ecore model elements is EObject, this implies that the Ecore

meta-meta-model could specify itself (reflexive definition): the Ecore meta-meta-model can

then be modeled as an Ecore meta-model (e.g. MMEcore). We could expect to observe the

same property in our semantics framework of Ecore. We only present a partial definition of

MMEcore for brevity and clarity:

EC = {Ene,EP,Ec,ER, . . .}

EA = {Ene.name,EP.nsURI,EP.nsPre f ix,Ec.instanceClassName,

Ec.instanceTypeName, . . .}

ER = {EP.eSubPackages,EP.eClassi f iers,Ec.eStructuralFeatures, . . .}

EP = {Ecore}

ρeSF = {(Ene,Ene.name),(EP,EP.nsURI),(EP,EP.nsPre f ix),(EP,EP.eClassi f iers),

(EP,EP.eSubPackages),(Ec,Ec.eStructuralFeatures),

(Ec,Ec.instanceClassName), . . .}

αne.name = {(Ene, ‘ENamedElement’),(EP, ‘EPackage’),

(Ec, ‘EClassi f ier’),(Ene.name, ‘name’),

(EP.nsURI, ‘nsURI’),(EP.nsPre f ix, ‘nsPre f ix’),

(Ec.instanceClassName, ‘instanceClassName’),

(Ec.instanceTypeName, ‘instanceTypeName’), . . .}

. . .

5.2 Model Management in DiCoMEF 102

ρeType(Ene.name) = EString

ρeType(Ec.instanceClassName) = EString

ρeType(Ec.instanceTypeName) = EString

ρeType(Ec.eStructuralFeatures)= Es f

ρeType(EP.nsPre f ix) = EString

ρeType(EP.nsURI) = EString

ρeType(EP.nsURI) = EString

ρeType(EP.eSubPackages) = EP

ρeType(EP.eClassi f iers) = Ec

ρeSuperTypes(Ec) = Ene

ρeSuperTypes(EP) = Ene

ρeClassi f iers(EP) = Ec

This process could be continued with the other constructs of the Ecore meta-model

and it shows that we can seamlessly define an Ecore meta-model by using its own self,

meaning that our formalization supports the reflexive nature of Ecore. Moreover, the con-

structs used to define the semantics of a meta-model MM at the meta-model level or at the

model level when it is reified and consistent. Indeed, for each element of their domain,

semantics functions send them to an element that is compliant with the meta-model level:

for every attribute a of the Ecore meta-meta-model, we have JaKA ⊆ EOB ×T<, and since

EC ⊆ EOB, JaKA matches well the type of αa, i.e., EC ×T . Particularly for Ne.name, asser-

tion JNe.nameKA = αNe.name is verified. For every reference r, we have JrKR ⊆ EOB ×E<
OB

that matches the definition of ρr since every EX ⊆ EOB,∀X . For every class k, we have

JkKC ⊆ EOB that also matches the definition Ek. Moreover JkKC = k, e.g. JECKC = EC.

Hence, isa relationships that have been translated in Σ with set inclusions are still preserved.

5.2 Model Management in DiCoMEF 103

5.2.2 Definition of History Meta-model

The operation-based framework uses sequences of elementary (meta-)model change opera-

tions to express models [Blanc et al., 2008; Koshima and Englebert, 2014; Koshima et al.,

2011, 2013]. It captures atomic edit operations while a user adapts (meta-)models. Change

operations are also used to exchange (meta-)models modifications between users [Blanc

et al., 2009]. Besides, they are also used to detect conflicts and help the reconciliation pro-

cess. Hence, it is important to specify the change operations unambiguously and formally.

A history meta-model has been defined to capture the information denoted by the change

operations (create, delete and updates4) of models: a model element can be created (or

deleted), a value of a single valued attribute or reference might be set. Besides, a new value

can be added (or removed) to a multi-valued attribute or reference. Once this information is

captured locally by this meta-model, an history can later be exchanged with other members.

Some work in the past has already used history meta-models. In [Falleri et al., 2014;

Fluri et al., 2007; Gall et al., 2009], the authors present different approaches that compare

two abstract syntax trees of source code revisions and represents deltas in terms of basic tree

edit operations such as insert, delete, move, or update of tree nodes. These approaches do not

capture edit operations whenever they occur so that exact time sequences of edit operations

cannot be preserved. Monticello [Black et al., 2010], Torch [Gómez et al., 2010], Ring

[Gómez et al., 2012], and Hismo [Gîrba et al., 2005] transform a snapshot of a program into

a version history rather than recording modifications as they happen. They lack preserving

the exact time sequences of modifications that are performed by a user.

Ebraert et al. present a change model in ChEOPS (Change-and-Evolution-Oriented Pro-

gramming Support) [Ebraert et al., 2007]. This change model is defined based on the

FAMIX meta-model [Demeyer et al., 2001], and it captures edit operations that are per-

formed on object-oriented programs as they happen. SpyWare [Robbes and Lanza, 2007,

2008] and Epicea [Dias et al., 2013] also define a history model to tracks changes of a

program whenever they occur. D-Praxis [Mougenot et al., 2009] also provides a history

4Let’s note that read operations are not taken into consideration.

5.2 Model Management in DiCoMEF 104

model to captures atomic edit operations (i.e., add, delete, create, and set operations) on

EMF/Ecore models.

Edapt 5, previously called COPE [Herrmannsdoerfer, 2009], is a tool based on the EM-

F/Ecore met-meta-model that captures edit operations of meta-model adaptations whenever

they occur. EMFStore [Koegel and Helming, 2010] uses a history meta-model, which cap-

tures adaptation of EMF/Ecore based models and meta-models. By the time this research

was conducted, the history meta-model of EMFStore was tightly coupled with other com-

ponents of the EMFStore implementation. As a result, EMFStore cannot be used/installed

as an autonomous component for capturing history of meta-model adaptation. In addition,

the history meta-model of EMFStore 6 does not record meta-model adaptation well, for

instance, moving an EAttribute from one parent EClass to a new parent EClass generates

a run time error. As described in Section 5.2.1, the Ecore meta-model is reflexive, hence,

constructs used to define the Ecore meta-model can be reused to define an Ecore model and

its instances. Hence, we have extended Edapt to capture both the adaptations of model and

meta-model as part of the DiCoMEF implementation.

The history meta-model should fulfill the following requirements in order to be effi-

ciently used in distributed collaborative (meta-)model editing framework.

(R1) Self contained: it must not have links (references) to model elements (surrogate tech-

nique should be used to reference model elements).

(R2) Universal Unique Identifier (UUI): it should have unique identifiers that identify change

operations (create, set, delete, . . .). Besides, it should also have UUIs for identifying

(meta-)model elements uniquely.

(R3) Composition: it allows users to create composite of changes from other changes or

composite changes.

(R4) Meta-model adaptation: it has to capture meta-model adaptation operations.

5https://www.eclipse.org/edapt/
6Recently, EMFStore has had refactoring to reduce a coupling between parts of the implementation that

captures history with rest of implementation. The history meta-model of EMFStore records both models and
meta-models adaptations

5.2 Model Management in DiCoMEF 105

R1 R2 R3 R4 R5 R6 R7 R8 R9

Edapt
√ √ √

EMFStore
√ √ √ √ √ √

DiCoMEF
√ √ √ √ √ √ √ √ √

Table 5.1 Comparison of EMFStore, Edapt, DiCoMEF.

(R5) Model adaptation: it has to capture model adaptation operations.

(R6) Understandability: users intention should be easy to understand. For example, Edapt

represents a changing of a parent element of a model element with a Move operation,

which is easier to understand than EMFStore, which models the same modification

with a composite operation that is composed of remove and add operations.

(R7) Multimedia Annotation: it has to give a user the facility to annotate his rationale

with multimedia files.

(R8) Cascade operations: a delete operation should capture cascade operations that are

caused by it. For example, when an EClass is deleted from an EPackage, all the

references that point to the deleted EClass should be set to null. The delete operation

should contain reference operations (copy of them) that set null value (or remove

the deleted EClass from a collection). This could help only to roll back conflicting

operations during merging process (to reconstruct references that are set to null or

deleted due to the deletion of a model element). Roll back is different from undo

operations that store operations in the stack. Roll back could be applied when an

editor is closed and re-opened again.

(R9) Who performs changes and when: it has to provide facilities to identify an actor

who performs changes and when the changes are made.

Based on these requirements, we compare EMFStore, Edapt, and DiCoMEF in Ta-

ble 5.1. Indeed, Edapt provides a facility to create a composite change from a set of prim-

itive changes, but it does not support creating a composite change from other composite

change(s).

5.2 Model Management in DiCoMEF 106

For the rest, we define an operation trace ω as the complete documentation of a trans-

formation step M′/MM = M/MM ≫ ω where M′/MM is the new model obtained after

application of operation trace ω—M denotes a model or a meta-model, that doesn’t matter

anymore. And a history could then be defined as a sequence M/MM ≫ ω1 ≫ ω2 ≫ ω3 ≫
ω.... A trace provides both the information about the precondition and the post-condition of

operations.

Figure 5.8 shows the history meta-model of DiCoMEF. We did not show a user model el-

ement in Figure 5.8 for the sake of simplicity. The Create operation creates a model element

in the context of a container element. Delete operation deletes an existing model element

from its parent element. Move operation changes the container of an element. Add opera-

tion adds a model element (data values) to a list of elements. Remove operation removes a

model element from the collection. MoveIndex operation changes the index of an element

in a collection. Set operation updates a value of a single-valued attribute or reference. Each

operation step has been formally defined as a transition between a state before and a state

after (denoted by the ′ superscript). The formal definitions of these operations are provided

below using the formalization defined in section 5.2.1.

5.2 Model Management in DiCoMEF 107

Figure 5.8 History Meta-model

Create Operation: Create operation creates objects in the context of a container.

M/MM ≫ Create(e1,r,e2, i)≫ M′/MM

r ∈ ER ∧ e2 ∈ E ′
OB

∧ Jtype(r)K′C = Jtype(r)KC ∪{e2}

∧
(

τ(e1) = owner(r)∨ (τ(e1),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ JrK′R = JrKR ∪{(e1,e2)}

∧ pos(e2,JrK′R) = i∧ JrK′R − i = JrKR

∧ JER.containmentKA(r) = true†

† Since ER ∈EC (see 5.2.1.4) and type(r)=ER and ER.containement ∈EA and owner(ER.

containment) = ER, expression JER.containmentKA(r) denotes if the reference r must be

5.2 Model Management in DiCoMEF 108

considered as a containment or not. EMF attaches importance to the organization of the

information in a strict containment relationship and many operations provided by the Ecore

API depend on this hierarchy. For sake of simplicity, we define κ(r), JER.containmentKA(r).

Example: create(net,Nt.place,start,1)

Delete Operation : Delete operation deletes an existing model element along with its con-

tents (child elements) from its parent element.

M/MM ≫ Delete(e1,r,e2)≫ M′/MM

r ∈ ER ∧ e2 6∈ EOB ∧κ(r) = true

∧ Jtype(r)K′C = Jtype(r)KC\{e2}

∧
(

τ(e1) = owner(r)∨ (τ(e1),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ JrK′R = JrKR\{(e1,e2)}

Example: delete(net,Nt.place,start)

Add Operation : Add operation adds a value to a multi-valued attribute or reference of an

an existing model element.

M/MM ≫ Add(e,a,ν, i)≫ M′/MM (for an EAttribute)

a ∈ EA ∧ν ∈Val

∧ Jtype(a)K′D = Jtype(a)KD ∪{ν}

∧
(

τ(e) = owner(a)∨ (τ(e),owner(a)) ∈ ρeSuperTypes
⋆
)

∧ JaK′A = JaKA ∪{(e,ν)}

∧ pos(ν,JaK′A) = i∧ JaK′A − i = JaKA

5.2 Model Management in DiCoMEF 109

M/MM ≫ Add(e1,r,e2, i)≫ M′/MM (for an EReference)

r ∈ ER ∧ e2 ∈ EC

∧ Jtype(r)K′C = Jtype(r)KC ∪{e2}

∧
(

τ(e1) = owner(r)∨ (τ(e1),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ JrK′R = JrKR ∪{(e1,e2)}

∧ pos(e2,JrK′R) = i∧ JrK′R − i = JrKR

Remove Operation : Remove operation removes a value from a multi-valued attribute or

reference of an an existing model element.

M/MM ≫ Remove(e,a,ν)≫ M′/MM (for an EAttribute)

a ∈ EA ∧ν ∈Val

∧ Jtype(a)K′D = Jtype(a)KD\{ν}

∧
(

τ(e) = owner(a)∨ (τ(e),owner(a)) ∈ ρeSuperTypes
⋆
)

∧ JaK′A = JaKA\{(e,ν)}

M/MM ≫ Remove(e1,r,e2)≫ M′/MM (for an EReference)

r ∈ ER ∧ e2 ∈ EC

∧ Jtype(r)K′C = Jtype(r)KC\{e2}

∧
(

τ(e1) = owner(r)∨ (τ(e1),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ JrK′R = JrKR\{(e1,e2)}

Set Operation : Set operation updates a single-valued attribute or reference of an an existing

model element.

5.2 Model Management in DiCoMEF 110

M/MM ≫ Set(e,a,νn,νo)≫ M′/MM (for an EAttribute)

a ∈ EA ∧νn,νo ∈Val

∧ Jtype(a)K′D = Jtype(a)KD ∪{νn}

∧ Jtype(a)K′D = Jtype(a)KD\{νo}

∧
(

τ(e) = owner(a)∨ (τ(e),owner(a)) ∈ ρeSuperTypes
⋆
)

∧ JaK′A = JaKA ∪{(e,νn)}

∧ JaK′A = JaKA\{(e,νo)}

M/MM ≫ Set(e1,r,e2,e3)≫ M′/MM (for an EReference)

r ∈ ER ∧ e2,e3 ∈ EC

∧ Jtype(r)K′C = Jtype(r)KC ∪{e2}

∧ Jtype(r)K′C = Jtype(r)KC\{e3}

∧
(

τ(e1) = owner(r)∨ (τ(r),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ JrK′R = JrKR ∪{(e1,e2}

∧ JrK′R = JrKR\{(e1,e3)}

Move Operation : Move operation changes a parent of a model element this means that it

moves an element from one containment reference to another containment relation. Indeed,

a move operation removes an EObject with its content from its parent and adds it and its

5.2 Model Management in DiCoMEF 111

contents to another parent.

M/MM ≫ Move(e1,r2,r3,e2,e3, i)≫ M′/MM

r2,r3 ∈ ER ∧κ(r2) = true∧κ(r3) = true∧ e2,e3 ∈ EOB

∧ Jtype(r3)K
′
C = Jtype(r3)KC ∪{e1}

∧ Jtype(r2)K
′
C = Jtype(r2)KC\{e1}

∧
(

τ(e2) = owner(r2)∨ (τ(r2),owner(r2)) ∈ ρeSuperTypes
⋆
)

∧
(

τ(e3) = owner(r3)∨ (τ(r3),owner(r3)) ∈ ρeSuperTypes
⋆
)

∧ Jr3K
′
R = Jr3KR ∪{(e3,e1}

∧ Jr2K
′
R = Jr2KR\{(e2,e1)}

∧ pos(e1,Jr3K
′
R) = i∧ Jr3K

′
R − i = Jr3KR

MoveIndex Operation : MoveIndex operation moves an element of multi-valued attribute

or references from old position to new position within the list (change position).

M/MM ≫ MoveIndex(e,a,ν, i, j)≫ M′/MM (for an EAttribute)

a ∈ EA ∧ν ∈Val

∧
(

τ(e) = owner(a)∨ (τ(e),owner(a)) ∈ ρeSuperTypes
⋆
)

∧ pos(ν,JaK′A) = i∧ JaK′A − i = JaKA = j

M/MM ≫ MoveIndex(e1,r,e2, i, j)≫ M′/MM (for an EReference)

r ∈ ER ∧ e2 ∈ EOB

∧
(

τ(e1) = owner(r)∨ (τ(e1),owner(r)) ∈ ρeSuperTypes
⋆
)

∧ pos(e2,JrK′R) = i∧ JrK′R − i = JrKR = j

5.2 Model Management in DiCoMEF 112

Figure 5.9 demonstrates the history of model adaptation using DiCoMEF, whereas Fig-

ure 5.10 illustrates meta-model evolution and the history of edit operations.

Figure 5.9 History of model adaptation in DiCoMEF

5.2.3 Change Management

DiCoMEF modification management system organizes changes into different groups such

as “local modification”, “requested modification”, “propagated modification”, and “com-

mitted modifications”. Local modifications are changes performed by editors locally, but

they are not requested for a commit. These modifications are stored in a change package

with a local label. Requested modifications are local modifications that have been sent to

a controller for a commit, and are stored in a change package with a requested label. The

changes that are reviewed and propagated by the controller to all members of a group are

5.2 Model Management in DiCoMEF 113

Figure 5.10 History of meta-model adaptation in DiCoMEF

5.2 Model Management in DiCoMEF 114

stored in change package, which is marked by propagated. Committed modifications are

those changes that are applied on the main-line and the branch, which are stored in a package

with a committed label. The controller can aggregate two or more requested modifications

into one propagated modification. The propagated modification contains UUIDs of those ag-

gregated requested modifications. When an editor commits a propagated modification, the

label of a requested modification package whose identifier is contained by the propagated

change package is converted to committed.

The easiest way to manage changes during merging is to temporarily rollback local mod-

ifications and applies propagated modifications, and to re-apply local modifications again.

Local modifications are always the most recent modifications, so that an editor can easily

identify these changes. The downside of this approach is that it requires to rollback local

modifications for every minor changes propagated from the controller. In order to address

this problem, the DiCoMEF modification management system classifies modifications into

different groups and stores them in change packages labeled with local, requested, propa-

gated, and committed. Whenever an editor tries to generate a requested modifications, the

DiCoMEF modification management system canonizes all changes stored in change pack-

ages starting from the first change package with a local label to the most recent change

package. If the canonization result is empty, then there is no change request to generate. If

not, the canonized changes that are a member of change packages with local labels are used

to generate change requests. Likewise, the controller generates propagated modifications

from the canonized changes that are a member of change packages with local labels.

5.2.4 Model Comparison

DiCoMEF uses a universal unique identifier (UUID) to uniquely identify each model and

meta-model element. Two (meta-)model elements are considered as equal if and only if

they do have the same UUID. It also uses a UUID to identify edit operations and versions.

As discussed in Chapter 4 Section 4.1.1, model comparison techniques are classified as

state-based model comparison and operation-based model comparison [Altmanninger et al.,

2009; Lippe and van Oosterom, 1992a; Mens, 2002]. DiCoMEF employs operation-based

5.2 Model Management in DiCoMEF 115

model comparison approach, where sequences of edit operations that adapt (meta-)models

are considered as deltas between two versions of (meta-)models.

5.2.5 Conflict Detection

In collaborative modeling, (meta-)models are concurrently edited by different members of

a group. Later, these concurrently edited (meta-)models need to be integrated (merged),

but most of the time they might not seamlessly work together as a result of inconsistent

modifications (conflict). Due to conflicts, a user might not be able to execute all operations

propagated from a controller on his local copy. For instance, this could be the case when

the user deletes a model element and the controller propagates a change which modifies the

same model element (i.e., a delete operation and a set operation on the same model element).

Hence, the deleted element needs to be re-created (with the same UUID). DiCoMEF only

rolls back the delete operation (re-create) and the dependent operations (a copy of these

operations is stored in the delete operation). For instance, suppose that an editor and a

controller work on the same model instance described in section 5.7. The Editor deletes the

start model element (instance of a Transition class) and sets the name of the busy model

element (instance of a Place class) to “active”. A controller sends a change propagation

to rename a start model element to “begin”. In order to apply the change propagation, a

deleted element (start) must be re-created. During rolling back, DiCoMEF firstly creates

the start model element and afterwards it re-establishes the relationships between the start

and the busy, and the idle and the start model elements (see Figure 5.12). Rolling back

only the delete operation is important, especially, if there are many changes performed by a

user after deleting a model element. Rolling back all changes to re-create a deleted model

element could be time consuming. Finally, it renames start to “begin”.

5.2 Model Management in DiCoMEF 116

Figure 5.11 Change propagation and local operations

We employ the Conflict (Table 5.2 and 5.3) and Require (Table 5.4) relations to detect

structural conflicts between HC and HL [Koegel et al., 2009b]. Where HC is a history

of changes propagated from a controller and HL is a history of local changes performed

by an editor. An operation ωC
i is conflicting with another operation ωL

j if the order of

serialization of these operations affects the final state of the (meta-)model (e.g., two set

operations that rename an EObject differently) [Koegel et al., 2009b]. Besides, the execution

of one of the operations could invalidate a precondition of another one. The preconditions of

operations are implicitly specified in the formalization of operations (see section 5.2.2). For

instance, a target model element must exist in a model (e3 ∈ M/MM) so as to create a non-

root model element (i.e., M/MM ≫ Create(e3,r1,e1, i)≫ M′/MM) . Hence, e3 ∈ M/MM

is a precondition and must be satisfied so as to execute Create(e3,r1,e1, i) operation. In

fact, the semantics of conflicts sometimes depend on whether multi-valued features need

to be ordered or not. In ordered multi-valued features r2, two create operations such as

Create(e1,r2,e2, i) and Create(e1,r2,e3, j) could be conflicting. The order of execution of

these operations could leave an element in different positions in a list (pos(e2,Jr2K
′′
R) 6=

pos(e2,Jr2K
′′
R). On the other hand, these two operations are not conflicting in non-ordered

multi-valued features.

Conflict relation calculates a set of conflicting operations. The level of severity of con-

flicts could vary based on the type of conflicts meaning that some conflicts need user inter-

5.2 Model Management in DiCoMEF 117

actions whereas other conflicts could be solved automatically [Koegel et al., 2009b]. Hard

conflicts require a user interaction. For instance, a delete-update conflict is a hard conflict.

Soft conflicts can be resolved automatically by employing some conflict reconciliation strate-

gies. For example, conflicting positions in ordered multi-valued features are soft conflicts.

Tables 5.2 and 5.3 show the conflicting relation where h (resp s) denotes a hard (resp soft)

conflict.

The ≻H operator shows that one operation is succeeded (directly or indirectly) by an-

other operation in history H. For instance, Create(e1,r1,e2, i) ≻H Delete(e3,r2,e1) and

Delete(e3,r2,e1) ≻H Create(e1,r1,e2, i) give different result. In the first case, both oper-

ations execute and the model element e1 along with its child are deleted from the model.

But, in the second case, the create operation cannot execute because the delete opera-

tion deletes the target model element e1 and makes the precondition of the create oper-

ation invalid. Therefore, Create(e1,r1,e2, i) and Delete(e3,r2,e1) operations are conflict-

ing operations: Create(e1,r1,e2, i) ⊗ Delete(e3,r2,e1). ⊗ symbol is used to show conflict-

ing relations: Create(e1,r2,e2, i) ⊗ Delete(e3,r1,e1). A conflicting relation is symmetric:

Create(e1,r2,e2, i)⊗ Delete(e3,r1,e1)⇒ Delete(e3,r1,e1)⊗ Create (e1,r2,e2, i). A Delete

operation conflicts with a Move operation if it deletes a same model element, its source

model element, or a new target model element. A delete-update conflict is a hard conflict

that needs user intervention. In addition, a Delete operation is conflicting with ValueChange

operations if it deletes either a same model element or a reference value of ValueChange op-

erations.

A Move operation is conflicting with another Move operation if they move a same model

element to different target elements (hard conflict). Besides, they could also be in conflict

with one another if they moved different model elements to a same multi-valued features

of a target model element (soft conflict). A Move operation might also raise soft conflicts

with Create operations and ValueChange operations such as Add, Remove, and MoveIndex.

The index position of elements in a list could be different depending on their serialization

of operations. A composite operation ωc is in conflict with another operation ω1 if at least

5.2 Model Management in DiCoMEF 118

one of its member operation is conflicting with ω1. The semantics of conflicts for other

operations could easily be expressed as well.

A Set operation conflicts with another Set operation that assigns different value for a

same feature of model element. An Add and a Remove operations are also conflicting with

each other if the Add operation adds a model element and the Remove operation removes the

same model element. Two Add or two Remove operations could also raise conflicts when

they are applied on ordered multi-valued features. MoveIndex operation raises disagreement

with another MoveIndex operation if an application of these operations give different posi-

tion to a same model element. MoveIndex operation also conflicts with Move operation, if a

Move operation changes a parent of an element that is concerned by MoveIndex operation. A

composite operation ωc is in conflict with another operation ω1 if at least one of its member

operation is conflicting with ω1.

An operation, ω j, requires another operation, ωi, if and only if ωi must be executed

before ω j so that the precondition of ω j is entailed by the post-condition of ωi. The re-

quire binary relation is transitive, but it is not symmetric. As it was discussed above in

section 5.2.2(see Figure 5.8), ContentChange operations (i.e., Create, Delete, and Move) re-

quire Create operations that created their target model elements (containers). For instance,

a given create operation (M/MM ≫ Create(e3,r1,e1, i)≫ M′/MM) needs a creation of its

target model element (e3 ∈ M/MM) so as to execute successfully. For example, an EClass

Place should be created before an EAttribute tokens (see Figure 5.6). After successful exe-

cution of the create operation, a new model element is added to the model, e1 ∈M′/MM (i.e,

an EAttribute tokens is added to the model). The require relationship between Create opera-

tions has one exception: a creation of root model element does not have any target element.

ContentChange operations also require creation of model elements (EObjects) on which the

operations are performed. Move operation depends on a creation of a source model element,

EObject. The require relationships of ContentChange operations are represented as follows:

5.2 Model Management in DiCoMEF 119

Create(e1,r2,e2, j) ∈ H ⇒

∃e3,r1, i : Create(e3,r1,e1, i)≻H Create(e1,r2,e2, j)

Delete(e1,r2,e2) ∈ H ⇒

∃i : Create(e1,r2,e2, i)≻H Delete(e1,r2,e2)

Move(e2,r2,r4,e1,e3, i) ∈ H ⇒

∃r1, l : Create(e3,r1,e1, l)≻H Move(e2,r2,r4,e1,e3, i)

∧ ∃ j : Create(e1,r2,e2, j)≻H Move(e2,r2,r4,e1,e3, i)

∧ ∃e4,r3,m : Create(e4,r3,e3,m)≻H Move(e2,r2,r4,e1,e3, i)

ValueChange operations such as Add, Remove, Set, and MoveIndex could be reference

value change operations or data value change operations. A ValueChange operation requires

a creation of an element (EObject) on which the operation is performed. Besides, a reference

ValueChange operation requires a creation of a reference value, EObject. For instance, a

given Set operation (i.e., M/MM≫ Set(e1,r4,e2,e3)≫M′/MM) requires create operations

that add e1 and e2 to the model, e1,e2 ∈ M/MM. In fact, a Set could assign a NULL value

to a single-feature of a model element. Remove operation needs an addition of a model

element to multi-valued feature. Hence, these relationships are depicted as:

Set(e1,r4,e2,e3) ∈ H ⇒

∃r1, i : Create(e3,r1,e1, i)≻H Set(e1,r4,e2,e3)

∧ ∃e4,r2, j : Create(e4,r2,e2, j)≻H Set(e1,r4,e2,e3)

Add(e1,r4,e2, i) ∈ H ⇒

∃e3,r1, j : Create(e3,r1,e1, j)≻H Add(e1,r4,e2, i)

∧ ∃e4,r2, l : Create(e4,r2,e2, l)≻H Add(e1,r4,e2, i)

5.2 Model Management in DiCoMEF 120

Remove(e1,r4,e2) ∈ H ⇒

∃e3,r1, j : Create(e3,r1,e1, j)≻H Remove(e1,r4,e2)

∧ ∃e4,r2, l : Create(e4,r2,e2, l)≻H Remove(e1,r4,e2)

∧ ∃i : Add(e1,r4,e2, i)≻H Remove(e1,r4,e2)

MoveIndex(e1,r4,e2, l,m) ∈ H ⇒

∃e3,r1, i : Create(e3,r1,e1, i)≻H MoveIndex(e1,r4,e2, l,m)

∧ ∃r2 : Create(e1,r2,e2, l)≻H MoveIndex(e1,r4,e2, l,m)

A Composite operation requires all operations that should be performed firstly before exe-

cuting its contents. The require relation could be extended with the following pattern:

(create(e1,r1,e2, i),create(e3,r2,e1, j))

This relation is resumed in Table 5.4. There is a correlation between the require and

conflict relationships: if operation ω1 requires ω2 and ω2 conflicts with ω3, then ω1 also

conflicts with ω3.

Meta-model adaptation could also lead to a precondition violation, for instance, a refer-

ence feature of a meta-model element could be deleted in a new version of meta-model that

results in violation of precondition for Create, Set, Add, . . . operations. In this case, both

the instance model and its respective history model needs to co-evolve with meta-model.

But model co-evolution and history migration are not in the scope this work. It will be

incorporated on the top of DiCoMEF as part of future work.

When hard conflicts occur, the DiCoMEF framework shows the conflicting operations

to the user with all the required information and the rationale about them (see Figure 5.12).

A user can select some conflicting changes so as to apply them locally and reject the rest

5.2 Model Management in DiCoMEF 121

Figure 5.12 DiCoMEF merge tool

of conflicting changes (not selected conflicting changes). In the next phase, DiCoMEF uses

EMF validation framework [Steinberg et al., 2009] to detect semantic conflicts. In fact,

it checks whether the merging of two histories results in any OCL constraints violation.

DiCoMEF provides a tree view editor with different icons and information to facilitate re-

solving of semantic conflicts. Once the user has solved conflicts, the merging process can

be continued.

5.2 Model Management in DiCoMEF 122

Table 5.2 Conflicting relation (ordered-multivalued).

Create Delete Move MoveIndex Add Remove Set

Create s h s s s s

Delete h h h h h

Move s h h h s s

MoveIndex s h h s s s

Add s h s s s s

Remove s s s s

Set h s

Table 5.3 Conflicting relation (unordered-multivalued).

Create Delete Move Add Remove Set

Create h

Delete h h h h

Move h h

Add h s

Remove s

Set h s

Table 5.4 Requires relation.

Create Delete Move MoveIndex Add Remove Set

Create
√

Delete
√

Move
√

MoveIndex
√

Add
√

Remove
√ √

Set
√

5.2 Model Management in DiCoMEF 123

5.2.6 Conflict Resolution and Merging

DiCoMEF uses a human controller to manage the evolution of (meta-)models. S/He is

assumed to be a business domain expert with good modeling experience. Besides, s/he has a

right to accept or reject change requests received from users. Once a new release is available,

changes are propagated to all users who must take them into consideration before their own

operations. In DiCoMEF, the controller role can be assigned or delegated to other members.

This could help to facilitate collaboration among users with different expertise (database,

user interface design, business domain, . . .). In case of conflict with his/her local change,

DiCoMEF supports a semi-automatic conflict reconciliation strategy. Later, a user can send

his/her local modifications merged with the last release of the model as a change request to

the model controller. DiCoMEF provides users a facility to compose changes so as to put

them in a same context (i.e., refactoring changes). This could later help users to understand

changes during reconciliation process. It also lets users to annotate rationale of changes

with multimedia files (i.e., audio, video, image, or text). During the reconciliation process,

users can consult them to better understand rationale of changes and resolve conflicts.

Operation-based merging is a process of fusion of the ωL and ωC histories in such a way

that conflicts are avoided. Where ωC is a sequence of changes propagated from a controller

and ωL is a sequence of local changes performed by an editor. Some order of execution

of operations could be imposed to facilitate merging. For instance, if ωC must be executed

before ωL, then this would force ωL to be rolled-back, next ωC would be applied and finally

ωL could be re-applied. But this process is time consuming (e.g., roll-back a one day work

for a propagated change that renames an EObject). Another option could preserve ωL and

next apply ωC while there is no conflict. When a conflict is detected, ωL is rolled-back

and the scenario is reversed. A user can keep or drop some changes from ωL when it is

re-applied. But this ordering is also a time consuming process . The optimal option is

to consider M/MM≫ ωL ≫ ωC. In this strategy, if a conflict occurs while applying ωC,

changes in ωL that caused the conflict are rolled back. This last strategy has been chosen in

DiCoMEF and relies on an in-depth analysis conflicts and of the causal relationship between

5.2 Model Management in DiCoMEF 124

the rolled back operations and other traces in the histories. This is discussed in the next

section.

5.2.7 Model Versioning

DiCoMEF framework provides operation-based versioning support for both models and

meta-models. It specifically manages revisions of (meta-)models, not variants. The frame-

work stores direct deltas as differences between two successive versions. Indeed, DiCoMEF

employs an extensional versioning technique, where each version is explicitly defined and

has been sequentially checked-in to the version control system. It identifies each version by

using an UUID. The versions are stored in a forward mode, DiCoMEF applies the reverse of

direct deltas in order to generate previous versions. DiCoMEF does not remove deltas and

versions from a history, as a result, a version with same UUID can occur more than once in

the history. For example, if the history H contains three versions, H = {υ,υ2,υ3}, then each

version contains a direct delta and υ3 is the most recent version. Later, if a user rollbacks the

last version, DiCoMEF will add υ
′
2 to the history to finally get H = {υ1,υ2,υ3,υ

′
2}. Both υ

′
2

and υ2 refer to a logical version with the same identifier ’2’, but their contents (deltas) are

different. υ
′
2 contains the inverse of the deltas that evolves (meta-)models from version ’2’

to version ’3’, whereas υ2 contains deltas between υ1 and υ2. After rolling-back, the history

contains two logical versions (i.e., υ1 and υ2). DiCoMEF version management identifies

and manages logical versions and other equivalent versions created due to reverse of direct

delta operations.

5.2.8 Composite Operation Recovering and Detection Framework

Operations constituted in deltas improve users understanding about the evolution of model-

ing artifacts [Langer et al., 2013]. These operations can be classified as atomic, refactoring,

or composite change operations [Langer et al., 2013]. Atomic operations (i.e., creation, ad-

dition, deletion, update) are low level operations and it is a cognitively challenging task for

users to understand and re-construct high level changes (which might reflect the intention of

5.2 Model Management in DiCoMEF 125

modifications) from primitive changes. Hence, atomic operations do not scale. A composite

change operation denotes any type of in-place model transformation that executes all its

children operations within one transaction [Langer et al., 2013].

Refactoring operations are composite operations that modify internal structures of soft-

ware artifacts without changing their external behaviour [Mens and Taentzer, 2007]. Model

refactoring is a type of model transformation that does not alter the semantics of the model.

It does not add new functionality or remove existing once from the model, rather it simpli-

fies the design model without changing its external behaviour [Mohamed and Romdhani,

2009; Van Der Straeten et al., 2007]. Model refactoring operations help to improve the

understanding of modifications and intentions of a user who performed changes. The recov-

ering of model refactoring operations is an important activity in model management [Langer

et al., 2013] and is even a crucial task to ensure collaborative modeling.

Meta-model adaptation might cause instance models inconsistent. Instance models might

no longer satisfy the set of rules and constraints specified by the meta-model. Therefore,

models need to be co-evolved with their respective meta-models in order to preserve the con-

formance between models and meta-models [Herrmannsdoerfer, 2009]. Indeed, complex

operations, which adapt a meta-model, can be coupled with model adaptation instructions

to migrate instance models [Herrmannsdoerfer, 2009]. Detecting such complex operations

helps to identify a set of model migration instructions [Vermolen et al., 2012] that transform

instance models.

Figure 5.13 depicts a sample Petri net meta-model along with a journal of atomic opera-

tions. When cooperative frameworks use a change-based approach to merge and reconcile

concurrent versions, users are confronted with this information that may prove very difficult

to understand. Indeed, it is not related to users intents, but to a technical API. Users mostly

reason about modifications in terms of high level operations (i.e., refactoring or composite

operations). For example, one refactoring operation like “refine a class into subtypes” may

concern many atomic operations that wouldn’t have any meaning for the users. When they

have to solve a conflict, they would prefer to accept or refuse the “refinement” operation and

certainly not each atomic operation that constitutes it. There is thus a cognitive gap between

5.2 Model Management in DiCoMEF 126

the primitive operations and the mental setup of the modelers about changes.

Figure 5.13 A Petri net meta-model and atomic meta-model adaptation operations

The objective of this work is to recover and detect composite operations (including refac-

toring operations) from a journal composed of primitive operations. This information is

required to guide users when they have to reconcile concurrent (meta-)model versions pro-

duced by cooperative editing tasks. Indeed, the reconciliation process may oblige users to

choose between concurrent and conflicting operations (e.g., two modifications on the same

resource). Confronted with atomic operations, this decision may be impossible to take, since

operations have no pertinent meaning from the user’s viewpoint. In addition, the detected

complex operations can be used to specify model migration instructions that co-evolve in-

stance models along with meta-model adaptation [Vermolen et al., 2012].

Much research work has already be done to detect refactoring and complex change op-

erations in the context of object oriented programming. Demeyer et al. propose a method to

detect refactoring operations from successive versions based on change metrics [Demeyer

et al., 2000]. Besides, Dig et al. present a RefactoringCrawler framework that uses a combi-

nation of syntactic analysis and semantic analysis to detect refactoring operations [Dig et al.,

2006].

5.2 Model Management in DiCoMEF 127

Composite operations can be included as part of the development environment and they

will be tracked whenever they are executed [Herrmannsdoerfer, 2009]. In operation-based

collaborative modeling, change operations are usually canonized (normalized) to speed up

the transfer of data and to facilitate the merging process [Mens, 1999b]. As a result, opera-

tions that are superseded by new ones can thus be cleaned from the history (i.e. the record of

change operations). Hence, canonization of composite operations could produce a different

type of composite operations that might not be defined by the modeling environment. Solv-

ing this problem requires to re-group primitive operations into other composite operations

manually, that is a tedious and difficult task. Moreover, removing atomic changes from a

composite operation might invalidate its constraints [Koshima et al., 2013]. Hence, there

should be a tool support to specify composite operations.

Prete et al. use refactoring template rules to recover refactoring operations between two

program versions [Prete et al., 2010]. In another work, Xing et al. [Xing and Stroulia,

2006] propose an approach to detect refactoring operations based on UMLDiff. This is a

domain specific algorithm (UML-aware) that compares the structural changes between two

successive versions of class models and drives their differences [Xing and Stroulia, 2005].

Queries are applied on deltas so as to detect different complex change operations. However,

this approach is limited to a specific modeling language [Langer et al., 2013]. Vermolen

et al. also demonstrate a modeling language specific approach that reconstructs complex

meta-model adaptation operations [Vermolen et al., 2012]. In [Langer et al., 2013], Philip

et al. present an approach that automatically detects composite operations between two

successive models, which are defined in any Ecore [Steinberg et al., 2009] based modeling

languages. However, their approach does not provide a facility to aggregate composite

changes from another composite change(s). Nevertheless, this raises interesting challenges

that are described below.

An automatic composite operation detection mechanism might find results that don not

reflect users intentions. It would neither allow user interaction to identify the correct com-

posite operations that reflect his/her intent. For instance, a user may wish to remove some

atomic change operations from a composite operation while keeping the constraints of the

5.2 Model Management in DiCoMEF 128

composite operation. Indeed, an automatic process necessarily tries to compute the largest

set of operations while recovering a composite operation. Nevertheless, some operations

could be irrelevant because they were executed with a different intent or in distinct stages.

Besides, s/he might also add or remove rationale of changes attached to specific changes

based on a new context of composite change operation. Hence, we argue that interac-

tive composite change detection approach could improve the final result. However, the

approaches presented in [Langer et al., 2013; Prete et al., 2010; Vermolen et al., 2012; Xing

and Stroulia, 2006] do not support user interactions to iteratively identify composite change

operations.

In this PhD thesis, we apply a rule-based system in order to detect and recover composite

and refactoring operations. The rule-based system uses rules to draw conclusions from

premises [Hill, 2003]. A rule is a kind of instruction that has a left hand side and a ride

hand side. The left hand side of the rule is a premise that contains the domain of the rule

(facts), and must be true in order for the rule to potentially fire and derives conclusions (the

right hand side). The inference engine determines the order of execution of rules. Rule-

based systems employ either a forward-chaining or a backward-chaining inference method

[Gilman et al., 2010; Hill, 2003]. “Forward-chaining is a bottom-up computational model.

It starts with a set of known facts and applies rules to generate new facts whose premises

match the known facts, and continues this process until it reaches a predetermined goal,

or until no further facts can be derived whose premises match the known facts” [Al-Ajlan,

2015]. As its name suggests, backward chaining inference method works backward from

the goal and tries to attempts to find evidence to support these conditions (hypotheses).

Prolog [Wielemaker, 2004] is a rule-based language that employs a backward chaining

inference method, and it consumes less memory compared with Java Expert System Shell

(Jess) [Hill, 2003], which adopts a forward chaining inference method. Jess implements the

RETE algorithm that computes things once and reuses them such that it explores medium-

sized numbers of possibilities repeatedly. As a result, Jess is faster than Prolog [Gilman

et al., 2010]. Besides, Jess also supports backward-chaining inferences. Jess language can

be easily integrated with Java applications either by using Java to extend Jess or the Jess

5.2 Model Management in DiCoMEF 129

library can be used from Java [Hill, 2003]. In this work, we use the Jess language so as

to recover and detect composite and refactoring operations from a set of change operations,

which are recorded during the (meta-)model editing phase. Nevertheless, the work can also

be used to find composite operations from diffs computed using state-based comparison.

Figure 5.14 describes the proposed framework. Whenever a user adapts a (meta-)model,

edit operations are recorded in a history formally defined by the history meta-model of

DiCoMEF (see Figure 5.8). Later, these operations are canonized and transformed into

Jess facts by using a model-to-text transformation engine. A Create change operation is

transformed into a Create fact in the Jess fact base. Likewise, Set, Add, Remove, Move,

MoveIndex, and Delete change operations are transformed into Set, Add, Remove, Move,

MoveIndex, and Delete facts in the Jess fact base (see Figure 5.15). The types of Jess

facts are defined using Jess templates (see Figure 5.17). In the Figure 5.14, the rectangle

shape represents an automatic process, the trapezoid shape indicates a manual work, and the

arrows represents data flows.

Jess templates are used to define structures of Jess facts that correspond with composite

operations (see Figure 5.16), and Jess rules are specified to derive Jess facts. As a proof of

concept, we manually define Jess templates and Jess rules for some of composite operations

presented in the the Edapt 7 framework. For instance, we encode composite operations such

as extract subclass, extract super class, pull up feature, and push down feature into Jess

templates and Jess rules. During the execution, when a rule’s left hand side is satisfied, a

new fact, which represents a composite operation, is asserted into the fact base. Composite

operation facts can also be aggregated into larger facts. The result of this inference is a

hierarchical representation of composite change operations. Jess facts are Java objects, such

that it is possible to interrogate a list of slots of a fact and their values. Later, we trans-

late the detected and recovered composite Jess facts into composite change operations. As

discussed in 5.2.2 and Table 5.1, Edapt does not provide facilities to aggregate composite

operations from other composite operations. In addition, it does not support instance model

evolution. Therefore, the composite change operation is defined using the DiCoMEF history

7https://www.eclipse.org/edapt/operations.php

5.2 Model Management in DiCoMEF 130

Figure 5.14 A rule-based composite operation detection and recovery steps

meta-model as presented in Section 5.2.2 (see Figure 5.8). Like the approach presented in

[Langer et al., 2013], the composite operation detection and recovering tool can work with

any modeling language based on Ecore.

The inference process of recovering and detecting composite operations may be non-

deterministic. The analysis engine identifies overlapping composite operations and displays

the result to the user, so that he/she can select the “best” composite operation that reflects

his/her intentions. Besides, if rationale of modifications are attached to change operations,

the engine asks the user to verify if the rationale is still valid for the new composite operation.

5.2 Model Management in DiCoMEF 131

Figure 5.15 Primitive operations represented as Jess facts

Indeed, a user can remove atomic operations from the proposed composite operation as long

as constraints of the composite operations are satisfied.

The analysis engine examines dependencies between change operations and ordered

composite operations. Of course, it uses the “require” relationship specified in Section 5.2.5

to identify the pre-condition of atomic and composite operations so as to order them. Hence,

a user can sequentially execute an ordered list of composite operations on a base version of

a (meta-)model and studies their effect. Moreover, the analysis engine updates the fact-base

based on the user’s decisions and the Jess engine re-executes the rules until there is no more

overlapping operations (composite operations that belong to different paths of a tree can’t

share the same operation(s)). Figure 5.15, Figure 5.17, and Figure 5.16 illustrate snippet

5.2 Model Management in DiCoMEF 132

codes of Jess templates (which defines types of Jess facts), Jess facts that represents a useful

pieces of information, and Jess rules, which represent composite operations.

Figure 5.16 Composite operations expressed in Jess rules

5.2 Model Management in DiCoMEF 133

Figure 5.17 DiCoMEF history representation using Jess templates

5.3 Communication Management in DiCoMEF 134

The prototype of composite operation detection and recovery tool is implemented as an

Eclipse plugin. However, the prototype has limitations, for instance, it asks users to encode

Jess templates and Jess rules manually in order to recover and detect composite operations.

This requires a high level of Jess programming knowledge from the user. The prototype

also displays the recovered and detected composite operations in the console window, and

it is not also fully integrated with the DiCoMEF framework. In the future work, we will in-

vestigate how a user can specify composite operations by-examples [Brosch et al., 2009a,b].

For instance, a user could use the Edapt framework to adapt a meta-model, subsequently,

the tool might (semi-)automatically generate Jess templates and Jess rules related to these

operations. We will also fully integrate the composite operation detection and recovery tool

with the DiCoMEF framework, and improve the visualization of the tool.

5.3 Communication Management in DiCoMEF

As discussed in Section 5.1, DiCoMEF is a distributed collaborative modeling framework,

where each member of the group has his/her local copy. In DiCoMEF, members communi-

cate their work by exchanging change operations that adapt (meta-)models. As described in

Section 5.2.5, these operations are also used to detect conflicts and to help the reconciliation

process. Besides, the history of (meta-)model adaptations could be mined to guide software

changes [Zimmermann et al., 2004a], to identify architectural violations, and to find com-

mon error patterns [Livshits and Zimmermann, 2005]. Moreover, it can be used to detect

methodological inconsistencies [Blanc et al., 2008], and serve as the source of information

for group members to study the evolution of the software project. Hence, we argue that

keeping the exact sequences of histories at every local repository is important. DiCoMEF

uses concepts such as a controller, a main-line, and a branch to ensure exactly the same

history and (meta-)models at each member site (see Section 5.1).

Figure 5.3 presents concepts that are used to model the social organization of the Di-

CoMEF framework. A user with a controller role manages the evolution of (meta-)models.

As shown in figure 5.2, members communicate their modifications via the controller. In

5.3 Communication Management in DiCoMEF 135

order to edit (meta-)models, an editor should create a branch from the main-line (see Figure

5.4). Afterwards, s/he modifies the (meta-)model locally and sends her/his modifications

to the controller as a change request later. The controller inspects modifications and sends

accepted modifications to all members. Only these accepted changes are applied on the

main-line. Indeed, this guarantees that the evolution of (meta-)models on the main-line

contains the same sequence of histories and (meta-)model in all members’ local reposito-

ries. The controller role is flexible, even a new member can be assigned as a controller,

since s/he has exactly the same copy of (meta-)models and histories. The observer role is

assigned to someone who passively contributes to the project, and s/he cannot directly edit

(meta-)models.

The DiCoMEF framework could be extended to support a large community of users as

shown in Figure 5.18, where an editor acts as a virtual controller for other editors (side edi-

tors) working under her/his supervision. These new roles (virtual controller and side editor)

are transparent for the DiCoMEF controller. Side editors could also modify (meta-)models

concurrently (e.g. by using the Cloud) but these modifications would be out of the scope of

DiCoMEF. This type of communication might be needed among a group of competitor com-

panies that work together to standardize the (meta-)model. The central standardization agent

plays a role of a controller and companies play roles of editors. Inside these big companies,

there might be different (meta-)modelers distributed globally. Hence, these companies can

be considered as virtual controllers and (meta-)modelers of these companies play side edi-

tor roles. DiCoMEF considers the branch of virtual controllers as virtual main-lines. These

virtual main-lines are synchronized with the main-lines of side editors. In other words, the

relationship between main-lines and branches are changed when we move vertically on hier-

archical collaborative modeling. At the top level of the hierarchy, the main-line is the root of

the communication, it stores different versions of the global (meta-)models. When editors

add one level of collaborative modeling under their supervision, DiCoMEF considers their

branches as virtual main-lines.

The DiCoMEF history captures user identifiers, date, and the time during (meta-)model

adaptation. These improves the awareness of the group about who contributes these mod-

5.3 Communication Management in DiCoMEF 136

Figure 5.18 Extended DiCoMEF Architecture

ifications and when. These is important for users to communicate the responsible person

during merging of conflicting modifications in their local branches. Of course, users can

always communicate the controller to resolve conflicts. Moreover, the history meta-model

of DiCoMEF provides facilities to annotate rationales of modifications with multimedia

files (i.e., audio, video, image, and text). Users can also compose changes from another

changes to put modifications into context (i.e., refactoring operations). Besides, RuCORD

could improve awareness of users about intentions behind modifications of other members

by detecting and recovering composite and refactoring operations. DiCoMEF also provides

group information and their e-mail contact addresses. It is possible to implement on top of

DiCoMEF to support online-chat rooms and to notify available users using Eclipse Commu-

nication Framework (ECF)8.

8https://eclipse.org/ecf/

Chapter 6

Evaluation

This chapter presents the preliminary evaluation of DiCoMEF framework conducted with

masters students at the university of Namur, Belgium. The result was also presented in

[Koshima and Englebert, 2015b].

We have conducted a preliminary evaluation of the DiCoMEF framework with graduate

students (masters in computer science) at the University of Namur. Two second year and

four first year students participated in this evaluation during the “Advanced questions in

information systems engineering” (INFOM435) course. They had also followed the course

“Software architecture engineering: Advanced topics” (INFOM434) that introduced them to

advanced modelling theories, domain specific modeling languages in software engineering,

and the Eclipse development environment. Besides, we provided them ten hours of training

and exercises on Eclipse Modeling Framework (EMF) and DiCoMEF framework. More-

over, screen-casts (i.e. video tutorials) of the DiCoMEF framework and EMF framework

were available for students two weeks before the evaluation to let them practice at home.

The evaluation was mandatory and it accounted as 40% of the course and students were

encouraged to give their honest opinions about the framework. We explicitly stated that

the goal of the evaluation was to improve the framework, hence, their feedback was valu-

able whatever were their answers. The evaluation was conducted for two hours, afterwards,

students were asked to fill a questionnaire. In addition, each student was invited to submit

a report about the strengths and drawbacks of DiCoMEF framework. The evaluation was

6.1 Objectives 138

done anonymously, but the small size of the population is of course a possible bias. Un-

fortunately we had only six students who had attended the course and participated in this

preliminary evaluation. However, the result could give an indication of the potential use of

DiCoMEF framework for collaborative modeling.

The objective, design, result, and discussion of the case study are presented in the fol-

lowing sections.

6.1 Objectives

The evaluation consisted in guiding several teams with a cooperative scenario during the

elaboration of a car DSML and a Petri net DSML using the DiCoMEF framework. Our

objectives were to evaluate the model management functionality of the DiCoMEF frame-

work such as model comparison, conflict detection, conflict reconciliation, model merging,

and versioning. Besides, we were also interested to evaluate a role-based member manage-

ment, workflow of the DiCoMEF framework, and its usability. Our objectives are described

hereafter.

1. Evaluating the effectiveness of DiCoMEF to support the cooperative design of meta-

models for DSML, more specifically:

(a) its versioning: does DiCoMEF support versioning of meta-models?

(b) its workflow: are the proposed communication and the meta-model evolution

management of DiCoMEF framework effective?

(c) its usability: is the framework easy to use and to learn?

(d) its role management: which efforts are required by a user to join/leave a group?

Which efforts are required to change a controller?

2. DiCoMEF detects both structural and static semantic conflicts specified with the Ob-

ject Constraint Language (OCL): is the detection mechanism accurate and complete?

6.2 Experimental Design 139

3. Evaluating the benefits of the reconciliation and merging processes of DiCoMEF,

more particularly:

(a) the usability of merge tool: is the merge tool easier to use and to learn?

(b) the benefits of multimedia files which are attached to change operations: do

rationales effectively help users to understand modifications performed by other

members? Is the rationale of modifications helpful to facilitate reconciliation

and merging?

(c) the benefits of the merge tool: does the DiCoMEF framework provide enough

information about the conflict (i.e., conflicting operations along with concerned

model elements and rationale of modifications)? Is it easy to identify conflicts?

Does it merge conflicting versions? Is it easier and faster to detect conflicts and

merge conflicting versions using DiCoMEF framework than manual work?

6.2 Experimental Design

As discussed above, the case study was conducted with graduate students that we distributed

into three groups of two. Students of each group were asked to cooperate together to design

a new DSML for the automotive domain. Besides, we also provided them two conflicting

versions of the Petri net meta-model and they had to merge conflicting meta-models.

In this case study, we have used the “benchmark for conflict detection of model version-

ing systems” 1 and more specifically the “class diagram versioning” test case described in

[Langer and Wimmer, 2013]. It lists a series of common operations that may cause troubles

during concurrent modifications. They were used to design a cooperative scenario that stu-

dents had to follow in each group. Nevertheless, some cases that were not supported by the

DiCoMEF merge tool were discarded. For instance, “contradiction in hierarchy” (CH) and

“semantics in associations” (SA) conflicts listed in the benchmark can not be detected by Di-

CoMEF. The CH conflict is raised when a user applies a refactoring operation to extract an

1http://www.modelversioning.org/index.php?option=com_content&view=article&id=62&Itemid=91

6.2 Experimental Design 140

abstract super class by pulling up a method(s), while another user does the same operation

but extracts an interface. SA conflicts occur when modelers express the same information in

different ways. The following test cases were used in our scenario: “Add Different Model

Element”, “Rename Model Element and Unit of Consistency”, “Delete/Update Model El-

ement”, and “Delete/Delete Model Element and Add Model Elements with Same Name”.

The details of these modifications are provided below in this section. Some terms used

in the benchmark were also renamed in order to suit the EMF peculiarities. For example

“Add Different Model Elements” stands for an addition of different classes, references, and

attributes.

The case study consisted in two phases. In the first phase, students were asked to de-

velop a DSML specific to automobiles. Each group started with a simple meta-model that

contained only one class and one attribute (see Fig. 6.1). Afterwards, we asked the students

to develop the language iteratively by introducing different modifications sequentially. They

are explained hereafter:

Figure 6.1 Automobile Meta-model Version0

1. Add different Model Elements: Two EClasses, two EReferences, and one EAt-

tribute are added with different identities and names (see Fig. 6.2).

• Original Version (V0): a model containing an EClass Car and an EAttribute

carType.

• Working Copy 1 (V1'): an EClass Body and an EReference body are added.

• Working Copy 2 (V1''): an EClass Engine, an EReference engine, and an EAt-

tribute engineType are added.

• Expected Conflicts: none

6.2 Experimental Design 141

• Expected Merge Result: The model that includes the Body and Engine EClasses,

the body and engine EReferences, and the engineType and carType EAt-

tributes.

Figure 6.2 Automobile Meta-model Version1

2. Rename Model Element and Unit of Consistency: A “unit of consistency” val-

idates the granularity of conflict detection mechanism. For instance, two different

properties of a model element might be changed independently (e.g., the name of an

EReference and its cardinality value are changed independently). “Rename model

element” describes the scenario where the name of a same model element is changed

either in a different or a same way. If they are changed the same way, there is no

6.2 Experimental Design 142

conflict. Otherwise, there is a conflict and either of changes should be applied (see

Figure 6.3).

• Original Version (V1): the model includes EClasses Car, Body and Engine,

EReferences body and engine, and EAttributes engineType and carType.

• Working Copy 1 (V2'): an EClass Body is renamed to Component and an ERef-

erence body is renamed to component.

• Working Copy 2 (V2''): an EClass Body is renamed to Component and an ERefer-

ence body is renamed to components. Besides, the upper bound of a reference

(body) is changed to unlimited (*).

• Expected Conflicts: contradicting and overlapping modifications. A reference

body is renamed differently by two users like component and components.

• Expected Merge Result: user decision is required.

Figure 6.3 Automobile Meta-model Version2

6.2 Experimental Design 143

3. Delete/Update Model Element: One user modifies a property of a model element

while another one deletes the same element concurrently (see Figure 6.4).

• Original Version (V2): the model includes EClasses Car, Engine and Component,

EReferences components and engine, and EAttributes engineType and carType.

• Working Copy 1 (V3'): an EClass Engine is renamed to Motor. In addition, an

EClass MotorType is created and an EAttribute engineType is deleted. A new

EReference type is created in the Motor and its EType is set to MotorType.

• Working Copy 2 (V3''): an EEnum EngineType is created and an EAttribute

engineType is renamed to type, besides, its EType is changed from EString to

EngineType.

• Expected Conflicts: contradicting and overlapping modifications. An EAttribute

engineType is deleted in the first working copy, whereas it is renamed in the

second working copy.

• Expected Merge Result: user decision is required.

4. Delete/Delete Model Element and Add Model Elements with Same Name: “Delete/Delete”

denotes the deletion of a same model element on both sides. “Add new model ele-

ments with same name” creates a new model element with the same name in both

working copies (see Fig. 6.5).

• Original Version (V3): the model includes EClasses Car, Motor and Component,

EReferences components and motor, EAttributes type, carType, and EEnum

MotorType.

• Working Copy 1 (V4'): a user deletes an EAttribute carType, and creates an

EClass CarType. Besides, s/he adds an EAttribute name in the CarType and

creates an EReference type in the Car. The EType of the type reference is

CarType. S/he also creates new classes: Brake, Wheel, Seat, Door, GearBox,

and Roof that are inherited from EClass Component.

6.2 Experimental Design 144

Figure 6.4 Automobile Meta-model Version3

• Working Copy 2 (V4''): a user deletes EAttribute carType and creates EClass

CarType. Besides, s/he adds EAttribute name in CarType and EReference type

in Car. The type reference has EType CarType. S/he also creates EClasses

Option and EEnum OptionType. S/He also established an association between

the Option and OptionType.

• Expected Conflicts: contradicting and overlapping modifications. It violates

an OCL constraint: two model elements of a same parent container must have

distinct names.

• Expected Merge Result: user decision is required.

In the second phase of the case study, we grouped all students into one group that was

composed of six students and a controller. The controller role was played by A. Koshima,

but his task was limited to add students in groups to allow them to send later the base version

6.2 Experimental Design 145

Figure 6.5 Automobile Meta-model Version4

of Petri net meta-model along with the history (see Figure 6.6) to each new member. He

also modified the Petri net meta-model locally and propagated his modifications to other

members (see Figure 6.7). He did not participated in solving conflicts with students. We

gave an instruction to each student about how to evolve the base version of the Petri net

meta-model locally (see Figure 6.8). The students only used an EMF treeview editor to

visualize and to edit the Petri net meta-model. Afterwards, each member were firstly asked

to integrate their local modifications with propagated changes using DiCoMEF framework.

They were also requested to merge modifications manually and produce the same result

with the previous one. The objective of the second part of the case study is to validate

the conflict detection, reconciliation, and merging process of DiCoMEF. After finishing the

second phase, each student filled a questionnaire and submitted a report that summarized

the drawbacks and strengths of DiCoMEF. We will present the findings in Section 6.3.

6.3 Results and Discussion 146

Figure 6.6 Petri net meta-model base version

Figure 6.7 Propagated Petri net net meta-model

6.3 Results and Discussion

We grouped the results of the questionnaire based on the objectives. The questionnaire had

closed questions with responses either in scale range from 1 (very poor) to 5 (very good) or

6.3 Results and Discussion 147

Figure 6.8 Local Petri net meta-model

Yes/No. It also contained open questions to collect students opinions on some topics. The

results are summarized as follows:

Table 6.1 Objective 1: evaluating the effectiveness of DiCoMEF to support the cooperative design of
meta-models for DSML

How do you evaluate the model versioning facility of DiCoMEF?
3 4 4 4 4 5 objective: 1.a average = 4

How do you evaluate the workflow of DiCoMEF?
2 2 3 4 4 4 objective: 1.b average = 3.2

How do you evaluate the usability of DiCoMEF?
3 3 4 4 4 5 objective: 1.c average = 3.4

How do you evaluate group management of DiCoMEF?
3 3 3 4 4 5 objective: 1.d average = 3.7

We also asked students to submit an individual report that answered the question below.

Our motivation was to make sure that what they filled in the questionnaire was consistent

with the report. The questions asked in the report were a summary of the questionnaire.

6.3 Results and Discussion 148

Table 6.2 Objective 2: is the conflict detection mechanism accurate and complete?

Does the merge tool detect all conflicts?
Yes Yes Yes Yes Yes Yes objective: 2 6 Yes ~ 0 No

Does the merge tool give false positive?
No No No No No No objective: 2 0 Yes ~ 6 No

Table 6.3 Objective 3: evaluating the benefits of the reconciliation and merging processes of Di-
CoMEF

Is the visualization of conflicts understandable?
2 3 4 4 5 5 objective: 3.a average = 3.8

How do you evaluate the usability of the merge tool?
4 4 4 4 5 5 objective: 3.a average = 4.3

Do the rationale of modifications useful to understand your colleague’s intention?
2 3 3 4 5 5 objective: 3.b average = 3.7

Does DiCoMEF easily identify conflicts and facilitate the
merging process as compared to manual work?
4 4 4 4 5 5 objective: 3.c average = 4.3

How do you evaluate the overall merging tool?
4 4 4 4 5 5 objective: 3.c average = 4.3

Manually: Time spent for merging (case study 2)?
10 15 18 19 20 20 objective: 3.c average = 17

DiCoMEF framework: time spent for merging (case study 2)?
4 4 4 7 10 15 objective: 3.c average = 7.3

• What is the strongest side of DiCoMEF in your opinion? The logging of change oper-

ations and the visualization of change operations that could help users to comprehend

modifications made by other members. In addition, to setup the collaborative group is

easy: a new user needs to provide his email account and the framework handles con-

figuring the repository, files, and notification. The framework provides support for a

controller (a senior member of the group) to manage the evolution of (meta-)model.

• What is the weakest side of DiCoMEF in your opinion? The usability aspect should

be improved, specifically, the workflow should incorporate default activities to reduce

the number of steps required to send change requests and to propagate changes. Email

based communication is not convenient for exchanging large files. It is not enough

integrated with the Eclipse Graphical Model Editing framework.

6.3 Results and Discussion 149

• What is the strongest side of the merge tool in your opinion? It is easy to use and

to learn. Besides, it detects conflicts and provides a visualization that shows the ef-

fect of changes. The merge tool is flexible and provide a choice to accept or reject

modifications performed by other member.

• What is the weakest side of the merge tool in your opinion? The usability, specifically,

the user interface needs to be improved. For instance, the options of the merge tool

needs to be clearly visible.

• Which difficulties have you encountered? The workflow is not easy to understand at

the first glance, but, it becomes natural after some explanations. The framework does

not support default activities so that it is much work to propose change request or

propagate change propagation. One student also had a problem to understand OCL

constraints violation messages. DiCoMEF works with indigo version of eclipse, but

it needs to be updated with a recent version of eclipse.

• Which future improvements would you recommend for the framework? It should have

a better integration with the graphical modeling framework. Besides, its conflict de-

tection and merging should have a graphical support. It is also important to reduce

the number of steps required by the workflow by introducing default activities. The

framework needs to provide shortcuts for different activities in the workflow. Last

but not least, the email based communication should be replaced with other form of

communication in order to transfer large data files.

This validation work was a preliminary evaluation of DiCoMEF framework and it has

some threats to the validity of the result. For instance, the number of students in the group is

very few (two students per group) and it did not represent a real collaborative work scenario.

In addition, we had only three groups that was not statistically significant to draw a conclu-

sion. Although these treats, the results seem very encouraging for a preliminary evaluation

and they allowed us to collect interesting comments to improve the framework. Based on

the result presented in tables 6.1,6.2, and 6.3, DiCoMEF could be “effective” to support

collaborative work. The preliminary result indicates the DiCoMEF framework might be

6.3 Results and Discussion 150

easy to learn and to use. Besides, it could manage the communication of the group and

their roles. The framework could support model comparison, conflict detection (i.e., struc-

tural conflicts and static semantic conflicts), conflict reconciliation, and merging of conflict

version of meta-models.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

The software engineering community adopts the MDE approach to deal with complexities

of software solutions that arise from inherent complexities of the business domain, time-to-

market pressures, changes in user requirements, and evolution of the underlying software

platforms. MDE uses separation of concern principles that reduces complexity, improves

reusability, and ensures simpler evolution of modeling languages [Tarr et al., 1999]. It

shifts the level of software development from code-centric to model-centric [Bézivin, 2005;

Bézivin, 2004; Favre, 2004; Kent, 2002].

Modeling is an act and science of creating an abstraction of parts of the system under-

study. It usually requires collaboration members of a group with different scope and skills

(i.e., middleware engineers, human interface designers, database experts, and business an-

alysts). “Any software project with more than one person is created through a process of

collaborative software engineering” [Whitehead et al., 2010]. However, despite the fact that

Domain Specific Modeling tools are becoming very powerful and more frequently used, the

support for their cooperation has not reached its full strength, and demand for model man-

agement is growing. In cooperative work, the decision agents are semi-autonomous and

therefore a solution for reconciliating DSM after a concurrent evolution is needed. Conflict

detection and reconciliation are important steps for merging of concurrently evolved (meta-

7.1 Conclusion 152

)models in order to ensure collaboration. In this PhD thesis, we presented an operation-

based distributed collaborative model editing framework, DiCoMEF. The contribution of

the PhD thesis is summarized as follows:

Distributed collaborative framework for models and meta-models: DiCoMEF is a dis-

tributed collaborative modeling framework for both models and meta-models. DiCoMEF

framework distributes clones of (meta-)models and histories among all members of the co-

operative ensemble. Besides, it ensures consistent (meta-)models and histories among all

members of the collaborative groups using main-line and branches as discussed in Chapter 5

and Section 5.1. DiCoMEF relies on the controller as a central hub to facilitate collaboration

among members of the collaborative group. Of course, this might be considered as a bottle-

neck, since the controller can be overloaded with lots of tasks. Indeed, DiCoMEF provides

a technical framework on top of which different communication strategies can be employed

using method engineering techniques (e.g., delegation mechanisms, pooling). For example,

a token can be used and whoever has a token is a controller, who can modify a (meta-)model

and propagates changes. DiCoMEF framework can also support a hierarchical collaborative

modeling.

Formalization of model: This PhD thesis formalizes EMF/Ecore models, meta-models,

and meta-meta-models using the Set theory. Because we believe that most people are fa-

miliar with set theory, as a result, it is easy for people to understand and reason about

models. It also uses the same Set theory constructs to define the edit operations that adapt

(meta-)models. Besides, this work formally defines conflicts between models produced by

different tasks using the Set theory.

Uniform history meta-model for both models and meta-models: The Set theory formal-

ization demonstrates that the same Set theory constructs, which are used to define models,

are also applied to specify meta-models and meta-meta-models. Hence, the same history

meta-model language can be used to describe model and meta-model adaptations. As dis-

7.1 Conclusion 153

cussed in Chapter 5 in Section 5.2.2, DiCoMEF use a single history meta-model to capture

edit operations of model and meta-model evolution.

Conflict detection: In DiCoMEF, we define conflicting sets tables to detect syntactic con-

flicts (see Table 5.2 and Table 5.3). The conflicting table specifies which operations are

possibly conflicting, and also shows the severity level of the conflicts. For example, a Set

operation conflicts with another Set operation, if both operations modify a property of a

same model element and assign different values. This conflict is a soft conflict that can

be handled automatically. The DiCoMEF conflict detection tool can be configured to iden-

tify conflicts in ordered multi-value elements and unordered multi-value elements. Besides,

the DiCoMEF conflict detection tool detects static semantic conflicts using EMF valida-

tion framework. The DiCoMEF merge tool visualizes conflicting modifications, it colors

conflicts with different colors. The DiCoMEF merge tool lets users chose some/all of con-

flicting modifications, which are performed by other colleagues, and to apply them on their

local (meta-)models for analyzing their effects during merging. Since DiCoMEF framework

relies on UUIDs to identify model elements, it cannot match equivalent concepts that are

modeled differently and have different UUIDs. Hence, it cannot detect semantic conflicts

that could be raised due to equivalent modeling concepts. Indeed, semantic conflicts are

difficult to detect, because they most of the time resides in users mind.

Conflict reconciliation: DiCoMEF uses a role-based conflict resolution mechanism, where

modification of (meta-)models are managed by the controller. The controller is assumed to

be a senior staff in the collaborative ensemble, who has good expertise in modeling and busi-

ness domain. In DiCoMEF, the controller role is flexible, hence, it can be easily assigned

to another user in the collaborative group. The DiCoMEF merge tool provides facilities ei-

ther to accept or reject modifications. Besides, it provides a (meta-)model editor in order to

manually resolve static semantic conflicts. Furthermore, DiCoMEF also provides facilities

to annotate change operations with rationale of modifications using multimedia files. Users

can consult multimedia files to understand the rationale behind modifications, DiCoMEF

plays multimedia files inside the DiCoMEF merge tool.

7.1 Conclusion 154

Model merging: Modifications proposed by the controller have a high priority, as a re-

sult, those modifications are always applied to local (meta-)models. But, editors can mark

local changes that they want to keep, then the DiCoMEF merge tool applies the selected lo-

cal modifications after applying the propagated modifications. Users can merge their local

modifications with propagates modifications whenever they want, of course, they can also

use the DiCoMEF merge tool to evaluate the effects of merging of concurrent modifications.

DiCoMEF merge tool creates a copy of local model and performed merging so that users

do need to worry about unnecessary modifications on their local (meta-)model. It modifies

local (meta-)model only if the user confirms the merge result. During merging, DiCoMEF

does not rollback all modifications due to conflicts, rather it only rollbacks delete opera-

tions that cause conflicts with a high severity value. As shown in history meta-model (see

Figure 5.8), the delete operation contains reverse changes that creates deleted (meta-)model

elements and its children. Besides, the cascading changes reestablish all references that

are removed due to the deletion of the element. However, DiCoMEF merge tool does not

provide facilities to select two or more (meta-)model elements and merge them into new

(meta-)model elements.

Composite operation detection and recovery: DiCoMEF framework recovers and de-

tects refactoring and composite operations from canonized list operations or deltas. This

framework is flexible enough to allow users to guide the result based on her/his preferences.

Users can remove parts of composite operations detected by the analysis engine as long as

the validity of the composite operations are preserved. The analysis rule can add/remove

rationale of modifications to/from composite operations based on the user confirmation. It

also analyzes dependencies among composite changes and orders them. Users can add their

own composite operation patterns in defining their own Jess rules.

DiCoMEF framework has been implemented as an eclipse plugin (54K LOC) and fully

supports collaborative metamodeling. The support of instance models is still under imple-

mentation. Besides, composite operation recovery and detection tool is also integrated with

the DiCoMEF framework. Screenshots and other publications of DiCoMEF can be found

7.2 Future work 155

in DiCoMEF site 1. We evaluated the DiCoMEF framework with master students with re-

gards to the following criteria: (1) the feasibility of collaborative methods and processes

with DiCoMEF, (2) the correctness of conflict detection mechanisms (recall and precision),

(3) the usability of the merge tool and DiCoMEF framework, (4) measuring user efforts

(time) needed to merge concurrently edited meta-models either manually or by using the Di-

CoMEF merge tool. This preliminary evaluation reveals overall positive results. The results

indicated that the collaborative process of DiCoMEF is feasible and that the merge tool is

usable (user friendly), correct, and helpful in the resolution of conflicts. Furthermore, the

hierarchical support of DiCoMEF framework is underdevelopment.

7.2 Future work

The DiCoMEF framework will be improved based on the results collected from the prelim-

inary evaluation. The workflow of the DiCoMEF framework will incorporate default activ-

ities so as to reduce the number of steps required to send change requests and to propagate

changes. Besides, the Email based communication mechanism of the DiCoMEF framework

will be replaced by a pertinent alternative solution that can facilitate a sharing of large files.

We will also integrate the DiCoMEF framework with the recent versions of Eclipse. Be-

sides, we will improve the usability of the merge tool by displaying high-level composite

operations (i.e., refactoring operations) so that a user can easily understand intentions con-

flicting changes. Besides, we will study the use of ontology that could improve the merge

tool by identifying equivalent model elements. The DiCoMEF framework will also provide

a better integration with the graphical modeling framework. Besides, the conflict detection

and merging will also have a graphical support.

Different method engineering techniques and strategies (e.g., delegation mechanisms,

pooling) will be studied to improve the scalability of the DiCoMEF framework. For in-

stance, the controller can delegate part of his/her tasks to others to speedup the collaboration

1https://sites.google.com/site/dicomef

7.2 Future work 156

process. In addition, the collaborative modeling and hierarchical (meta-)modeling will be

fully implemented.

The composite operation detection and recovering tool will be fully implemented and

integrated with the DiCoMEF framework. Besides, we will study how the user can specify

composite operations by-examples [Brosch et al., 2009a,b], such that the system will use

these examples to (semi-)automatically generate Jess rules. Moreover, the generation of

model migration instructions from composite change operations will be studied. Of course,

we will relay on the Edapt 2 framework in order to generate the model migration instructions.

The evaluation of the DiCoMEF framework will be conducted based on the objectives

presented in Chapter 6 Section 6.1. In addition, we will also extend the evaluation to assess

the scalability of the DiCoMEF framework in terms of a team size (i.e., 5, 10, or 20 mem-

bers). This evaluation will carefully select participants from different representative groups

such as a junior group (i.e., students) and a senior group (i.e., researchers and industrial

(meta-)modelers). Moreover, big models with hundreds and thousands of model elements

will also be used to study the scalability of the DiCoMEF framework. Of course, we will

automate the validation process of conflict detection mechanism. Specifically, we randomly

adapt (meta-)model in parallel, and evaluate the accuracy of conflict detection mechanism

by the measures precision and recall [Olson and Delen, 2008]. For instance, Ecore Mutator

3 can be used to randomly mutate Ecore models.

The accuracy of composite operation detection and recovery mechanism of DiCoMEF

will be evaluated by the measures precision and recall. For this experiment, we will use

the benchmarks presented in [Langer et al., 2013]. In addition, the usability and usefulness

of the interactive and iterative recovering and detection process will be evaluated by the

participants of the experiment. Moreover, the validity of the generated model migration

instructions will also be evaluated by the participants.

2https://www.eclipse.org/edapt/
3https://code.google.com/a/eclipselabs.org/p/ecore-mutator/

References

Al-Ajlan A. The comparison between forward and backward chaining. International Journal of Machine
Learning and Computing, 5(2):106, 2015.

Alanen M. and Porres I. Difference and union of models. In Stevens P., Whittle J., and Booch G., editors,
«UML» 2003 - The Unified Modeling Language. Modeling Languages and Applications, volume 2863 of
Lecture Notes in Computer Science, pages 2–17. Springer Berlin Heidelberg, 2003. ISBN 978-3-540-20243-
1. doi: 10.1007/978-3-540-45221-8_2. URL http://dx.doi.org/10.1007/978-3-540-45221-8_2.

Altmanninger K., Kappel G., Kusel A., Retschitzegger W., Seidl M., Schwinger W., and Wimmer M. AMOR
- Towards Adaptable Model Versioning, 2008. URL http://publik.tuwien.ac.at/files/PubDat_
175517.pdf.

Altmanninger K., Seidl M., and Wimmer M. A Survey on Model Versioning Approaches. Technical report, Jo-
hannes Kepler University Linz, 2009. URL http://smover.tk.uni-linz.ac.at/docs/IJWIS09_paper_
Altmanninger.pdf.

Altmanninger K., Schwinger W., and Kotsis G. Semantics for accurate conflict detection in smover: Speci-
fication, detection and presentation by example. IJEIS, 6(1):68–84, 2010. doi: 10.4018/jeis.2010120206.
URL http://dx.doi.org/10.4018/jeis.2010120206.

Amrani M., Dingel J., Lambers L., Lúcio L., Salay R., Selim G., Syriani E., and Wimmer M. Towards
a model transformation intent catalog. In Proceedings of the First Workshop on the Analysis of Model
Transformations, pages 3–8. ACM, 2012.

Arendt T., Biermann E., Jurack S., Krause C., and Taentzer G. Henshin: Advanced concepts and tools for
in-place emf model transformations. In Proceedings of the 13th International Conference on Model Driven
Engineering Languages and Systems: Part I, MODELS’10, pages 121–135, Berlin, Heidelberg, 2010.
Springer-Verlag. ISBN 3-642-16144-8, 978-3-642-16144-5. URL http://dl.acm.org/citation.cfm?
id=1926458.1926471.

Armbrust M., Fox A., Griffith R., Joseph A. D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A.,
Stoica I., and Zaharia M. A view of cloud computing. Commun. ACM, 53(4):50–58, April 2010. ISSN
0001-0782. doi: 10.1145/1721654.1721672. URL http://doi.acm.org/10.1145/1721654.1721672.

Asklund U. Identifying Conflicts During Structural Merge. Department of Computer Science, Lund University,
Lund Institute of Technology, Lund, Sweden. Lund University, Department of Computer Science, 1994a.
URL http://books.google.be/books?id=emauMwAACAAJ.

Asklund U. Identifying conflicts during structural merge. In Proceedings of the Nordic Workshop Program-
ming Environment Research, pages 231–242, 1994b.

Atkinson C. and Kühne T. Rearchitecting the uml infrastructure. ACM Trans. Model. Comput. Simul., 12(4):
290–321, October 2002. ISSN 1049-3301. doi: 10.1145/643120.643123. URL http://doi.acm.org/10.
1145/643120.643123.

Atkinson C. and Kühne T. The essence of multilevel metamodeling. In Proceedings of the 4th Inter-
national Conference on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
«UML» ’01, pages 19–33. Springer-Verlag, London, UK, UK, 2001. ISBN 3-540-42667-1.
URL http://dl.acm.org/citation.cfm?id=647245.719475.

http://dx.doi.org/10.1007/978-3-540-45221-8_2
http://publik.tuwien.ac.at/files/PubDat_175517.pdf
http://publik.tuwien.ac.at/files/PubDat_175517.pdf
http://smover.tk.uni-linz.ac.at/docs/IJWIS09_paper_Altmanninger.pdf
http://smover.tk.uni-linz.ac.at/docs/IJWIS09_paper_Altmanninger.pdf
http://dx.doi.org/10.4018/jeis.2010120206
http://dl.acm.org/citation.cfm?id=1926458.1926471
http://dl.acm.org/citation.cfm?id=1926458.1926471
http://doi.acm.org/10.1145/1721654.1721672
http://books.google.be/books?id=emauMwAACAAJ
http://doi.acm.org/10.1145/643120.643123
http://doi.acm.org/10.1145/643120.643123
http://dl.acm.org/citation.cfm?id=647245.719475

References 158

Badr R. D. T.-B. A., N. A conflict resolution control architecture for self-adaptive. In Proceedings of In-
ternational Workshop on Architecting Dependable Systems WADS 2002 (ICSE 2002), Orlando, Florida,
2002.

Bani-Salameh H. A. A Social Collaborative Distributed Software Development Environment. PhD thesis,
Moscow, ID, USA, 2011. AAI3486380.

Barrett S. C. BLENDING STATE DIFFERENCES AND CHANGE OPERATIONS FOR METAMODEL IN-
DEPENDENT MERGING OF SOFTWARE MODELS. Ph.d. dissertation, Concordia University, Montréal,
Québec, Canada, April 2011. URL http://spectrum.library.concordia.ca/7368/1/Barrett_PhD_
S2011.pdf.

Barteit C., Molter G., and Schumann T. A model repository for collaborative modeling with the jazz devel-
opment platform. In System Sciences, 2009. HICSS ’09. 42nd Hawaii International Conference on, pages
1–10, Jan 2009. doi: 10.1109/HICSS.2009.23.

Bartelt C. Consistence preserving model merge in collaborative development processes. In Proceedings of
the 2008 International Workshop on Comparison and Versioning of Software Models, CVSM ’08, pages
13–18, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-045-6. doi: 10.1145/1370152.1370157.
URL http://doi.acm.org/10.1145/1370152.1370157.

Basciani F., Di Rocco J., Di Ruscio D., Di Salle A., Iovino L., and Pierantonio A. Mdeforge: an extensible
web-based modeling platform*. CloudMDE 2014, page 66, 2014.

Belaunde M., Casanave C., DSouza D., Duddy K., El Kaim W., Kennedy A., Frank W., Frankel D., Hauch
R., Hendryx S., et al. Mda guide version 1.0. 2003. URL http://www.omg.org/news/meetings/
workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf.

Benmouffok L., Busca J.-M., Marquès J. M., Shapiro M., Sutra P., and Tsoukalas G. Telex: A Semantic
Platform for Cooperative Application Development. In Conf. Française sur les Systémes d’Exploitation
(CFSE), Toulouse, France, September 2009. URL papers/Telex-CFSE-2009.pdf.

Bergmann G., Horváth Á., Ráth I., and Varró D. Incremental evaluation of model queries over EMF models:
A tutorial on emf-incquery. In France R. B., Küster J. M., Bordbar B., and Paige R. F., editors, Modelling
Foundations and Applications - 7th European Conference, ECMFA 2011, Birmingham, UK, June 6 - 9,
2011 Proceedings, volume 6698 of Lecture Notes in Computer Science, pages 389–390. Springer, 2011.
ISBN 978-3-642-21469-1. doi: 10.1007/978-3-642-21470-7_32. URL http://dx.doi.org/10.1007/
978-3-642-21470-7_32.

Bézivin J. On the unification power of models. Software and System Modeling, 4(2):171–188, 2005.

Bézivin J. In search of a basic principle for model driven engineering. Novatica Journal, Special Issue, 5(2):
21–24, 2004.

Bézivin J. and Gerbé O. Towards a precise definition of the omg/mda framework. In Proceedings of the
16th IEEE International Conference on Automated Software Engineering, ASE’01, Washington, DC, USA,
2001. IEEE Computer Society. URL http://dl.acm.org/citation.cfm?id=872023.872565.

Bizer C., Heath T., and Berners-Lee T. Linked data-the story so far. Semantic Services, Interoperability and
Web Applications: Emerging Concepts, pages 205–227, 2009.

Black A. P., Nierstrasz O., Ducasse S., and Pollet D. Pharo by example. Lulu. com, 2010.

Blackburn M. R. What’s model driven engineering (mde) and how can it impact process, people, tools and
productivity. Technical report, 2008.

Blanc X., Mounier I., Mougenot A., and Mens T. Detecting model inconsistency through operation-based
model construction. In Software Engineering, 2008. ICSE’08. ACM/IEEE 30th International Conference
on, pages 511–520. IEEE, 2008.

http://spectrum.library.concordia.ca/7368/1/Barrett_PhD_S2011.pdf
http://spectrum.library.concordia.ca/7368/1/Barrett_PhD_S2011.pdf
http://doi.acm.org/10.1145/1370152.1370157
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
http://www.omg.org/news/meetings/workshops/UML_2003_Manual/00-2_MDA_Guide_v1.0.1.pdf
papers/Telex-CFSE-2009.pdf
http://dx.doi.org/10.1007/978-3-642-21470-7_32
http://dx.doi.org/10.1007/978-3-642-21470-7_32
http://dl.acm.org/citation.cfm?id=872023.872565

References 159

Blanc X., Mougenot A., Mounier I., and Mens T. Incremental detection of model inconsistencies based
on model operations. In Eck P., Gordijn J., and Wieringa R., editors, Advanced Information Systems
Engineering, volume 5565 of Lecture Notes in Computer Science, pages 32–46. Springer Berlin Heidelberg,
2009. ISBN 978-3-642-02143-5.

Booch G., Brown A. W., Iyengar S., Rumbaugh J., and Selic B. An MDA Manifesto,
May 2004. URL http://www.bptrends.com/publicationfiles/05%2D04%20COL%20IBM
%20Manifesto%20%2D%20Frankel%20%2D3%2Epdf.

Borges M. R. and Pino J. A. Awareness mechanisms for coordination activities in asynchronous cscw. In In
Proceedings of the 9th Workshop on Information Technologies and Systems, 1999.

Borghoff U. M. and Schlichter J. Computer-supported cooperative work: Introduction to distributed applica-
tions. 2000.

Boukhebouze M., Koshima A., Thiran P., and Englebert V. Comparative analysis of collaborative approaches
for UsiXML meta-models evolution. In 1st International USer Interface eXtensible Markup Language
workshop, In the frame of the EICS 2010 conference, pages 9–14, France, 2010. Thales Research and
Technology France. ISBN 978-2-9536757-0-2. URL http://itea.defimedia.be/sites/default/files/
Proceedings.zip.

Brambilla M., Cabot J., and Wimmer M. Model-driven software engineering in practice. Synthesis Lectures
on Software Engineering, 1(1):1–182, 2012.

Bressen T. Consensus decision making. Berrett-Koehler Publishers, San Francisco, CA, 2007.

Brinkkemper S., Saeki M., and Harmsen F. Meta-modelling based assembly techniques for situational method
engineering. Information Systems, 24(3):209–228, 1999.

Brooks F. P., Jr. No silver bullet essence and accidents of software engineering. Computer, 20(4):10–19, April
1987. ISSN 0018-9162. doi: 10.1109/MC.1987.1663532. URL http://dx.doi.org/10.1109/MC.1987.
1663532.

Brosch P. Improving conflict resolution in model versioning systems. In Software Engineering - Companion
Volume, 2009. ICSE-Companion 2009. 31st International Conference on, pages 355–358, May 2009. doi:
10.1109/ICSE-COMPANION.2009.5071020.

Brosch P., Langer P., Seidl M., Wieland K., Wimmer M., Kappel G., Retschitzegger W., and Schwinger W.
An example is worth a thousand words: Composite operation modeling by-example. In Model Driven
Engineering Languages and Systems, pages 271–285. Springer, 2009a.

Brosch P., Langer P., Seidl M., and Wimmer M. Towards end-user adaptable model versioning: The by-
example operation recorder. In Proceedings of the 2009 ICSE Workshop on Comparison and Versioning of
Software Models, CVSM ’09, pages 55–60, Washington, DC, USA, 2009b. IEEE Computer Society. ISBN
978-1-4244-3714-6. doi: 10.1109/CVSM.2009.5071723. URL http://dx.doi.org/10.1109/CVSM.
2009.5071723.

Bruneliere H., Cabot J., and Jouault F. Combining model-driven engineering and cloud computing. In Mod-
eling, Design, and Analysis for the Service Cloud-MDA4ServiceCloud’10: Workshop’s 4th edition (co-
located with the 6th European Conference on Modelling Foundations and Applications-ECMFA 2010),
2010.

Buffenbarger J. Syntactic software merging. In Selected papers from the ICSE SCM-4 and SCM-5 Workshops,
on Software Configuration Management, pages 153–172, London, UK, 1995. Springer-Verlag. ISBN 3-
540-60578-9. URL http://portal.acm.org/citation.cfm?id=647174.716256.

Cánovas Izquierdo J. L. and Cabot J. Community-driven language development. In Modeling in Software
Engineering (MISE), 2012 ICSE Workshop on, pages 29–35. IEEE, 2012.

http://www.bptrends.com/publicationfiles/05%2D04%20COL%20IBM%20Manifesto%20%2D%20Frankel%20%2D3%2Epdf
http://www.bptrends.com/publicationfiles/05%2D04%20COL%20IBM%20Manifesto%20%2D%20Frankel%20%2D3%2Epdf
http://itea.defimedia.be/sites/default/files/Proceedings.zip
http://itea.defimedia.be/sites/default/files/Proceedings.zip
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/MC.1987.1663532
http://dx.doi.org/10.1109/CVSM.2009.5071723
http://dx.doi.org/10.1109/CVSM.2009.5071723
http://portal.acm.org/citation.cfm?id=647174.716256

References 160

Carstensen P. and Schmidt K. Computer supported cooperative work: new challenges to systems design, 1999.
Handbook of Human Factors, Kenji Itoh, Tokio.

Chacon S. Pro Git. Apress, Berkely, CA, USA, 1st edition, 2009. ISBN 1430218339, 9781430218333.

Chawathe S. S. and Garcia-Molina H. Meaningful change detection in structured data. In Proceedings of the
1997 ACM SIGMOD International Conference on Management of Data, SIGMOD ’97, pages 26–37, New
York, NY, USA, 1997. ACM. ISBN 0-89791-911-4. doi: 10.1145/253260.253266. URL http://doi.acm.
org/10.1145/253260.253266.

Cicchetti A. Difference Representation and Conflict Management in Model-Driven Engineering. PhD thesis,
Università di L’Aquila, 2008.

Cicchetti A., Ruscio D. D., and Pierantonio A. A metamodel independent approach to difference rep-
resentation. Journal of Object Technology, 6(9):165–185, October 2007. ISSN 1660-1769. doi:
10.5381/jot.2007.6.9.a9. URL http://www.jot.fm/contents/issue_2007_10/paper9.html. TOOLS
EUROPE 2007 — Objects, Models, Components, Patterns.

Cicchetti A., Ruscio D., and Pierantonio A. Managing model conflicts in distributed development. In Proceed-
ings of the 11th International Conference on Model Driven Engineering Languages and Systems, MoD-
ELS ’08, pages 311–325, Berlin, Heidelberg, 2008a. Springer-Verlag. ISBN 978-3-540-87874-2. doi:
10.1007/978-3-540-87875-9_23. URL http://dx.doi.org/10.1007/978-3-540-87875-9_23.

Cicchetti A., Ruscio D. D., Eramo R., and Pierantonio A. Automating co-evolution in model-driven engi-
neering. In Proceedings of the 2008 12th International IEEE Enterprise Distributed Object Computing
Conference, EDOC ’08, pages 222–231, Washington, DC, USA, 2008b. IEEE Computer Society. ISBN
978-0-7695-3373-5. doi: 10.1109/EDOC.2008.44. URL http://dx.doi.org/10.1109/EDOC.2008.
44.

Conradi R. and Westfechtel B. Towards a uniform version model for software configuration management.
In Proceedings of the SCM-7 Workshop on System Configuration Management, ICSE ’97, pages 1–17,
London, UK, 1997. Springer-Verlag. ISBN 3-540-63014-7. URL http://portal.acm.org/citation.cfm?
id=647176.716423.

Conradi R. and Westfechtel B. Version models for software configuration management. ACM Comput. Surv.,
30:232–282, June 1998. ISSN 0360-0300. doi: http://doi.acm.org/10.1145/280277.280280. URL http://
doi.acm.org/10.1145/280277.280280.

Constantin C., Englebert V., and Thiran P. A reconciliation framework to support cooperative work with
DSM. In Proceedings of the First International Workshop on Domain Engineering held in conjunction
with CAiSE’09 Conference, collection CEUR-WS.org, volume 457, 2009.

Cormen T. H., Leiserson C. E., Rivest R. L., and Stein C. Introduction to Algorithms, Third Edition. The MIT
Press, 3rd edition, 2009. ISBN 0262033844, 9780262033848.

Czarnecki K. and Helsen S. Feature-based survey of model transformation approaches. IBM Syst. J., 45(3):
621–645, July 2006. ISSN 0018-8670. doi: 10.1147/sj.453.0621. URL http://dx.doi.org/10.1147/sj.
453.0621.

De Lucia A., Fasano F., Scanniello G., and Tortora G. Enhancing collaborative synchronous uml mod-
elling with fine-grained versioning of software artefacts. J. Vis. Lang. Comput., 18:492–503, October
2007. ISSN 1045-926X. doi: 10.1016/j.jvlc.2007.08.005. URL http://portal.acm.org/citation.cfm?
id=1314708.1314891.

Demeyer S., Tichelaar S., and Ducasse S. FAMIX 2.1- the FAMOOS information exchange model, 2001.

Demeyer S., Ducasse S., and Nierstrasz O. Finding refactorings via change metrics. SIGPLAN Not., 35(10):
166–177, October 2000. ISSN 0362-1340. doi: 10.1145/354222.353183. URL http://doi.acm.org/10.
1145/354222.353183.

http://doi.acm.org/10.1145/253260.253266
http://doi.acm.org/10.1145/253260.253266
http://www.jot.fm/contents/issue_2007_10/paper9.html
http://dx.doi.org/10.1007/978-3-540-87875-9_23
http://dx.doi.org/10.1109/EDOC.2008.44
http://dx.doi.org/10.1109/EDOC.2008.44
http://portal.acm.org/citation.cfm?id=647176.716423
http://portal.acm.org/citation.cfm?id=647176.716423
http://doi.acm.org/10.1145/280277.280280
http://doi.acm.org/10.1145/280277.280280
http://dx.doi.org/10.1147/sj.453.0621
http://dx.doi.org/10.1147/sj.453.0621
http://portal.acm.org/citation.cfm?id=1314708.1314891
http://portal.acm.org/citation.cfm?id=1314708.1314891
http://doi.acm.org/10.1145/354222.353183
http://doi.acm.org/10.1145/354222.353183

References 161

Dewan P. and Hegde R. Semi-synchronous conflict detection and resolution in asynchronous software devel-
opment. In Harper R. and Gutwin C., editors, ECSCW, pages 159–178. Springer, 2007. ISBN 978-1-84800-
030-8.

Dewan P. and Riedl J. Toward computer-supported concurrent software engineering. Computer, 26:17–27,
January 1993. ISSN 0018-9162. doi: 10.1109/2.179149. URL http://portal.acm.org/citation.cfm?
id=165312.165318.

Di Rocco J., Di Ruscio D., Iovino L., and Pierantonio A. Collaborative repositories in model-driven en-
gineering [software technology]. Software, IEEE, 32(3):28–34, May 2015. ISSN 0740-7459. doi:
10.1109/MS.2015.61.

Dias M., Cassou D., and Ducasse S. Representing code history with development environment events. CoRR,
abs/1309.4334, 2013. URL http://arxiv.org/abs/1309.4334.

Dig D., Comertoglu C., Marinov D., and Johnson R. Automated detection of refactorings in evolving com-
ponents. In Proceedings of the 20th European Conference on Object-Oriented Programming, ECOOP’06,
pages 404–428, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-35726-2, 978-3-540-35726-1. doi:
10.1007/11785477_24. URL http://dx.doi.org/10.1007/11785477_24.

Dirix M. Awareness in computer-supported collaborative modelling. application to genmymodel. 2013.

Dourish P. and Bellotti V. Awareness and coordination in shared workspaces. In Proceedings of the 1992 ACM
Conference on Computer-supported Cooperative Work, CSCW ’92, pages 107–114, New York, NY, USA,
1992. ACM. ISBN 0-89791-542-9. doi: 10.1145/143457.143468. URL http://doi.acm.org/10.1145/
143457.143468.

Ebraert P., Vallejos J., Costanza P., Van Paesschen E., and D’Hondt T. Change-oriented software engineering.
In Proceedings of the 2007 international conference on Dynamic languages: in conjunction with the 15th
International Smalltalk Joint Conference 2007, pages 3–24. ACM, 2007.

Edwards W. K. Policies and roles in collaborative applications. In Proceedings of the 1996 ACM conference on
Computer supported cooperative work, CSCW ’96, pages 11–20, New York, NY, USA, 1996. ACM. ISBN
0-89791-765-0. doi: http://doi.acm.org/10.1145/240080.240175. URL http://doi.acm.org/10.1145/
240080.240175.

Edwards W. K. Flexible conflict detection and management in collaborative applications. In Proceedings of
the 10th Annual ACM Symposium on User Interface Software and Technology, UIST ’97, pages 139–148,
New York, NY, USA, 1997. ACM. ISBN 0-89791-881-9. doi: 10.1145/263407.263533. URL http://doi.
acm.org/10.1145/263407.263533.

Ellis C. and Wainer J. 10 groupware and computer supported cooperative work. Multiagent Systems: a modern
approach to distributed artificial intelligence, page 425, 1999.

Elzeiny A., Elfetouh A. A., and Riad A. Cloud storage: A survey. International Journal of Emerging Trends
& Technology in Computer Science (IJETTCS), 2, July – August 2013.

Emami H. and Narimanifar K. A comparison framework for conflict detection and resolution multi agent
modeling methods in air traffic management. The International Journal of Information Technology, Control
and Automation (IJITCA), 2(4):51–64, October 2012. doi: 10.5121/ijitca.2012.2405. URL http://airccse.
org/journal/ijitca/papers/2412ijitca05.pdf.

Endriss U. Monotonic concession protocols for multilateral negotiation. In Proceedings of the Fifth Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’06, pages 392–399,
New York, NY, USA, 2006. ACM. ISBN 1-59593-303-4. doi: 10.1145/1160633.1160702. URL http://
doi.acm.org/10.1145/1160633.1160702.

Englebert V. and Heymans P. Towards more extensible metaCASE tools. In Krogstie J., Opdhal A., and Sindre
G., editors, International Conference on Advanced Information Systems Engineering (CAiSE’07), number
4495 in LNCS, pages 454–468, 2007.

http://portal.acm.org/citation.cfm?id=165312.165318
http://portal.acm.org/citation.cfm?id=165312.165318
http://arxiv.org/abs/1309.4334
http://dx.doi.org/10.1007/11785477_24
http://doi.acm.org/10.1145/143457.143468
http://doi.acm.org/10.1145/143457.143468
http://doi.acm.org/10.1145/240080.240175
http://doi.acm.org/10.1145/240080.240175
http://doi.acm.org/10.1145/263407.263533
http://doi.acm.org/10.1145/263407.263533
http://airccse.org/journal/ijitca/papers/2412ijitca05.pdf
http://airccse.org/journal/ijitca/papers/2412ijitca05.pdf
http://doi.acm.org/10.1145/1160633.1160702
http://doi.acm.org/10.1145/1160633.1160702

References 162

Estublier J. Software configuration management: A roadmap. In Proceedings of the Conference on The
Future of Software Engineering, ICSE ’00, pages 279–289, New York, NY, USA, 2000. ACM. ISBN
1-58113-253-0. doi: 10.1145/336512.336576. URL http://doi.acm.org/10.1145/336512.336576.

Estublier J., Leblang D., Hoek A. v. d., Conradi R., Clemm G., Tichy W., and Wiborg-Weber D. Impact of
software engineering research on the practice of software configuration management. ACM Trans. Softw.
Eng. Methodol., 14(4):383–430, October 2005. ISSN 1049-331X. doi: 10.1145/1101815.1101817. URL
http://doi.acm.org/10.1145/1101815.1101817.

Falleri J.-R., Morandat F., Blanc X., Martinez M., and Montperrus M. Fine-grained and accurate source
code differencing. In Proceedings of the 29th ACM/IEEE international conference on Automated software
engineering, pages 313–324. ACM, 2014.

Favre J.-M. Towards a basic theory to model model driven engineering. In In Workshop on Software Model
Engineering, WISME 2004, joint event with UML2004, 2004.

Favre J.-M. Foundations of meta-pyramids: Languages vs. metamodels – episode ii: Story of thotus the
baboon1. In Bezivin J. and Heckel R., editors, Language Engineering for Model-Driven Software De-
velopment, number 04101 in Dagstuhl Seminar Proceedings, Dagstuhl, Germany, 2005. Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany. URL http://
drops.dagstuhl.de/opus/volltexte/2005/21.

Fluri B., Wursch M., PInzger M., and Gall H. C. Change distilling: Tree differencing for fine-grained source
code change extraction. Software Engineering, IEEE Transactions on, 33(11):725–743, 2007.

Fondement F. Concrete syntax definition for modeling languages. PhD thesis, IC, Lausanne, 2007.

Fowler M. Refactoring: Improving the Design of Existing Code. Addison-Wesley, Boston, MA, USA, 1999.
ISBN 0-201-48567-2.

France R. and Rumpe B. Model-driven development of complex software: A research roadmap. In 2007
Future of Software Engineering, pages 37–54. IEEE Computer Society, 2007.

Frankel D. Model Driven Architecture: Applying MDA to Enterprise Computing. Wiley, 2003.

Gall H. C., Fluri B., and Pinzger M. Change analysis with evolizer and changedistiller. IEEE Software, (1):
26–33, 2009.

Gallardo J., Bravo C., and Redondo M. A. A model-driven development method for collaborative modeling
tools. Journal of Network and Computer Applications, 35(3):1086–1105, 2012.

Garcés K., Jouault F., Cointe P., and Bézivin J. Managing model adaptation by precise detection of meta-
model changes. In Proceedings of the 5th European Conference on Model Driven Architecture - Foun-
dations and Applications, ECMDA-FA ’09, pages 34–49, Berlin, Heidelberg, 2009. Springer-Verlag.
ISBN 978-3-642-02673-7. doi: 10.1007/978-3-642-02674-4_4. URL http://dx.doi.org/10.1007/
978-3-642-02674-4_4.

Georg G. Activity theory and its applications in software engineering and technology. Technical report, 2011.

Gilman E., Sánchez I., Saloranta T., and Riekki J. Reasoning for smart space application: comparing three
reasoning engines clips, jess and win-prolog. In Computer and Information Technology (CIT), 2010 IEEE
10th International Conference on, pages 1340–1345. IEEE, 2010.

Gîrba T., Favre J.-M., and Ducasse S. Using meta-model transformation to model software evolution. Electron.
Notes Theor. Comput. Sci., 137:57–64, September 2005. ISSN 1571-0661.

Goldberg D. E. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989. ISBN 0201157675.

http://doi.acm.org/10.1145/336512.336576
http://doi.acm.org/10.1145/1101815.1101817
http://drops.dagstuhl.de/opus/volltexte/2005/21
http://drops.dagstuhl.de/opus/volltexte/2005/21
http://dx.doi.org/10.1007/978-3-642-02674-4_4
http://dx.doi.org/10.1007/978-3-642-02674-4_4

References 163

Gomes C., Barroca B., and Amaral V. Classification of model transformation tools: Pattern matching tech-
niques. In Dingel J., Schulte W., Ramos I., Abrahão S., and Insfran E., editors, Model-Driven Engineering
Languages and Systems, volume 8767 of Lecture Notes in Computer Science, pages 619–635. Springer
International Publishing, 2014. ISBN 978-3-319-11652-5. doi: 10.1007/978-3-319-11653-2_38. URL
http://dx.doi.org/10.1007/978-3-319-11653-2_38.

Gómez V. U., Ducasse S., and D’Hondt T. Visually supporting source code changes integration: the torch
dashboard. In Reverse Engineering (WCRE), 2010 17th Working Conference on, pages 55–64. IEEE, 2010.

Gómez V. U., Ducasse S., and D’Hondt T. Ring: a unifying meta-model and infrastructure for smalltalk source
code analysis tools. Computer Languages, Systems & Structures, 38(1):44–60, 2012.

Gonzalez-Perez C. Tools for an extended object modelling environment. In Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer Systems, ICECCS ’05, pages 20–23, Wash-
ington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2284-X. doi: 10.1109/ICECCS.2005.80.
URL http://dx.doi.org/10.1109/ICECCS.2005.80.

Gonzalez-Perez C. and Henderson-Sellers B. A representation-theoretical analysis of the omg modelling
suite. In Proceedings of the 2005 Conference on New Trends in Software Methodologies, Tools and Tech-
niques: Proceedings of the Fourth SoMeT_W05, pages 252–262, Amsterdam, The Netherlands, The Nether-
lands, 2005. IOS Press. ISBN 1-58603-556-8. URL http://dl.acm.org/citation.cfm?id=1563296.
1563320.

Gonzalez-Perez C. and Henderson-Sellers B. Metamodelling for Software Engineering. John Wiley, New
York, 2008. ISBN 9780470030363.

Grune D. Concurrent versions system, a method for independent cooperation. Technical re-
port, 1986. URL ftp://progwww.vub.ac.be/education/EMOOSE/ReuseSlides/merge-papers/
Grune198X-cvs.pdf.

Grune D. et al. Concurrent versions system (cvs). Programa de Computador, June 1989. URL http://
cvshome.org.

Gruschko B., Kolovos D. S., and Paige R. F. Towards synchronizing models with evolving metamodels. In
Workshop on Model-Driven Software Evolution at CSMR 2007, 2007.

Gupta D. and Dwivedi R. Method configuration from situational method engineering. SIGSOFT Softw. Eng.
Notes, 37(3):1–11, May 2012. ISSN 0163-5948. doi: 10.1145/180921.2180934. URL http://doi.acm.
org/10.1145/180921.2180934.

Gutwin C., Penner R., and Schneider K. Group awareness in distributed software development. In Proceedings
of the 2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pages 72–81, New
York, NY, USA, 2004. ACM. ISBN 1-58113-810-5. doi: 10.1145/1031607.1031621. URL http://doi.
acm.org/10.1145/1031607.1031621.

Hamadache K. and Lancieri L. Role-based collaboration extended to pervasive computing. In Intelligent
Networking and Collaborative Systems, 2009. INCOS ’09. International Conference on, pages 9–15, Nov
2009. doi: 10.1109/INCOS.2009.45.

Han J. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2005. ISBN 1558609016.

Harel D. and Rumpe B. Meaningful modeling: What’s the semantics of "semantics"? Computer, 37(10):
64–72, October 2004. ISSN 0018-9162. doi: 10.1109/MC.2004.172. URL http://dx.doi.org/10.1109/
MC.2004.172.

Henderson-Sellers B. Method engineering: Theory and practice. In Karagiannis D. and Mayr H. C., editors,
Information Systems Technology and its Applications, 5th International Conference ISTA’2006, May 30-31,
2006, Klagenfurt, Austria, volume 84 of LNI, pages 13–23. GI, 2006. ISBN 3-88579-178-1. URL http://
subs.emis.de/LNI/Proceedings/Proceedings84/article4300.html.

http://dx.doi.org/10.1007/978-3-319-11653-2_38
http://dx.doi.org/10.1109/ICECCS.2005.80
http://dl.acm.org/citation.cfm?id=1563296.1563320
http://dl.acm.org/citation.cfm?id=1563296.1563320
ftp://progwww.vub.ac.be/education/EMOOSE/ReuseSlides/merge-papers/Grune198X-cvs.pdf
ftp://progwww.vub.ac.be/education/EMOOSE/ReuseSlides/merge-papers/Grune198X-cvs.pdf
http://cvshome.org
http://cvshome.org
http://doi.acm.org/10.1145/180921.2180934
http://doi.acm.org/10.1145/180921.2180934
http://doi.acm.org/10.1145/1031607.1031621
http://doi.acm.org/10.1145/1031607.1031621
http://dx.doi.org/10.1109/MC.2004.172
http://dx.doi.org/10.1109/MC.2004.172
http://subs.emis.de/LNI/Proceedings/Proceedings84/article4300.html
http://subs.emis.de/LNI/Proceedings/Proceedings84/article4300.html

References 164

Herrmannsdoerfer M. Operation-based versioning of metamodels with COPE. In Proceedings of the 2009
ICSE Workshop on Comparison and Versioning of Software Models, CVSM ’09, pages 49–54, Washington,
DC, USA, 2009. IEEE Computer Society. ISBN 978-1-4244-3714-6. doi: http://dx.doi.org/10.1109/CVSM.
2009.5071722. URL http://dx.doi.org/10.1109/CVSM.2009.5071722.

Herrmannsdoerfer M., Benz S., and Juergens E. COPE: A Language for the Coupled Evolution of Meta-
models and Models . In Proc. of the 1st International Workshop on Model Co-Evolution and Consistency
Management. ACM, 2008.

Hill E. F. Jess in Action: Java Rule-Based Systems. Manning Publications Co., Greenwich, CT, USA, 2003.
ISBN 1930110898.

Hilley D. Cloud computing: A taxonomy of platform and infrastructure-level offerings. Georgia Institute of
Technology, Tech. Rep, 2009.

Hohpe G. and Woolf B. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging
Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN 0321200683.

Holmes T., Zdun U., and Dustdar S. Automating the management and versioning of service models at runtime
to support service monitoring. In Enterprise Distributed Object Computing Conference (EDOC), 2012
IEEE 16th International, pages 211–218. IEEE, 2012.

Holt R. C., Schürr A., Sim S. E., and Winter A. Gxl: A graph-based standard exchange format for reengineer-
ing, 2006.

Ignat C.-L., Oster G., Molli P., Cart M., Ferrie J., Kermarrec A.-M., Sutra P., Shapiro M., Benmouffok L.,
Busca J.-M., and Guerraoui R. A comparison of optimistic approaches to collaborative editing of wiki pages.
In Proceedings of the 2007 International Conference on Collaborative Computing: Networking, Applica-
tions and Worksharing, pages 474–483, Washington, DC, USA, 2007a. IEEE Computer Society. ISBN 978-
1-4244-1318-8. doi: 10.1109/COLCOM.2007.4553878. URL http://portal.acm.org/citation.cfm?
id=1545009.1545344.

Ignat C.-L. and Norrie M. C. Flexible Collaboration over XML Documents. In Proceedings of the Inter-
national Conference on Cooperative Design, Visualization and Engineering (CDVE’06), pages 267–274,
Mallorca, Spain, September 2006. ISBN 3-540-44494-7.

Ignat C.-L. and Norrie M. C. Operation-based versus State-based Merging in Asynchronous Graphical Col-
laborative Editing. Sixth International Workshop on Collaborative Editing Systems, CSCW’04, IEEE Dis-
tributed Systems online, November 2004. ISSN 1541-4922.

Ignat C.-L., Oster G., Molli P., and Skaf-Molli H. Gasper: A collaborative writing mode for avoiding blind
modifications. Research Report RR-6204, LORIA – INRIA Lorraine, May 2007b. URL http://hal.inria.
fr/inria-00150013/en/.

Iqbal A., Ureche O., Hausenblas M., and Tummarello G. Ld2sd: Linked data driven software development. In
In 21st International Conference on Software Engineering and Knowledge Engineering (SEKE 09, 2009.

Jech T. Set theory. Springer Science & Business Media, 2013.

Johansen R. Groupware: Computer support for business teams. The Free Press, 1988.

Jouault F. and Bézivin J. Km3: A dsl for metamodel specification. In Gorrieri R. and Wehrheim H., editors,
FMOODS, volume 4037 of Lecture Notes in Computer Science, pages 171–185. Springer, 2006. ISBN
3-540-34893-X.

Jouault F. and Kurtev I. Transforming models with atl. In Proceedings of the 2005 International Conference
on Satellite Events at the MoDELS, MoDELS’05, pages 128–138, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-31780-5, 978-3-540-31780-7. doi: 10.1007/11663430_14. URL http://dx.doi.org/
10.1007/11663430_14.

http://dx.doi.org/10.1109/CVSM.2009.5071722
http://portal.acm.org/citation.cfm?id=1545009.1545344
http://portal.acm.org/citation.cfm?id=1545009.1545344
http://hal.inria.fr/inria-00150013/en/
http://hal.inria.fr/inria-00150013/en/
http://dx.doi.org/10.1007/11663430_14
http://dx.doi.org/10.1007/11663430_14

References 165

Jouault F., Allilaire F., Bézivin J., and Kurtev I. Atl: A model transformation tool. Science of computer
programming, 72(1):31–39, 2008.

Ju J., Wu J., Fu J., Lin Z., and Zhang J. A survey on cloud storage. Journal of Computers, 6(8):1764–1771,
2011.

Kelly S. Case tool support for co-operative work in information system design. In Rolland C., Chen Y.,
and Fang M., editors, Information Systems in the WWW Environment, volume 115 of IFIP Conference
Proceedings, pages 49–69. Chapman & Hall, 1998. ISBN 0-412-82980-0.

Kelly S. and Tolvanen J.-P. Domain-Specific Modeling: Enabling full code generation. Wiley-IEEE Computer
Society Pr, 2008. ISBN 978-0-470-03666-2.

Kent S. Model driven engineering. In Proceedings of the Third International Conference on Integrated Formal
Methods, IFM ’02, pages 286–298, London, UK, 2002. Springer-Verlag. ISBN 3-540-43703-7.

Kessentini M., Werda W., Langer P., and Wimmer M. Search-based model merging. In Proceedings of the
15th Annual Conference on Genetic and Evolutionary Computation, GECCO ’13, pages 1453–1460, New
York, NY, USA, 2013. ACM. ISBN 978-1-4503-1963-8. doi: 10.1145/2463372.2463553. URL http://
doi.acm.org/10.1145/2463372.2463553.

Klein M. Supporting conflict resolution in cooperative design systems. Systems, Man and Cybernetics, IEEE
Transactions on, 21(6):1379–1390, Nov 1991. ISSN 0018-9472. doi: 10.1109/21.135683.

Klein M. and Lu S. C.-Y. Conflict resolution in cooperative design. Artificial Intelligence in Engineering, 4(4):
168 – 180, 1989. ISSN 0954-1810. doi: http://dx.doi.org/10.1016/0954-1810(89)90013-7. URL http://
www.sciencedirect.com/science/article/pii/0954181089900137.

Kleppe A. G., Warmer J., and Bast W. MDA Explained: The Model Driven Architecture: Practice and Promise.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003. ISBN 032119442X.

Koegel M. and Helming J. EMFStore: a model repository for emf models. In Kramer J., Bishop J., Devanbu
P. T., and Uchitel S., editors, ICSE (2), pages 307–308. ACM, 2010. ISBN 978-1-60558-719-6.

Koegel M., Helming J., and Seyboth S. Operation-based conflict detection and resolution. In JProceedings of
the Joint ModSE-MCCM Workshop on Models and Evolution, ModSE-MCCM ’09, Denver, USA, 2009a.
URL http://wwwbruegge.in.tum.de/static/publications/pdf/205/Paper3.pdf.

Koegel M., Helming J., and Seyboth S. Operation-based conflict detection and resolution. In Proceedings
of the 2009 ICSE Workshop on Comparison and Versioning of Software Models, CVSM ’09, pages 43–48,
Washington, DC, USA, 2009b. IEEE Computer Society. ISBN 978-1-4244-3714-6. doi: http://dx.doi.org/
10.1109/CVSM.2009.5071721. URL http://dx.doi.org/10.1109/CVSM.2009.5071721.

Koegel M., Herrmannsdoerfer M., Helming J., and Li Y. State-based vs. operation-based change tracking.
In proceedings of MODELS’09 MoDSE-MCCM Workshop, Denver, USA, 2009, 2009c. URL http://
wwwbruegge.in.tum.de/static/publications/pdf/205/Paper3.pdf.

Koegel M., Herrmannsdoerfer M., von Wesendonk O., and Helming J. Operation-based conflict detection.
In Proceedings of the 1st International Workshop on Model Comparison in Practice, IWMCP ’10, pages
21–30, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-960-2. doi: http://doi.acm.org/10.1145/
1826147.1826154. URL http://doi.acm.org/10.1145/1826147.1826154.

Kolovos D. S., Paige R. F., and Polack F. A. Model comparison: A foundation for model composition and
model transformation testing. In Proceedings of the 2006 International Workshop on Global Integrated
Model Management, GaMMa ’06, pages 13–20, New York, NY, USA, 2006. ACM. ISBN 1-59593-410-3.
doi: 10.1145/1138304.1138308. URL http://doi.acm.org/10.1145/1138304.1138308.

Kolovos D. S., Paige R. F., and Polack F. A. The epsilon transformation language. In Proceedings of the
1st International Conference on Theory and Practice of Model Transformations, ICMT ’08, pages 46–60,
Berlin, Heidelberg, 2008. Springer-Verlag. ISBN 978-3-540-69926-2. doi: 10.1007/978-3-540-69927-9_4.
URL http://dx.doi.org/10.1007/978-3-540-69927-9_4.

http://doi.acm.org/10.1145/2463372.2463553
http://doi.acm.org/10.1145/2463372.2463553
http://www.sciencedirect.com/science/article/pii/0954181089900137
http://www.sciencedirect.com/science/article/pii/0954181089900137
http://wwwbruegge.in.tum.de/static/publications/pdf/205/Paper3.pdf
http://dx.doi.org/10.1109/CVSM.2009.5071721
http://wwwbruegge.in.tum.de/static/publications/pdf/205/Paper3.pdf
http://wwwbruegge.in.tum.de/static/publications/pdf/205/Paper3.pdf
http://doi.acm.org/10.1145/1826147.1826154
http://doi.acm.org/10.1145/1138304.1138308
http://dx.doi.org/10.1007/978-3-540-69927-9_4

References 166

Kolovos D. S., Di Ruscio D., Pierantonio A., and Paige R. F. Different models for model matching: An analysis
of approaches to support model differencing. In Proceedings of the 2009 ICSE Workshop on Comparison
and Versioning of Software Models, CVSM ’09, pages 1–6, Washington, DC, USA, 2009. IEEE Computer
Society. ISBN 978-1-4244-3714-6. doi: 10.1109/CVSM.2009.5071714. URL http://dx.doi.org/10.
1109/CVSM.2009.5071714.

Koshima A. and Englebert V. Rucord: Rule-based composite operation recovering and detection to support
cooperative edition of (meta)models. In Hammoudi S., Ferreira Pires L., Desfray P., and Filipe J., editors,
MODELSWARD 2015 - Proceedings of the 3rd International Conference on Model-Driven Engineering
and Software Development, ESEO, Angers, Loire Valley, France, 9-11 February, 2015., pages 585–591.
SciTePress, 2015a. ISBN 978-989-758-083-3. doi: 10.5220/0005339305850591. URL http://dx.doi.
org/10.5220/0005339305850591.

Koshima A. and Englebert V. Collaborative editing of emf/ecore metamodels and models: Conflict detection,
reconciliation, and merging in dicomef. In Proceedings of the 2nd International Conference on Model-
Driven Engineering and Software Development – (MODELSWARD 2014), pages 55 – 66, Lisbon, Portugal,
2014.

Koshima A., Englebert V., and Thiran P. Distributed collaborative model editing framework for domain
specific modeling tools. In In Proceedings of the 2011 6th IEEE International Conference on Global
Software Engineering, ICGSE ’11, Marina Congress Centre, Helsinki, Finland, 2011. IEEE Computer
Society.

Koshima A. A. and Englebert V. Collaborative editing of emf/ecore meta-models and models: Conflict detec-
tion, reconciliation, and merging in dicomef. Science of Computer Programming, 113, Part 1:3 – 28, 2015b.
ISSN 0167-6423. doi: http://dx.doi.org/10.1016/j.scico.2015.07.004. URL http://www.sciencedirect.
com/science/article/pii/S0167642315001380. Model Driven Development (Selected & extended
papers from {MODELSWARD} 2014).

Koshima A. A., Englebert V., and Thiran P. A reconciliation framework to support cooperative work with dsm.
In Reinhartz-Berger I., Sturm A., Clark T., Cohen S., and Bettin J., editors, Domain Engineering, pages
239–259. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-36653-6. doi: 10.1007/978-3-642-36654-3_
10. URL http://dx.doi.org/10.1007/978-3-642-36654-3_10.

Kühn H. and Murzek M. Interoperability issues in metamodelling platforms. In Konstantas D., Bourrières J.-
P., Léonard M., and Boudjlida N., editors, Interoperability of Enterprise Software and Applications, pages
215–226. Springer London, 2006. ISBN 978-1-84628-151-8. doi: 10.1007/1-84628-152-0_20. URL
http://dx.doi.org/10.1007/1-84628-152-0_20.

Kühne T. Matters of (meta-)modeling. Software and System Modeling, 5(4):369–385, 2006.

Kuutti K. and Arvonen T. Identifying potential CSCW applications by means of activity theory concepts:
A case example. In Mantel M. and Baecker R., editors, CSCW ’92, Proceedings of the Conference on
Computer Supported Cooperative Work, Toronto, Canada, October 31 - November 4, 1992, pages 233–240.
ACM, 1992. ISBN 0-89791-542-9. doi: 10.1145/143457.150955. URL http://doi.acm.org/10.1145/
143457.150955.

Lamport L. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21:558–565,
July 1978. ISSN 0001-0782. doi: http://doi.acm.org/10.1145/359545.359563. URL http://doi.acm.org/
10.1145/359545.359563.

Langer P. Adaptable Model Versioning based on Model Transformation By Demonstration. Ph.d. dissertation,
Faculty of Informatics, Vienna University of Technology, December 2011. URL http://publik.tuwien.
ac.at/files/PubDat_203931.pdf.

Langer P. and Wimmer M. A benchmark for conflict detection components of model versioning systems.
Softwaretechnik-Trends, 2013.

http://dx.doi.org/10.1109/CVSM.2009.5071714
http://dx.doi.org/10.1109/CVSM.2009.5071714
http://dx.doi.org/10.5220/0005339305850591
http://dx.doi.org/10.5220/0005339305850591
http://www.sciencedirect.com/science/article/pii/S0167642315001380
http://www.sciencedirect.com/science/article/pii/S0167642315001380
http://dx.doi.org/10.1007/978-3-642-36654-3_10
http://dx.doi.org/10.1007/1-84628-152-0_20
http://doi.acm.org/10.1145/143457.150955
http://doi.acm.org/10.1145/143457.150955
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/359545.359563
http://publik.tuwien.ac.at/files/PubDat_203931.pdf
http://publik.tuwien.ac.at/files/PubDat_203931.pdf

References 167

Langer P., Wimmer M., Brosch P., Herrmannsdörfer M., Seidl M., Wieland K., and Kappel G. A posteriori
operation detection in evolving software models. J. Syst. Softw., 86(2):551–566, February 2013. ISSN
0164-1212. doi: 10.1016/j.jss.2012.09.037. URL http://dx.doi.org/10.1016/j.jss.2012.09.037.

Lin Y., Gray J., and Jouault F. DSMDiff: A Differentiation Tool for Domain-Specific Models. 2007.

Lippe E. and van Oosterom N. Operation-based merging. In Proceedings of the fifth ACM SIGSOFT sym-
posium on Software development environments, SDE 5, pages 78–87, New York, NY, USA, 1992a. ACM.
ISBN 0-89791-554-2. doi: http://doi.acm.org/10.1145/142868.143753. URL http://doi.acm.org/10.
1145/142868.143753.

Lippe E. and van Oosterom N. Operation-based merging. SIGSOFT Softw. Eng. Notes, 17:78–87, November
1992b. ISSN 0163-5948. doi: http://doi.acm.org/10.1145/142882.143753. URL http://doi.acm.org/10.
1145/142882.143753.

Livshits B. and Zimmermann T. Dynamine: finding common error patterns by mining software revision
histories. In ACM SIGSOFT Software Engineering Notes, volume 30, pages 296–305. ACM, 2005.

Lúcio L., Amrani M., Dingel J., Lambers L., Salay R., Selim G., Syriani E., and Wimmer M. Model trans-
formation intents and their properties. Software & Systems Modeling, pages 1–38, 2014. ISSN 1619-1366.
doi: 10.1007/s10270-014-0429-x. URL http://dx.doi.org/10.1007/s10270-014-0429-x.

Magnusson B., Asklund U., and Minör S. Fine-grained revision control for collaborative software de-
velopment. SIGSOFT Softw. Eng. Notes, 18(5):33–41, December 1993a. ISSN 0163-5948. doi:
10.1145/167049.167061. URL http://doi.acm.org/10.1145/167049.167061.

Magnusson B., Asklund U., and Minör S. Fine-grained revision control for collaborative software devel-
opment. In Proceedings of the 1st ACM SIGSOFT Symposium on Foundations of Software Engineer-
ing, SIGSOFT ’93, pages 33–41, New York, NY, USA, 1993b. ACM. ISBN 0-89791-625-5. doi:
10.1145/256428.167061. URL http://doi.acm.org/10.1145/256428.167061.

Mansoor U., Kessentini M., Langer P., Wimmer M., Bechikh S., and Deb" K. Momm: Multi-objective
model merging. Journal of Systems and Software, 103(0):423 – 439, 2015. ISSN 0164-1212. doi:
http://dx.doi.org/10.1016/j.jss.2014.11.043. URL http://www.sciencedirect.com/science/article/
pii/S016412121400274X.

Maoz S., Ringert J. O., and Rumpe B. Addiff: semantic differencing for activity diagrams. In Gyimóthy T.
and Zeller A., editors, SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE-19) and ESEC’11: 13rd European Software Engineering Conference (ESEC-13), Szeged,
Hungary, September 5-9, 2011, pages 179–189. ACM, 2011. ISBN 978-1-4503-0443-6. doi: 10.1145/
2025113.2025140. URL http://doi.acm.org/10.1145/2025113.2025140.

Maróti M., Kecskés T., Kereskényi R., Broll B., Völgyesi P., Jurácz L., Levendoszky T., and Lédeczi Á. Next
generation (meta) modeling: Web-and cloud-based collaborative tool infrastructure. Proceedings of MPM,
page 41, 2014.

Mens T. A state-of-the-art survey on software merging. IEEE Trans. Softw. Eng., 28:449–462, May
2002. ISSN 0098-5589. doi: 10.1109/TSE.2002.1000449. URL http://portal.acm.org/citation.cfm?
id=567176.567178.

Mens T. Conditional graph rewriting as a domain-independent formalism for software evolution. In Nagl M.,
Schürr A., and Münch M., editors, Applications of Graph Transformations with Industrial Relevance, Inter-
national Workshop, AGTIVE’99, Kerkrade, The Netherlands, September 1-3, 1999, Proceedings, volume
1779 of Lecture Notes in Computer Science, pages 127–143. Springer, 1999a. ISBN 3-540-67658-9. doi:
10.1007/3-540-45104-8_10. URL http://dx.doi.org/10.1007/3-540-45104-8_10.

Mens T. A Formal Foundation for Object-Oriented Software Evolution. PhD thesis, Brussels, Belgium, 1999b.

Mens T. and Gorp P. V. A taxonomy of model transformation. Electr. Notes Theor. Comput. Sci., 152:125–142,
2006.

http://dx.doi.org/10.1016/j.jss.2012.09.037
http://doi.acm.org/10.1145/142868.143753
http://doi.acm.org/10.1145/142868.143753
http://doi.acm.org/10.1145/142882.143753
http://doi.acm.org/10.1145/142882.143753
http://dx.doi.org/10.1007/s10270-014-0429-x
http://doi.acm.org/10.1145/167049.167061
http://doi.acm.org/10.1145/256428.167061
http://www.sciencedirect.com/science/article/pii/S016412121400274X
http://www.sciencedirect.com/science/article/pii/S016412121400274X
http://doi.acm.org/10.1145/2025113.2025140
http://portal.acm.org/citation.cfm?id=567176.567178
http://portal.acm.org/citation.cfm?id=567176.567178
http://dx.doi.org/10.1007/3-540-45104-8_10

References 168

Mens T. and Taentzer G. Model-driven software refactoring. In 1st Workshop on Refactoring Tools, WRT 2007,
in conjunction with 21st European Conference on Object-Oriented Programming, July 30 - August 03, 2007,
Berlin, Proceedings, pages 25–27, 2007. URL http://netfiles.uiuc.edu/dig/RefactoringWorkshop/.

Mens T. and Van Der Straeten R. Incremental resolution of model inconsistencies. In Recent Trends in
Algebraic Development Techniques, pages 111–126. Springer, 2007.

Mens T., Czarnecki K., and Gorp P. V. A taxonomy of model transformation. In Proc. Dagstuhl Seminar
on "Language Engineering for Model-Driven Software Development". Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl. Electronic, 2005a.

Mens T., Taentzer G., and Runge O. Detecting structural refactoring conflicts using critical pair analysis.
Electr. Notes Theor. Comput. Sci., 127(3):113–128, 2005b. doi: 10.1016/j.entcs.2004.08.038. URL http://
dx.doi.org/10.1016/j.entcs.2004.08.038.

Mens T., Van Der Straeten R., and D'Hondt M. Detecting and resolving model inconsistencies using
transformation dependency analysis. In Proceedings of the 9th International Conference on Model Driven
Engineering Languages and Systems, MoDELS’06, pages 200–214, Berlin, Heidelberg, 2006. Springer-
Verlag. ISBN 3-540-45772-0, 978-3-540-45772-5. doi: 10.1007/11880240_15. URL http://dx.doi.org/
10.1007/11880240_15.

Meyers B. and Vangheluwe H. A framework for evolution of modelling languages. Sci. Comput. Program.,
76(12):1223–1246, December 2011. ISSN 0167-6423. doi: 10.1016/j.scico.2011.01.002. URL http://dx.
doi.org/10.1016/j.scico.2011.01.002.

Michigan State University. Decision making in groups, Module G, copyright 2007, michigan state university,4-
h 1068 group dynamite notebook, michigan state university extension 4-h youth development (1978).
http://decision2.org/d/decision-making-in-groups-michigan-state-university-w782/, 2007.

Mills K. L. Computer-supported cooperative work. In ENCYCLOPEDIA OF LIBRARY AND INFORMATION
SCIENCES (2ND EDITION. Citeseer, 2003.

Minör S. and Magnusson B. A model for semi-(a) synchronous collaborative editing. In Proceedings of
the Third European Conference on Computer-Supported Cooperative Work 13–17 September 1993, Milan,
Italy ECSCW’93, pages 219–231. Springer, 1993.

Mirbel I. and Ralyté J. Situational method engineering: combining assembly-based and roadmap-driven
approaches. Requirements Engineering, 11(1):58–78, 2006.

Mohamed M. and Romdhani M. Classification of model refactoring approaches. JOURNAL OF OBJECT
TECHNOLOGY, 8(6), 2009.

Monperrus M., Beugnard A., and Champeau J. A definition of “abstraction level” for metamodels. In Engi-
neering of Computer Based Systems, 2009. ECBS 2009. 16th Annual IEEE International Conference and
Workshop on the, pages 315–320, 2009. doi: 10.1109/ECBS.2009.41.

Montes J. L. I., Vela F. L. G., and Megías M. G. Supporting social organization modelling in cooperative work
using patterns. In Computer Supported Cooperative Work in Design II, pages 112–121. Springer, 2006.

Mougenot A., Blanc X., and Gervais M.-P. D-praxis: A peer-to-peer collaborative model editing frame-
work. In Proceedings of the 9th IFIP WG 6.1 International Conference on Distributed Applications and
Interoperable Systems, DAIS ’09, pages 16–29, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-
642-02163-3. doi: http://dx.doi.org/10.1007/978-3-642-02164-0_2. URL http://dx.doi.org/10.1007/
978-3-642-02164-0_2.

Muller P.-A., Fondement F., Baudry B., and Combemale B. Modeling modeling modeling. Software & Systems
Modeling, 11(3):347–359, 2012.

http://netfiles.uiuc.edu/dig/RefactoringWorkshop/
http://dx.doi.org/10.1016/j.entcs.2004.08.038
http://dx.doi.org/10.1016/j.entcs.2004.08.038
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1007/11880240_15
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://dx.doi.org/10.1016/j.scico.2011.01.002
http://dx.doi.org/10.1007/978-3-642-02164-0_2
http://dx.doi.org/10.1007/978-3-642-02164-0_2

References 169

Munson J. P. and Dewan P. A flexible object merging framework. In Proceedings of the 1994 ACM Con-
ference on Computer Supported Cooperative Work, CSCW ’94, pages 231–242, New York, NY, USA,
1994. ACM. ISBN 0-89791-689-1. doi: 10.1145/192844.193016. URL http://doi.acm.org/10.1145/
192844.193016.

Nguyen T. N., Munson E. V., Boyland J. T., and Thao C. An infrastructure for development of object-oriented,
multi-level configuration management services. In Proceedings of the 27th International Conference on
Software Engineering, ICSE ’05, pages 215–224, New York, NY, USA, 2005. ACM. ISBN 1-58113-963-2.
doi: 10.1145/1062455.1062504. URL http://doi.acm.org/10.1145/1062455.1062504.

Oda T. and Saeki M. Generative technique of version control systems for software diagrams. In Proceedings of
the 21st IEEE International Conference on Software Maintenance, ICSM ’05, pages 515–524, Washington,
DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-2368-4. doi: 10.1109/ICSM.2005.49. URL http://
dx.doi.org/10.1109/ICSM.2005.49.

Ohst D., Welle M., and Kelter U. Differences between versions of uml diagrams. In Proceedings of the
9th European Software Engineering Conference Held Jointly with 11th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, ESEC/FSE-11, pages 227–236, New York, NY, USA,
2003. ACM. ISBN 1-58113-743-5. doi: 10.1145/940071.940102. URL http://doi.acm.org/10.1145/
940071.940102.

Oliveira H., Murta L., and Werner C. Odyssey-vcs: A flexible version control system for uml model elements.
In Proceedings of the 12th International Workshop on Software Configuration Management, SCM ’05,
pages 1–16, New York, NY, USA, 2005. ACM. ISBN 1-59593-310-7. doi: 10.1145/1109128.1109129.
URL http://doi.acm.org/10.1145/1109128.1109129.

Olson D. L. and Delen D. Advanced data mining techniques. Springer Science & Business Media, 2008.

OMG. MOF QVT Final Adopted Specification. Object Modeling Group, June 2005. URL http://fparreiras/
papers/mof_qvt_final.pdf.

OMG. OMG Unified Modeling Language (OMG UML), Superstructure. OMG, aug 2011. formal/2011-08-06.

OMG O. M. G. OMG Unified Modeling Language (OMG UML), Infrastructure, V2.1.2. Technical report,
November 2007a. URL http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF.

OMG O. M. G. Meta Object Facility(MOF) Specification. http://www.omg.org/spec/MOF/1.4/PDF, April
2002.

OMG O. M. G. Model Driven Architecture (MDA), document number ormsc/2001-07-01.
http://www.enterprise-architecture.info/Images/MDA/MDA%20Technical.pdf, July 2001.

OMG X. OMG, XMI mapping specification, v2.1.1, formal/07-12-0, (2007), 2007b.

Omoronyia I. Sharing awareness during distributed collaborative software development. Ph.d. dissertation,
Department of Computer and Information Sciences, University of Strathclyde, November 2008. URL
https://personal.cis.strath.ac.uk/murray.wood/efocswww/papers/InahOmoronyiaThesis.
pdf.

Omoronyia I., Ferguson J., Roper M., and Wood M. A 3-dimensional relevance model for collaborative soft-
ware engineering spaces. In Global Software Engineering, 2007. ICGSE 2007. Second IEEE International
Conference on, pages 204–216. IEEE, 2007.

Ouksel A. M. and Sheth A. Semantic interoperability in global information systems. SIGMOD Rec., 28(1):
5–12, March 1999. ISSN 0163-5808. doi: 10.1145/309844.309849. URL http://doi.acm.org/10.1145/
309844.309849.

Penichet V. M. R., Paternó F., Gallud J. A., and Lozano M. D. Collaborative social structures and task
modelling integration. In Proceedings of the 13th International Conference on Interactive Systems: Design,
Specification, and Verification, DSVIS’06, pages 67–80, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN
978-3-540-69553-0. URL http://dl.acm.org/citation.cfm?id=1756428.1756438.

http://doi.acm.org/10.1145/192844.193016
http://doi.acm.org/10.1145/192844.193016
http://doi.acm.org/10.1145/1062455.1062504
http://dx.doi.org/10.1109/ICSM.2005.49
http://dx.doi.org/10.1109/ICSM.2005.49
http://doi.acm.org/10.1145/940071.940102
http://doi.acm.org/10.1145/940071.940102
http://doi.acm.org/10.1145/1109128.1109129
http://fparreiras/papers/mof_qvt_final.pdf
http://fparreiras/papers/mof_qvt_final.pdf
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
https://personal.cis.strath.ac.uk/murray.wood/efocswww/papers/InahOmoronyiaThesis.pdf
https://personal.cis.strath.ac.uk/murray.wood/efocswww/papers/InahOmoronyiaThesis.pdf
http://doi.acm.org/10.1145/309844.309849
http://doi.acm.org/10.1145/309844.309849
http://dl.acm.org/citation.cfm?id=1756428.1756438

References 170

Peterson J. L. Petri net theory and the modeling of systems. 1981.

Pilato C., Collins-Sussman B., and Fitzpatrick B. Version Control with Subversion. O’Reilly Media, Inc., 2
edition, 2008. ISBN 0596510330, 9780596510336.

Prete K., Rachatasumrit N., Sudan N., and Kim M. Template-based reconstruction of complex refactorings. In
Proceedings of the 2010 IEEE International Conference on Software Maintenance, ICSM ’10, pages 1–10,
Washington, DC, USA, 2010. IEEE Computer Society. ISBN 978-1-4244-8630-4. doi: 10.1109/ICSM.
2010.5609577. URL http://dx.doi.org/10.1109/ICSM.2010.5609577.

Ralyté J. and Roll C. An approach for method reengineering. In Proceedings of the 20 th International
Conference on Conceptual Modeling (ER2001), LNCS 2224, pages 471–484. Springer Berlin / Heidelberg,
2001.

Ralyté J., Deneckère R., and Rolland C. Towards a generic model for situational method engineering. In Pro-
ceedings of the 15th International Conference on Advanced Information Systems Engineering, CAiSE’03,
pages 95–110, Berlin, Heidelberg, 2003. Springer-Verlag. ISBN 3-540-40442-2. URL http://dl.acm.
org/citation.cfm?id=1758398.1758410.

Ralyté J., Brinkkemper S., and Henderson-Sellers B. Situational Method Engineering: Fundamentals and Ex-
periences: Proceedings of the IFIP WG 8.1 Working Conference, 12-14 September 2007, Geneva, Switzer-
land, volume 244. Springer Science & Business Media, 2007.

Reddy R., France R., Ghosh S., Fleurey F., and Baudry B. Model composition - a signature-based approach.
In Proceedings of the AOM Workshop at MODELS’05, Montego Bay, Jamaica, October 2005.

Rho J. and Wu C. An efficient version model of software diagrams. In Proceedings of the Fifth Asia Pacific
Software Engineering Conference, APSEC ’98, pages 236–, Washington, DC, USA, 1998. IEEE Computer
Society. ISBN 0-8186-9183-2. URL http://dl.acm.org/citation.cfm?id=521008.785612.

Richards M., Monson-Haefel R., and Chappell D. A. Java message service. " O’Reilly Media, Inc.", 2009.

Rittgen P. Coma: A tool for collaborative modeling. In CAiSE Forum, volume 344, pages 61–64, 2008.

Robbes R. and Lanza M. A change-based approach to software evolution. Electronic Notes in Theoretical
Computer Science, 166:93–109, 2007.

Robbes R. and Lanza M. Spyware: A change-aware development toolset. In Proceedings of the 30th interna-
tional conference on Software engineering, pages 847–850. ACM, 2008.

Roebuck K. Release Management: High-impact Strategies - What You Need to Know: Definitions, Adoptions,
Impact, Benefits, Maturity, Vendors. Emereo Pty Limited, 2011. ISBN 9781743048115. URL http://
books.google.be/books?id=qnWyXwAACAAJ.

Rose L., Herrmannsdoerfer M., Mazanek S., Van Gorp P., Buchwald S., Horn T., Kalnina E., Koch A., Lano
K., Schätz B., and Wimmer M. Graph and model transformation tools for model migration. Software &
Systems Modeling, pages 1–37, 2012. ISSN 1619-1366. doi: 10.1007/s10270-012-0245-0. URL http://
dx.doi.org/10.1007/s10270-012-0245-0.

Rose L. M. Structures and processes for managing model-metamodel co-evolution. 2011.

Rose L. M., Paige R. F., Kolovos D. S., and Polack F. A. C. An Analysis of Approaches to Model Migration.
In Proc. Models and Evolution (MoDSE-MCCM) Workshop, 12th ACM/IEEE International Conference on
Model Driven Engineering, Languages and Systems, October 2009.

Rose L. M., Kolovos D. S., Paige R. F., and Polack F. A. C. Model migration with epsilon flock. In Proceedings
of the Third international conference on Theory and practice of model transformations, ICMT’10, pages
184–198, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-13687-7, 978-3-642-13687-0. URL
http://dl.acm.org/citation.cfm?id=1875847.1875862.

http://dx.doi.org/10.1109/ICSM.2010.5609577
http://dl.acm.org/citation.cfm?id=1758398.1758410
http://dl.acm.org/citation.cfm?id=1758398.1758410
http://dl.acm.org/citation.cfm?id=521008.785612
http://books.google.be/books?id=qnWyXwAACAAJ
http://books.google.be/books?id=qnWyXwAACAAJ
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dx.doi.org/10.1007/s10270-012-0245-0
http://dl.acm.org/citation.cfm?id=1875847.1875862

References 171

Saeki M. Configuration management in a method engineering context. In Dubois E. and Pohl K., editors,
CAiSE, volume 4001 of Lecture Notes in Computer Science, pages 384–398. Springer, 2006. ISBN 3-540-
34652-X.

Saeki M. and Kaiya H. On relationships among models, meta models and ontologies. In The 6th OOPSLA
Workshop on Domain-Specific Modeling, Portland, Oregon, USA, 2006. URL http://www.dsmforum.
org/events/dsm06/Papers/14-saeki.pdf.

Saeki M. and Oda T. A conceptual model of version control in method engineering environment. In Belo
O., Eder J., e Cunha J. F., and Pastor O., editors, The 17th Conference on Advanced Information Systems
Engineering (CAiSE ’05), Porto, Portugal, 13-17 June, 2005, CAiSE Forum, Short Paper Proceedings,
volume 161 of CEUR Workshop Proceedings. CEUR-WS.org, 2005. URL http://www.ceur-ws.org/
Vol-161/FORUM_15.pdf.

Sattler K.-U., Conrad S., and Saake G. Interactive example-driven integration and reconciliation for accessing
database federations. Inf. Syst., 28(5):393–414, July 2003. ISSN 0306-4379. doi: 10.1016/S0306-4379(02)
00023-6. URL http://dx.doi.org/10.1016/S0306-4379(02)00023-6.

Schmidt D. C. Guest editor’s introduction: Model-driven engineering. IEEE Computer, 39(2):25–31, 2006.

Schmidt K. and Bannon L. Taking cscw seriously. Computer Supported Cooperative Work (CSCW), 1
(1-2):7–40, 1992. ISSN 0925-9724. doi: 10.1007/BF00752449. URL http://dx.doi.org/10.1007/
BF00752449.

Schmidt K. and Simone C. Coordination mechanisms: towards a conceptual foundation of cscw systems
design. Comput. Supported Coop. Work, 5:155–200, December 1996. ISSN 0925-9724. doi: 10.1007/
BF00133655. URL http://portal.acm.org/citation.cfm?id=247460.247462.

Schneider C., Zündorf A., and Niere J. Coobra – a small step for development tools to collaborative envi-
ronments. In WORKSHOP ON DIRECTIONS IN SOFTWARE ENGINEERING ENVIRONMENTS; WORK-
SHOP AT ICSE 2004, 2004.

Seidewitz E. What models mean. IEEE Softw., 20:26–32, September 2003. ISSN 0740-7459. doi: 10.1109/
MS.2003.1231147. URL http://portal.acm.org/citation.cfm?id=942589.942706.

Seiwald C. Inter-file branching - a practical method for representing variants. In Proceedings of the SCM-
6 Workshop on System Configuration Management, ICSE ’96, pages 67–75, London, UK, UK, 1996.
Springer-Verlag. ISBN 3-540-61964-X. URL http://dl.acm.org/citation.cfm?id=647175.716396.

Selic B. The pragmatics of model-driven development. IEEE software, (5):19–25, 2003.

Sendall S. and Kozaczynski W. Model transformation: The heart and soul of model-driven software devel-
opment. IEEE Softw., 20(5):42–45, September 2003. ISSN 0740-7459. doi: 10.1109/MS.2003.1231150.
URL http://dx.doi.org/10.1109/MS.2003.1231150.

Shen H. and Sun C. Flexible merging for asynchronous collaborative systems. In On the Move to Meaning-
ful Internet Systems, 2002 - DOA/CoopIS/ODBASE 2002 Confederated International Conferences DOA,
CoopIS and ODBASE 2002, pages 304–321, London, UK, UK, 2002. Springer-Verlag. ISBN 3-540-00106-
9. URL http://dl.acm.org/citation.cfm?id=646748.701670.

Sinclair G., Hanks P., Fox G., Moon R., and et. al. Stock P. The Collins COBUILD English Language Dictio-
nary. Collins, Glasgow, 1987.

Snell J., Tidwell D., and Kulchenko P. Programming Web services with SOAP. " O’Reilly Media, Inc.", 2001.

Sriplakich P. ModelBus : An Open and Distributed Environment for Model Driven Engineering. Ph.d. disser-
tation, University Pierre and Marie Curie, September 2007. URL http://www-src.lip6.fr/homepages/
Prawee.Sriplakich.

http://www.dsmforum.org/events/dsm06/Papers/14-saeki.pdf
http://www.dsmforum.org/events/dsm06/Papers/14-saeki.pdf
http://www.ceur-ws.org/Vol-161/FORUM_15.pdf
http://www.ceur-ws.org/Vol-161/FORUM_15.pdf
http://dx.doi.org/10.1016/S0306-4379(02)00023-6
http://dx.doi.org/10.1007/BF00752449
http://dx.doi.org/10.1007/BF00752449
http://portal.acm.org/citation.cfm?id=247460.247462
http://portal.acm.org/citation.cfm?id=942589.942706
http://dl.acm.org/citation.cfm?id=647175.716396
http://dx.doi.org/10.1109/MS.2003.1231150
http://dl.acm.org/citation.cfm?id=646748.701670
http://www-src.lip6.fr/homepages/Prawee.Sriplakich
http://www-src.lip6.fr/homepages/Prawee.Sriplakich

References 172

Sriplakich P., Blanc X., and Gervais M.-P. Supporting collaborative development in an open mda environ-
ment. In Proceedings of the 22nd IEEE International Conference on Software Maintenance, pages 244–253,
Washington, DC, USA, 2006. IEEE Computer Society. ISBN 0-7695-2354-4. doi: 10.1109/ICSM.2006.64.
URL http://portal.acm.org/citation.cfm?id=1172962.1173001.

Sriplakich P., Blanc X., and Gervals M.-P. Collaborative software engineering on large-scale models: Re-
quirements and experience in modelbus. In Proceedings of the 2008 ACM Symposium on Applied Com-
puting, SAC ’08, pages 674–681, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-753-7. doi:
10.1145/1363686.1363849. URL http://doi.acm.org/10.1145/1363686.1363849.

Stachowiak H. Allgemeine Modelltheorie. 1973. URL http://www.amazon.de/
Allgemeine-Modelltheorie-Herbert-Stachowiak/dp/3211811060/ref=sr_1_2/
028-1073608-4157317?ie=UTF8&s=books&qid=1190302420&sr=1-2.

Stahl T., Vöelter M., and Czarnecki K. Model-Driven Software Development: Technology, Engineering, Man-
agement. John Wiley & Sons, 2006. ISBN 0470025700.

Steinberg D., Budinsky F., Paternostro M., and Merks E. EMF: Eclipse Modeling Framework 2.0. Addison-
Wesley Professional, 2nd edition, 2009. ISBN 0321331885.

Steven Wollkind T. R. I., John Valasek. Automated conflict resolution for air traffic management using coopera-
tive multiagent negotiation. In In: AIAA Guidance, Navigation, and Control Conference, pages 2004–4992,
2004.

Syriani E. and Vangheluwe H. Matters of model transformation. School of Computer Science, McGill Univer-
sity, 2009.

Syriani E., Vangheluwe H., Mannadiar R., Hansen C., Van Mierlo S., and Ergin H. Atompm: A web-based
modeling environment. In Liu Y., Zschaler S., Baudry B., Ghosh S., Ruscio D. D., Jackson E. K., and
Wimmer M., editors, Joint Proceedings of MODELS’13 Invited Talks, Demonstration Session, Poster Ses-
sion, and ACM Student Research Competition co-located with the 16th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2013), Miami, USA, September 29 - October 4,
2013., volume 1115 of CEUR Workshop Proceedings, pages 21–25. CEUR-WS.org, 2013. URL http://
ceur-ws.org/Vol-1115/demo4.pdf.

Tacla C. A. and Enembreck F. Perception of centers of interest. In Computer Supported Cooperative Work in
Design II, pages 21–30. Springer, 2006.

Taentzer G., Ermel C., Langer P., and Wimmer M. Conflict detection for model versioning based on graph mod-
ifications. In Proceedings of the 5th International Conference on Graph Transformations, ICGT’10, pages
171–186, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-15927-3, 978-3-642-15927-5. URL
http://dl.acm.org/citation.cfm?id=1928162.1928178.

Taentzer G., Ermel C., Langer P., and Wimmer M. A fundamental approach to model versioning based on
graph modifications: from theory to implementation. Software and Systems Modeling, pages 1–34, 2012.
ISSN 1619-1366.

Tan W., Ma L., Xu Z., and Mao J. Application mda in a collaborative modeling environment. In Proceed-
ings of the 6th International Conference on Entertainment Computing, ICEC’07, pages 225–230, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 3-540-74872-5, 978-3-540-74872-4. URL http://dl.acm.org/
citation.cfm?id=2394259.2394292.

Tarr P., Ossher H., Harrison W., and Sutton S. M., Jr. N degrees of separation: Multi-dimensional separation of
concerns. In Proceedings of the 21st International Conference on Software Engineering, ICSE ’99, pages
107–119, New York, NY, USA, 1999. ACM. ISBN 1-58113-074-0. doi: 10.1145/302405.302457. URL
http://doi.acm.org/10.1145/302405.302457.

Thiran P., Hainaut J.-L., Bodart S., Deflorenne A., and Hick J.-M. Interoperation of independent, heteroge-
neous and distributed databases. methodology and case support: the interdb approach. In CoopIS, pages
54–63. IEEE Computer Society, 1998. ISBN 0-8186-8380-5. URL http://dblp.uni-trier.de/db/conf/
coopis/coopis98.html#ThiranHBDH98.

http://portal.acm.org/citation.cfm?id=1172962.1173001
http://doi.acm.org/10.1145/1363686.1363849
http://www.amazon.de/Allgemeine-Modelltheorie-Herbert-Stachowiak/dp/3211811060/ref=sr_1_2/028-1073608-4157317?ie=UTF8&s=books&qid=1190302420&sr=1-2
http://www.amazon.de/Allgemeine-Modelltheorie-Herbert-Stachowiak/dp/3211811060/ref=sr_1_2/028-1073608-4157317?ie=UTF8&s=books&qid=1190302420&sr=1-2
http://www.amazon.de/Allgemeine-Modelltheorie-Herbert-Stachowiak/dp/3211811060/ref=sr_1_2/028-1073608-4157317?ie=UTF8&s=books&qid=1190302420&sr=1-2
http://ceur-ws.org/Vol-1115/demo4.pdf
http://ceur-ws.org/Vol-1115/demo4.pdf
http://dl.acm.org/citation.cfm?id=1928162.1928178
http://dl.acm.org/citation.cfm?id=2394259.2394292
http://dl.acm.org/citation.cfm?id=2394259.2394292
http://doi.acm.org/10.1145/302405.302457
http://dblp.uni-trier.de/db/conf/coopis/coopis98.html#ThiranHBDH98
http://dblp.uni-trier.de/db/conf/coopis/coopis98.html#ThiranHBDH98

References 173

Treude C., Berlik S., Wenzel S., and Kelter U. Difference computation of large models. In Proceedings
of the the 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering, ESEC-FSE ’07, pages 295–304, New York, NY,
USA, 2007. ACM. ISBN 978-1-59593-811-4. doi: 10.1145/1287624.1287665. URL http://doi.acm.
org/10.1145/1287624.1287665.

Van Der Straeten R., Jonckers V., and Mens T. A formal approach to model refactoring and model refinement.
Software & Systems Modeling, 6(2):139–162, 2007.

Vangheluwe H., Sun X., and Bodden E. Domain-specific modelling with atom3. In Filipe J., Shishkov B., and
Helfert M., editors, ICSOFT 2007, Proceedings of the Second International Conference on Software and
Data Technologies, Volume PL/DPS/KE/MUSE, Barcelona, Spain, July 22-25, 2007, pages 298–304, 2007.

Vermolen S. D., Wachsmuth G., and Visser E. Reconstructing complex metamodel evolution. In Proceedings
of the 4th International Conference on Software Language Engineering, SLE’11, pages 201–221, Berlin,
Heidelberg, 2012. Springer-Verlag. ISBN 978-3-642-28829-6. doi: 10.1007/978-3-642-28830-2_11. URL
http://dx.doi.org/10.1007/978-3-642-28830-2_11.

Vernadat F., Percebois C., Farail P., Vingerhoeds R., Rossignol A., Talpin J. P., and Chemouil D. The TOP-
CASED Project - A Toolkit in OPen-source for Critical Applications and SystEm Development. In Data
Systems In Aerospace (DASIA), Berlin, Germany, 22/05/2006-25/05/2006. European Space Agency (ESA
Publications), 2006.

Vesperman J. Essential CVS. O’Reilly Media, Inc., 2006. ISBN 0596527039.

Vo T. T., Coulette B., Tran H. N., and Lbath R. Defining and Using Collaboration Patterns for Software Process
Development (regular paper). In International Workshop on Cooperative Model Driven Development. Co-
located with MODELSWARD 2015. (CMDD), Angers, 09/02/2015-09/02/2015, page (electronic medium),
http://www.scitepress.org/, février 2015. SciTePress.

Wachsmuth G. Metamodel adaptation and model co-adaptation. In Ernst E., editor, Proceedings of the 21st
European Conference on Object-Oriented Programming (ECOOP’07), volume 4609 of Lecture Notes in
Computer Science, pages 600–624. Springer-Verlag, July 2007.

Warmer J. and Kleppe A. The Object Constraint Language: Getting Your Models Ready for MDA. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edition, 2003. ISBN 0321179366.

Westfechtel B. Structure-oriented merging of revisions of software documents. In Proceedings of the 3rd
International Workshop on Software Configuration Management, SCM ’91, pages 68–79, New York, NY,
USA, 1991. ACM. ISBN 0-89791-429-5. doi: 10.1145/111062.111071. URL http://doi.acm.org/10.
1145/111062.111071.

Westfechtel B. A formal approach to three-way merging of emf models. In Proceedings of the 1st Interna-
tional Workshop on Model Comparison in Practice, IWMCP ’10, pages 31–41, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-960-2. doi: 10.1145/1826147.1826155. URL http://doi.acm.org/10.1145/
1826147.1826155.

Whitehead J., Mistrík I., Grundy J., and van der Hoek A. Collaborative software engineering: Concepts
and techniques. In Mistrík I., Grundy J., Hoek A., and Whitehead J., editors, Collaborative Software
Engineering, pages 1–30. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-10293-6. doi: 10.1007/
978-3-642-10294-3_1. URL http://dx.doi.org/10.1007/978-3-642-10294-3_1.

Wielemaker J. Swi-prolog 5.3 reference manual. 2004.

Woodcock J. and Davies J. Using Z: Specification, Refinement, and Proof. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996. ISBN 0-13-948472-8.

Wuu Y. How to merge program texts. Journal of Systems and Software, 27(2):129–135, 1994.

http://doi.acm.org/10.1145/1287624.1287665
http://doi.acm.org/10.1145/1287624.1287665
http://dx.doi.org/10.1007/978-3-642-28830-2_11
http://doi.acm.org/10.1145/111062.111071
http://doi.acm.org/10.1145/111062.111071
http://doi.acm.org/10.1145/1826147.1826155
http://doi.acm.org/10.1145/1826147.1826155
http://dx.doi.org/10.1007/978-3-642-10294-3_1

References 174

Xing Z. and Stroulia E. UMLDiff: An algorithm for object-oriented design differencing. In Proceedings of
the 20th IEEE/ACM International Conference on Automated Software Engineering, ASE ’05, pages 54–65,
New York, NY, USA, 2005. ACM. ISBN 1-58113-993-4. doi: 10.1145/1101908.1101919. URL http://
doi.acm.org/10.1145/1101908.1101919.

Xing Z. and Stroulia E. Refactoring detection based on UMLDiff change-facts queries. In Proceedings of
the 13th Working Conference on Reverse Engineering, WCRE ’06, pages 263–274, Washington, DC, USA,
2006. IEEE Computer Society. ISBN 0-7695-2719-1. doi: 10.1109/WCRE.2006.48. URL http://dx.doi.
org/10.1109/WCRE.2006.48.

Zhang J. Metamodel-driven model interpreter evolution. In Companion to the 20th Annual ACM SIGPLAN
Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
214–215, New York, NY, USA, 2005. ACM. ISBN 1-59593-193-7. doi: 10.1145/1094855.1094941. URL
http://doi.acm.org/10.1145/1094855.1094941.

Zhu H., Zhou M., and Seguin P. Supporting software development with roles. Systems, Man and Cybernetics,
Part A: Systems and Humans, IEEE Transactions on, 36(6):1110–1123, 2006.

Zimmermann T. and Bird C. Collaborative software development in ten years: Diversity, tools, and remix
culture. In Proceedings of the CSCW Workshop on the Future of Collaborative Software Development,
February 2012.

Zimmermann T., Weisgerber P., Diehl S., and Zeller A. Mining version histories to guide software changes.
In Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, pages 563–572,
Washington, DC, USA, 2004a. IEEE Computer Society. ISBN 0-7695-2163-0. URL http://dl.acm.org/
citation.cfm?id=998675.999460.

Zimmermann T., Weisgerber P., Diehl S., and Zeller A. Mining version histories to guide software changes.
In Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, pages 563–572,
Washington, DC, USA, 2004b. IEEE Computer Society. ISBN 0-7695-2163-0. URL http://dl.acm.org/
citation.cfm?id=998675.999460.

http://doi.acm.org/10.1145/1101908.1101919
http://doi.acm.org/10.1145/1101908.1101919
http://dx.doi.org/10.1109/WCRE.2006.48
http://dx.doi.org/10.1109/WCRE.2006.48
http://doi.acm.org/10.1145/1094855.1094941
http://dl.acm.org/citation.cfm?id=998675.999460
http://dl.acm.org/citation.cfm?id=998675.999460
http://dl.acm.org/citation.cfm?id=998675.999460
http://dl.acm.org/citation.cfm?id=998675.999460

Appendix A

Publications

Journal papers:

1. Collaborative Editing of EMF/Ecore Metamodels and Models: Conflict Detec-

tion, Reconciliation, and Merging in DiCoMEF: Koshima, A. , Englebert, V., Sci-

ence of Computer Programming, 2015, doi:10.1016/j.scico.2015.07.004

Book Chapters

1. A reconciliation framework to support cooperative work with DSM: Koshima, A.

A., Englebert, V., and Thiran, P. (2013). In Reinhartz-Berger, I., Sturm, A., Clark,

T., Cohen, S., and Bettin, J., editors, Domain Engineering, pages 239–259. Springer

Berlin Heidelberg.

Conferences and Workshops

1. RuCORD: Rule-based Composite Operation Recovery and Detection to Support

Cooperative Edition of (Meta)Models: Koshima, A. and Englebert, V. : Special Ses-

sions on Cooperative Model Driven Development (CMDD2015) co-located with the

176

3rd International Conference on Model-Driven Engineering and Software Develop-

ment – MODELSWARD 2015, Angers, France, 9-11 February 2015

2. Collaborative Editing of EMF/Ecore Metamodels and Models: Conflict Detec-

tion, Reconciliation, and Merging in DiCoMEF: Koshima, A. , Englebert, V. 2nd

International Conference on Model-Driven Engineering and Software Development –

MODELSWARD 2014, Jan 07-09, 2014, Lisbon, Portugal (best Paper Award)

3. Distributed collaborative model editing framework for domain specific modeling

tools: Koshima, A. , Englebert, V. and Thiran, P. 2011 Proceedings of the 2011 6th

IEEE International Conference on Global Software Engineering. IEEE Press

4. A framework for collaboratively editing domain specific models: Koshima, A. ,

Englebert, V. and Thiran, P. 2011 Doctoral Symposium of the 25th European Confer-

ence on Object-Oriented Programming

5. Support Tool for the Definition & Enactment of the UsiXML Methods: Boukhe-

bouze, M. , Pires Ferreira Neto, W. , Koshima, A. , Thiran, P. and Englebert, V. 2011

Software Support for User Interface Description Language - UIDL’2011.

6. Comparative Analysis of Collaborative Approaches for UsiXML Meta-Models

Evolution: Boukhebouze, M. , Koshima, A. , Englebert, V. and Thiran, P. 2010 Pro-

ceedings of the UsiXML-EICS workshop

Posters

1. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at journée des doctorants, June 26, 2015.

2. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at the 26th International Conference on Software Engineering and

Knowledge Engineering (SEKE 2014), Hyatt Regency, Vancouver, Canada. July 1 -

July 3, 2014

177

3. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at the DSM-TP summer school, 25-29 August 2014, Antwerp, Bel-

gium

4. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at the DSM-TP summer school, 2-6 September 2013, Santiago de

Compostela, Spain

5. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at the PReCISE Research Day, April 24, 2012, Namur, Belgium

6. A framework for collaboratively editing domain specific models: Amanuel Koshima:

poster presentation at the 25th European Conference on Object-Oriented Program-

ming (2011), 25-29 July 2011, Lancaster, United Kingdom

Student Talks

1. A Collaborative Model Editing Framework for Eclipse Modeling Framework:

Amanuel Koshima, The seventh edition of the International Summer School on Soft-

ware Engineering, July 6 - 9, 2010 - University of Salerno, Italy

Tool Demo

1. DiCoMEF: A Distributed Collaborative Model Editing Framework: Amanuel

Koshima, Vincent Englebert, The 26th International Conference on Software Engi-

neering and Knowledge Engineering (SEKE 2014), Hyatt Regency, Vancouver, Canada.

July 1 - July 3, 2014

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.2.1 Research Restrictions
	1.2.2 Research Questions
	1.2.3 Methodology
	1.2.3.1 Model Management
	1.2.3.2 Communication Management

	1.3 Contributions
	1.4 Thesis Organization

	2 Model Driven Engineering
	2.1 Model Driven Engineering
	2.2 Model Driven Architecture
	2.3 Other Model Driven Engineering Initiatives

	3 Computer Supported Cooperative Work
	3.1 Computer Supported Cooperative Work
	3.2 Classification of CSCW
	3.2.1 Centralized approach with modification controller
	3.2.2 Centralized approach without modification controller
	3.2.3 Decentralized approach with modification controller
	3.2.4 Decentralized approach without modification controller

	4 State-of-the-art of Collaborative Modeling
	4.1 Management of Models
	4.1.1 Model Comparison
	4.1.1.1 State-based Comparison
	4.1.1.2 Change-based Comparison

	4.1.2 Conflict Detection
	4.1.3 Conflict Resolution
	4.1.3.1 Computational model conflict resolution
	4.1.3.2 Model of human conflict resolution

	4.1.4 Model Merging
	4.1.5 Model Versioning
	4.1.6 Model Transformation

	4.2 Communication Management
	4.2.1 Member Organization
	4.2.2 Repository and Mode of Communication
	4.2.3 Awareness

	4.3 Related Work of Collaborative Modeling Environments

	5 Distributed Collaborative Model Editing Framework (DiCoMEF)
	5.1 DiCoMEF Architecture
	5.2 Model Management in DiCoMEF
	5.2.1 Formalization of Models
	5.2.1.1 Notation
	5.2.1.2 The Ecore Meta-meta-model
	5.2.1.3 Instantiation
	5.2.1.4 Reflexivity

	5.2.2 Definition of History Meta-model
	5.2.3 Change Management
	5.2.4 Model Comparison
	5.2.5 Conflict Detection
	5.2.6 Conflict Resolution and Merging
	5.2.7 Model Versioning
	5.2.8 Composite Operation Recovering and Detection Framework

	5.3 Communication Management in DiCoMEF

	6 Evaluation
	6.1 Objectives
	6.2 Experimental Design
	6.3 Results and Discussion

	7 Conclusion and Future Work
	7.1 Conclusion
	7.2 Future work

	References
	Appendix A Publications

