78 research outputs found

    Engineering Secure Adaptable Web Services Compositions

    Get PDF
    Service-oriented architecture defines a paradigm for building applications by assembling autonomous components such as web services to create web service compositions. Web services are executed in complex contexts where unforeseen events may compromise the security of the web services composition. If such compositions perform critical functions, prompt action may be required as new security threats may arise at runtime. Manual interventions may not be ideal or feasible. To automatically decide on valid security changes to make at runtime, the composition needs to make use of current security context information. Such security changes are referred to as dynamic adaptation. This research proposes a framework to develop web services compositions that can dynamically adapt to maintain the same level of security when unforeseen security events occur at runtime. The framework is supported by mechanisms that map revised security requirements arising at runtime to a new security configuration plan that is used to adapt the web services composition

    Generic access to symbolic computing services

    Get PDF
    Symbolic computation is one of the computational domains that requires large computational resources. Computer Algebra Systems (CAS), the main tools used for symbolic computations, are mainly designed to be used as software tools installed on standalone machines that do not provide the required resources for solving large symbolic computation problems. In order to support symbolic computations an infrastructure built upon massively distributed computational environments must be developed. Building an infrastructure for symbolic computations requires a thorough analysis of the most important requirements raised by the symbolic computation world and must be built based on the most suitable architectural styles and technologies. The architecture that we propose is composed of several main components: the Computer Algebra System (CAS) Server that exposes the functionality implemented by one or more supporting CASs through generic interfaces of Grid Services; the Architecture for Grid Symbolic Services Orchestration (AGSSO) Server that allows seamless composition of CAS Server capabilities; and client side libraries to assist the users in describing workflows for symbolic computations directly within the CAS environment. We have also designed and developed a framework for automatic data management of mathematical content that relies on OpenMath encoding. To support the validation and fine tuning of the system we have developed a simulation platform that mimics the environment on which the architecture is deployed

    Designing and experimenting coordination primitives for service oriented computing

    Get PDF
    Service Oriented Architecture (SOA) and Web Services (WS) are becoming a widely accepted device for designing and implementing distributed systems. SOAs have given an important contribution to software engineering providing a model where applications are defined by assembling together certain functionalities, called services, possibly provided by remote suppliers. The characterizing issue of SOAs consists of defining common principles to make services accessible and usable regardless their execution context. Nevertheless, the architectural specification is far from giving a complete reference application model on which systems should rely on. The specification just includes principles for achieving interoperability and reusability of services; other aspects are left to the implementing platforms. As a consequence, it is understood how services are specified in isolation and how their functionalities are made available to the requesters, but the definition of languages for describing service composition are far from being widely accepted and reveals to be an impelling challenge. In the last years, several solutions have been proposed for describing aggregated services. However, they often lack a formally defined semantics. Moreover, these solutions are often specific for a platform (e.g. WSs) and are difficult to adapt to other platforms since they rely on low level assumptions that are out of the SOA specifications. This thesis aims at providing new methodologies for implementing the coordination of services. Our framework proposes to be flexible enough to support high level languages and to provide reliable tools for testing correctness of implementation. Our approach relies on a formal model that takes the form of a process calculus specifically designed to deal with services and their coordination. The process calculus has been the main tool driving the specification issues as well the implementation issues. Indeed, it acts as a bridge between the high level specification language and the run-time environment. A distinguished feature of our proposal is that our formal model, i.e. the process calculus, describes distributed processes relying on an event notification mechanism as machinery for interactions. Services are represented by certain components that embody local computations and react to changes of the overall environment in which they are involved. The adoption of event notification results particularly fashionable for tackling service coordination. The principles studied at specification level are from one side understood within a theoretical framework that provides instruments for checking correctness of interaction policies and from the other side offers the core model for implementing and experimenting a programming middleware

    Business rules based legacy system evolution towards service-oriented architecture.

    Get PDF
    Enterprises can be empowered to live up to the potential of becoming dynamic, agile and real-time. Service orientation is emerging from the amalgamation of a number of key business, technology and cultural developments. Three essential trends in particular are coming together to create a new revolutionary breed of enterprise, the service-oriented enterprise (SOE): (1) the continuous performance management of the enterprise; (2) the emergence of business process management; and (3) advances in the standards-based service-oriented infrastructures. This thesis focuses on this emerging three-layered architecture that builds on a service-oriented architecture framework, with a process layer that brings technology and business together, and a corporate performance layer that continually monitors and improves the performance indicators of global enterprises provides a novel framework for the business context in which to apply the important technical idea of service orientation and moves it from being an interesting tool for engineers to a vehicle for business managers to fundamentally improve their businesses

    Interoperability of Enterprise Software and Applications

    Get PDF

    Abstraction, Visualization, and Evolution of Process Models

    Get PDF
    The increasing adoption of process orientation in companies and organizations has resulted in large process model collections. Each process model of such a collection may comprise dozens or hundreds of elements and captures various perspectives of a business process, i.e., organizational, functional, control, resource, or data perspective. Domain experts having only limited process modeling knowledge, however, hardly comprehend such large and complex process models. Therefore, they demand for a customized (i.e., personalized) view on business processes enabling them to optimize and evolve process models effectively. This thesis contributes the proView framework to systematically create and update process views (i.e., abstractions) on process models and business processes respectively. More precisely, process views abstract large process models by hiding or combining process information. As a result, they provide an abstracted, but personalized representation of process information to domain experts. In particular, updates of a process view are supported, which are then propagated to the related process model as well as associated process views. Thereby, up-to-dateness and consistency of all process views defined on any process model can be always ensured. Finally, proView preserves the behaviour and correctness of a process model. Process abstractions realized by views are still not sufficient to assist domain experts in comprehending and evolving process models. Thus, additional process visualizations are introduced that provide text-based, form-based, and hierarchical representations of process models. Particularly, these process visualizations allow for view-based process abstractions and updates as well. Finally, process interaction concepts are introduced enabling domain experts to create and evolve process models on touch-enabled devices. This facilitates the documentation of process models in workshops or while interviewing process participants at their workplace. Altogether, proView enables domain experts to interact with large and complex process models as well as to evolve them over time, based on process model abstractions, additional process visualizations, and process interaction concepts. The framework is implemented in a proof-ofconcept prototype and validated through experiments and case studies

    Participant Domain Name Token Profile for security enhancements supporting service oriented architecture

    Get PDF
    This research proposes a new secure token profile for improving the existing Web Services security standards. It provides a new authentication mechanism. This additional level of security is important for the Service-Oriented Architecture (SOA), which is an architectural style that uses a set of principles and design rules to shape interacting applications and maintain interoperability. Currently, the market push is towards SOA, which provides several advantages, for instance: integration with heterogeneous systems, services reuse, standardization of data exchange, etc. Web Services is one of the technologies to implement SOA and it can be implemented using Simple Object Access Protocol (SOAP). A SOAP-based Web Service relies on XML for its message format and common application layer protocols for message negotiation and transmission. However, it is a security challenge when a message is transmitted over the network, especially on the Internet. The Organization for Advancement of Structured Information Standards (OASIS) announced a set of Web Services Security standards that focus on two major areas. “Who” can use the Web Service and “What” are the permissions. However, the location or domain of the message sender is not authenticated. Therefore, a new secure token profile called: Participant Domain Name Token Profile (PDNT) is created to tackle this issue. The PDNT provides a new security feature, which the existing token profiles do not address. Location-based authentication is achieved if adopting the PDNT when using Web Services. In the performance evaluation, PDNT is demonstrated to be significantly faster than other secure token profiles. The processing overhead of using the PDNT with other secure token profiles is very small given the additional security provided. Therefore all the participants can acquire the benefits of increased security and performance at low cost

    Business Process Management: A Comprehensive Survey

    Get PDF
    corecore