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Abstract

Symbolic computation is one of the computational domaims tequires large compu-
tational resources. Computer Algebra Systems (CAS), the toals used for symbolic
computations, are mainly designed to be used as softwaleitmtalled on standalone
machines that do not provide the required resources foirgplarge symbolic compu-
tation problems. In order to support symbolic computati@msnfrastructure built upon
massively distributed computational environments mustéyeloped.

Building an infrastructure for symbolic computations regaia thorough analysis of
the most important requirements raised by the symbolic eaatipn world and must
be built based on the most suitable architectural stylesectthologies. The architec-
ture that we propose is composed of several main compongr@sComputer Algebra
System (CAS) Server that exposes the functionality impleéatehby one or more sup-
porting CASs through generic interfaces of Grid Services; Anchitecture for Grid
Symbolic Services Orchestration (AGSSO) Server that alseamless composition of
CAS Server capabilities; and client side libraries to ashistusers in describing work-
flows for symbolic computations directly within the CAS emnment. We have also
designed and developed a framework for automatic data neamexgt of mathematical
content that relies on OpenMath encoding.

To support the validation and fine tuning of the system we liweloped a simulation

platform that mimics the environment on which the architeeis deployed.
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Chapter 1

Introduction

1.1 Context

Symbolic computation or computer algebra is a research ootihat studies automated
manipulation of mathematical formulae and equations. Asudleed in [107], computer
algebra makes possible computations in algebraic stegtsuch as groups, number
fields, Lie algebras or rings of differential operators. ngssymbolic parameters during
manipulations of mathematical objects makes possiblergetreatment of classes of
problems. Evaluation of mathematical formulae to which Bght computation algo-
rithms are applied is more precise since numerical sulistisiare applied to irreducible

terms, eliminating thus rounding errors.

Symbolic computation software systems are vital tools ressd areas of modern aca-
demic and commercial research. Due to the nature of symbafigoutation, large prob-
lems in this research field can not be solved using the comgpytower of a single
computer and therefore there is an immediate need for congpurfrastructures that
can provide more processing power and storage capabili@¥ge solution proven to

work for other research domains is to build collaborativenpating environments based
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on already existing processing power offered by compuitgstets and even ordinary

workstations.

Programming models and tools have evolved to provide coitktive environments un-
der the generic term of distributed computing. Any compyitsystem in which au-

tonomous processing units can be interconnected throughwark so they can collab-
orate to serve a common goal is generically identified astalalited system. Distributed
computing architectures and related technologies hadgedlover time in strong rela-

tion with the evolution of hardware capabilities such as patimg power, storage and
communication capabilities. This evolution created newarfunities to respond better

to requests formulated by both research and industry.

The main software systems used for symbolic computatian€amputer Algebra Sys-
tems (CASSs), and amongst them GAP [3], Maple [10] and Mathem§24] being the
most well known CASs currently used. Even if processing pawmel memory required
to solve large symbolic problems is critical, the vast migjasf the CASs were initially
build to support calculations done by researchers, otlserdone by pen and paper. The
initial design of these systems, the high level of knowledge the huge effort required
to adapt these systems to newer technologies were the mpsttant impediments in
aligning these systems to the latest advances in distdbrdenputing. Amongst other
requirements, interoperability with other similar sysseand better support to be offered
to end users for solving symbolic problems were mentionecertiat three decades ago
[49].

The main goal this thesis is to present a novel software t@atoire for symbolic compu-
tations and demonstrate its capabilities to support furesteah requirements of computer
algebra specialists. The resulting infrastructure shprogide required support for solv-
ing large symbolic computations. Due to its design, we destrate that it is versatile
enough to permit easy adoption of new technologies andus@ASs can be integrated
as part of the architecture with a minimum effort. Withinstiarchitecture CASs play an

important role because they are the actual provider of syimbomputation capabilities.
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Additional components of the architecture will provide gupport features that enables
us to integrate and orchestrate symbolic computationsiesdor execution of symbolic

computation workflows.

A successful distributed computation infrastructure caly e created if the require-
ments for the research domain are carefully analysed anoraugh investigation over
the best distributed technologies to be used for such amamaent are identified. The
high variety of CASs and their capabilities imposes thatroperability standards for
data encoding, communication interfaces and executionagement capabilities are

created.

The high interest in creating a collaborative environmemtdymbolic computations
based on latest distributed models can also be demonstmtiée: high number of re-
search initiatives and joint research projects with thisvgaal. Among some important
research projects of the last years to investigate howillis&d models can be used in
context of symbolic computing are “Mathematics on the NBtONET) [11], MathBro-
ker [2], “Grid Enabled Numerical and Symbolic Services” ($&S) [7] and “Symbolic

Computation Infrastructure in Europe” (SCIEnce) [19].

The MONET project’s aim was to develop a set of Web Servicesxfmse symbolic
computation services. These services are described ustugtam XML language
Mathematical Service Description Language(MSDL) [51} thescribes services interms
of preconditions and effects. Based on their descriptiotgraated discovery of the cor-
rect service to solve a certain problem should be possildad.the ideas formulated by
the MONET project, within the MathBroker project a mathercatservice broker was

developed.

Similar ideas formulated in the MONET project were also cdeied by the GENSS
project. Its aim was to combine the functionality offereddmgh Web and Grid services.
The two main research directions of the project are relaietigcovery problems and

implementing ontologies for symbolic problems.
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Maple [10] and Mathematica [24] are two of the most impor@orhmercial CAS sys-

tems. They have recognized the benefits that distributedpating may bring to sym-

bolic computations and therefore they have provided mashento interconnect their
systems with similar instances and even third party systimogigh proprietary con-
nectors. The Grid Computing Toolbox [6] allows multiple Majphstances installed on
a Local Area Network (LAN) to combine the computing power lo¢ tmachines onto
which they run. A similar functionality is provided also byidMathematica [8]. Apart

from the main initiatives described above there are alsdlenmojects and research ini-
tiatives such as Maple2G [151] which integrates Maple imsta with Grid architecture
and JavaMath [170] that proposes a model to expose CASs wiaggecific distributed
technologies. A review of current Grid-based systems fartsglic computation can be
found in [152].

All the initiatives described above demonstrate imporfaaniities and their impact on
symbolic computing over distributed computational infrastures. Latest trends and
technologies in the world of distributed computing empbashe need for generic plat-
forms, interconnection mechanism and standards that & @artially available in sym-
bolic computations world. Due to these shortcomings, thedaithe EU Framework VI
SCIEnce project (www.symbolic-computations.org) is to ioye integration between
CAS developers and application experts. The project inclutlelopers from four
major CASs: GAP [3], Maple[10], MuPAD[13] and Kant[21]; plapplication experts
organised through the international Research Institut8yanbolic Computation, RISC-

LINZ. Its main objectives are to:

1. Develop versions of the CASs that can intercommunicata v@mmon standard
Web services interface, based on domain-specific resuwtduped by the Open-

Math [184] and MONET projects as well as generic standards as WSRF;

2. Develop common standards/middleware to allow the pricluof Grid-enabled

symbolic computation systems;
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3. Promote and ensure uptake of recent developments ingmoging languages,

including automatic memory management, into symbolic aatieiion systems.

The work presented in this thesis is mainly concerned withesing the second ob-
jective, that of providing Grid-enabled symbolic compigas in the context of novel
framework SymGrid [110].

The main goals of the SymGrid related activities are:

1. Produce a portable framework that will both allow symbalomputations to ac-
cess Grid services, and allow symbolic components to be#@gglas part of larger

Grid service applications on a computational Grid;

2. Develop resource brokers that will support the irregwarkload and computation

structures that are frequently found in symbolic compatet;j

3. Identify a series of applications that will demonstrdtte tapabilities and limita-

tions of Grid computing for symbolic computations.

These objectives cannot be achieved without introducing mgher-level middleware
systems. By providing a new domain-specific framework for Isgtic Grid computa-
tions we aim to supply a sophisticated interactive comparnat steering interface inte-
grating seamlessly into the interactive front-ends predidy each CAS, and providing
simple, transparent and high-level access to Grid servi2ypdefining common data and
task interfaces, we provide the computational infrastmgcto allow complex computa-
tions to be executed by orchestrating heterogeneoudistd components into a single
symbolic application. Due to the generic interfaces builthie context of SymGrid we

also anticipate that our framework can be further used fogroapplication domains.

The SymGrid-Services component covers all the interfadesovery and composi-

tion mechanism and data models that are relevant at Grid. |&dge complementary
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component within SymGrid that allows symbolic computasiéo be executed as high-
performance parallel computations on a computational ,Grgnely the SymGrid-Par
component of the SymGrid framework is described elsewh2d8][ While there are
several parallel Computer Algebra Systems suitable foeeihared-memory or dis-
tributed memory parallel systems, work on Grid-based syimbgstems is still nascent.
None of the systems implemented prior the ones provided b¥&¢& conforms to all

three of our basic requirements:

e Deploy symbolic Grid services;
e Access available Grid services from within the symbolic poiting system;

e Couple different Grid symbolic services into a coherent whol

In addition to dealing with these key issues, a number of m@pics are addressed
by SymGrid architecture. Amongst the most important rezagnts are mechanisms
for adapting to dynamic changes in either computations stesys. This is especially
important for symbolic computations, which may be highkegular in terms of data
structures and general computational demands, and whackftre present an interest-
ing challenge to current and projected technologies formgational Grids in terms of

their requirements for autonomic control.

1.2 Contributions

The objective of this thesis is to investigate the poterii@iefits of distributed archi-
tectures for symbolic computations and to propose a noaetéwork that enables ap-
plication specialists to exploit geographically dispersemputational resources. Com-
munication latency, technologies used to interconnecbteraomputational resources,
heterogeneity in hardware and software profiles are moegylio raise problems if ge-

ographically dispersed computational resources are used.result, specific solutions

6
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tailored for such computational environments are providdee work presented here lies
at the border of two computational worlds as it combines theracteristics and func-
tional requirements of both symbolic computation and disted computing domains.

The thesis makes the following contributions:

1. It analyses the general characteristics of researcloigxgl symbolic computa-
tion. Based on these findings it identifies the most importzatiures of distributed
architectures that could have a positive impact on the wagaieh in symbolic

computing area is conducted (Chapter 2).

2. We have designed and implemented a CAS Server as a catleftgtandard in-
terfaces and implementations that make Computer Algebree@gsavailable for
remote invocation and hence enabling their integratioraigd distributed archi-
tectures, such as computational Grids. CASs are the mawarefipackages for
symbolic computations. They are typically designed as canthiine interpreters
and do not offer interfaces that enables them to be accesssutely. The CAS
Server defines autonomous computational elements thatbtee@mexpose the
functionality of one or more CASs installed on the local maehor on the Local
Area Network [58, 61, 148, 150, 129] (Chapter 3).

3. We have designed and implemented a novel framework fobsljimservices or-
chestration, namely the Architecture for Grid Symbolic\&ss Orchestration
(AGSSO). Complex symbolic computational problems may bealswlecom-
posed and solved using a collaborative computational emmient. AGSSO rep-
resents a viable solution for service discovery, orchéstraand execution man-
agement of symbolic services exposed through CAS Servegesfaces [60, 61,
66, 148] (Chapter 4).

4. We have designed and implemented advanced mechanisresrfolling and
managing the execution of scientific workflows. For scientifbmputations, the

ability to control the execution of workflows by pausing,ussng, cancelling and
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dynamically altering the execution path represents an rtapbdesideratum cur-
rently not implemented by any engine for Web Services ortchigsn. This thesis
describes a custom solution that may be used to supportdhe @mentioned man-
agement capabilities and demonstrates its applicabilithe context of symbolic

services orchestration [64, 65] (Chapter 6).

5. We have designed and implemented a framework that allomspGter Algebra
Systems to access generic Web and Grid Services. The icesréxposed by CAS
Servers allows seamless integration in Grid architectanelsfacilitates orchestra-
tion of computational resources. Its design makes it slatédy more advanced
set-ups, while simpler solutions may be adopted to creadeeapose symbolic
services. We present in this thesis a novel framework, CoenAlgebra to Grid
Services(CAGS), that enables CASs to access generic Web ands&wices.
This solution is especially useful for accessing any remiééd and Grid Service
that do not comply with the interface proposed by the CAS S46@& (Chapter
5).

6. We have designed and implemented an event based sinmuiatioework that al-
lows us to investigate the behaviour of the system in diffeezvironmental con-
ditions. The process of testing and validating distribwaechitectures is difficult
and error prone. The approach considered in this thesisdsvelop simulated
environments by replicating real life hardware infrastaues. This thesis presents
a simulation algorithm derived from the event based simutamodel and the

results obtained through simulation [59](Chapter 6).

The main components of our architecture and the relatiomngntizem is presented in
Figure 1.1. In Chapter 3 we present the CAS Server componermchvexposes CAS
functionality through the interface of Grid Services. Cleaipt introduces the AGSSO
component and describes how multiple CAS Servers may be srated to support
solving of compound symbolic computation problems. In Caeapt we present the

components that are required at client side to allow CASs tesscfunctionality of

8
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CHAPTER 3 CHAPTER 4 CHAPTER 5

CAGS /—AGSSO—/A\
CAS [[AGSSOf.

Client

T Client o
Manager

CAGS — \ U
CAS | AGSSO A/ Process Manager ocal Registr

l

Client N ) =

Figure 1.1: Main Components of the Architecture

remote Web and Grid Services. It also presents a solutiot®cribing and submission

of workflows for symbolic computations.

1.3 Authorship

Unless otherwise stated the work presented throughoutltitioral thesis was authored
by myself and the work contained herein is my own. As a redulhe research activ-
ities undertaken in the context of the European researdeqirtSymbolic Computa-
tion Infrastructure for Europe” (SCIEnce) several reseg@abers and technical reports
were disseminated and software packages specific for thefdima project were imple-
mented. Part of these are directly related to the subjetti®thesis. My contribution to

the results presented within the publications | have chared is the following:

1. In [60] we have described a generic component that enalolesss to Grid and
Web Services from within a CAS environment. The design thablas seamless

integration with virtually any CAS was done by myself;
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2. Within [58] we present a solution for exposing CASs throagieneric Web Ser-
vice interface that relies on a custom data model for engopdommunication
between a remote client and the server. The generic steutttat allows multiple
CASs to be exposed to a single interface and the custom datal teashcapsulate

communication are my contributions to this work;

3. Combining Web or Grid symbolic services exposed by the CASeBavas first
described as a solution based on dynamic composition in [#&] part of the
results reported, the use of workflow patterns within the Cé®rtable compo-
sition of symbolic services was my personal contributionddionally | have
also contributed with the overall design of the AGSSO Seitivatrallows dynamic
composition of Web and Grid symbolic services. Previoustyhave reported a
static solution for composing such services in [62]. Furthbave also designed
the mechanisms that allow steering and management of catigoufor Grid Ser-

vices that was reported in [64];

4. As aresult of my work we were also able to develop a set ofttiois for describ-
ing often used composition patterns in symbolic computatia’hese result were

summarised in [65];

5. Data management across distributed environments esigean important topic.
Based on OpenMath OMR reference objects we have designedngheinented
a set of algorithms and components for seamless manageofetdata. The de-
sign of the algorithm and interfaces that address data neamagt issues partially

presented in [65] represent my personal contribution;

6. For testing purposes we have developed a simulatioropfatthat integrates var-
ious components of the SymGrid-Services architecture. [39f overall design
of the platform and the way various components should bgiated within the

simulation platform is also part of my personal contribatio

7. The contributions mentioned above were further refinetl developed and the
results were published in [61, 148, 98, 150].

10
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1.4 Publications

The following articles were published during my researcthwine contributions from

co-authors:
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Chapter 2

The Impact of Distributed
Architectures on Symbolic

Computation

This chapter reviews related work, as follows. Section Atioduces symbolic com-
putation and related issues. Section 2.2 reviews fundahanthitectural styles and
introduces quality attributes that should be considered¥aluating architectures for
symbolic computation. Section 2.3 discusses distributedpuiting environments while
Section 2.4 focuses on Service Oriented Architectures @ntphasis on Web Services.
In Section 2.5 we provide an overview of Grid technologied a@ discuss the main
solutions for developing Grid infrastructures. Encoditapslards for mathematical con-
tent are presented in Section 2.6 and a summary of the imypddgics covered within

the chapter is given in Section 2.7.
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2.1 The World of Symbolic Computing

Mathematics is a fundamental research domain with greadatip science and knowl-
edge in general. Few research domains can advance withapemsupport from math-
ematics and mathematical software. Unfortunately the Idpweent of this research
domain has suffered from a lack of computational resoudoesontrast numerical com-
putation has developed more rapidly because numericalitdge require less compu-
tational resources than symbolic algorithms and theretfoeg were easier to develop
and implement. When both numerical and symbolic algoritharskme used to solve a

problem the latter should be used if precise results aranestju

Computer algebra is a field of scientific computation thatdigthe border of two worlds.
It connects the world of mathematics and mathematical atgos and the world of com-
puter science and software engineering. The main softwals that are used currently
for automatic manipulation of mathematical formulae are @otar Algebra Systems
(CAS), either general purpose such as Maple [10] and Mathean@4] or specialised
to a certain domain of symbolic computation such as GAP [3pdktn methods for

scientific discovery motivate the need for such softwardages.

The emergence of software tools enables new methods of cbhnguesearch in sym-
bolic computations and changes the nature and the size bfepng that can be ad-
dressed. Using software tools represents a significantastepd even if such tools can
be used on single processor computers. While a single compatg be enough to
solve small problems, for large problems the computing povea single computer
does not suffice. Despite the efforts conducted in numeressarch projects, a com-
putational platform for solving large problems that allos&sy access to computational
resources and provides seamless ways to describe coregiganbolic tasks that would
be solved using massively distributed computational emvirents has not yet been fully

developed.

One of the problems in symbolic computations is the fast grgwmeed for computa-
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tional resources as the complexity of the problem rises.nkfvehe size of input data
and the result are small, due to intermediate expressioh, shheememory available on
a single computer may not be enough. In his PhD thesis Wa¥] [@8phasises that
execution of symbolic algorithms is irregular respective size of the input given. Even
a small modification in the input parameters can cause engrdiscrepancies in the
execution time and the amount of computational resourcgsined. Algorithms for
factorization [50] and algorithms for computing @mer Basis [113] are two examples

where expression swell and irregular execution times occur

Successful parallelizations of algorithms in domains sagparallel arithmetic in finite
fields [165], modular integer multiplication [78] and ex@mtiation [136] were reported.
A parallel implementation of the Karatsuba algorithm forltinprecision integer multi-
plication is described [114]. One of the symbolic compuwtagil fields that may benefit
from distributing computations over multiple computerpagynomial arithmetic. Prob-
lems such as identification of similar terms and&er Basis are suitable candidates
for the parallel approach, to name only a few. A more detalagey may be found in
[153].

Lack of sufficient memory and long running tasks that reqaisggnificant time to com-
plete were identified as the main issues in solving compleklpms symbolic compu-
tation problems [131]. These issues are the main drivinge®that led to development
of algorithms suited for parallel and distributed compiotadl environments. Additional
advantages that distributed systems may provide such ag asmputing capabilities
deployed on remote servers or computational platformsmiakie possible cooperation
between researchers may also have an important impact evatheathematics is con-
ducted. CASs initially developed to run on local computersehaready done important
steps towards using parallel architectures, network baseddistributed systems but
they still lack interoperability with other systems and amform approach that would

allow access to massively distributed computing architest.

To take advantage of the capabilities offered by new contioui@ infrastructures and
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technologies the symbolic computations algorithms antirtiggies must be adapted.
The benefits of parallel and distributed architecturesyantsolic computation were ob-
served several decades ago [49]. The report emphasizemfuetance of symbolic
computations for science and in particular for researchaloesnsuch as high energy
physics, celestial mechanics, chemistry, biology, ettalso summarizes several prob-
lems and offers several guidelines that we believe areagillicable for the current

state-of-art [49]:

e Better platforms that integrate both symbolic and numegeghbilities;
e More effective methods for solving important scientific amdjineering problems;

¢ Increase availability of cheap, high-performance harévpatforms for symbolic

computations systems;

e Symbolic computation software is typically large, sophkestied and error prone.
General problems identified for other large software systara also applicable to

systems for symbolic computations;

e More modular, reusable and high-quality software neede todveloped.

Some of the CASs evolved over time trying to overcome afordimesad problems but
even if they were subject to an evolution process most of theme not able to keep
pace with latest technologies in modern hardware and sddtaygstems. Even if Grid
technologies are massively used for conducting researaimaltitude of scientific do-
mains, currently there is little support for using Gridsymolic computation. The lack
of proper analysis and repeated evolution steps has onionsded to software systems
that are hard to maintain, tightly coupled and with littlgoahilities to interoperate with
other similar systems. The lack of modularity and standas#sl during design makes
the evolution process cumbersome and therefore thesersyste difficult to integrate

with modern parallel and distributed architectures.
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Evolution was mostly triggered as a response to the immediaeds of the research
teams that implemented them. One such example is REDUCE [li&hwhas first
developed by Antony C. Hearn for solving problems in highezrgy physics which
currently provides a much wider set of features due to thertetif the international
community that got involved. Some of the CASs were designesbive problems in a
particular area of research and much of the effort was spefufil their main objec-
tives. Relatively little attention has been paid to interapieg between CAS. Even if
latest technologies were used at the time of the implementatost of these technolo-
gies became obsolete. One of the capabilities considerectitioal in the early stages
of implementation for most of the small CASs and with greataomgnce for modern

systems is the support for interconnectivity with extesatware components.

Most of the competitive advantages that special purpose @A&sover general purpose
CASs rely on custom implementations of algorithms for a paldr area of research
that often use custom data models for representing data atidematical formulae.
Two popular special purpose CASs are GAP [3] and Kant [21]. e&drpurpose CASs
include Maple [10] and MuPad [13]. The number of CASs is quatgé and a more
in-depth analysis of these systems is provided in [107]. Asrssequence, interconnec-
tivity among CASs can only be achieved if conversion comptntrat would translate
data from/to their internal representation model to othedets understood by the com-
municating party are provided. Such components, knowrhessebook [184], provide

mappings between different data encoding models.

Implementation of specific add-ons and components forqdati CASs may be proven
to be a difficult task. In order to implement OpenMath [184tadebooks that translate
mathematical objects encoded using internal formats t@jhenMath format or vice-
versa, low-level details regarding systems’ implemeatatnay be required. The lack
of well documented formal descriptions of the internal @&estiure of the system [52]
makes this process difficult or even not feasible. Architeadtstyles may be used to pro-
vide a high level description of components and the way thésract. Any additional

insight allows easier and more reliable evolution procdsisavkeeping the resulted soft-
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ware consistent with its intended purpose and initial aggions.

One of the most simple ways to allow system evolution is tamdete the presentation
layer of the application from the layer providing the actiwadctionality. Thus the two

separated components can independently evolve to resgtied to users’ requirements.
Such components may be even hosted on different compukenscltents on users’

machines and complex processing components on servers. approach could take
out the problem of installing complex software componemtsausers machines’ since
the thin client is only composed of the graphical user iatesf components. It also
may improve efficiency since components may be installedealicdted machines with
special hardware configuration that support the computakicequirements in terms of

resources.

Beyond interface-implementation decoupling even sepayationolithic components
into several sub-components based on their intended amadity may be beneficial.
Independent components of a system can be deployed on t&epaahines that are
interconnected by a communication network. Dolan et al] {is@s this model to imple-
ment tools for partial differential equations that couldrineked remotely using TCP/IP
socket calls. This deployment model eliminates the needstall complicated and hard

to configure software packages on users’ client machine.

Distributed architectures for symbolic computations dbalways provide a computa-
tional gain. Algorithms that require significant commurica among the components
involved in the computations are not good candidates fdribiged environments. Sig-
nificant communication has a negative impact on the ovefadiency of the compu-
tations since communication latency dominates the comiput costs. Modifying
existing algorithms for symbolic computations in order fficeently use parallel and
distributed infrastructures is not easy to achieve. Unptaldle data dependencies and

data access patterns represent the main obstacles inrgfpeiallelization.

The next step in the evolution of symbolic computations sdapt existing algorithms to

be used in large scale distributed environments. Symbolieputation systems should
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be able to use the tremendous computation power that todsgmnsg can offer. They
should also be able to make effective use of existing caifiabiprovided by the vast
variety of existing CASs. Creating a computational infrastinee that is able to combine
existing systems with latest technologies in distributgstesns is not a trivial task. To
fulfil this goal efforts and expertise of computer algebreadepers, symbolic computing

scientists and software engineers must be conjugated.

Several important research projects were conducted imtgears to investigate various
aspects of symbolic computations that have a direct retevéor distributed symbolic
computations. Intensive research was conducted in theesfrank of the "Mathematics
on the Net’ (MONET) [32] research project. Its declared geas to develop a proof of
concept system and related semantic Web features for galwathematical problems.
Its main focus was to develop means to effectively describthematical services and
problems and to create resource brokers that would matdiigms to solve onto ex-
isting services. Part of the ideas of MONET were shared withttzer research project,
MathBroker [57] that had as a goal the development of an itrfregire of mathematical

services on top of existing Web standards.

'Grid Enabled Numerical and Symbolic Services’ (GENSS)3[l®as also a project to
follow the ideas formulated in MONET for discovering and ofahaking of mathemati-
cal services. In the framework of the project they have agad mathematical services
and indexing portals that could be used to discover symisdiwices. Through the
‘Internet Accessible Mathematical Computation’ (IAMC) [12%0ject an architecture
to support distributed mathematical computations wasgee@. Considering CASs as
computational engine and Java technologies for develapetgork enabled wrappers,
the JavaMath [170] API provides a recipe that would enableweldper to turn a CAS
with no network communication capabilities into an engiapable to solve requests

sent using RMI and XML-RPC technologies.

'Symbolic Computation Infrastructure in Europe’(SCIEnce®] is the latest research

project aiming to develop a symbolic computational infrasture based on the latest
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developments in distributed computing technologies antiqodarly Grid computing.

The aim of the SCIEnce [19] research project was to bring tegeghe most important
actors in the symbolic computational field and to find the naggiropriate solutions
to develop a viable computational infrastructure tailoredhe needs of the symbolic

computations field.

Apart from the research developments resulted from theept®mentioned above, ini-
tiatives to develop distributed environments for symbalienputing were also led by
specific CAS system developer or 'ad-hoc’ research teamsoriaupt CAS vendors or
even third party development teams have implemented spéndis and packages such
as MathLink [193] and MathGridLink [178] for Mathematica4R Grid Computing
Toolbox [6] and Maple2G [153, 151] for Maple just to name a.faWhile their solu-
tions may be applicable for specific cases they are not gemeoagh to accommodate
the variety of existing CASs, the fast changing distributachhologies. The capabili-
ties they provide are limited with respect to support foradieéng complex workflows
that should be run on distributed infrastructures, resuaranagement and collaborative

capabilities.

2.2 Architectural Styles and Quality Attributes

The successful development of complex systems cannot levadhwithout a thorough

investigation of the requirements that the system shouldtraed the available tools,
technologies and implementation models that can be useghpmst those requirements.
It is also important to have a good understanding of the adgas that particular archi-
tectural styles provide and for this reason we make a quiekwisw of the fundamental

architectural styles that we use as foundations. Duringdés@gn phase, quality at-
tributes mentioned further in this section are used to mtgivand support the decision

to use a particular architectural style.

As defined by Garlan and Shaw [102], a software architectpeesents a collection of
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computational components that interact through conngctArmore recent definition
states thatThe software architecture of a program or computing systerthe struc-
ture or structures of the system, which comprise softwareezi&snthe externally visible
properties of those elements, and the relationships amoem'{46]. In software engi-
neering, an architectural styldefines a family of such systems in terms of a pattern of

structural organization.[102]

The overall structure of a software system and its companiegxs to be driven by effi-
ciency characteristics that ensure that initial requinets@re fulfilled. One of the first
assessments on quality attributes and their role for softagstems was done by McCall

et al [132]. Of particular importance for research relatgfthgare systems aienplemen-
tation attributesandruntime attributesdecause they consider aspects closely related to
the development and execution of such systeBusiness attributesuch as implemen-
tation cost and delivery time related attributes are of tesxern and therefore they will

not be considered in our analysis.

Some of the most importamhplementation attributeare [154]:

¢ Interoperability - the ability of a software component toureversally accessible
to other components for the purpose of exchanging data. Ashak see later in
this chapter, this ability is particularly important fortaslishing an infrastructure

for symbolic computations;

e Maintainability and extensibility - the ease of altering #xisting software imple-

mentation in order to correct or to extend the system’s fonelity;

e Reusability - the effort to adapt existing components so itey be re-used in

more than one context;
e Testability - the ability to test and verify the correctne$she implementation;

e Portability - the ability of the implemented software to beptbyed and used in

conjuction with different hardware profiles and softwariastructures;
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e Scalability - the ability of the system to handle increasednber of requests.
Usually scalability is attained by replicating subcompuaisehat interoperate for

solving the incoming requests;

e Flexibility - measures the effort required to adapt theeystor use case scenarios

for which the system was not originally designed;

The most relevant run-time attributes of the software systare:

Efficiency - the volume of resources required by a softwargesy to fulfil its

function

¢ Availability - the property of the system to be up and runnioglong periods of

time

e Security - the system property to enforce the required gga@quirements such
as proper authentication and authorized access, theyatulihandle malicious

attacks, etc . ..
e Performance - the ability of the system to respond effelstiteehigh loads

e Usability - the degree to which the systems respond to usgpectations and to

their level of expertise

¢ Reliability - the level of confidence based on the frequenoyxaicution problems

that arise during run-time

e Maintainability - the level of difficulty to which a runningystem may be modified,

reconfigured or extended

Most large software packages combine pure architectuylssto achieve the desired
functional characteristics. Different levels of abstracbf a software system may reveal
different architectural styles. Most of modern architealstyles evolved from several

fundamental architectural stylegipes and filtersdata abstraction and object oriented
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organization event-based implicit invocatiotayered systemslata repositoriesmain
program - subroutine styld® name only the most important ones. A more extended list
of architectural styles and a more thorough description beafound in [102, 163]. In
the following we present a short overview of the most impartanes that inspired our

design.

The pipe and filteris a software architectural style well known especiallyitsruse in
Unix systems. Computational components of the architectaked filters, transform
data received as input and feed the resulting data to theibulpternal state of filter
components is not shared with other components and theréferresult of their pro-
cessing is only based on the input values they receive aidrternal implementation.
To achieve interoperability filter components share theesarodel of data representa-
tion. In addition, reusability of components, maintaidigpat both design and run-time

and the possibility to link components in parallel are atiired by this design.

Sharing a common data representation may induce poor efficié significant pro-
cessing has to be applied to data to transform it in order ¢oramodate the one used
internally by the component. Because filters are tied to a commodel for represent-
ing data, parsing from the common format to the one requimeztnally and from the

internal format to the common one may reduce the efficiendh@tystem.

The precursors of thBata abstraction and Object Oriented Organizatiarchitectural

styles wereMain-Program-SubroutinendRemote Procedure CalRPC). The latter is
an implementation variant of the former, tailored for netvenvironments. The main
idea that drives these styles is to partition the implentemtdased on the functionality
they provide. As a result of this separation, maintaingbénd reusability of software
components is improved. The RPC model was developed to abois pf the software

system to be executed on separate processors or machines.

Data Abstraction and Object Oriented Organizatioave several advantages in addition
to the ones inherited from their predecessors. The compeoéthe system are objects

with a well described interface that encapsulate intereghits, provide internal data
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integrity and preserve invariants. The interface may besdatbed separately from the
implementation, allowing decoupling of the two in favourméintainability and exten-
sibility of the system. Interoperability is also easier thi@ve because the client has a
clear representation of object’s interface. The main deakiof this approach is that the
potential client must know in advance the identity of thesals it wants to access. Most
of the systems implementing tHgata Abstractionarchitectural style offer discovery

mechanism that allow clients to find the object they require.

TheEvent-Based with Implicit Invocatiarchitectural style defines two types of compo-
nents: processing components and message managers. Bxgmgion, the processing
components produce messages that notify interested thrtg pomponents that a cer-
tain state was reached in the system. Interested processmgonents may register to
be notified when events of a certain type of topic are reporiEue role of the mes-
sage managers is to receive produced messages and to nteifysted subscribers that
a certain event has occurred. These architectures offeadimntage of scalability and
flexibility since new components versions and even new corapts can be easily added

to the system.

The trade-off of the model described above is the lack ofrobover the order in which
subroutines of the system are executed in the case of catgdiexecution scenarios.
More than one subscriber may exist for the same event anddee im which they are
notified is arbitrary. Therefore it is not possible to foresiee order in which processing
steps are executed system wide after the occurrence of auh. ed@other important
topic to consider is related to data exchange capabilifilésee messages have the sole
purpose of notifying that a certain event has occurred. llisua these circumstances
additional data that describe the state of the system maydpgred, too large to be
sent together with the notification messages. There aresaisgions when components
waiting for the same events require different sets of datepresentations of it. The
solution is to add mechanisms through which componentsegaitm their own the data
they require. We also have to note that interested compsmneust be alive and listening

at the moment when the event occurs, otherwise they are teotatespond effectively
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to the notified event.

Layered Systemrgpresent an architectural style in which components aganised in

layers. Each layer groups components that address proloeansertain type so that a
certain layer offers functionality to the layer of compotsesituated one level higher in
the architecture and use functionality offered by the layfecomponents below. This
type of organization favours separation of concerns foh éeger of components, exten-
sibility and maintainability because enhancements maybe dt a certain level without
affecting components at other levels and reusability of ponents. This model allows
better communication between components and offers sufgranultiple message ex-

changes when a stronger coupling is needed between contponen

The architectural styles described above represent onipal part of the ones that
exist today. They are the foundation of modern architettiydes and offer important
guidelines for further implementations. Architecturafles that are able to respond
better to specialized architectures and functional reguénts were created. A special

category of such architectural styles is the one tailoredifstributed computing.

2.3 Distributed Computing Environments

Distributed computing provides a viable solution for solyiproblems that do not fit
in the memory of a single computer or are suitable to be erelcusing computational
components distributed over a Wide Area Network, possiblgarallel. Collaborative
environments even have a social dimension because théefi@oexchange of ideas and
knowledge. Within this section we provide an overview of than architectural styles
and related technologies used for building distributediegtions except Web Services
which are discussed in Section 2.4 and Grids which are dscli; Section 2.5. The
disadvantages that the architectural styles presentédsiadction have makes them less

appropriate for building an infrastructure for symboliaygautation.
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According to Enslow [87], simple distribution of procesgialements over a network
must not necessarily be considered a distributed systeffullydeverage the advantages
that distributed systems can provide, he emphasizes thayaltstributed system has to

comply with the following rules:

e Processing elements to handle a task should be dynamitelsea; there should
be more than one processing component capable to procedsia task and the

system must be able to dynamically select the most apptepria

e The computational elements must be autonomous and pHysigsttibuted over a
network; autonomy guarantees a processing unit the freeo@ahimit or to refuse

a request based on internal rationale;

e The system should have a high-level control framework theltes possible inte-

gration of distributed components into a whole;

e Services that are offered by the autonomous componentsdsheudentified us-
ing a naming scheme. A client must use the naming scheme tif\speservice
request while the control framework is responsible for niagphe request to the
processing element. An important difference between néte@mputing and dis-
tributed computing is that the latter uses machine namésr#han IP addresses

to specify the target machine that should handle a request;

e The components of the system should be able to collaboratelte problems

without a specific request coming from the control framewevlel;

The above definition is extremely restrictive and rules owide variety of distributed
computing models. Autonomous behaviour is neverthelesgybfimportance if compu-
tational resources that are integrated in the distribuystesn are governed by separate
organizations. Independent resource providers may stifitwo be able to control the
way their computational resources are used. A definitiondbzers in a more loose way

the notion of distributed systems is given by Tanenbaum]f175distributed systems is
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a collection of independent computers that appears to teesus the system as a single
computer” As the author notes, two aspects are of great importance wiharacter-

ising a distributed system. The first one is that the systecomposed of autonomous
entities. The second aspect that the compound nature ofskens has to be transparent

for the users of the system.

The architectural styles described in the previous sulzseolate software architec-
tural characteristics from structural point of view. An iorfant aspect that has to be
considered in the context of distributed computing is themewnication model used
between computation components of the architecture. tams of old architectural

styles and new styles were created to respond to the newtestthval constraints and

requirements.

The architectural styles developed for distributed emnnents use as foundation the
client-serverstyle. The plain client-server style is based on requesieese interactions
that occur between the client and the server. The interfadkeoserver components
represent single points of entry which makes the server coemts easier to control
and more secure. Software applications needed at the Eaitmay be less complex
and therefore easier to install and maintain. In order taetesthe client side application
fewer resources are required since most of the computhidioat is now externalized
to the server component. Data is usually stored and mangulla a centralized way
at server level, which eliminates the need for replica mansnt and allows easier

management of concurrent access.

The simplicity of the client-server model comes with thecprof poor scalability. The
maximum number of clients that the server can handle at time $eme may be rapidly
reached resulting in high response time or even denial oficger Scalability of the
system is also poor if the internal components are tightlypted. Modern distributed
systems rely on client-server model to connect their coraptsbut the separation of
function within the architecture is no longer evident. Sasgstems may use complex

topologies such as centralised, ring, hierarchical, deaksed which are based on the
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pure client-server architectural style. Hierarchical ecentralised topologies make no
clear separation between clients and servers. An examfe igeer-to-peer model in

which components may act both as clients and servers.

Main-program-subroutine architectural style is impleteérin distributed environments
using the client-server style. The resulting style, Remote&dure Call (RPC), allows
a main routine to call a subroutine that is hosted in a diffeegldress space, usually a
processing element hosted on a different machine. This hiethe precursor of several
distributed architectural models, the most popular beirdp\ervices. More details on

pure implementations of RPC can be found in [176].

Due to its advantages, object oriented programming (OOB)inently the most used
programming model. Similar to the RPC model, an applicatiay ose objects that are
not necessarily resident on a single machine. The actuatation of the methods of a
remote object is transparent to the user and the commuorclaiic is provided by the

distributed framework onto which the application was builthe most popular models
that provide support for distributed objects are CORBA [188] &MI [9].

Common Object Request Broker Architecture (CORBA) is an initeagupported by
Object Management Group (OMG), a not-for-profit computeustry consortium. One
of the main purposes of CORBA was to create the premisses fraperability be-
tween applications developed in different languages. COR8B#suhe IDL language
to describe the public interface of the objects which makes tinterface platform in-
dependent. The Object Request Broker (ORB) has the respotysibifind the actual
object that must be invoked, to activate it if necessary,asspvalues of the incoming
parameters and to return to the client the result of the céatipn. Several languages
have built in support for CORBA, such as C, C++, Java, Smalltacksaneral vendors
have implemented ORBs. Unfortunately, the main goal of irgerability was not fully

achieved because of lack of interoperability between varfoORB implementations.

The Remote Method Invocation (RMI) has many similarities Vi@ @RBA but it does

not offer support for interoperability with componentsttla@e implemented in other

29



Chapter 2. The Impact of Distributed Architectures on Symbolic Compatatio

Service Registry

Client

Service Provider

Figure 2.1: Service Advertising and Discovery

programming languages. Objects having predefined stei@nd advertised through
the special service RMI Registry may be invoked remotely tghoproxies. Even if

the actual implementation is specific, RMI uses the samerpatbeenable remote in-
vocation. An object design to be remotely invoked is regestevith the RMI Registry

service. A client queries the RMI Registry and obtains a logailesentation of the object
implemented remotely. Any method invocation on the locptesentative is translated
through the network to the remote object which executesehjaast and provides the

result of the computation.

The general implementation pattern is therefore similabéih RMI and CORBA and it
is also used in the case of Web and Grid Services. A clienwthats to invoke a proce-
dure/method implemented on a remote machine obtains adagdjuerying an index
service as described by Fig. 2.1. Unfortunately all impletagons described above

provide limited discovery mechanisms that enable a clierhibose the best service to
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invoke based on the service description. Web Services warelaped to offer similar
support while improving interoperability and discoverypahilities. We address Web

Services and their advantages in more detail in the follgvgiection.

Multi-processor computers and clusters are especialligded as multi-threaded par-
allel architectures. Although their components are noiggaghically distributed they
share most of the characteristics of a distributed systeveryEprocessor may have its
own memory space and computational elements may be codritboteigh a Local Area
Network (LAN). The small communication latency of such gyss makes them suitable
to solve problems that require intense inter-process datiaamge. There are two base
models of communication that may be used efficiently for LAsé&d distributed sys-

tems: distributed shared memory and message passing.

The distributed shared memory model provides an extendr@sslspace through which
processors may access a shared memory pool. This pool is@dtay integrating the
local memory of the participating computing elements. Txierded address space is
transparent for the user and the underlying system mediditesad/write operations.
Message passing may be use in combination with a distritaitaced memory environ-
ment or stand-alone systems that do not share local memaocgsjif message passing
is used, inter-process communication is achieved througésage exchange. Specific

programming models for this type of distributed system ar&P104] and MPI [133].

Both PVM and MPI are libraries that offer the fundamental $ablat allow a heteroge-
neous collection of machines to be used as single distdbpdeallel processor. They
offer standard APIs and implemented subroutines thatifaiglinter-process communi-
cation. The main process of an application implementecguBwiM or MPI, also called
master, controls the initial set-up of the execution envinent, uses explicit calls to de-
termine parallel execution and controls all message exgshaalls. The slave processes
explicitly requested to be created by the master procegsimnitialization phase have
the purpose to receive and solve computations receivedtiiermaster. As opposed to

the client-server architectural style where the client seder are autonomous, the life-
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time and the behaviour of the slave processes is entirelyatad by the master. Due to
these considerations MPI and PVM are less suited for buglthternet scale distributed

computational environments.

Maximization of computational resource usage, espectdlfyrocessing time is an im-
portant area of research for computational systems desdlaping clusters and multi
processor machines. Software tools such as Condor [74] and£B®anage such
resources using scheduling and load balancing techniguessure optimal utilization
of computational resources. The users do not have to deterthemselves the most
appropriate machines where their tasks should be execliteg.submit the tasks to the
task manager which is responsible for planning tasks’ ei@ton the most appropriate
machines. Using resource managers improves resourceatioh but it also ensures

better response of the system to user needs and eliminatsetywation.

2.4 Service Oriented Architectures and Web Services

This section briefly introduces Web Services and relatelanelogies. One of the most
important characteristic of the Web Services world is treeafsXML for encoding data,

description of data types and services interfaces. The mmirtant concepts related
to XML are presented in Subsection 2.4.1. In Subsectior? 2w. provide an overview
of the main advantages that Web Services provide. We algoagshort introduction on
fundamental components and concepts that a Web Servicengosed of. Web Services
and Grid Services play an important role in our architectu@AS’s capabilities are
exposed through Web and Grid Services so they can be acdegsethote clients as
described in Chapter 3. As shown in Chapter 4 once exposed agpV@&id Services,

automated tools for composing their provided functiogaddn be further used.
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2.4.1 Data Encoding Using XML languages

XML (Extensible Markup Language) is a model for describirgedin a structured way.
Documents containing data structured using XML can be easitsed by automated
document processors while its content is still human reladabd therefore it is not
solely intended for automated processing. Its simple giraa@and the set of rules which
govern valid XML documents make XML languages suitable fachine-to-machine

communication.

Due to its general acceptance as a viable solution for desgrstructured data a large
number of technologies and software tools were developkd.nfost important related

technologies related to XML are:

DTD is a set of declaration that describe the accepted struofumeXML document.
The DTD imposes a precise description of valid document&ims of nodes,
attributes, references and their valid position in the doeot. Based on a DTD it

can be easily determined if a certain document has a degitedise or not;

XML Schema also referred to as XSD is a newer and enhanced validation XL
guage for XML documents. XSD defines a set of basic data typeshanisms to
define complex data types based on the basic data type anteaveres that allow

strict control over length and multiplicity of componenfgtoe XML document;

CSS and XSL-FO are two XML related technologies that allow simple rendgraf
XML documents to formats that are suitable for visual présgon. These tech-

nologies are especially useful for presenting data in Welwbers;

XQuery is an XML language that was created to enable users to extauot XML
documents the data that meets certain criteria. This laygisaversatile enough
to locate required information based on the position of thdencontaining the

information and filters that may be applied to the retrievatad
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XSLT is a powerful language that may be used by specialised toataisform XML
documents having a certain structure into XML documenth witlifferent struc-

ture based on the structure and information contained isdhiece document;

The XML related technologies are well established and stsiaindards that offer an im-
portant support for managing XML documents. Automaticwafe tools implementing
these technologies offer efficient means to handle XML damnish The software tools
implement functionality to handle standard features of Xblit they also implement
best practices for encoding data using XML. Best practicasienthat tools related to

XML processing can be used.

The most common such tools for handling XML documents areiapeed XML parsers.
Parsers are able to determine if a XML document is well formedalidate documents
against DTDs and XSD documents and to construct in memomgseptations of the
data contained in the XML documents. The two main parsingregies for XML doc-
uments are SAX and DOM. Advantages and disadvantages owthedrsing models
are generally related to the size, the structure and theoparfor which they are used.
SAX parsers are recommended for large documents or for deatanin which XML
elements are nested on a high number of levels because theyioanize the amount

of data kept in memory and therefore are are more memoryesgifici

In-memory structures created by DOM parsers are well switezh all information con-
tained by the document must be manipulated at the same tanginB XML documents
is a costly operation in general and choosing the incorraxdipg technique can impact
even more in a negative way the performance of an applicat@anerally the benefits
provided by using XML in computer-to-computer interactiontweigh the additional

computational cost of boxing/unboxing data.
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2.4.2 The World of Web Services

The notion ofsoftware serviceefers to a set of software functionalities that are avail-
able for clients if they adhere to imposed constraints acdsgpolicies of the provided
service. The main design goals of Service Oriented Archites (SOA) is reusability.
Autonomous software agents implement functionality whiglprovided to clients as
services through well defined interfaces. Service’s iat$ provide syntactic informa-
tion regarding how correct calls should be formulated. Dethat describe the semantic
meaning of the expected arguments or obtained results anganoof services’ defini-
tion. Details that describe the quality of service that thriees should provide are also

not part of the standard.

Building applications by composing existing services affeaumerous advantages. The
resulting applications are easier to maintain and testemhéw functionality can be

easily added. The application becomes scalable since assilple to create more than
one service providing the same functionality. A key requieat for the success of the
model is interoperability. The communication mechanigntsffaces and data encoding

models must be consistent for all services so they can betiwtéy/ reused.

The advantages offered by XML and related technologiesmewend XML as the so-
lution for computer-to-computer message communicatiahtherefore it represents the
foundation of the most popular SOA standard. The SOAP pobtepresents the foun-
dation of Web services. The architectural style that lidgie SOAP is the client-server
style. Autonomous services may be invoked using the symciu®communication pat-
tern. SOAP is similar to RPC because Web services providdituradity implemented
as operations, in the same way that functions achieve it imveattional programming

languages.

SOAP defines a communication standard for computation caemgs that are able to
interact using a Wide Area Network (WAN) and therefore islwalted to be used over

the Internet. XML based languages specific to SOAP are usetkfine a message
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container, referred as a SOAP envelope, that encapsuleesctual data exchanged
between clients and the Web Services. The URL naming schemsets to identify
actual services but the interface specification is decaufstam the actual identity of
the service that provides the implementation. A client catednine which service to

invoke dynamically at the moment when the actual invocasareeded.

SOAP does not require that a certain transport protocol ésl.usThe most common
protocol used for exchange SOAP messages over Interneti$®thP protocol but other
protocols can also be used. For example, implementati@side the SMTP protocol
also exist but they are less used because HTTP is far mordgosdpuexchanging data
over Internet. Most SOAP implementations available fromotes vendors are HTTP
based. Amongst the advantages of HTTP is that the assogiatelO is one of the few
ports that are open for communications even when the mdsicte® security policies

are enforced by communication firewalls.

SOAP envelopes are composed of two sections. The headee &§MAP message is
an optional part of the envelope. It may contain several @éehtbcks in which meta
information regarding the envelope and further processisguctions may be put. The
message body, which is mandatory, may also contain sevedsltidocks. They contain

relevant data that must be sent to the Web Service.

As mentioned above, Web Services are very similar to the RP@:hio the sense that
the message the client sends to the Web Service containtedetdormation about a

certain function/method that should be executed and thefligarameters that must be
supplied to the invoked function/method. The interfacenefWeb Service is decoupled
from the implementation and therefore the actual impleat@n of the service can be

done using a large variety of programming languages.

The most common implementations use languages such as C, Cyavar The sole
requirement is that correct formulated SOAP envelopes eméte the corresponding
communication port using the communication protocol suggabby the service. The

SOAP message must be a well formed XML document and theraforelata that must
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be transmitted enclosed in the body of the message must bdeshaccordingly. Special
characters that have a specific signification for the XML aymust be replaced with

their respective encodings.

As the definition of SOA suggests, services must be explicdaclaring the interface
of the service, at least at syntactic level. It must impletrmee@chanisms that describe in
detail the signature of the operations that may be calledtel;n The SOAP protocol

specifies that each operation is defined in terms of the inm#sage it accepts from
the client, the output message that the service returns tioattie client as a result of
the performed service and a list of possible faults that émeice returns if errors occur

during execution.

Description of Web Services interfaces is done using the WSRindard language
which is also a XML language. WSDL documents describe theasyict structure of
the Web Service’s interface. Details regarding the sigeatd the operations are all
described using the XSD elements. The construction mestmasnihat XSD provides
allow arbitrary complex data types to be described and thex¢hey do not restrain the
generality of the interfaces. The XSD technology is not #geto any programming

language, therefore using XSD favours interoperability.

Parameters having a complex data type, i.e. formed by cantpivasic data types,
may be transmitted to the server encoded as valid XML if therface requires so.
Extremely complex data types may not be well suited for desg parameter types
that an operation expects. Alternative solutions to thabfam are either to use XML
ANY element to allow any XML content to be passed through or toplam string
codification of characters. To apply the second solutiorofteration interface must be
modified to accept a plain string as an input parameter idstéa complex data type.
This approach is a deviation from the standard becausect$dhe client and the server

to agree in advance about the structure of a message.

We exemplify below plain string encoding for a compound dgfe that represents a

mathematical formula expressed as an OpenMath object. Negls regarding Open-
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Math encoding are given in Subsection 2.6.1. A typical repngation in XML of the

mathematical formula 1 + 1;

<OMOBJ version="2.0">
<OVA>
<OMS cd="arithl" nane="plus"/>
<OM >1</ OM >
<OM >1</ OM >
</ OVA>
</ OMOBJ >

If the desired parameter’s structure for an input messagansar to the one depicted
above, the WSDL document describing the service’s interfaast declare explicitly
the structure of the complex type using XSD declarations: dtople data types the
XSD declaration is straightforward while for more complextal types it can became
cumbersome. An immediate advantage of using XSD is thatiggparguments can be
checked at server side before any additional handling afmaters is done and an error

can be immediately thrown to the client.

The flattened XML representation of the complex type presethie original format but
characters with special meaning in XML are replaced withrtrespective encodings.

The OpenMath object described above is therefore transfoton

&l t; OMOBJ version="2.0"&gt;
& t; OVA&gt ;
& t; OVE cd="arithl" nanme="plus"/&gt;
& t; OM &gt ; 1&lt;/ OM &gt ;
&t; OM &gt ; 1& t;/ OM &gt ;
&l t;/ OVA&gt ;
&l t;/ OMOBJ&gt ;
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where all '<’ and '>’ characters were replaced with there respective encodiig ‘and
"&gt;”. This approach has a negative impact on efficiencysuese the messages have
to be encoded/decoded to/from XML format. Validation stéyzd are normally run at
the Web Service’s interface level have now to be appliedieitiyl by the application

receiving the message.

Based on service’s URL any client can obtain the WSDL documestdrdeng the in-

terface. Based on the information supplied in the WSDL, thentIcan automatically
create suitable messages for interacting with the serviberefore any client capable
of generating the correct SOAP messages is able to intextgpasith the service. On
the other hand, knowing the structure of the interface do¢ensure that the provided
arguments and the functionality of the service are the orpsated by the client. The
WSDL does not provide information about the functionalitglahe QoS that a certain
service implements. Therefore, the client may know how tomidate a call but it does
not know the significance of input parameters and the measfitige results it obtains.
Furthermore, composing multiple services is not possibthout additional semantic

descriptions of the services.

2.5 Scientific Computing Using Grids

The term ofGrid computinghas emerged in the distributed computing world at the
mid of 1990’s. Its main goal is to create a distributed amgtiire in which clients use
computation resources offered by providers in a way thataissparent for the client.
The process of computational power acquisition should beiged by a intermediary
software layer that is able to detect available computatioesources and effectively
combine them. At atomic level computational resources hstracted as generic ele-
ments called resources. Each resource has a set of atsrdnutiea set of functionalities
they provide, which the Grid software layer must managendgryo keep a perfect bal-

ance between producers and consumers [92]. This model éxiefip well suited for
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managing collections of computational resources ownedifigreint organizations that

agree to share their resources for supporting a common goal.

Virtual Organizations (VO) [90] represent dynamic comnti@si of producers and con-
sumers of computational resources that share and use cesduised on a predefined
set of rules. The VOs are usually spread over multiple adstrative domains and re-
unite computing power offered by computing infrastructomaners from simple personal
computer to large campus domains and super computerscipantis willing to share
computational resources are usually part of academic as@reh institutions. Compa-
nies and governmental institutions are more reticent ablating their computational
resources due to security concerns regarding sensitieeathat the lack of cost models

that can be easily enforced by current Grid technologies.

The main middleware products used currently to build Gridastructures are Globus
[91] and gLite [5]. Their role is to provide a software layer p of hardware compo-
nents that implements a core set of management capabilkgea result, the hardware
component layer, also called tferic layer, can be managed in a consistent way across
the whole VO. The middleware also provides security meamsj job management fea-
tures, support for data transfer through standard praoscaad infrastructure monitoring
capabilities. The application layer which sits on top of Gd middleware layer, can
immediately use the provided functionality without havingeimplement new ones. As

a result, the Grid middleware represents the foundatiomteroperability and security

over the Grid.

Apart from implementation details and capabilities ofterene of the main differences
between gLite and Globus is the set of technologies usedferaonnection of Grid

nodes. Services provided by gLite are implemented as da@mnoaesses that listen on
various TCP/IP ports. This means that for interoperabikgsons, nodes of the Grid
built using gLite have to share the same configuration pated make sure that the
appropriate communication ports are open for communieatidhis is not always easy

to achieve when resources are spread over multiple adnaitivet domains with different

40



Chapter 2. The Impact of Distributed Architectures on Symbolic Compatatio

/—Application Layer ~
Applications
\ J
/—Middleware Layer ~
Security Layer
Mo[r;.ltorlng i Job Management Data Handling
iscovery . .
. Services Services
Services
\ J
Fabric Layer
[ anery )
Personal = ] Servéré
_ Computers Workstations )

Figure 2.2: The Role of Grid Middleware
firewall configuration policies.

As opposed to gLite, Globus ToolKit 4 uses as communicatiteriaces modified Web
Services and therefore all services may be available thrawgingle interface advertised
on the standard HTTP port 80. Management of provided sesand their configuration
are easier to achieve. Security risks are also easier to hagaed because most of the
services may be invoked through a single port which is byweépen even in the most
restrictive network firewall configurations. New servicas te easily created and adver-
tises in the same way standard Globus services are. Cliegteasdy discover services
and syntactic information describing services’ intertabg retrieving their WSDL de-
scription document. There is also another important difiee between Globus Toolkit
and gLite. While gLite is oriented towards handling of tadkattare submitted by call-
ing standard services, Globus allows service implementedefine new services and

advertise them in a seamless way.
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The model proposed by gLite is well suited for solving tagk&n compound ones, that
rely on calling command line utilities installed on the cartgdional node that handles
the request. This strategy cannot be easily applied in tee ohsymbolic computa-

tions packages that are usually designed as interactieepieters. Highly dynamic

services configurations are also better dealt with by Glathish provides better dis-

covery mechanisms. Due to its capabilities, Globus is atiyeonsidered the de-facto
standard middleware for Grid computing and for the rest & thesis the ternGrid

servicewill refer to the standard imposed by Globus Toolkit 4.

2.5.1 WSRF Compliant Grids

There is a clear distinction between Web services and Griicss and the role they play
as distributed computing technologies. Stockinger [1t2¢s that both Web and Grid
services were designed for wide area distributed compufiiypically, these services
facilitate access to computation power and storage ressimcadvertising functionality
using the same mechanisms. The most important differeretesebn the two do not lie

in the the way they are advertised, discovered and addresséd their purpose.

The main purpose of a Web Service is to permit communicati@r the network be-
tween clients and service providers using standards theragtee communication in-
teroperability. The goals of Grid Services are beyond o$¢hof Web services because
they aim to offer mechanisms that allow interconnectionaeyically named Grid re-
sources in one computational platform. For Grids, any cdatmnal resource, from
processing units to printers and sensors may be abstraased lon their functionality
and attributes. Grid services provide generic mechanisnadlaw integration of Grid

resources in wide distributed computing architectures.

The current standard for describing Grid services hasitsdations in the Web Services
Resource Framework (WSRF) [143]. The WSRF standard describesfarsechanisms

for easy integration and management of resources in distigbenvironments that are
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built based on the Web services standard. The first inigativaugment Web services
was proposed by the Open Grid Services Architecture (OGS3)ut the initiative was
only an intermediary step towards the WSRF compliant GridiSesv With WSRF, Grid
services have integrated the best features from both Weiresrand OGSA services
worlds: on one hand the interoperability and on the othedreamechanism to allow
persistence of state at the service level. As noted in [1&Zkrid Service is in fact
an augmented Web Service that implements mechanisms famg&tate information

persistently beyond the lifetime of a single request rathan transiently.

The newer REST [88] standard for Web Services requires trequesst must specify all
the information needed by the server to handle the requestftire no stateful infor-
mation should be kept at server level. The benefits of usirsgaibproach [88] do not
apply for Grid architectures due to their different aim. Bords, statefulness is an im-
portant feature that prevents unnecessary network conuaiuom and data sharing even
between multiple clients. The WS-Resource standard, part d2WYS§pecifies a core set
of XML languages to be used for describing resources and phneperties and defines a
set of standard management protocols that should be usedjimction with resources.
Each Grid service has to describe resources that are maitibéevao external users as
XML documents and each resource has to be uniquely idenéfidb access a resource
a client obtains the identifier of the resource from a fact@ice and in subsequent

calls uses the identifier to specify the resource to whiclctileshould be applied to.

The extensions that Grid Services define on top of Web Sexrgodeyond the syntactic
level because they enhance the capabilities of Web Semitiesonsistent mechanisms
that services’ clients can rely upon across all Grid ses/icEhe WSRF standard is
therefore a collection of specifications related to the rgangnt of WS-Resources that
are guaranteed to provide the same functionality acro€araliservice providers. These
mechanisms not only add capabilities that could be usefahBWeb Services world but

they modify the architectural model of the applicationd #r& based on Web Services.

The first important change is introduced by #MS-Addressin§l88] andWS-Resource
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[143] specifications. An instance of a regular Web Servicstégelessand it is not

designed to remember prior events. In order to crsttefulservices, state information
which is stored at service level must be managed by the seavid available for future
invocations. Regular Web Services may be designed to implesueh behaviour but
the lack of a standard can only clutter the interface of thé \Bfervice and complicate

the invocation process because the client must send neafdechation explicitly.

The WS-Addressing specification defines a two level invooati@chanism that allows
automatic attachment of a session identifier within the Beatithe message. Therefore
the SOAP message is submitted to a URL that identifies thecg=nand the header
information is used at the service level to identify infotioa regarding the session.
Two invocations sent to the same service will differ in exemubased on the state of

the targeted resource.

Closely related to this mechanism is the specification thetmlees the structure of the
persistent information that is stored as resources. Caalricalled resource, this con-
cept can be used to describe any informational attributélseoéntities that the service

interface offers access to. While simple Web Services expasst of operations that
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an external user may invoke, Grid services are closer to @@ @aradigm. The at-
tributes of an object are mapped to WS-ResourcePropertidgharwhole structure of
the resource is advertised within the WSDL document desgithie Grid Service. The
WS-ResourceProperties specification describes also theamisats that should be im-
plements to allow seamless access to the content of theroeso8tandard operations
for setting and getting the properties of a resource may keopthe default interface of

the Grid service.

A common implementation pattern for Grid Services isfaetory Patternn which two
services are used in tandem. The factory service is a statedegvice that the client calls
at the first invocation. The role of the factory service igtitialize a new resource object
that is kept in memory and to send back to the client an EndtfReference (EPR) that
contains the necessary information to further interadt #ie new created resource. The

EPR contains the URL of the service and an unique identifienefésource.

The resource created and associated with the Grid Servingeisded to outlast a sin-
gle call. As a consequence, the Grid Service must implemfntlanagement fea-
tures that control the lifetime of a WS-Resource and contralhich circumstances the
memory allocated for the resource must be freed up and tleines destroyed. The
WS-ResourcelLifetime [144] describes mechanisms that ak@amntéess management of
resources lyfecicle which may be extremely complex. Theycagated and modified as
a response to user’s actions. Their lifetime spans overiphelliser calls according to
the purpose of the application. Unless kept alive by subsetpalls, the lifetime of a re-
source can expire based on the initial setting specifieceatriation of the resource. For
the resource to be destroyed after the expiration an ekpétito request the destruction

is not required.

The interaction with a service should be standardized ahras@ossible to make sure
that the aim of complete interoperability is achieved. G@#lvices invocation may raise
invocation exception that describe problems that prevkatsuccessful execution. The

WS-BaseFaults [141] specification provides a standard grpastthat may be used by
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the application to inform clients that errors have occumedng the execution of the

service.

The number of Grid Services that are exposed by a Grid nodelencesources that
are instantiated as a result of client calls may be high. Wsagchanisms that allow
grouping multiple services together for easier managerasntspecified by the WS-
ServiceGroup [145] specification. Services can be addedaladed to a group and a
group can be searched within a group based on a search condBiesides describ-
ing the simple mechanisms to manage services the WS-Seraiagp@escribes a set of

guidelines on effective service grouping and management.

The Grid paradigm foresees the creation of complicated ctatipnal infrastructures
based on the resources and their associated servicedpaditig to a Virtual Organi-
zation (VO). The aim of such infrastructures is to provideudable environment for
solving large scale problems. The tasks to be executed e $aige scale problems
may require a long time to complete. Therefore, asynchregalls should be supported
by Grid systems to support non blocking computation flowse WSRF describes such

mechanisms as part of the WS-Notification [142] specification

WS-Notification defines two types of services: notificationdarcers and notification
consumers. Consumers register themselves with one or madag®rs to be notified in
case a specified type of event occurs. Typically, the consuegésters to be notified for
changes that occur in a certain WS-Resource. Any update imtienal state of the re-
source can therefore be advertised to interested consuifessbehaviour is especially

useful with long running tasks, such as the ones that oftearan scientific problems.

One important aspect in distributed architectures is thedlrfer a client to know the
address of the remote service. The address can be known &wyltderf the client can
be expected to discover the services that provide requirectibnality. The standard
discovery mechanism used by plain Web Services relies on IUB®) registries. The
level of cohesion between the Grid Services is bigger thanotie of Web Services

due to the fact that they are part of a certain VO. AnotheriBggmt difference is the
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additional information that is stored in associated resesiwhich can be meaningful
for the discovery process. As a result, the mechanisms obdisy implemented by
UDDI registries were replaced by a set of hierarchindkex servicesThe services are
compliant with the WSRF specification and standard enquirg cah be formulated to

retrieve information.

2.6 Encoding Standards for Mathematical Content

Various systems, tools and frameworks have been developease the process of de-
scribing and solving mathematical problems. CASs are the ingsortant ones but
other tools such as QMath [14] and Sentindo [18] play an irtgmdrrole. Apart from
their core functionality, an important requirement for Isweystems is to offer features
or to support the process of exporting and importing mathigadacontent. Scenarios
in which the user would want to export mathematical contentidter reference or to

enable results dissemination are part of the every day ysattgns.

Mathematical notation was developed over the years andriésents an important char-
acteristic of mathematical formulae. Symbols and notagiements that are specific to
mathematical writings cannot be easily replaced by functiames without negatively
impacting the legibility of the formulae. Unfortunatelyeite special mathematical sym-
bols cannot be stored in text files without converting thena text format. The first
solution to this problem was to replace symbols with stringracter function names but
other solutions are currently considered more efficient\@rdatile. Due to rapid de-
velopment of Word Wide Web related technologies, standdnaisuse XML languages
were preferred to plain character encodings. The main nsagie better parsing sup-
port that is readily available for XML documents and easmegration with Web tech-
nologies such as HTML pages that facilitates displayinghaaiatical formulae in Web

Browsers.

While binary formats may also represent a solution for maehinmachine communi-
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cation, their disadvantage is that they are not human réadAbother disadvantage is
that most of the binary formats are proprietary and only sufgl by specific systems
or platforms. Mathematical formulae described in terms pe@Math objects can be

stored both in XML and binary format, both standardized.

2.6.1 OpenMath

One of the most used standards to describe mathematicalerns OpenMath [184].

Its main aim is to provide the necessary mechanisms to teserathematical formulae
and encapsulate in its description semantic meaning of thematical terms. The
semantic information ensures that a document containindpenaatical formulae can
be correctly evaluated and understood independent of ttieeasoftware package that

produced it.

It is often the case that a mathematical document producddome software package
has to be loaded and evaluated by another package, eithez ehine type or different
one. For mathematical formulae, semantic mechanisms riast different software
packages to determine the meaning of the content they pRosanstance, in the for-
mula that expresses the area of a cirtle: PI « R? the meaning of various terms of the
formula should be self explanatory for a trained human eysoffware system though
cannot assume the meaning of the particular terms. It isf&ignt to have additional in-
formation to allow it to determine that “R” represents a valgawhile “PI” is a substitute

for the well known mathematical constant

The description model that OpenMath proposes is not neglgstied to a certain en-
coding format. The two encodings that OpenMath directlypsuis are a XML based
language and a binary format. Either of the two may be chasepending on the sce-
nario in which they are supposed to be used. The binary foisrmabre compact and
potentially more suitable for machine to machine commuiooavhen the communica-
tion channels use raw binary format while the XML encoding/rba more suitable for

Web service related technologies.

48



Chapter 2. The Impact of Distributed Architectures on Symbolic Compatatio

The fundamental concepts that OpenMath is based o@angent Dictionaries (CDs)

OpenMathsymbolsand the concept of an OpenMatbject Similar to the mechanism
of dictionaries used in every day speech that states thergemaeaning of a word in the
dictionary, OpenMath CDs are collections of OpenMath symlioht have a particular
meaning in a specific context. A software package understamdathematical formula
that is expressed using OpenMath only if it implements spoadingPhrasebook that

allow the system to transform the formula in the encoding ehtiaat it uses internally.

In this case, the software packagigportsor implementshe corresponding CDs.

Mathematical formulae can be encoded as compound OpenNdgbte by combining
basic OpenMath constructor objects and OpenMath symbésedein OpenMath CDs.
It is @ common practice to group OpenMath symbols that aateélin CDs covering
a particular mathematical area. Grouping multiple symbofSDs is a convenient way
to organize OpenMath symbols. The OpenMath symbol is a nmsimato identify
certain concept in that particular area of mathematics aisdres that any interpreter
will consider the same semantic meaning defined by the agsdcDpenMath symbol

definition.

There are two main types of objects in OpenMath. The firsigoatecomprises of basic
OpenMath objects:

Integer - any element that is part of the mathematical settegers

IEEE - any floating point number expressed using double gi@tformat

Character String - any character string

ByteArray - any sequence of bytes

Symbol - any symbol element that is part of a CD

Variable - represent a place holder; it has to have a uniqoeena
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For an OpenMath symbol to be correctly specified two mangattiributes of the sym-
bol have to be set. Thed attribute that specifies the OpenMath CD of which the symbol

is part of; thenameattribute is a meaningful name, unique in the context of the CD

Compound OpenMath objects can be constructed by combinisgrexOpenMath ob-
jects. The constructive approach has to comply with the¥ahg composition mecha-
nisms [184]:

e foreign(A) - is an OpenMath object if A is not an OpenMath aibje his construc-
tor function allows creating OpenMath objects from non Qyath objects which
may be useful if arbitrary data has to be encapsulated in @m&ath compound

object;

e application(Al, . . . ,An) - where Al,...An represent OpenivVabjects specifies
an application in a similar way with defining a regular matladéoal function with
multiple arguments. The first argument is referred to as tah To encode a
mathematical function the head object is an OpenMath abgeich as an Open-
Math symbol that specifies the function and the rest of theaibjrepresent the

argument that have to be applied;

e attribution(A,(S1,Al), . . . ,(Sn, An)) - where A Al,...Arpresent OpenMath
objects and S1,...Sn represents OpenMath symbols; th&troation may be used

to add attributes or characteristics that are part of the jaatis definition;

e binding(B,v1, . . . ,vn,C) - where B and C represent OpenMatleabjand
vl,...vn represent OpenMath variables; it may be used toesspfunctions or

logical statements;
e error(S,Al, . .. ,An) - describes an OpenMath error objects
Based on the mechanisms described above computer algelicaapp specialists have

created a strong foundation that can be used to describelicated mathematical for-

mulae covering the most common mathematical areas. Duestpdpularity of XML
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languages and the available support for parsing XML docusn@ost of the OpenMath
encodings are done in XML format. The OpenMath standard rsedathe XML for-

mat and describes a set of language elements that corregpdinel encoding models
described above. To encode basic OpenMath object the fiolpXML tags have to be

used:

Integer: <OMI>...</OMI>

IEEE: <OMF>...</OMF>

Character StringcOMSTR>...</OMSTR>

ByteArray: <OMB>...</OMB>

Symbol: <OMS cd="cdname” name="omsiame™></OMS>

Variable: <OMV name="variablename™ </OMV >

The corresponding XML tags that should be used to constampound objects are:

foreighn <OMFOREIGN>...</OMFOREIGN>

application:<OMA>...</OMA>

attribution<OMATTR>...</OMATTR >

binding: <OMBIND >... <OMBVAR >...</OMBVAR >...</OMBIND >

error<OME>...</OME>

As an example, to encode in OpenMath the formailg0) where “sin” represent the

sinus trigonometric function, the corresponding XML sltbloé created:

<OMOBJ >
<QVA>
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<OMS cd="transcl" nanme="sin">
<OM >0</ OM >
</ OVA>
</ OMOBJ >

Remark. OpenMath objects are stored in separate XML documents. @irespond-
ing XML document may contain a basic object or a compoundatlgenstructed us-
ing the mechanisms described above. For the document to (el downed descrip-
tion of an object, its content has to be enclosed betweentdre and ending tags
< OMOBJ >, < /OMOBJ > respectively. These tags can only appear once in the same

file.

OpenMath References

Due to their complexity, XML representations of large Ope&tiMobjects can sometimes
be large. It is also possible that some of the OpenMath sydetsbthat an OpenMath
objects is compound of may appear more than once in objeessrgbtion. To shorten
and simplify the representation of an OpenMath object, ther®ath standard provides
a reference mechanism that allows replacement of sub{oljét a reference to the
object’s definition. Practically a reference replaces almi@ definition of the object and

makes the encoding more compact and easy to read.

We illustrate this concept with an excerpt taken from the@penMath standard def-
inition [184]. The following two encodings are semantigadiquivalent even if their
definition is different. The first representation descrittesmathematical formula “1 +

1” by combining in an OpenMath application object two Opetiviategers.

<OMOBJ version="2.0">
<OvVA>

<OMS cd="arithl" nane="plus"/>

52



Chapter 2. The Impact of Distributed Architectures on Symbolic Compatatio

<OM >1</ OM >
<OM >1</ OM >
</ OVA>
</ OMOBJ>

The second encoding uses OpenMath references to replasetbad definition the
integer value “1” with a reference that points to an existitgjinition of the required
object. Within the same document, tlieattribute must have value distinct from all
other identifier values. The unique value can be used to fypceference encoded as

the < OMR > XML element specified below.

<OMOBJ version="2.0">
<OVA>
<OMS cd="arithl" nane="plus"/>
<OM id="bar">1</OM >
<OWR href ="#bar"/ >
</ OVA>
</ OMOBJ>

The reference mechanism is similar to the anchor mechanisuided by HTML Web

page description language. Valid references may point jectddescribed within the
same document, objects that are described in a documeatistba location relative to
the location of the file where the reference appear and eve&tazn a absolute location.

The OpenMath standard only requires that the value ohtegattribute is a valid URI.

In the context of OpenMath XML encoded objects, referenselung defines the pro-
cess of identifying the OpenMath objects that are refer@ibgea compound OpenMath
object’s definition and, if the object is not hosted on the sanachine, retrieval of ref-

erenced OpenMath object to make it available locally.
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OMDoc

The foundation of OpenMath semantic annotation is the qunaecontent dictionary.

Kohlhase [118] has investigated the suitability of usingg@ath for automatic proving.
He concluded that the lack of semantics associated with pgnCDs makes the CDs
machine readable but not machine understandable. Oper@xdiwere not conceived

in a way that makes them suitable for computer to computemnuanication.

As a result, Kohlhase [119] has developed an extension oOfenMath CD mecha-
nism that allows clarification and addition of semantic esxhto CDs. The extensions
define XML tags that can be used to accommodate several type®ionation such as

semantic meaning of terms used in explanatory text elenagmtsheory based classifi-
cation of symbols defined in CDs and relation operators betwesories. While these
additions may improve mathematical formulae manipuladod automatic reasoning,

these extensions were not widely adopted by computer agelftware packages.

2.6.2 MathML

MathML is a XML language that was created as a standard faribsg mathematical
formulae. Its main goal is teenable mathematics to be served, received, and processed
on the World Wide Web, just as HTML has enabled this funclityrfar text’[187]. The
tremendous development of Web technologies and espethalyntense use of Web
pages to communicate ideas and knowledge motivated thefaesthndard languages

to describe mathematical formulae so they can be understnddendered by Web
browsers. Since HTML is the most important language to dafeé pages, MathML

was built on the similar principles.

To encode mathematical formulae MathML provides two typetags, presentations
and content markup. The first can be used for encoding matiwhaotation such as

symbols while the second can be used for describing sentapitiing of mathematical
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contents. These two types of markup are required becauspimgapetween a math-
ematical notation and its semantic meaning is not alwaysgstiforward. A software
system cannot automatically infer the meaning of a mathiealaerm only from its
representation and therefore additional information loalset attached to the formulae

description.

Even if a formula is described using semantic rich encodif@srendering purposes,
details on how to represent the data are still required. Evievo formulae are seman-
tically equivalent, their term structure may be differeRor such cases the rendering
systems may choose one of the valid visual representatianst$ considered the most
suitable one but this may not be the representation the migrds. MathML recognises
these problems and includes in its standard capabilitiegrfmuping semantically rich

encodings with presentation content.

The set of markup elements that can be used for describisgptaion covers the most
important mathematical notations but it cannot be extermyea regular user. The ren-
dering application has to recognize the markup and to retigeformula based on the
description. The use of a certain presentation markup eledefines not only the po-
sition of a term in a formula but it also gives information ab&ow the term should
look like, e.g. the type of font to be used. Even if extensi@cthanisms would be pro-
vided for regular users, these would be too complicatedeaus too difficult for a Web
browser to follow them. The rendering model that is used by Wewsers is based on a
set of conventions regarding how specific elements of the pélgle have to be presented

to the user based on their specific attributes and the cothexiappear.

For content description the MathML standard recognizegfisnntroduced by Open-
Math content dictionaries and provides similar mechanigmsemantic annotation. For
conversion purposes, the standard even gives a compatighe two and a mapping
table that can be used for automatic conversion 2.1 betwesthML and OpenMath
elements [186].

As can be seen from the table above, the latest version ofWlagiovides good support
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MathML OpenMath
cn OMI, OMF
csymbol OMS

Ci oMV

cS OMSTR
apply OMA

bind OMBIND
bvar OMBVAR
share OMR
semantics OMATTR
annotation, annotation-xmIOMATP, OMFOREIGN
cerror OME
chytes OMB

Table 2.1: MathML Mapping to OpenMath

for semantic annotation which was lacking in earlier varsiol he base concept of con-
tent dictionaries can now be used in MathML similar to the way semantic meaning
is expressed in OpenMath. Due to these improvements it mapisdered as a viable
alternative to OpenMath. However, OpenMath remains the pasular data encoding
standard for symbolic content and as a result it is the stana#h the best support in

the computer algebra computations world.

Existing computer algebra systems, especially the onegextdor a special category of
symbolic problems have custom data representation modéiksir strength in solving
the particular problems for which they were built comes fittva data encoding and the
special implementation of algorithms. Even if re-enginggwas possible for this kind
of system, it is not desirable. Therefore, interoperaboit those systems may only be

achieved by implementing translators from/to internatespntation model.

2.7 Summary

Computer Algebra Systems (CASs) are the main tools for symigoimputations and

of great importance for research world. Their first goal waprovide automatic tools
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for handling mathematical formulae and to automate mathieatananipulations that
otherwise would have been achieved with pen and paper. fack@and resources led
to the omission of interoperability from their initial dgsi. It is therefore difficult to use
these systems in a collaborative way that permits solving®jic problems that require

computational resources not available on a single machine.

The need for better interoperability, better support fanbglic manipulation and stan-
dards describing mathematical content with semantic stupygre identified more than
two decades ago [49]. Several joint research initiativiesl tto offer viable answers to
the problems that symbolic computations world has to facenoAg most important
research projects of the last years to investigate howildlisérd models can be used in
context of symbolic computing are “Mathematics on the NBMtONET) [11], MathBro-
ker [2], “Grid Enabled Numerical and Symbolic Services” ($&S) [7] and “Symbolic
Computation Infrastructure in Europe”(SCIEnce) [19]. Theyd recognized the op-
portunities that distributed architectures may offer tmbglic computing and they have
investigated solutions for creating distributed compatsd! infrastructures for symbolic
computing. The European project SCIEnce’s aim was to pravideeeded framework
to bring together application specialists and researdnensathematical fields. Find-
ing the best solutions and technologies to create a symbamhputational infrastructure

cannot be achieved without a coordinated effort of suchdindeiplinary research teams.

A solid evolution of systems for symbolic computations tos#ga symbolic computa-
tional platform cannot be achieved without a thorough usi@eding of existing tech-
nologies and the benefits and shortcomings they introduocghit&ctural styles used to
implement software systems have a tremendous influencelwiebehaviour and limi-
tations. One of the most evolved solution for building disited infrastructures is Grid
computation model. Its aim is to take advantage of the leskm@arned from other tech-
nologies and to provide solid and standardized environsfentuilding computational

infrastructures.

The Grid model favours interoperability by providing a sétstandards and software
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utilities to cover fundamental problems that have to betdeaistributed environments:
security, resource and task management, data managemaato Ehe benefits it pro-
vides it may be considered suitable for collaborative emunents as the one that sym-

bolic computation requires.

Mathematical content exchange between software agenige@sdhat the same encod-
ing model is used by both communication parties. Moreovariagtic level descrip-
tion of mathematical formulae is not sufficient for machiaetachine communications.
XML based languages are well suited for describing datankatls to be exchanged
in distributed environments and several standard XML laggs for mathematical con-
tent were developed over time. The OpenMath language iempeef for computer to
computer interactions because it is a semantic rich lareyuagr presentation purposes,
especially for integrating mathematical content in WebgsadgviathML is more suit-
able. An augmented version of OpenMath, namely OMDoc mayskee @or particular

research domains such as automatic theorem proving.
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Chapter 3

Exposing CAS Functionality as Web

and Grid Services

This chapter introduces the CAS Server component [58, 61,1508 129]. Through its
generic interface the functionality of multiple CASs can kpased to remote clients. In
Section 3.2 we discuss the requirements that drive thetateiof CAS Server’s inter-
face. In Section 3.3 we describe the design of the CAS Servapcoopent and the way
the CAS Server interacts with its clients and underlying CABwltich functionality

it exposes. Available solutions for interacting with legaoftware components and in
particular with CASs are discussed in Section 3.4 while bastriologies to be used
for developing a distributed computation infrastructure @analysed in Section 3.5. The
general structure of the request and response messag&sAtigberver should handle

are further described in Section 3.6.

3.1 Introduction

Most Computer Algebra Systems (CASSs) lack capabilities thppert building a sym-

bolic computational infrastructure. The situation is mautarly unfavourable for systems
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that have started as small ad-hoc solutions and have evoladtime with improve-
ments applied in a cyclic process. Even if the systems wepeaved over time, features
that would allow these systems to interoperate with othBwsoe components were not
high priority. Consequently, some CASs are only able to repdtidata from, and write

output data to, text files stored in predefined locations.

Large symbolic computation problems may require companali infrastructures that
provide large computational resources: high processimgepdarge memory and stor-
age capabilities. Currently, most of the CASs are designee tsbd as isolated software
components and therefore they lack capabilities to acessairces provided by massive
distributed systems such as Grids. Some of the generalresgents summarized in
[49] such as the need for generally accepted standardst®edaoding and support for
interoperability capabilities are not yet fulfilled and repent major obstacles for build-
ing large scale symbolic computational infrastructurdse Tack of support for modern
technologies and standardization are main reasons fohwyeccan include most of the

current CASs in the category of legacy software systems.

CASs represent the main tools for symbolic computations &egl tannot be easily
replaced or reengineered due to the high level expertisg@ireshboth in the general
software engineering area and in the symbolic computdtifteid. Therefore they still

remain the main computational engines used for symbolicpeaations and solutions
for large symbolic problems can only be build using theseesys as foundations. To
allow them to be part of large distributed architectures, €A8ve to provide enhanced
capabilities which can be added by applying modernizagohniques. Adapting CASs
to the latest technologies used currently for buildingribsted computational infras-

tructures is not an easy task.

The technologies used in software engineering have evleetendously in the last few
decades and CASs have tried to adopt these changes in an@vaiytfashion. Tech-
nological advances and improvements in the way users titeith software applica-

tions may also be relevant for symbolic computations safwaélVatt [196] provides an
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overview of various capabilities that could be easily fidfill with a from-scratch imple-
mentation. Features such as visual manipulation of mattiesthabjects do not require
fundamental changes to existing CASs. Support for a diftestata model than the one
internally used may require fundamental changes which lasecto the core of the
CAS.

Our main goal is to provide the blue print of a software amsttiire for symbolic compu-
tations and demonstrate its capabilities to support furesteah requirements of computer
algebra specialists in terms of usability, efficiency, fiteitly. On the one hand it has to
provide infrastructure solving large symbolic computasipon the other hand it has to
be versatile enough to permit easy adoption of new techredand trends. Within this
architecture CASs play the main role because they are thalgotwider of symbolic
computation capabilities. Additional components of theh#&ecture will provide the

support features that enables us to integrate CAS enginesadeeent whole.

Within our architecture the main components responsibiesdtving symbolic compu-
tations tasks are th€EAS Serversvhich wrap and expose to remote clients symbolic
capabilities natively implemented by CAS engines. The stinecof the CAS Server’s
interface and the services it provides are primarily drikgrsymbolic computations re-
lated requirements. To a smaller extent, their structuedss influenced by the actual
technology used to interconnect architecture’s companéntaddition to the core func-
tionality of the CAS Server, complementary capabilitiesnewe that CAS Servers are
easy to integrate in collaborative environments must edstongst them, indexing re-
lated services, security and task management are only afféve dunctionalities that

are required.

The general requirements and several fundamental featmethe CAS Server offers
are discussed throughout this chapter while more complealzbties are described in
the following chapters. In this chapter we investigate tleshimportant requirements
that have to be fulfilled to ensure adequate support for syimibomputing. Based

on the main requirements we identify the most important agiapnal elements that
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an architecture for symbolic computations requires andamég these components are

interconnected.

3.2 Top Level Requirements Driving the CAS Server In-

terface

Rich graphical interfaces able to display and manipulatéhemaatical formulae based
on visual components are one of the features that makes CA&s éause, more in-
tuitive and even more attractive [196]. Providing symbslipport integrated with mo-
bile devices may also be an interesting capability that dowuhke symbolic computing
more accessible to broader categories of users. Mobileegwuch as mobile phones
and PDAs were developed in the last decade to provide res®fwc software applica-
tions far more advanced than the ones required for devi@asg unctionality. They
are now considered as viable tools for a wide range of agmitsitand they can even
be considered for solving small symbolic problems or as ¢hants to server-provided

functionality.

The most important challenge that the symbolic world stk o face is to provide sup-
port for solving large symbolic problems by enabling CASsxpleit and provide com-
putational capabilities of massively distributed enviments. Adoption of distributed
technologies is currently the most affordable solutionwddinfrastructures that pro-
vide required computational resources. The most imporsane that prevents seamless

integration of CASs in distributed architectures is thetklaf support for interoperabil-

ity.

Immediate benefits of creating a distributed symbolic stinacture are:

e Faster and potentially more accurate solutions can bersuatas a result of col-

laboration between specialized software packages andgearral symbolic soft-
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ware packages; particular sub-problems could be solvetdoyniost suited soft-
ware packages available even if the system that the probksysubmitted to does
not implement the required capabilities; through collabion the capabilities of
CAS can be easily extended by exploiting the capabilitiesrett by other types
of systems, not only CAS [197];

e Knowledge bases providing already computed solutionsitancon problems ob-
tained through long running computations could be reuse0AS$s and therefore

the time required to compute could be in some cases redueethtically;

e Easier dissemination of results and collaboration betwesearchers by establish-
ing shared environments and data repositories easily sibtefrom any computer

with an Internet connection;

In the context of collaborative environments for symbobenputations CASs may play

one or all of the following roles:

1. CAS as a client - CASs continue to represent the main envieatsnused by
researchers to formulate and solve symbolic problems. m#pg on the nature
of the problem and the computational capabilities offengdther CASs installed
on the local machine or on remote servers, the CAS instanaddsbhe able to
decompose the original problem into smaller parts and utszread capabilities to
solve them in the most effective way. External capabilitefer both to symbolic

ones, provided by other CAS instances, or to other extermpalhskties;

2. CAS as a provider of computational capabilities; CASs c#ifiab could be used
by external clients to solve problems of symbolic compotadl nature. These ser-
vices could be accessed either by CASs or by clients that dproeide symbolic
computation capabilities at all. The need of another CAS qoest such services
could be driven by its lack of a particular functionality audd be necessary for
efficiency reasons. The provider may have better resourcismay just reduce

the wall clock time needed for execution by executing siktstas parallel.

63



Chapter 3. Exposing CAS Functionality as Web and Grid Services

3. CAS provider to CAS provider collaboration; based on the tales specified
above, we can easily imagine situations in which a CAS providat handles a
problem may have to collaborate with other CAS providers iheorto solve a

specific problem;

Interaction patterns supported by CASs provide importasights about how algebra
specialists use such systems. The same patterns shouleaspported by a distributed
system for symbolic computing. The main interaction pagesupported by CASs were
previously documented by Duscher [84]. One criterion Desalses to classify inter-
action patterns between the user and the CAS system is theemwhimessages that
are exchanged during the execution of one task, not inajuitie initialization steps. A
second criterion used is the number of messages exchangetwjamollaborating CASs
if such collaboration occurs. Multiple request-respongssages exchanged within the
same communication session require additional capasilét both client and provider

sides to ensure that messages are correctly interpretbd givien context.

A Bilateral Simple Conversation Pattemccurs if the client only sends one message
containing the description of the problem to solve and tiseiltés obtained as a re-
sponse to the initial invocation. One of the systems thad tige conversation pattern is
GAP [3]. In a more complex setup that permits collaboratioroag service providers
Multilateral Simple Conversatioand Multilateral Simple Multi-Conversatiopatterns
may occur. The latter is a generalisation of the former ansl supported by systems
such as Mathematica [24] and Maxima [12]. Within this paisethe server itself acts
as a a client to other servers. To communicate with partneeseit may use one or

multiple request-response messages.

The patterns described above are easier to handle becaysdotimot require direct in-
tervention of human users for manual steering of the contiputaTheBilateral Multi-
Conversatiorpattern captures the interaction model between the climhtlze provider
for cases in which solving a problem requires additionahaatsteering during execu-

tion. Such conversation patterns can be for example obdenvEl2]. Depending on
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the nature of the problem to solve, occasionally it may issjie to convert bilateral
multi-conversation patterns to simple conversation pasteThis approach may be ap-
plied when it is possible to foresee situations where aultbii steering and data may
be needed and modify the initial algorithm’s implementatio prevent it. Because this
approach is dependent on the nature of the algorithm and ti& &ad, transforming

Multi-Conversation patterns into Simple-Conversationgraté is generally unfeasible.

The computational elements of our architecture have to eitt Bs service providers
to clients and also as clients of other service providetseeibf symbolic nature or of

another type. For solving a single task several componérite@rchitecture may need
to collaborate. Isolated interactions between the varoamumsponents of the architecture
are of client-server type but the architecture itself doesfallow the simple client-

server model since the communication pattern is more com@ae of the latest and
most versatile architectural styles to support this typeattern are service oriented
architectures. Components act as independent servicalprewwhich may be combined

to solve compound problems.

Existing systems for symbolic computations were buildhgsa large variety of archi-
tectural styles and corresponding technologies. Theirrcomgoal is to provide an
efficient way to access and combine capabilities of CASs teescbmpound symbolic
problems. To exemplify these architectural styles and tie their components have,
we rely on following generic scenario. We consider that tas&k composed of several
subtask$(1),t(2)...t(n) which have to be executed in sequence. The output obtaioed fr

the task(i) represent data input for the following tagk+1).

Based on the capabilities that various systems for disgsymbolic computing pro-
vide, we identify two main architectural styles that werediso implement system for
symbolic computations. In the first one the client comporast an important role not
only for describing the steps of the computations but alssébecting the appropriate
services to invoke and for managing the execution procagbelfirst architectural style

the client may be responsible entirely for finding servicesmecialized components

65



Chapter 3. Exposing CAS Functionality as Web and Grid Services

| ’/ Broker v -

CAS CAS
Provider 1 Provider 2
Provider 1 =
\ CAS Client
4

G ic Client :
eneric Clien oA Generic Client
A CAS
Provider n Provider n
g

Generic
Provider

Generic
Provider

(a) Client Centered Architecture (b) Server Centered Architecture

Figure 3.1: Server Centred Architecture

for indexing and selecting suitable services may be usec tDuhe high importance
that clients have during the actual execution this style eiient centred architecture.
Opposed to this model, in the server centred architect@weltbnt’s role is to provide
a description of the steps to execute. The whole manageméme execution is done
at server side by specialized components. The two arctredcétyles are depicted in
Figure 3.1 (a) for the client centric style in which the cliemay use and intermediary

broker and (b) for the server centric style respectively.

The most simple of the two is the client centric architectuhéch has its foundations in
the client-server architectural style. In this architealstyle client-server interactions
are used. The client component has to identify by itself grgise providers and to use
internal rationale to determine the best provider to cathdre than one such providers
exist. It has to formulate request messages using the texdyand message format
expected by the server, to submit requests and to retrievegults. These steps have to
be done for each individual sub-task of the compound taskiinécessary, the client

components have to combine results obtained using theiresources.

A slight improvement of the client centred architecture ldained by introducing an
additional component playing the role of a resource brdkerole is to provide support

for efficient discovery and load balancing of the executionthe system. The broker
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analyses individual tasks and proposes a set of servicewthdd be able to solve the
request. The broker negotiates access on behalf of the aheiprovides credentials for
the client to access the service. The client has still thparsibility to call the service
providers, to collect result and to ensure executions isigdrased on obtained result.
This architecture is slightly more efficient because duthgselection process the bro-
ker may correlate requests received from multiple clientb@rovide an execution plan

that improves resource utilization.

The second architectural style commonly used is more sesider weighted. At the
client side, the compound task has to be formulated in suchyeatwat the user does not
need to intervene during the whole computation processeo€timpound task. Once
the problem is properly described it is submitted to a sewgich in turn is respon-
sible for managing the task, discovering the service pergdhat should be used and
ensuring correct routing of the whole process. There arerakimportant reasons, such
as network usage efficiency or execution time further dised<elow, for which the
server centred approach is more efficient in terms of contiputal and communication

efficiency.

The simplicity of the client centric solution has severadsbomings. The client has to
explicitly invoke every server to provide the tasks and irgata. Results that correspond
to each subtask have to be managed by the client and subnaittied following server
even if partial results are not of particular interest fag tiser. This negatively impacts
the network load between the client and servers which isllydeas reliable and slower
than server to server communication links. For handlingnsesults the client has also
to provide sufficient hardware and software capabilitiesandle and to process partial
results that are not always available at the client siden Thents that could be run on
mobile devices or on computers with small resources couldaased successfully if
intermediate results are large, even if the initial probkema the final results could be
handled.

An additional problem is generated by the nature of symhtalkss which usually re-
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quires long time to complete. If synchronous communicabetween the client and
the server is used, the client must keep alive the conneutitinthe server until the

computation is finished and results are collected. Flagbif the system is therefore
affected. The solution to this problem is to use asynchremommunication and imple-
ment mechanisms for session management. Even if theseauidqu, the user has to
periodically interrogate the server to find out the statusashputations and if ready, to
retrieve the results and continue with the following stefothe computations. In the ab-
sence of an available connection between the client ancetiversthat allows the client
to proceed with the next steps, the overall computation iaygel. Unnecessary idle
time gaps occur between the tasks of the workflow which ishetase of server centric
style in which the probability of the server to disconneotfirnetwork and to collapse is

much smaller.

The server centric approach allows direct collaboratidwben symbolic computations
providers. The taskK is sent to the server which in turn manages the computatitimeof
subtasks. Partial results do not have to be sent to the @rmhinot even to the server
that manages the computation if these results are not eshfor computation steering.
They can be stored by the server that computed them and pobwid request to other
servers that require them for computing other tasks. Higbermunication efficiency
is thus obtained because the client only has to retrieve tiaé¢ iésult. For both client
to server and server to server communication asynchronmusncinication should be

used.

Ideally, symbolic engines should be able to further idgrsiibtasks of the initial sub-
taskst(1)...t(n) and automatically initiate calls to the most suited CASs tlvesthe

particular subtasks. Unfortunately, existing CASs are motently able to detect such
situations and collaborate with other CASs. Automatic deiacof subtasks of a task
that could be better handled by another CAS requires fundaingmanges that are not
easy to achieve. A thorough investigation of CASs’ capaédifor certain types of
problems does not exist and therefore it is difficult to awdboally identify the most

appropriate CAS for handling a certain problem. Decisiogarging the best choice to
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take are usually based on the experience and intuition afdhmputer algebra specialist.

One of the first successful systems to use CASs as computatingiaes was MathWeb-
SB [94]. CASs wrapped as RMI and XML-RPC accessible services mézgrated in a
broader architecture with the aim to support automatedéme@roving. Client systems
of the architecture are able to discover appropriate sesvia invoke by interrogating
predefined brokers. All brokers of the system are aware di eieer and are able to
exchange information about the services that are implesddantthe systems. Therefore
if a particular service is required and a broker is not awdrngscexistence it contacts

other brokers until the service is located and a handle ismet to the client.

Part of the Esprit-OpenMath project, a client-server dedture that uses as main com-
putational engines GAP instances demonstrates the wabilexposing CAS function-
ality while relying on OpenMath encoded messages [124].s&lveere the early steps
towards enabling the GAP system to act as a symbolic compnutsg¢rver on one hand
and to use other systems as clients on the other hand. Hdwengdre generic aim to
create a standard recipe to turn CASs in remote accessiblputational engines, Java-
Math [170] describes and implements a set of Java wrapp&B.aad Maple were used
to create demonstrator wrappers. The resulting comporantde accessed by remote

clients through RMI calls.

Due to its popularity and its capability to provide a TCP/Ileks connection to connect
to its core, Maple was used to demonstrate and build sevaraite accessible services.
The system implemented by Schreiner [159, 160] uses mallMaple instances and a
distributed scheduler implemented in Java to which Maptaimces submit job requests
and from which the Maple instances may receive tasks to sdlve client Maple engine

is responsible for defining the number of instances of Mapd¢ should be used for the

computation and which tasks should be executed.

A similar but more advanced set of software tools is the M&pid Computing Toolbox
[6]. It may be used in a LAN of computational nodes on which Mapas previously

installed to run Maple computations supervised by a mastagl&linstance. One of the
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first initiatives to consider Grid technologies for expastapabilities of Maple as Grid
services was Maple2g [153, 151]. Through this package, &eplld be accessed as a

Grid service and it was also able to access remote Grid svic

Another CAS system popular within computer algebra spetiedimmunity is the Math-
ematica system. Mathematica has seen the potential obdistlg computations over a
network and has provided the MathLink protocol for intencecting Mathematica ker-
nels more that one decade ago [193]. Another system, gritiadtica [8] is specially
implemented for computing in cluster environments. As ie Maple2g component,
MathGridLink [178] was implemented to permit access to Geealvices implemented
using early Grid middleware. It also allows the Mathematisar to deploy Grid ser-

vices from Mathematica.

One of the most prolific projects of the last several years thasMonet (2003-2004)
[180] project. The blueprint of the distributed architeetdior symbolic computations
they propose has as a central component the concept of sdémadker. Most of the re-
search conducted under the Monet project was concentratedds establishing a set
of technologies to support intelligent service discoveng drokerage of mathematical
services. The role of the broker on one hand is to store sedescriptions of mathe-
matical services, on the other hand clients interestedlinngpmathematical problems

may contact those brokers to find the most suitable servaresofving the problem.

The Monet project has heavily influenced and it was itselugriiced by MathBroker
(2001 - 2003, 2005 - 2007) [57] and GENSS (2004 - 2006) [13¥, projects having

similar aims to the Monet project. Among other results Mati&r proposed a model
for describing mathematical services based on which thééfaatical Service Descrip-
tion Language (MSDL) [42] was developed. The GENSS projestused the ideas for-
mulated in Monet and MathBroker to refine matchmaking tealesq The Monet project
takes matchmaking of tasks to services a step further byibdeggsolutions for the case
in which a problem cannot be solved by only one service andw@osition of services

is required. The problem of decomposing mathematical prablinto sub-problems that
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can be solved by separate services was also investigateed (BESS project [137]. The
foundations of the brokering and matchmaking techniquesd wmsthin this projects use
semantic Web technologies on one hand and specific matreanetchniques such as

algebraic equivalence of mathematical terms on the other.

Although the broker introduced by Monet tries to provide lgon for the case in which
multiple services have to be composed to solve a certainglihe process of speci-
fying such compositions is not easily accessible for regugars and composed services
can only be deployed by service administrators. Even fraretirly stages of design of
the SymGrid-Services component [110] the aim was to prozicemputational platform
to allow users to compose external services in a seamlesshuather development of
the systems at the Grid level has focused on moving the regplty of managing the
composition of services from the client side to the serveée svhere the whole process
can be better managed. While the user still has the respbiysibi specify the steps
of the composition using high level constructs the actuaiposition is managed at the

server side.

Beyond the high level constraints in the way the system istaldapport symbolic com-
putations that are inherited from the architectural stilesen, all of the above initiatives
that tried to integrate multiple types of CASs to a common iéecture had to consider
the problem of interoperability. One important step that tabe made to achieve in-
teroperability is the use of existing standards, and if ®iahdards do not exist already,
to provide solutions that are not biased towards a parti@ylstem. Generic solutions
are more easily accepted and implemented by existing CASsoding the functional-
ity of CASs as services has to consider several importantcéspthe structure of the
interfaces accessible for remote clients, the data engadodel in which mathematical

problems are formulated and service advertising and desgawnechanisms.

A viable solution for smooth transition to a distributed eamment for symbolic compu-
tations is to adopt new capabilities in two evolution stefise first one should concen-

trate on implementing software packages as external addhabwould augment CASs
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with capabilities to participate either as clients or segyproviders in distributed archi-
tectures. In the second step, benefits of various additiothéemtures proven to be useful
should be implemented as native capabilities of CASs wheatle suwolution is possible.

This strategy minimizes the delay in the evolution of conepatigebra software pack-
ages and provides the opportunity to understand better isivibdited computer algebra

systems should support symbolic research field.

Not all features required have to be implemented by the CA&sgklves. CASs should
be responsible for the core symbolic capabilities while engeneric ones have to be
provides by the underlying software infrastructure. Iné¢igg CASs with massive dis-
tributed environments requires implemented featuresatenot specific for symbolic
computation and therefore, existing solutions for genemdlems should be considered
if they were already proven to work for other research dosaimilar to other com-
putation domains, the raw computing power is provided by maters or specialized
clusters belonging to research based institutions wiltmgooperate for their mutual
benefit. The resulted infrastructure is heterogeneousyhidynamic and spread over
multiple administrative domains. Fundamental capaégisuch as communication, se-
curity or data transfer protocols are not in the scope of ®limlbomputing and therefore

they should not be directly implemented by CASs.

Certain features required for interoperability are clogselated to CASs and therefore
they should be provided by CAS systems. For example, stani@dadnodels for encod-
ing messages exchanged with partners is one of the featutfesmvimportant impact
on CASs capability to interoperate. Messages encoded by oiseh@?e to be properly
decoded by recipient partners, irrespective of the pdaiities of the CAS or the ma-
chine they are installed on. They should be encoded usingimtitat ensure that their
content is properly understood and suitable to be exchamgedmputer-to-computer
communication. Even if internally CASs do not use genericodigy standards they

should implement appropriate translators.

In most cases, CASs provide scripts or command line inteepgdhat allow users to
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describe solutions of symbolic problems usingihatine-subroutinerchitectural style.
Standard functionality provided by CASs is usually avagaht packages of routines
that users can combine or invoke. Mathematical formulaeeacmded internally as
mathematical objects and specific capabilities that allosirtmanipulation is provided
by the system. Therefore, most of the algorithms and profilepiutions are described
by computer algebra specialist as calls to existing funestior user defined functions

that rely on core routines.

The most straightforward and convenient way to expose fomality of CASs as ser-
vices is to provide means to enable remote users to accestofus that are already
implemented and available at the command line interprdtdreoCASs. Therefore the
RPC style is used to allow clients to executed functions imgleted by a remote CAS.
This solution favours usability because the same usagerpapplies for both remote
and local invocations. A simple exposure of functions p&rhuman users to formu-
late meaningful calls in the same way they would if the systeas installed on the
local machine. It is not expected that CASs should be ableerdbe vast variety of
technologies that can potentially be used for buildingriigted systems and as a conse-
guence the solution is to provide a generic component theJeelike a bridge between
the CAS and the external world. To ensure interoperabilitthwther systems, argu-
ments of functions should be described using standard datadengs that are mapped

by CAS onto internal encodings.

Due to the heterogeneous and dynamic nature of componeahtb@ininternal configu-
ration, indexing and discovery capabilities play an imanttrole for efficient use of re-
sources. Corresponding components that provide up to datenation about available
services ensure that the best resources are used in theffrasbheway. Computational
elements supporting the symbolic infrastructure shouliefzan active role in informing
preregistered service registries about their curreng staen significant changes occur.
Even if such index services exist, their role is not to negetaccess on behalf of the
client. Clients that already know which services to invokeistl be able to do so without

contacting index registries.
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3.2.1 Requirements Summary

The CAS Server component must provide efficient and versagehanisms that allow
remote clients to access functionality provided by exgstBASs. Due to large variety
of CASs, one of the most important requirements is to proviédams to allow them
to interoperate. As a result of our analysis we have detexthseveral features that
are needed to allow easy access to CASs provided capabditie@durther, to allow

automatic composition of their features:

1. CAS Server components must be autonomous and must all@gsate one or

multiple CASs through a single interface;

2. The interface of the CAS Server must be standardized f@/A8 Servers of the
architecture and not influenced by the CASs exposed throwgmterface. This
requirement is particularly important to allow automatiergosition of provided

services;

3. The CAS Server must allow asynchronous retrieval of coegpusults and im-

plement notification capabilities;

4. The CAS Server must implement mechanisms to support dateege and col-

laboration;

5. Clients must be able to discover in a seamless way the IBA&s exposed by a

certain CAS Server and the provided functionality;

3.3 CAS Server Design and Main Features

The previous sections present a high level overview of thia features that have to be
supported by a distributed symbolic system and have dragiguldelines that need to be

followed. The CAS Server components act as mediators bettheer®mote client and
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the actual computational engines. Clients that requiresscttea certain functionality
provided by the CAS engine do not need to call a different serfor each particular
function they access. The CAS Server provides a service #haes as a single point of
entry to which any request that describes a new task to bewmahghould be submitted.

Internally, the request is routed to the appropriate CASrengi

The relation between the CAS Server, client componentsxingeservices and as well
to the various systems whose functionality it provides tentk is depicted in Figure 3.2.
The role of the CAS Server is to expose CAS'’s functionality oany other software
package providing symbolic computation capabilities tmeoge clients. As shown in
Figure 3.2, not only CASs may be exposed but other systems las @ example,

SymGrid-Par [200] is a framework that is able to manage liestaCASs on a local

cluster and even a Grid with the purpose of optimising exeautime and usage of
resources. As described further in this section, CAS Seaarsrtise their capabilities

both through their interface or to centralised discoveposggtories.

It is not uncommon to find personal computers on which m@tipASs are installed.
As computational power becomes more accessible it is alsoenon approach to use
multiple personal computers connected through a LAN to stippset of services and
even to use more advanced set-ups such as computation@rslusor such hardware
configurations it may be convenient to have more than one Cét8llad on a particular
machine or even have dedicated machines to host differens CA&ving a single point

of entry makes possible to provide access to routines imgiéed by multiple CAS

instances that are in the scope of the CAS Server at the saree #®w a result the

discovery and invocation process is easier for clientsesthere is only one service
to invoke. At the service provider level, this approach jueg the opportunity to use

advanced solutions of job scheduling and load balancing.

The structure of the interface and the functionality that C2e€ver provides is driven
by the general requirements that we have discussed in th@psesection: task sub-

mission and retrieval of results; discovery of the capaediimplemented by the service
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Figure 3.2: CAS Server and Relation to other Components

provides; support for task level management; support fta deanagement and sharing.
For all these features the common requirement is to enstemperability. One step
towards this goal is to provide a standardized set of inteddhat do not vary over time
which makes automated clients more easy to design and ineplerBecause the same
interface is exposed by all CAS Server components, they caasigy interchanged or

replaced.

Each of the requirements aforementioned is supported byresponding set of services.
For submitting tasks and result retrieval the CAS Server ssgied to support for two
separated conversation patterns. The most common scendagoone is which the client
submits a task and receives an identifier that the clientatan Uise to retrieve the result.
This approach is suitable for submitting long running tas&esause the client does not
have to block while waiting for the result neither has to kdepconnection alive. Task
request can be easily sent through one device that is afi@gsvdisconnected from the
network. The result may be later retrieved using the sameeevr a different one. As
an additional solution CAS Server can receive together wightask a URL address to

which the result should be sent when the computation hashédis The capability is
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particularly useful for dedicated servers that provide raise interface through which
the result can be submitted. As we will see in the followinguier this features play an

important role in automatic orchestration of services.

CAS provided functionality is grouped in packages of funtsi@and exposing CAS’s
functionality through the interface is most convenientthiaved at function level. Vir-
tually any routine provided by a CAS can be transformed interaise. Basically, a
symbolic task submitted to a CAS Server has to provide as ntarydiaformation the
CAS type that the task should be managed by, the function nach&ding its package
name and the input values for parameters. Exposing eachtidares an entry on the
interface would break the requirement for uniform inteefaon one hand and makes the
discovery process difficult on the other hand. The tasks #tduithrough the generic
entry point must adhere to one of the two encoding formatswadiscuss further in

this chapter, which are both OpenMath compliant.

Tasks that are submitted to a certain CAS Server are condidéwmic in the sense that
the CAS handling the task is not expected to further decomihestask and connect to
other CAS Servers in the case it is not able to entirely soleeptioblem. Still, it may

be possible that the task itself specifies that an externiadtvauld be made to another
CAS Server, in which case an external call will be initiateccukrent general limitation

of existing CASs is they are not able to detect that a certdriask is better handled by
another CAS and automatically forward it. Thus, we expedt filvamost of the cases,

tasks are computed within the boundaries of the same CASiServe

Using the CAS Server component to expose CASs functionaligs dmt exclude the
possibility of using specific systems for cluster and LANdBsomputation management
such as the ones that SymGrid-Par [200] component implemdifitese systems have
the goal of orchestrating CASs installed in a LAN to obtaincgéfit management of
resources. From the CAS Server perspective they are seegudarr€ASs and tasks
received through the CAS Server interface are assigned se tt@mponents based on

the same criteria used for selecting any other CAS. CASs tHeessmay be designed
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to collaborate with other CAS instances installed on the LAb@mbed other CASs as
internal engines. In such cases the way the CASs collabaratat idriven explicitly by
the task’s description. Features provided by softwarestsoth as Maple Grid Toolbok

[6] can still be used.

The manager sub-component of the CAS Server receives regdestdes whether the
requested functionality is available locally and selebts ihost suitable CAS to solve
the request. The selection process is based on informatgerding the CASs and
the functionality they provide stored internally by thecal Registryindex component.

From index the manager sub-component extracts informatimut which CASs are
installed at the CAS Server, which is the physical machinehbats it, which are the

functions the can be invoked for a particular CAS and whichsptal resources are

available.

The index keeps track of all information related to the handnand software configura-
tion of the CAS Server. As a consequence, the index also pleyle @ the security of

the whole system. Only functions that are registered tortlex component by the CAS
Server administrator can be called remotely. Function#tat should not be available
for remote invocations for various reasons, including sécueasons, are therefore not

accessible.

Data required to compute a task is an important issue in sifend@mmputing. For large
scale computations the amount of data produced and consoyniedividual services
that solve a large symbolic problem requires a careful camation of data dependency
problems. Tasks submitted to particular CAS Server may dkpendata that is not
stored within the CAS Server where the computation is done p@w@ion between the
CAS Servers and intelligent handling of large data sets hdsetsupported by CAS
Server components to ensure that at the time of executioeuired data is available.
A detailed description of data management scenarios teaE &5 Server implements is
provided in Chapter 6. For simplicity we exclude capabsitgich as replica manage-

ment and we rely on mechanisms to reference data sets tHaearsato locate them in
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a deterministic way.

Large symbolic tasks may take a long time to compute. Therefen situations when
such tasks have to be paused and resumed later or even ednc@¥e group these
related features under the generic term of task manager@&8. Server supports task
management features for the tasks that it executes basedimds that are compatible
with existing CASs. While operations such as cancelling a &éaskeasy to implement
by sending signals to corresponding CASs or by interruptivegr texecution, lack of
support for check pointing at CAS level makes pausing andmagytasks impossible
in certain stages of the computation. Depending on the bstage of computation in
which a certain task is, the actions taken internally by thesCGerver may vary. Task

management and related functionality is further address€thapter 6.

Because the computational infrastructure we envisage dyhdynamic with regard to
the actual CAS Servers available and the particular funatitynthat they provide, ad-
vertising and discovery mechanisms play an important tadeal Registry components
depicted in Figure. 3.2 provide indexing capabilities idarto support the service dis-
covery process. The CAS Server itself provides a set of seswitat may be used by
a regular client to discover the functionality provided.eTBAS Server is also able to
notify dynamically interested third party components sasltentralized indexes about
any meaningful change that occurs within the server. Thardypndexing components
have to be expressly registered by the CAS Server admirtstréd be able to receive
update information they have to expose a predefined inetfaough which the CAS

Server submits status updates.

Less related to the symbolic computations core requiresnauit playing an important
role for system’s interoperability is the middleware usedduilding the distributed in-
frastructure. Web Services are a good candidate for bgjlsiteroperable components
because they use standards that are platform and progrgntamguage independent.
Due to their capabilities previously discussed in Secti@gh they were considered as a

viable solution for developing symbolic computationakasgtructures by all recent sys-
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tems including the ones developed within Monet [11] and NBabker [2] frameworks.
Built over these native capabilities, Grid services that @mpliant with the WSFR
standard provide support for interoperability, and addgil capabilities such as security
and data management. Important features that otherwise aSeA®r should provide
by itself are already provided and ready to be used by theuSldbolkit 4. Therefore
the interface of the CAS Server is exposed as Grid Serviceleimgnted using Globus
Toolkit 4.

Except from the GENSS project which has considered a simglecge to accommodate
all the requests for symbolic services, the rest of existolyitions to expose CASSs’
functionality are using independent services. In Monetifgtance, privileged users
that want to create symbolic services have to create a sdesfdontaining the code
that should be run when the service is invoked and additigndML documents to
describe the functionality and the interface of the servidderefore, for each CAS
that needs to provide support for a certain service an additientry is declared on the
interface [31]. One of the advantages of describing seswistng mathematical specific
ontologies is that a formal description may be used to bettaluate the service and its
capabilities but requires complicated matching techrsgoaliscover which services to
use. Within the system proposed by Monet, a client must phpfmulate the problem
it needs to solve and the broker must correctly identify thirise. Matching is done
using algebraic equivalence which may itself representesyic computation problem

sometimes impossible to solve [127].

3.3.1 Features Summary

The main features provided by the CAS Server component are:

1. multiple CASs may be exposed through a standard interfapkemented using

Grid Services technology;
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2. The CAS Server acts like a mediator between remote clientCASs installed
locally. It provides capabilities that are not in the scop&ASs to allow their

integration as computation engines in distributed contpart@nvironments;

3. The standard interface of the CAS Server provides supportdubmission of
tasks and retrieval of result; discovery of provided fumicélity through a set of

indexing services; data management capabilities; taslageanent features;

4. The CAS Server may use a variety of mechanisms to commenigtt exposed

CASs, e.g. TCP/IP socket connections and communicationghrpipes.

3.4 Solutions for Legacy Software Integration

Software architecture is determined by the componentsinfféunctionality within the
system, connectors that link architecture’s componentsaanontrol structure which
imposes the behaviour of components within the architectks stated by Shaw et
al. [163], two components that implement the same functhitynanight not be able to
replace one another due to their particularities even withé same architecture. This
may be due to particularities in their interfaces, the ulyitey hardware profiles they
require, etc... Migrating a software system to a differenohaectural style demands that

its components are adapted the new architectural contstrain

Legacy applications cannot be easily modified to take adwegnof the new technolo-
gies. Software tools such as command line utilities thatlErun on a local machine
cannot be used in distributed environments without sulislareengineering. A po-
tentially more effective approach is to provide adapter gonents that supply missing
functionality that enables such tools to be connected tatillited environment. Both
reengineering and implementing adapter components feranktinterconnectivity has

proven to represent major challenges.
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One of the most important concepts driving software enginges reusability as a so-
lution for minimizing resources for implementing a softeaystem. The process of
integrating software components that were not built foeriaperability is difficult even
when the source code of the components is available [100tlaat al. [101] have
reconsidered the same problem two decades later and theluded that the same prob-
lems make integration of components difficult even if tedbg®s and standards have
improved. For a complex system, it is hard to adhere to asiagihitectural style and
in practice more than one is used to develop such a system [I68refore, integration
problems are not specific to situations in which legacy safeaneeds to be integrated
with new architectures and technologies. This type of diffies arise especially when

commercial off the shelf software packages must be used.

Software tools for symbolic computing may be considereddggoftware because they
generally lack the capability to interoperate with othenitar systems and sometimes
they even lack the capabilities to communicate in compuénvork environments. The
main reason for this state of affairs is the way they were ldgesl. Most of the CASs are
the result of implementation efforts of small research gsoaiming to solve particular
classes of symbolic computation problems. As a result, S64®8s evolved over time
from scripts or command line interpreters to complicatexbjgm solving environments.
While the capabilities of these systems to interoperateraited, the functionality they

provide is by no means obsolete.

The high level of expertise required to reimplement som&eiCAS software packages
and encapsulated algorithms makes them difficult to reimpld or replace. Reimple-
menting CASs is also not an option because some of the featesvould need to
be adapted are exactly the ones that make some of the contpdagemore efficient in
solving a certain class of problems. An example is the dat@ding model specific
to a certain implementation of an algorithm which may havesignificant impact on

performance.

There are three important types of software evolution teaegally occur in the lifetime
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of software systems [73]:

e Maintenance refers to small interventions on the softwgstesn that are meant to
improve the quality of a released software package by ctngeminor execution

bugs or by adding small pieces of functionality

e Modernization represent a more invasive approach with ithedé@add more con-
sistent enhancements but it may have a negative effect covtrall structure of

the software system and its implementation

e Replacement involves total or partial replacement of thegmmments of the system
and for it to be successful it has to rely on a deep undersignafi the original

system and the functionality it provides

Code refactoring may lead to small scale modifications ancktbee it may be consid-
ered maintenance or modernization or it can extensivedy #ie structure of a software
system in which case a replacement of the old component was dalopting the most
suitable evolution approach for a software system mustweva thorough evaluation of
the value of the system in terms of usefulness, reliabilitg, level of coupling between
components [155]. Based on this assessment replacemerdjreering or even keep-
ing the system in its current state may be decided. The anodefiiort already invested
to develop CASs at the maturity level they are today and thetlfet this software is
mainly intended for research use makes replacement antabkuevolution strategy.
Maintenance and modernization are more appropriate fowaod in the symbolic com-

putations domain.

The immediate solution for integrating legacy softwaresbich replacement and reengi-
neering are not valid alternatives is to create wrappingpmments that act as adapters
between the legacy components and the external world. Tapper component fulfills
the function that the facade software engineering patipatifies because the wrapper
has to achieve more that simple rerouting of calls. The weapgchnique has the ad-

vantage that the functionality implemented by the legaaypponent is still available
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while the component can be integrated with other componesiitg) newer technologies

without modifying the legacy component.

The level of insight available about components that neduktencapsulated is one of
the factors determining the type of encapsulation useds #lso important to deter-
mine if atomic functionality implemented by the componemisst be exposed or it is
sufficient to expose the functionality of the component ashale: Several levels of
encapsulation are commonly used: job level, transactiegl,l@rogram level, module
level and routine level [167]. The level of insight about dware system that is re-
quired for building a wrapper is lower for job level encadign and increases for the
finer grained level encapsulations. The process, tramsdetrel and program level tech-
niques require less effort to implement and little to nonwation in the original source
code and the way the wrapped components work. The softwan@aoents are seen
as black boxes offering predefined functionality. The dat ts required as input and
data obtained after processing are exchanged using thealrigechanisms supported
by the software. Usually these systems are able to comntenigth the external world
either through character streams or by reading and writiaghio files stored on the
local file system. Migration of systems implemented usirggiocedural model require
significant system analysis and reengineering. In ordevaalaomplete reengineering

a wrapper based solution is also adopted in [75].

Based on the experience in modernization of legacy systeshsnéegration of Com-

mercial Off-The-Shelf (COTS) systems in custom architextwo important integration

solutions are identified [73]. On one handhite boxmodernization technique requires
thorough knowledge of the system’s internals. Good undedshg of the general pur-
pose of the system and supported use cases, its overaliuseiand its internals are
required by this modernization technique. The encapsulgirocess uses the informa-
tion mentioned above to decide exactly which components tabe encapsulated and

if restructuring of such components is required or not.

The black boxencapsulation technique has the advantage that it doegequte thor-
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ough understanding of the internals of the system and omytats behaviour supported
through its interface. This approach considers the soéwamponent as a black box
for which the only details available are the structure ofdbexmunication interface and
the functionality the system is supposed to provide. Sirgthar documentation about
the systems internal nor the source code are availablentbgrator cannot make solid
assumptions about the implementation quality and its kiebavFor complex systems
even an intense testing of the black box system cannot ppsober all the possible

scenarios that may apply to the system.

Apart from the technique used to encapsulate the funciiyrafla legacy system there
are two important elements that have to be considered. lerdodbe integrated with
the rest of the components of the target system the encépduamponents must use
a communication technology that is compatible with the nedbgy used by the other
components. With this requirement fulfilled, the messapesdre exchanged between

the components must be understood by both components.

It is often not possible to have the same internal data reptason model for all the
components of a software system. The data model used mayposaa for efficiency
reasons by the internal algorithms. Therefore the onlytgwlavailable is to implement
a translator component that mediates the communicatiomeeet the two components
using different data encoding models. If the number of comepds that have to be
interconnected is high a significant number of translatmehia be implemented. A
potential improvement considered in [70] for integratiegdcy components is to use a
single data model for the messages that are exchanged ewerwacation channels and
thus reduce the implementation complexity when havimgmponents fronm*(n-1) to

2*n.

Due to the importance of legacy software for both researchsarftware industry the
possibility to automate integration with new technologiess thoroughly investigated.
The high variety of models and technologies used to implés@iware systems makes

implementation of a universal encapsulation solutiondaiffito achieve. The encapsu-
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lation process has still to consider several common issues:

1. The encapsulation technique refers to the direct meacwnonunicate and lever-

age the functionality implemented by a legacy software camept

2. The data model used by the encapsulating component, ughggnerally a more
abstract and more versatile data model that the specific seé by the legacy

component

3. The technology to be used for exposing the legacy funalityras required by the

target system

The white box encapsulation provides better control overlt@haviour of the result-
ing system but it requires reengineering effort while thackl box technique is usu-
ally easier to achieve but less reliable. When access to threesaode is provided the
changes that ensure compatibility of the legacy system&wentechnologies can be
incorporated directly in the legacy component and theeefee don't have to separate
components, the legacy component and the wrapper, thabedfto use a potentially
unreliable communication mechanism. If black box encagisui is used, the wrapper
has to accommodate the available communication mechahairthe legacy component

provides and the underlying data model that the componettiésto understand.

One of the most flexible communication mechanisms is basedGiIP. Its basic ca-
pabilities allows exchange of data formatted as byte stsdaunh the preferred message
encodings are based on XML languages. Available TCP/IP camuation mechanism
permits a high degree of freedom in choosing which technetoand programming lan-
guages may be used for wrapper implementation. Unfortlyntitere are many legacy
systems that were designed to be used as command line tabihemrefore the only
mechanism that can be used for encapsulation is through comation pipes. Itis a
typical case of program level encapsulation in which thgypam is started as a process

and its input, output and error streams are controlled bywiagper. The process is fed
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with the expected input values and the results are parsedtfie values obtained from

the output and error streams.

The legacy components are not only heterogeneous withdegahe communication
mechanisms that can be used to interact with them; they acehaterogeneous with
respect to the underlying data model that can be used to comata with the legacy
system. Most of the systems that can be used as commanddisesipect as input a list
of parameters that define the input values or system patHeddHat store the necessary
input data. Encapsulation of command line interpreterses enore difficult since they
are interactive systems for which there is a close dependagteveen the input values

supplied and output values obtained as a result of proaggssin

Developing generic methodologies and frameworks to endafgslegacy components
using the black box approach was considered by severalrobsaad industry projects.

To overcome the inconvenience of multiple legacy compantiat have to be statically
wrapped using individual wrappers, Fiesher et al [89] ptesia script based frame-
work that is capable to connect to legacy components forhvadapted wrappers were
developed and registered in advance. It uses black box sulegin and a model of

dynamic wrapper selection that allows the system to evalwaich legacy component
must be called based on the external invocation paramedersices offered by legacy
components are exposed as CORBA methods and any call to su¢ch@dsemapped to

a program level encapsulation that uses one of severalg@ssimmunication modes:

direct invocation, pipes, or socket connection.

A more fine-grained approach of encapsulation was congldefd1]. Using procedure
level encapsulation legacy functionality written using CQB@ogramming language
can be exposed and invoked through a Web browser. The sysi#srile individual

functions implemented in COBOL with the corresponding argutsebtained from the
client side through HTML forms. This model may be consideas@ viable solution for
exposing a small number of functions that are accessed @émdigmtly and not as part of

more complicated scenarios.
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The development of Grid related technologies have motiva¢searchers to migrate
their domain specific software in order to take advantagee@tbmputation power pro-
vided by Grids. JACAW [111] is a tool that allows proceduredlegncapsulation of
C/C++ based numerical and scientific routines. The encajpsulistachieved using the
JNI technology provided by Java and the resulting companare adapted and can be
used as standalone services or they can be composed usifrgattieeworkflow manager.
Adapting the legacy components, forces the use of the Tdateamodel for interchang-

ing messages.

For command line utilities specific to microbiology resdadomain, SOAPLAB [161]
provides a framework that allows easy integration of comuiniame utilities in a Web
Services based distributed computation environment. Tria@per modules implement
simple program level encapsulation. Configuration files ndestribe for every legacy
component details regarding the command line tool and trenpeters that the tool ex-
pects when invoked. Among other features of the system, dpAiRides basic discov-
ery functionality of the utilities that are registered te $ystem and the utilities are made
available for remote invocations through Web service fata&s. Once the functionality
is available through Web services other components caty eéaglement adapters to
compose the functionality or to provide access using otlstrilouted technologies such

as Web pages and Web portals.

Nimrod [53] family of scientific software products is not grd package that is able to
integrate command line utilities in Grid environments blsoaa platform that allows
resource management and task scheduling over Grids. Wappchanisms used by
Nimrod are based on the program and job level encapsulasomg @ black box ap-
proach. One of its advantages is that it can be used in camuneith a variety of Grid

middleware products such as Globus Toolkit. Using Grid djefile transfer mech-

anisms the wrapper of a command line tool is able to trangfgources required for

processing from other computational nodes.

A similar evolution path and set of functionalities applg@to the NetSolve/GridSolve

88



Chapter 3. Exposing CAS Functionality as Web and Grid Services

family of products [80, 162]. The initial intent was to usewerk capabilities to con-

trol and use in a collaborative mode hardware and softwa@urees distributed over a
network. The basis of the system was the client-server tacathral model. As a proof

of concept, the system demonstrated its capabilities tesscemote functionality pro-
vided by a linear algebra package, LAPACK [38]. In the proploseshitecture there are
two important types of components. The first one is the semmch exposes wrapped
versions of locally installed routines. The second one ésagent which indexes exist-
ing services and assists the client in choosing the mositgaiservice according to its
needs. Using task sequencing based on a Direct Acyclic Gi2f8) representation of

a workflow, the system is able to direct a list of interdependasks to a single server
in order to prevent network traffic. The underlying mode igd&PC which is based on

function handles and session IDs.

Grid systems’ most important aim is to share computaticesdurces using mechanisms
that make sharing resources transparent for the and usengamntant support in this aim
is offered by middleware packages for building Grids. Gkbifers several important
fundamental services that allow building up collaboratéveironments. Without ex-
tending Globus basic capabilities, legacy software slatédy program and batch level
encapsulation may be accessed using GRAM managed jobs. & oigy use the Re-
source Specification Language (RSL) to instruct Globus toueea certain program or
batch of programs for which a list of parameters should be Agzhrt from information
that identifies the server machine, the executable to beedtand its parameters, RSL
job descriptor may contain meta information about the ettecuDetails such the num-
ber of times the executable must be run, the minimum and maxiamount of memory,

the maximum time to run and other similar parameters may beifsgd.

The emergence of Grid technologies did not provide new nsookintegrating legacy
components [125] and exising models still rely on black beapping. The mechanism
offered by middleware components such as GRAM are task edend the user of the
remote service has to provide details about the task andpghiecation that is going to

solve the task. The other model is based on exposing furadtiprof legacy systems
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through a more friendly and easier to manage Web servicdaoes. As a step further,
basic management capabilities offered by WSRF framework asa¢he WS-Resource
related technologies were considered in [125] as a base dog somplicated problem

solving environments.

Web services interface is also preferred in [106] as a viapt®n for creating a generic
wrapper for legacy software. The generic wrapper still negputhat the administrator
builds control files to describe the interaction betweenwh&pper and the legacy ap-
plication. The high number of initiatives trying to offer alstion for integrating legacy

systems into distributed environments such as [168, 55irgfi¢ate that a generic ap-
proach cannot be seen as a viable solution for all cases. iEslaghtly generic approach

may be considered, the high heterogeneity of legacy systapwses tailored solutions

for given situations.

Our solution uses the wrapping technique and exposes @unadily of CASs through

the interface of Grid Services. A custom interface and Gedv/e is a more versatile
and efficient solution than using WS-GRAM capabilities ndyiyerovided by Globus.

To demonstrate this we have tested the access time reqairactfient to reach the CAS
hidden behind the service. The test bad we used is a servePAHZdiLiant DL-385 with

2 x CPU AMD Opteron 2.4 GHz, dual core, 1 MB L2 cache per core, 4OERAM, 2

network cards 1 Gb/s.

The results obtained for the case wHeanCommandvas used to run GAP and Maple
tasks shows an average of 51 milliseconds while for the WS-GRfproach showed

an average overhead of 678 milliseconds. The differenosdsst the two approaches
is significant when multiple invocations are needed, asernctise of combining several
CAS functions. The invocation of the WS-GRAM service requinegstra \Web Service

call. Itis then expected that using WS-GRAM induces some @aath
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3.4.1 Summary

In in order to integrate existing legacy software composaértb distributed architectures

several strategies may be considered:

e reengineering of the software components using recenhtdabies;
e adaptation of existing software components;

e development of wrappers that encapsulate existing saéta@mponents and pro-

vided additional required capabilities.

The most versatile and easy to use approach in the contextstéss for symbolic
computation is to develop wrapper components that act asatoesl between clients

and computational engines.

Black box encapsulation is preferable to white box encagisuldecause the level of
insight regarding encapsulated software components isrlewd encapsulation is eas-
ier to apply if the range of systems to encapsulate is largefalfour interoperability
the wrapper should be designed to use a single generic datal imointeraction with
its clients and internally translate data from the geneatadnodel format to the one

required by the encapsulated software component.

3.5 Suitable Distributed Technologies for Symbolic Com-
puting

The computational infrastructure that we intend to usedayé scale symbolic compu-
tation problems is heterogeneous and highly dynamic. Thepotational resources re-
quired by large symbolic computation problems can be obthby bringing together ge-
ographically scattered resources provided by researtituitiens and universities will-

ing to share their computing power. Although such institasi are willing to share their
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resources, their already established computational deaaid enforced rules cannot be
easily changed. Any system that wants to use such resourcamversatile enough to
cope with specific particularities of individual computatal nodes and their respective
computational domains. Appropriate communication tetdgies, rules to be enforced
system-wide and software tools have to be carefully sadetieensure compatibility

with the computational infrastructure they want to buildop

The early distributed systems for symbolic computatiorad tere built had to rely on
existing technologies available at the time such as RMI [9CQRBA [183]. Their
primary goal was to provide small to medium scale systentsibald usually use hard-
ware resources provided by the local computational dom@ime such example is the
framework described in [159]. Even though they had as a taogereate systems that
rely on distributed computational resources, both Math\{@l) and JavaMath [170]
have the disadvantage to use technologies that are noeviabkystems that spread
over multiple computational domains. The first impedimenthiat they are not open
enough to allow clients and service providers to choose ghaiform and programming
languages they prefer for building clients and services. BMYVen more restrictive than
CORBA in this respect.

Another important limitation that systems build using CORBAI&MI have is that they
often require more permissive security policies to be irm@eted by domain firewalls.
Since security threats represent a major concern in cusketéms, it is often the case
that administrative rules prevent these systems to fumctiorectly. Limitations of the
RMI and CORBA motivated researchers and system developersdanfone versatile
solutions to implement distributed systems. As a result) \Blervices were created and
widely adopted as a compromise between interoperabildysacurity on one hand and
system efficiency on the other. The underlying architettsiye that Web Services
are based on is the routine-subroutine style and therefeqygpimgs between service

operations and functions provided by CASs are easy to achieve

Grid technologies, which were initially designed to use TieRocket connections for
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communication, have also evolved to adopt Web Services.d@stified in [147], the
use of Grid services for building distributed infrastruetsi for symbolic computations
may be beneficial in several respects. Amongst them, the WSifefworks could be
used to implement Multilateral Simple Conversation patdor which WS-Resources
mechanisms provides automatic state support [83]. Withudeeof WSRF a service
becomes stateful and a returning client is automaticalipgeized and session data
can be retrieved from the associated WS-Resource. Addilypraaltomatic resource
management may be used to free resources, a similar fuatitiowith the one provide

by the Java garbage collector.

While we consider these features to be helpful, we believettigae are several other
features that are even more important for symbolic comgutian the ones mentioned
so far. Grid services have native support for security whalminates the burden of
enforcing security and designing appropriate securitycped over disparate computa-
tional domains. Another important benefit is that Grid segsiprovide data management
capabilities. Dedicated interfaces and protocols proset®ire, reliable and easy to use
solutions for moving large sets of data from one computationde to another. Through
these services they ease the process of integrating disgaraputational resources into
a coherent whole. The advantages that Grid services prémideientific computations
in general and their direct support for the requirementsudised in Section 3.2 qualify

Grid technologies to be used for symbolic computations.

The CAS Server components were therefore designed to usapladitties that Grid
services have to offer. Execution, data management andvdiscservices that the CAS
Server interface has to provide were implemented using WSRipkant Grid Services.
CAS Server uses specific features of WSRF where they were rdguereas generality
of the solution was kept whenever possible due to rapid &eolwf technologies that
may require that CAS Servers have to accommodate new standaddtechnologies.
We found the WSRF mechanisms to be particularly useful forritéag the symbolic
capabilities that the CAS Server provides to its clientsugfoits interface. Information

about the CASs that the CAS Server encapsulates and the fosi¢hiat are available
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for remote invocations are organized as a WS-Resource. Natiexing capabilities
of Grids can therefore be used to discover these details. e/dhit discovery process
does not rely on the native provided functionality, theseatsalities may be useful for

compatibility with other systems.

Using Grid or Web services to expose functionality of CASs mlap have small imped-
iments. One such example is the lack of support for exposiogerthan one operation
with the same name and with different argument lists. Tstéition comes from the
standard the WSDL 2.0 [1] which explicitly forbids that op@ras with the same name
exist within the same service definition. This is not the ocagh regular CASs which
may provide functions that have the same name but with ardiftdype and number of
parameters. Therefore one-to-one correspondence bean@Aas function and an oper-
ation on the interface of the CAS Server would not be posskbken if such restrictions
did not exist, it is still not convenient to have services@sipg thousands of operations
as we would be forced to provide if one-to-one corresponelevere to be used. The
experience gained by constructing the Computer Algebra i Srvices (CAGS) tool
[60] has let us to the conclusion that the better approach issé a single operation

through which task requests should be submitted.

This design has the advantage to provide a static and sthadbof that the client may
use in a dynamic way. If new functions are implemented at th& @&vel and the

administrator exposes them as new accepted operationssdaedo remote clients, the
interface of the service does not need to change. It is ordgssary that the function is
registered in the internal Local Registry of the CAS Server.i®egion of new functions

is the only deployment step required. It is not necessaretompile or restart the
Grid service as is needed in the case of GENSS services wénghre that a new Java

operation is implemented for every new CAS function exposed.
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3.6 CAS Level Message Encoding

A key aspect to consider for CAS to CAS communication is the eémgpused for data
exchange among different CASs. Interaction between a readfiet& and the CAS en-
gine has to rely on a data model that is understood by both eonwation parties and
ensures that the content of the message is strictly detednisemantic information
is required in the case of symbolic computation to ensurernttessages formulated by
one system have the exact same meaning after they are deamitiedother end of the

communication channel.

As described in Subsection 2.6.1 OpenMath is one of the besgtes for encoding math-
ematical formulae due to the semantic annotations thabitiges. Mapping between
mathematical content formulated using OpenMath and tleenat data model used by a
CAS is provided by translators called phrasebooks [157]e@#CASs such as AXIOM
[26], GAP [3], Mathematica [24] have implemented phrasdisaat provide support
for a wide range of mathematical concepts while for other C&8$ components are
under development. Due to its features and related softteate that exist for Open-

Math, we also consider it as the main solution for encodintheraatical content.

We therefore rely on OpenMath as the encoding standard cdages that describe the
tasks request formulated at client side and we implemenitpgired parsers to decode
the information at the CAS Server level if such parsers do rist.eDepending on the
level of support that CAS engines offer for OpenMath, CAS Secam be used with
two types of encodings. One type relies exclusively on ther®fath encoding for all
details that describe the task, while the other adhereset®irenMath encoding to a
certain extent. If the second model is used, mathematicaeobis not entirely encoded
using OpenMath. A predefined OpenMath structure is used@staioer for plain string

representations of formulae that are specific to a particties.

The SOAP messages that are exchanged between a client and seWie only rep-

resent a container for the messages that are intended todeestood by CASs. The
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actual messages that are forwarded to the CAS are receivdw I§§AS Server as flat-
tened XML representations and they are transformed in XMin&t or plain commands
format before they are sent to the CAS. Either of the two messagodings aforemen-

tioned could be used, the preferred one being the full Opéinigiacoding.

Systems for symbolic computations have used OpenMath asetstechoice to encode
mathematical content even before CASs were able to unddr@penMath. Various
systems have used it to send mathematical content betweanwoicating parties. For
MathWeb for instance, mediator components translate Opémibjects in actual calls
specific to Maple, Magma and GAP. JavaMath uses OpenMatheaddta encoding
standard for sending computational requests but plaingséincodings are also allowed.
More recently, projects such as Monet, MathBroker and GENSS @penMath not
only to encode request and responses but also to descrili@dhfaces of the services
they provide. Matching algorithms implemented by brokess @penMath encodings to

search for appropriate services that could be used to saxera problem.

3.6.1 Encoding with OpenMath and SCSCP

One of the goals of the SCIEnce project was to develop a congatioin protocol that
would enable CASs to interact using a standard data encoddglmAs a result SCSCP
[96] protocol was designed. The SCSCP has become a de-facttastiavith implemen-
tations available for many CASs. Several major CASs, amohgsh tGAP and Maple,
Kant, Macaulay [109], Mathematica, MuPAD, TRIP [103] prawisupport for SCSCP.
Frameworks and libraries for SCSCP implementations areadlaiin C/C++ [16] and

Java [17].

The design and the implementation of CAS Server and the destge SCSCP protocol
were done by two distinct teams working in the framework & $CIEnce project and
the CAS Server component was one of the first to support thefulS€ 8CP. As further
described in Subsection 3.6.2 CAS Server supports a secamatféor encoding data.
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There are two dimensions of the SCSCP protocol that influence E&&er’s design.
The first one is related to the message encoding. It spedifeepdssible request and
response formats for messages that a client exchangeshgitBGSCP enables server.
Secondly, the SCSCP protocol encourages CASs to act as semieggrs. Playing the
server role, a CAS should be started as a daemon processsthaslio specific TCP/IP

ports to which requests formulated using the SCSCP protocoildhbe submitted.

Even if the CAS is not prepared to provide TCP/IP connectioissstiould not represent
a major impediment. Its ability to understand SCSCP woultrsfiresent an important
step ahead towards interoperability with other CASs. Aléwe means could be used
to deliver the messages to the CAS and retrieve the respoAsesrding to SCSCP
specification, any message exchanged between CASs shouldatd &penMath ob-
ject describing the call and meta-data regarding the chkrdfore, the CAS should also
implement the OpenMath CDs used by the client to formulategtjgest. Currently, the
support for OpenMath is growing and an increasing number o8€8onsider imple-

menting OpenMath parsers.

The SCSCP calls target functions that are implemented by the l[@2&8ling the call.
When parsing a SCSCP call, the CAS should be able to identify thetiin that in-
ternally should be executed and the list of arguments that tabe passed. Basically,
OpenMath symbols from the SCSCP call are mapped locally totiam@ames. By
placing a certain OpenMath symbol inside the call the messagually requests that
the associated local function is invoked. All argumentcHja within the call and all
responses should be described using OpenMath standarckafapée of such message

is given in Listing 3.1.
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1. <OMOBJ >

2. <OVATTR>

3. <OVATP>

4. <OVB cd="scscpl" nane="call _ID'/>

5. <OVMBTR>ani d</ OMSTR>

6. </ OVATP>

7. <OVA>

8. <OVB cd="scscpl" nane="procedure call"/>
9. <OVA>

10. <OM5 cd="SCSCP_transient 1" nanme="Factorial"/>
11. <OM > 10</ OM >

12. </ OVA>

13. </ OVA>

14. </ OVATTR>

15. </ OMOBJ>

Listing 3.1: Example of SCSCP Call

The call in Listing 3.1 represents a simple example thatestyua the computation of
a factorial. The header section of the SCSCP message mayyspet# information
regarding the request and the computational requiremieait$ite machine on which the
CAS is running should meet to be able to handle the call. Wittencall the header is
specified using thecOMATP> element starting dine 3. Conversational communica-
tion patterns may even be supported by using a cookie mesthahat is able to relate
multiple calls to a single client session. The mechanismookies that a CAS is able
to understand should be supported by the the inner core cCA% External mecha-
nism that could provide support for this feature, such as WSsRees, are less generic.

Internal management should be preferred when sessionsaurieed.

The OpenMath symbol usedlate 8is specific to SCSCP and instructs the CAS parsing
the call that this is a remote call that targets a functionl@mented by the CAS. Aine
10the message specifies the OpenMath symbol that identifiégribgon that should be
called, and further, it states that the simple OpenMathatkj©MI >10</OMI > should
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be passed as a parameter. Based on its internal configurdt®@AS should be able to
identify the correct function to call internally, to exeeut and formulate a response to

be returned to CAS'’s client.

Using OpenMath for data encoding is an important step faiviar CAS to CAS inter-
operability. The use of OpenMath ensures that both the stgunel the response provide
sufficient information to be mapped to internal data typea aeterministic way. Any
CAS that implements support for the OpenMath dictionarieslwgithin the call is able
to understand the call and to take the appropriate actidms SCSCP protocol provides

a clear message structure that should be preferred for CAS ®doAmmunication.

3.6.2 Encoding with OpenMath and Plain Text

Most of the CASs do not yet support OpenMath as an encoding Ifmd#ata exchange
with other CASs. Older versions of CASs that do not support @fzg¢h are still in use
and a migration process is not entirely possible due to ctibifiiy issues between older
and newer versions. Non-standard data representationsimgéa only for a certain
CAS or even for a certain version of a CAS are therefore stilliregl. Integration of
such CASs within distributed environments is also neceshaeyto the functionality that

these CASs provide.

The same generiexecute(pperation provided by the CAS Server’s interface as single
point of entry can be called using two types of encodings szdee the task. Additional
to the format specified by SCSCP protocol tasks can be encodedragate OpenMath
objects. This alternative encoding uses OpenMath as a framwéich various details
regarding which CAS engine, which function from which packafpould be invoked
and which are the arguments to be passed to the functionTdadl .code snippet shown

below provides a generic example of this format.

At client side a remote function call is translated to theesponding OpenMath object

as the one in the following example. The message is parsed &iSefver side and the
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information encapsulated in the OpenMath object is useddate the appropriate CAS
specific command. This process is similar to the one thatsgli@oks use to translate
OpenMath encoded objects to commands that a particular CA&rstands. The full
OpenMath encoding is preferred because it is more genediaiay CAS implementing
a particular OpenMath CD internally maps OpenMath objectiata structure. This is
not the case with the encoding below sinceprecedure packageand argument details

are specific for a certain CAS and are meaningless when uskathigér CASs.

<OVOBJ >
<OVA>
<OMS cd="casal | 1" name="procedure_call"/>
<OMSTR>pr ocedur e</ OVSTR>
<OVBSTR>package</ OVSTR>
<OVBTR>Ar g1</ OVSTR>
<OVBTR>Ar g2</ OMSTR>
</ OVA>
<OVOBJI>

Listing 3.2: Example of Plain Call Encoding

In Listing 3.2 theprocedurecall OpenMath symbol marks the type of call being formu-
lated. The first twdOMSTRobjects describe the function to be called and the package
that the function is part of. The rest of the following OperiMatring objects, in our
caseArgl, Arg2represent the plain string encodings of the arguments tnat to be

passed to the function call.

Using the message encoding in Listing 3.2 functions implaet by CASs are made
available through remote function invocation. This applotnough breaks the CAS to
CAS interoperability requirement and it should be used oslg aompromise for CASs
that do not support SCSCP and OpenMath. Another problem iatbaments are not
encoded using a standard format and therefore the funaiarich the arguments are
passed has to implement ad-hoc functionality to parse aedoiret the string represen-

tations.
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Regardless of the data type of the arguments at the clienttbie@emote function call
will only receive their plain string encodings. For any athge than plain strings, the
client must map/transform values to their string repres@n before enclosing them in
the message call. The result obtained by calling the targettion is the exact string
returned by the CAS, and thus, the client is responsible foipg the string result and

for extracting the useful information.

If for SCSCP format, the Client Manager component of the CAS 3amby extracts
some meta information and then forwards the original SCSCBdang to the target
CAS. The Client Manager acts like an adapter by implementingdgé® between the
client and CAS, through the interface of the Grid Service. dllent manager is respon-
sible for extracting the details of the call from the messaige formulate a meaningful
call that has to be submitted to the CAS. Most often, this meguhat a string represen-
tation of the call with the formgbackage.function(Arg1,Arg23 created and sent to the
CAS to be evaluated. The call string should be exactly the semtiee one a human user

would submit through the common interface of the CAS thateslly accessible.

An important difference between this type of call and a aaltimitted through the com-
mand line interface of the target CAS is persistence. Wheniwgikcally with a CAS
such as GAP using the command line interface, a functionnsajt affect the state of
system or session variables that are stored in the memohg @AS. A subsequent call
in command line could potentially use the initialized valu&his interactive behaviour
is not available between two subsequent calls to a CAS Seritleowt additional inter-
mediary steps that would store and resume a certain statesifplicity, calls to the
CAS Server must be self explanatory and self contained andawiopis state should be

assumed.
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3.7 Summary

In this chapter we have shown that distributed infrastm@stfior symbolic computations
represent the solution for allowing computer algebra ssts to solve large symbolic
problems. The design aspects of the CAS Server componergrnpeelsin this chapter
were previously presented in [58, 61, 148, 150, 129].

Computer Algebra Systems (CASSs) represent the main compuddengines for sym-
bolic computing. We have shown that the most convenient wéwild an infrastructure
for symbolic computing is to reuse the capabilities of CASdriggrating them in a
broader architecture. There are three important problémishave to be considered
for successful integration of CASs: the encapsulation teglenused to communicate
with the CAS that further allows remote clients to commurecaith the CAS; the data
model used for encoding messages exchanged by the clietii@@RS; the technology
to be used for exposing CASs functionality to ensure thatmitieclients may access

the functionality in a seamless fashion.

The CAS Server component was designed to allow more than onet€B& exposed
through the same interface. To achieve this, the CAS Sert®lilee a mediator between
remote clients and exposed CASs. As discussed in Sectioh@&way a CAS may be
interconnected with the CAS Server depends on the capabitiiat the CAS natively
implements. Building wrappers specific to a certain CAS is tlustnconvenient and

flexible solution.

Interoperability represents one of the major issues irbéistang a distributed symbolic
environment. Lack of interoperability impedes potentigmts from accessing func-
tionality provided by CAS Servers. To overcome these problémee important issues
have to be addressed: the consistency of the interfacedathenodel used for encod-
ing messages and; the technology used for implementingitedaces. The structure of
the interface that the CAS Server exposes is unchangedeaatigp the CASs that are

exposed by the CAS Server. Driven by the requirements spe@ifi®.2, as a minimum
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the following set of capabilities has to be provided: thdighio receive computational
tasks and provide the results in an asynchronous way; aespaht of entry through
which the tasks should be submitted allowing thus more then@AS to be exposed
through the same interface; a set of operations to allow #see to discover provided
functionality and; capabilities to manage execution oksas/Ve have also shown that
exposing CASs functionality should be done by permittingrais to access selected

routines implemented by various CASs.

Symbolic components integrated in a distributed architectwhether they are service
providers or clients must use a common encoding format trabe used by all parties.
The most successful standard for encoding mathematicalulee is OpenMath. The
SCSCP protocol is currently the 'de facto’ standard for CAS to €A®munication. We
have designed the CAS Server component to use the SCSCP pirfotantd¢rconnection
with CASs as most of the popular CASs already provide suppdGS8CP. The use of
OpenMath and SCSCP protocol is of paramount importance ferdperability and
cooperation between CASs. Lack of support for SCSCP and Opénivkat be partially
overcome by using an alternative non-standard encodingehtbdt we have described
in Subsection 3.6.2. The latter has the advantage that ittmaysed as a workaround in
particular scenarios but it lacks the generality and fléxyihat SCSCP and OpenMath

provide.

Due to the advantages that Grid Services provides, as stmo8a Grids may be consid-
ered as the most suitable technology of building a distethinfrastructure for symbolic
computations. We have used WSRF compliant Grid Services tteimgnt the CAS
Server component’s interface. Thus, the CAS Server may geaccess to one or more
CASs installed on a ordinary desktop machine or, in more amhénget-ups, it may hide

a whole LAN or computational cluster.

The CAS Server is therefore a suitable solution for exposing @ctionality to be
accessible by remote clients. Grid Services and Web Seraieestandardized solutions

for implementing the RPC architectural style. The interfalcgervices is clearly defined
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by the WSDL document of the service and any client can use é&safthey are able
to formulate correct requests, independent of the platibwey use. New functions im-
plemented by a CAS can be easily exposed through the Gridcgenterface without
the need to modify the services. In addition CAS Server pewid set of functional-
ity that allows clients to discover which functions the CAS\&e provides and they
can control the execution of tasks by pausing, resuming andedling tasks. The ad-
vantages that Grid Services provide in comparison with Watvi€es for implementing
CAS Server are default security mechanisms and data managemeices that allow

seamless transfer of files between execution nodes.
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Chapter 4

Orchestration of Web/Grid Symbolic

Services

This chapter addresses the problem of composing the funaditip of several CASs for
solving symbolic computation problems as reported in [@0,65, 148]. In Section 4.1
we analyse scientific workflows particularities and the sdeequirements they raise.
Symbolic computation workflows have to be expressed in adbtimat can be under-
stood by existing workflow execution engines, usually aspasitions of generic work-
flow patterns. In Section 4.1.2 we provide a set of guidelioedranslating common

existing patterns in symbolic computations to the genead<low pattern format.

An overview of generic tools and technologies for desasiptiexecution and manage-
ment of scientific workflows is provided in Section 4.3. Tregpabilities may be used to
support the execution of symbolic computation workflowsS#ttion 4.4 we introduce
a new component of our architecture, namely the Architectar Grid Symbolic Ser-
vices Orchestration (AGSSO) Server component. The AGSS@Bprovides support
for automatic execution of workflows for symbolic compubatiby orchestrating CAS

Server components previously described in Chapter 3.
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4.1 Service Orchestration for Symbolic Computing

In Subsection 4.1.1 we analyse the most important diffexeihetween regular business
workflows and workflows for scientific computation. In Subisac 4.1.2 we briefly

present the most common workflow patterns and workflow caitegjo

4.1.1 Scientific Workflows and Their Requirements

The emergence of Web and Grid standards and the demoai@tindticcess to comput-
ing power have had a major impact on the way scientific resei@sults are obtained
and disseminated. The main motivation for creating a tisteid computing architec-
ture regardless of the actual set of technologies used islieed the computing power
and software tools needed to solve large scientific problétogerful computing tools

enable scientists to share their results and to test hypeshia a seamless fashion.

Scientific computations and experiments are different frarming simple and isolated
computational tasks because they may involve thousandsofigon steps and require
access to data and computational capabilities situatedagrgphically scattered loca-
tions. This is also the case for large symbolic computindplenms which require on one
hand large computational resources and on the other hanthbped software that may
not be available on a single computational site. In ordeioteeslarge symbolic prob-

lems computational resources and capabilities that caffé@d by a single machine or

a LAN may not suffice.

The most simple and straightforward composition of CASs'cfionality may be ob-
tained just by accessing through the usual user interfage@AS the capabilities of
another CAS instance. Most of the existing systems that imeig capabilities for CAS
to CAS collaboration such as MathWeb-SB [94] provide suppmrsimple composi-
tion. This type of composition is suitable for less complexnputational problems and

for problems for which user steering is required betweelviddal calls. For problems
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that can be run in batch mode, i.e. no steering is requireditartsolution is to provide

mechanisms and software infrastructure for automaticigi@t management.

Depending on the data access patterns specific to a certdilepr, even if parallel ver-
sions of algorithms may be used to solve a problem, itis madigs efficient to use highly
distributed infrastructures. One such example is the caatiom of Gobner Basis [123]
for which current algorithms are not suited for massiveriigted environment due to
close data dependencies between individual steps of tbhethlg [33]. For other prob-
lem classes, such as the ones similar to the orbit enumer@gorithm [126], solutions

can be implemented by combining independent services [66].

Decomposition of an initial problem in smaller problems @ot/ing them using a dis-
tributed computational infrastructure may represent o loand a solution to provide
the required computational power and storage capabibitneson the other hand may
significantly reduce the wall clock time required to solve ffroblem. As a result of
the decomposition process a sent of individual executiepssare identified. The in-
terdependency between these steps has to be thoroughlgndotad to ensure correct
management of the execution. A high level view of the comiarnas required during

planning and execution phases. The most common way to esgresch processes,
generically named workflows, is through directed acyclapirs (DAG) which describe
an abstract representation of the computation. The nodéseafraph identify com-

putational steps and arcs determine the dependency betwegrutational steps. De-
pendency relations may be due to data dependencies thaasingenerates which is
required as input by another task or they may just be regliyatie impact that certain

tasks have on the overall state of the system.

Management of workflows with a low level of complexity is féds even if it is done
by the client components. In this case the client has to @fglsend requests for each
node representing a computational step, collect resutts@amulate the subsequent re-
quests until the computation is finished. This solution sauitable for client side

applications which occasionally require access to funetity that the application does
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not natively provide but is made available by external s=wi The client centred execu-
tion approach may be easy to use for small scale problemsdry tigat are comfortable
with using technologies and programming languages thatigiegcsupport for interact-

ing with external services. The overall complexity of thesteyn may also be smaller
since support components that should assist the usersamatit workflow manage-

ment, such as components for service discovery, schedaiddoad balancing are not
required. In this cases, the client itself is responsibitarianaging the whole computa-
tion, including discovery of suitable services. As showsubsection 3.2 this approach
has several shortcomings related to usability and perfocmaf the whole system and

form complex workflows and more advanced solution shoulddaelu

The effort required to maintain verbose workflow descripsican also be significant.
Hard coded implementations of service compositions afeedif to understand because
they are cluttered with explicit calls and error handlinglesections. They are also
hard to adapt and maintain. The overall evolution of theesyss impeded since every
change that occurs in the interface or in the location ofiseshas to be reflected in the
source code combining the services [130]. Describing wowkslin more abstract terms
that do not contain low level details about the actual sessto be used is a more flexible
solution especially for describing large and complicatedkftows. Workflow execution

is best achieved by specialized management engines thabkréo follow the execu-

tion process and provide built in capabilities for fault mgament and compensation

handlers.

Due to the nature of the problems they have to solve, enviemtsifor scientific com-
puting must provide support for features that are less comfap business oriented
architectures. The structure and the order of magnitudeiehsfic workflows is much
different than the ones of business oriented applicatiltmisusiness environments, tasks
usually require a short time to complete and the number ofatbles composing a work-
flow is relatively small while scientific workflows are compalsof thousand of steps and

each individual step may need a long time to complete.
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The main requirements that a system for management of gwemorkflows should

meet include capabilities to combine components in a moduégy, exception han-
dling and compensation mechanisms, and management aapalpi4]. Usually, most

of these capabilities are provided by centralized workfloanagers generically called
workflow execution engines. The role of the execution enggrte provide the neces-
sary mechanisms to bind, invoke and retrieve results frotereal services according
to the description of the deployed workflow. The most impatrtequirements raised
by scientific applications that such engines should prowidee previously analysed in

[105, 166]. These can be grouped into three important cagsgjo

1. Integration with existing standards and software tetdgies,
2. Service discovery and workflow management capabilities,

3. Runtime requirements.

Workflow engines should be flexible enough to the adapt to vaséty of technolo-
gies that are used to implement services. Even if most agiservices are provided
using the Web Services standards, such engines must beoabkeriact with services
that are implemented using technologies such as RMI or CORBAallys out of the
box engines provide native capabilities for interactingwhWeb Services while for other
technologies, extension interfaces are defined. This asth&scase for the ActiveBPEL
[28] execution engine, one of the most popular executionnesg which we have in-
tegrated as part of our AGSSO Server component. To assisistrein the process of
service discovery and workflows execution, the engine shbealcapable of interrogat-
ing external discovery registries from which to retrieve #ddresses of the services to

be used.

Workflow management capabilities are extremely importarihe context of scientific
computing. Because the workflows as a whole and the individis&k that the workflow
is composed of may require long time to compute, it is impurta have the ability to

monitor the tasks and steer their execution when neces3asks that take too long
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to be computed could be discarded and alternative soluippked if the human expert
chooses so. Task completion may require a large amount giatational resources and
it is sometimes required to temporarily free resources hysipg and even cancelling
a task. If check-pointing is available, long running taskaynsurvive computational

disruptions caused by system failures or regular mainmauntivities such as system

updates or restarts.

Monitoring capabilities should allow users to supervisekflows’ execution. If exe-

cution errors occur, the system should be able to handlertbeseand even to cancel
the whole execution process and to restore the system toeNsops state. During ex-
ecution, the user should be able to manage the executionusingaor cancelling it.

Intermediate results should be stored by the system far daterence and to allow the
system to resume computation in case of failure. Errors rtsmyaccur due to non stan-
dard interfaces of composed services and the data typesisieeyl he workflow engine

has therefore to provide mechanisms that are flexible entwlghndle such cases.

On occasions, the human expert may even guess which arepbeted results for one
or more tasks that are part of a complex workflow. Therefoeesffecialist can choose to
override a particular task by assigning a specific valuettteatiser wants to consider for
the given task. On one hand this feature may dramaticallyongthe overall time of the
computation because the individual tasks for which theltéesassumed and not com-
puted are skipped. On the other hand, based on the same ldgpil even possible
for a scientist to experiment with different values manpalssigned to different tasks
without actually changing the computational steps. Theigfist can thus investigate
possible results that can be obtained by running the samidlawrfor multiples cases

and testing possible results obtained for when partialli®ave manually assigned.

Scientific discovery is only valid if the obtained resultsidze replicated and the way
that they were obtained properly documented. Reusabilityraproducibility are par-
ticularly important in scientific processes and a workflownagement system should

save all relevant meta information needed to support trepa@irements [105]. Exam-
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ples of data that should be stored include the abstract vearkiescription, job requests
and obtained results, details regarding the configuratidheoexecution nodes that ex-
ecute the jobs of the workflow and execution duration. Exeougngines store au-
tomatically some of the required data but additional fesguare often required to be
implemented. Once results of complicated or long runnirggesses are obtained, they

should be stored and reused if possible.

Workflow description languages like WSFL or BPEL that are destiyjto be used for

describing workflows in format suitable for processing byrkflow engines are com-

plicated and contain details that are not of immediate @stiefor application experts.
An overview of such languages, workflow engines and tectesqused for automatic
composition of Web Services is given in [171, 146]. Applicatexperts should use ap-
propriate high level languages, relevant and intuitived@pecific application domain,
to describe their workflows and not complicated languagesworkflow engines un-

derstand [105]. High level languages must provide cap#gslio compose services in
a seamless way while low level details are hidden. The astraices’ details involved

in workflows’ execution can be filled-in at run time by suppoomponents. Auxiliary

management steps that cover transfer of required data oifispeeps that should be
executed to interact with a specific type of service can atsautomatically provided

[166].

The design of the workflow description languages for sdientvorkflows have to be

appropriate to support the way scientists interact with mating infrastructure. Clients
communicate with servers using massages that describetind eequest and not how
the goals should be achieved, therefore they are ratheripise than instructive [34].

Consequently, the users should be able to invoke alreadpylpbkervices rather than
defining themselves the code that needs to be executed &vadhigiven goal. When
there is a need to combine several services to achieve atughllevel constructs that

define the workflow should be provided to the user.

Current workflow execution engines are able to partially supihe requirements men-
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tioned above either directly through auxiliary add-onsrmne of the existing solutions
is able to cover all the requirements stated in a way suchtliegtare straightforward to
use. Additional components that extend the functionaliovgled by these engines have
to be implemented and integrated. Solutions that partetigt for particular domains
cannot be adopted without applying changes that make thegabkufor the targeted do-
main. One simple example is the use of visual tools to compndenmanage workflows
which may be appropriate for some domains but impossiblategrate with systems

that lack support for visual interfaces.

The requirements that are applicable for scientific workflow general are also valid
for scientific domain of symbolic computations. The feasumgentioned above would
have a positive impact on the development and disseminafispmbolic computation
results. A successful solution for scientific workflow maeagnt for symbolic comput-
ing has therefore to provide support for these featureshiMibe framework of MONET
project, the broker component has the role to discover gypjate services that should be
invoked by matching the problem description that a cliemppdies with the capabilities
of existing services. Since more than one client uses the smaker, one of its design
requirements was to provide a planning service that shal&tsservices based on the

general state of the system and problem specific charaatsris

The planner was initially intended to also provide supportdutomatic composition
of services for the case in which a single service was notcseffii to solve a certain
problem [32]. Unfortunately, due to the complexity of th@lplem, a simpler solution
was considered [69]. Instead of automatic composition,stretem was designed to
provide mechanisms that allow administrators of the systedeploy BPEL workflows

that combine existing services. They proved the feagjbilitthe solution for services
that could be executed in sequence. The disadvantage obligos they proposed
is that regular users were not able to describe and deplay dtwa workflows, and

therefore they were restricted to use only existing ones.

The Distributed Maple system described in [160] uses sdeedomponents to select
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and connect to Maple instances linked through a Java framkewidandles of tasks
may be used as input parameters to other services and tfeedsfpendency relations
may be created. Dusher [83] relies on BPEL and WSRF to implemédautieBal Multi-
Conversation patterns by calling services that expose GARgUhis technique, ses-
sions are created to a GAP instance and intermediary resel&tored in resource prop-

erties of a WS-Resource.

The CAS Server components described in the previous chapersent the foundations
of our architecture. Besides providing means to expose CABgtionality through
Grid Services interfaces, they implement features thatbsansed to control the way
tasks are executed, and provide management and monitajpepiities, implement
mechanisms to store and index for later retrieval the resaflcomputations, provide
data management for large data sets. Without these fegito@sging a symbolic infras-
tructure that meets the requirements mentioned above wmiltde possible. Our final
goal is to provide symbolic researchers a platform that Is tbassist them in describ-
ing and controlling complicated workflows in a way that it mguitive but sufficiently
complex to cover their needs. The user has to be able to creskéiows, send them to

be executed by specialized component and retrieve theseduheir computations.

To support composition of symbolic services provided by CA®vErs, we have de-
signed and implemented the AGSSO component. This new coamperve introduce
is responsible for receiving computational workflows frolermts and to manage them
on the behalf of clients. The role of the AGSSO component grtwvide on one hand
capabilities that are specific to a workflow manager combingd other capabilities
such as workflow and task management, service discoveryatadehnipulation. This

component and the functionality it provides are furthecdssed in Section 4.4.

4.1.2 Workflows and Workflow Patterns

The lifecycle of a workflow is composed of several stagesdtatietermined by the level

of detail known about its structure, services to be invoked @guments that should be

113



Chapter 4. Orchestration of Web/Grid Symbolic Services

provided to match the parameters expected by services [76]:

1. Workflow as a template - general problems are describesddlaws using con-
structs specific to a certain computation domain; the role @mplate workflow
is to describe in general terms the computational stepshthet to be undertaken

to solve a class of problems

2. Workflow instance - is obtained from a template workflow bp@ying the argu-
ments matching the parameters expected by the workflow as gpit may be

executed;

3. Executable workflow - based on a workflow instance the workfhanager binds

the task of the workflow on specific computational resources

Depending on the architecture of the systems and the roleusacomponents have
in the workflow’s life cycle, the workflow could evolve fromdhitemplate stage to the
executable stage within the boundaries of a single compgpoedifferent components
may participate to its life cycle. For example, Active BPELSRmer could be used to
describe the workflow template, to deploy it and to invokeyifpboviding arguments to
the resulting Web Service. More often though, the border liatween the stages is not
obvious and more than one component collaborate on the warkfpath from template

to executable.

Scientific platforms for workflow management decouple tlagess of the workflow in

even more fine grained steps. The description of the workfédwd place at the client
component level where the user describes the workflow'sstre by combining abstract
computational constructs. At this level, constructs thratfamiliar to the user level of
expertise are used and based on the user actions, a workftmwdeh using a generic
workflow language is created. Once the template workflow seidleed, the client com-
ponent submits the workflow to a specialized workflow managgmomponent which

translates the workflow into a workflow language specific te ohthe available work-
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flow execution engines that the system uses. The resultimgfiew is still a template

since specific input values are not specified yet.

As soon as the user specifies the input parameters, the werkBioomes an instance.
The stage of the workflow in which system determines the &ctisaurces to be used
for execution influences the efficiency of the compositiomcess and differentiates the
composition technique to be used. Available resourcesfigorations are highly dy-
namic and heterogeneous. Over time new services are imptethehile older ones
vanish or change their interface or the functionality theyvpde. Static composition is
based on existing services of which details are known at tr&flew’s design time and
they cannot be replaced based on the state of the system\aratgne. This type of
composition has the advantage that the services are knovioregmd therefore compat-
ibility problems can be avoided. As a consequence, it isthlstess flexible composition
technique because once a service is modified or no longdableathe workflow itself

has to be altered or it will fail to execute.

Slightly more versatile is static composition with dynarbiadings. The structure of
the services to be used may be assumed at design time whikecthal location of
the services may be determined based on the latest avaifdbtenation just before
submitting a task to be computed. This type of compositigrossible if the technology
used for implementing the services permits decoupling@tigscription of the service’s
interface from the actual location where the service residie this case, the workflow
is static with regard to the interfaces but it remains vdiid service having the same
interface but hosted by another component of the architecsichosen. Using this type
of composition may improve efficiency because the bindintéoactual services to use
is deferred until the service needs to be invoked. The begtss may be selected based

on the current state and load of the system.

The most versatile but also the most error prone type of caitipno is the one in which
the actual services used to solve a problem are discoveredthtime. Typically, the

applications specialist describes a problem that needg teolved and depending on
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the nature of the problem and input parameters the systetnl@st@ determine in an
automatic way which services have to be combined. To achieseoal, the workflow
engine has to be able to understand the problem and to beaablatth requirements
onto capabilities that existing services can provide. @ledine above solution is the
most versatile but due to lack of standards and insufficieppert currently it can only
be applied in specific domains. A universal solution for dpiacomposition represents

a desideratum still to be attained.

The primary role of a workflow management component is to goethe functionality
implemented by other software components, regardlestétethnology used for com-
munication. Workflow execution patterns represent thedingl blocks that the user can
combine to describe a compound computation. Executioepatthave the advantage
of allowing the user to describe the solution at a high levalbstraction for which only
details that are of immediate concern of the user are speécifisual control flow con-
structs that a programmer uses to implement algorithmsd@mvesponding counterparts

to be used for describing workflows.

Workflow patterns may also be used to evaluate the expressgend suitability of dif-
ferent languages and composition techniques used for €sipgeworkflows [116, 27].
The workflow patterns are particularly important for delsiery the nature of interac-
tions that occur in distributed environments between autoyus components that are
orchestrated towards a common goal. The number of patteahgapply to Web service
composition is quite large and they try to capture behaabowances that may occur.
Several patterns though represent the foundations on wiingcbther patterns rely upon.
Basic patterns identified in [139] were further used to ingagé the expressiveness of
existing workflow languages [198]. A short overview of thegshoommon workflow

patterns is presented below.

A common pattern, theequence patterrepresents the sequential execution of two or
more tasks. The dependency between certain steps may by fomnctional or imposed

by data dependencies that exist between these tasks. Dhe tependency amongst
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Figure 4.1: Sequence and Parallel Execution

them, the tasks have to executed one after another and addspieask cannot be exe-
cuted unless all the tasks it depends on are finished. As shoftigure 4.1(a),Task 2

must wait forTask 1to complete before it can be processed.

If there is no dependency among tasks, they may be execupedatiel as gparallel split
patternthat describes a process fork. If the subprocesses reuriteeatain moment of
the execution, that point is a join point and the paralleltgplwith synchronization.
As shown in Figure 4.1, the two tasks have no interdependandyafter the two are
completed the processing branches reunite. This patteumees that every branch is
executed only once. As a variation of this pattern, nindtiple instances without syn-
chronizationpattern occurs when multiple instances of the same task Iboeuskecuted

in parallel but no synchronization is required after thegnptete.

A task or a a group of tasks may have to be executed only if aitonds met. Con-
ventional programming languages provide the conditionalstructif-then-else Such
behaviour may be expressed usoanditional patternglepicted in Figure 4.2. Thex-

clusive choice patterselects, amongst several possible branches, the branahthadd
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Figure 4.2: Conditional Execution Patterns

be executed based on the evaluated condition. Because oaligranch can be acti-
vated at a time the simple merge point that reunite the bemohFigure 4.2(a) is not
a synchronization point. Similarly, theultichoice pattern4.2(b), uses conditions to
determine if an execution branch should be activated or mbilike the first condi-

tional pattern, this pattern allows several branches torbel&aneously activated. For
all branches for which the corresponding condition is metekecution starts and the

tasks are executed in parallel.

One can potentially identify more than one possible apgrdhat could be used for
solving a problem and may want to try them by executing therparallel. The ap-
proach that provides the fastest answer is considered atitealest of the executions
that were started and not yet completed are aborted. Ses@rahg algorithms and
techniques are therefore tested at the same time by contpracesses and, as soon as
one solution is obtained, the rest of the processes may barded. This execution pat-
tern,deferred choice patterdepicted in Figure 4.3(a), is particularly useful for syribo

computations. It is often the case that the computer alggieaialist may use multiple
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Figure 4.3: Deferred and Repetitive Patterns

algorithms to solve the same problem but it is difficult togsee which is the one that

will compute first.

Often there are situations when the same action must be texkesaveral times with
various input arguments where the number of iterations @vnin advance. Con-
ventional programming languages implement this cons@sir <codition> do... or
while <condition> do... loops. This behaviour is described as thaultiple instances
with prior knowledge pattern A variation of this pattern depicted in Figure. 4.3(b)
is the multiple instances without prior knowledgeéhen an external factor that cannot
be anticipated determines the end of the loop executiorns paitern is also supported
by conventional programming languages in the formepleat...untilconditior> con-
structs. The number of iterations that must be executed wiesecond pattern is used
is determined by the processing itself. An example thattitsgattern is processing of a
list of objects to which new objects can be dynamically addi@ihg the execution. For

this type of problem the total number of objects that haveetpiwcessed is not known
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when the actual processing starts. The processing endsamy there are no more

objects in the list to be processed.

Virtually any computation algorithm can be described ughng execution patterns de-
scribed above. The task blocks from the diagrams above masent atomic tasks or
they may be replaced with other patterns. Therefore, syimbakcution patterns that
are used in symbolic processing can also be described adetstvel using the above
patterns. Workflow engines that support these fundameattns may also be used to
execute workflows for symbolic computations with the renthgt any symbolic evalu-
ation has to be done by a specialized component since workfhgines do not provide

support for symbolic computations.

4.1.3 Summary

The main characteristics that differentiate scientifickflows from business workflows
are their significant large size, the long time they requiresikecution and large num-
ber of task generated by iterative processing. Symbolicptaation workflows have
similar characteristics with other scientific workflows atetlicated workflow execution

managers are the most efficient way to execute such workflows.

To be executed by workflow managers, workflows have to be sgprteusing special
languages that are suited for automated processing bubserdnd complex. These
languages are not suited to be used by human users diredttharefore more intuitive,
clear and concise constructs that are easy to use by the hexparts must be provided.
Such languages must provide means to combine existing &xe@atterns to describe
workflows while unnecessary details such as the address attihial services to be used

for execution must be automatically filled in by the suppatsystem.

In addition to features that are already provided by exjstworkflow execution engines,

scientific workflows require:
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e mechanism to support provenance of obtained results;
e workflows re-execution capabilities;

e workflow steering that allow human experts to steer the ai@twf workflow’s

execution at runtime;

e workflow execution management such as cancellation, pausesaume of tasks.

Dynamic workflows have the advantage that they can solvdgmabby combining ser-
vices that are discovered at runtime. Opposed to dynamikfiears, static workflows
can only use services that were indicated at design timeic Stamposition with dy-
namic binding represents in-between solution becausetthetsre of the workflow is

fixed at design time while services are selected at runtime.

4.2 Basic Patterns in Symbolic Computing

Examples of execution patterns in symbolic computing caedsaly drawn from the
manipulation capabilities that are offered by existing CAEsst often, the CASs han-
dle mathematical formulae and structures as objects anaf labjects. One of the most
developed CAS system is GAP. Using GAP, with a list of objehts user is able to
execute several types of operations: apply certain tramsftions to all the objects of
the list, analyse the properties of those objects, creatdises based on certain criteria.
Depending on the nature of the problem, manipulations oeatbjcan even be possible

in parallel, on remote machines, if the computational gamtivates it.

The control structures used by general algorithms are ptetrof the standard program-
ming constructs. While their syntax may vary from one CAS tatla@g systems such as
GAP [3], Maple [10], KANT/KASH [21] all provide control strtures for control flow

and repetitive executions. A peculiarity of those systesrthat repetitive constructs are

usually available in conjunction with lists of objects. Témre these systems are not
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different with regard to their capabilities to describeidny complicated algorithms, in

comparison with popular imperative languages such as JaRéda+.

Algorithmic solutions of complex problems are obtainedtlgh execution of atomic
steps in a predefined order. It is the same case for soluti@tsite specific to symbolic
computing. Specific language constructs that control teewion flow within a CAS
can be mapped on control flow patterns used to compose Welt&er¥he actual pro-
cessing steps requested by a symbolic computing algorigmalso be mapped on Web
Services invocations. It is thus possible to translate goslementation of a symbolic
algorithm so it can be expressed in terms of workflow pattarmsservices invocations.
Languages that are currently used for describing Web Sewarkflows are too close
to the Web Service orchestration level to be used directligiwva CAS. The description
of such workflows requires low level details such as the axfdoé the composed Web
services and data conversion specification. It is therafecessary for CASs to provide

more abstract and versatile mechanisms to describe sudtfloves.

By analysing current CASs’ capabilities we can identify a magmpf CAS level con-
structs on more general workflow patterns. Even if it is netagls obvious, in fact
symbolic computations specialists organize the procgsastructions using workflow
patterns. Only when dealing with an external workflow execuéengine these patterns

become more visible.

The simplest execution pattern used in symbolic compusiige sequence pattern. This
often arises when the user runs several commands one afitaeaior if function com-
position is used. Usually, the current state of the systestoieed by the command line
interface that the application specialist is using. Wherlidgavith external workflow
engines, the actual steps of the computation have to bdycldantified and tasks have
to be defined explicitly. A hidden sequence pattern impligglfunction composition

such as:

a: = funcl(func2(b));
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must be clearly separated in smaller pieces using expkcjuence markers and task

isolation that the workflow engine can translate to invokésda external services:

sequence {
¢ = func2(b)
a = funcl(c)

Conditional patterns are also allowed in most of the CAS pingslanguages. The

typical form in which they may be expressed is:

if ( condition ) {
/ / execute true branch statenents

}

el se {

|/ executed fal se branch statements

where the CAS is able to evaluate tbendition specified within the control structure
above. In terms of workflow patterns executed by a workflowiremghis construct may

be expressed with a small modification:

bool ean_val ue = eval uate_condi ti on(condi tion)
if ( boolean value ) {

/ / execute true branch statenents

}

el se {

|/ executed fal se branch statements

Since general purpose workflow engines are not expectedvi® dnay capabilities to
evaluate symbolic constructs and only simple numericall@alean evaluation can be

used, expressing conditional patterns has to use addis@naice calls. As it can be
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seen in the code above, the evaluation of the condition maenpossible at workflow
engine level. The workaround is to use an additional evalnatervice that takes the
symbolic condition as an input and offers back the result @Bs@ean. Whenever a
conditions has to be evaluated this way a custom servicec#matio the evaluation for

the workflow engine must be used.

Lists represent the main container of objects allowing the&s@&manipulate symbolic
objects, usually through repetitive constructs. Any baiobcessing that may be exe-
cuted by a CAS is thus related to its capabilities of procesksts. While the list itself
is stored within the client machine, the processing of dsjeomposing the list may
be done on remote execution nodes. Describepsgudo-codevisiting every object

contained in a list can be done by applying a repetitive canssuch as:

for (itemin list) {

// execute transformation on item

Again, the workflow engine lacks symbolic capabilities anid not able to understand
and evaluate OpenMath objects. All manipulations must beeged by calling external
symbolic services that are able to understand and mangotiatobjects. Every step of
the repetitive iteration over the elements of a list mustdmcdbed explicitly by defining
tasks that can be executed as remote calls. Here we give ampkxaf a multiple
instances with prior knowledge pattern in which the numlbetements does not change

during execution:

end_i ndex = s_size(list)
for (index = 1..end_index) {
item= get _itemw th_index(list,index)

s _transformation(item

In order to map the two constructs mentioned above, additiexternal services must

be invoked: for finding out thend.indexwe need to invoke an external service that will
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determine the size of the list; moreover, the object sinlaténdexin the list must also
be retrieved by accessing an external service. The procgeser the object itself has

also to be done by an external service.

end _index = s_size(listl)

list2 = s create enpty list()

for (index = 1..end_index) {
item= s _get item(index, listl)
bool ean_val ue = s_eval uate_object(item
if ( boolean_value ) {

s_store_object(item list?2)

}
list = s_get_list(list2)

Listing 4.1: Implementation of Filtered Pattern

The two simple execution patterns mentioned above may bk easnbined in order
to create more complicated execution scenarios. For iosfasuppose we have a list
of objects and a selection function that decides a boolelu® \@sed on the value of a
object. We want to create a new list containing all the olsjéot which the condition
holds. This execution pattern, referred by symbolic conmguspecialists as thidtered
pattern may be achieved by creating a workflow that combines the @items above
and several pre-existing external services, as shown itngigl.1 where all function

calls having a name beginning with_"gepresent calls to external services.

Using similar approaches, several other processing patteay be easily implemented,

and to name only a few:

e Apply Inplace - apply a certain transformation on all theemits,
e Apply New - create a new list based on the transformed obgcsyiven list,

e Count - count the objects having certain characteristics,
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e For Any - check if all objects in the list have certain chaesistics,

e Fold - calculate a global value based on the elements ofghe li

Another class of execution patterns derives from the basg pattern In [66] we

have implemented this pattern using three interdependewices. The basic idea of
this multiple instances with prior knowledge pattern istttiee invoke of the services
describing the ring is done in sequence, repetitively, @bdrtain conditions hold. The

general structure of the pattern is presented in Listing 4.2

bool ean_val ue = eval uate_condi ti on(condi ti on)
whi | e (bool ean_val ue) {

valuel = s first_service(input)

val ue2 = s_second_servi ce(val uel)

bool ean_val ue = eval uate_condi tion(condition)

i nput = val ue2

Listing 4.2: Basic Ring Pattern

Starting from the examples depicted above, one may imagin&iaite number of com-
binations. For instance a particularly useful executiotigoa, deferred choice, uses
several external services to compute the same result a¥eathe object, but using dif-
ferent techniques. Since only one result is needed, thauggaends when any of the
calls returns the result. In this pattern, a particular p&ey/s the basiparallel pattern

which allows starting multiple calls at the same time.

4.3 Composition Technologies and Tools

The requirements that computational systems built to sagpentific processes in gen-

eral cannot be exclusively fulfilled using proprietary teclogies such as RMI, CORBA
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and RPC. A comparison made by Gray [108] shows that Web Serareessually less
efficient in terms of resources consumption than RMI and CORB#e performance
problems introduced by Web Services are not crucial and eagriored given the ben-
efits that Web Services introduce. If computational ovedhe&roduced by Web Ser-
vices is significant in the context of a certain applicati@ehnologies such as RMI and
CORBA should be considered. For the vast majority of appbecegtithe impact to ap-
plication efficiency is small and due to the advantages thepduce Web Services are

more and more adopted as the technology for providing ses\iz potential customers.

Both industry and research communities have understoodehefits that automatic
composition may provide. Languages that allow a higherl légscription of the com-
putational steps together with corresponding platformas dlntomate workflow’s execu-
tion have several important benefits. On one hand the pradegsecifying a workflow
is more intuitive and less concerned with low level detathsas service invocation
mechanisms. On the other hand, automatic workflow managetonee by a specialized

server is more efficient, easier to control and more secure.

Given a set of Web Services that can be used to create a neigadmpl, the workflow
engine is able to orchestrate these services based on wasgkflescription. One impor-
tant problem to solve is how to enable the workflow engine saalrer the most suitable
Web Service to invoke for the given purpose. One solution oinsider ontologies for
describing the Web Service interface and define matchingharesms. More details
of these methods are given in [156, 85]. While this solutiomiprinciple applicable,
the diversity of Web Services, their interfaces and datasysed makes this approach

feasible only for small areas of computation.

Dynamic composition approaches include Al planning meidmas and ontology based
composition. The set of services dynamically selected i@esoparticular problem may
change from one invocation to another. As a result, a dynalsiwovery mechanism
must be used at runtime to decide which services should lo&aa The selection of

services must meet requirements regarding the functigreaid the QoS to be provided.
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In this respect, several general problems may appear [T®@].discovery problem, for
example, raises two sub-problems that need to be solve@ aine time: obtaining a
service description and obtaining the location of the servReliability constitutes also

an issue since services may be occasionally unavailable.

In [156] it is noted that a generally accepted assumptiohas ¢ach Web service can
be specified by its preconditions and effects in the plannotgext. A specialized lan-
guage, DAML-S [39] has direct support for Al planning tedjues. The state change
produced by the execution of a Web service is specified tliralig precondition and

effect properties of the service profile.

As described in [135], the semantic Web vision is to make Vésburces accessible by
content as well as by keywords. Web services play an importd@ in this scenario:
users and software agents should be able to discover, cemgusinvoke content using
complex services. The main drawback of this approach isthetifying ontologies may

become a very complicated task.

4.3.1 Web Services Orchestration

Web Services rely to a great extent on XML and related tedgie$ for describing
their interfaces and the messages exchanged between atidntVeb Service. Their
suitability for automated machine processing has alsowaged the development of
specialized languages for describing Web service workflasvXML based languages.
The first notable languages to appear, XLANG [158] and WSFI, @%abled only static
composition of Web services [117]. XLANG relies on struetiactivities, whereas the

second one permits the creation of workflows by linking ainés.

As demonstrated in [117], the XLANG language is more restecthan WSFL in the
sense that some workflow patterns are not supported. Oneexachple is arbitrary

cycles, similar to the 'goto’ mechanism used in unstruayseogramming [192]. The
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WSFL was superseded by the BPEL4AWS V1.1 standard language latéchwas en-
hanced and adopted as a OASIS standard under the naming WS-BBER7]. Due
to its massive support from industry, the WS-BPEL 2.0 calleshiort BPEL, now rep-
resents the industry standard for describing Web Serviggsestration. Its pure XML
nature that on occasions makes describing workflows ditfrootivated IBM to create a
hybrid language, BPELJ [134] that allows Java componentg tedsier integrated with
standard BPEL workflows.

Due to the acceptance of BPEL defactostandard for describing Web Services orches-
tration, researchers have also investigated the suttabfliBPEL and related technolo-
gies for describing scientific workflows. In order to analyise suitability and expres-
siveness of a language multiple perspectives should be[i82d191]. The language’s
power comes from the support it offers for existing controilpatterns, data flow pat-
terns and interaction patterns describing the relatiowéen the process and the services
it has to interact with. In [198] the author demonstratesnhyg BPEL is able to support
most of the control flow patterns while [44] investigates tiplg interaction patterns and

the way they can be expressed in BPEL.

Learning from the experience and shortcomings of its presars, BPEL tries to pro-
vide support for most of the features that industry and meteeommunities found im-

portant while trying to keep the language itself simple. BR&LUsed to describe com-
posed Web Services as business processes. While the bysioesss itself is seen by
an external client just like any other Web Service, the workféngine that executes the
process has the task to interact with partner Web Serviegsatie the actual providers
of services. The interaction plan results from the analgsise by the specialist that
identifies the Web Services that are needed to solve a partjptoblem and the control

flow and interaction patterns need to achieve its goal. BateNeb services called by

the process are partners playing specific roles in relatimtive process.

The full workflow lifecycle identified in [76] is supported IBPEL. Abstract workflows

defined in BPEL capture the partners and the control flow of thegss while actual

129



Chapter 4. Orchestration of Web/Grid Symbolic Services

details about the location of Web services to be used candwded at runtime. Inter-
action with external Web Services is defined using the ppesyof the partner services.
Data types of the parameters used by partner port types cambmmatically discovered
from the WSDL documents and BPEL provides XML specific mechagito manip-
ulate data based on their specific format. This functiopaditrequired because it is
often the case that the output received from one partner beusansformed to the input

expected by another partner interface.

Modelling a workflow can be achieved using several languamestcucts. They are
referred as BPEL activities, which are encoded as XML tagh@&BPEL document

describing the workflow. The most important ones are:

e Communication activities: receive, invoke, reply, pick,roassage, on alarm

e Control activities: if, elseif, else, switch, otherwise, ilghrepeatUntil, flow, wait,

exit, sequence, foreach

e Fault handling activities : throw, catch, catchall, terat®y compensate, compen-

sateScope, rethrow
e Data manipulation and scope: assign, copy, scope, validate

e Auxiliary activities: empty, extensionActivity

Some of the activities mentioned represent themselvesaitans that can hold other
activities. For instance, th&equenceactivity instructs the workflow engine to execute
one after another the activities that it contains, regasiliehey are calls to other services

expressed using d@nvokeactivity or an arbitrary combination of other activities.

An important requirement raised by scientific workflows is #bility to describe work-
flows by combining already defined ones. BPEL supports thigireaent since a work-
flow document can be easily integrated into another docun$@apes of existing activ-

ities and for the workflow itself can be created to preventingrolashing for constructs
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and variables that are defined to hold data. BPEL also offgegpasti for exception
handling and and compensation activities to deal with ei@cwerrors that may occur.
Results obtained from partner services may be temporaoigdtand manipulated using

XML based data manipulation mechanisms.

The most important control flow patterns have correspondugport in BPEL through
intuitive BPEL activities. Theequencactivity may be used to describe a sequence pat-
tern, conditional patterns may be expresgedndswitchactivities, repetitive patterns
may be expressed usinghile, repeatUntilandforeachactivities. The order of execu-
tion can be specified on one hand using the structured aesiviescribe above combined
with links that may be specified between activities. A linlkesifies a dependency rela-
tionship between a source activity and a target activitye fdrget activity can only be

started if all source activities on which it depends havenlseecessfully completed.

Graphical interfaces, e.g. ActiveBPEL Designer [28], carubed to create abstract or
concrete workflows using a visual interface and to assisu#iez in deploying the re-
sulted workflow. The user has to define the partners that thkflea process must call
and to combine these partners using control flow constr@tse the workflow is spec-
ified the user may even test the workflow by using fake partaetsmatically provided
by the ActiveBPEL Designer environment. Such mock partneag be instructed to
return a particular value when they are invoked. After thekfitow is deployed as a
process in the ActiveBPEL workflow engine it can invoked asil@gWeb Service by
an external client. Depending on how the workflow is cons&dceach call may create

a separate instance of the workflow or it may reuse an existigg

Any modification in the structure of the workflow requirestthanew workflow is de-
ployed and therefore dynamic modifications of its strucareenot possible at run time.
Workarounds for this issue may still be possible. One smtutwould be to break the
original workflow into multiple smaller workflows and haveeth executed one after
another. Thus, depending on the dynamic status of the warkflmay call one of the

existing workflows that can be individually be modified. Anet similar option is to
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implement workflows that cover most of the possible scesaaitd based on the inter-
nal state of the workflow and routing plan of the workflow to @xte corresponding
sub-section of the initial workflow. None of thesestrivewsiins is ideal but at least

alternatives are available if really needed.

Apart from the solution provided by BPEL language an impdré&dfort was conducted
in the scope of several research projects with the aim toigeoversatile solution for
description and execution of workflows. While BPEL's main mitezas from the begin-
ning to provide support for Web Services composition, reeamitiatives have tried to
accommodate multiple distributed technologies. This aeaghn is motivated by histor-
ical evolution of distributed computing platforms for suific computations that were
developed over time using a wide range of technologies. tiBgitools for scientific

computations could not be rebuild from scratch and theee$otutions that could still
use them had to be found. Since these systems do not targeialpWeb Services we
include them in the category of Grid workflow systems in a devasense of the Grid

term and not restricted WSRF compliant services.

4.3.2 Orchestration in Grid Environments

The number of workflow systems for Grids is quite large andivated by the interest to
provide a flexible way to describe and execute computatistegls required by compu-
tations specific to science. Although the main middlewatetgms for creating Grids,
such as Globus, Unicore and gLite provide mechanisms faurese management and
discovery, their capabilities for creating workflows amaited. Their intent is to pro-
vide solutions for exposing and managing computationaue®s at a lower level. It
is also possible that existing applications are not easytegrate with Grid middle-
ware products without extensive refactoring. Dependinghennature of the problem
to solve, most of the important research communities ireeIw scientific computing
have strived to design and implement tools and frameworlssipport their own com-

putational domain. We investigate here some aspects of #ire systems for workflow
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design and execution, while a more compressive overvievpedound in [199].

Triana [111, 130, 71, 177] is a problem solving environmé&at tonsists of several lay-
ers of components. Triana abstracts task executors as camisousing Triana custom
data types. Once external service providers are wrappeazhgsanents they can be used
inside the visual tool to build workflows. JACAW [112] may beedsto integrate as
components any legacy tools implemented in C. Independaenpgtational nodes on

which Triana is running are able to advertise their comptsen

The user can drag components to the worksheet and connset ¢benponents using
pipes. Workflows can be modelled as DAGs. The lack of cyclesiots the usability
of the system since loops cannot be implemented. Web Seraing Grid Services can
be used within Triana if they are properly wrapped as comptn®llowing Triana’s
model. Web Services can also be discovered by querying UB@$tries and automat-
ically wrapped as Triana components. The workflows creasathuhe visual interface
can also be exported using a proprietary Triana format or & B®/S workflow docu-

ment.

Taverna [140] is a workbench for creating and execution akflaws for life sciences.
Its main goals is to provide a versatile way to create worksl&sed on arbitrary ser-
vices for which no restrictions on data types used are assuiies gives the important
benefit that virtually any service can be used as a execu@iTawverna workflow. On
the other hand, enforcing data matching rules and conveddidata from one format to

another has to be explicitly described within the system.

Execution units can be easily added to Taverna by queryirsgieg UDDI registries or

specific registries implemented by Taverna system. It i3 p&ssible to extract service
descriptions from other sources such as existing workflowss even Web pages, by
using external capabilities of plug-ins or by querying setitarepositories. It is not
possible though to dynamically change the address of aceeand therefore, static

binding is assumed. Workflows may be described as DAGs intwliks between
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components describe the data flow links between one outptibpone processor unit

to an input port of another processor unit.

Behind the scenes the SCUFL language is used to describe trad actrkflow which

is interpreted by the Freefluo enactment engine. To commateio a certain type of
service a processor type has to be defined for SCUFL due taibadteeasons. Various
processor types are already available for Web Servicea) Iava programs, services
implementing the REST style interface but support for Gridviees is not provided.
When defining a workflow, except for the specific links creatgdHe user, any other
control flow mechanisms is inferred from the structure of waekflow. To execute a
certain task multiple times, the input for the executiont whiould be an array rather
than a single value. In this case the system will invoke theise, external or locally

implemented, once for every data element in the provideayarr

Sedna [86, 194] was developed in an early stage as a platfarisofving theoretical

chemistry problems. They have chosen Globus as middlewa@éating and manag-
ing computational nodes while BPEL was seen as candidaterétestration of Grid

services created using Globus. A visual workbench allovessu® describe workflows
using high level components that are stored internally leyapplication using a high
level description language. Execution components thatised to define the workflow
in the visual workbench still have to be defined in terms oft ypes and data types
specific to the BPEL and related technologies. One importaility of Sedna is that a
workflow can be deployed as a BPEL process to several workflgines, among the
ActiveBPEL.

The actual tasks that are sent to Grid Services are desargird the Job Submission
Description Language that is supported by Globus WS-GRAM. Basgheir investiga-

tions, the authors conclude that BPEL and related techredqmiovide enough support
to be considered viable when compared with other similantgmis. Among the most
important advantages of BPEL is the support for control flowstaucts, and scalability

and reliability of existing workflow engines that are hegwhdorsed by industry actors.
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Load balancing and scheduling tools, such as Condor [179P&81l [47], are able to
manage pools of resources usually available in LAN enviremis and to effectively
use these resources to solve computational tasks. DAGManydrkflow management
component of Condor, is able to control the execution ofstatirkflows expressed as
DAGs. Data dependencies among related tasks are specifiedfidogncing data place-
holders, e.g files, as input and output dependencies. Bas#tksa dependencies the
scheduler may decide if a certain task may be submitted fecwdion or it has to wait
for other tasks to finish. Based on scheduling capabilitieSaidor and DAGMan, P-
Grade [115] is a portal for creating and managing workflowsiofdg the types of tasks
that can be used to create workflows in P-Grade, executaidlesand PVM jobs are

supported.

CRESS [174, 190, 122, 189] is a tool initially designed for cosifion of Web Ser-
vices that was later enhanced to also support static cotiposif Grid Services. Due
to the differences between Web Services and Grid Servizestirg workflow engines
are not capable of seamlessly interacting with Grid SesviBased on the visual work-
flow environment that CRESS offers, the user is able to desardvélows as DAGs in
which execution units represent already deployed Gridi€esv The workflow is stored
internally using a proprietary language suitable for forreification of the composi-
tion. For deployment, CRESS used a translator to a BPEL workitomdt that can be

deployed in an ActiveBPEL workflow engine.

Globus Toolkit offers the possibility to describe and rumoge jobs through its GRAM
component. In conjunction with the Globus, Swift [201] caeeute workflows speci-
fied as input files. Workflow can be described using a functiamguage, SWIFTScript,
which is interpreted by the Swift execution engine. The Itesuworkflow can be visu-
alized as a precedence graph. It also permits restartingeandning workflows with

the option to execute only the jobs that were not executedesstully. The Java CoG
Kit [121] reunites a set of tools that can be used for expngsand executing Grid work-
flows. A specific workflow language can be used to describe floavk executed by the

Karajan workflow engine. Workflows may contain control flonnstructs for creating
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sequences of tasks, define tasks that must be executed ilelparad define execution

cycles in a similar way BPEL supports it.

Condor-G [97] is a product that mixes the inter-site commaitian capabilities of Globus
with the job management offered by Condor. As a result, the MAG component of
Condor-G can be used to describe and execute workflows. For jelethe user can see
meta-information such as the issuer of a job, the statusirtiesit was started/ended, the
command that started the job. In the case of a failure, DAGMable to rerun only the
jobs that were not completed successfully. Using a comioinatf Condor-G and Stork,

workflows can be executed over a Grid[74].

Combinations of the tools mentioned above may be possiblés ddncept is demon-
strated in [77]. The Pegasus’s main responsibility is tdyam@san abstract workflow and
to determine an efficient mapping between the tasks to exaouthe actual resources
that are able to support their execution. Thus, an abstraditflow described in DAX
(an XML language for describing DAGSs) can be transformedaormcrete workflow. In
this case Pegasus provides complementary functionali@otador which is the actual

resource manager and responsible for scheduling tasksugags.

Symbolic computation services may be part of a computattiofrastructure that can be
used for solving complex problems. The analysis of the worldticted in the context of
building symbolic computing services by projects such asN&ED [32], GENSS [137]
or MathBroker [43], has led us to the conclusion that dynarnscaVvery techniques im-
plemented using Al techniques for Web services, in genaral,for symbolic services,
in particular, are not yet able to provide a wide-scale aaplie solution. The discovery
process in MONET uses the MSDL ontology language and the Mpfoblem descrip-
tion language to retrieve the right mathematical servigaaterrogating modified UDDI

registries. A similar agent based approach is also used NSSE

Our approach differs in several respects. First of all, @suhe functionality offered by
remotely installed CASs as potential solvers of mathemlatidascribed problems. The

current system aims to integrate the processing capabibfithe functions implemented

136



Chapter 4. Orchestration of Web/Grid Symbolic Services

in remote CASs into the within user's CAS system. The discopepgess uses as a main
criterion of selection the functionality implemented by ertain service to manage a
certain OpenMath call object. The OpenMath standard [183iees the interoperability

between Web services that expose functionality of diffe@ASs.

Previous results obtained in the context of workflow pagdir89] are used within the
current approach to provide a higher level of abstractianplémentation details are
hidden and the user can concentrate on the problem to salveaon low level details
of implementation. The user can build arbitrary complexkflows using standard con-
structs (workflow patterns): the complex symbolic compataprocess is specified in

terms of workflow patterns and not in a specific workflow conifpms language.

As discussed in the previous chapter, Web Services and @ridcgs are the best tech-
nologies for exposing CAS functionality. Existing solutsdior Grid Workflow manage-
ment cannot be used without applying extensive modificatidhe execution platforms
or without implementing additional components and adapt&isual platforms for de-
scription of workflows cannot be integrated within the useavironments of CASs.
Using such platforms as standalone environments and CASoamvents at the same
time would make the process of describing and execution akfleovs for symbolic
computation difficult and error prone. BPEL language is th& bhoice for orchestrat-
ing Web and Grid Services even if it does not provide full sapor Grid Services

orchestration.

4.4 Composition of CAS Servers Using AGSSO

Existing systems for distributed symbolic computing allolient applications to dis-
cover and access remote services but they are not desigmpedvide support for de-
scribing complicated workflows which can be managed autcailgt by specialized
execution engines. Their support for workflow managemepéalbdities is limited and

they do not offer specific solutions for storing results artfansferring required data in
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a seamless way. While these capabilities may be provided ¢éotailc extent by exter-
nal components, the computer algebra specialist would tweeeplicitly integrate them
within the algorithms they implement, which is rarely a sienpask. Existing frame-
works and technologies that are used in other research demannot be adopted for
symbolic computation systems without tailoring them tocsfie requirements of sym-

bolic research field.

In Chapter 3 we have introduced a set of components that weigrnel to support most
of the requirements identified earlier regarding usabilityeroperability and extensi-
bility. The CAS Server components, the foundations on whiaghawchitecture is built
were already designed to support interoperability. Each SA&er provides the same
standard set of capabilities including support for disegvieask management and data
management, while the data encoding model used relies eadgiaccepted standards.
Clients can submit computation requests encoded in one ddidbepted formats and
retrieve the results based on job identifiers. Re-routingsiilts to a specific URL iden-
tified service is also possible. Task level control capaégdisuch as pausing, resuming
and cancelling tasks is supported at CAS Server level andbédlired results can be
stored the CAS Server for later reference and provenancedér to support discovery,
the CAS Servers are able to contact index services and agivéneir current state and

information about services they provide.

The CAS Server’s standard interface makes composition vicgsthey provide easier
and more reliable than composition of arbitrary symboliocvees. The standardized
interfaces provide external client the guarantee that thetsire of services provided
by the CAS Server components does not change over time, etles siymbolic capa-
bilities provided through services evolve. Standard datzoding used for describing
requests and computed results is another characteriatioidikes composing these ser-
vices easier. Acommon problem related to dynamic compuuwsisi the variations in data
encodings used by the services involved in the compositfanexecution engine that
needs to invoke two services in a sequence has to adapt ffensesreceived from the

first service to the data model that the second service ig@ablederstand. This problem
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does not arise if a single data model for encoding data is.used

To provide capabilities for description and execution ofbyplic workflows of arbi-

trary complexity, several modifications have to be made écottiginal architecture. We
add specialized components at server side for managingflaerlexecution and we
enrich client components with additional capabilitiest thapport description of work-
flows. The resulted architecture is depicted in Fig. 4.4.hWithis architecture, the
AGSSO component and its specialized subcomponents reptesecentral manager of
the whole composition architecture. Its main role is to nexevorkflow instances de-
scribed at the client side, to deploy and to manage theingixatby coordinating CAS

Servers and to store final results of the computation.

Several features already provided by the CAS Server comp®ican no longer work
as expected for tasks that are part of a workflow without spwading support from
the AGGSO components. Since AGSSO is a mediator betweercthal &lients and
services provided by CAS Servers, AGSSO must ensure thatetaskcontrol actions
are still available. When a task is paused as result of théesusguest the actual request
must be handled by AGSSO and if needed, routed to the CAS Sihiateexecutes the
particular task. Therefore, similar services that arelalibe at the CAS Server level

should also be supported by the AGSSO component throughtédace.

Symbolic workflows are described at the client side as wonkflemplates. High level

predefined constructs that match the most important execyatterns represent the
building blocks that the user can combine. Blended with eaAS capabilities, these
constructs provide an easy and intuitive way to describeptexncomputations. Since
the majority of CASs only provide command line interpretemgst of the workflows

should be described as scripts specific to a particular CASeMdvanced visual solu-
tions could also be an alternative for CASs that provide aalisuerface. Because high
level constructs are used the code describing the workfldw @mntains calls to CAS

implemented functions matching workflow constructs. Tigtothis calls the system can
be instructed to build the workflow in the format that will beng to AGSSO. Unneces-
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Figure 4.4: Architecture for Grid Symbolic Services Ordhaison.

sary details such as actual servers to be used to solve andehk are omitted at client

side because it is AGSSO responsibility to discover theises\to use.

The process of specifying workflows is simple and straigintéosd. As we will further
show in Section 5.2, due to its simplicity it can be easily@dd by any CAS. Specific
functions available in the CAS environments implement trguired functionality to
construct the abstract workflow and to wrap and send it aloitly &rguments to an
AGSSO component that will manage the workflow further. TheXMnguage used
for encoding workflows presented in Table 6.1 is similar ® ¢ime of BPEL but it only
contains the minimum high level details of the compositiame details that a complete
BPEL workflow contains such as addresses of services to irmakaot required at this
level and they will be added later by AGSSO. To demonstraeitility of this solution
we have implemented a GAP specific package. The functionshitbgpackage contains
do not implement themselves the logic required to constanct submit the abstract
workflow. They only represent a thin layer that accessestuhetionality provided by
a generic component implemented in Java which residesaitdide. More details

and examples on how workflows are described and particulaticas implemented for
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GAP are provided in the next chapter.

For each workflow submitted to AGSSO, the client receives ekihaw identifier. The
identifier must later be used as a reference for any manadgdasnthat the client re-
quires, from execution management to results retrievathiwia workflow, each indi-
vidual task has its own unique identifier and therefore, fiomalities provided by CAS
Servers to cancel, pause and resume tasks can still be usked tient by invoking the
corresponding operations on the AGGSO interface. The itpat such actions have
on tasks and on the workflow as a whole are further analysedatidh 6.2. Depending
on the status of the task a request to alter the state of a ifiskpact the task, a branch

of the workflow or even all tasks of the workflow.

The workflow instance received from the client is parsed ley@tient Manager sub-
component of the AGSSO and transformed in a template workéiogoded in BPEL.
Once the workflow is generated the Client Manager deploystiiécexecution engine
and starts its execution. During the process of generati@e@PEL workflow, required
details about which service types are required by the eietate also filled in by the
Client Manager. All CAS Servers have the same interface andftire the invoke logic
is the same regardless which is the actual CAS Server thabevdkelected to be invoked
at runtime. The addresses of the CAS Servers to invoke arendats in a dynamic

way immediately before a task is submitted to be executed.

Latest information about CAS Servers available, their statud their capabilities are
taken from theMain Registrysubcomponent which is a centralized index. Plug and
play components that implement various scheduling stiedgetpn be easily added as
subcomponents of AGSSO. These components select suitatiees based on func-
tionality mappings between tasks and service providers. & SArver is able to handle
a certain task if one of the CASs exposed through the CAS Seriwggrface imple-
ments the required operations and OpenMath symbols useektwide the arguments
of the targeted operations. The information that Main Regisbmponent provides is

guaranteed to be the newest available at the moment whenieeserselected because
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CAS Servers notify the AGSSO components about any change istthcture of their
provided services. A more detailed description of the apginove used to test various

scheduling strategies is provided in Chapter 6.

The Client Manager subcomponent has also the role to kedpdfabe current status
of the workflow and of particular tasks. Based on this infoiorait is able to detect
which tasks should be planned for execution and which taskeat be executed yet
due to dependencies to other tasks. When the workflow’s grecstarts, based on
tasks dependencies AGSSO component schedules only tisghaskan be immediately
executed. During workflow’s execution, whenever a task Igesband the response is

received from the CAS Server, the Client Manager analysesefiatask can be started.

In describing a task that is part of the workflow the user hasptxify the type of CAS
that should be used to compute the task. This informatioedsired because currently
it is not possible to determine the most suitable CAS to haadiertain task based on
its description. The specified CAS type can be general enaugtatch a entire class
of CASs or it can be refined to target a particular version of a @4$sed by a certain
CAS Server. At the CAS Server side, more than one CASs can beexpia®ugh the
same interface but each CAS has a unique name in the scope@At&erver even if
several machines have the same version of a CAS installedusméhg. This naming

convention makes possible to target a particular CAS irestadh a particular machine.

If for instance in the scope of two different CAS Servers twoR3Astances are installed,
their name is unique and therefore the CAS Server can difieteramong them. For
each CAS, the CAS Server provides information about the conafiigun of the machine
it is installed on, e.g. processing power, storage capisijibut it does not advertise its
IP address or machine name. If a user requires that a certeéhs@iduld be handled by
a CAS named 'GAP’ and 'GAP v3.0’ and 'GAP v4.0’ are able to trémt request, the
CAS Server has the liberty to choose the instance that is npg@priate. On the other
hand if more information is added to required type of CAS, sachHGAP v4.0’ and the

user especially requests that this particular instance tased. The same rules apply at
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the workflow level when AGSSO component decides which CAS&dovuse to solve
a task. Even if the whole system is designed to dynamicaligrdene the most suitable
CAS Server, and in the context of a CAS Server, the most suitaBle to execute a

task, naming schemes can easily be created to overridedfasltbehaviour if needed.

Based on the naming scheme described above even more advescecte partitioning
can be enforced. Let's assume that one group of serverstshewxclusively dedicated
for long running tasks and for a set of privileged users wiiiteer group of servers should
be used by general public. This partitioning is easy to aehanly by defining and ad-
vertising two separate AGSSO components. The CAS Servanntreage the dedicated
resource could advertise their resource to one AGSSO coemparhile the others could
be advertised to another one. Anyone that has the right tmisuorkflows to the first
AGSSO component will have their tasks executed on the monegol servers while
the rest of the clients will submit workflows to the another@&0 component which is

only aware of a subset of the CAS Servers available within tbleitecture.

Bilateral Simple Conversation pattern (Section 3.2) is ugsethb AGSSO components
to submit tasks to a CAS Server and the same pattern is useceh@AB Server to

send back the result when the computation has finished. Tingwste of the request that
AGSSO component submits to the CAS Server have not changedsahie conversation
pattern is also used for management related requests bthta interaction between the
clientand AGSSO component on one side and, the AGSSO and QA& 8emponents

on the other side. The client is not aware of the underlyinghraaisms and conversation
patterns that are used by the the CAS Server and AGSSO. Siagkedescriptions

provided at client side are transformed to adhere to comeation patterns used by
CAS Server. Specific initialization steps that need to be rinerwaccessing a Grid
Service, data management and security related featuresitomatically added to the

BPEL generated workflow by the Client Manager.

Originally developed for interactions with Web Servicesrkflow engines do not have

native support for interaction with Grid Services implereehusing the WSRF specifi-
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cation. Moreover, Grid Services use the factory patterrcfeating and initializing of
Grid Services. It is thus necessary that a client invokesritialization, first the fac-
tory service which creates the corresponding WS-Resourceremvitdes an Endpoint
Reference (EPR) to identify the resource that can be used lofihme. This interaction
pattern is not usually foreseen for regular Web Servicesabdatively supported. The
actual WS-BPEL workflow that the Client Manager generates tsstaladd required

invokes to cope with this requirement.

The actual execution engine that the AGSSO uses for workfleeigion is the Ac-
tiveBPEL [28] engine. This engine is able to receive workfloggctiptions expressed
using the WS-BPEL workflow language and to manage their exatuiixtensions that
would allow the engine to communicate with Grid services gpetific hooks for storing
management data and results to a local database instan¢e badmplemented. For
dealing with Grid Services, an enhanced version was alsadqedy [81]. Workflow
management capabilities required to control task’s execwdre not provided by any
existing workflow engine. These capabilities are not im@atad as additional features
of the engine itself. Instead of modifying the engine impdertation we use additional
hooks and activities in the generated workflow to provides¢hadditional capabilities
[64].

The actual size and complexity of the BPEL workflow descrilvethe format required
when it is deployed to the ActiveBPEL engine is several timggédr than the abstract
workflow generated at client side. Several patterns, su¢heasequence pattern, have
direct correspondence with existing BPEL activities, butstmaf the patterns that we
provide do not have direct correspondents and therefogeateeimplemented as com-
binations of basic constructs. Using the Java API offerethbyActiveBPEL engine we
generate constructs similar to those described in [19&lefs that can be implemented
with minimal efforts are the sequence pattern and the @islit pattern because of the
direct correspondence for these patterns in BPEL througkefgence and flow BPEL
activities. AGSSO is able to support also execution pasteuch as conditional and

repetitive constructs.
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As we mentioned before in Subsection 4.1.1 reusability epdoducibility are important
aspects of scientific discovery. To ensure that these remeints are met, thiglain
Registrycomponent stores all relevant details regarding workflomstaeir execution.
A workflow execution request received from a client is stargitie Main Registrybefore
any other processing starts. During the execution of théflaw, all details regarding
which job is assigned to which CAS Server, the time requireéfecution and the result
obtained are also stored in tMain Registry Each CAS Server also records inligcal
Registrydetails regarding the jobs it receives and the hardward@uaifihe machine that
executed the tasks. Combining the information stored irMban Registryand several
Local Registrycomponents of the CAS Servers executing the jobs, a comphetga of

the execution can be created.

The AGSSO Server is the software component responsiblexemuéion and manage-
ment of workflows for symbolic computations. For the actualcition of tasks it selects
suitable CAS Servers, submits task to them and collectsradaiesults. The main fea-

tures of the AGSSO Server are that it:

e transforms workflows expressed in a generic workflow languaghe BPEL for-

mat used by the ActiveBPEL workflow execution engine;

e executes scheduling algorithms to select suitable CAS 8sefmeexecuting atomic

tasks;

e implements a registry that controls CAS Servers to whichgaslould be submit-
ted and allows remote users to discover execution capabibif registered CAS

Servers;

e uses capabilities provided by the ActiveBPEL execution eagb execute work-

flows, monitors and manages workflows’ execution;

e through capabilities exposed it allows users to managegeglworkflows which

include features for workflow execution management.
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4.5 Summary

In this chapter we have addressed the problem of composiggidmality of CASs for
solving large symbolic problems. The design of the AGSSQ&eaomponent that we

present in this chapter is covered in [60, 61, 66, 148].

In Section 4.1 we analyse the general requirements raisegibgtific workflows and
we come to the conclusion that similar requirements arel ¥atisymbolic computation
workflows: support for workflows having a large number of taakd that take a long
time to complete; the ability to control and to steer the exien of a workflow; the abil-
ity to review and reuse already obtained results; the ghidiexpress workflows in ways
that are meaningful for application experts. Most of thaentr workflow execution en-
gines expect workflows to be expressed in terms of workflowepag. A short overview
of the most important workflow patterns that are often useslymbolic computing is

presented in Subsection 4.1.2.

Most of the symbolic problems’ solutions are described @lgmically by combining
functions implemented by the local CAS instance. By analysiggbasic functional-
ity provided by CASs several execution patterns may be ifiedti In Section 4.2 we
demonstrate how basic patterns used in symbolic compuotatiay be expressed using
workflow patterns. On one hand we demonstrate that existimdsflow engines may
be used for handling symbolic computation workflows and andther hand we pro-
vide a set of guidelines to help symbolic computation exgeerthe process of creating

symbolic computation workflows.

Most of the existing workflow execution engines lack supgportspecific features re-
quired by symbolic computations. An overview of tools ancht®logies used for de-
scriptions and execution of workflows is provided in Sec#oB. The AGSSO Server
component described in Section 4.4 reuses capabilitieastireg workflow engines and
provides additional capabilities to ensure required supjoo execution and manage-

ment of symbolic computation workflows.
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The actual components executing individual tasks are the S&Sers. The AGSSO
Server receives symbolic computation workflows expressedibnts and transforms
them in executable workflow that are deployed to a workflowirsg It provides dy-

namic selection of computational nodes, i.e. CAS Serversitgmavides support for
monitoring workflows’ execution. Its internal registry agts information about avail-

able CAS Server that tasks may be sent for execution and istdses computed results.

Capabilities already provided by the CAS Server componerats as the ability to can-
cel, pause and resume a certain task are also supported b$@G8rver. A user can
therefore submit and control workflows’ execution. The usan experiment differ-
ent execution scenarios by skipping the actual executi@oofe tasks of the workflow
and manually provide expected result for those task wheewtbrkflow is running. To

provide this functionality we do not rely on workflow exea@itiengines’ capabilities
to control the execution of the workflow but on additional kedhat exploit features
provided by CAS Servers. This approach is novel because wetdoave to alter the

behaviour of the execution engine.

The AGSSO component improves the process of describing xchigon workflows

for symbolic computations. The description process besomasier and more intuitive
because the user only has to describe the solutions in highbeilding blocks. Such

workflow descriptions can be stored for later use, can bedissated and the solutions
may be incrementally combined and improved. Because thalas#uvices to be used
are dynamically selected by the AGSSO component, the uses it have to specify
such details. The overall efficiency of the system is alsaawgd since components im-
plementing more efficient scheduling algorithms may be dddé¢he system to improve

the way available computational resources are used.

Support for reusability and reproducibility is provided A¢SSO architecture by com-
bining information related to workflows’ execution storeg the Main Registrycom-
ponent of the AGSSO Server ahacal Registrycomponents of CAS Servers. 1t is

therefore possible to get detailed information about thekflawvs that were executed,
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the machines that were involved in the execution and the tegeired by individual
tasks to be completed. The same workflow can be rerun at atiaterand obtained

results can be thoroughly documented.

148



Chapter 5

Generic and Secure Access to Symbolic

Services

This chapter describes the design and capabilities of tlreGGomponent of our archi-
tecture [60] and the security mechanisms that are used twesogerall protection of the
architecture as a whole and of its components [63]. In Seétibd we describe the design
of the Client Component. We also discuss the capabilitiesttimtomponent provides
for accessing remote Web and Grid Services. In Section 5.@regent specific capa-
bilities related to the process of describing workflows fgmbolic computations that
can be further executed by submitting them to an AGSSO Sepreriously presented
in Chapter 4. General security mechanisms and the how theptagrated within our

components are discussed in Section 5.3.

5.1 Client Component Requirements and Capabilities

Previous Chapters describe the two main components thaiderdive foundation for
building a massively distributed symbolic computatiorfsastructure. Both CAS Server

(Chapter 3) and AGSSO Server (Chapter 4) components rely oreWeksrid Services

149



Chapter 5. Generic and Secure Access to Symbolic Services

for interconnection with other components of the architexztand their capabilities are
exposed as Web/Grid Services. Due to the advantages they@rio terms of inter-
operability and usability, Web Services represent one eftlost popular solutions for
implementing computational services accessible to rerolats. It is also the case
for symbolic computations world in which Web/Grid Servia@s more and more used
for development of new capabilities and even for reimpletngrexisting ones initially

implemented using alternative solutions.

From the client’s point of view, Web Services are easier tothat other distributed tech-
nologies for several reasons. Software components dex@laipclient side can adopt a
wider variety of technologies and platforms as long as threyadle to formulate calls
specific to Web Services. This is only partially possiblehnf@ORBA while RMI re-
quires that Java and RMI specific mechanisms are used to irepleboth the server
and client components. The discovery process is much easikthe description of in-
terfaces is more clear if Web Service are used because the Vi8&Lment provides a
description of the interfaces. Additionally, because Webviges rely to a large extent
on XML technologies, standardised XML technologies andtesl tools makes imple-

menting Web Services much easier, reliable and more secure.

Services offered by remote providers represent the bgjltlocks that can be used to
build complex computational infrastructures. This aretiiiral model is well suited to
the symbolic computations domain and this approach repteaa important step ahead
in the overall development of computational platforms. @e band, a large variety of
Web Services providing support for solving problems of ngmisolic nature already
exist and may be accessed by remote clients, includingtslgrecialized for solving
symbolic problems that may require support of non symbdaitire. On the other hand
a high number of mathematical services that provide sugpogymbolic and numeric

computations already exist and their number is constantseasing.

Most of the current problems are complex and heterogenedahsrggard to specific

computational domain. They can only be solved by dividirgnhn less complex prob-
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lems for which a certain solution algorithm may be appliedhefEfore it is generally
required that more than one computational system has todeetasolve such problems

that may involve both symbolic and non-symbolic capalesiti

The NAG library [182] is know as one of the most reliable andnhptete libraries for
numerical computation. Within the framework of the Monehsortium in [128] the
authors describe a solution for accessing routines impiédeby the NAG library in
C programming language as Web Services specific to the Mdatoim. Apart from
this specific wrapper, Monet provides a framework that adlasers to create symbolic
services and expose them through a Web Service interfacglaBmechanisms with the
ones used in Monet can be used to create new services badezfcameworks provided
by MathBroker and GENSS. Additionally, MathBroker projecslaso investigated the

feasibility of exposing services as WSRF compliant Web Sesic

Other initiatives such as Maple2G [151] provide solutiomsexposing particular CASs
through Web Services or Grid Services. A similar solutiothis one for Mathematica
described in [178]. Even if the components are not interected with the use of Web
Services they use alternative distributed solutions sgcRMI than can be converted
to use Web Services with relatively little effort. It is espaly the case of systems
that use as conversation pattern the Bilateral Simple Coattersbecause it does not
require handling session data at the server side. For the sareh as JavaMath [170]
which allows clients to establish computational sessitresadaptation process is more

complicated but it can still be achieved.

Connectors that link various components of our architecineebased on Grid or Web
Services and any client that accesses the services probigdedr architecture must
be able to formulate appropriate calls. Autonomous CAS 3Sewmponents permit
clients to submit requests, to gather results of computsatito manage tasks and to
interrogate CAS Servers for provided functionality, allabhgh Grid or Web Service
interfaces. Requests sent to the CAS Servers must be corfeatiylated not only

with regard to the SOAP message but they also have to foll@odithe two supported
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encoding formats previously presented in Subsection &BdLSubsection 3.6.2. The
AGSSO component uses Web Services to expose its functipnaliclients but Grid
Services could also be used. Beyond the actual technologltasxpose the AGSSO
Server interface, the client must also comply with the mgsdarmat expected by the
various operations available. The most complex one is thedbof the message request
describing new symbolic worflows managed by AGSSO which iith&r described in

Section 5.2.

With the support of the software components installed odb@& machine users should
be able to access in a seamless way services offered by renoviders. As we stated
before, the capabilities to access remote Web or Grid ses\should be generic enough
to support access to generic services and not only to semiitk a specific interface or
that provide a specific type of functionality. These capaed must be provided within
the CASs that computer algebra specialists use and not asadtisoftware tools that
force the users to switch to a different environment. Froenubability point of view, it
is also more convenient to access services directly withenGAS'’s interface because
obtained results may be required for further processingimthe CAS environment. We
have therefore designed the client components of our aathite to be easily integrated
within existing CAS environments. With the aid of several ggnadd-on components
CASs may be enriched to provide access to both arbitrary WéridrServices and to

specific services provided by the server components of the@@architecture.

Usually the user only knows the address of a remote servievam the address of a
UDDI registry or a Globus Grid Services container. To invekeertain service the
client must be able to discover and select the service itsvanaccess. Moreover, the
client component that prepares the calls has to be aware séttvice’s interface. Access
to generic services can only be achieved if support is pealidr the entire process of
interacting with remote services, from discovery of sezgiand their interfaces to the
actual call and result parsing. Since services are not kreorori, dynamic clients that
are able to interact with external services must be gereeratevide range of parameters

must be considered when generating Web service clientsnatitally. These include
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the service address, the port that the service providenksto, the number and names

of the methods or the way that the service descriptor is nbthi

Several tools provide partial implementations of Web smndautomatic client compo-
nent generators. Eclipse [4] can generate a Java Bean praxydWWSDL document
for Web services deployed on WebSphere servers. Websetucko [23] can be used
to invoke Web service operations interactively within aitesenvironment for services
of which endpoint is known. It fetches the WSDL and based ovnices description it
generates a proxy from the WSDL and displays the list of mettzodilable. The user
can then choose any method and provide the required inpatneders. Systinet Devel-
oper for Eclipse [20] also supports client generation, thieyepoint being the WSDL
document describing the Web service and automaticallyrgéege Java client code that
calls the Web service; the developer must create the redlatdetalls on the prepared
interfaces in the client code. Other solutions to genetaelava classes needed to in-
voke a Web Service programmatically are Novell exteNd Werldh [181], JAX-RPC
Stylus Studio [185], etc.

The ASSIST [35] framework aids the application developepbyviding them with a
proxy library whose entries are the stub methods for the teridéeb service. These
are generated from the services WSDL file. The programmer imsisintiate the stubs
with the code needed to invoke the services methods, and pidis to the stub methods
within the code provided by the framework modules. A difféerapproach is taken
by Xydra-OntoBrew [99]. This provides on-the-fly WSDL to Wetr+h generation for
simple services and portlet clients: the Xydra servletsak&SDL as input, generates an
XHTML form that allows the user to provide an input messagehgrs the submitted
input values and converts name-value pairs into an XML nggsshat is sent to the
Web service. Finally, it displays any result messages. WXyldra is a sophisticated
response to the client code creation problem, simpler isolsitare needed especially

when workflow execution of combined services is desired.

The tools mentioned above have some limitations and incoemees related to the pro-
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cess that needs to be followed when implementing clientefoote services. They also
cannot be easily integrated with existing CASs because theeps of code generation is
only partially automated. Additionally, these tools do matlude Grid service capabili-
ties, and, as far as we are aware, there is no previous autogesierator that supports
WSRF-compliant services. MathGridLink [178] is a solutioresific to Mathematica
for deploying Grid Services and accessing these servides.Maple2g [149] provides
a mechanism that can be used in Maple to submit and obtaift cés@rid tasks. Its
capabilities are build over the standard Globus GRAM serviterefore the tools men-
tioned above are not able to support access to generic Gvidag but to services having

a particular interface and usage pattern.

To a certain extent the CAS itself has to implement featurgsired to support the
process of interacting with remote services, one of the mgsbrtant requirement being
to handle data encoding in specific encoding formats. Reneigce implementing
symbolic computation capabilities may expect that reqpastmeters are encoded using
a specific encoding format such as OpenMath. CAS Servers useNxth and SCSCP
compliant messages but other services may require othedergcmodels. Since the
CAS is the direct beneficiary of the services, it is its diredponsibility to ensure that
it is able to encode and decode specific data formats thatutref dhe scope of Web
Services in general. Except capabilities that are specdifgymbolic computations, the
rest of the capabilities that are related to accessing res@vices should be provided by
external components that can be accessed using native CASamExternal packages
such as Apache Axis [40] provide such capabilities in a bééiavay and they can be

integrated with existing CASs through adapters.

Within this chapter we describe a client side suite of paekatipat provide an easy
to use solution that can be used in conjunction with virjualhy CAS. As a result,
CASs can be enabled to access external Web and Grid Servicesistent security
mechanisms must be enforced within our AGGSS architectueasure that both server
side components and clients are effectively protectednagaecurity threats specific

to distributed environments. The second section of thipwhigrovides an overview of
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security mechanisms available in the context of Grids asdrilges how they are applied
within AGSSO.

5.1.1 Enabling CASs to Access to Grid and Web Services

The architecture of the client side component is compos@d@fypes of components,
the ones that have the role to provide capabilities for adeng with generic remote
Web or Grid Services and a special category that are destgriselused in conjunction
with the services provided by the AGSSO components. Allgleesnponents rely them-
selves on specialized components and packages developkeudgarty providers. For
instance, components at the client side that allow acced&tServices rely for some
of their implemented features on the capabilities offergdApache Axis. Similarly,
other components provides support for features specifiaith &ervices and rely on al-
ready existing APIs provided by Globus Toolkit. Whenevergiale existing solutions
already well known and accepted by research communitiesratustry are preferred
to ad-hoc solutions. The client side components provided®$SO have the role to
embed features such as security certificates managemeritidinelr provide them as
routines accessible directly within the CASs’ command linei®nment. Due to spe-
cific design of the components we developed, they can beyaataigrated within any
CAS.

In addition to the core functionality that allows accessamote services specific func-
tionality for managing data and preparing calls is providéé have presented in the
previous chapter a solution for handling symbolic compatatvorkflows. This solution

required that the client specifies the workflow in a specifrofat which can be under-
stood and managed by the AGSSO server. Even if the workflotanos that has to
be described at client side does not have a complicatedisteliche fact that it must
be described using the specific XML language makes this tasbersome to be done
manually. One of the components available at client levegdl@ments functions that

assist the user in creating workflows in the appropriate &rmll features mentioned
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Client:
- Web Services
SGServices
Grid Services
SGUTtils
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Figure 5.1: Client Side Architecture

SGProxyCert

CAS

above are wrapped into a single stand-alone executabledhdie accessed by any ex-
ternal component which is able to communicate through pipkss represents the first,

the lowest level layer of the client side architecture.

The second layer of components that must exist at clientaideeomponents that are
directly integrated within the CAS and they have the role tlifate access within the
CAS environment to the features provided by the first layethiithe CAS’s develop-
ment environment, the user should access already provadgmhes that makes access-
ing Web Services or describing complicated workflows singid intuitive. Packages
of functions specific to a certain CAS represent a thin layer lzave the role to relay
requests to the specialised external components mentady@e. This decoupling is in
many respects beneficial. Specific functionality does ne¢ @ be implemented within
the CAS and only a thin layer of routines which formulate appiaie requests to the
first layer have to be provided. Enabling a new type of CAS tessdNeb of Grid
services is easy and reliable because the core functipigfirovided by external com-
ponents. If access to new technologies have to be providindwvihe CAS, they can be

easily added at a later time.

The general architecture of the client is presented in eigut. CASs access the func-
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tionality of the CAGS components by communicating with the Ranager component
which is a command line interpreter. RunManager is a comglgineric interpreter
that exploits Java reflection capabilities to allow the exien of any class. The sub-

components of the clients side helper component are thenfivlg:

e SGServiceghis provides support for three types of operations redtief the list
of services registered to a certain UDDI registry or Globoistainer; retrieval of

signatures for the exposed operations of a service; calingpte operations.

e SGProxyCert this handles issues arising from the need to support ssigle
on for users of the Grid and delegation of credentials: ngrtied creation and
destruction of proxy certificates. The component can alsodeel to retrieve in-
formation about the owner of a X509 certificate and aboutifegrhe of a proxy
certificate. Since a user may have more than one X509 cetgifibat with only
one being used at a certain moment, when creating a proxfica#, the location
of the certificate is automatically stored in a session file ewa proxy certificate

is needed, this default certificate is loaded and used.

e SGUItils this provides additional functionality for explicit filesinsfer, file deletion
and remote job execution. This capabilities are relate@tegc services that Grid
environments build over Globus provide. For data specifioagament that the
AGSSO architecture provides, other services are involveidimthe user does not

have to call explicitly.

e AGSSOCIi this package reunites all the functionality required feers to ac-
cess capabilities provided by the components of the of AG&®0itecture. This
component is responsible for incrementally constructirgworkflow in the for-
mat that the AGSSO server is able to understand and alsdispegabilities to

interact with services provided by AGSSO and CAS Server corapts
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5.1.2 Use Case Scenario to Access Generic Web/Grid Services

One of the most important capabilities provided by CAGS isasdo remote Web and
Grid Services. Part of the discovery process several chigebare available: obtain-
ing a list of Grid/Web services registered at a certain URLtawiing the signatures of
Web and Grid Services operations; calling an operation atréeving the result of an
operation call. Secondary functionality related to aditrservices include file transfer
using specialised Grid Services, job submission throughG®®&M services, and man-
agement utilities for handling X.509 proxy certificates.yfital scenario of accessing a
Web or Grid Service usually has as a first step the discoveaysefvice by consulting a
service’s details based on a registry URL (either a UDDI itegiw a Globus Container).

Listing 5.1 depicts a typical execution scenario at cliédé s

1. start scenario(registry URL)

2. if (is_Web_service_registry(registry_URL))

3. service_list:= get_Web_service_list( registry_URL,
t oMat ch,
options)

4. el se

5. service list:= get_Gid_service_ list( registry URL,

t oMat ch)

6 endi f

7 service: = sel ect _service(service_list)

8. operation_list:= get_operation_list(service,toMatch)

9 operation: =sel ect _operation(operation_|ist)

10 [create _proxy_certificate();]

11. result:= call _operation(service, operation, paraneters)

12. end scenario

Listing 5.1: Access to Web/Grid Services

Here,registry URL parameter is a valid URL of a UDDI registry or a Globus containe
The toMatch parameter is a selection string that must be stréodp of the service name

in the get Web service list/get Grid service list combinethvai substring of the opera-
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tion name in the get operation list. The selection funct&glsct service/select operation
are user-defined functions that can be used to select thedesrvice/operation. Note
that this scenario assumes that the user only knows thetmet&L. If the user al-

ready knows, for instance, the service URL and the signatutteecoperation, then the

unnecessary steps can be omitted.

5.1.3 Summary

Computer algebra specialists must be provided with simpdaranitive features within

the environment of the CAS they use to allow them to accessteeWiieb and Grid Ser-
vices. They have to be able to access generic services uatdehave to be provided
with additional support for describing and deploying wasls for symbolic computa-

tion.

The Client Component of our architecture provides:

e Features to discover and call remote Web and Grid Services;

e Features to support standard security mechanisms redoyréarids, including

management of security certificates and establishing semumections;

e Features to support description and execution of workflaMasrkflows described

by the user are further submitted for execution to AGSSO&srv

e Features to support workflow management, retrieval of tesstleering of execu-

tion.

5.2 Workflow Description

Another important capability that is provided within CAS€wlopment environment
enables users to describe and deploy symbolic computatiokfiews. Once submit-

ted to an AGSSO Server, the workflow is parsed and executexntding to the scenario
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previously presented in Section 4.4. Application spesislhave to be provided with
constructs that allow them to describe workflows in a seasmes/. Some of the details
required for the workflow to be complete and compatible whhworkflow engine used
at AGSSO component level can be automatically added atrseideeand therefore they
can be skipped at client side. The user should only desdnidadlution for a certain
problem in terms of workflow patterns and data links betwaemé tasks of the work-
flow. In Subsection 4.1.2 we have described the most commtiarps that we have
identified in symbolic computations for which appropriatsstructs should be avail-
able. In the following table we describe the mapping betwibenworkflows and the
functions available within the GAP environment that can sedito construct workflow
patterns. These functions are grouped under the package. SWikar solutions may

be easily provided for other CASs with a minimal effort.

Several components at the client side are involved in thergg®n of workflows. Spe-
cific packages implemented at CAS level have to provide fonstthat map the work-
flow constructs. Each call to such functions is forwardededandled by the AGSSSO-
Cli client support component which is the actual componerdretthe workflow is con-
structed in the format in which it will be sent to the AGSSOveer Once the workflow
is created the user may submit it for execution to a prior kméSSO server address.
Supported constructs for workflow description include ¢arts for sequence patterns,
conditional patterns, repetitive patterns and declanatiovariables that may be used as
data containers. Variables declared at workflow level argpetial nature because they
are meant to be used at server level at workflow run time assgapto variables that
are used at CAS level which are only valid in the context of theSCFo demonstrate
these capabilities and the way they can be integrated watllAS environment we have

implemented a special package for GAP.

Variables of the workflow are automatically managed withdinect support of the work-
flow execution engine. The user may declare such variabksnay even assign initial
values to these variables. Variables will be used to staegnmediate values during the

execution of the workflow and therefore their state will obly modified as a result of
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Table 5.1: Mapping between XML workflow language and GAP figrcs.

\e)
e)

XML WORKFLOW TAGS | GENERATING CAS FUNCTION

<workflow> SWIP_startWorkflow()

</workflow> SWIP_endWorkflow()

<sequence SWIP_startSequence()

</sequence SWIP_endSequence()

<multichoice> SWIP_startMultiChoice()

</multichoice> SWIP_endMultiChoice()

<branch> SWIP_startChoiceBranch(condition)

</branch> SWIP_endChoiceBranch()

<if> SWIP.if(condition)

<[if> SWIP_endIf()

<trueBranch- SWIP.if(condition)

</trueBranch- SWIP_else()

<falseBranch- SWIP_else()

</falseBranch- SWIP_endIf()

<parallet SWIP_startParallel()

<Iparallet> SWIP_endParallel()

<foreach> SWIP._startForeach(initValue, endValue)

</foreach> SWIP_endForeach()

<while> SWIP_startWhile(condition)

</while> SWIP_endWhile()

<invoke ...~ SWIP.invoke(CasID, command, varReference)

<variable name=varl

$value SWIP_declareVariable(varName, varValue)
Ivariable>

<casl|D> SWIP.invoke(CasID, command, varRefereng

<call> SWIP.invoke(CasID, command, varReferenc

<initValue> SWIP_startForeach(initValue, endValue)

<endValue- SWIP_startForeach(initValue, endValue)

workflow’s execution steps. At CAS level references to thesgbles may be used in

two main situations:

e For building conditional expressions that appear as paroodlitional patterns

e To mark data dependencies between different tasks

Variables that are meant to be used in expressions that dref panditional or repetitive
patterns, e.gwhile orif constructs, may only contain numerical values encodedzas pl
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strings. These numerical values may be used to expressiomsdand their value can be
be modified by storing results of remote service invocatiwhen they are provided as
the third parameter of the SWIiRvoke function. This type of variable must be declared
using the SWIRdeclareVariable function. A typical declaration of thipéyof variable

is:

vl :=SWP_decl areVvariable("1");

The call of the SWIRdeclareVariable function has as effect the registratioeva vari-
able at workflow level to which the value of “1” is assigned. eTlbcal variablevl is
initialized with a value that represents the name of thealdei in the context of the
workflow, e.g $variablel. Whenevewrlis passed as argument of one of the functions of
the SWIP package, it will instruct the AGSSOCIi component tword the appropriate

use of the workflow level variable.

Valid conditions are expressions that can be evaluateddtehn values by a subset of
rules defined by the XPath standard. This subset is for theenblimited to composing
simple expressions that contain decimal numbers, booledrcamparison operators,
grouping parentheses and variable handlers of workflonadedlvariables. Examples
of valid conditional expressions include:

5<4

1 >= $variable_1

where $variablel represents a workflow variable that contains a value thgtbaaval-
uated to an integer when parsed by the workflow engine foligwiternal variable eval-

uation rules.

The second category of variables contains variables tieatised to link two or more

invoke activities with data pipes. If one invoke activityositd use as input the result
that was produced by calling other services, these deperedeare expressed using the
second type of variables. During the workflow’s executiagsthvariables contain values

encoded in OpenMath and they cannot be used directly to baiiditional expressions.
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A call to the SWIPRinvoke() function of the SWIP package will return at CAS levet t
name of a workflow level variable in which the result of thedke will be stored. This

variable can afterwards be used as input for other invokies.call at CAS level:

avVar: = invoke(...);

specifies that the CAS variakdé/ar stores a handle to the result obtained through invoke.
This handler can be used in a following call to mark that tiseitas used as input data

for another invoke. This is possible because the genenaldbof a call is:
aVar: = invoke(' CASID, call)

wherecall is a string that either describes a function and parameteas @penMath
objectinthe SCSCP format. LetaVarl and aVar2 be two locahiséas that hold handles
$variablel and $variable? referencing results obtained by previous invokes. Toinbta
the call of a remote function the call

aFunction($variable_ 1, $variable_ 2)
may be obtained by concatenation:

Concat enati on("aFunction(",avarl,",", avar2,")";

5.2.1 Workflow Examples

In order to demonstrate the way different constructs maydael wvithin GAP we pro-
vide several simple examples that have the role of clagffiow the functions of the
SWIP package may be used to describe workflows. The examplistind.5.2 links in
sequence two functions that calculate the factorial fovarginteger value. The first call
calculates at line @ctorial(3) while the second call at line 9 uses as input the value ob-

tained as output from the first call. Before issuing the adtwalkes, the values that have
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to be passed as parameters are constructed as OpenMatts diyjecsing GAP string
manipulation capabilities, e.g. a call to the Concatenafimetion and specific func-

tions for constructing the OpenMath representations,thkegSWIPgetSCSCPFormat()

function.

1. LoadPackage("sw p");

2. SWP_startWorkflow();

3. SW P_st art Sequence() ;

4, il := SWP_get SCSCPFor nat (

5. "scscp_transient 1. W5 factorial (3)");
6. vl := SWP_invoke("GAP",i1,"");

7. i 2 := SWP_get SCSCPFor nat ( Concat enat i on(

8. "scscp_transient _1.Ws factorial (",v1,")"));
9. v2 := SWP_invoke("GAP",i2,"");

[
©

SW P_endSequence() ;
SW P_endWor kf | ow() ;

[ERN
[ERN

Listing 5.2: Sequence in GAP

The second example presented in Listing 5.3 depicts howrtdependent calls may be
run in parallel. The SWiBtartParallel() and SWindParallel() have the role to mark

the invokes that should be started in parallel, in our caséntiokes at lines 6 and 9.

1. LoadPackage("sw p");

2. SWP_startWorkflow();

3. SWP startParallel ();

4, il := SWP_get SCSCPFor nat (

5. "scscp_transient 1. W5 factorial (3)");
6. vl := SWP_invoke("GAP",i1,"");

7. i 2 := SWP_get SCSCPFor nat (

8. "scscp_transient 1. WS factorial (6)"));
9. v2 := SWP_invoke("GAP",i2,"");

10. SWP_endParal l el ();

11. SWP_endWrkfl ow();

Listing 5.3: Parallel Execution in GAP
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Execution of a certain action for a number of times is a frequequirement especially
when processing of a list of objects is needed. In Listingvtedassume that we know
beforehand the total number of executions required and Wena@®d to invoke one or
more service for the given number of times. Since the worfkaxecution is done
at server side, the variable that counts the number of semnmkes done at a certain
stage of execution has also be managed within the workflove stitution is to use a
variable that counts the number of invokes and update itsevehch time an invoke was
completed. Therefore, at line 3 we declare a new workflonedde and we assign to it
the value of 1. At line 4 we specify that the content of the widlop should be executed
if the condition holds. In our care the value of the workflowiahle is smaller that
value of 5. The example demonstrates how the value of theavoxfariable should be

updated, namely by invoking an external incremental seratdine 7.

1 LoadPackage("sw p");

2 SWP_startWrkflow);

3 vl :=SWP_decl areVariabl e("1");

4 SWP_startWwile(Concatenation("5_>",vl));

5. il := SWP_get SCSCPFor mat ( Concat enat i on(

6 "scscp_transient _1. W5 increnment(",v1,")");
7 vl := SWP_invoke("GAP",il,"");

8 SW P_endWi | e();

9 SW P_endWor kf | ow() ;

Listing 5.4: Repetitive Pattern in GAP

In Listing 5.5 we present the implementation of the ring vilak. For improved read-
ability we will omit to explicitly show how variables and wads used in the GAP client

where encoded to be sent to the workflow engine. For examplieg 4. we write:

SWP_start\VWile("$n < 10");

while the correct GAP syntax should be:

SWP_start Wil e(Concatenation(n,"<10"));
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becausen is defined as a local variable in GAP that holds the refereace \ariable
declared within the workflow. In the example presented inihgs5.5 we create a ring of
three services. One service invoked in line 6. is respoasdylincrementing the value
of the variablen and storing the result in the same variable. In line 7. thaesakeld by
nis sent to another GAP instance to evaluate if the numbeinsepor not. The result of
the evaluation is stored in the varialte After the call the value held by will be “0”

if the number is not prime and “1” if the number is prime. Basedlwe value ointhe

value held byn is stored or not in line 10.

1. SWP_startWrkflow);

2. n := SWP_decl areVari abl e("0");

3 m := SWP_decl areVari abl e("0");

4, SWP_startWWile("$n_<_10");

5. SW P_st art Sequence();

6. SW P_i nvoke("GAP1", "Inc($n)", "$n");

7 SW P_i nvoke(" GAP2", "IsPrime($n)", "$nt);
8. SWP_start Ml ti Choice();

9. SW P_start Choi ceBranch("$m ==_1");

10. SW P_i nvoke(" Mapl e", "Store($n)");
11. SW P_endChoi ceBranch() ;

12. SW P_endMuil ti Choi ce();

13. SW P_endSequence() ;

14. SW P_endWi | e();

15. SW P_endWor kf | ow() ;

Listing 5.5: Ring Pattern in GAP

The “ring workflow” example demonstrates a slightly more gticated workflow in
terms of structure. A similar workflow can be used to impletr@esolution for the orbit

enumeration algorithm [126].
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5.2.2 Workflow Level Task Management

One of the features that are important for controlling theawsour of workflows is
execution management of submitted tasks. The executiowoflkflow is automatically
managed at the server side and the user does not have to gse@fac command for the
workflow to be started. Once submitted, parsing of the wovkfltstance and execution
of individual tasks is done as soon as the required resoarees/ailable and the internal
state of the system permits it. Since the execution of getéaks of the workflow may
take a long time to complete it is important to enable the tiserontrol workflow’s
execution by issuing appropriate calls to the AGSSO seregethe workflow was sent
for execution the user can request pausing or resuming ofrkffew or of individual
tasks. Moreover, itis possible to change the result for cecomputation by manually
assigning a value to a certain task that overrides the aasalt of the computation for

that task.

Functionality provided by the AGSSOCIi component allows tiser to retrieve infor-
mation about the structure of a certain workflow already sttbchfor execution and the
individual status of tasks based on a workflow or task idemtifT his functionality lets
the user to verify that the submitted workflow was correctlysed by the system. Ad-
ditional to the workflow’s structure the user receives infation about task identifiers
of each task of the workflow and execution state for each tdskng the workflow and

specific task identifiers the user may alter the normal ei@twif the workflow.

Issuing a pause command can be done both at workflow and tasdk léa task level

pause is issued, the task and all tasks that depend on thedotask are affected. The
pause request propagates to all tasks that have a depend&imn to the paused task.
In a similar way, resume of a task has also an impact not onifhemesumed task but
also on the dependent tasks. Cancelling of a workflow is alssiple. Issuing a cancel
command has as resultimmediate cancellation of all task$raaing all resources used
by the workflow. Since workflow managers are not able to pmttds functionality

through built-in features, additional hooks implementedarkflow and database level
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have to be created to provide this behaviour.

5.2.3 Summary

With the support of the Client Component integrated within @S, computer alge-
bra specialists may describe workflows by combining workfexecution patterns as
building blocks: sequence, parallel, conditional and tiépe. For an already submitted
workflow, the user may obtain the status of the workflow or oédain task part of the
workflow. Based on task identifiers the user can pause and eetasks, can cancel

tasks, manually set result values and inspect already catipesults.

5.3 Security for Symbolic Services

In Subsection 5.3.1 we briefly discuss the most importantepts related to security of
Grids. In Subsection 5.3.2 we discuss security mechanish tasensure the security of

our architecture and the support provided for interactiity tird party secure services.

5.3.1 Common Security Standards in Grids

Wide adoption of Grid technologies to build systems for stifie computing purposes
introduces the need of a careful consideration of the plessézurity threats that systems
based on these technologies are exposed to. Grid infrastegcare usually built upon
public communication infrastructure therefore they aréngrable to common attacks
for the Internet world. The main types of security issues @ad has to consider are
architecture related, infrastructure related and managénelated [68]. Confidentiality
of the data shared in the Grid environment and mechanismasiore authentication,
authorization mechanisms for access to resources andyqofkervice related issues

are part of the first category. The second category compsesasity problems related
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to host components and secure transport of data over the Wme third one refers to

problems related to credential management, trust and oromgtservices.

Trust among the participants that share and access rensaterces is a central concept
of security and it is vital for Grid infrastructures. Virtu@rganizations(VO) are estab-
lished based on the willingness of resource providers teestgir computing capabil-
ities to other members of the VO. Reliable authenticationlhmaisms must therefore
be enforced to ensure that users and resource providergraepn a secure environ-
ment. The Grid Security Infrastructure (GSI) provided bylkls addresses these issues
related to security and provides solutions for secure conication. Standardized secu-
rity mechanisms enforced at Grid level ensure that secbritaches are less frequent,

easier to detect and address.

The communication among various partners of a VO built usehgbus middleware
relies to a great extent to HTTP and HTTPS communicatioropas. Additional pro-
tocols such as GridFTP may also be used for data transfers@dwee communication
mechanisms implemented by Globus GSI implements securencoiation by target-
ing two communication levels: transport and message. pahsevel security applies
TLS encryption for all communication that is sent over theawil his type of encryption
guaranties confidentiality and authentication at leashftioe server side and optionally
client authentication may also be enforced. Integrity efthessages exchanged is also
ensured through transport level encryption. Message Evelyption may be used to
encode only the message content while the rest of the conaation is transmitted as
plain text and therefore confidentiality, authenticatioml antegrity of the messages is
ensured. If authentication of the client and integrity afts@essages are required while
confidentiality is not mandatory a slightly more efficieniugimn is to send messages in
plain text and to append digital signatures that guaramteetithenticity of messages

and the identity of their originator. All these features based on X.509 standard.

Currently the most popular and wide spread solution for tsetkentication in Grid en-
vironments are solutions base on X.509 Public Key Infrastme (PKI) [29], but other

169



Chapter 5. Generic and Secure Access to Symbolic Services

standards such as Kerberos Network Authentication Sexyi@&8] or plain security cre-
dentials management are also used. Anonymous autheotidatpossible especially
when the client’s identity is not particularly relevant.aBus GSI provides native sup-
port for authentication based on X.509 certificates but tamwil solutions that allow
integration with Kerberos based systems are availableeSinthentication of the actors
participating in a distributed architecture can be achdewéh different authentication
protocols, e.g. Kerberos and PKI, an interoperability lesw such services may be
sometimes required. A service responsible for providing 208 certificate based on a

Kerberos authentication was previously reported in [30].

VOs can easily be built over a hierarchy of Certificate Auttwesi that guarantee au-
thenticity of X.509 certificates exchanged amoung pardictp in the VO. The use of
security certificates provides further functional beneffingle sign-on, delegation of
credentials and with them finer grained control over the titief the users that are
entitled to access specific hardware and software resocacelse easier provided. Del-
egation of credentials is particularly important mechamnif proxy components have
to access secure services on behalf of a client. The proalf iteay not be entitled to
access particular resources but while it acts on behalfettient it may use its cer-
tificate to access them. To support credential delegatiob 3l provides the Credential

Management Service and the MyProxy component [45].

For Grid authentication purposes, each user has an X.5@@cz#e. This certificate
could be stored on the user’s system, but this solution midless vulnerable to theft by
trojans or viruses. MyProxy acts as an on-line credent@bseory for X.509 security
credentials which are composed of private keys and cettfitgple. Based on stored
credentials MyProxy generates proxy certificates, all VIiEL& secured network con-
nections. Since proxy certificates expire after a relagiglort period of time, usually
12 hours, the user must periodically renew them. The ges@fabxy is then stored in
the repository and is accessible via (username, passwantioation. The password is
chosen by the user when first generates the proxy and hastiediggtime as the proxy

certificate. Additionally, MyProxy can be accessed throtlgh network from various
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locations which proves to be an important advantage for laatients.

GSI offers implementations for both WS-Security and WS-SeConversation. With

the latter, a security context is established resultingebgterformance when multiple
invocations take place among two communication partnersedéitial delegation is
only available if a security context is established throMg8-SecureConversation. Au-
thorization mechanisms implemented by Globus GSI can bleealgt Globus container
level, at service level and at resource level. The authtoizascheme can be imple-
mented through authorization descriptors or dynamic Jattangs. The default autho-
rization mechanisms can be extended by custom authoniziasindlers. An example of

an extended authorization mechanism is provided by POSI2AF

5.3.2 Security for SymGrid-Services Architecture

Security plays an important role for the SymGrid-Servicehigecture. To ensure that
security is properly enforced within the architecture tvepects have to be considered.
On one hand, the components that are part of the AGSSO artthigehave to provide
appropriate security features as part of their standardhsbiges. On the other hand for
components that are designed by third party providers ssiaid@pendent services that
do not follow our design constraints, appropriate procedgand protocols that ensure
secure access to them have to be provided if components &&ESO architecture
behave like clients to such components. Third party sesvinay themselves require
that certain security protocols are implemented by thénts. We also need to prevent
to the highest extent possible security problems that meg d&ny invoking malicious

services.

The main component types that AGSSO is composed of are CARiSamsponsible
for exposing CASs functionality through Grid Services ifdees, AGSSO components
responsible for managing workflows, and client componemas tormulate requests.

Additionally, the client components, through the CAGS meddéscribed in Section
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5.1 support users for accessing generic service provitatsib not necessarily follow
the architectural constraints imposed by AGSSO. Approgisaipport for security has
therefore to ensure that services themselves are protentede hand and on the other

hand that client components are able to access providetegim a secure way.

Secure communication can only be established if we conai@eliminate the security
threats specific for communication protocols that are ugatdGrid middleware. Since
the architecture is built upon the public architecture @f lthternet,security issues such
as the integrity, confidentiality, authorization and Qo§uieements must be validated

for the use cases that the system is supposed to support.

The main types of users that will interact with the systemragrilar users and system
administrators. Regular users access the system througylasefcomponents that are
part of their CAS of choice environment. Itis also possibkg thore advanced users im-
plement themselves functionality to access remote sextid do not necessarily rely
on existing CAGS components provided as part of AGSSO awthite. Additionally,
regular users may affect the security of the system by imeigimg CAS level functions
that are exposed later as services it they are not propeaalyaed by the administrators
of the system. Administrators are privileged users thaableto control the way various
components of the system behave. Each CAS Server and eachCA&S®%r may have
their own administrators and part of their responsibilgyto assess whether particular
functions exposed by CASs should be exposed as Grid Serlitese advanced con-
figurations may also be possible if VO level authenticat®nsed and specific admin-
istrators gain the privilege to control more than one CAS &eov AGSSO component.
Even if they are part in a bigger computational infrastruetieach component is still

autonomous and should be possible to control their configuran an independent way.

Client Side Security Features

Security mechanisms at client side must ensure the inyegfrdata transmitted over the

wire and whenever possible authentication of the servigasthe client is interacting
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with. Authentication of the remote service is of high im@orte for client’s security
and its trust in the partner service. These are fundamanthlel context of credential
delegation which will further allow the services to contatter services using client’s
credentials. Results obtained following a request for a agatfpn can also be trusted
and considered as correct if the client is confident in theadtentity of the remote
service. The client has to identify itself in relation to tiegnote service if the security
policy of the service requires so. While in some cases usezfpassword based authen-
tication may be available, enforcing authentication me@ras such as those provided

by X.509 certificates represent standard security apprimacBrid Services.

The AGSSO infrastructure is available at client side thiotwgo subcomponents of the
AGSSOCIi components, one specific for accessing servicesdaw by AGSSO servers
and one that helps the user in the process of defining symiminputations workflows.
To submit workflows to an AGSSO server component that haswisemechanism en-
abled, several security steps must be executed. Using tiRedMy certificate repository
requires mutual authentication between the client and AGS&ver. Before the user
starts using AGSSO, the user stores his credentials in tHerd&y repository. At sub-
sequent calls the user must only provide his user name asapeswhich are required
to enable the AGSSO server to obtain a proxy certificate. TB&E30 server uses the
proxy to further access resources on behalf of the cliest ffsgure 5.2). All communi-
cation between the client and MyProxy server is achievealiin a private (encrypted)
TLS channel. The same security measure is applied for conwaion between the
Computer Algebra System or Portal and the ClientManager caemiof the AGSSO

server.

The steps required to access services provided by AGSSQpasistent and straight-
forward, therefore easy to follow. For accessing arbitrseyices though, the client
component has to be versatile enough to cope with variousigemechanisms imple-
mented by third party services. The client side CAGS compbpravides support for
dealing with security features that enable the client teeaschird party Web and Grid

services. Unfortunately, for plain Web Services, issueb s trust and QoS do not have
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a consistent solution. In this respect, it is a matter of'ss#oice if a certain service is
to be trusted or not. Invoking secured Grid services offengyaer level of confidence

because the invoker controls the identity of the servicasgoesed.

Among its capabilities, CAGS provides support for the serdiscovery process and ac-
cess functionality offered by services. Mechanisms torme\dleb Services are similar to
those for Grid Services as both support security at trangpormessage level. Web Ser-
vices implement the security by using HTTP basic authetiicaand/or HTTPS com-
bined with username and password authentication at the lewed and the WS-Security
communication protocol at the upper levels which allowsube of Kerberos tickets and
X.509 certificates. For Grid Services, using TLS encryptbtransport level and even
message level security is a common approach. One impogatiré that CAGS tool

offers support for is security certificates management.

For accessing secured Grid services developed based onGiaddleware, the client
component must provide a valid proxy certificate. This regent is valid for all cus-

tom secured services but also by the standard servicesdpbby Globus, such as WS-
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GRAM or RFT. The CAGS component is able to manage such certi§icatd imple-
ments required functionality for supplying the certifiate remote services whenever
this is required. Part of the steps of the authenticatiorrgss are not transparent for
the user and therefore specific actions must be taken for gnanéhe certificates. An
advantage of providing the user specific means to managéazgés is the possibility
for the user to switch between different certificates dependn the service the user
wants to access. Hiding the management process for the oséd tae possible with the
drawback that the same security certificate would have tesbd tegardless the remote

service accessed.

Secure Symbolic Service Composition

The main responsibility of the AGSSO server is to supenhgeeixecution of symbolic
computation workflows submitted by clients. With securiatures enabled the user-
name and password provided by the user at client side arebystiee ClientManager
component of AGSSO to retrieve the proxy certificate of thentlfrom the MyProxy
manager. The workflow engine uses the user’s proxy cergficaitcommunicating with
parter CAS Servers. Scheduler components implemented aS8G&e@rver level have
the role to select the most suitable CAS Servers that shouldd&e to execute a certain
task. Several criteria are used to determine the CAS Servdoba CAS Server to be
selected information about the CAS Server must already bedsto the Main Registry

maintained at AGSSO Server level.

The process of populating the Main Registry requires that bt AGSSO Server and
the partner CAS Server agree to exchange information abeurtdapabilities. While
various information about their state is exchanged in abraatic way, as a first step
both AGSSO and CAS Server components must be set to accephftirisation ex-
change. At AGSSO level the administrator must register tRL4&Jof partner CAS
Servers. Therefore it is the responsibility of the admraisir to ensure the CAS Servers

accepted as partners are suitable from the security and Qasqgb view. Although not
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implemented currently, the scheduling algorithms may Istrircted to use a separate
set of CAS Servers to submit tasks to for certain types of @m%ing, or for requests
submitted by particular users. This way, resource paniitig at a fine grained level is

possible.

The AGSSO server component relies on ActiveBPEL for the &etxecution of work-
flows. ActiveBPEL engine offers excellent capabilities foctoestrating Web Services
but it provides only basic support for security mechanishirsugh anonymous TSL
encryption at transport level. An extension of the ActiveRRihgine that offers sup-
port for accessing GSI secured services was reported in [8R]ce security settings
may be applied for every operation of a Grid service integfabe authors proposed
to extend BPEL standard language in order to offer suppo\f8rSecurity and WS-
SecureConversation. These extensions together with soamges of the ActiveBPEL
engine enable the engine to apply additional security mashes needed to access Grid

services implementing security mechanisms supported by GS

When a process is invoked, the message is passed to the Géalausity and message
handlers added to the the Axis chain of handlers and thesidramutomatically encrypt
and sign messages. The response from the services is atfedhag Axis handler chain

which decrypts and checks the received message.

In order to integrate ActiveBPEL with the GSI implemented Hdglgbis Toolkit 4 several
configurations must be made to the workflow engine. ActiveBRE&s Axis and thus
one way to enable the ActiveBPEL engine to run a process usengroxy certificate of
the user that requested its execution is through Axis hasdléhis means that we need
to declaratively add some security handlers into ActiveBRElessage chains. When a
part of the process calls an external service, ActiveBPEYillae role of a Client to that
Service. Thus, messages that originate from ActiveBPELneild all credentials added
prior to being sent. In both cases, the correct handlers baiglaced in the message

chains.
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CAS Server Security Features

The CAS Server components allow exposing symbolic capsilimplemented by
CASs as Grid Services. The specific operations on the CAS Sein@rface repre-
sent access gates to CAS provided capabilities that ardl@ustan the CAS Server.
Since these services are running in a Globus Toolkit coetaall security features are
provided by Gobus GSI. Although GSI implements three sgcarechanisms - GSI Se-
cure Message, GSI Secure Conversation and GSI Transportawgechosen to use only
GSI Transport for initial version and later extend our solutfor integrating the other
security mechanism. At transport level security in GSI ymésic key cryptography and

it guarantees privacy, integrity and authentication.

For each new client that requests solving a symbolic contipautdask, a new WS-
Resource is created at the CAS Server level. Therefore sgentist be enabled at
WS-Resource level to guarantee that no other users excepttilececone may access
or modify the state of a resource. To configure security aviddal resource level, a
security descriptor that describes the access policy neugtdvided when the service is
deployed. This descriptor instructs Globus container ¢iné the user who instantiated

the resource is authorized to read or to modify its contents.

Because CASs installed on the CAS Server are exposed throudbrithé&ervice in-

terface, a thorough analysis must be done to identify patigntharmful functions im-

plemented at CAS level that should not be available for renmvgcations. Authoriza-
tion policy in effect at the computational node can be erddrby filtering access to
CAS'’s functionality based on the information stored withire t_ocal Registry of the
CAS Server. This registry holds information about the CASeayst that are installed
on the computational node, about the functions availableeteemotely invoked and the

users that are entitled to access the functionality.

The decision on who is authorized to access a certain sesvicemputational resource

has two important components: functional and legal. At threcfional level, a decision
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must be taken whether a call must be accepted and executeddieg on details such
as the effect that the call has on the target system, the tdveécurity needed, the
resource utilization, etc. An equally important matteramely the legal right to access
a resource. The CAS Server implements functionality thatedladministrators to edit
information within Local Registry of a specific CAS Server. Junctionality is not

available through the Grid Service interface but througmie@and line utilities. The

access to administrative command line utilities is cogblsing proxy certificates for

authentication which makes possible implementing a VO \adi®inistration policy.

The informational structure of the local registry systethows$ to store the following

details:

e The name, version, local install path or the CAS

e For every CAS it lists the functions that should be accesdine@emote invo-
cations, expected list of arguments, the name of package todaed when the

functions is called and a short description of the function

e Security details such as the users entitled to access them

The information stored in the Local Registry contains vagidatails that allow the sys-
tem to restrict user’s access to specific functions whici #ne not entitled to call. Even
more, details regarding the machines and software packagesled in the scope of
a certain CAS Server may be available for some users and hiddarthers. Details
regarding which CAS is installed on which physical machireg tres behind the CAS
Server’s interface are not made public for security reasdfigen more, if particular
functions should be accessed only by privileged users gi$teof the users will not even

obtain their list during discovery process.

As noted before, the information provided in the Local Reygist synchronized with the
information maintained by partner Main Registries impletedrby AGSSO servers. At

deployment time, when the tasks to be executed are mappkd sxtual computational
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nodes that are going to perform the computations, the irdtion stored in the Main
Registry of the AGSSO server plays an important role. If theS8® server determines
that a certain CAS Server is able to support a certain funalityrit may schedule a task

to be solved by the particular CAS Server.

In the case when symbolic Grid services are accessed gingsitig the CAGS com-
ponent at client side and not by the AGSSO server, securas enforced using the
proxy certificate of the user. This certificate can be stooedlly on the machine of the
user, but it could also be obtained using the MyProxy cradergpository. After the

user is authenticated, the invoked Grid service will chéthe user is authorized to call

the operation using a special gridmap file.

5.3.3 Conclusions

As a result of our investigation we conclude that securitgina@misms provided by stan-
dard Grid Services are suitable for establishing a secinasitnucture for symbolic com-
putations. To enforce security in our architecture we relg large extend on security
mechanisms provided by the Grid middleware and we apply tl&obus GSI provides
support for the HTTPS protocol, for the use of Certificatiorthfarities and X509 se-
curity certificates. ActiveBPEL execution engine does naivfe native support for
orchestrating Grid Services but this shortcoming can becovee by implementing cus-

tom extensions.

Additional security is enforced through mechanisms thht o the specific features
provided by the CAS Server and the AGSSO Server componentsotAtCAS Server

level and AGSSO Server level, registries hold relevantrmftion regarding users and
resources. Based on this information, system adminisgratay implement policies that
define trusted partner relations, restrict users to accaseyar features and eliminate

security threats.
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5.4 Summary

The design and capabilities of the Client Component of ourigacture described in this
chapter were previously presented in [60, 150]. The sgcreiated issues that apply to

our overall architecture were previously discussed in.[63]

Web and Grid Services represent a convenient solution foogrg computational ca-
pabilities to remote clients. The number and the varietyaflable services has rapidly
increased over the last years and represents a viable wagaifrig complicated appli-
cations based on already existing components. In Sectibmé&.describe the design
and capabilities of the Client Component. Due to its desigrCient Component can
be easily integrated within any CAS with a minimum effort. dbgh its generic sub-
component which is CAS independent, the Client Component allBASs to access
functionality provided by remote Web and Grid Services. Bhee component pro-
vides support for describing and submitting symbolic cotapan workflows to AGSSO

Server components previously described in Chapter 4.

As we show in Subsection 5.1.2 computer algebra specidisi®t have to write them-
selves complicated code that allows them to access remntieese They only have
to use the appropriate functions provided by the Client Corapbto discover remote
services, invoke them and retrieve results. Providing fimetionality as an external
add-on and not directly and fully implemented within the CA8kas the adaptation of
the components easier in the case a migration to technslogier than Web and Grid

Services.

The CAGS component also implements features that assiststireiuthe process of
describing and managing workflows for symbolic computai¢8ection 5.1.2). The
user can describe such workflows by combining basic workflattepns and the re-
sulted workflow can be submitted for automatic executionrandagement by a AGSSO
Server. Within this chapter we have provided several exasipiplemented in GAP that

demonstrate the way sequences, parallel executions,tmaipatterns and repetitive
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patterns may be used. The SWIP package implemented for GA&seys a thin layer
required to access the functionality provided by the CAGSmamment. In a similar way,
the same level of support can be provided with minimal effotthin other CASs or even

other types of environments.

In Section 5.3 we analyse possible security threats thadmitecture have to face. For
our implementation we rely on security mechanisms provige&lobus GT4 middle-
ware. Among other features Globus GT4 provides mechanisatsatlow building safe
Grid infrastructures by implementing several securitydtads. We have analysed po-
tential threats and we have presented a solution for secuessito AGSSO components
based on the standard security mechanism that are curtesgityin Grid environments.
The workflow engine that we use as a subcomponent of the AG®8@rss not pre-
pared to access secure Grid Services and small enhancenaest$o be added to the
wokflow engine. At the client side we have developed the megumeans to allow
users to access secured services. Part of these capajiliseCAGS component is able
to manage security certificates that are required for anythe¢ needs to authenticate

while accessing secured Grid Services.
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Chapter 6

Advanced Management and Fine

Tuning

In the previous chapters we have described the main compsotiett represent the foun-
dations of the massively distributed architecture for sghalbcomputations that we en-
visage. Based on CAS Servers introduced in Chapter 3 and AGS&@&rSatroduced
in Chapter 4 complex computational infrastructures may bated. In this chapter we
discuss several advanced features related to data manaigg8g (Section 6.1) and
management of workflows [64, 65] (Section 6.2). We also preaaliscrete event sim-
ulation platform that we use for verification and validatiesting and as a framework
for fine tuning of components, especially components idIwv tasks’ scheduling [59]

(Section 6.3).

6.1 Resolving OpenMath References

This Section describes the general process that must logveadl across our architecture
for resolving OpenMath references. In Subsection 6.1.1egebe the general process

that we follow for resolving OpenMath references. In Subsadc.1.2 we present the
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different formats accepted to define OpenMath referencesubgomponents. In Sub-
section 6.1.3 we present the process of resolving OpenMé&thances if encountered in
a SCSCP call request while in Subsection 6.1.4 we presentwteunf the file obtained
as a result of the resolution process. A more complex examm@&en in Subsection
6.1.5 while in Subsection 6.1.6 we explain how the resoftupoocess was integrated

with existing data management capabilities provided by&ri

6.1.1 The Process of Resolving OpenMath References

Management of data in distributed environments requiresrefal attention and viable
data management policies and constraints have to be edfoerkflows specific to
symbolic computations often require that large sets of deggexchanged between col-
laborating components. Autonomous components of the rsystay collaborate by
exchanging data which is only possible if compatible dateoding and data manage-
ment mechanism are used. In particular, the use of OpenMathta encoding standard
requires that the system is able to understand OpenMatienefes and provide support

for resolving such references if they are used for desaiipenMath objects.

The OpenMath standard briefly described in Subsection préMides means to encode
mathematical objects in a format that is platform indepenhded therefore that can be
used for communication between mathematical systems &tregyido not use the same
data encoding model for internal manipulations of matheahformulae. Represen-
tations of mathematical objects can sometimes be lengttiyaara result files holding
representations of mathematical objects may be large. pdéating such large repre-
sentations requires significant time and computationaluees. One possible solution
is to eliminate redundant definitions and to split composejécis into multiple files.

This can be done by using OpenMath references mechanisresnpee in Subsection

2.6.1.

A compound OpenMath object may be defined by referring toatbjdefined in the

same document or even in external documents. For corregpoiation, a CAS parsing
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the definition of a compound object must be able in most casasdess all definitions
of sub-objects of the compound object. If OpenMath refeesrare encountered while
parsing, the CAS has to be able to access referenced defnitiom files stored in

the local address space of the CAS. If the sub-objects aredshyr remote hosts, they
have to be made available locally through mechanisms tleabair of the scope of the
CAS and therefore they have to be provided by third party corapts, in our case the
CAS Server. The CAS Server component provides mechanismppmdithe process

of resolving OpenMath references as described in the faligwubsections.

The resolution process is important both at AGSSO served lavd CAS Server level
where the OpenMath objects are actually manipulated. At 3G Server level, the
selection of a suitable CAS Server to resolve a particuldr iasst take into account as
primary criterion the ability of a certain CAS to handle a mautar task. A CASis able to
understand a request only if it is able to recognize all Opattidymbols used to define
the object. Therefore, the AGSSO server must know the cdamfilg of OpenMath
symbols used to define the task before sending a task to bleweddny a certain CAS

Server.

AGSSO server components are not designed to store actuaMple object representa-
tions. These are stored by various CAS Servers which act asNlgih objects storage
repositories. To support resolution processes that mayratcAGSSO server level
or within other CAS Servers, the CAS Server components impierfumctionality to
extract either lists of OpenMath symbols used within a cewaject definition or to re-
trieve the object itself. Given a set of OpenMath refereriaegeting OpenMath objects
that are stored as XML documents in the CAS Servers file systeenCAS Server is

able to extract:

e The list of OpenMath symbols used in the scope of the targen®iath objects;
this operation is required at AGSSO server level during tteegss of selecting
the suitable CAS Server to handle a task
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e The targeted objects stored in a separate file for lateexeirithis process occurs
when an OpenMath object is defined based on objects thataesldty other CAS
Servers. To parse the object, all required sub-objects brisiccessible locally

for the CAS to read and interpret them

Whenever a task that is built using OpenMath references neuagssigned for execution
by a CAS Server several steps must be executed. The initkabscription is parsed
and all the OpenMath references are identified and extradigdry OpenMath refer-
ence is investigated and references are grouped based @AB&erver that hosts the
referenced objects. For each group of references a caktodiresponding CAS Server
is issued for retrieving the list of OpenMath symbols th& ased to define referenced
objects. If a targeted object contains itself referencestiv@er OpenMath objects, the
CAS Server hosting the object is responsible for identifylmgm and it requests further
the list of OpenMath Symbols from the respective hosting C&8/&s. This recurrent
process generates therefore a chain of calls in which devA% Servers collaborate for

retrieving the list of OpenMath symbols.

The information flow between CAS Servers is acyclic in ordeprievent unnecessary
data transfer. At a certain step during the execution a afddAS Servers is constructed
and maintained system wide. Through the messages exchaggellaborating CAS
Servers, each CAS Server is aware of the list of CAS Serversateatlready part of
the resolve chain and it does not formulate requests to the &X&ers that are already
in the chain. Each CAS Server responds to requests that anelletted by its ancestor
in the chain and is able to formulate resolution requests,aira time, to another CAS
Server which is not yet part of the chain. References thatratiee scope of ancestor
CAS Server are not resolved but sent back as part of the ressdpense it formulates.
In this way the order is preserved and unnecessary callsvitnald lead to a cycle are
avoided. Any CAS Server receives therefore a set of refesstiiee are in its scope and
provides as a response a set of symbols that it was able tovdisand a set of references

that should be handled by CAS Server that have a higher ramieiresolution chain.
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Request: OB1
R-Chain: [CS1]

k| 4>
CAS Server 1 y i CAS Server 2

v

Unsolved References:[OB3]

Request: OB2 @
R-Chain: [CS1, CS2]

Unsolved References: [OB3]

CAS Server 3

Figure 6.1: Cyclic Data Flow Prevention.

In the Figure. 6.1 we assume that the CAS Se@®fd.discovers while reading a local
OpenMath object the OpenMath referer@B1 referencing a object that is hosted by
CAS ServelCS2 Therefore it sends a request to CAS Se@82 The request contains
the referenc®©B1to be resolved and the current resolve chain which conta|m€AS
ServerCS1 While reading the object targeted BB, the CAS ServeCS2discovers
another referenc®B2to an object hosted by CAS ServeS3and it sends a request
to CS3 The reference to be resolved@B2 and the resolve chain that the CAS Server
CS3receives isCS], CSJ. While reading the object targeted BB2, CAS ServelCS3
discovers that a reference@B3hosted on CAS Servé&S1lhas to be resolved. Instead
of sending a request ©S] it sends back the result of the resolution operatioG @
and a list of references that it can not resolve which costtie referenc©B3 This
reference is not solved by CAS Sen@®2either, becaus€S1is in the resolution chain
for CS2 It passes the unresolved referenceC®ltogether with the results obtained
so far. This algorithm makes sure that data is not createagssary data flow loops
and makes possible to identify potentially malformed OpatiMlocuments since cyclic

references are not allowed in OpenMath [184].
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Unlike the partial resolution process described beforé ahdy requests lists of Open-
Math symbols, the resolution process for obtaining the alc@penMath objects is
slightly more complex. The role of this process is to colleferenced OpenMath ob-
jects to the machine on which they are going to be parsed b &% hosted on the
CAS Server. Any task submitted for execution to a CAS Serveessdbed as an initial
call that may contain references to objects not hosted bZ#k® Server. The first step
in the resolution process is to retrieve from the initiaktdgescription the list of refer-
ences. Objects that are local to the CAS Server are extraciedtheir original files
and stored in a single file. References that point to partner S&8ers are grouped by
their hosting CAS Server, and requests are sent to partnerselA server receiving a
node resolve request extracts OpenMath objects that aitalsledocally to a temporary
file and a URL representing a download link to the file is senkkacthe requesting
CAS Server. Similarly with the symbol resolve process, nedelve process constructs
resolve chains. The difference is that messages sent balok tequesting CAS Server

contain in this case a list of URLSs that can be used to retriee@ttual objects as files.

Delaying the actual retrieval of referenced objects to the @f the resolution process
improves communication efficiency because the referenbgetts do not travel along
the resolution chain. They are hosted in temporary filesteceat hosting CAS Server
level and the download URL is only used by the CAS Server thatadlgt needs to
collect the OpenMath objects. This CAS Server accessesii@edemporary files and
appends the content of those files to the common file wherédbgects were extracted.
At the end of this process, all objects required for execusice therefore located in a
single local file from which the executing CAS can retrieventheDue to additional
manipulation of objects and update of references, theutsolprocess makes sure that
the content stored in the resulted file represents a valichMpéh object in terms of
structure and OpenMath references links. The disadvarghtges approach is that it
is not able to detect changes that may occur in objects hdstexther CAS Servers
while the resolution process is still executed. Once refezd objects are extracted to

temporary files at different CAS Server levels they represéantd-alone objects and
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they are not kept in synchronization with the originals # triginals are modified after

extraction.

There are situations in which the resolution process isemuired. This situation may
occur if one instance of CAS nam&@AS1requires the support of another CAS installed
on a different machin€AS2to execute some computation without requiring the actual
computed results. In this scenarfdAS1sends a request BBAS2which results in the
creation of objecR. CAS1subsequently requests more computations to be done Bsing
as input parameter. In this case it may be fR& not needed aCAS1site, it may be to
large to be transferred frol@AS2to CASland everCAS1may not able to understand
and uséR. One solution is to use the concept of cookies implemente&&i2fyCP protocol
[95]. The second solution is to use OpenMath references.otin tases as a result of
the initial request which creatd® CASlreceives a SCSCP cookie or an OpenMath
reference that identifies the object. In subsequent caldenffmm CAS1to CAS2the

cookie or reference is provided as part of the request.

Messg 5: request

Mssg 1: get list of symbols CAS Server 1 |foractual
Response: list of symbols targeted nodes CAS Server 3
Response: the URL
A of the file to
~ | download (XML)
4 (assync)
CLIENT ! /
Mssg 2: getlist of | | Messg 7: download / / Mssg 3: get list of symbols from CS3
symbols from CS2 | file / Response: list of symbols (assync)
‘ (Further requestis | }

made to CS3)
Response: list of
symbols (assync)

Messg 6: request for actual targeted nodes
Response: the list of files (assync)

Messg 4: execute request-._
Response: the result

Messg 8: dowload file
local to CS3
Response: the file
containing targeted
OpenMath objects

Messg 7: dowload request for file
local to CS2

Response: the file containing
targeted OpenMath objects

CAS Server 2

Figure 6.2: Resolving OpenMath References.

To illustrate a slightly more complex resolution processassume the following sce-
nario depicted in Fig 6.2. The generic client of an AGSSOeesubmits for execution

a workflow composed of multiple tasks. We assume that oneeofabks contains ref-
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erences to an OpenMath object hosted by the CAS Server CS1. bjéet bosted on
CS1 also contains the references GI¥WR1 that targets an OpenMath object hosted in
a local document and CS2MR2 that targets a OpenMath object hosted by CAS Server
CS2. We also assume that the object targeted by G8R2 contains the reference
CS20MRL1 that targets an object hosted by CAS Server CS3. The syrabolution

chain is thus:

CS1 — OS2 — CS3 (6.1)

For the AGSSO server to be able to select a suitable CAS Senexetute the task, it
has to determine in the first place the list of OpenMath sysbwt it uses. Therefore
it formulates a resolve request to CS1. The CS1 formulatebdud request to CS2
and suspends its internal resolution process until CS2 ctsivack the CS1 server with
the response to the request. The response contains thé digindols discovered by
CS2 and any other symbols that were discovered by descermfedd&? in the resolve

chain that are further contacted by CS2, in our case, CS3. Agrldeof this process,

CS1 responds to the resolve request of its client, here thes&=®rver, by sending the
list of discovered symbols. Based on the list of symbols thattask contains and the
capabilities of the CASs installed on the CAS Servers, theitagksigned to the most

suitable CAS Server. For our scenario we assume that thesaski to CS2.

When the task is received by the CS2, it is parsed and CS2 discthadrthe call con-
tains a reference hosted by CS1. It sends a node resolve teégqueS1 at which level
the object targeted by CSOMRL1 is copied to a temporary file. The CRIMR2 points
to a CS2 object so at CS1 level there is nothing to do in this r#spehus, CS1 re-
sponds to CS2 by sending the URL targeting the temporary fileaamatice regarding
the CS1IO0MR2. At CS2 level, the object targeted by COMR?2 is parsed and the sys-
tem discovers that another object, hosted by CS3 is requBiadilar with the previous
case, CS2 contacts CS3 and obtains a link to a temporary filee 8iere are no other

references to be resolved, CS2 contacts CS1 and CS3 and dos/frlmadhem the tem-
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porary files containing targeted objects. As a result of tegolve process, all objects

required for execution are now stored locally to CS2.

6.1.2 OpenMath Reference Formats

The symbol resolution process only tries to discover theofisymbols that are used to
describe a certain task. The role of full resolution proce$s make sure that all objects
required are downloaded and accessible to the CAS that wilf cait the execution. A
task submitted for execution at CAS Server may contain ret&eto OpenMath objects
located in the scope of the CAS Server or located on other CA&&erin OpenMath,

the general format of a OMR is:

<OWR href="URI" >

The format mentioned above is flexible enough to accommadgt@aming scheme but
further restrictions to this format should be imposed to endleffective in the context
of distributed processing. For consistency reasons, we raposed several format
restrictions. The accepted formats that the URI can takeimi@ipenMath documents

handled by the AGSSO system are the following:

e Absolute URI should be used to designate resources by pnoyali the informa-

tion required to locate and retrieve them;

e Relative URIs suitable for identifying resources relativeatoertain location pre-

viously supplied;
e Local file URIs which are used to fully identify resources theg hosted by the

local machine;

The format used for describing absolute URIs is the same Wélohe used for identi-
fying Web pages. The format of the URI is:
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http://host:port/path/to/file/filename/#i dentifier

The protocol part of the URI which for our purpose is desigsate “http” may be in
our case disregarded if better transfer protocols areablail With Grids, other transfer
protocols for transferring data such as RFT are used inste&T®oP. The hostand
port elements of the URI must identify valid CAS Server listeneeg implement the
required interface for resolving OpenMath references. iéntithat needs to access a
certain resource will use the host and port information tbtba appropriate services.
In the context of the server hosting the resource, the pathe@ctual location of the
file containing the targeted resource should be identifiechgping the filepath section
of the URI (“path/to/file/filename”). The CAS Server providesiemplementation for
which all the files accessible through the resolver interfae stored in a common root
directory. CAS Server automatically maps the file path to ttiea location of the
file starting from this root directory. The last part or the Uiepresents the reference

identifierused to identify the OpenMath object within the targeted file

Relative URIs may be used to reference OpenMath objects hagngart point the
location of the file in which such references reside. Theeefois type of reference can
only be used to identify resources that are hosted on the saubine as the document
containing them. The general format is :

pat h/ t o/ docunent / #i denti fier

for which to identify the actual file general rules appli@ii Unix and Windows oper-
ating systems are used, also valid in the case of relative URltlse path to the file is

missing and only the “#identifier” part of the URI is presehg turrent file is assumed.

The support provided by CAS for dealing with OpenMath refeesris still under devel-
opment and there is no standard format accepted by all CASsahde used to identify
and extract OpenMath objects based on their URI. GAP is abtett@ve OpenMath
objects from locally available XML documents if the format:

file:///path/to/filel#identifier
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is used. Because the format mentioned above lacks informétet would allow to
identify resources in a distributed environment URIs follogvthe absolute URI format
presented above must therefore be transformed before tbegat for evaluation by the
CAS.

The resolution process for URIs starting from a request 8emtGAS Server is complex
and potentially involves coordination among several pagnRewriting rules are needed
to ensure consistency and correctness of references deethafobjects are moved from
one hosting CAS Server to another. Replica management mayrpeali&cult if the
system has to keep track of various OpenMath objects thaicmted by different CASs.
At this stage of development AGSSO does not provide supporeplica management
as a consequence identical objects that are hosted by tfeoedlift CASs are considered

to be different.

Mssg 1: send task1 to CS1 CAS Server 1

Mssg 3 (if referece
resolving is used):
request output of task1

CLIENT

v

CAS Server 2

Mssg 2: send task2 to CS2
(requires output from task1)

Figure 6.3: Sample Resolver Scenario Architecture.

The use of OpenMath references is not only beneficial in tii@lidescription of tasks.
The same mechanisms may be used to minimize network trafficeaacution time
for sequences of tasks among which data dependencies Asist.simple scenario we
assume that a client of a CAS Server submits for executiorkddak1to theCASServer
CSl1component and after completion of this task, it sendgdakk2to CAS Server CS2
which requires the output fromaskl The most efficient solutions for this situation is to

make sure that the response for taskl is not a self contagstidtion of the result, but
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an OpenMath object that contains an OpenMath reference tbjact hosted by CS1.
As input data fotask2the client does not provide the actual parameters but thawtbs
reference that are resolved at CS2 level. Before startingdheudion at CS2 level, CS2
contacts CS1 and obtains the actual parameters by resohar@ggenMath reference as
depicted in Fig. 6.3.

6.1.3 References in the Main SCSCP Call Document

The SCSCP call document describes the call and meta-infemeagiated to the call, in
concordance with the SCSCP specification. The document hasméaosections: the
header section where details regarding the call are spdcifie body where an OMA
OpenMath objects attaches to a symbol identifying the reraperation to be executed,

and the objects that represent the parameters of invokedtopes.

The CAS Server is able to handle OpenMath references thatoeplarameters of sub-
objects of the parameter objects but references are noptcctor replacing any other
section of the call, such as the header of the call. Since th® &#ecuting a certain
computation must be able to identify and retrieve the objesfierenced within the call,
when sent to be parsed by the CAS this document must contgirabeblute URIs. The

call document itself is not stored as a file on the machine s/trex CAS is installed and
therefore relative URIs have not associated meaning. Meresince the call is received
from a remote client, resources can only be correctly ifiedtif they contain complete

information regarding the host from which the targeted cigjenust be retrieved.

During parsing, the original call document submitted by ¢hent is modified and pre-
pared to be submitted to a CAS. All absolute references aodvezs and modified to
follow the local file URI format described above. All OpenMatbjects referenced are
retrieved from remote partners and they are stored in a tecgborary file from which
they may be read by the CAS. During rewriting process all umigentifiers of objects
in the OpenMath document are modified in order to avoid namogflicts. The re-

trieved objects may in turn contain other references that pwant either to the local
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CAS Server or to other CAS Servers. These references mustalssbdlved before the

actual execution may start.

References to documents hosted on the local host or even otslgescribed in the
same document are rewritten to relative URIs which point éostéime temporary docu-
ment. Objects that are locally hosted in other files thang¢h®brary one are parsed and
inserted in the temporary file. The goal is to minimize thespay effort that the CAS
must do to identify and retrieve objects required for preggs A similar approach
is used during the resolve process for references that aoévesl on third party CAS

Server resolvers.

Absolute references discovered in the resolution prodedsio not point to local docu-
ments must be resolved through requests issued to CAS S#maeisost the resources.
When the resolver on the execution CAS Server discovers stierenees during the

parsing process, it formulates to the appropriate CAS Sexveguest that contains:
the list of references that the third party must resolve, memtifiers that will replace

the identifiers of the targeted objects and a list of absolubé references that the third
party resolver must ignore. The identifiers are requirechbse all discovered objects
are copied to a single file at the execution CAS Server,anefirer every node must

have a unique Id.

6.1.4 The Structure of the Consolidated Resource File

The temporary document containing all objects referenaegtttly or indirectly by the
task call must be a well formed XML document that compliesweili OpenMath rules.
Because this file contains objects appended during the eepabecess, we use a standard

OpenMath list specification structure. The basic structditbe file is:

<OMOBJ xm ns="htt p://ww. openmat h. or g/ CpenMat h"
versi on="2.0" cdbase="http://ww. opennat h. org/ cd">
<QVA>
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<OMS cd="list1" nane="list"/>

<OMOBJ > ... </ OvMOBJ >
<OvMoBJ > ... </ OMOBJ >
</ OVA>
</ OvOBJ>

where the innekOMOBJ>; ... </OMOBJ> must represent valid OpenMath objects
from which the starting and trailing OMOBJ tags are omittethe Tesulted document
will thus contain a multi-dimensional list for which the db@nd dimension depend on

the structure of the objects/references that must be redolv

6.1.5 A More Elaborate Resolution Scenario

We assume that the SCSCP call (incomplete) presented ind.iBtinis sent to the CAS
Server CS2. At the CS2 level the call is parsed and the “htgs1/geat.ro/filel.txt#id1”
reference is discovered. This absolute URI must be changedder to be correctly
handled by the executing CAS. Because it is part of the main SCaICRhe reference
is transformed to a local file URI pointing to new local tempgriile that will contain

all objects obtained through the resolve process. Thexdfte reference is modified
to “file///local_repository/resulfile#newid1”. To retrieve the targeted object a call is
formulated to CS1 that contains the reference that needstesbé/ed and the new ID

that must replace the old reference ID.

At CS1 level, the server extracts the object targeted in tieeeece and stores it in a tem-
porary file with the new XML ID “newid1”. All references thatediscovered at the CS1
level and start with “http://cas2.ieat.ro/” are skippednfr resolving. Now we assume
that, in the resolution process at CS1, two references fhigs2.ieat.rof/file2.txt#id2”

and “/filell.txt#id11” are discovered. The targeted olgjeate copied to the a local
temporary file and the two references are changed: “htgs2/ceat.roffile2.txt#id1” is

changed to “#generatedld1CS1” and “/file2.txt#id2” is chehtp “#generatedld2CS1".

The ID of the XML targeted nodes are changed, in the tempdiiaryin our case from
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“id11” to “generatedld2CS1”. The response of the resolvegss at CS1 level informs
CS1 that the reference “http://cas2.ieat.ro/file2.txt#mhs not resolved because it is
the scope of CS2 CAS Server. It also specifies the URL of the fileedast CS1 level
which must be downloaded by CS2 : “http://casl.ieat.ro/fdedptxt”.

At CS1 level, the message is received and the unresolveenekeis resolved by iden-
tifying the targeted objects and by copying the objectshwipdated identifiers, to the
local result files. In a similar way, the rest of referencesrasolved. When this phase
of resolution is completed, as the final step, the file is doadéd and its content is
copied to the result file. All its content is copied to the fiksynated by the reference

“file///local _repository/resulfile”.

<OMBJ xm ns = "http://ww. opennat h. or g/ OpenMat h" >
<OVATTR>
<OVATP>
<OMB cd="scscpl" nane="call id" />
<OVBTR>194. 102. 63. 120: 26133: 6766: dgsyt e</ OMSTR>
<OM5 cd="scscpl" nane="option_return_object"” />
<OVBTR></ OMSTR>
</ OVATP>
<OvA>
<OM5 cd="scscpl" nane="procedure_call" />
<OVA>
<OMS cd="scscp_transient_1" name="W5 factorial" />
<OM >. . </ OM >
<OWR href ="http://casl.ieat.ro/filel.txt# dl"></ OVR>
</ OVA>
</ OVA>
</ OVATTR>
</ OVOBJ >

Listing 6.1: SCSCP Call with References

Because CASs are not expected to implement data transfercpt®tosed by various
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distributed frameworks, the support for such operationstrbe provided by external
components, in our case the CAS Server component. The io¢edansists of two
operations. One operation allows third party clients tonsiilobject requests while the
other one is able to store responses for requests that thent@AS Server previously
submitted to other CAS Servers. Through their implementéeifacce CAS Servers

provide support for:

e Handling requests received from external clients for ngaglreferences that are

in the scope of the local CAS Server, i.e. hosted by the CAS Berve

e Handle response messages for earlier requests that the G»& geelf has for-
mulated to other CAS Server. This operation is required eethe resolve pro-
cess may take a long time and therefore request/resporeskaratled using asyn-

chronous messages

6.1.6 Downloading Result Files

During execution all objects referenced by an OpenMathreefee and used in the initial
call document or in a subsequent referenced object mustadlalie locally. The CAS
executing the call should not and is not expected to conggebte machines to transfer

the requested objects.

There are often situations when the input data for a task atjpbbdata generated by
the processing of the task are large. In this situation camgimultiple CASs in an ex-
ecution workflow requires moving this data from/to procegservers that are involved
in the computation. A rule of thumb in distributed computiago minimize the load on

the network as much as possible.

The advantages of using OpenMath reference are easilyifiddntThe result of taskl
which may not be even needed directly at client side does av# o travel back and
forth on the network. Since CS1 and CS2 are server nodes ithdylpgobable that the
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bandwidth capacity of the link between CS1 and CS2 exceeds liyfacapacity of the
links between the client and CS1 and client and CS2. A collbéehzantage of this set-
up is that the client requires little computation resour@ed can be even implemented

on hand held devices.

In general CAS lack network communication capabilities dratdfore they should not
be expected to be able to coordinate transfer of files. CASeBanplements the refer-
ence resolver as a separate sub-component of the systerneafil@ transfer is imple-
mented over the functionality provided by Globus RFT (Regd#ile Transfer Protocol).

Security is also ensured by implemented mechanisms oftgréide Globus GSI.

6.1.7 Summary

The resolution process is the process through which refesefound in an OpenMath
document are handled. The components of the system cadliegtorprovide support for

two types of resolution processes:

e Partial resolution is the process to obtain the list of Opatisymbols used to de-
fine a certain OpenMath object. The partial resolve processjuired at AGSSSO
Server level to allow it to determine CAS Servers that are théxecute a certain

task based on the functionality they provide;

e Full resolution is the process to obtain the complete desar of an OpenMath
object which is defined based on OpenMath references. Re&sarsed in the
definition of an OpenMath object are replaced by the actuialreaced objects.
Usually the CAS has to have the full definition of the OpenMdifeots involved

in the execution of a task, including referenced objects.

The AGSSO server and CAS Servers collaborate for resolviegarces but for retrieval
of actual data CAS Servers rely on Grid specific features fta denagement provided
by Globus Toolkit 4.
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PAUSED NOT RESOLVED

PAUSED RESOLVED

NOT RESOLVED

RESOLVED

CANCELED

PAUSED SUBMITTED PAUSED READY FOR SCHEDULING

gl

SUBM ITTEDHSCHEDULED

FINISHED

Figure 6.4: Task Life Cycle at Client Manager Level

6.2 Advanced Workflow Management

It is sometimes necessary to intervene in the normal exawibf a workflow. Due to
various reasons the user may need to cancel or pause thdiereamd therefore addi-
tional management functionalities such as start/stopinesare required. These actions
have a direct impact on the life cycle of the individual tagken which the workflow
is composed of and adds an additional level of complexitytHeroverall behaviour of
the system. In the following subsections we investigatditeeycle of symbolic com-
putations workflows in the way they are handled at the AGSS@e8éevel and at CAS

Server level.

Any workflow submitted by the client to an AGSSO server is nggathby Client Man-
ager Component which is responsible for tracking all det&tgarding computational
nodes that are part of the architecture and based on int&ti@hale to select the most

suitable machine to execute a certain task.

The initial status of a task is NOT RESOLVED (Fig. 6.4), sinbe task described
using the OpenMath language may contain unresolved refesdn external OpenMath
objects. Once the resolution process is successfully catenhl the status of the task is
marked alRESOLVEDand the task is prepared for further analysis. The task impted

to the statdREADY FOR SCHEDULINGs soon as the task is activated, meaning that all
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its predecessors are finished and therefore the tasks cam$&idered for execution. The
system can now run scheduling algorithms to select the midatde CAS Server to send
the task for execution. Once the suitable CAS Server is saldébe task is promoted to
the stateSCHEDULED The following step is to send the task to be resolved to a CAS
Server. After the task is successfully submitted for exeautthe internal state of the
task becomeSUBMITTED Further evolution of the task’s state will only occur afies
CAS Server submits back the result or an error is returnedceagéul completion moves

the task intdcINISHED state while if an error occurs the task is marke@€CANCELED

The execution workflow described above is the one that ndynoalcurs if the tasks
follows the normal execution path. The user may decide terwehe in the normal
execution flow by issuing specific workflow management conaeaA 'pause’ request
may be issued by the client at any stage of the workflow exacuwtihich has as effect
a change in the current state of task(s) that are in the scofiee gequest. If a task
has the statuslOT RESOLVED may be considered that the resolve phase was started
but it was not finished yet. Since pausing a task presumabgnm#at the task will
be started at a later time it makes sense for the resolve pbasmtinue. Thus, the
task’s new status becomBAUSED NOT RESOLVELD the task is paused while it is in
RESOLVED state the new status becorRd&)SED RESOLVEDA resume issued for a
task in the stattAUSED NOT RESOLVE®r PAUSED RESOLVEWiill have as effect
changing the state of the taskN®OT RESOLVEDr RESOLVEDespectively.

The parent-child dependency between tasks prevents aothskscheduled immediately
after it is resolved. The task may BREADY FOR SCHEDULINGnly when all preced-
ing tasks were already resolved. If a pause is issued wleléask is in one of the states
READY FOR SCHEDULINGr SUBMITTED its state may change ®AUSED Any
resume operation for a task that isRAUSEDstate results changing of the task’s state
to READY FOR SCHEDULIN@at allows the system to run once more the scheduling
algorithms to select the CAS Server to which the task shouklbenitted to.

A submitted task is no longer under complete control of theS8G server and any
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change in its state has to be coordinated with the CAS Seratth tasks was submitted
to. Pausing a tasks in the st&@&)BMITTED may change the status eitherRAUSED
SUBMITTEDor to PAUSED The new state becom@&\USEDIf the worker was able
to pause the task at its level as well, which depends on thessththe task at the CAS
Server level and the functionality that the CAS itself pr@gdas described further in
this section. If the underlying CAS does not support pausing,task may continue
to run and the state of the task at AGSSO level becddsSED SUBMITTEDIf the
computation ends before the task is resumed the resulinelota@t CAS Server level is

not be sent back to the AGSSO server until the task is not redum

One useful behaviour that the system provides support flisarding the computation
of a task and manually assignation of an expected result. uSbe can reconsider the
execution of a certain branch of a workflow or can discard amgation and manually
set a result. The later case allows the user to stop a longnuitask and provide the
result of the task without computing it. In such case, by nadlgwassigning a result to
a task that is in the staPAUSEDor PAUSED SUBMITTERnd resuming the task will
have the effect promote the task to the stt¢ISH. No further computation is therefore
done for this task and the manually assigned result is usédtagas the result of the

task execution. The result that will be used in the rest ofam@putation is the one

provided by the user.

A special action is the cancellation of a task in the workfl@\uis action may be taken
regardless the current state of a task and has a direct efiedt the tasks that depend
on the cancelled task. As a result of this action, all deseenthsks, direct or at deeper

level, are also cancelled.

At CAS Server level the life cycle of the task is similar to theecat AGSSO server
level ( Figure 6.5). Once received by the CAS Server the taskves based on the
internal processing and may be influenced from outside bysk€s actions. The status
of the tasks is promoted frolNOT RESOLVEDQo RESOLVEDIf all references were
successfully resolved by the system. If the statRESOLVEDall OpenMath objects
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Figure 6.5: Task Life Cycle at Computational Node Level

required for the CAS to be able to execute the task were rettiénom their original

hosting CAS Servers. At CAS Server level once the tasRESOLVEDthe internal

scheduling algorithm may determine the actual CAS to whieltdlsk will be submitted.
The CAS may not be able to treat the task immediately and thiergfter scheduling,
the task may be put in the stafgpJEUED instead ofRUNNING The task is put in the
stateFINISHEDwhen the result was computed by the CAS.

Management actions such as pause/resume/cancel deteroniresponding modifica-
tions in the state of a task as it happens at the AGSSO semadr k& task received by
the CAS Server from an AGSSO server is already in the SBBMITTEDat AGSSO
server level and depending on its current state within CASe3geits state will change
accordingly. A pause requested for a tasiN@T RESOLVEDBtate will put the task in
the statePAUSED NOT RESOLVEMhile if the task is already iRESOLVEDstate it
will be put onPAUSED RESOLVEDT herefore if the resolve process was already fin-
ished it will not be re-executed when the task is resumed. @Becd is not possible to
freeze the execution of task at CAS level, even if a pause isastqd by the user the ex-
ecution itself continues and from tIRINNINGstate the task is put in the stRAUSED
RUNNING The evolution of the task at CAS Server level has also a dimgzact on the
task’s state at AGSSO server level. If the task can be put at 8&&er level in the state
PAUSEDIt will also be put in the statPAUSEDat AGSSO Server level. If the task was
already started at CAS Server level and its state is modifiéAtdSED RUNNINGat
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Figure 6.6: The Life Cycle of a Task at AGSSO and CAS Server level

FINISHED

CAS Server level

AGSSO server level the state of the task is s&AUSED SUBMITTEDThe correlated

relation between the states of the task at system level isteelgn Figure 6.6.

6.2.1 Summary

The life cycle of the task at AGSSO Server level and CAS Seexazllare similar. The

typical life cycle follows the following steps:

1. The task is received by the component, AGSSO Server of CARGe

2. OpenMath references are resolved. At CAS Server leveldglblve process is

applied while at AGSSO Server level only partial resolui®required;
3. The task is sent for execution;

4. The result is obtained.
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At user request, the execution of a particular task may bsqzhor even cancelled, with a
directimpact on the state of the other related tasks. Themsysses the above mentioned
life cycle and information on the current state of the systewhetermine and control the
status of each task. Insight regarding task life cycle ie aigportant for ensuring that
the system behaves as expected and as support in develogireeent-based simulation

platforms such as the one presented in Section 6.3.

6.3 Event Based Simulation Framework

In this Section we describe an event-based simulation fraoriefor testing the CAS
Server and AGSSO Server components and for providing adedstfvironment suitable
for optimization of different scheduling algorithms. Inl&ection 6.3.1 we present the
overall design of the framework. In Subsection 6.3.2 we wdiscpreliminary results

obtained by testing several generic scheduling algorithms

6.3.1 Simulation Design

Building a distributed architecture is usually not a triviaék as every execution unit in
the distributed architecture must act autonomously. Theeradvanced the implemented
functionality is, the less easy is to predict the systemfsalv@ur. In general, testing such
architectures in real life environments does not providafacgent level of confidence
and alternative solutions must be sought. One such alteenatto create a simulated
environment. Building a simulated environment for our systaffers two important
benefits. The immediate one is to validate the implememtdiiptesting not only the
separate software components but also their functionatiggn integrated in the broader
SymGrid-Services architecture. Due to the complexity ef $lgstem, testing it in the
simulated environment helps us to identify problems prodéploying the system on a

real life computational architecture.
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A second important benefit of a simulated environment isitidters valuable informa-
tion regarding the efficiency of the system. The tasks subthity a user are analysed
by the system and the system tries to find the most suitablgutational resources
that meet the task’s requirements. This is achieved by usthgduling algorithms im-
plemented at two levels of the architecture, as it is desdrib the following sections.
Unfortunately, symbolic computing is atypical with respéx estimating the time re-
quired for a task to be completed. Polynomial factorizaioffer a relevant example
because the time required to factories a polynomial doesargtin a predictable way
with respect to the input (e.g. givé(x) it is hard to estimate its cost by relying on the
cost ofP(x+1) or P(x-1).

In a real life environment, using prior knowledge regarding hardware infrastructure
on which SymGrid-Services is deployed and regarding theciire of the tasks that
are most often resolved by the system, it is possible to dotfing of the system in

order to achieve greater performance. With such prior kadge, different scheduling
algorithms may be tested for effectiveness and differegtegmtion schemes may be
implemented. For efficiency reasons, it is not uncommon mpater farms to apply

segregation policies to prevent powerful machines to exeshiort running tasks or to

avoid computational-intensive tasks to be submitted t® pesverful computer system.

In the following sub-sections we describe the simulationiremment that we have used
to test the efficiency of various scheduling algorithms fa@thematical problems. The
solution uses the discrete event simulation approachr¢gilm the behaviour and the life
cycle of workflows comprising interdependent tasks frormttzenent they are submitted

for execution until their executions ends.

Experiments can be run using various testing and simulgiatiorms. These include
real platforms, simulators and emulators. Real platfornaside better understanding
of the system’s behaviour in a real time environment but rea&sting of different set-
ups difficult. Emulators permit flexible testing of existiogmponents by reproducing

controlled system calls. If a simulation platform is usedthbthe components of the
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architecture to test and the environment in which it is eigeto execute must be cre-
ated. Simulated platforms represent an usual solutiore&iiny distributed applications
under specific circumstances. Examples of such platforendescribed in Bricks [173],

SimGrid [67], OptorSim [48], GridSim [54], GridNet [120], Wkavoc [56] etc.

While some of the simulation platforms mentioned above maydeel without extensive
adaptation in some cases, the particularities of the AGS8hitacture makes reusing
already existing simulation platforms a complex task. €f@ne we have designed and
implemented required components that allow us to simutsebehaviour of AGSSO
using the discrete-event simulation mode. Ore goal is teg@s much as possible of
the actual components of the AGGSO architecture. Workfldaswould be specified
at client side are replaced by generated ones using custptanmented random gener-
ators. The structure of generated workflows, the structtitiesotasks and the resources
they require to be resolved are influenced by configuratioamaters of the generators.
Therefore a wide range of possible scenarios can be testbdwiactually executing

tasks.

Our simulator aims at mimicking the flow of events that ocaiside SymGrid-Services
from the moment a workflow is submitted and until its comleti To fulfil this goal,
the tasks themselves do not need to be executed by a CAS simodlfe simulation
point of view only details such as time needed for the tasletednt to the CAS Server,
time needed for potential OpenMath references to be redadinee needed for the task
to be completed and time required to transfer the resultedegant. All these values are

actually generated by the simulation platform.

Based on the two-level architecture of the composition fraark we have identified

several events specific to the simulation environment whaole to be processed:

e AEVENT - signals the arrival of a new submission in the system. Bifichis
is represented by a new workflow. The submitting client needse registered in

the system’s database.
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e AGSSO.RESOLVE - marks the end of the OpenMath resolution process of one
or more workflow tasks. This means that the system has idshtlie CAS servers
able to execute the tasks. Once this step is accomplishedtieeluler component
at the AGSSO level finds the best server for executing thestdd& rescheduling
is possible at this level and thus selecting the optimalesgulays a vital role for

the global computation costs.

e CAS AEVENT - represents the moment when a task is received by the CAS

Server and placed inside its waiting queue.

e CAS_RESOLVE - is similar with the correspondinfGSSORESOLVEevent.
The only difference is that at this stage the task symbol dhotereference links
are replaced with the actual content that is transporteu ftte remote hosts to
the CAS Server. Once this step is completed the schedulemvat $evel is started
in order to load balance the usage of available CASs. Additipna number of
tasks can be started on each CAS depending on the maximum nafmhstances
each CAS can handle and on the number of already running onssh&guling is
achieved each time this eventis triggered. The reason @aisecach new resolved
task needs to be scheduled on the least loaded CAS in ordartestcuting it as

soon as possible.

e CAS_CEVENT - is triggered each time a task has completed its executibe. T

result is stored in a database and the response is sent bAG&80;

e CEVENT - is triggered when the result from the CAS is received by AGSSO
All tasks depending on the current one are inspected andbbpsstivated for

scheduling.

The events that occur during simulation are closely linké&t the actual states of tasks
handled by the system. For instance a CBSENT that the simulation platform must
handle means that a particular task was finished and thessihthe task has changed

to FINISHED. While in a real life environment events occur doi@ormal evolution of
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the system’s state, i.e. a CAS/ENT occurs because a CAS finished resolving a task,
in the simulated environment the next event is calculateddbgcting the event having
the minimum due time. The algorithm presented in Listing @2cribes the way the

simulation platform executes the simulation process.

Simulation starts from the reference time “0” and the curtiene is increased with each
new event that is handled. Initially, because no tasks weseiqusly generated, the
system will generate a workflow and the new reference timé@stmulation platform

becomes the time of the AEVENT. Each workflow and within thekflow each task is

defined by the time needed for it to change its state from fitialistate to the final state
when the task is resolved. If the task’s execution startedahent T and it requires N
time units for it to be completed, the simulation platformlwhange its state to FIN-
ISHED when reference time becomes T+N. Next event that adswways determined

as the minimum due time of any event active within the simaiteplatform.
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INPUT: total NumberOdients
arriveEcart := 0

WHI LE (nrOf Requests < total NunberOClients

OR NOT(fini shed workflows)) BEG N
next Event := get Next Event Type()
| F (next Event = AEVENT) BEG N
handl e AEVENT() ;

eventTime := currentTi ne

arriveEcart gener at eNext Wor kf | owAr i val Ti me()
nrf Requests := nrOf Requests + 1
ELSI F (next Event AGSSO RESOLVE)
handl eAGSSO_RESOLVEEvent () ;
ELSI F{ next Event = CAS_AEVENT}
handl eCAS_AEVENTEvent () ;
ELSI F(next Event = CAS_RESCLVE)
handl eCAS_RESOLVEEvent () ;
ELSI F(next Event = CAS_CEVENT)
handl eCAS_CEVENTEvent () ;
ELSI F(next Event = CEVENT)
handl eCEVENTEvent () ;
ENDI F

END WHI LE

Listing 6.2: Event Based Simulation Algorithm

As described by the Listing 6.3 for the purpose of simulagaich task is defined by

several characteristics: the amount of memory requiredt fiar be executed; the size

of data that must be transferred to the execution host; thefiOpenMath symbols

and methods it contains; the time required to resolve Opémkderences it contains;

and its relation with other tasks of the workflow. All theseails are generated auto-

matically to match specific statical distribution model$eir values may be expressed

directly as units of time needed for a certain processingetodmpleted or as orders of

magnitude that influence the time required. Some details agcestimated execution

and completion times on a certain resource and transfes tmaind from the server can
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only be determined when thRaGSSORESOLVEevent occurs. These details cannot be
known prior to the selection of the server, a procedure wtakbs place after the task is

resolved at AGSSO level.

BEG N handl e AEVENT()
$n : = generate_nunber_of tasks();
FOR (i = 1..n} BEG N
nSynb : = generate_no_synbol s();

nMet : = generate_no_net hods();
mem : = generate_nenory_req();
parents : = generate_parent _tasks();
size := generate_size();

res := generate_resolve_tinme();

gener ate_t ask(nSynb, nMet , nem si ze, parents, res);

ENDFOR

FOR (generated _tasks()) BEG N
taskState : = NOT_RESOLVED;
i nsert _task_in_database()

ENDFOR

generate_next _workfl ow arrival _time();
END

Listing 6.3: Generation of New Tasks

The algorithm described in Listing 6.4 shows the actions tizae to be taken by the
simulation platforms when a task changes its state to RESOLYEAGSSO server

level.
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BEG N handl eAGSSO_RESOLVEEvent ()

FOR ( ready_to_be resolved_ tasks ) BEG N
resol ve_task()
taskState : = RESOLVED,
eet := generate_execution_tinme();
tc := generate_ transfer_costs();
updat e_t ask();
t askSt at e : = READY_FOR _SCHEDULI NG,
schedul e_t asks();
taskState : = SCHEDULED;

ENDFOR

END

Listing 6.4: Handling Resolved Tasks

Tasks that are ready to be executed are analysed by schgdlgorithms and the most
suitable CAS Server is elected to execute the task based oaqusrements and on
resources that a certain CAS Server provides. At this levéwa scheduling algorithms
may be tested and their efficiency for a certain configuratiay be determined. Once
the CAS Server is elected, the task is sent to the CAS Servehan@solve process at

CAS Server level is started, following the procedure presgint Listing 6.5.

BEA N handl eCAS_AEVENTEvent ()

FOR ( ready_to_arrive_tasks ) BEG N
taskState : = NOT_RESOLVED;
res := generate_resolve_tinme()
i nsert_task_i n_dat abase()
ENDFOR
END

Listing 6.5: Handling Tasks at CAS Server Level

Depending on the loading of the CAS Server a certain task maytia a waiting queue
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or the task is immediately submitted to the CAS for execut®described in Listing 6.6.

BEG N handl eCAS_RESOLVEEvent ()

FOR ( ready_to_be resolved tasks ) BEG N
resol ve_task()
taskState := RESOLVED
schedul e_t ask()
$t askState : = QUEUED
ENDFOR
FOR (<can start> tasks) BEG N
taskState : = RUNNI NG
ENDFOR

Listing 6.6: Task Resolution at CAS Server Level

When the tasks is completed at CAS Server level its state isgeltato FINISHED
(Listing 6.7). The result is sent back to the AGSSO serverdapending on its size, its

transfer requires a certain amount of time units.

BEG N handl eCAS_CEVENTEvent ()
FOR(ready_to_conpl ete_CAS tasks) BEG N
taskState : = FI NI SHED;
ENDFOR
END

Listing 6.7: End of Task Execution at CAS Server Level

Once a task has finished and the result is received by AGSS@rsisk’s state is
changed accordingly (Listing 6.8). As a result, other tabls depend on the finished

task completion may further be marked as ready to be anabyzédtarted.
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BEA N handl eCEVENTEvent ()
FOR ( ready_to_conpl ete_AGSSO tasks) BEG N
taskState : = FI NIl SHED
ENDFOR
END

Listing 6.8: End of Task Execution at AGSSO Level

SymGrid-Services relies on statuses to handle tasks dtiengntire period from work-
flow submission to completion. Two sets of statuses are umsglfor the AGSSO level
(see upper part of Figure 6.6) and one for the CAS server leeel lower part of Fig-
ure 6.6). In order to address this matter the simulator'sisveirectly handle the status
management as shown by the algorithms described above. dE#lobse algorithms is

called when the corresponding event occurs during the si@adilexecution.

6.3.2 Simulation Results

One of the main purposes of the simulation platform is todvethderstand the impact of
a real life architecture and the use of different scheduiiggrithms used &AGSSCand
CAS Servetfevels. The different structures of the workflows and the sizthe tasks
comprising the workflows are two of the important detailst thlaould be considered
when various scheduling algorithms are used. The resudepted here were part of a

study previously published in [59].

The first configuration used for testing is the same as the lifeahardware archi-
tecture that brings together the computational clusteesl esirrently by the SCIEnce
project [19]. The two clusters, the one in Timisoara, Romamd the other in St. An-
drews, United Kingdom are homogeneous with regard to theieme profiles and in the
software capabilities installed on the machines. In thg 8et-up, the AGSSO compo-

nent is installed on the SCIEnce cluster based in Timisodra.tWo clusters also act as
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CAS Server components with CASs installed on the nodes of trestdrs. Therefore,
we have two CAS Servers, which in turn have eight computatinodes each. Each

node of the cluster hosts one instance of GAP respectively.

For testing purposes we have selected three schedulingtaige: MinQL [98], MaxMin
and MinMin [164]. MinQL algorithm ensures that tasks staima does not occur since
the age of the task is considered as a selections criteriests Tun with this algorithm
also use as selection criteria the CPU speed of machines. Mifit computes the
fastest estimated completion time for each task on evepures and it assigns the task
to the resource where it would be computed in the shortest tirhe MaxMin algorithm
is similar to MinMin except for the fact that it assigns thadest estimated running task
to the resource for which the value was obtained. The aim ofN#a is to balance

execution of task requiring a long time to complete with sals&ving shorter ones.

At AGSSO level only MinQL is used while at CAS server level arfytlee listed al-
gorithms can be chosen. The reason for this approach is t#g&SO level there is
no rescheduling the target being to balance the number k$ @s the existing CAS
servers. At CAS server level we require periodical rescheduds some CAS could
execute tasks faster then others. In our tests we have evedideveral parameters that
would help us to draw conclusions related to the computadtsesThe makespan repre-
sents the total time of execution, from the first moment whiask arrives in our system
to the moment when all workflows expected to be simulated bysifstem are marked

as successfully completed.

During the execution, the scheduling algorithms may find¢athputing resources busy
so the task is put into a waiting queue. An important indicatothis respect is the
average waiting time related to the executed tasks. We notsstyere that, due to internal
considerations of scheduling algorithms, it is possibét the task is stored in a waiting
qgueue even if a free server is available. This should notgh@ccur often and waiting

time should be in this case small in comparison with the geexecution time.

Usually, scheduling algorithms try to assign tasks to caingusevers so the average
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Figure 6.7: Average waiting time for each CAS when the MinQhestuling algorithm
is used at both levels.

load for every machine is balanced. As the following diagsamill show, it is possible

that some servers have a greater load due to the structuhe gieherated workflows.
For our purpose we use workflows that combine several exetpatterns which may
directly affect the load profiles. When dealing with workfloaentaining sequences, it

may be possible that the same machine executes all the thitlessequence.

Since the simulation is based on the next-event model, the oftime used in the fig-
ures are abstract. For the load diagrams the values usecdDytlaxis represent sub
unitary values obtained by dividing the execution time of\eeq server to the total run-
ning time. If we consider that tasks at both AGSSO and CAS $¢svel are scheduled
with MinQL algorithm and we submit ten respectively twenkeeution workflows the
average waiting time in our simulation is relatively smalt &ll servers as can be seen
in Figure 6.7. This demonstrates that the scheduling dlgos behave as expected and

that the values are similar for the two cases.

When using different scheduling algorithms at CAS Server legenotice a slight mod-
ification in the average waiting time profile (see Figures &8 6.7(b)). This is due
to the fact that MinMin and MaxMin are not load balancing altons. This results in

higher average waiting time for certain servers.

As we can observe from Figure 6.9 the load when MinQL algoritk not affected by

the number of workflows executed and load between execuB&is balanced. Not
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Figure 6.9: Average load for each CAS when the MinQL schedudilgorithm is used
at both levels.
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Figure 6.10: Average load per CAS for 20 workflows when différgcheduling algo-
rithms are used at the two levels.

the same conclusion can be drawn from the situation when @®&tusMin or MaxMin

algorithms. These two algorithms led unbalanced loadseoOASs (see Figure 6.10).
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Workflow no. | MinQL-MinQL | MinQL-MaxMin | MinQL-MinMin
10 22758+ 6026 | 21230+ 5425 24397+ 5092
20 42247+ 5398 | 37935+ 8327 | 37450+ 6261

Table 6.1: Makespan comparison.

Table 6.1 depicts the average schedule makespan (incltiténstandard deviation ob-
tained from the tests). It can be noticed that when MaxMin ldindMin are used at the
CAS Server level the obtained makespan is better than thendesme MinQL is used at
both levels. MinMin and MaxMin algorithms use task estinsatdnen taking scheduling

decisions while MinQL focuses on load balancing.

6.3.3 Conclusions

We use the event based simulation platform presented isdici$on to evaluate the cor-
rectness in execution of the two most important compondrasrarchitecture, the CAS
Server and the AGSSO Server components. We also demoriktrtitas possible to use
various scheduling algorithms at both CAS Server and AGSS@eS&evel. Although
the scheduling algorithm used in this section are not spatlifi tailored for handling
symbolic tasks, more efficient algorithms may be developetitasted using the event

based simulation platform.

6.4 Summary

This chapter presents several novel features of our acthits and these have been
published as follows. The basic concepts for data managebased on OpenMath
references and the design and functionality for workflow aggment are reported in
[65]. The design of, and results from, the distributed CASsation platform presented

in this chapter are reported in [59].
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In Section 6.1 we describe how collaborating CAS Servers eaolve OpenMath ref-
erences encountered while parsing an OpenMath documenhaVedefined a pattern
for expressing references based on the OpenMath standamdeahave defined a set of
algorithms that minimise the computational resourcesirequdor resolving OpenMath
references. We have also described a set of componentethatr Grid Services for

transferring data between computational nodes.

Section 6.2 describes the process of managing the exeaftiwwarkflows. In the con-
text of our system we have abstracted the execution procebwa have identified the
generic states that a symbolic computation task may attéive identified life cycle
takes into consideration the use of OpenMath referencesafiar management and cap-
tures the steps required to retrieve the definition of a camgdpenMath object even
if its definition is dispersed over multiple hosting nodedeTife cycle also captures
the behaviour of the system and steps that need to be exemiwadous levels of the
architecture if execution management capabilities ard,usech as pausing, resuming

or cancelling a task or even an entire workflow.

Section 6.3 describes a discrete event simulation platfbesigned to verify and vali-
date the system. In a real environment actions executeddd@ESO Server and CAS
Servers are triggered by specific events that occur, e.gipteof a new workflow to
execute; tasks resolution completes; tasks are submdategkécution to CAS Servers;
tasks execution finishes. The platform receives as inpukfleovs composed of tasks
and executes the steps required for execution of the workfxgept the actual execu-
tion of tasks. Event based simulation platform is apprderar testing and fine tuning
of scheduling algorithms. To demonstrate this functidgalie have run the simulation
platform with different scheduling algorithms installeéd®SSO and CAS Server level,
namely the MinQL, MaxMin and MinMin algorithms. We find thdtecause MinMin
and MaxMin are not load balancing algorithms they inducealaniced loads, and hence

the average waiting time is higher with these algorithms.
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Conclusions and Future Work

This chapter summarizes the main achievements of the {t&sition 7.1), discusses the
limitations of the work (Section 7.2), and outlines someeptital solutions that could be

provided by further research (Section 7.3).

7.1 Summary

Algorithms for symbolic computations are often complex #mely may required a long
time to complete. The amount of data they process or generayealso be consider-
able. Latest advances in distributed computing may protideequired computational
resources to support the requirements that symbolic catipos raise. Computational
Grids represent one of the possible technologies that magobsidered for building

a computational infrastructure due to several immediat@a@idges: it provides stan-
dard support for data management; it provides standardanésshs for aggregating and
managing resources; it ensures security of the sharedroesoby implementing well

established security policies and mechanisms.

Requirements for an infrastructure that would provide tiseueces to support symbolic

computations field were first investigated more than two desago (Section 2.1). In
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order to develop a platform for symbolic computations, weshenalysed the capabilities
and constraints of various architectural styles and thsteid computation technologies
and based on our analysis we have come to the conclusion &fatSafvices and Grid
Services are the most suitable current technologies fddibgia distributed computa-
tional infrastructure for symbolic computation (SectioB)2 Among the most important
problems that have to be addressed is the lack of interogigrdietween various sys-
tems for symbolic computation. Using a common encoding deddel for exchanging
data between various systems, such as OpenMath, represemgportant step ahead

towards interoperable systems.

The CASs represent the main tools for symbolic computatiodgiae level of expertise
and complexity of these systems makes them valuable andssiipe to be replaced
or reengineered. To enable these systems to be used as paaissively distributed
execution environments, these systems have to be enhamd¢edlditional support com-
ponents have to be implemented. In Section 3.2 we analysadseimportant require-
ments that should drive a generic interface to expose CASdifunality to be available
for remote invocations. Several architectural styles amesiclered in Figure 3.1 and
based on our analysis the server centric architecturad gythe most suited to be used
as a model for developing an infrastructure for symbolic potations. In Section 3.3
we describe our solution for exposing multiple CASs throughigary interface exposed

using Grid/Web Services. Its architecture is depicted guFe 3.2.

The role of the CAS Server component is to provide a consistgatface through
which functionality of existing CASs can be exposed as Grell\8ervices. Using CAS
Servers as foundations, the AGSSO servers provide caebiid orchestrate multiple
CASs for solving compound symbolic computation problems. dapicted in Figure
4.4, AGSSO has the role to manage the execution steps of sigmlawkflows and to
discover the most appropriate resources for solving aquéati problem. To achieve
this goal, the AGSSO server combines state of the art cappadprovided by workflow
management engines with specially designed componentsfieasupport for schedul-

ing, data management and discovery of resources.
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The design of the AGSSO component considers the differdret@geen business work-
flows and the workflows for scientific computations describe8ubsection 4.1.1 and
provides a set of capabilities to address these differenéésile business workflows
are usually composed of a small number of short running taskesntific workflows are
different. Their tasks are long running and the number ofesy/that have to be executed
is usually high. Therefore, efficient management of suchkflmwvs cannot be achieved
without capabilities to control and steer their executibeatures that enable the user to
pause/resume/cancel or to alter values of computationke wie workflow runs are of
paramount importance. The general lifecycle of a workflod e impact of workflow

management actions on an executing workflow are discussgeiion 6.2.

The role of the Client Components of our architecture is tosasbke user with de-
scription of symbolic computation workflows or while acaagsunctionality of remote

Web/Grid services. The Client Component depicted in Figutedbes not require that
fundamental changes are made within existing CASs. Its sote provide a versatile
solution for accessing remote Web and Grid Services frothiwiCASs native environ-

ment. It also provides support for describing workflows fgm&olic computations as
compositions of basic workflow patterns described in Seci@. The process of de-
scribing workflows is simple and intuitive on one hand, and/@dul enough to cover

most of the expected computational scenarios on the otimel. ha

The main data encoding model that our components use to egeltata is OpenMath.
Its capabilities to encode semantic rich mathematicalesdrdand the associated XML
format makes OpenMath the most suitable choice for encodiatpematical content.
One of the features that OpenMath provides is the mecharishpenMath references.
Currently there is little support provided for managing Odeaith references. In Section
6.1 we describe a set of software components that suppemgdpenMath references

in the context of distributed environments.

Finally, to assist the process of fine tuning for various congmts of the system we

have developed a simulation platform. Using the simulaptatform we have made
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initial investigations towards refining scheduling algloms used at AGSSO server level
and CAS Server level. In Section 6.3 we have presented the blggrithms used to
simulate the execution of our framework. For testing pugsose have considered so
far the implementations of the MinQL [98], the MaxMin and NMim [164] scheduling
algorithms. The results were presented in Figure 6.7, Eigu8, Figure 6.9 and Figure
6.10. It can be noticed that when MaxMin and MinMin are useiti@iCAS Server level
the obtained makespan is better than in the case when Min@ked at both levels.
MinMin and MaxMin algorithms use task estimates when talsngeduling decisions

while MinQL focuses on load balancing.

As a result of our research we conclude the following:

1. An infrastructure for symbolic computations has to refy@AS provided capa-
bilities because CASs are the most advanced software taos®hing symbolic
computation problems. Functions implemented by CASs habe tmade avail-

able for remote clients;

2. The most appropriate technologies to use for exposing GA&stions for remote
invocations are Grid and Web Services. These technologeesugtable because
they provide standard mechanisms for advertising serwidesh facilitates the
discovery of new services, they have a standard data ergcatdel which relies
on XML, and they are platform independent. Web and Grid ses/are accessed
using HTTP/HTTPS protocol which raises less security comeand is usually al-
lowed by standard security policies. Additionally, Grid8ees provide standard-
ized security capabilities which raises the overall ségwf the computational

system that uses them;

3. The structure of the interface exposing CASs must be demsisver time and
must provide at least the following mandatory capabilitiessingle operation
through which remote clients may submit symbolic compatatiequests irre-

spective the functions and CASs that executes the requesgspéoperations that
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support the discovery process; non blocking mechanisnetiieve computed re-
sults. More advanced functionality that allows task levahagement for pausing,

resuming or cancelling tasks may also be beneficial,

4. One of the most versatile languages orchestrating Webcgsris BPEL. Several
execution engines that use BPEL exist. ActiveBPEL is one ofntlost popu-
lar open source execution engines and it can also be extéodedhestrate Grid
Services. Other existing software tools for describing exetution of Grid Ser-
vices exist but they can not be easily integrated with exjis€ASs. Our AGSSO
Server relies on ActiveBPEL for managing workflows but it pd®s additional
features such as automatic workflow generation, task mamageand support for

provenance and reproducibility;

5. Provenance and reproducibility of scientific results@rparamount importance
for validating research. Data captured by executing CAS &srand AGSSO
Servers allow us to construct a detailed picture of the séxpsuted as part of
a workflow. Therefore we can document any workflow executiod based on

gathered information the workflow can be rerun.

6. Data management should rely on existing data exchangecots and technolo-
gies. We have developed algorithms and software compoteassist in the pro-
cess of resolution of OpenMath references which makes dateagement easier

and more efficient.

7.2 Limitations

The architecture that we propose within this thesis hasraklmnitations that are par-
tially related to specific implementations of the CAS Sern#SSO Server and Client
Component and limitations that are related to the functign#iiat current CASs pro-

vide. Within this section we address these types of linotedi
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The Client Component currently supports interactions withtgpe of Web Services but
it only supports Grid Services implemented using the Globfimmework, which are
WSRF compliant Grid Services. Previous Globus Grid Services s the ones that
are implemented using Globus 2.4 or Globus 3 are not suphofieerefore, the client
component can not access Grid Services for symbolic cortipngathat are not imple-
mented as Web Services or as Globus 4 Grid Services. Siwi@rid Services that are

implemented using gLite middleware cannot be used as péneafurrent architecture.

At client side the CAS specialist may describe workflows fombglic computation
based on services that are exposed by CAS Servers. Even if WehdServices im-
plemented by third party providers may be invoked using then€IComponent, these
cannot be used as part of the automatic workflow executiordeAsribed in Section 4.4
the AGSSO Server can only compose services exposed by CA8r8emponents. Ad-
ditionally the implementation to support the differed aeexecution pattern is not fully
tested and due to lack of reliability it was not included ia et of features implemented

at client side.

Although the support for OpenMath is increasing, OpenMathat yet fully supported
for encoding mathematical content within all CASs. Althowgprovide a workaround
for building symbolic computation infrastructures using 8*that do not support Open-
Math, the full range of functionality is only available ifealmathematical content is en-
coded using OpenMath. At client side as well as at CAS Servet twur architecture

relies on the support that CASs provide in this respect.

Scheduling and discovery play an important role in the atness and overall efficiency
of our architecture. At AGSSO Server level and CAS Servel sieeduling algorithms
are used to select the most suitable resources to be useshfong tasks. So far we have
investigated the behaviour of the system based on sevgaalthims but these algorithms
are not specifically tailored for symbolic computationsefidfore the scheduling strate-
gies should be improved to match the specific profiles andinegents of symbolic

computation tasks.
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Currently the system does not fully provide support for pagisind resuming the exe-
cution of tasks that fully preserves already finished compor steps. To provide this
functionality the CAS engine executing the task should be &bkave the current state
of execution and to resume it later. Depending on the statkeofask that needs to be
paused the status of the task is changed by the system andodhee intermediary

results are discarded.

7.3 Future Work

The experience of the last decades shows that technologgestgractices in the dis-
tributed computations world evolve at an accelerated pHas.therefore important to
determine a set of requirements, constraints and modesyfobolic computations that
are as much as possible independent of the underlying tethndVithin this thesis we
have analysed the most important requirements that symbathputations raise and we
have designed a set of components and related algorithinsréhto a great extent inde-
pendent of the actual distributed technologies used ferd@onnecting the implemented
components. The architecture we have designed was imptethbwg relying on exist-
ing best practices in Grids. Further research to evaluatarchitecture in the context of

other technologies as the ones used in cloud computing noayderadditional insights.

Establishing repositories of precomputed results may laasignificant impact on the
time required to conduct research experiments in certaiasanf symbolic computation.
Currently our implementation does not support querying chaepositories which by
itself does not require fundamental changes in our impleatiem. One simple approach
for establishing computed result repositories is to compuery such required result and
stored it so it can be later reused. A more complex and alse waluable solution is to
establish mathematical equivalence between problems emand and obtained result
on the other hand. Equivalence of mathematical objects reagometimes difficult to

determine and further research is required both in the dreeathematical equivalence

225



Chapter 7. Conclusions and Future Work

and with regard to equivalence of algorithms. For instaheesystem should be able
to automatically detect if two workflows are equivalent evietmey are expressed in a

different form.

The irregular nature of symbolic computations algorithnekes prediction of required
resources and completion time difficult. Therefore, moitable scheduling algorithms
that are able to consider characteristics specific to syimbomputations have to be de-
veloped. This goal can only be attained as a result of a lamg &md careful monitoring
of the execution patterns, types of task of symbolic nataceumderlying CASs used by
computer algebra specialists. Using simulation platfonmay provide preliminary con-

clusions but they have to be combined results obtained laseehl life environments.
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