
Generic Access to Symbolic Computing Services

Alexandru ĈARSTEA

Submitted in fulfilment of the requirements

of the degree of Doctor of Philosophy

at Heriot-Watt University

in the School of Mathematical and Computer Sciences

30 May 2012

The copyright in this thesis is owned by the author. Any quotation from the thesis or

use of any of the information contained in it must acknowledge this thesis as the source

of the quotation or information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ROS: The Research Output Service. Heriot-Watt University Edinburgh

https://core.ac.uk/display/77035405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Symbolic computation is one of the computational domains that requires large compu-

tational resources. Computer Algebra Systems (CAS), the maintools used for symbolic

computations, are mainly designed to be used as software tools installed on standalone

machines that do not provide the required resources for solving large symbolic compu-

tation problems. In order to support symbolic computationsan infrastructure built upon

massively distributed computational environments must bedeveloped.

Building an infrastructure for symbolic computations requires a thorough analysis of

the most important requirements raised by the symbolic computation world and must

be built based on the most suitable architectural styles andtechnologies. The architec-

ture that we propose is composed of several main components:the Computer Algebra

System (CAS) Server that exposes the functionality implemented by one or more sup-

porting CASs through generic interfaces of Grid Services; the Architecture for Grid

Symbolic Services Orchestration (AGSSO) Server that allows seamless composition of

CAS Server capabilities; and client side libraries to assistthe users in describing work-

flows for symbolic computations directly within the CAS environment. We have also

designed and developed a framework for automatic data management of mathematical

content that relies on OpenMath encoding.

To support the validation and fine tuning of the system we havedeveloped a simulation

platform that mimics the environment on which the architecture is deployed.

i

Acknowledgements

The work presented in this thesis would not have been possible without the contribution

and support of my colleagues, my friends and family. The research results presented in

this thesis are part of my contribution to the European Project FP6-2005-Infrastructure

SCIEnce (RII3-CT-2005-026133).

Firstly, I am deeply indebted to my supervisorsDr. Dana PETCUandDr. Phil TRINDER

for their support and the patience they have shown. I thankDr. Dana PETCUfor giving

me the opportunity to work in a highly professional environment and for being my men-

tor. I thankDr. Phil TRINDERfor giving me the confidence to follow my ideas and for

his gentle way of supporting me throughout the whole processof developing this thesis.

Secondly, I thank my colleagues and friends from e-Austria Research Institute. I thank

Dr. Georgiana MACARIUandDr. Marc FRÎNCU for their valuable contribution, ad-

vice and commitment they have shown. I thankDr. Cosmin BONCHIS, Dr. Gabriel

ISTRATE, Marian NEAGULandSilviu PANICAfor their friendship. I am also grateful

to all my colleagues from the SCIEnce project, for the long andinformative discussions

we had.

Last but not least I thank my family and especially my belovedCristina for their moral

support and understanding. It was them who gave me the power and strength to carry on

in the most difficult moments.

The LaTeX template used to format this thesis was provided bymy colleague from

Heriot-Watt UniversityDr. Lu FAN.

ii

Contents

1 Introduction 1

1.1 Context . 1

1.2 Contributions . 6

1.3 Authorship . 9

1.4 Publications . 11

2 The Impact of Distributed Architectures on Symbolic Computation 14

2.1 The World of Symbolic Computing . 15

2.2 Architectural Styles and Quality Attributes 21

2.3 Distributed Computing Environments 26

2.4 Service Oriented Architectures and Web Services 32

2.4.1 Data Encoding Using XML languages 33

2.4.2 The World of Web Services 35

2.5 Scientific Computing Using Grids . 39

2.5.1 WSRF Compliant Grids . 42

2.6 Encoding Standards for Mathematical Content 47

2.6.1 OpenMath . 48

2.6.2 MathML . 54

2.7 Summary . 56

iii

Contents

3 Exposing CAS Functionality as Web and Grid Services 59

3.1 Introduction . 59

3.2 Top Level Requirements Driving the CAS Server Interface 62

3.2.1 Requirements Summary . 74

3.3 CAS Server Design and Main Features 74

3.3.1 Features Summary . 80

3.4 Solutions for Legacy Software Integration 81

3.4.1 Summary . 91

3.5 Suitable Distributed Technologies for Symbolic Computing 91

3.6 CAS Level Message Encoding . 95

3.6.1 Encoding with OpenMath and SCSCP 96

3.6.2 Encoding with OpenMath and Plain Text 99

3.7 Summary . 102

4 Orchestration of Web/Grid Symbolic Services 105

4.1 Service Orchestration for Symbolic Computing 106

4.1.1 Scientific Workflows and Their Requirements 106

4.1.2 Workflows and Workflow Patterns 113

4.1.3 Summary . 120

4.2 Basic Patterns in Symbolic Computing121

4.3 Composition Technologies and Tools 126

4.3.1 Web Services Orchestration 128

4.3.2 Orchestration in Grid Environments132

4.4 Composition of CAS Servers Using AGSSO 137

4.5 Summary . 146

iv

Contents

5 Generic and Secure Access to Symbolic Services 149

5.1 Client Component Requirements and Capabilities 149

5.1.1 Enabling CASs to Access to Grid and Web Services 155

5.1.2 Use Case Scenario to Access Generic Web/Grid Services 158

5.1.3 Summary . 159

5.2 Workflow Description . 159

5.2.1 Workflow Examples . 163

5.2.2 Workflow Level Task Management 167

5.2.3 Summary . 168

5.3 Security for Symbolic Services .. 168

5.3.1 Common Security Standards in Grids 168

5.3.2 Security for SymGrid-Services Architecture 171

5.3.3 Conclusions . 179

5.4 Summary . 180

6 Advanced Management and Fine Tuning 182

6.1 Resolving OpenMath References . 182

6.1.1 The Process of Resolving OpenMath References 183

6.1.2 OpenMath Reference Formats 190

6.1.3 References in the Main SCSCP Call Document 193

6.1.4 The Structure of the Consolidated Resource File 194

6.1.5 A More Elaborate Resolution Scenario 195

6.1.6 Downloading Result Files . 197

6.1.7 Summary . 198

6.2 Advanced Workflow Management . 199

6.2.1 Summary . 203

v

Contents

6.3 Event Based Simulation Framework 204

6.3.1 Simulation Design . 204

6.3.2 Simulation Results . 213

6.3.3 Conclusions . 217

6.4 Summary . 217

7 Conclusions and Future Work 219

7.1 Summary . 219

7.2 Limitations . 223

7.3 Future Work . 225

vi

List of Figures

1.1 Main Components of the Architecture9

2.1 Service Advertising and Discovery 30

2.2 The Role of Grid Middleware . 41

2.3 Structure of a Grid Service . 44

3.1 Server Centred Architecture . 66

3.2 CAS Server and Relation to other Components 76

4.1 Sequence and Parallel Execution .. 117

4.2 Conditional Execution Patterns .. 118

4.3 Deferred and Repetitive Patterns .. 119

4.4 Architecture for Grid Symbolic Services Orchestration. 140

5.1 Client Side Architecture . 156

5.2 Secure Symbolic Components Composition Architecture 174

6.1 Cyclic Data Flow Prevention. 186

6.2 Resolving OpenMath References. 188

6.3 Sample Resolver Scenario Architecture. 192

6.4 Task Life Cycle at Client Manager Level199

6.5 Task Life Cycle at Computational Node Level 202

vii

List of Figures

6.6 The Life Cycle of a Task at AGSSO and CAS Server level. 203

6.7 Average waiting time for each CAS when the MinQL scheduling algo-

rithm is used at both levels. 215

6.8 Average waiting time per CAS for 20 workflows when different schedul-

ing algorithms are used at the two levels.216

6.9 Average load for each CAS when the MinQL scheduling algorithm is

used at both levels. 216

6.10 Average load per CAS for 20 workflows when different scheduling al-

gorithms are used at the two levels. 216

viii

List of Tables

2.1 MathML Mapping to OpenMath . 56

5.1 Mapping between XML workflow language and GAP functions.. . . . 161

6.1 Makespan comparison. 217

ix

Chapter 1

Introduction

1.1 Context

Symbolic computation or computer algebra is a research domain that studies automated

manipulation of mathematical formulae and equations. As described in [107], computer

algebra makes possible computations in algebraic structures such as groups, number

fields, Lie algebras or rings of differential operators. Using symbolic parameters during

manipulations of mathematical objects makes possible generic treatment of classes of

problems. Evaluation of mathematical formulae to which symbolic computation algo-

rithms are applied is more precise since numerical substitutions are applied to irreducible

terms, eliminating thus rounding errors.

Symbolic computation software systems are vital tools in several areas of modern aca-

demic and commercial research. Due to the nature of symboliccomputation, large prob-

lems in this research field can not be solved using the computing power of a single

computer and therefore there is an immediate need for computing infrastructures that

can provide more processing power and storage capabilities. One solution proven to

work for other research domains is to build collaborative computing environments based

1

Chapter 1. Introduction

on already existing processing power offered by computer clusters and even ordinary

workstations.

Programming models and tools have evolved to provide collaborative environments un-

der the generic term of distributed computing. Any computing system in which au-

tonomous processing units can be interconnected through a network so they can collab-

orate to serve a common goal is generically identified as a distributed system. Distributed

computing architectures and related technologies have evolved over time in strong rela-

tion with the evolution of hardware capabilities such as computing power, storage and

communication capabilities. This evolution created new opportunities to respond better

to requests formulated by both research and industry.

The main software systems used for symbolic computations are Computer Algebra Sys-

tems (CASs), and amongst them GAP [3], Maple [10] and Mathematica [24] being the

most well known CASs currently used. Even if processing powerand memory required

to solve large symbolic problems is critical, the vast majority of the CASs were initially

build to support calculations done by researchers, otherwise done by pen and paper. The

initial design of these systems, the high level of knowledgeand the huge effort required

to adapt these systems to newer technologies were the most important impediments in

aligning these systems to the latest advances in distributed computing. Amongst other

requirements, interoperability with other similar systems and better support to be offered

to end users for solving symbolic problems were mentioned more that three decades ago

[49].

The main goal this thesis is to present a novel software architecture for symbolic compu-

tations and demonstrate its capabilities to support fundamental requirements of computer

algebra specialists. The resulting infrastructure shouldprovide required support for solv-

ing large symbolic computations. Due to its design, we demonstrate that it is versatile

enough to permit easy adoption of new technologies and various CASs can be integrated

as part of the architecture with a minimum effort. Within this architecture CASs play an

important role because they are the actual provider of symbolic computation capabilities.

2

Chapter 1. Introduction

Additional components of the architecture will provide thesupport features that enables

us to integrate and orchestrate symbolic computations engines for execution of symbolic

computation workflows.

A successful distributed computation infrastructure can only be created if the require-

ments for the research domain are carefully analysed and a thorough investigation over

the best distributed technologies to be used for such an environment are identified. The

high variety of CASs and their capabilities imposes that interoperability standards for

data encoding, communication interfaces and execution management capabilities are

created.

The high interest in creating a collaborative environment for symbolic computations

based on latest distributed models can also be demonstratedby the high number of re-

search initiatives and joint research projects with this main goal. Among some important

research projects of the last years to investigate how distributed models can be used in

context of symbolic computing are “Mathematics on the Net” (MONET) [11], MathBro-

ker [2], “Grid Enabled Numerical and Symbolic Services” (GENSS) [7] and “Symbolic

Computation Infrastructure in Europe” (SCIEnce) [19].

The MONET project’s aim was to develop a set of Web Services toexpose symbolic

computation services. These services are described using acustom XML language

Mathematical Service Description Language(MSDL) [51] that describes services in terms

of preconditions and effects. Based on their description, automated discovery of the cor-

rect service to solve a certain problem should be possible. Using the ideas formulated by

the MONET project, within the MathBroker project a mathematical service broker was

developed.

Similar ideas formulated in the MONET project were also considered by the GENSS

project. Its aim was to combine the functionality offered byboth Web and Grid services.

The two main research directions of the project are related to discovery problems and

implementing ontologies for symbolic problems.

3

Chapter 1. Introduction

Maple [10] and Mathematica [24] are two of the most importantcommercial CAS sys-

tems. They have recognized the benefits that distributed computing may bring to sym-

bolic computations and therefore they have provided mechanisms to interconnect their

systems with similar instances and even third party systemsthrough proprietary con-

nectors. The Grid Computing Toolbox [6] allows multiple Maple instances installed on

a Local Area Network (LAN) to combine the computing power of the machines onto

which they run. A similar functionality is provided also by gridMathematica [8]. Apart

from the main initiatives described above there are also smaller projects and research ini-

tiatives such as Maple2G [151] which integrates Maple instances with Grid architecture

and JavaMath [170] that proposes a model to expose CASs using Java specific distributed

technologies. A review of current Grid-based systems for symbolic computation can be

found in [152].

All the initiatives described above demonstrate importantfacilities and their impact on

symbolic computing over distributed computational infrastructures. Latest trends and

technologies in the world of distributed computing emphasize the need for generic plat-

forms, interconnection mechanism and standards that are only partially available in sym-

bolic computations world. Due to these shortcomings, the aim of the EU Framework VI

SCIEnce project (www.symbolic-computations.org) is to improve integration between

CAS developers and application experts. The project includes developers from four

major CASs: GAP [3], Maple[10], MuPAD[13] and Kant[21]; plusapplication experts

organised through the international Research Institute forSymbolic Computation, RISC-

LINZ. Its main objectives are to:

1. Develop versions of the CASs that can intercommunicate viaa common standard

Web services interface, based on domain-specific results produced by the Open-

Math [184] and MONET projects as well as generic standards such as WSRF;

2. Develop common standards/middleware to allow the production of Grid-enabled

symbolic computation systems;

4

Chapter 1. Introduction

3. Promote and ensure uptake of recent developments in programming languages,

including automatic memory management, into symbolic computation systems.

The work presented in this thesis is mainly concerned with achieving the second ob-

jective, that of providing Grid-enabled symbolic computations in the context of novel

framework SymGrid [110].

The main goals of the SymGrid related activities are:

1. Produce a portable framework that will both allow symbolic computations to ac-

cess Grid services, and allow symbolic components to be exploited as part of larger

Grid service applications on a computational Grid;

2. Develop resource brokers that will support the irregularworkload and computation

structures that are frequently found in symbolic computations;

3. Identify a series of applications that will demonstrate the capabilities and limita-

tions of Grid computing for symbolic computations.

These objectives cannot be achieved without introducing new higher-level middleware

systems. By providing a new domain-specific framework for symbolic Grid computa-

tions we aim to supply a sophisticated interactive computational steering interface inte-

grating seamlessly into the interactive front-ends provided by each CAS, and providing

simple, transparent and high-level access to Grid services. By defining common data and

task interfaces, we provide the computational infrastructure to allow complex computa-

tions to be executed by orchestrating heterogeneous distributed components into a single

symbolic application. Due to the generic interfaces build in the context of SymGrid we

also anticipate that our framework can be further used for other application domains.

The SymGrid-Services component covers all the interfaces,discovery and composi-

tion mechanism and data models that are relevant at Grid level. The complementary

5

Chapter 1. Introduction

component within SymGrid that allows symbolic computations to be executed as high-

performance parallel computations on a computational Grid, namely the SymGrid-Par

component of the SymGrid framework is described elsewhere [200]. While there are

several parallel Computer Algebra Systems suitable for either shared-memory or dis-

tributed memory parallel systems, work on Grid-based symbolic systems is still nascent.

None of the systems implemented prior the ones provided by SCIEnce conforms to all

three of our basic requirements:

• Deploy symbolic Grid services;

• Access available Grid services from within the symbolic computing system;

• Couple different Grid symbolic services into a coherent whole.

In addition to dealing with these key issues, a number of major topics are addressed

by SymGrid architecture. Amongst the most important requirements are mechanisms

for adapting to dynamic changes in either computations or systems. This is especially

important for symbolic computations, which may be highly irregular in terms of data

structures and general computational demands, and which therefore present an interest-

ing challenge to current and projected technologies for computational Grids in terms of

their requirements for autonomic control.

1.2 Contributions

The objective of this thesis is to investigate the potentialbenefits of distributed archi-

tectures for symbolic computations and to propose a novel framework that enables ap-

plication specialists to exploit geographically dispersed computational resources. Com-

munication latency, technologies used to interconnect remote computational resources,

heterogeneity in hardware and software profiles are more likely to raise problems if ge-

ographically dispersed computational resources are used.As a result, specific solutions

6

Chapter 1. Introduction

tailored for such computational environments are provided. The work presented here lies

at the border of two computational worlds as it combines the characteristics and func-

tional requirements of both symbolic computation and distributed computing domains.

The thesis makes the following contributions:

1. It analyses the general characteristics of research exploiting symbolic computa-

tion. Based on these findings it identifies the most important features of distributed

architectures that could have a positive impact on the way research in symbolic

computing area is conducted (Chapter 2).

2. We have designed and implemented a CAS Server as a collection of standard in-

terfaces and implementations that make Computer Algebra Systems available for

remote invocation and hence enabling their integration in large distributed archi-

tectures, such as computational Grids. CASs are the main software packages for

symbolic computations. They are typically designed as command line interpreters

and do not offer interfaces that enables them to be accessed remotely. The CAS

Server defines autonomous computational elements that are able to expose the

functionality of one or more CASs installed on the local machine or on the Local

Area Network [58, 61, 148, 150, 129] (Chapter 3).

3. We have designed and implemented a novel framework for symbolic services or-

chestration, namely the Architecture for Grid Symbolic Services Orchestration

(AGSSO). Complex symbolic computational problems may be usually decom-

posed and solved using a collaborative computational environment. AGSSO rep-

resents a viable solution for service discovery, orchestration and execution man-

agement of symbolic services exposed through CAS Server’s interfaces [60, 61,

66, 148] (Chapter 4).

4. We have designed and implemented advanced mechanisms forcontrolling and

managing the execution of scientific workflows. For scientific computations, the

ability to control the execution of workflows by pausing, resuming, cancelling and

7

Chapter 1. Introduction

dynamically altering the execution path represents an important desideratum cur-

rently not implemented by any engine for Web Services orchestration. This thesis

describes a custom solution that may be used to support the afore mentioned man-

agement capabilities and demonstrates its applicability in the context of symbolic

services orchestration [64, 65] (Chapter 6).

5. We have designed and implemented a framework that allows Computer Algebra

Systems to access generic Web and Grid Services. The interfaces exposed by CAS

Servers allows seamless integration in Grid architecturesand facilitates orchestra-

tion of computational resources. Its design makes it suitable for more advanced

set-ups, while simpler solutions may be adopted to create and expose symbolic

services. We present in this thesis a novel framework, Computer Algebra to Grid

Services(CAGS), that enables CASs to access generic Web and Grid Services.

This solution is especially useful for accessing any remoteWeb and Grid Service

that do not comply with the interface proposed by the CAS Server [60] (Chapter

5).

6. We have designed and implemented an event based simulation framework that al-

lows us to investigate the behaviour of the system in different environmental con-

ditions. The process of testing and validating distributedarchitectures is difficult

and error prone. The approach considered in this thesis is todevelop simulated

environments by replicating real life hardware infrastructures. This thesis presents

a simulation algorithm derived from the event based simulation model and the

results obtained through simulation [59](Chapter 6).

The main components of our architecture and the relation among them is presented in

Figure 1.1. In Chapter 3 we present the CAS Server component which exposes CAS

functionality through the interface of Grid Services. Chapter 4 introduces the AGSSO

component and describes how multiple CAS Servers may be orchestrated to support

solving of compound symbolic computation problems. In Chapter 5 we present the

components that are required at client side to allow CASs to access functionality of

8

Chapter 1. Introduction

CHAPTER 5CHAPTER 4CHAPTER 3

….

CAS

….

AGSSO

Client

Manager

Main Registry

Process Manager

CAS Server

Local Registry

CAS

CAS Server

Local Registry

CAS

….

CAGS

AGSSO
Client

CAS

CAGS

AGSSO
Client

Figure 1.1: Main Components of the Architecture

remote Web and Grid Services. It also presents a solution fordescribing and submission

of workflows for symbolic computations.

1.3 Authorship

Unless otherwise stated the work presented throughout thisdoctoral thesis was authored

by myself and the work contained herein is my own. As a result of the research activ-

ities undertaken in the context of the European research project “Symbolic Computa-

tion Infrastructure for Europe” (SCIEnce) several researchpapers and technical reports

were disseminated and software packages specific for the aimof the project were imple-

mented. Part of these are directly related to the subject of this thesis. My contribution to

the results presented within the publications I have co-authored is the following:

1. In [60] we have described a generic component that enablesaccess to Grid and

Web Services from within a CAS environment. The design that enables seamless

integration with virtually any CAS was done by myself;

9

Chapter 1. Introduction

2. Within [58] we present a solution for exposing CASs througha generic Web Ser-

vice interface that relies on a custom data model for encoding communication

between a remote client and the server. The generic structure that allows multiple

CASs to be exposed to a single interface and the custom data model to encapsulate

communication are my contributions to this work;

3. Combining Web or Grid symbolic services exposed by the CAS Server was first

described as a solution based on dynamic composition in [66]. As part of the

results reported, the use of workflow patterns within the CAS to enable compo-

sition of symbolic services was my personal contribution. Additionally I have

also contributed with the overall design of the AGSSO Serverthat allows dynamic

composition of Web and Grid symbolic services. Previously we have reported a

static solution for composing such services in [62]. Further, I have also designed

the mechanisms that allow steering and management of computation for Grid Ser-

vices that was reported in [64];

4. As a result of my work we were also able to develop a set of solutions for describ-

ing often used composition patterns in symbolic computations. These result were

summarised in [65];

5. Data management across distributed environments represents an important topic.

Based on OpenMath OMR reference objects we have designed and implemented

a set of algorithms and components for seamless managementsof data. The de-

sign of the algorithm and interfaces that address data management issues partially

presented in [65] represent my personal contribution;

6. For testing purposes we have developed a simulation platform that integrates var-

ious components of the SymGrid-Services architecture [59]. The overall design

of the platform and the way various components should be integrated within the

simulation platform is also part of my personal contribution;

7. The contributions mentioned above were further refined and developed and the

results were published in [61, 148, 98, 150].

10

Chapter 1. Introduction

1.4 Publications

The following articles were published during my research with the contributions from

co-authors:

1. A. Carstea, M. Frincu, G. Macariu, D, Petcu, Validation of SymGrid-services

Framework through Event-based Simulation, InternationalJournal of Grid and

Utility Computing, Vol. 2, No. 1, pp. 33-44, 2011

2. D. Petcu, G. Macariu, A. Ĉarstea, M. Fr̂ıncu:Service-Oriented Symbolic Compu-

tation, in Handbook of Research on P2P and Grid Systems for Service-Oriented

Computing: Models, Methodologies and Applications, N. Antonopoulos, G. Exar-

chakos, M. Li, A. Liotta, eds., IGI Global, 2010, ISBN 978-1-61520-686-5, pp

1053-1075.

3. D. Petcu, A. Ĉarstea, A. Craciun, A. Eckstein, Mathematics on the net: state of

the art and challenges, Analele Universitatii de Vest din Timisoara, Vol. XLVII,

Facs. 2, 2009, pp 95-116.

4. A. Cârstea, G. Macariu, M. Frı̂ncu, D. Petcu, Description and Execution of Pat-

terns for Symbolic Computations, The 11th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing

(SYNASC2009), IEEE Computer Society Press, 2009, pp. 197-204

5. M. E. Fr̂ıncu, G. Macariu, A. Ĉarstea, Dynamic and Adaptive Workflow Execution

Platform for Symbolic Computations, in Pollack Periodica, Vol 4, Number 1/April

2009 Akademiai Kiado, pp. 145-156.

6. A. Cârstea, G. Macariu, M.E. Frı̂ncu, D. Petcu, Secure Orchestration of Symbolic

Grid Services, Proceedings of High Performance Grid Middleware (HiperGRID

2008), November 2008, Politehnica Press - IEEE Romania Section,Bucharest, pp

25-33.

11

Chapter 1. Introduction

7. A. Cârstea, G. Macariu, M. Frı̂ncu, D. Petcu, Workflow Management for Symbolic

Grid Services, The 10th International Symposium on Symbolic and Numeric Al-

gorithms for Scientific Computing, Workshop on Grid ComputingApplications

Development (SYNASC2008), IEEE Computer Society Press, IEEEComputer

Society Press, 2008, pp. 373-379.

8. G. Macariu, A. Ĉarstea, M. Fr̂ıncu, D. Petcu, Towards a Grid Oriented Architec-

ture for Symbolic Computing, The 7th International Symposium on Parallel and

Distributed Computing (ISPDC 2008), IEEE Computer Society Press, 2008, pp.

259-266.

9. D. Petcu, A. Ĉarstea, G. Macariu, M. Frı̂ncu, Service-oriented Symbolic Comput-

ing with SymGrid, Scalable Computing: Practice and Experience (SCPE), Vol. 9,

No. 2, pp. 111-125, June 2008.

10. A. Ĉarstea, G. Macariu, D.Petcu, A. Konovalov, Pattern Based Composition of

Web Services for Symbolic Computations, International Conference on Compu-

tational Science (ICCS2008), pp. 126-135, LNCS, Vol. 5101, Springer-Verlag,

2008

11. A. Ĉarstea, G. Macariu, Towards a Grid Enabled Symbolic Computation Architec-

ture, 3th International PhD Symposium in Engineering, Oct.2007, Pecs, 1st Prize

for the best presentation at the computer science section. Published in Pollack

Periodica, Volume 3, Number 2/August 2008, 2008, pp. 15-26.

12. A. Ĉarstea, G. Macariu, M. Frı̂ncu, D. Petcu, Composing Web-based Mathemat-

ical Services, The 9th International Symposium on Symbolicand Numeric Algo-

rithms for Scientific Computing, Workshop on Grid Computing Applications De-

velopment (SYNASC2007), IEEE Computer Society Press, pp. 327- 334, 2007

13. A. Ĉarstea, M. Fr̂ıncu, A. Konovalov, G. Macariu, D. Petcu, On Service-oriented

Symbolic Computing, The 8th International Conference on Parallel Processing

12

Chapter 1. Introduction

and Applied Mathematics, Workshop on Large Scale Computations on Grid

(LaSCoG2007), pp. 843-851, LNCS, Vol. 4967, Springer-Verlag, 2008

14. G.Macariu, M. Fr̂ıncu, A. Ĉarstea, D. Petcu, A. Eckstein, Redesigning Parallel

Symbolic Computations Packages, The 16th International Conference on Parallel

Architectures and Compilation Techniques (PACT2007), pp. 471-471, 2007

15. A. Ĉarstea, M. Fr̂ıncu, G. Macariu, D. Petcu, Generic Access to Web and Grid-

based Symbolic Computing Services: the SymGrid-Services Framework, Procs.

ISPDC 2007, July 5-8, 2007, IEEE Computer press, ISBN: 0-7695-2917-8, pp.

143-150

13

Chapter 2

The Impact of Distributed

Architectures on Symbolic

Computation

This chapter reviews related work, as follows. Section 2.1 introduces symbolic com-

putation and related issues. Section 2.2 reviews fundamental architectural styles and

introduces quality attributes that should be considered for evaluating architectures for

symbolic computation. Section 2.3 discusses distributed computing environments while

Section 2.4 focuses on Service Oriented Architectures withemphasis on Web Services.

In Section 2.5 we provide an overview of Grid technologies and we discuss the main

solutions for developing Grid infrastructures. Encoding standards for mathematical con-

tent are presented in Section 2.6 and a summary of the important topics covered within

the chapter is given in Section 2.7.

14

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

2.1 The World of Symbolic Computing

Mathematics is a fundamental research domain with great impact in science and knowl-

edge in general. Few research domains can advance without proper support from math-

ematics and mathematical software. Unfortunately the development of this research

domain has suffered from a lack of computational resources.In contrast numerical com-

putation has developed more rapidly because numerical algorithms require less compu-

tational resources than symbolic algorithms and thereforethey were easier to develop

and implement. When both numerical and symbolic algorithms can be used to solve a

problem the latter should be used if precise results are required.

Computer algebra is a field of scientific computation that liesat the border of two worlds.

It connects the world of mathematics and mathematical algorithms and the world of com-

puter science and software engineering. The main software tools that are used currently

for automatic manipulation of mathematical formulae are Computer Algebra Systems

(CAS), either general purpose such as Maple [10] and Mathematica [24] or specialised

to a certain domain of symbolic computation such as GAP [3]. Modern methods for

scientific discovery motivate the need for such software packages.

The emergence of software tools enables new methods of conducting research in sym-

bolic computations and changes the nature and the size of problems that can be ad-

dressed. Using software tools represents a significant stepahead even if such tools can

be used on single processor computers. While a single computer may be enough to

solve small problems, for large problems the computing power of a single computer

does not suffice. Despite the efforts conducted in numerous research projects, a com-

putational platform for solving large problems that allowseasy access to computational

resources and provides seamless ways to describe complicated symbolic tasks that would

be solved using massively distributed computational environments has not yet been fully

developed.

One of the problems in symbolic computations is the fast growing need for computa-

15

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

tional resources as the complexity of the problem rises. Even if the size of input data

and the result are small, due to intermediate expression swell, the memory available on

a single computer may not be enough. In his PhD thesis Watt [195] emphasises that

execution of symbolic algorithms is irregular respective the size of the input given. Even

a small modification in the input parameters can cause enormous discrepancies in the

execution time and the amount of computational resources required. Algorithms for

factorization [50] and algorithms for computing Gröbner Basis [113] are two examples

where expression swell and irregular execution times occur.

Successful parallelizations of algorithms in domains suchas parallel arithmetic in finite

fields [165], modular integer multiplication [78] and exponentiation [136] were reported.

A parallel implementation of the Karatsuba algorithm for multi-precision integer multi-

plication is described [114]. One of the symbolic computational fields that may benefit

from distributing computations over multiple computers ispolynomial arithmetic. Prob-

lems such as identification of similar terms and Gröbner Basis are suitable candidates

for the parallel approach, to name only a few. A more detailedsurvey may be found in

[153].

Lack of sufficient memory and long running tasks that requirea significant time to com-

plete were identified as the main issues in solving complex problems symbolic compu-

tation problems [131]. These issues are the main driving forces that led to development

of algorithms suited for parallel and distributed computational environments. Additional

advantages that distributed systems may provide such as using computing capabilities

deployed on remote servers or computational platforms thatmake possible cooperation

between researchers may also have an important impact on theway mathematics is con-

ducted. CASs initially developed to run on local computers have already done important

steps towards using parallel architectures, network basedand distributed systems but

they still lack interoperability with other systems and an uniform approach that would

allow access to massively distributed computing architectures.

To take advantage of the capabilities offered by new computational infrastructures and

16

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

technologies the symbolic computations algorithms and techniques must be adapted.

The benefits of parallel and distributed architectures for symbolic computation were ob-

served several decades ago [49]. The report emphasizes the importance of symbolic

computations for science and in particular for research domains such as high energy

physics, celestial mechanics, chemistry, biology, etc...It also summarizes several prob-

lems and offers several guidelines that we believe are stillapplicable for the current

state-of-art [49]:

• Better platforms that integrate both symbolic and numericalcapabilities;

• More effective methods for solving important scientific andengineering problems;

• Increase availability of cheap, high-performance hardware platforms for symbolic

computations systems;

• Symbolic computation software is typically large, sophisticated and error prone.

General problems identified for other large software systems are also applicable to

systems for symbolic computations;

• More modular, reusable and high-quality software needs to be developed.

Some of the CASs evolved over time trying to overcome aforementioned problems but

even if they were subject to an evolution process most of themwere not able to keep

pace with latest technologies in modern hardware and software systems. Even if Grid

technologies are massively used for conducting research ina multitude of scientific do-

mains, currently there is little support for using Grids in symbolic computation. The lack

of proper analysis and repeated evolution steps has on occasions led to software systems

that are hard to maintain, tightly coupled and with little capabilities to interoperate with

other similar systems. The lack of modularity and standardsused during design makes

the evolution process cumbersome and therefore these systems are difficult to integrate

with modern parallel and distributed architectures.

17

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

Evolution was mostly triggered as a response to the immediate needs of the research

teams that implemented them. One such example is REDUCE [15] which was first

developed by Antony C. Hearn for solving problems in higher energy physics which

currently provides a much wider set of features due to the effort of the international

community that got involved. Some of the CASs were designed tosolve problems in a

particular area of research and much of the effort was spent to fulfil their main objec-

tives. Relatively little attention has been paid to interoperating between CAS. Even if

latest technologies were used at the time of the implementation most of these technolo-

gies became obsolete. One of the capabilities considered not critical in the early stages

of implementation for most of the small CASs and with great importance for modern

systems is the support for interconnectivity with externalsoftware components.

Most of the competitive advantages that special purpose CASshave over general purpose

CASs rely on custom implementations of algorithms for a particular area of research

that often use custom data models for representing data and mathematical formulae.

Two popular special purpose CASs are GAP [3] and Kant [21]. General purpose CASs

include Maple [10] and MuPad [13]. The number of CASs is quite large and a more

in-depth analysis of these systems is provided in [107]. As aconsequence, interconnec-

tivity among CASs can only be achieved if conversion components that would translate

data from/to their internal representation model to other models understood by the com-

municating party are provided. Such components, known asphrasebooks [184], provide

mappings between different data encoding models.

Implementation of specific add-ons and components for particular CASs may be proven

to be a difficult task. In order to implement OpenMath [184] phrasebooks that translate

mathematical objects encoded using internal formats to theOpenMath format or vice-

versa, low-level details regarding systems’ implementation may be required. The lack

of well documented formal descriptions of the internal architecture of the system [52]

makes this process difficult or even not feasible. Architectural styles may be used to pro-

vide a high level description of components and the way they interact. Any additional

insight allows easier and more reliable evolution process while keeping the resulted soft-

18

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

ware consistent with its intended purpose and initial assumptions.

One of the most simple ways to allow system evolution is to decouple the presentation

layer of the application from the layer providing the actualfunctionality. Thus the two

separated components can independently evolve to respond better to users’ requirements.

Such components may be even hosted on different computers, thin clients on users’

machines and complex processing components on servers. This approach could take

out the problem of installing complex software components on users machines’ since

the thin client is only composed of the graphical user interface components. It also

may improve efficiency since components may be installed on dedicated machines with

special hardware configuration that support the computational requirements in terms of

resources.

Beyond interface-implementation decoupling even separating monolithic components

into several sub-components based on their intended functionality may be beneficial.

Independent components of a system can be deployed on separate machines that are

interconnected by a communication network. Dolan et al. [79] uses this model to imple-

ment tools for partial differential equations that could beinvoked remotely using TCP/IP

socket calls. This deployment model eliminates the need to install complicated and hard

to configure software packages on users’ client machine.

Distributed architectures for symbolic computations do not always provide a computa-

tional gain. Algorithms that require significant communication among the components

involved in the computations are not good candidates for distributed environments. Sig-

nificant communication has a negative impact on the overall efficiency of the compu-

tations since communication latency dominates the computational costs. Modifying

existing algorithms for symbolic computations in order to efficiently use parallel and

distributed infrastructures is not easy to achieve. Unpredictable data dependencies and

data access patterns represent the main obstacles in efficient parallelization.

The next step in the evolution of symbolic computations is toadapt existing algorithms to

be used in large scale distributed environments. Symbolic computation systems should

19

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

be able to use the tremendous computation power that today systems can offer. They

should also be able to make effective use of existing capabilities provided by the vast

variety of existing CASs. Creating a computational infrastructure that is able to combine

existing systems with latest technologies in distributed systems is not a trivial task. To

fulfil this goal efforts and expertise of computer algebra developers, symbolic computing

scientists and software engineers must be conjugated.

Several important research projects were conducted in recent years to investigate various

aspects of symbolic computations that have a direct relevance for distributed symbolic

computations. Intensive research was conducted in the framework of the ’Mathematics

on the Net’ (MONET) [32] research project. Its declared goalwas to develop a proof of

concept system and related semantic Web features for solving mathematical problems.

Its main focus was to develop means to effectively describe mathematical services and

problems and to create resource brokers that would match problems to solve onto ex-

isting services. Part of the ideas of MONET were shared with another research project,

MathBroker [57] that had as a goal the development of an infrastructure of mathematical

services on top of existing Web standards.

’Grid Enabled Numerical and Symbolic Services’ (GENSS) [128] was also a project to

follow the ideas formulated in MONET for discovering and matchmaking of mathemati-

cal services. In the framework of the project they have developed mathematical services

and indexing portals that could be used to discover symbolicservices. Through the

’Internet Accessible Mathematical Computation’ (IAMC) [124] project an architecture

to support distributed mathematical computations was proposed. Considering CASs as

computational engine and Java technologies for developingnetwork enabled wrappers,

the JavaMath [170] API provides a recipe that would enable a developer to turn a CAS

with no network communication capabilities into an engine capable to solve requests

sent using RMI and XML-RPC technologies.

’Symbolic Computation Infrastructure in Europe’(SCIEnce) [19] is the latest research

project aiming to develop a symbolic computational infrastructure based on the latest

20

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

developments in distributed computing technologies and particularly Grid computing.

The aim of the SCIEnce [19] research project was to bring together the most important

actors in the symbolic computational field and to find the mostappropriate solutions

to develop a viable computational infrastructure tailoredto the needs of the symbolic

computations field.

Apart from the research developments resulted from the projects mentioned above, ini-

tiatives to develop distributed environments for symboliccomputing were also led by

specific CAS system developer or ’ad-hoc’ research teams. Important CAS vendors or

even third party development teams have implemented specific tools and packages such

as MathLink [193] and MathGridLink [178] for Mathematica [24], Grid Computing

Toolbox [6] and Maple2G [153, 151] for Maple just to name a few. While their solu-

tions may be applicable for specific cases they are not general enough to accommodate

the variety of existing CASs, the fast changing distributed technologies. The capabili-

ties they provide are limited with respect to support for describing complex workflows

that should be run on distributed infrastructures, resource management and collaborative

capabilities.

2.2 Architectural Styles and Quality Attributes

The successful development of complex systems cannot be achieved without a thorough

investigation of the requirements that the system should meet and the available tools,

technologies and implementation models that can be used to support those requirements.

It is also important to have a good understanding of the advantages that particular archi-

tectural styles provide and for this reason we make a quick overview of the fundamental

architectural styles that we use as foundations. During thedesign phase, quality at-

tributes mentioned further in this section are used to motivate and support the decision

to use a particular architectural style.

As defined by Garlan and Shaw [102], a software architecture represents a collection of

21

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

computational components that interact through connectors. A more recent definition

states that’The software architecture of a program or computing system is the struc-

ture or structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them’ [46]. In software engi-

neering, an architectural style’defines a family of such systems in terms of a pattern of

structural organization.’[102]

The overall structure of a software system and its components has to be driven by effi-

ciency characteristics that ensure that initial requirements are fulfilled. One of the first

assessments on quality attributes and their role for software systems was done by McCall

et al [132]. Of particular importance for research related software systems areimplemen-

tation attributesandruntime attributesbecause they consider aspects closely related to

the development and execution of such systems.Business attributessuch as implemen-

tation cost and delivery time related attributes are of lessconcern and therefore they will

not be considered in our analysis.

Some of the most importantimplementation attributesare [154]:

• Interoperability - the ability of a software component to beuniversally accessible

to other components for the purpose of exchanging data. As weshall see later in

this chapter, this ability is particularly important for establishing an infrastructure

for symbolic computations;

• Maintainability and extensibility - the ease of altering the existing software imple-

mentation in order to correct or to extend the system’s functionality;

• Reusability - the effort to adapt existing components so theycan be re-used in

more than one context;

• Testability - the ability to test and verify the correctnessof the implementation;

• Portability - the ability of the implemented software to be deployed and used in

conjuction with different hardware profiles and software infrastructures;

22

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

• Scalability - the ability of the system to handle increased number of requests.

Usually scalability is attained by replicating subcomponents that interoperate for

solving the incoming requests;

• Flexibility - measures the effort required to adapt the system for use case scenarios

for which the system was not originally designed;

The most relevant run-time attributes of the software systems are:

• Efficiency - the volume of resources required by a software system to fulfil its

function

• Availability - the property of the system to be up and runningfor long periods of

time

• Security - the system property to enforce the required security requirements such

as proper authentication and authorized access, the ability to handle malicious

attacks, etc . . .

• Performance - the ability of the system to respond effectively to high loads

• Usability - the degree to which the systems respond to users’expectations and to

their level of expertise

• Reliability - the level of confidence based on the frequency ofexecution problems

that arise during run-time

• Maintainability - the level of difficulty to which a running system may be modified,

reconfigured or extended

Most large software packages combine pure architectural styles to achieve the desired

functional characteristics. Different levels of abstraction of a software system may reveal

different architectural styles. Most of modern architectural styles evolved from several

fundamental architectural styles:pipes and filters, data abstraction and object oriented

23

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

organization, event-based implicit invocation, layered systems, data repositories, main

program - subroutine stylesto name only the most important ones. A more extended list

of architectural styles and a more thorough description maybe found in [102, 163]. In

the following we present a short overview of the most important ones that inspired our

design.

Thepipe and filteris a software architectural style well known especially forits use in

Unix systems. Computational components of the architecture, called filters, transform

data received as input and feed the resulting data to the output. Internal state of filter

components is not shared with other components and therefore the result of their pro-

cessing is only based on the input values they receive and their internal implementation.

To achieve interoperability filter components share the same model of data representa-

tion. In addition, reusability of components, maintainability at both design and run-time

and the possibility to link components in parallel are also favoured by this design.

Sharing a common data representation may induce poor efficiency if significant pro-

cessing has to be applied to data to transform it in order to accommodate the one used

internally by the component. Because filters are tied to a common model for represent-

ing data, parsing from the common format to the one required internally and from the

internal format to the common one may reduce the efficiency ofthe system.

The precursors of theData abstraction and Object Oriented Organizationarchitectural

styles wereMain-Program-SubroutineandRemote Procedure Call(RPC). The latter is

an implementation variant of the former, tailored for network environments. The main

idea that drives these styles is to partition the implementation based on the functionality

they provide. As a result of this separation, maintainability and reusability of software

components is improved. The RPC model was developed to allow parts of the software

system to be executed on separate processors or machines.

Data Abstraction and Object Oriented Organizationhave several advantages in addition

to the ones inherited from their predecessors. The components of the system are objects

with a well described interface that encapsulate internal details, provide internal data

24

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

integrity and preserve invariants. The interface may be advertised separately from the

implementation, allowing decoupling of the two in favour ofmaintainability and exten-

sibility of the system. Interoperability is also easier to achieve because the client has a

clear representation of object’s interface. The main drawback of this approach is that the

potential client must know in advance the identity of the objects it wants to access. Most

of the systems implementing theData Abstractionarchitectural style offer discovery

mechanism that allow clients to find the object they require.

TheEvent-Based with Implicit Invocationarchitectural style defines two types of compo-

nents: processing components and message managers. Duringexecution, the processing

components produce messages that notify interested third party components that a cer-

tain state was reached in the system. Interested processingcomponents may register to

be notified when events of a certain type of topic are reported. The role of the mes-

sage managers is to receive produced messages and to notify interested subscribers that

a certain event has occurred. These architectures offer theadvantage of scalability and

flexibility since new components versions and even new components can be easily added

to the system.

The trade-off of the model described above is the lack of control over the order in which

subroutines of the system are executed in the case of complicated execution scenarios.

More than one subscriber may exist for the same event and the order in which they are

notified is arbitrary. Therefore it is not possible to foresee the order in which processing

steps are executed system wide after the occurrence of an event. Another important

topic to consider is related to data exchange capabilities.The messages have the sole

purpose of notifying that a certain event has occurred. Usually, in these circumstances

additional data that describe the state of the system may be required, too large to be

sent together with the notification messages. There are alsosituations when components

waiting for the same events require different sets of data orrepresentations of it. The

solution is to add mechanisms through which components gather on their own the data

they require. We also have to note that interested components must be alive and listening

at the moment when the event occurs, otherwise they are not able to respond effectively

25

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

to the notified event.

Layered Systemsrepresent an architectural style in which components are organised in

layers. Each layer groups components that address problemsof a certain type so that a

certain layer offers functionality to the layer of components situated one level higher in

the architecture and use functionality offered by the layerof components below. This

type of organization favours separation of concerns for each layer of components, exten-

sibility and maintainability because enhancements may be done at a certain level without

affecting components at other levels and reusability of components. This model allows

better communication between components and offers support for multiple message ex-

changes when a stronger coupling is needed between components.

The architectural styles described above represent only a small part of the ones that

exist today. They are the foundation of modern architectural styles and offer important

guidelines for further implementations. Architectural styles that are able to respond

better to specialized architectures and functional requirements were created. A special

category of such architectural styles is the one tailored for distributed computing.

2.3 Distributed Computing Environments

Distributed computing provides a viable solution for solving problems that do not fit

in the memory of a single computer or are suitable to be executed using computational

components distributed over a Wide Area Network, possibly in parallel. Collaborative

environments even have a social dimension because they facilitate exchange of ideas and

knowledge. Within this section we provide an overview of themain architectural styles

and related technologies used for building distributed applications except Web Services

which are discussed in Section 2.4 and Grids which are discussed in Section 2.5. The

disadvantages that the architectural styles presented in this section have makes them less

appropriate for building an infrastructure for symbolic computation.

26

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

According to Enslow [87], simple distribution of processing elements over a network

must not necessarily be considered a distributed system. Tofully leverage the advantages

that distributed systems can provide, he emphasizes that a truly distributed system has to

comply with the following rules:

• Processing elements to handle a task should be dynamically chosen; there should

be more than one processing component capable to process a certain task and the

system must be able to dynamically select the most appropriate;

• The computational elements must be autonomous and physically distributed over a

network; autonomy guarantees a processing unit the freedomto admit or to refuse

a request based on internal rationale;

• The system should have a high-level control framework that makes possible inte-

gration of distributed components into a whole;

• Services that are offered by the autonomous components should be identified us-

ing a naming scheme. A client must use the naming scheme to specify a service

request while the control framework is responsible for mapping the request to the

processing element. An important difference between network computing and dis-

tributed computing is that the latter uses machine names rather than IP addresses

to specify the target machine that should handle a request;

• The components of the system should be able to collaborate tosolve problems

without a specific request coming from the control frameworklevel;

The above definition is extremely restrictive and rules out awide variety of distributed

computing models. Autonomous behaviour is nevertheless ofhigh importance if compu-

tational resources that are integrated in the distributed system are governed by separate

organizations. Independent resource providers may still want to be able to control the

way their computational resources are used. A definition that covers in a more loose way

the notion of distributed systems is given by Tanenbaum [175]: “A distributed systems is

27

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

a collection of independent computers that appears to the users of the system as a single

computer”. As the author notes, two aspects are of great importance when character-

ising a distributed system. The first one is that the system iscomposed of autonomous

entities. The second aspect that the compound nature of the system has to be transparent

for the users of the system.

The architectural styles described in the previous subsection isolate software architec-

tural characteristics from structural point of view. An important aspect that has to be

considered in the context of distributed computing is the communication model used

between computation components of the architecture. Variations of old architectural

styles and new styles were created to respond to the new architectural constraints and

requirements.

The architectural styles developed for distributed environments use as foundation the

client-serverstyle. The plain client-server style is based on request-response interactions

that occur between the client and the server. The interface of the server components

represent single points of entry which makes the server components easier to control

and more secure. Software applications needed at the clientlevel may be less complex

and therefore easier to install and maintain. In order to execute the client side application

fewer resources are required since most of the computational effort is now externalized

to the server component. Data is usually stored and manipulated in a centralized way

at server level, which eliminates the need for replica management and allows easier

management of concurrent access.

The simplicity of the client-server model comes with the price of poor scalability. The

maximum number of clients that the server can handle at the same time may be rapidly

reached resulting in high response time or even denial of service. Scalability of the

system is also poor if the internal components are tightly coupled. Modern distributed

systems rely on client-server model to connect their components but the separation of

function within the architecture is no longer evident. Somesystems may use complex

topologies such as centralised, ring, hierarchical, decentralised which are based on the

28

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

pure client-server architectural style. Hierarchical or decentralised topologies make no

clear separation between clients and servers. An example isthe peer-to-peer model in

which components may act both as clients and servers.

Main-program-subroutine architectural style is implemented in distributed environments

using the client-server style. The resulting style, Remote Procedure Call (RPC), allows

a main routine to call a subroutine that is hosted in a different address space, usually a

processing element hosted on a different machine. This model is the precursor of several

distributed architectural models, the most popular being Web Services. More details on

pure implementations of RPC can be found in [176].

Due to its advantages, object oriented programming (OOP) iscurrently the most used

programming model. Similar to the RPC model, an application may use objects that are

not necessarily resident on a single machine. The actual invocation of the methods of a

remote object is transparent to the user and the communication logic is provided by the

distributed framework onto which the application was build. The most popular models

that provide support for distributed objects are CORBA [183] and RMI [9].

Common Object Request Broker Architecture (CORBA) is an initiative supported by

Object Management Group (OMG), a not-for-profit computer industry consortium. One

of the main purposes of CORBA was to create the premisses for inter-operability be-

tween applications developed in different languages. CORBA uses the IDL language

to describe the public interface of the objects which makes their interface platform in-

dependent. The Object Request Broker (ORB) has the responsibility to find the actual

object that must be invoked, to activate it if necessary, to pass values of the incoming

parameters and to return to the client the result of the computation. Several languages

have built in support for CORBA, such as C, C++, Java, Smalltack and several vendors

have implemented ORBs. Unfortunately, the main goal of interoperability was not fully

achieved because of lack of interoperability between various ORB implementations.

The Remote Method Invocation (RMI) has many similarities withCORBA but it does

not offer support for interoperability with components that are implemented in other

29

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

Client

Service Registry

Service Provider

DISCOVER

INVOKE SERVICE

A
D

V
E

R
T

IS
E

Figure 2.1: Service Advertising and Discovery

programming languages. Objects having predefined structure and advertised through

the special service RMI Registry may be invoked remotely through proxies. Even if

the actual implementation is specific, RMI uses the same pattern to enable remote in-

vocation. An object design to be remotely invoked is registered with the RMI Registry

service. A client queries the RMI Registry and obtains a local representation of the object

implemented remotely. Any method invocation on the local representative is translated

through the network to the remote object which executes the request and provides the

result of the computation.

The general implementation pattern is therefore similar for both RMI and CORBA and it

is also used in the case of Web and Grid Services. A client thatwants to invoke a proce-

dure/method implemented on a remote machine obtains a handle by querying an index

service as described by Fig. 2.1. Unfortunately all implementations described above

provide limited discovery mechanisms that enable a client to choose the best service to

30

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

invoke based on the service description. Web Services were developed to offer similar

support while improving interoperability and discovery capabilities. We address Web

Services and their advantages in more detail in the following section.

Multi-processor computers and clusters are especially designed as multi-threaded par-

allel architectures. Although their components are not geographically distributed they

share most of the characteristics of a distributed system. Every processor may have its

own memory space and computational elements may be connected through a Local Area

Network (LAN). The small communication latency of such systems makes them suitable

to solve problems that require intense inter-process data exchange. There are two base

models of communication that may be used efficiently for LAN based distributed sys-

tems: distributed shared memory and message passing.

The distributed shared memory model provides an extended address space through which

processors may access a shared memory pool. This pool is obtained by integrating the

local memory of the participating computing elements. The extended address space is

transparent for the user and the underlying system mediatesall read/write operations.

Message passing may be use in combination with a distributedshared memory environ-

ment or stand-alone systems that do not share local memory space. If message passing

is used, inter-process communication is achieved through message exchange. Specific

programming models for this type of distributed system are PVM [104] and MPI [133].

Both PVM and MPI are libraries that offer the fundamental tools that allow a heteroge-

neous collection of machines to be used as single distributed parallel processor. They

offer standard APIs and implemented subroutines that facilitate inter-process communi-

cation. The main process of an application implemented using PVM or MPI, also called

master, controls the initial set-up of the execution environment, uses explicit calls to de-

termine parallel execution and controls all message exchange calls. The slave processes

explicitly requested to be created by the master process in the initialization phase have

the purpose to receive and solve computations received fromthe master. As opposed to

the client-server architectural style where the client andserver are autonomous, the life-

31

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

time and the behaviour of the slave processes is entirely controlled by the master. Due to

these considerations MPI and PVM are less suited for building Internet scale distributed

computational environments.

Maximization of computational resource usage, especiallyof processing time is an im-

portant area of research for computational systems developed using clusters and multi

processor machines. Software tools such as Condor [74] and PBS[47] manage such

resources using scheduling and load balancing techniques to ensure optimal utilization

of computational resources. The users do not have to determine themselves the most

appropriate machines where their tasks should be executed.They submit the tasks to the

task manager which is responsible for planning tasks’ execution on the most appropriate

machines. Using resource managers improves resource utilization but it also ensures

better response of the system to user needs and eliminates job starvation.

2.4 Service Oriented Architectures and Web Services

This section briefly introduces Web Services and related technologies. One of the most

important characteristic of the Web Services world is the use of XML for encoding data,

description of data types and services interfaces. The mostimportant concepts related

to XML are presented in Subsection 2.4.1. In Subsection 2.4.2 we provide an overview

of the main advantages that Web Services provide. We also give a short introduction on

fundamental components and concepts that a Web Service is composed of. Web Services

and Grid Services play an important role in our architecture. CAS’s capabilities are

exposed through Web and Grid Services so they can be accessedby remote clients as

described in Chapter 3. As shown in Chapter 4 once exposed as Webor Grid Services,

automated tools for composing their provided functionality can be further used.

32

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

2.4.1 Data Encoding Using XML languages

XML (Extensible Markup Language) is a model for describing data in a structured way.

Documents containing data structured using XML can be easily parsed by automated

document processors while its content is still human readable and therefore it is not

solely intended for automated processing. Its simple structure and the set of rules which

govern valid XML documents make XML languages suitable for machine-to-machine

communication.

Due to its general acceptance as a viable solution for describing structured data a large

number of technologies and software tools were developed. The most important related

technologies related to XML are:

DTD is a set of declaration that describe the accepted structureof a XML document.

The DTD imposes a precise description of valid documents in terms of nodes,

attributes, references and their valid position in the document. Based on a DTD it

can be easily determined if a certain document has a desired structure or not;

XML Schema also referred to as XSD is a newer and enhanced validation XMLlan-

guage for XML documents. XSD defines a set of basic data types,mechanisms to

define complex data types based on the basic data type and evenfeatures that allow

strict control over length and multiplicity of components of the XML document;

CSS and XSL-FO are two XML related technologies that allow simple rendering of

XML documents to formats that are suitable for visual presentation. These tech-

nologies are especially useful for presenting data in Web browsers;

XQuery is an XML language that was created to enable users to extractfrom XML

documents the data that meets certain criteria. This language is versatile enough

to locate required information based on the position of the node containing the

information and filters that may be applied to the retrieved data;

33

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

XSLT is a powerful language that may be used by specialised tools to transform XML

documents having a certain structure into XML documents with a different struc-

ture based on the structure and information contained in thesource document;

The XML related technologies are well established and stable standards that offer an im-

portant support for managing XML documents. Automatic software tools implementing

these technologies offer efficient means to handle XML documents. The software tools

implement functionality to handle standard features of XMLbut they also implement

best practices for encoding data using XML. Best practices ensure that tools related to

XML processing can be used.

The most common such tools for handling XML documents are specialized XML parsers.

Parsers are able to determine if a XML document is well formed, to validate documents

against DTDs and XSD documents and to construct in memory representations of the

data contained in the XML documents. The two main parsing techniques for XML doc-

uments are SAX and DOM. Advantages and disadvantages of the two parsing models

are generally related to the size, the structure and the purpose for which they are used.

SAX parsers are recommended for large documents or for documents in which XML

elements are nested on a high number of levels because they can minimize the amount

of data kept in memory and therefore are are more memory efficient.

In-memory structures created by DOM parsers are well suitedwhen all information con-

tained by the document must be manipulated at the same time. Parsing XML documents

is a costly operation in general and choosing the incorrect parsing technique can impact

even more in a negative way the performance of an application. Generally the benefits

provided by using XML in computer-to-computer interactionoutweigh the additional

computational cost of boxing/unboxing data.

34

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

2.4.2 The World of Web Services

The notion ofsoftware servicerefers to a set of software functionalities that are avail-

able for clients if they adhere to imposed constraints and access policies of the provided

service. The main design goals of Service Oriented Architectures (SOA) is reusability.

Autonomous software agents implement functionality whichis provided to clients as

services through well defined interfaces. Service’s interfaces provide syntactic informa-

tion regarding how correct calls should be formulated. Details that describe the semantic

meaning of the expected arguments or obtained results are not part of services’ defini-

tion. Details that describe the quality of service that the services should provide are also

not part of the standard.

Building applications by composing existing services offers numerous advantages. The

resulting applications are easier to maintain and test while new functionality can be

easily added. The application becomes scalable since it is possible to create more than

one service providing the same functionality. A key requirement for the success of the

model is interoperability. The communication mechanisms,interfaces and data encoding

models must be consistent for all services so they can be effectively reused.

The advantages offered by XML and related technologies recommend XML as the so-

lution for computer-to-computer message communication and therefore it represents the

foundation of the most popular SOA standard. The SOAP protocol represents the foun-

dation of Web services. The architectural style that lies behind SOAP is the client-server

style. Autonomous services may be invoked using the synchronous communication pat-

tern. SOAP is similar to RPC because Web services provide functionality implemented

as operations, in the same way that functions achieve it in conventional programming

languages.

SOAP defines a communication standard for computation components that are able to

interact using a Wide Area Network (WAN) and therefore is well suited to be used over

the Internet. XML based languages specific to SOAP are used todefine a message

35

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

container, referred as a SOAP envelope, that encapsulates the actual data exchanged

between clients and the Web Services. The URL naming scheme isused to identify

actual services but the interface specification is decoupled from the actual identity of

the service that provides the implementation. A client can determine which service to

invoke dynamically at the moment when the actual invocationis needed.

SOAP does not require that a certain transport protocol is used. The most common

protocol used for exchange SOAP messages over Internet is the HTTP protocol but other

protocols can also be used. For example, implementations that use the SMTP protocol

also exist but they are less used because HTTP is far more popular for exchanging data

over Internet. Most SOAP implementations available from various vendors are HTTP

based. Amongst the advantages of HTTP is that the associatedport 80 is one of the few

ports that are open for communications even when the most restrictive security policies

are enforced by communication firewalls.

SOAP envelopes are composed of two sections. The header of the SOAP message is

an optional part of the envelope. It may contain several header blocks in which meta

information regarding the envelope and further processinginstructions may be put. The

message body, which is mandatory, may also contain several body blocks. They contain

relevant data that must be sent to the Web Service.

As mentioned above, Web Services are very similar to the RPC model in the sense that

the message the client sends to the Web Service contains detailed information about a

certain function/method that should be executed and the list of parameters that must be

supplied to the invoked function/method. The interface of the Web Service is decoupled

from the implementation and therefore the actual implementation of the service can be

done using a large variety of programming languages.

The most common implementations use languages such as C, C++ orJava. The sole

requirement is that correct formulated SOAP envelopes are sent to the corresponding

communication port using the communication protocol supported by the service. The

SOAP message must be a well formed XML document and thereforeany data that must

36

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

be transmitted enclosed in the body of the message must be encoded accordingly. Special

characters that have a specific signification for the XML syntax must be replaced with

their respective encodings.

As the definition of SOA suggests, services must be explicit in declaring the interface

of the service, at least at syntactic level. It must implement mechanisms that describe in

detail the signature of the operations that may be called remotely. The SOAP protocol

specifies that each operation is defined in terms of the input message it accepts from

the client, the output message that the service returns backto the client as a result of

the performed service and a list of possible faults that the service returns if errors occur

during execution.

Description of Web Services interfaces is done using the WSDLstandard language

which is also a XML language. WSDL documents describe the syntactic structure of

the Web Service’s interface. Details regarding the signature of the operations are all

described using the XSD elements. The construction mechanisms that XSD provides

allow arbitrary complex data types to be described and therefore they do not restrain the

generality of the interfaces. The XSD technology is not specific to any programming

language, therefore using XSD favours interoperability.

Parameters having a complex data type, i.e. formed by combining basic data types,

may be transmitted to the server encoded as valid XML if the interface requires so.

Extremely complex data types may not be well suited for describing parameter types

that an operation expects. Alternative solutions to this problem are either to use XML

ANY element to allow any XML content to be passed through or to useplain string

codification of characters. To apply the second solution theoperation interface must be

modified to accept a plain string as an input parameter instead of a complex data type.

This approach is a deviation from the standard because it forces the client and the server

to agree in advance about the structure of a message.

We exemplify below plain string encoding for a compound datatype that represents a

mathematical formula expressed as an OpenMath object. Moredetails regarding Open-

37

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

Math encoding are given in Subsection 2.6.1. A typical representation in XML of the

mathematical formula 1 + 1:

<OMOBJ version="2.0">

<OMA>

<OMS cd="arith1" name="plus"/>

<OMI>1</OMI>

<OMI>1</OMI>

</OMA>

</OMOBJ>

If the desired parameter’s structure for an input message issimilar to the one depicted

above, the WSDL document describing the service’s interfacemust declare explicitly

the structure of the complex type using XSD declarations. For simple data types the

XSD declaration is straightforward while for more complex data types it can became

cumbersome. An immediate advantage of using XSD is that supplied arguments can be

checked at server side before any additional handling of parameters is done and an error

can be immediately thrown to the client.

The flattened XML representation of the complex type preserves the original format but

characters with special meaning in XML are replaced with their respective encodings.

The OpenMath object described above is therefore transformed to:

<OMOBJ version="2.0">

<OMA>

<OMS cd="arith1" name="plus"/>

<OMI>1</OMI>

<OMI>1</OMI>

</OMA>

</OMOBJ>

38

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

where all ’<’ and ’>’ characters were replaced with there respective encoding ”<” and

”>”. This approach has a negative impact on efficiency because the messages have

to be encoded/decoded to/from XML format. Validation stepsthat are normally run at

the Web Service’s interface level have now to be applied explicitly by the application

receiving the message.

Based on service’s URL any client can obtain the WSDL document describing the in-

terface. Based on the information supplied in the WSDL, the client can automatically

create suitable messages for interacting with the service.Therefore any client capable

of generating the correct SOAP messages is able to interoperate with the service. On

the other hand, knowing the structure of the interface does not ensure that the provided

arguments and the functionality of the service are the ones expected by the client. The

WSDL does not provide information about the functionality and the QoS that a certain

service implements. Therefore, the client may know how to formulate a call but it does

not know the significance of input parameters and the meaningof the results it obtains.

Furthermore, composing multiple services is not possible without additional semantic

descriptions of the services.

2.5 Scientific Computing Using Grids

The term ofGrid computinghas emerged in the distributed computing world at the

mid of 1990’s. Its main goal is to create a distributed architecture in which clients use

computation resources offered by providers in a way that is transparent for the client.

The process of computational power acquisition should be provided by a intermediary

software layer that is able to detect available computational resources and effectively

combine them. At atomic level computational resources are abstracted as generic ele-

ments called resources. Each resource has a set of attributes and a set of functionalities

they provide, which the Grid software layer must manage, trying to keep a perfect bal-

ance between producers and consumers [92]. This model is especially well suited for

39

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

managing collections of computational resources owned by different organizations that

agree to share their resources for supporting a common goal.

Virtual Organizations (VO) [90] represent dynamic communities of producers and con-

sumers of computational resources that share and use resources based on a predefined

set of rules. The VOs are usually spread over multiple administrative domains and re-

unite computing power offered by computing infrastructureowners from simple personal

computer to large campus domains and super computers. Participants willing to share

computational resources are usually part of academic and research institutions. Compa-

nies and governmental institutions are more reticent aboutsharing their computational

resources due to security concerns regarding sensitive data and the lack of cost models

that can be easily enforced by current Grid technologies.

The main middleware products used currently to build Grid infrastructures are Globus

[91] and gLite [5]. Their role is to provide a software layer on top of hardware compo-

nents that implements a core set of management capabilities. As a result, the hardware

component layer, also called thefabric layer, can be managed in a consistent way across

the whole VO. The middleware also provides security mechanisms, job management fea-

tures, support for data transfer through standard protocols and infrastructure monitoring

capabilities. The application layer which sits on top of theGrid middleware layer, can

immediately use the provided functionality without havingto reimplement new ones. As

a result, the Grid middleware represents the foundation forinteroperability and security

over the Grid.

Apart from implementation details and capabilities offered, one of the main differences

between gLite and Globus is the set of technologies used for interconnection of Grid

nodes. Services provided by gLite are implemented as daemonprocesses that listen on

various TCP/IP ports. This means that for interoperability reasons, nodes of the Grid

built using gLite have to share the same configuration pattern and make sure that the

appropriate communication ports are open for communications. This is not always easy

to achieve when resources are spread over multiple administrative domains with different

40

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

Application Layer

Middleware Layer

Fabric Layer

Servers
Personal

Computers
Workstations

Monitoring and

Discovery

Services

Job Management

Services

Data Handling

Services

Security Layer

Applications

Figure 2.2: The Role of Grid Middleware

firewall configuration policies.

As opposed to gLite, Globus ToolKit 4 uses as communication interfaces modified Web

Services and therefore all services may be available through a single interface advertised

on the standard HTTP port 80. Management of provided services and their configuration

are easier to achieve. Security risks are also easier to be managed because most of the

services may be invoked through a single port which is by default open even in the most

restrictive network firewall configurations. New services can be easily created and adver-

tises in the same way standard Globus services are. Clients may easily discover services

and syntactic information describing services’ interfaces by retrieving their WSDL de-

scription document. There is also another important difference between Globus Toolkit

and gLite. While gLite is oriented towards handling of tasks that are submitted by call-

ing standard services, Globus allows service implementersto define new services and

advertise them in a seamless way.

41

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

The model proposed by gLite is well suited for solving tasks,even compound ones, that

rely on calling command line utilities installed on the computational node that handles

the request. This strategy cannot be easily applied in the case of symbolic computa-

tions packages that are usually designed as interactive interpreters. Highly dynamic

services configurations are also better dealt with by Globuswhich provides better dis-

covery mechanisms. Due to its capabilities, Globus is currently considered the de-facto

standard middleware for Grid computing and for the rest of this thesis the termGrid

servicewill refer to the standard imposed by Globus Toolkit 4.

2.5.1 WSRF Compliant Grids

There is a clear distinction between Web services and Grid services and the role they play

as distributed computing technologies. Stockinger [172] notes that both Web and Grid

services were designed for wide area distributed computing. Typically, these services

facilitate access to computation power and storage resources by advertising functionality

using the same mechanisms. The most important differences between the two do not lie

in the the way they are advertised, discovered and addressedbut in their purpose.

The main purpose of a Web Service is to permit communication over the network be-

tween clients and service providers using standards that guarantee communication in-

teroperability. The goals of Grid Services are beyond of those of Web services because

they aim to offer mechanisms that allow interconnection of generically named Grid re-

sources in one computational platform. For Grids, any computational resource, from

processing units to printers and sensors may be abstracted based on their functionality

and attributes. Grid services provide generic mechanisms to allow integration of Grid

resources in wide distributed computing architectures.

The current standard for describing Grid services has its foundations in the Web Services

Resource Framework (WSRF) [143]. The WSRF standard describes a set of mechanisms

for easy integration and management of resources in distributed environments that are

42

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

built based on the Web services standard. The first initiative to augment Web services

was proposed by the Open Grid Services Architecture (OGSA) [93] but the initiative was

only an intermediary step towards the WSRF compliant Grid Services. With WSRF, Grid

services have integrated the best features from both Web services and OGSA services

worlds: on one hand the interoperability and on the other hand a mechanism to allow

persistence of state at the service level. As noted in [172],a Grid Service is in fact

an augmented Web Service that implements mechanisms for storing state information

persistently beyond the lifetime of a single request ratherthan transiently.

The newer REST [88] standard for Web Services requires that a request must specify all

the information needed by the server to handle the request therefore no stateful infor-

mation should be kept at server level. The benefits of using this approach [88] do not

apply for Grid architectures due to their different aim. ForGrids, statefulness is an im-

portant feature that prevents unnecessary network communication and data sharing even

between multiple clients. The WS-Resource standard, part of WSRF, specifies a core set

of XML languages to be used for describing resources and their properties and defines a

set of standard management protocols that should be used in conjunction with resources.

Each Grid service has to describe resources that are made available to external users as

XML documents and each resource has to be uniquely identifiable. To access a resource

a client obtains the identifier of the resource from a factoryservice and in subsequent

calls uses the identifier to specify the resource to which thecall should be applied to.

The extensions that Grid Services define on top of Web Services go beyond the syntactic

level because they enhance the capabilities of Web Serviceswith consistent mechanisms

that services’ clients can rely upon across all Grid services. The WSRF standard is

therefore a collection of specifications related to the management of WS-Resources that

are guaranteed to provide the same functionality across allGrid service providers. These

mechanisms not only add capabilities that could be useful for the Web Services world but

they modify the architectural model of the applications that are based on Web Services.

The first important change is introduced by theWS-Addressing[188] andWS-Resource

43

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

S
e

rv
ic

e

Resource Properties

Resource Properties

Resource Properties

WS-Resource

WS-Resource

WS-Resource

End Point
Reference 1

End Point
Reference 2

End Point
Reference 3

Figure 2.3: Structure of a Grid Service

[143] specifications. An instance of a regular Web Service isstatelessand it is not

designed to remember prior events. In order to createstatefulservices, state information

which is stored at service level must be managed by the service and available for future

invocations. Regular Web Services may be designed to implement such behaviour but

the lack of a standard can only clutter the interface of the Web Service and complicate

the invocation process because the client must send needed information explicitly.

The WS-Addressing specification defines a two level invocation mechanism that allows

automatic attachment of a session identifier within the header of the message. Therefore

the SOAP message is submitted to a URL that identifies the services and the header

information is used at the service level to identify information regarding the session.

Two invocations sent to the same service will differ in execution based on the state of

the targeted resource.

Closely related to this mechanism is the specification that describes the structure of the

persistent information that is stored as resources. Generically called resource, this con-

cept can be used to describe any informational attributes ofthe entities that the service

interface offers access to. While simple Web Services exposea set of operations that

44

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

an external user may invoke, Grid services are closer to the OOP paradigm. The at-

tributes of an object are mapped to WS-ResourceProperties, and the whole structure of

the resource is advertised within the WSDL document describing the Grid Service. The

WS-ResourceProperties specification describes also the mechanisms that should be im-

plements to allow seamless access to the content of the resource. Standard operations

for setting and getting the properties of a resource may be part of the default interface of

the Grid service.

A common implementation pattern for Grid Services is theFactory Patternin which two

services are used in tandem. The factory service is a stateless service that the client calls

at the first invocation. The role of the factory service is to initialize a new resource object

that is kept in memory and to send back to the client an End-Point Reference (EPR) that

contains the necessary information to further interact with the new created resource. The

EPR contains the URL of the service and an unique identifier of the resource.

The resource created and associated with the Grid Service isintended to outlast a sin-

gle call. As a consequence, the Grid Service must implement life management fea-

tures that control the lifetime of a WS-Resource and control inwhich circumstances the

memory allocated for the resource must be freed up and the resource destroyed. The

WS-ResourceLifetime [144] describes mechanisms that allow seamless management of

resources lyfecicle which may be extremely complex. They are created and modified as

a response to user’s actions. Their lifetime spans over multiple user calls according to

the purpose of the application. Unless kept alive by subsequent calls, the lifetime of a re-

source can expire based on the initial setting specified at the creation of the resource. For

the resource to be destroyed after the expiration an explicit call to request the destruction

is not required.

The interaction with a service should be standardized as much as possible to make sure

that the aim of complete interoperability is achieved. GridServices invocation may raise

invocation exception that describe problems that prevented a successful execution. The

WS-BaseFaults [141] specification provides a standard error types that may be used by

45

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

the application to inform clients that errors have occurredduring the execution of the

service.

The number of Grid Services that are exposed by a Grid node andthe resources that

are instantiated as a result of client calls may be high. Useful mechanisms that allow

grouping multiple services together for easier managementare specified by the WS-

ServiceGroup [145] specification. Services can be added anddeleted to a group and a

group can be searched within a group based on a search condition. Besides describ-

ing the simple mechanisms to manage services the WS-ServiceGroup describes a set of

guidelines on effective service grouping and management.

The Grid paradigm foresees the creation of complicated computational infrastructures

based on the resources and their associated services participating to a Virtual Organi-

zation (VO). The aim of such infrastructures is to provide a suitable environment for

solving large scale problems. The tasks to be executed to solve large scale problems

may require a long time to complete. Therefore, asynchronous calls should be supported

by Grid systems to support non blocking computation flows. The WSRF describes such

mechanisms as part of the WS-Notification [142] specification.

WS-Notification defines two types of services: notification producers and notification

consumers. Consumers register themselves with one or more producers to be notified in

case a specified type of event occurs. Typically, the consumer registers to be notified for

changes that occur in a certain WS-Resource. Any update in the internal state of the re-

source can therefore be advertised to interested consumers. This behaviour is especially

useful with long running tasks, such as the ones that often occur in scientific problems.

One important aspect in distributed architectures is the need for a client to know the

address of the remote service. The address can be known by default or the client can

be expected to discover the services that provide required functionality. The standard

discovery mechanism used by plain Web Services relies on UDDI [22] registries. The

level of cohesion between the Grid Services is bigger than the one of Web Services

due to the fact that they are part of a certain VO. Another significant difference is the

46

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

additional information that is stored in associated resources which can be meaningful

for the discovery process. As a result, the mechanisms of discovery implemented by

UDDI registries were replaced by a set of hierarchicalindex services. The services are

compliant with the WSRF specification and standard enquiry calls can be formulated to

retrieve information.

2.6 Encoding Standards for Mathematical Content

Various systems, tools and frameworks have been developed to ease the process of de-

scribing and solving mathematical problems. CASs are the most important ones but

other tools such as QMath [14] and Sentindo [18] play an important role. Apart from

their core functionality, an important requirement for such systems is to offer features

or to support the process of exporting and importing mathematical content. Scenarios

in which the user would want to export mathematical content for later reference or to

enable results dissemination are part of the every day usagepatterns.

Mathematical notation was developed over the years and it represents an important char-

acteristic of mathematical formulae. Symbols and notationelements that are specific to

mathematical writings cannot be easily replaced by function names without negatively

impacting the legibility of the formulae. Unfortunately these special mathematical sym-

bols cannot be stored in text files without converting them toa text format. The first

solution to this problem was to replace symbols with string character function names but

other solutions are currently considered more efficient andversatile. Due to rapid de-

velopment of Word Wide Web related technologies, standardsthat use XML languages

were preferred to plain character encodings. The main reasons are better parsing sup-

port that is readily available for XML documents and easier integration with Web tech-

nologies such as HTML pages that facilitates displaying mathematical formulae in Web

Browsers.

While binary formats may also represent a solution for machine to machine communi-

47

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

cation, their disadvantage is that they are not human readable. Another disadvantage is

that most of the binary formats are proprietary and only supported by specific systems

or platforms. Mathematical formulae described in terms of OpenMath objects can be

stored both in XML and binary format, both standardized.

2.6.1 OpenMath

One of the most used standards to describe mathematical formulae is OpenMath [184].

Its main aim is to provide the necessary mechanisms to describe mathematical formulae

and encapsulate in its description semantic meaning of the mathematical terms. The

semantic information ensures that a document containing mathematical formulae can

be correctly evaluated and understood independent of the ofthe software package that

produced it.

It is often the case that a mathematical document produced with one software package

has to be loaded and evaluated by another package, either of the same type or different

one. For mathematical formulae, semantic mechanisms must allow different software

packages to determine the meaning of the content they parse.For instance, in the for-

mula that expresses the area of a circleA = PI ∗R2 the meaning of various terms of the

formula should be self explanatory for a trained human eye. Asoftware system though

cannot assume the meaning of the particular terms. It is significant to have additional in-

formation to allow it to determine that “R” represents a variable while “PI” is a substitute

for the well known mathematical constantπ.

The description model that OpenMath proposes is not necessarily tied to a certain en-

coding format. The two encodings that OpenMath directly supports are a XML based

language and a binary format. Either of the two may be chosen,depending on the sce-

nario in which they are supposed to be used. The binary formatis more compact and

potentially more suitable for machine to machine communication when the communica-

tion channels use raw binary format while the XML encoding may be more suitable for

Web service related technologies.

48

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

The fundamental concepts that OpenMath is based on areContent Dictionaries (CDs),

OpenMathsymbolsand the concept of an OpenMathobject. Similar to the mechanism

of dictionaries used in every day speech that states the semantic meaning of a word in the

dictionary, OpenMath CDs are collections of OpenMath symbols that have a particular

meaning in a specific context. A software package understands a mathematical formula

that is expressed using OpenMath only if it implements correspondingPhrasebooks that

allow the system to transform the formula in the encoding model that it uses internally.

In this case, the software packagesupportsor implementsthe corresponding CDs.

Mathematical formulae can be encoded as compound OpenMath objects by combining

basic OpenMath constructor objects and OpenMath symbols defined in OpenMath CDs.

It is a common practice to group OpenMath symbols that are related in CDs covering

a particular mathematical area. Grouping multiple symbolsin CDs is a convenient way

to organize OpenMath symbols. The OpenMath symbol is a mechanism to identify

certain concept in that particular area of mathematics and ensures that any interpreter

will consider the same semantic meaning defined by the associated OpenMath symbol

definition.

There are two main types of objects in OpenMath. The first category comprises of basic

OpenMath objects:

• Integer - any element that is part of the mathematical set of integers

• IEEE - any floating point number expressed using double precision format

• Character String - any character string

• ByteArray - any sequence of bytes

• Symbol - any symbol element that is part of a CD

• Variable - represent a place holder; it has to have a unique name

49

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

For an OpenMath symbol to be correctly specified two mandatory attributes of the sym-

bol have to be set. Thecd attribute that specifies the OpenMath CD of which the symbol

is part of; thenameattribute is a meaningful name, unique in the context of the CD.

Compound OpenMath objects can be constructed by combining existing OpenMath ob-

jects. The constructive approach has to comply with the following composition mecha-

nisms [184]:

• foreign(A) - is an OpenMath object if A is not an OpenMath object. This construc-

tor function allows creating OpenMath objects from non OpenMath objects which

may be useful if arbitrary data has to be encapsulated in an OpenMath compound

object;

• application(A1, . . . ,An) - where A1,...An represent OpenMath objects specifies

an application in a similar way with defining a regular mathematical function with

multiple arguments. The first argument is referred to as the head. To encode a

mathematical function the head object is an OpenMath object, such as an Open-

Math symbol that specifies the function and the rest of the objects represent the

argument that have to be applied;

• attribution(A,(S1,A1), . . . ,(Sn, An)) - where A,A1,...An represent OpenMath

objects and S1,...Sn represents OpenMath symbols; this construction may be used

to add attributes or characteristics that are part of the A object’s definition;

• binding(B,v1, . . . ,vn,C) - where B and C represent OpenMath objects and

v1,...vn represent OpenMath variables; it may be used to express functions or

logical statements;

• error(S,A1, . . . ,An) - describes an OpenMath error objects

Based on the mechanisms described above computer algebra application specialists have

created a strong foundation that can be used to describe complicated mathematical for-

mulae covering the most common mathematical areas. Due to the popularity of XML

50

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

languages and the available support for parsing XML documents most of the OpenMath

encodings are done in XML format. The OpenMath standard endorses the XML for-

mat and describes a set of language elements that correspondto the encoding models

described above. To encode basic OpenMath object the following XML tags have to be

used:

• Integer:<OMI>...</OMI>

• IEEE:<OMF>...</OMF>

• Character String:<OMSTR>...</OMSTR>

• ByteArray:<OMB>...</OMB>

• Symbol:<OMS cd=”cdname” name=”omsname”></OMS>

• Variable:<OMV name=”variablename”></OMV>

The corresponding XML tags that should be used to construct compound objects are:

• foreign<OMFOREIGN>...</OMFOREIGN>

• application:<OMA>...</OMA>

• attribution<OMATTR>...</OMATTR>

• binding:<OMBIND>... <OMBVAR>...</OMBVAR>...</OMBIND>

• error<OME>...</OME>

As an example, to encode in OpenMath the formulasin(0) where “sin” represent the

sinus trigonometric function, the corresponding XML should be created:

<OMOBJ>

<OMA>

51

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

<OMS cd="transc1" name="sin">

<OMI>0</OMI>

</OMA>

</OMOBJ>

Remark. OpenMath objects are stored in separate XML documents. The correspond-

ing XML document may contain a basic object or a compound object constructed us-

ing the mechanisms described above. For the document to be a well formed descrip-

tion of an object, its content has to be enclosed between the start and ending tags

< OMOBJ >,< /OMOBJ > respectively. These tags can only appear once in the same

file.

OpenMath References

Due to their complexity, XML representations of large OpenMath objects can sometimes

be large. It is also possible that some of the OpenMath sub-objects that an OpenMath

objects is compound of may appear more than once in object’s description. To shorten

and simplify the representation of an OpenMath object, the OpenMath standard provides

a reference mechanism that allows replacement of sub-object with a reference to the

object’s definition. Practically a reference replaces an in-line definition of the object and

makes the encoding more compact and easy to read.

We illustrate this concept with an excerpt taken from the theOpenMath standard def-

inition [184]. The following two encodings are semantically equivalent even if their

definition is different. The first representation describesthe mathematical formula “1 +

1” by combining in an OpenMath application object two OpenMath integers.

<OMOBJ version="2.0">

<OMA>

<OMS cd="arith1" name="plus"/>

52

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

<OMI>1</OMI>

<OMI>1</OMI>

</OMA>

</OMOBJ>

The second encoding uses OpenMath references to replace thesecond definition the

integer value “1” with a reference that points to an existingdefinition of the required

object. Within the same document, theid attribute must have value distinct from all

other identifier values. The unique value can be used to specify a reference encoded as

the< OMR > XML element specified below.

<OMOBJ version="2.0">

<OMA>

<OMS cd="arith1" name="plus"/>

<OMI id="bar">1</OMI>

<OMR href="#bar"/>

</OMA>

</OMOBJ>

The reference mechanism is similar to the anchor mechanism provided by HTML Web

page description language. Valid references may point to objects described within the

same document, objects that are described in a document stored at a location relative to

the location of the file where the reference appear and even based on a absolute location.

The OpenMath standard only requires that the value of thehref attribute is a valid URI.

In the context of OpenMath XML encoded objects, reference resolving defines the pro-

cess of identifying the OpenMath objects that are referenced by a compound OpenMath

object’s definition and, if the object is not hosted on the same machine, retrieval of ref-

erenced OpenMath object to make it available locally.

53

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

OMDoc

The foundation of OpenMath semantic annotation is the concept of content dictionary.

Kohlhase [118] has investigated the suitability of using OpenMath for automatic proving.

He concluded that the lack of semantics associated with OpenMath CDs makes the CDs

machine readable but not machine understandable. OpenMathCDs were not conceived

in a way that makes them suitable for computer to computer communication.

As a result, Kohlhase [119] has developed an extension of theOpenMath CD mecha-

nism that allows clarification and addition of semantic context to CDs. The extensions

define XML tags that can be used to accommodate several types of information such as

semantic meaning of terms used in explanatory text elementsand theory based classifi-

cation of symbols defined in CDs and relation operators between theories. While these

additions may improve mathematical formulae manipulationand automatic reasoning,

these extensions were not widely adopted by computer algebra software packages.

2.6.2 MathML

MathML is a XML language that was created as a standard for describing mathematical

formulae. Its main goal is to“enable mathematics to be served, received, and processed

on the World Wide Web, just as HTML has enabled this functionality for text” [187]. The

tremendous development of Web technologies and especiallythe intense use of Web

pages to communicate ideas and knowledge motivated the needfor standard languages

to describe mathematical formulae so they can be understoodand rendered by Web

browsers. Since HTML is the most important language to defineWeb pages, MathML

was built on the similar principles.

To encode mathematical formulae MathML provides two types of tags, presentations

and content markup. The first can be used for encoding mathematical notation such as

symbols while the second can be used for describing semanticmeaning of mathematical

54

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

contents. These two types of markup are required because mapping between a math-

ematical notation and its semantic meaning is not always straightforward. A software

system cannot automatically infer the meaning of a mathematical term only from its

representation and therefore additional information has to be attached to the formulae

description.

Even if a formula is described using semantic rich encodings, for rendering purposes,

details on how to represent the data are still required. Evenif two formulae are seman-

tically equivalent, their term structure may be different.For such cases the rendering

systems may choose one of the valid visual representations that its considered the most

suitable one but this may not be the representation the user intends. MathML recognises

these problems and includes in its standard capabilities for grouping semantically rich

encodings with presentation content.

The set of markup elements that can be used for describing presentation covers the most

important mathematical notations but it cannot be extendedby a regular user. The ren-

dering application has to recognize the markup and to renderthe formula based on the

description. The use of a certain presentation markup element defines not only the po-

sition of a term in a formula but it also gives information about how the term should

look like, e.g. the type of font to be used. Even if extension mechanisms would be pro-

vided for regular users, these would be too complicated to use and too difficult for a Web

browser to follow them. The rendering model that is used by Web browsers is based on a

set of conventions regarding how specific elements of the Webpage have to be presented

to the user based on their specific attributes and the contextthey appear.

For content description the MathML standard recognizes benefits introduced by Open-

Math content dictionaries and provides similar mechanismsfor semantic annotation. For

conversion purposes, the standard even gives a comparison of the two and a mapping

table that can be used for automatic conversion 2.1 between MathML and OpenMath

elements [186].

As can be seen from the table above, the latest version of MathML provides good support

55

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

MathML OpenMath
cn OMI, OMF
csymbol OMS
ci OMV
cs OMSTR
apply OMA
bind OMBIND
bvar OMBVAR
share OMR
semantics OMATTR
annotation, annotation-xmlOMATP, OMFOREIGN
cerror OME
cbytes OMB

Table 2.1: MathML Mapping to OpenMath

for semantic annotation which was lacking in earlier versions. The base concept of con-

tent dictionaries can now be used in MathML similar to the waythe semantic meaning

is expressed in OpenMath. Due to these improvements it may beconsidered as a viable

alternative to OpenMath. However, OpenMath remains the most popular data encoding

standard for symbolic content and as a result it is the standard with the best support in

the computer algebra computations world.

Existing computer algebra systems, especially the ones created for a special category of

symbolic problems have custom data representation models.Their strength in solving

the particular problems for which they were built comes fromthe data encoding and the

special implementation of algorithms. Even if re-engineering was possible for this kind

of system, it is not desirable. Therefore, interoperability of those systems may only be

achieved by implementing translators from/to internal representation model.

2.7 Summary

Computer Algebra Systems (CASs) are the main tools for symbolic computations and

of great importance for research world. Their first goal was to provide automatic tools

56

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

for handling mathematical formulae and to automate mathematical manipulations that

otherwise would have been achieved with pen and paper. Lack of time and resources led

to the omission of interoperability from their initial design. It is therefore difficult to use

these systems in a collaborative way that permits solving symbolic problems that require

computational resources not available on a single machine.

The need for better interoperability, better support for symbolic manipulation and stan-

dards describing mathematical content with semantic support were identified more than

two decades ago [49]. Several joint research initiatives tried to offer viable answers to

the problems that symbolic computations world has to face. Among most important

research projects of the last years to investigate how distributed models can be used in

context of symbolic computing are “Mathematics on the Net” (MONET) [11], MathBro-

ker [2], “Grid Enabled Numerical and Symbolic Services” (GENSS) [7] and “Symbolic

Computation Infrastructure in Europe”(SCIEnce) [19]. They have recognized the op-

portunities that distributed architectures may offer to symbolic computing and they have

investigated solutions for creating distributed computational infrastructures for symbolic

computing. The European project SCIEnce’s aim was to providethe needed framework

to bring together application specialists and researchersin mathematical fields. Find-

ing the best solutions and technologies to create a symboliccomputational infrastructure

cannot be achieved without a coordinated effort of such interdisciplinary research teams.

A solid evolution of systems for symbolic computations towards a symbolic computa-

tional platform cannot be achieved without a thorough understanding of existing tech-

nologies and the benefits and shortcomings they introduce. Architectural styles used to

implement software systems have a tremendous influence overtheir behaviour and limi-

tations. One of the most evolved solution for building distributed infrastructures is Grid

computation model. Its aim is to take advantage of the lessons learned from other tech-

nologies and to provide solid and standardized environments for building computational

infrastructures.

The Grid model favours interoperability by providing a set of standards and software

57

Chapter 2. The Impact of Distributed Architectures on Symbolic Computation

utilities to cover fundamental problems that have to be dealt in distributed environments:

security, resource and task management, data management. Due to the benefits it pro-

vides it may be considered suitable for collaborative environments as the one that sym-

bolic computation requires.

Mathematical content exchange between software agents requires that the same encod-

ing model is used by both communication parties. Moreover, syntactic level descrip-

tion of mathematical formulae is not sufficient for machine to machine communications.

XML based languages are well suited for describing data thatneeds to be exchanged

in distributed environments and several standard XML languages for mathematical con-

tent were developed over time. The OpenMath language is preferred for computer to

computer interactions because it is a semantic rich language. For presentation purposes,

especially for integrating mathematical content in Web pages, MathML is more suit-

able. An augmented version of OpenMath, namely OMDoc may be used for particular

research domains such as automatic theorem proving.

58

Chapter 3

Exposing CAS Functionality as Web

and Grid Services

This chapter introduces the CAS Server component [58, 61, 148, 150, 129]. Through its

generic interface the functionality of multiple CASs can be exposed to remote clients. In

Section 3.2 we discuss the requirements that drive the structure of CAS Server’s inter-

face. In Section 3.3 we describe the design of the CAS Server component and the way

the CAS Server interacts with its clients and underlying CASs of which functionality

it exposes. Available solutions for interacting with legacy software components and in

particular with CASs are discussed in Section 3.4 while best technologies to be used

for developing a distributed computation infrastructure are analysed in Section 3.5. The

general structure of the request and response messages thatCAS Server should handle

are further described in Section 3.6.

3.1 Introduction

Most Computer Algebra Systems (CASs) lack capabilities that support building a sym-

bolic computational infrastructure. The situation is particularly unfavourable for systems

59

Chapter 3. Exposing CAS Functionality as Web and Grid Services

that have started as small ad-hoc solutions and have evolvedover time with improve-

ments applied in a cyclic process. Even if the systems were improved over time, features

that would allow these systems to interoperate with other software components were not

high priority. Consequently, some CASs are only able to read input data from, and write

output data to, text files stored in predefined locations.

Large symbolic computation problems may require computational infrastructures that

provide large computational resources: high processing power, large memory and stor-

age capabilities. Currently, most of the CASs are designed to be used as isolated software

components and therefore they lack capabilities to access resources provided by massive

distributed systems such as Grids. Some of the general requirements summarized in

[49] such as the need for generally accepted standards for data encoding and support for

interoperability capabilities are not yet fulfilled and represent major obstacles for build-

ing large scale symbolic computational infrastructures. The lack of support for modern

technologies and standardization are main reasons for which we can include most of the

current CASs in the category of legacy software systems.

CASs represent the main tools for symbolic computations and they cannot be easily

replaced or reengineered due to the high level expertise required both in the general

software engineering area and in the symbolic computational field. Therefore they still

remain the main computational engines used for symbolic computations and solutions

for large symbolic problems can only be build using these systems as foundations. To

allow them to be part of large distributed architectures, CASs have to provide enhanced

capabilities which can be added by applying modernization techniques. Adapting CASs

to the latest technologies used currently for building distributed computational infras-

tructures is not an easy task.

The technologies used in software engineering have evolvedtremendously in the last few

decades and CASs have tried to adopt these changes in an evolutionary fashion. Tech-

nological advances and improvements in the way users interact with software applica-

tions may also be relevant for symbolic computations software. Watt [196] provides an

60

Chapter 3. Exposing CAS Functionality as Web and Grid Services

overview of various capabilities that could be easily fulfilled with a from-scratch imple-

mentation. Features such as visual manipulation of mathematical objects do not require

fundamental changes to existing CASs. Support for a different data model than the one

internally used may require fundamental changes which are closer to the core of the

CAS.

Our main goal is to provide the blue print of a software architecture for symbolic compu-

tations and demonstrate its capabilities to support fundamental requirements of computer

algebra specialists in terms of usability, efficiency, flexibility. On the one hand it has to

provide infrastructure solving large symbolic computations, on the other hand it has to

be versatile enough to permit easy adoption of new technologies and trends. Within this

architecture CASs play the main role because they are the actual provider of symbolic

computation capabilities. Additional components of the architecture will provide the

support features that enables us to integrate CAS engines as acoherent whole.

Within our architecture the main components responsible for solving symbolic compu-

tations tasks are theCAS Serverswhich wrap and expose to remote clients symbolic

capabilities natively implemented by CAS engines. The structure of the CAS Server’s

interface and the services it provides are primarily drivenby symbolic computations re-

lated requirements. To a smaller extent, their structure isalso influenced by the actual

technology used to interconnect architecture’s components. In addition to the core func-

tionality of the CAS Server, complementary capabilities to ensure that CAS Servers are

easy to integrate in collaborative environments must exist. Amongst them, indexing re-

lated services, security and task management are only a few of the functionalities that

are required.

The general requirements and several fundamental featuresthat the CAS Server offers

are discussed throughout this chapter while more complex capabilities are described in

the following chapters. In this chapter we investigate the most important requirements

that have to be fulfilled to ensure adequate support for symbolic computing. Based

on the main requirements we identify the most important computational elements that

61

Chapter 3. Exposing CAS Functionality as Web and Grid Services

an architecture for symbolic computations requires and theway these components are

interconnected.

3.2 Top Level Requirements Driving the CAS Server In-

terface

Rich graphical interfaces able to display and manipulate mathematical formulae based

on visual components are one of the features that makes CASs easier to use, more in-

tuitive and even more attractive [196]. Providing symbolicsupport integrated with mo-

bile devices may also be an interesting capability that would make symbolic computing

more accessible to broader categories of users. Mobile devices such as mobile phones

and PDAs were developed in the last decade to provide resources for software applica-

tions far more advanced than the ones required for device’s basic functionality. They

are now considered as viable tools for a wide range of applications and they can even

be considered for solving small symbolic problems or as thinclients to server-provided

functionality.

The most important challenge that the symbolic world still has to face is to provide sup-

port for solving large symbolic problems by enabling CASs to exploit and provide com-

putational capabilities of massively distributed environments. Adoption of distributed

technologies is currently the most affordable solution to build infrastructures that pro-

vide required computational resources. The most importantissue that prevents seamless

integration of CASs in distributed architectures is their lack of support for interoperabil-

ity.

Immediate benefits of creating a distributed symbolic infrastructure are:

• Faster and potentially more accurate solutions can be obtained as a result of col-

laboration between specialized software packages and moregeneral symbolic soft-

62

Chapter 3. Exposing CAS Functionality as Web and Grid Services

ware packages; particular sub-problems could be solved by the most suited soft-

ware packages available even if the system that the problem was submitted to does

not implement the required capabilities; through collaboration the capabilities of

CAS can be easily extended by exploiting the capabilities offered by other types

of systems, not only CAS [197];

• Knowledge bases providing already computed solutions to common problems ob-

tained through long running computations could be reused byCASs and therefore

the time required to compute could be in some cases reduced dramatically;

• Easier dissemination of results and collaboration betweenresearchers by establish-

ing shared environments and data repositories easily accessible from any computer

with an Internet connection;

In the context of collaborative environments for symbolic computations CASs may play

one or all of the following roles:

1. CAS as a client - CASs continue to represent the main environments used by

researchers to formulate and solve symbolic problems. Depending on the nature

of the problem and the computational capabilities offered by other CASs installed

on the local machine or on remote servers, the CAS instance should be able to

decompose the original problem into smaller parts and use external capabilities to

solve them in the most effective way. External capabilitiesrefer both to symbolic

ones, provided by other CAS instances, or to other external capabilities;

2. CAS as a provider of computational capabilities; CASs capabilities could be used

by external clients to solve problems of symbolic computational nature. These ser-

vices could be accessed either by CASs or by clients that do notprovide symbolic

computation capabilities at all. The need of another CAS to request such services

could be driven by its lack of a particular functionality or could be necessary for

efficiency reasons. The provider may have better resources or it may just reduce

the wall clock time needed for execution by executing subtasks in parallel.

63

Chapter 3. Exposing CAS Functionality as Web and Grid Services

3. CAS provider to CAS provider collaboration; based on the tworoles specified

above, we can easily imagine situations in which a CAS provider that handles a

problem may have to collaborate with other CAS providers in order to solve a

specific problem;

Interaction patterns supported by CASs provide important insights about how algebra

specialists use such systems. The same patterns should alsobe supported by a distributed

system for symbolic computing. The main interaction patterns supported by CASs were

previously documented by Duscher [84]. One criterion Duscher uses to classify inter-

action patterns between the user and the CAS system is the number of messages that

are exchanged during the execution of one task, not including the initialization steps. A

second criterion used is the number of messages exchanged among collaborating CASs

if such collaboration occurs. Multiple request-response messages exchanged within the

same communication session require additional capabilities at both client and provider

sides to ensure that messages are correctly interpreted in the given context.

A Bilateral Simple Conversation Patternoccurs if the client only sends one message

containing the description of the problem to solve and the result is obtained as a re-

sponse to the initial invocation. One of the systems that uses this conversation pattern is

GAP [3]. In a more complex setup that permits collaboration among service providers

Multilateral Simple ConversationandMultilateral Simple Multi-Conversationpatterns

may occur. The latter is a generalisation of the former and itis supported by systems

such as Mathematica [24] and Maxima [12]. Within this patterns the server itself acts

as a a client to other servers. To communicate with partner servers it may use one or

multiple request-response messages.

The patterns described above are easier to handle because they do not require direct in-

tervention of human users for manual steering of the computation. TheBilateral Multi-

Conversationpattern captures the interaction model between the client and the provider

for cases in which solving a problem requires additional data or steering during execu-

tion. Such conversation patterns can be for example observed in [12]. Depending on

64

Chapter 3. Exposing CAS Functionality as Web and Grid Services

the nature of the problem to solve, occasionally it may is possible to convert bilateral

multi-conversation patterns to simple conversation patterns. This approach may be ap-

plied when it is possible to foresee situations where additional steering and data may

be needed and modify the initial algorithm’s implementation to prevent it. Because this

approach is dependent on the nature of the algorithm and the CAS used, transforming

Multi-Conversation patterns into Simple-Conversation patterns is generally unfeasible.

The computational elements of our architecture have to act both as service providers

to clients and also as clients of other service providers either of symbolic nature or of

another type. For solving a single task several components of the architecture may need

to collaborate. Isolated interactions between the variouscomponents of the architecture

are of client-server type but the architecture itself does not follow the simple client-

server model since the communication pattern is more complex. One of the latest and

most versatile architectural styles to support this type ofpattern are service oriented

architectures. Components act as independent service providers which may be combined

to solve compound problems.

Existing systems for symbolic computations were buildt using a large variety of archi-

tectural styles and corresponding technologies. Their common goal is to provide an

efficient way to access and combine capabilities of CASs to solve compound symbolic

problems. To exemplify these architectural styles and the role their components have,

we rely on following generic scenario. We consider that taskT is composed of several

subtaskst(1),t(2)...t(n) which have to be executed in sequence. The output obtained from

the taskt(i) represent data input for the following taskt(i+1) .

Based on the capabilities that various systems for distributed symbolic computing pro-

vide, we identify two main architectural styles that were used to implement system for

symbolic computations. In the first one the client componenthas an important role not

only for describing the steps of the computations but also for selecting the appropriate

services to invoke and for managing the execution process. In the first architectural style

the client may be responsible entirely for finding services or specialized components

65

Chapter 3. Exposing CAS Functionality as Web and Grid Services

CAS

Provider 1

CAS

Provider n

Generic

Provider

Clients

Generic Client

CAS Client

CAS

Provider 1

CAS

Provider n

Generic

Provider

Clients

Generic Client

CAS Client

CAS

Provider 2

(a) Client Centered Architecture (b) Server Centered Architecture

Broker

Figure 3.1: Server Centred Architecture

for indexing and selecting suitable services may be used. Due to the high importance

that clients have during the actual execution this style is aclient centred architecture.

Opposed to this model, in the server centred architecture the client’s role is to provide

a description of the steps to execute. The whole management of the execution is done

at server side by specialized components. The two architectural styles are depicted in

Figure 3.1 (a) for the client centric style in which the client may use and intermediary

broker and (b) for the server centric style respectively.

The most simple of the two is the client centric architecturewhich has its foundations in

the client-server architectural style. In this architectural style client-server interactions

are used. The client component has to identify by itself the service providers and to use

internal rationale to determine the best provider to call ifmore than one such providers

exist. It has to formulate request messages using the technology and message format

expected by the server, to submit requests and to retrieve the results. These steps have to

be done for each individual sub-task of the compound task and, if necessary, the client

components have to combine results obtained using their ownresources.

A slight improvement of the client centred architecture is obtained by introducing an

additional component playing the role of a resource broker.Its role is to provide support

for efficient discovery and load balancing of the executionsin the system. The broker

66

Chapter 3. Exposing CAS Functionality as Web and Grid Services

analyses individual tasks and proposes a set of services that would be able to solve the

request. The broker negotiates access on behalf of the client and provides credentials for

the client to access the service. The client has still the responsibility to call the service

providers, to collect result and to ensure executions steering based on obtained result.

This architecture is slightly more efficient because duringthe selection process the bro-

ker may correlate requests received from multiple clients and provide an execution plan

that improves resource utilization.

The second architectural style commonly used is more serverside weighted. At the

client side, the compound task has to be formulated in such a way that the user does not

need to intervene during the whole computation process of the compound taskT. Once

the problem is properly described it is submitted to a serverwhich in turn is respon-

sible for managing the task, discovering the service providers that should be used and

ensuring correct routing of the whole process. There are several important reasons, such

as network usage efficiency or execution time further discussed below, for which the

server centred approach is more efficient in terms of computational and communication

efficiency.

The simplicity of the client centric solution has several shortcomings. The client has to

explicitly invoke every server to provide the tasks and input data. Results that correspond

to each subtask have to be managed by the client and submittedto the following server

even if partial results are not of particular interest for the user. This negatively impacts

the network load between the client and servers which is usually less reliable and slower

than server to server communication links. For handling such results the client has also

to provide sufficient hardware and software capabilities tohandle and to process partial

results that are not always available at the client side. Thin clients that could be run on

mobile devices or on computers with small resources could not be used successfully if

intermediate results are large, even if the initial problemand the final results could be

handled.

An additional problem is generated by the nature of symbolictasks which usually re-

67

Chapter 3. Exposing CAS Functionality as Web and Grid Services

quires long time to complete. If synchronous communicationbetween the client and

the server is used, the client must keep alive the connectionwith the server until the

computation is finished and results are collected. Flexibility of the system is therefore

affected. The solution to this problem is to use asynchronous communication and imple-

ment mechanisms for session management. Even if these are provided, the user has to

periodically interrogate the server to find out the status ofcomputations and if ready, to

retrieve the results and continue with the following steps of the computations. In the ab-

sence of an available connection between the client and the server that allows the client

to proceed with the next steps, the overall computation is delayed. Unnecessary idle

time gaps occur between the tasks of the workflow which is not the case of server centric

style in which the probability of the server to disconnect from network and to collapse is

much smaller.

The server centric approach allows direct collaboration between symbolic computations

providers. The taskT is sent to the server which in turn manages the computation ofthe

subtasks. Partial results do not have to be sent to the clientand not even to the server

that manages the computation if these results are not required for computation steering.

They can be stored by the server that computed them and provided on request to other

servers that require them for computing other tasks. Highercommunication efficiency

is thus obtained because the client only has to retrieve the final result. For both client

to server and server to server communication asynchronous communication should be

used.

Ideally, symbolic engines should be able to further identify subtasks of the initial sub-

taskst(1)...t(n) and automatically initiate calls to the most suited CASs to solve the

particular subtasks. Unfortunately, existing CASs are not currently able to detect such

situations and collaborate with other CASs. Automatic detection of subtasks of a task

that could be better handled by another CAS requires fundamental changes that are not

easy to achieve. A thorough investigation of CASs’ capabilities for certain types of

problems does not exist and therefore it is difficult to automatically identify the most

appropriate CAS for handling a certain problem. Decisions regarding the best choice to

68

Chapter 3. Exposing CAS Functionality as Web and Grid Services

take are usually based on the experience and intuition of thecomputer algebra specialist.

One of the first successful systems to use CASs as computational engines was MathWeb-

SB [94]. CASs wrapped as RMI and XML-RPC accessible services were integrated in a

broader architecture with the aim to support automated theorem proving. Client systems

of the architecture are able to discover appropriate services to invoke by interrogating

predefined brokers. All brokers of the system are aware of each other and are able to

exchange information about the services that are implemented in the systems. Therefore

if a particular service is required and a broker is not aware of its existence it contacts

other brokers until the service is located and a handle is returned to the client.

Part of the Esprit-OpenMath project, a client-server architecture that uses as main com-

putational engines GAP instances demonstrates the viability of exposing CAS function-

ality while relying on OpenMath encoded messages [124]. These were the early steps

towards enabling the GAP system to act as a symbolic computation server on one hand

and to use other systems as clients on the other hand. Having the more generic aim to

create a standard recipe to turn CASs in remote accessible computational engines, Java-

Math [170] describes and implements a set of Java wrappers. GAP and Maple were used

to create demonstrator wrappers. The resulting componentscan be accessed by remote

clients through RMI calls.

Due to its popularity and its capability to provide a TCP/IP socket connection to connect

to its core, Maple was used to demonstrate and build several remote accessible services.

The system implemented by Schreiner [159, 160] uses multiple Maple instances and a

distributed scheduler implemented in Java to which Maple instances submit job requests

and from which the Maple instances may receive tasks to solve. The client Maple engine

is responsible for defining the number of instances of Maple that should be used for the

computation and which tasks should be executed.

A similar but more advanced set of software tools is the MapleGrid Computing Toolbox

[6]. It may be used in a LAN of computational nodes on which Maple was previously

installed to run Maple computations supervised by a master Maple instance. One of the

69

Chapter 3. Exposing CAS Functionality as Web and Grid Services

first initiatives to consider Grid technologies for exposing capabilities of Maple as Grid

services was Maple2g [153, 151]. Through this package, Maple could be accessed as a

Grid service and it was also able to access remote Grid services.

Another CAS system popular within computer algebra specialist community is the Math-

ematica system. Mathematica has seen the potential of distributing computations over a

network and has provided the MathLink protocol for interconnecting Mathematica ker-

nels more that one decade ago [193]. Another system, gridMathematica [8] is specially

implemented for computing in cluster environments. As in the Maple2g component,

MathGridLink [178] was implemented to permit access to Gridservices implemented

using early Grid middleware. It also allows the Mathematicauser to deploy Grid ser-

vices from Mathematica.

One of the most prolific projects of the last several years wasthe Monet (2003-2004)

[180] project. The blueprint of the distributed architecture for symbolic computations

they propose has as a central component the concept of service broker. Most of the re-

search conducted under the Monet project was concentrated towards establishing a set

of technologies to support intelligent service discovery and brokerage of mathematical

services. The role of the broker on one hand is to store service descriptions of mathe-

matical services, on the other hand clients interested in solving mathematical problems

may contact those brokers to find the most suitable services for solving the problem.

The Monet project has heavily influenced and it was itself influenced by MathBroker

(2001 - 2003, 2005 - 2007) [57] and GENSS (2004 - 2006) [137], two projects having

similar aims to the Monet project. Among other results MathBroker proposed a model

for describing mathematical services based on which the Mathematical Service Descrip-

tion Language (MSDL) [42] was developed. The GENSS project has used the ideas for-

mulated in Monet and MathBroker to refine matchmaking techniques. The Monet project

takes matchmaking of tasks to services a step further by describing solutions for the case

in which a problem cannot be solved by only one service and a composition of services

is required. The problem of decomposing mathematical problems into sub-problems that

70

Chapter 3. Exposing CAS Functionality as Web and Grid Services

can be solved by separate services was also investigated in the GESS project [137]. The

foundations of the brokering and matchmaking techniques used within this projects use

semantic Web technologies on one hand and specific mathematical techniques such as

algebraic equivalence of mathematical terms on the other.

Although the broker introduced by Monet tries to provide a solution for the case in which

multiple services have to be composed to solve a certain problem, the process of speci-

fying such compositions is not easily accessible for regular users and composed services

can only be deployed by service administrators. Even from the early stages of design of

the SymGrid-Services component [110] the aim was to providea computational platform

to allow users to compose external services in a seamless way. Further development of

the systems at the Grid level has focused on moving the responsibility of managing the

composition of services from the client side to the server side where the whole process

can be better managed. While the user still has the responsibility to specify the steps

of the composition using high level constructs the actual composition is managed at the

server side.

Beyond the high level constraints in the way the system is ableto support symbolic com-

putations that are inherited from the architectural style chosen, all of the above initiatives

that tried to integrate multiple types of CASs to a common architecture had to consider

the problem of interoperability. One important step that has to be made to achieve in-

teroperability is the use of existing standards, and if suchstandards do not exist already,

to provide solutions that are not biased towards a particular system. Generic solutions

are more easily accepted and implemented by existing CASs. Exposing the functional-

ity of CASs as services has to consider several important aspects: the structure of the

interfaces accessible for remote clients, the data encoding model in which mathematical

problems are formulated and service advertising and discovery mechanisms.

A viable solution for smooth transition to a distributed environment for symbolic compu-

tations is to adopt new capabilities in two evolution steps.The first one should concen-

trate on implementing software packages as external add-ons that would augment CASs

71

Chapter 3. Exposing CAS Functionality as Web and Grid Services

with capabilities to participate either as clients or service providers in distributed archi-

tectures. In the second step, benefits of various additions and features proven to be useful

should be implemented as native capabilities of CASs where such evolution is possible.

This strategy minimizes the delay in the evolution of computer algebra software pack-

ages and provides the opportunity to understand better how distributed computer algebra

systems should support symbolic research field.

Not all features required have to be implemented by the CASs themselves. CASs should

be responsible for the core symbolic capabilities while more generic ones have to be

provides by the underlying software infrastructure. Integrating CASs with massive dis-

tributed environments requires implemented features thatare not specific for symbolic

computation and therefore, existing solutions for genericproblems should be considered

if they were already proven to work for other research domains. Similar to other com-

putation domains, the raw computing power is provided by computers or specialized

clusters belonging to research based institutions willingto cooperate for their mutual

benefit. The resulted infrastructure is heterogeneous, highly dynamic and spread over

multiple administrative domains. Fundamental capabilities such as communication, se-

curity or data transfer protocols are not in the scope of symbolic computing and therefore

they should not be directly implemented by CASs.

Certain features required for interoperability are closelyrelated to CASs and therefore

they should be provided by CAS systems. For example, standarddata models for encod-

ing messages exchanged with partners is one of the features with an important impact

on CASs capability to interoperate. Messages encoded by one CAS have to be properly

decoded by recipient partners, irrespective of the particularities of the CAS or the ma-

chine they are installed on. They should be encoded using models that ensure that their

content is properly understood and suitable to be exchangedin computer-to-computer

communication. Even if internally CASs do not use generic encoding standards they

should implement appropriate translators.

In most cases, CASs provide scripts or command line interpreters that allow users to

72

Chapter 3. Exposing CAS Functionality as Web and Grid Services

describe solutions of symbolic problems using theroutine-subroutinearchitectural style.

Standard functionality provided by CASs is usually available as packages of routines

that users can combine or invoke. Mathematical formulae areencoded internally as

mathematical objects and specific capabilities that allow their manipulation is provided

by the system. Therefore, most of the algorithms and problems’ solutions are described

by computer algebra specialist as calls to existing functions or user defined functions

that rely on core routines.

The most straightforward and convenient way to expose functionality of CASs as ser-

vices is to provide means to enable remote users to access functions that are already

implemented and available at the command line interpreter of the CASs. Therefore the

RPC style is used to allow clients to executed functions implemented by a remote CAS.

This solution favours usability because the same usage pattern applies for both remote

and local invocations. A simple exposure of functions permits human users to formu-

late meaningful calls in the same way they would if the systemwas installed on the

local machine. It is not expected that CASs should be able to cover the vast variety of

technologies that can potentially be used for building distributed systems and as a conse-

quence the solution is to provide a generic component that behave like a bridge between

the CAS and the external world. To ensure interoperability with other systems, argu-

ments of functions should be described using standard data encodings that are mapped

by CAS onto internal encodings.

Due to the heterogeneous and dynamic nature of components and their internal configu-

ration, indexing and discovery capabilities play an important role for efficient use of re-

sources. Corresponding components that provide up to date information about available

services ensure that the best resources are used in the most efficient way. Computational

elements supporting the symbolic infrastructure should have an active role in informing

preregistered service registries about their current state when significant changes occur.

Even if such index services exist, their role is not to negotiate access on behalf of the

client. Clients that already know which services to invoke should be able to do so without

contacting index registries.

73

Chapter 3. Exposing CAS Functionality as Web and Grid Services

3.2.1 Requirements Summary

The CAS Server component must provide efficient and versatilemechanisms that allow

remote clients to access functionality provided by existing CASs. Due to large variety

of CASs, one of the most important requirements is to provide means to allow them

to interoperate. As a result of our analysis we have determined several features that

are needed to allow easy access to CASs provided capabilitiesand further, to allow

automatic composition of their features:

1. CAS Server components must be autonomous and must allow access to one or

multiple CASs through a single interface;

2. The interface of the CAS Server must be standardized for allCAS Servers of the

architecture and not influenced by the CASs exposed through the interface. This

requirement is particularly important to allow automatic composition of provided

services;

3. The CAS Server must allow asynchronous retrieval of computed results and im-

plement notification capabilities;

4. The CAS Server must implement mechanisms to support data exchange and col-

laboration;

5. Clients must be able to discover in a seamless way the list ofCASs exposed by a

certain CAS Server and the provided functionality;

3.3 CAS Server Design and Main Features

The previous sections present a high level overview of the main features that have to be

supported by a distributed symbolic system and have drawn the guidelines that need to be

followed. The CAS Server components act as mediators betweenthe remote client and

74

Chapter 3. Exposing CAS Functionality as Web and Grid Services

the actual computational engines. Clients that require access to a certain functionality

provided by the CAS engine do not need to call a different service for each particular

function they access. The CAS Server provides a service that behaves as a single point of

entry to which any request that describes a new task to be computed should be submitted.

Internally, the request is routed to the appropriate CAS engine.

The relation between the CAS Server, client components, indexing services and as well

to the various systems whose functionality it provides to clients is depicted in Figure 3.2.

The role of the CAS Server is to expose CAS’s functionality or ofany other software

package providing symbolic computation capabilities to remote clients. As shown in

Figure 3.2, not only CASs may be exposed but other systems as well. For example,

SymGrid-Par [200] is a framework that is able to manage installed CASs on a local

cluster and even a Grid with the purpose of optimising execution time and usage of

resources. As described further in this section, CAS Serversadvertise their capabilities

both through their interface or to centralised discovery repositories.

It is not uncommon to find personal computers on which multiple CASs are installed.

As computational power becomes more accessible it is also a common approach to use

multiple personal computers connected through a LAN to support a set of services and

even to use more advanced set-ups such as computational clusters. For such hardware

configurations it may be convenient to have more than one CAS installed on a particular

machine or even have dedicated machines to host different CASs. Having a single point

of entry makes possible to provide access to routines implemented by multiple CAS

instances that are in the scope of the CAS Server at the same time. As a result the

discovery and invocation process is easier for clients since there is only one service

to invoke. At the service provider level, this approach provides the opportunity to use

advanced solutions of job scheduling and load balancing.

The structure of the interface and the functionality that CASServer provides is driven

by the general requirements that we have discussed in the previous section: task sub-

mission and retrieval of results; discovery of the capabilities implemented by the service

75

Chapter 3. Exposing CAS Functionality as Web and Grid Services

CLIENT

Discovery

Repository

Registry

CAS Server

Local Registry

CAS

SymGridPar

CAS

….

Discovery

Repository

 Registry

CAS Server

Local Registry

CAS

SymGridPar

CAS

Figure 3.2: CAS Server and Relation to other Components

provides; support for task level management; support for data management and sharing.

For all these features the common requirement is to ensure interoperability. One step

towards this goal is to provide a standardized set of interfaces that do not vary over time

which makes automated clients more easy to design and implement. Because the same

interface is exposed by all CAS Server components, they can beeasily interchanged or

replaced.

Each of the requirements aforementioned is supported by a corresponding set of services.

For submitting tasks and result retrieval the CAS Server is designed to support for two

separated conversation patterns. The most common scenariois the one is which the client

submits a task and receives an identifier that the client can later use to retrieve the result.

This approach is suitable for submitting long running tasksbecause the client does not

have to block while waiting for the result neither has to keepthe connection alive. Task

request can be easily sent through one device that is afterwards disconnected from the

network. The result may be later retrieved using the same device or a different one. As

an additional solution CAS Server can receive together with the task a URL address to

which the result should be sent when the computation has finished. The capability is

76

Chapter 3. Exposing CAS Functionality as Web and Grid Services

particularly useful for dedicated servers that provide a service interface through which

the result can be submitted. As we will see in the following chapter this features play an

important role in automatic orchestration of services.

CAS provided functionality is grouped in packages of functions and exposing CAS’s

functionality through the interface is most conveniently achieved at function level. Vir-

tually any routine provided by a CAS can be transformed into a service. Basically, a

symbolic task submitted to a CAS Server has to provide as mandatory information the

CAS type that the task should be managed by, the function name including its package

name and the input values for parameters. Exposing each function as an entry on the

interface would break the requirement for uniform interfaces on one hand and makes the

discovery process difficult on the other hand. The tasks submitted through the generic

entry point must adhere to one of the two encoding formats that we discuss further in

this chapter, which are both OpenMath compliant.

Tasks that are submitted to a certain CAS Server are considered atomic in the sense that

the CAS handling the task is not expected to further decomposethe task and connect to

other CAS Servers in the case it is not able to entirely solve the problem. Still, it may

be possible that the task itself specifies that an external call should be made to another

CAS Server, in which case an external call will be initiated. Acurrent general limitation

of existing CASs is they are not able to detect that a certain sub-task is better handled by

another CAS and automatically forward it. Thus, we expect that for most of the cases,

tasks are computed within the boundaries of the same CAS Server.

Using the CAS Server component to expose CASs functionality does not exclude the

possibility of using specific systems for cluster and LAN level computation management

such as the ones that SymGrid-Par [200] component implements. These systems have

the goal of orchestrating CASs installed in a LAN to obtain efficient management of

resources. From the CAS Server perspective they are seen as regular CASs and tasks

received through the CAS Server interface are assigned to these components based on

the same criteria used for selecting any other CAS. CASs themselves may be designed

77

Chapter 3. Exposing CAS Functionality as Web and Grid Services

to collaborate with other CAS instances installed on the LAN or to embed other CASs as

internal engines. In such cases the way the CASs collaborate is not driven explicitly by

the task’s description. Features provided by software tools such as Maple Grid Toolbok

[6] can still be used.

The manager sub-component of the CAS Server receives requests, decides whether the

requested functionality is available locally and selects the most suitable CAS to solve

the request. The selection process is based on information regarding the CASs and

the functionality they provide stored internally by theLocal Registryindex component.

From index the manager sub-component extracts informationabout which CASs are

installed at the CAS Server, which is the physical machine that hosts it, which are the

functions the can be invoked for a particular CAS and which physical resources are

available.

The index keeps track of all information related to the hardware and software configura-

tion of the CAS Server. As a consequence, the index also plays arole in the security of

the whole system. Only functions that are registered to the index component by the CAS

Server administrator can be called remotely. Functionality that should not be available

for remote invocations for various reasons, including security reasons, are therefore not

accessible.

Data required to compute a task is an important issue in symbolic computing. For large

scale computations the amount of data produced and consumedby individual services

that solve a large symbolic problem requires a careful consideration of data dependency

problems. Tasks submitted to particular CAS Server may depend on data that is not

stored within the CAS Server where the computation is done. Cooperation between the

CAS Servers and intelligent handling of large data sets has tobe supported by CAS

Server components to ensure that at the time of execution allrequired data is available.

A detailed description of data management scenarios that the CAS Server implements is

provided in Chapter 6. For simplicity we exclude capabilities such as replica manage-

ment and we rely on mechanisms to reference data sets that enable us to locate them in

78

Chapter 3. Exposing CAS Functionality as Web and Grid Services

a deterministic way.

Large symbolic tasks may take a long time to compute. There are often situations when

such tasks have to be paused and resumed later or even cancelled. We group these

related features under the generic term of task management.CAS Server supports task

management features for the tasks that it executes based on features that are compatible

with existing CASs. While operations such as cancelling a taskare easy to implement

by sending signals to corresponding CASs or by interrupting their execution, lack of

support for check pointing at CAS level makes pausing and resuming tasks impossible

in certain stages of the computation. Depending on the actual stage of computation in

which a certain task is, the actions taken internally by the CAS Server may vary. Task

management and related functionality is further addressedin Chapter 6.

Because the computational infrastructure we envisage is highly dynamic with regard to

the actual CAS Servers available and the particular functionality that they provide, ad-

vertising and discovery mechanisms play an important role.Local Registry components

depicted in Figure. 3.2 provide indexing capabilities in order to support the service dis-

covery process. The CAS Server itself provides a set of services that may be used by

a regular client to discover the functionality provided. The CAS Server is also able to

notify dynamically interested third party components suchas centralized indexes about

any meaningful change that occurs within the server. Third party indexing components

have to be expressly registered by the CAS Server administrator. To be able to receive

update information they have to expose a predefined interface through which the CAS

Server submits status updates.

Less related to the symbolic computations core requirements but playing an important

role for system’s interoperability is the middleware used for building the distributed in-

frastructure. Web Services are a good candidate for building interoperable components

because they use standards that are platform and programming language independent.

Due to their capabilities previously discussed in Section 2.4, they were considered as a

viable solution for developing symbolic computational infrastructures by all recent sys-

79

Chapter 3. Exposing CAS Functionality as Web and Grid Services

tems including the ones developed within Monet [11] and MathBroker [2] frameworks.

Built over these native capabilities, Grid services that arecompliant with the WSFR

standard provide support for interoperability, and additional capabilities such as security

and data management. Important features that otherwise a CASServer should provide

by itself are already provided and ready to be used by the Globus Toolkit 4. Therefore

the interface of the CAS Server is exposed as Grid Services implemented using Globus

Toolkit 4.

Except from the GENSS project which has considered a single service to accommodate

all the requests for symbolic services, the rest of existingsolutions to expose CASs’

functionality are using independent services. In Monet forinstance, privileged users

that want to create symbolic services have to create a set of files containing the code

that should be run when the service is invoked and additionally, XML documents to

describe the functionality and the interface of the service. Therefore, for each CAS

that needs to provide support for a certain service an additional entry is declared on the

interface [31]. One of the advantages of describing services using mathematical specific

ontologies is that a formal description may be used to betterevaluate the service and its

capabilities but requires complicated matching techniques to discover which services to

use. Within the system proposed by Monet, a client must properly formulate the problem

it needs to solve and the broker must correctly identify the service. Matching is done

using algebraic equivalence which may itself represent a symbolic computation problem

sometimes impossible to solve [127].

3.3.1 Features Summary

The main features provided by the CAS Server component are:

1. multiple CASs may be exposed through a standard interface implemented using

Grid Services technology;

80

Chapter 3. Exposing CAS Functionality as Web and Grid Services

2. The CAS Server acts like a mediator between remote clients and CASs installed

locally. It provides capabilities that are not in the scope of CASs to allow their

integration as computation engines in distributed computation environments;

3. The standard interface of the CAS Server provides support for: submission of

tasks and retrieval of result; discovery of provided functionality through a set of

indexing services; data management capabilities; task management features;

4. The CAS Server may use a variety of mechanisms to communicate with exposed

CASs, e.g. TCP/IP socket connections and communication through pipes.

3.4 Solutions for Legacy Software Integration

Software architecture is determined by the components offering functionality within the

system, connectors that link architecture’s components and a control structure which

imposes the behaviour of components within the architecture. As stated by Shaw et

al. [163], two components that implement the same functionality might not be able to

replace one another due to their particularities even within the same architecture. This

may be due to particularities in their interfaces, the underlying hardware profiles they

require, etc... Migrating a software system to a different architectural style demands that

its components are adapted the new architectural constraints.

Legacy applications cannot be easily modified to take advantage of the new technolo-

gies. Software tools such as command line utilities that canbe run on a local machine

cannot be used in distributed environments without substantial reengineering. A po-

tentially more effective approach is to provide adapter components that supply missing

functionality that enables such tools to be connected to a distributed environment. Both

reengineering and implementing adapter components for network interconnectivity has

proven to represent major challenges.

81

Chapter 3. Exposing CAS Functionality as Web and Grid Services

One of the most important concepts driving software engineering is reusability as a so-

lution for minimizing resources for implementing a software system. The process of

integrating software components that were not built for interoperability is difficult even

when the source code of the components is available [100]. Garlan et al. [101] have

reconsidered the same problem two decades later and they concluded that the same prob-

lems make integration of components difficult even if technologies and standards have

improved. For a complex system, it is hard to adhere to a single architectural style and

in practice more than one is used to develop such a system [163]. Therefore, integration

problems are not specific to situations in which legacy software needs to be integrated

with new architectures and technologies. This type of difficulties arise especially when

commercial off the shelf software packages must be used.

Software tools for symbolic computing may be considered legacy software because they

generally lack the capability to interoperate with other similar systems and sometimes

they even lack the capabilities to communicate in computer network environments. The

main reason for this state of affairs is the way they were developed. Most of the CASs are

the result of implementation efforts of small research groups aiming to solve particular

classes of symbolic computation problems. As a result, someCASs evolved over time

from scripts or command line interpreters to complicated problem solving environments.

While the capabilities of these systems to interoperate are limited, the functionality they

provide is by no means obsolete.

The high level of expertise required to reimplement some of the CAS software packages

and encapsulated algorithms makes them difficult to reimplement or replace. Reimple-

menting CASs is also not an option because some of the featuresthat would need to

be adapted are exactly the ones that make some of the components be more efficient in

solving a certain class of problems. An example is the data encoding model specific

to a certain implementation of an algorithm which may have ansignificant impact on

performance.

There are three important types of software evolution that generally occur in the lifetime

82

Chapter 3. Exposing CAS Functionality as Web and Grid Services

of software systems [73]:

• Maintenance refers to small interventions on the software system that are meant to

improve the quality of a released software package by correcting minor execution

bugs or by adding small pieces of functionality

• Modernization represent a more invasive approach with the aim to add more con-

sistent enhancements but it may have a negative effect on theoverall structure of

the software system and its implementation

• Replacement involves total or partial replacement of the components of the system

and for it to be successful it has to rely on a deep understanding of the original

system and the functionality it provides

Code refactoring may lead to small scale modifications and therefore it may be consid-

ered maintenance or modernization or it can extensively alter the structure of a software

system in which case a replacement of the old component was done. Adopting the most

suitable evolution approach for a software system must involve a thorough evaluation of

the value of the system in terms of usefulness, reliability,the level of coupling between

components [155]. Based on this assessment replacement, reengineering or even keep-

ing the system in its current state may be decided. The amountof effort already invested

to develop CASs at the maturity level they are today and the fact that this software is

mainly intended for research use makes replacement an unsuitable evolution strategy.

Maintenance and modernization are more appropriate for software in the symbolic com-

putations domain.

The immediate solution for integrating legacy software forwhich replacement and reengi-

neering are not valid alternatives is to create wrapping components that act as adapters

between the legacy components and the external world. The wrapper component fulfills

the function that the façade software engineering patternspecifies because the wrapper

has to achieve more that simple rerouting of calls. The wrapper technique has the ad-

vantage that the functionality implemented by the legacy component is still available

83

Chapter 3. Exposing CAS Functionality as Web and Grid Services

while the component can be integrated with other componentsusing newer technologies

without modifying the legacy component.

The level of insight available about components that need tobe encapsulated is one of

the factors determining the type of encapsulation used. It is also important to deter-

mine if atomic functionality implemented by the componentsmust be exposed or it is

sufficient to expose the functionality of the component as a whole. Several levels of

encapsulation are commonly used: job level, transaction level, program level, module

level and routine level [167]. The level of insight about a software system that is re-

quired for building a wrapper is lower for job level encapsulation and increases for the

finer grained level encapsulations. The process, transaction level and program level tech-

niques require less effort to implement and little to no intervention in the original source

code and the way the wrapped components work. The software components are seen

as black boxes offering predefined functionality. The data that is required as input and

data obtained after processing are exchanged using the original mechanisms supported

by the software. Usually these systems are able to communicate with the external world

either through character streams or by reading and writing from/to files stored on the

local file system. Migration of systems implemented using the procedural model require

significant system analysis and reengineering. In order to avoid complete reengineering

a wrapper based solution is also adopted in [75].

Based on the experience in modernization of legacy systems and integration of Com-

mercial Off-The-Shelf (COTS) systems in custom architecture two important integration

solutions are identified [73]. On one hand,white boxmodernization technique requires

thorough knowledge of the system’s internals. Good understanding of the general pur-

pose of the system and supported use cases, its overall structure and its internals are

required by this modernization technique. The encapsulation process uses the informa-

tion mentioned above to decide exactly which components have to be encapsulated and

if restructuring of such components is required or not.

The black boxencapsulation technique has the advantage that it does not require thor-

84

Chapter 3. Exposing CAS Functionality as Web and Grid Services

ough understanding of the internals of the system and only about its behaviour supported

through its interface. This approach considers the software component as a black box

for which the only details available are the structure of thecommunication interface and

the functionality the system is supposed to provide. Since neither documentation about

the systems internal nor the source code are available, the integrator cannot make solid

assumptions about the implementation quality and its behaviour. For complex systems

even an intense testing of the black box system cannot possibly cover all the possible

scenarios that may apply to the system.

Apart from the technique used to encapsulate the functionality of a legacy system there

are two important elements that have to be considered. In order to be integrated with

the rest of the components of the target system the encapsulated components must use

a communication technology that is compatible with the technology used by the other

components. With this requirement fulfilled, the messages that are exchanged between

the components must be understood by both components.

It is often not possible to have the same internal data representation model for all the

components of a software system. The data model used may be imposed for efficiency

reasons by the internal algorithms. Therefore the only solution available is to implement

a translator component that mediates the communication between the two components

using different data encoding models. If the number of components that have to be

interconnected is high a significant number of translator have to be implemented. A

potential improvement considered in [70] for integrating legacy components is to use a

single data model for the messages that are exchanged over communication channels and

thus reduce the implementation complexity when havingn components fromn*(n-1) to

2*n.

Due to the importance of legacy software for both research and software industry the

possibility to automate integration with new technologieswas thoroughly investigated.

The high variety of models and technologies used to implement software systems makes

implementation of a universal encapsulation solution difficult to achieve. The encapsu-

85

Chapter 3. Exposing CAS Functionality as Web and Grid Services

lation process has still to consider several common issues:

1. The encapsulation technique refers to the direct means tocommunicate and lever-

age the functionality implemented by a legacy software component

2. The data model used by the encapsulating component, whichis generally a more

abstract and more versatile data model that the specific one used by the legacy

component

3. The technology to be used for exposing the legacy functionality as required by the

target system

The white box encapsulation provides better control over the behaviour of the result-

ing system but it requires reengineering effort while the black box technique is usu-

ally easier to achieve but less reliable. When access to the source code is provided the

changes that ensure compatibility of the legacy systems to newer technologies can be

incorporated directly in the legacy component and therefore we don’t have to separate

components, the legacy component and the wrapper, that are forced to use a potentially

unreliable communication mechanism. If black box encapsulation is used, the wrapper

has to accommodate the available communication mechanism that the legacy component

provides and the underlying data model that the component isable to understand.

One of the most flexible communication mechanisms is based onTCP/IP. Its basic ca-

pabilities allows exchange of data formatted as byte streams but the preferred message

encodings are based on XML languages. Available TCP/IP communication mechanism

permits a high degree of freedom in choosing which technologies and programming lan-

guages may be used for wrapper implementation. Unfortunately there are many legacy

systems that were designed to be used as command line tools and therefore the only

mechanism that can be used for encapsulation is through communication pipes. It is a

typical case of program level encapsulation in which the program is started as a process

and its input, output and error streams are controlled by thewrapper. The process is fed

86

Chapter 3. Exposing CAS Functionality as Web and Grid Services

with the expected input values and the results are parsed from the values obtained from

the output and error streams.

The legacy components are not only heterogeneous with regard to the communication

mechanisms that can be used to interact with them; they are also heterogeneous with

respect to the underlying data model that can be used to communicate with the legacy

system. Most of the systems that can be used as command line tools expect as input a list

of parameters that define the input values or system paths to files that store the necessary

input data. Encapsulation of command line interpreters is even more difficult since they

are interactive systems for which there is a close dependency between the input values

supplied and output values obtained as a result of processing.

Developing generic methodologies and frameworks to encapsulate legacy components

using the black box approach was considered by several research and industry projects.

To overcome the inconvenience of multiple legacy components that have to be statically

wrapped using individual wrappers, Fiesher et al [89] provides a script based frame-

work that is capable to connect to legacy components for which adapted wrappers were

developed and registered in advance. It uses black box encapsulation and a model of

dynamic wrapper selection that allows the system to evaluate which legacy component

must be called based on the external invocation parameters.Services offered by legacy

components are exposed as CORBA methods and any call to such a method is mapped to

a program level encapsulation that uses one of several possible communication modes:

direct invocation, pipes, or socket connection.

A more fine-grained approach of encapsulation was considered in [41]. Using procedure

level encapsulation legacy functionality written using COBOL programming language

can be exposed and invoked through a Web browser. The system calls the individual

functions implemented in COBOL with the corresponding arguments obtained from the

client side through HTML forms. This model may be consideredas a viable solution for

exposing a small number of functions that are accessed independently and not as part of

more complicated scenarios.

87

Chapter 3. Exposing CAS Functionality as Web and Grid Services

The development of Grid related technologies have motivated researchers to migrate

their domain specific software in order to take advantage of the computation power pro-

vided by Grids. JACAW [111] is a tool that allows procedure level encapsulation of

C/C++ based numerical and scientific routines. The encapsulation is achieved using the

JNI technology provided by Java and the resulting components are adapted and can be

used as standalone services or they can be composed using theTriana workflow manager.

Adapting the legacy components, forces the use of the Trianadata model for interchang-

ing messages.

For command line utilities specific to microbiology research domain, SOAPLAB [161]

provides a framework that allows easy integration of command line utilities in a Web

Services based distributed computation environment. The wrapper modules implement

simple program level encapsulation. Configuration files mustdescribe for every legacy

component details regarding the command line tool and the parameters that the tool ex-

pects when invoked. Among other features of the system, an API provides basic discov-

ery functionality of the utilities that are registered to the system and the utilities are made

available for remote invocations through Web service interfaces. Once the functionality

is available through Web services other components can easily implement adapters to

compose the functionality or to provide access using other distributed technologies such

as Web pages and Web portals.

Nimrod [53] family of scientific software products is not only a package that is able to

integrate command line utilities in Grid environments but also a platform that allows

resource management and task scheduling over Grids. Wrapping mechanisms used by

Nimrod are based on the program and job level encapsulation using a black box ap-

proach. One of its advantages is that it can be used in conjunction with a variety of Grid

middleware products such as Globus Toolkit. Using Grid specific file transfer mech-

anisms the wrapper of a command line tool is able to transfer resources required for

processing from other computational nodes.

A similar evolution path and set of functionalities apply also to the NetSolve/GridSolve

88

Chapter 3. Exposing CAS Functionality as Web and Grid Services

family of products [80, 162]. The initial intent was to use network capabilities to con-

trol and use in a collaborative mode hardware and software resources distributed over a

network. The basis of the system was the client-server architectural model. As a proof

of concept, the system demonstrated its capabilities to access remote functionality pro-

vided by a linear algebra package, LAPACK [38]. In the proposed architecture there are

two important types of components. The first one is the serverwhich exposes wrapped

versions of locally installed routines. The second one is the agent which indexes exist-

ing services and assists the client in choosing the most suitable service according to its

needs. Using task sequencing based on a Direct Acyclic Graph(DAG) representation of

a workflow, the system is able to direct a list of interdependent tasks to a single server

in order to prevent network traffic. The underlying mode is GridRPC which is based on

function handles and session IDs.

Grid systems’ most important aim is to share computational resources using mechanisms

that make sharing resources transparent for the and user.Animportant support in this aim

is offered by middleware packages for building Grids. Globus offers several important

fundamental services that allow building up collaborativeenvironments. Without ex-

tending Globus basic capabilities, legacy software suitable for program and batch level

encapsulation may be accessed using GRAM managed jobs. A client may use the Re-

source Specification Language (RSL) to instruct Globus to execute a certain program or

batch of programs for which a list of parameters should be fed. Apart from information

that identifies the server machine, the executable to be started and its parameters, RSL

job descriptor may contain meta information about the execution. Details such the num-

ber of times the executable must be run, the minimum and maximum amount of memory,

the maximum time to run and other similar parameters may be specified.

The emergence of Grid technologies did not provide new models of integrating legacy

components [125] and exising models still rely on black box wrapping. The mechanism

offered by middleware components such as GRAM are task oriented and the user of the

remote service has to provide details about the task and the application that is going to

solve the task. The other model is based on exposing functionality of legacy systems

89

Chapter 3. Exposing CAS Functionality as Web and Grid Services

through a more friendly and easier to manage Web service interfaces. As a step further,

basic management capabilities offered by WSRF framework suchas the WS-Resource

related technologies were considered in [125] as a base for more complicated problem

solving environments.

Web services interface is also preferred in [106] as a viableoption for creating a generic

wrapper for legacy software. The generic wrapper still requires that the administrator

builds control files to describe the interaction between thewrapper and the legacy ap-

plication. The high number of initiatives trying to offer a solution for integrating legacy

systems into distributed environments such as [168, 55, 36]indicate that a generic ap-

proach cannot be seen as a viable solution for all cases. Evenif slightly generic approach

may be considered, the high heterogeneity of legacy systemsimposes tailored solutions

for given situations.

Our solution uses the wrapping technique and exposes functionality of CASs through

the interface of Grid Services. A custom interface and Grid Service is a more versatile

and efficient solution than using WS-GRAM capabilities natively provided by Globus.

To demonstrate this we have tested the access time required for a client to reach the CAS

hidden behind the service. The test bad we used is a server PC HP ProLiant DL-385 with

2 x CPU AMD Opteron 2.4 GHz, dual core, 1 MB L2 cache per core, 4 GBDDRAM, 2

network cards 1 Gb/s.

The results obtained for the case whenRunCommandwas used to run GAP and Maple

tasks shows an average of 51 milliseconds while for the WS-GRAMapproach showed

an average overhead of 678 milliseconds. The difference between the two approaches

is significant when multiple invocations are needed, as in the case of combining several

CAS functions. The invocation of the WS-GRAM service requires an extra Web Service

call. It is then expected that using WS-GRAM induces some overhead.

90

Chapter 3. Exposing CAS Functionality as Web and Grid Services

3.4.1 Summary

In in order to integrate existing legacy software components into distributed architectures

several strategies may be considered:

• reengineering of the software components using recent technologies;

• adaptation of existing software components;

• development of wrappers that encapsulate existing software components and pro-

vided additional required capabilities.

The most versatile and easy to use approach in the context of systems for symbolic

computation is to develop wrapper components that act as mediators between clients

and computational engines.

Black box encapsulation is preferable to white box encapsulation because the level of

insight regarding encapsulated software components is lower and encapsulation is eas-

ier to apply if the range of systems to encapsulate is large. To favour interoperability

the wrapper should be designed to use a single generic data model in interaction with

its clients and internally translate data from the generic data model format to the one

required by the encapsulated software component.

3.5 Suitable Distributed Technologies for Symbolic Com-

puting

The computational infrastructure that we intend to use for large scale symbolic compu-

tation problems is heterogeneous and highly dynamic. The computational resources re-

quired by large symbolic computation problems can be obtained by bringing together ge-

ographically scattered resources provided by research institutions and universities will-

ing to share their computing power. Although such institutions are willing to share their

91

Chapter 3. Exposing CAS Functionality as Web and Grid Services

resources, their already established computational domains and enforced rules cannot be

easily changed. Any system that wants to use such resources must be versatile enough to

cope with specific particularities of individual computational nodes and their respective

computational domains. Appropriate communication technologies, rules to be enforced

system-wide and software tools have to be carefully selected to ensure compatibility

with the computational infrastructure they want to build upon.

The early distributed systems for symbolic computations that were built had to rely on

existing technologies available at the time such as RMI [9] orCORBA [183]. Their

primary goal was to provide small to medium scale systems that would usually use hard-

ware resources provided by the local computational domain.One such example is the

framework described in [159]. Even though they had as a target to create systems that

rely on distributed computational resources, both MathWeb[94] and JavaMath [170]

have the disadvantage to use technologies that are not viable for systems that spread

over multiple computational domains. The first impediment is that they are not open

enough to allow clients and service providers to choose their platform and programming

languages they prefer for building clients and services. RMIis even more restrictive than

CORBA in this respect.

Another important limitation that systems build using CORBA and RMI have is that they

often require more permissive security policies to be implemented by domain firewalls.

Since security threats represent a major concern in currentsystems, it is often the case

that administrative rules prevent these systems to function correctly. Limitations of the

RMI and CORBA motivated researchers and system developers to find more versatile

solutions to implement distributed systems. As a result, Web Services were created and

widely adopted as a compromise between interoperability and security on one hand and

system efficiency on the other. The underlying architectural style that Web Services

are based on is the routine-subroutine style and therefore mappings between service

operations and functions provided by CASs are easy to achieve.

Grid technologies, which were initially designed to use TCP/IP socket connections for

92

Chapter 3. Exposing CAS Functionality as Web and Grid Services

communication, have also evolved to adopt Web Services. As identified in [147], the

use of Grid services for building distributed infrastructures for symbolic computations

may be beneficial in several respects. Amongst them, the WSRF frameworks could be

used to implement Multilateral Simple Conversation patterns for which WS-Resources

mechanisms provides automatic state support [83]. With theuse of WSRF a service

becomes stateful and a returning client is automatically recognized and session data

can be retrieved from the associated WS-Resource. Additionally, automatic resource

management may be used to free resources, a similar functionality with the one provide

by the Java garbage collector.

While we consider these features to be helpful, we believe that there are several other

features that are even more important for symbolic computing than the ones mentioned

so far. Grid services have native support for security whicheliminates the burden of

enforcing security and designing appropriate security policies over disparate computa-

tional domains. Another important benefit is that Grid services provide data management

capabilities. Dedicated interfaces and protocols providesecure, reliable and easy to use

solutions for moving large sets of data from one computational node to another. Through

these services they ease the process of integrating disparate computational resources into

a coherent whole. The advantages that Grid services providefor scientific computations

in general and their direct support for the requirements discussed in Section 3.2 qualify

Grid technologies to be used for symbolic computations.

The CAS Server components were therefore designed to use the capabilities that Grid

services have to offer. Execution, data management and discovery services that the CAS

Server interface has to provide were implemented using WSRF compliant Grid Services.

CAS Server uses specific features of WSRF where they were required whereas generality

of the solution was kept whenever possible due to rapid evolution of technologies that

may require that CAS Servers have to accommodate new standards and technologies.

We found the WSRF mechanisms to be particularly useful for describing the symbolic

capabilities that the CAS Server provides to its clients through its interface. Information

about the CASs that the CAS Server encapsulates and the functions that are available

93

Chapter 3. Exposing CAS Functionality as Web and Grid Services

for remote invocations are organized as a WS-Resource. Nativeindexing capabilities

of Grids can therefore be used to discover these details. While our discovery process

does not rely on the native provided functionality, these capabilities may be useful for

compatibility with other systems.

Using Grid or Web services to expose functionality of CASs mayalso have small imped-

iments. One such example is the lack of support for exposing more than one operation

with the same name and with different argument lists. This limitation comes from the

standard the WSDL 2.0 [1] which explicitly forbids that operations with the same name

exist within the same service definition. This is not the casewith regular CASs which

may provide functions that have the same name but with a different type and number of

parameters. Therefore one-to-one correspondence betweena CAS function and an oper-

ation on the interface of the CAS Server would not be possible.Even if such restrictions

did not exist, it is still not convenient to have services exposing thousands of operations

as we would be forced to provide if one-to-one correspondence were to be used. The

experience gained by constructing the Computer Algebra to Grid Services (CAGS) tool

[60] has let us to the conclusion that the better approach is to use a single operation

through which task requests should be submitted.

This design has the advantage to provide a static and standard set of that the client may

use in a dynamic way. If new functions are implemented at the CAS level and the

administrator exposes them as new accepted operations accessible to remote clients, the

interface of the service does not need to change. It is only necessary that the function is

registered in the internal Local Registry of the CAS Server. Registration of new functions

is the only deployment step required. It is not necessary to recompile or restart the

Grid service as is needed in the case of GENSS services which require that a new Java

operation is implemented for every new CAS function exposed.

94

Chapter 3. Exposing CAS Functionality as Web and Grid Services

3.6 CAS Level Message Encoding

A key aspect to consider for CAS to CAS communication is the encoding used for data

exchange among different CASs. Interaction between a remoteclient and the CAS en-

gine has to rely on a data model that is understood by both communication parties and

ensures that the content of the message is strictly determined. Semantic information

is required in the case of symbolic computation to ensure that messages formulated by

one system have the exact same meaning after they are decodedat the other end of the

communication channel.

As described in Subsection 2.6.1 OpenMath is one of the best choices for encoding math-

ematical formulae due to the semantic annotations that it provides. Mapping between

mathematical content formulated using OpenMath and the internal data model used by a

CAS is provided by translators called phrasebooks [157]. Several CASs such as AXIOM

[26], GAP [3], Mathematica [24] have implemented phrasebooks that provide support

for a wide range of mathematical concepts while for other CASssuch components are

under development. Due to its features and related softwaretools that exist for Open-

Math, we also consider it as the main solution for encoding mathematical content.

We therefore rely on OpenMath as the encoding standard of messages that describe the

tasks request formulated at client side and we implement therequired parsers to decode

the information at the CAS Server level if such parsers do not exist. Depending on the

level of support that CAS engines offer for OpenMath, CAS Server can be used with

two types of encodings. One type relies exclusively on the OpenMath encoding for all

details that describe the task, while the other adheres to the OpenMath encoding to a

certain extent. If the second model is used, mathematical content is not entirely encoded

using OpenMath. A predefined OpenMath structure is used as a container for plain string

representations of formulae that are specific to a particular CAS.

The SOAP messages that are exchanged between a client and a Web service only rep-

resent a container for the messages that are intended to be understood by CASs. The

95

Chapter 3. Exposing CAS Functionality as Web and Grid Services

actual messages that are forwarded to the CAS are received by the CAS Server as flat-

tened XML representations and they are transformed in XML format or plain commands

format before they are sent to the CAS. Either of the two message encodings aforemen-

tioned could be used, the preferred one being the full OpenMath encoding.

Systems for symbolic computations have used OpenMath as thebest choice to encode

mathematical content even before CASs were able to understand OpenMath. Various

systems have used it to send mathematical content between communicating parties. For

MathWeb for instance, mediator components translate OpenMath objects in actual calls

specific to Maple, Magma and GAP. JavaMath uses OpenMath as the data encoding

standard for sending computational requests but plain string encodings are also allowed.

More recently, projects such as Monet, MathBroker and GENSS use OpenMath not

only to encode request and responses but also to describe theinterfaces of the services

they provide. Matching algorithms implemented by brokers use OpenMath encodings to

search for appropriate services that could be used to solve agiven problem.

3.6.1 Encoding with OpenMath and SCSCP

One of the goals of the SCIEnce project was to develop a communication protocol that

would enable CASs to interact using a standard data encoding model. As a result SCSCP

[96] protocol was designed. The SCSCP has become a de-facto standard with implemen-

tations available for many CASs. Several major CASs, amongst them GAP and Maple,

Kant, Macaulay [109], Mathematica, MuPAD, TRIP [103] provide support for SCSCP.

Frameworks and libraries for SCSCP implementations are available in C/C++ [16] and

Java [17].

The design and the implementation of CAS Server and the designof the SCSCP protocol

were done by two distinct teams working in the framework of the SCIEnce project and

the CAS Server component was one of the first to support the use of SCSCP. As further

described in Subsection 3.6.2 CAS Server supports a second format for encoding data.

96

Chapter 3. Exposing CAS Functionality as Web and Grid Services

There are two dimensions of the SCSCP protocol that influence CASServer’s design.

The first one is related to the message encoding. It specifies the possible request and

response formats for messages that a client exchanges with the SCSCP enables server.

Secondly, the SCSCP protocol encourages CASs to act as service providers. Playing the

server role, a CAS should be started as a daemon process that listens to specific TCP/IP

ports to which requests formulated using the SCSCP protocol should be submitted.

Even if the CAS is not prepared to provide TCP/IP connections this should not represent

a major impediment. Its ability to understand SCSCP would still represent an important

step ahead towards interoperability with other CASs. Alternative means could be used

to deliver the messages to the CAS and retrieve the responses.According to SCSCP

specification, any message exchanged between CASs should be avalid OpenMath ob-

ject describing the call and meta-data regarding the call. Therefore, the CAS should also

implement the OpenMath CDs used by the client to formulate therequest. Currently, the

support for OpenMath is growing and an increasing number of CASs consider imple-

menting OpenMath parsers.

The SCSCP calls target functions that are implemented by the CAShandling the call.

When parsing a SCSCP call, the CAS should be able to identify the function that in-

ternally should be executed and the list of arguments that have to be passed. Basically,

OpenMath symbols from the SCSCP call are mapped locally to function names. By

placing a certain OpenMath symbol inside the call the message actually requests that

the associated local function is invoked. All arguments specified within the call and all

responses should be described using OpenMath standard. An example of such message

is given in Listing 3.1.

97

Chapter 3. Exposing CAS Functionality as Web and Grid Services

1. <OMOBJ>

2. <OMATTR>

3. <OMATP>

4. <OMS cd="scscp1" name="call_ID"/>

5. <OMSTR>anid</OMSTR>

6. </OMATP>

7. <OMA>

8. <OMS cd="scscp1" name="procedure_call"/>

9. <OMA>

10. <OMS cd="SCSCP_transient_1" name="Factorial"/>

11. <OMI> 10</OMI>

12. </OMA>

13. </OMA>

14. </OMATTR>

15. </OMOBJ>

Listing 3.1: Example of SCSCP Call

The call in Listing 3.1 represents a simple example that requests a the computation of

a factorial. The header section of the SCSCP message may specify meta information

regarding the request and the computational requirements that the machine on which the

CAS is running should meet to be able to handle the call. Withinthe call the header is

specified using the<OMATP> element starting atline 3. Conversational communica-

tion patterns may even be supported by using a cookie mechanism that is able to relate

multiple calls to a single client session. The mechanism of cookies that a CAS is able

to understand should be supported by the the inner core of theCAS. External mecha-

nism that could provide support for this feature, such as WS-Resources, are less generic.

Internal management should be preferred when sessions are required.

The OpenMath symbol used atline 8 is specific to SCSCP and instructs the CAS parsing

the call that this is a remote call that targets a function implemented by the CAS. Atline

10 the message specifies the OpenMath symbol that identifies thefunction that should be

called, and further, it states that the simple OpenMath object<OMI>10</OMI> should

98

Chapter 3. Exposing CAS Functionality as Web and Grid Services

be passed as a parameter. Based on its internal configurationsthe CAS should be able to

identify the correct function to call internally, to execute it and formulate a response to

be returned to CAS’s client.

Using OpenMath for data encoding is an important step forward for CAS to CAS inter-

operability. The use of OpenMath ensures that both the request and the response provide

sufficient information to be mapped to internal data types ina deterministic way. Any

CAS that implements support for the OpenMath dictionaries used within the call is able

to understand the call and to take the appropriate actions. The SCSCP protocol provides

a clear message structure that should be preferred for CAS to CAS communication.

3.6.2 Encoding with OpenMath and Plain Text

Most of the CASs do not yet support OpenMath as an encoding model for data exchange

with other CASs. Older versions of CASs that do not support OpenMath are still in use

and a migration process is not entirely possible due to compatibility issues between older

and newer versions. Non-standard data representations meaningful only for a certain

CAS or even for a certain version of a CAS are therefore still required. Integration of

such CASs within distributed environments is also necessarydue to the functionality that

these CASs provide.

The same genericexecute()operation provided by the CAS Server’s interface as single

point of entry can be called using two types of encodings to describe the task. Additional

to the format specified by SCSCP protocol tasks can be encoded assurrogate OpenMath

objects. This alternative encoding uses OpenMath as a framein which various details

regarding which CAS engine, which function from which package should be invoked

and which are the arguments to be passed to the function call.The code snippet shown

below provides a generic example of this format.

At client side a remote function call is translated to the corresponding OpenMath object

as the one in the following example. The message is parsed at CAS Server side and the

99

Chapter 3. Exposing CAS Functionality as Web and Grid Services

information encapsulated in the OpenMath object is used to create the appropriate CAS

specific command. This process is similar to the one that phrasebooks use to translate

OpenMath encoded objects to commands that a particular CAS understands. The full

OpenMath encoding is preferred because it is more generic and any CAS implementing

a particular OpenMath CD internally maps OpenMath objects todata structure. This is

not the case with the encoding below since theprocedure, package, and argument details

are specific for a certain CAS and are meaningless when used with other CASs.

<OMOBJ>

<OMA>

<OMS cd="casall1" name="procedure_call"/>

<OMSTR>procedure</OMSTR>

<OMSTR>package</OMSTR>

<OMSTR>Arg1</OMSTR>

<OMSTR>Arg2</OMSTR>

</OMA>

<OMOBJ>

Listing 3.2: Example of Plain Call Encoding

In Listing 3.2 theprocedurecall OpenMath symbol marks the type of call being formu-

lated. The first twoOMSTRobjects describe the function to be called and the package

that the function is part of. The rest of the following OpenMath string objects, in our

caseArg1, Arg2represent the plain string encodings of the arguments that have to be

passed to the function call.

Using the message encoding in Listing 3.2 functions implemented by CASs are made

available through remote function invocation. This approach though breaks the CAS to

CAS interoperability requirement and it should be used only as a compromise for CASs

that do not support SCSCP and OpenMath. Another problem is thatarguments are not

encoded using a standard format and therefore the function to which the arguments are

passed has to implement ad-hoc functionality to parse and interpret the string represen-

tations.

100

Chapter 3. Exposing CAS Functionality as Web and Grid Services

Regardless of the data type of the arguments at the client side, the remote function call

will only receive their plain string encodings. For any other type than plain strings, the

client must map/transform values to their string representation before enclosing them in

the message call. The result obtained by calling the target function is the exact string

returned by the CAS, and thus, the client is responsible for parsing the string result and

for extracting the useful information.

If for SCSCP format, the Client Manager component of the CAS Server only extracts

some meta information and then forwards the original SCSCP encoding to the target

CAS. The Client Manager acts like an adapter by implementing a bridge between the

client and CAS, through the interface of the Grid Service. Theclient manager is respon-

sible for extracting the details of the call from the messageand formulate a meaningful

call that has to be submitted to the CAS. Most often, this requires that a string represen-

tation of the call with the formatpackage.function(Arg1,Arg2)is created and sent to the

CAS to be evaluated. The call string should be exactly the sameas the one a human user

would submit through the common interface of the CAS that is locally accessible.

An important difference between this type of call and a call submitted through the com-

mand line interface of the target CAS is persistence. When working locally with a CAS

such as GAP using the command line interface, a function callmay affect the state of

system or session variables that are stored in the memory of the CAS. A subsequent call

in command line could potentially use the initialized values. This interactive behaviour

is not available between two subsequent calls to a CAS Server without additional inter-

mediary steps that would store and resume a certain state. For simplicity, calls to the

CAS Server must be self explanatory and self contained and no previous state should be

assumed.

101

Chapter 3. Exposing CAS Functionality as Web and Grid Services

3.7 Summary

In this chapter we have shown that distributed infrastructures for symbolic computations

represent the solution for allowing computer algebra specialists to solve large symbolic

problems. The design aspects of the CAS Server component presented in this chapter

were previously presented in [58, 61, 148, 150, 129].

Computer Algebra Systems (CASs) represent the main computational engines for sym-

bolic computing. We have shown that the most convenient way to build an infrastructure

for symbolic computing is to reuse the capabilities of CASs byintegrating them in a

broader architecture. There are three important problems that have to be considered

for successful integration of CASs: the encapsulation technique used to communicate

with the CAS that further allows remote clients to communicate with the CAS; the data

model used for encoding messages exchanged by the client andthe CAS; the technology

to be used for exposing CASs functionality to ensure that potential clients may access

the functionality in a seamless fashion.

The CAS Server component was designed to allow more than one CASto be exposed

through the same interface. To achieve this, the CAS Server acts like a mediator between

remote clients and exposed CASs. As discussed in Section 3.4 the way a CAS may be

interconnected with the CAS Server depends on the capabilities that the CAS natively

implements. Building wrappers specific to a certain CAS is the most convenient and

flexible solution.

Interoperability represents one of the major issues in establishing a distributed symbolic

environment. Lack of interoperability impedes potential clients from accessing func-

tionality provided by CAS Servers. To overcome these problems three important issues

have to be addressed: the consistency of the interfaces; thedata model used for encod-

ing messages and; the technology used for implementing the interfaces. The structure of

the interface that the CAS Server exposes is unchanged irrespective the CASs that are

exposed by the CAS Server. Driven by the requirements specified in 3.2, as a minimum

102

Chapter 3. Exposing CAS Functionality as Web and Grid Services

the following set of capabilities has to be provided: the ability to receive computational

tasks and provide the results in an asynchronous way; a single point of entry through

which the tasks should be submitted allowing thus more than one CAS to be exposed

through the same interface; a set of operations to allow the user to discover provided

functionality and; capabilities to manage execution of tasks. We have also shown that

exposing CASs functionality should be done by permitting clients to access selected

routines implemented by various CASs.

Symbolic components integrated in a distributed architecture, whether they are service

providers or clients must use a common encoding format that can be used by all parties.

The most successful standard for encoding mathematical formulae is OpenMath. The

SCSCP protocol is currently the ’de facto’ standard for CAS to CAScommunication. We

have designed the CAS Server component to use the SCSCP protocolfor interconnection

with CASs as most of the popular CASs already provide support ofSCSCP. The use of

OpenMath and SCSCP protocol is of paramount importance for interoperability and

cooperation between CASs. Lack of support for SCSCP and OpenMath may be partially

overcome by using an alternative non-standard encoding model that we have described

in Subsection 3.6.2. The latter has the advantage that it maybe used as a workaround in

particular scenarios but it lacks the generality and flexibility that SCSCP and OpenMath

provide.

Due to the advantages that Grid Services provides, as shown in 3.5 Grids may be consid-

ered as the most suitable technology of building a distributed infrastructure for symbolic

computations. We have used WSRF compliant Grid Services to implement the CAS

Server component’s interface. Thus, the CAS Server may provide access to one or more

CASs installed on a ordinary desktop machine or, in more advanced set-ups, it may hide

a whole LAN or computational cluster.

The CAS Server is therefore a suitable solution for exposing CAS functionality to be

accessible by remote clients. Grid Services and Web Services are standardized solutions

for implementing the RPC architectural style. The interfaceof services is clearly defined

103

Chapter 3. Exposing CAS Functionality as Web and Grid Services

by the WSDL document of the service and any client can use a service if they are able

to formulate correct requests, independent of the platformthey use. New functions im-

plemented by a CAS can be easily exposed through the Grid Service interface without

the need to modify the services. In addition CAS Server provides a set of functional-

ity that allows clients to discover which functions the CAS Server provides and they

can control the execution of tasks by pausing, resuming and cancelling tasks. The ad-

vantages that Grid Services provide in comparison with Web Services for implementing

CAS Server are default security mechanisms and data management services that allow

seamless transfer of files between execution nodes.

104

Chapter 4

Orchestration of Web/Grid Symbolic

Services

This chapter addresses the problem of composing the functionality of several CASs for

solving symbolic computation problems as reported in [60, 61, 66, 148]. In Section 4.1

we analyse scientific workflows particularities and the special requirements they raise.

Symbolic computation workflows have to be expressed in a format that can be under-

stood by existing workflow execution engines, usually as compositions of generic work-

flow patterns. In Section 4.1.2 we provide a set of guidelinesfor translating common

existing patterns in symbolic computations to the generic workflow pattern format.

An overview of generic tools and technologies for description, execution and manage-

ment of scientific workflows is provided in Section 4.3. Theircapabilities may be used to

support the execution of symbolic computation workflows. InSection 4.4 we introduce

a new component of our architecture, namely the Architecture for Grid Symbolic Ser-

vices Orchestration (AGSSO) Server component. The AGSSO Server provides support

for automatic execution of workflows for symbolic computation by orchestrating CAS

Server components previously described in Chapter 3.

105

Chapter 4. Orchestration of Web/Grid Symbolic Services

4.1 Service Orchestration for Symbolic Computing

In Subsection 4.1.1 we analyse the most important differences between regular business

workflows and workflows for scientific computation. In Subsection 4.1.2 we briefly

present the most common workflow patterns and workflow categories.

4.1.1 Scientific Workflows and Their Requirements

The emergence of Web and Grid standards and the democratization of access to comput-

ing power have had a major impact on the way scientific research results are obtained

and disseminated. The main motivation for creating a distributed computing architec-

ture regardless of the actual set of technologies used is to deliver the computing power

and software tools needed to solve large scientific problems. Powerful computing tools

enable scientists to share their results and to test hypotheses in a seamless fashion.

Scientific computations and experiments are different fromrunning simple and isolated

computational tasks because they may involve thousands of execution steps and require

access to data and computational capabilities situated at geographically scattered loca-

tions. This is also the case for large symbolic computing problems which require on one

hand large computational resources and on the other hand specialized software that may

not be available on a single computational site. In order to solve large symbolic prob-

lems computational resources and capabilities that can be offered by a single machine or

a LAN may not suffice.

The most simple and straightforward composition of CASs’ functionality may be ob-

tained just by accessing through the usual user interface ofa CAS the capabilities of

another CAS instance. Most of the existing systems that implement capabilities for CAS

to CAS collaboration such as MathWeb-SB [94] provide supportfor simple composi-

tion. This type of composition is suitable for less complex computational problems and

for problems for which user steering is required between individual calls. For problems

106

Chapter 4. Orchestration of Web/Grid Symbolic Services

that can be run in batch mode, i.e. no steering is required, a better solution is to provide

mechanisms and software infrastructure for automatic execution management.

Depending on the data access patterns specific to a certain problem, even if parallel ver-

sions of algorithms may be used to solve a problem, it is not always efficient to use highly

distributed infrastructures. One such example is the computation of Gr̈obner Basis [123]

for which current algorithms are not suited for massive distributed environment due to

close data dependencies between individual steps of the algorithm [33]. For other prob-

lem classes, such as the ones similar to the orbit enumeration algorithm [126], solutions

can be implemented by combining independent services [66].

Decomposition of an initial problem in smaller problems andsolving them using a dis-

tributed computational infrastructure may represent on one hand a solution to provide

the required computational power and storage capabilitiesand on the other hand may

significantly reduce the wall clock time required to solve the problem. As a result of

the decomposition process a sent of individual execution steps are identified. The in-

terdependency between these steps has to be thoroughly documented to ensure correct

management of the execution. A high level view of the computation is required during

planning and execution phases. The most common way to represent such processes,

generically named workflows, is through directed acyclic graphs (DAG) which describe

an abstract representation of the computation. The nodes ofthe graph identify com-

putational steps and arcs determine the dependency betweencomputational steps. De-

pendency relations may be due to data dependencies that one task generates which is

required as input by another task or they may just be requiredby the impact that certain

tasks have on the overall state of the system.

Management of workflows with a low level of complexity is feasible even if it is done

by the client components. In this case the client has to explicitly send requests for each

node representing a computational step, collect results and formulate the subsequent re-

quests until the computation is finished. This solution is also suitable for client side

applications which occasionally require access to functionality that the application does

107

Chapter 4. Orchestration of Web/Grid Symbolic Services

not natively provide but is made available by external services. The client centred execu-

tion approach may be easy to use for small scale problems by users that are comfortable

with using technologies and programming languages that provide support for interact-

ing with external services. The overall complexity of the system may also be smaller

since support components that should assist the users in automatic workflow manage-

ment, such as components for service discovery, schedulingand load balancing are not

required. In this cases, the client itself is responsible for managing the whole computa-

tion, including discovery of suitable services. As shown inSubsection 3.2 this approach

has several shortcomings related to usability and performance of the whole system and

form complex workflows and more advanced solution should be used.

The effort required to maintain verbose workflow descriptions can also be significant.

Hard coded implementations of service compositions are difficult to understand because

they are cluttered with explicit calls and error handling code sections. They are also

hard to adapt and maintain. The overall evolution of the system is impeded since every

change that occurs in the interface or in the location of services has to be reflected in the

source code combining the services [130]. Describing workflows in more abstract terms

that do not contain low level details about the actual services to be used is a more flexible

solution especially for describing large and complicated workflows. Workflow execution

is best achieved by specialized management engines that areable to follow the execu-

tion process and provide built in capabilities for fault management and compensation

handlers.

Due to the nature of the problems they have to solve, environments for scientific com-

puting must provide support for features that are less common for business oriented

architectures. The structure and the order of magnitude of scientific workflows is much

different than the ones of business oriented applications.In business environments, tasks

usually require a short time to complete and the number of thetasks composing a work-

flow is relatively small while scientific workflows are composed of thousand of steps and

each individual step may need a long time to complete.

108

Chapter 4. Orchestration of Web/Grid Symbolic Services

The main requirements that a system for management of scientific workflows should

meet include capabilities to combine components in a modular way, exception han-

dling and compensation mechanisms, and management capabilities [34]. Usually, most

of these capabilities are provided by centralized workflow managers generically called

workflow execution engines. The role of the execution engineis to provide the neces-

sary mechanisms to bind, invoke and retrieve results from external services according

to the description of the deployed workflow. The most important requirements raised

by scientific applications that such engines should providewere previously analysed in

[105, 166]. These can be grouped into three important categories:

1. Integration with existing standards and software technologies,

2. Service discovery and workflow management capabilities,

3. Runtime requirements.

Workflow engines should be flexible enough to the adapt to vastvariety of technolo-

gies that are used to implement services. Even if most existing services are provided

using the Web Services standards, such engines must be able to interact with services

that are implemented using technologies such as RMI or CORBA. Usually, out of the

box engines provide native capabilities for interacting with Web Services while for other

technologies, extension interfaces are defined. This is also the case for the ActiveBPEL

[28] execution engine, one of the most popular execution engines, which we have in-

tegrated as part of our AGSSO Server component. To assist theuser in the process of

service discovery and workflows execution, the engine should be capable of interrogat-

ing external discovery registries from which to retrieve the addresses of the services to

be used.

Workflow management capabilities are extremely important in the context of scientific

computing. Because the workflows as a whole and the individualtasks that the workflow

is composed of may require long time to compute, it is important to have the ability to

monitor the tasks and steer their execution when necessary.Tasks that take too long

109

Chapter 4. Orchestration of Web/Grid Symbolic Services

to be computed could be discarded and alternative solutionsapplied if the human expert

chooses so. Task completion may require a large amount of computational resources and

it is sometimes required to temporarily free resources by pausing and even cancelling

a task. If check-pointing is available, long running tasks may survive computational

disruptions caused by system failures or regular maintenance activities such as system

updates or restarts.

Monitoring capabilities should allow users to supervise workflows’ execution. If exe-

cution errors occur, the system should be able to handle the errors and even to cancel

the whole execution process and to restore the system to its previous state. During ex-

ecution, the user should be able to manage the execution by pausing or cancelling it.

Intermediate results should be stored by the system for later reference and to allow the

system to resume computation in case of failure. Errors may also occur due to non stan-

dard interfaces of composed services and the data types theyuse. The workflow engine

has therefore to provide mechanisms that are flexible enoughto handle such cases.

On occasions, the human expert may even guess which are the expected results for one

or more tasks that are part of a complex workflow. Therefore the specialist can choose to

override a particular task by assigning a specific value thatthe user wants to consider for

the given task. On one hand this feature may dramatically improve the overall time of the

computation because the individual tasks for which the result is assumed and not com-

puted are skipped. On the other hand, based on the same capability, it is even possible

for a scientist to experiment with different values manually assigned to different tasks

without actually changing the computational steps. The specialist can thus investigate

possible results that can be obtained by running the same workflow for multiples cases

and testing possible results obtained for when partial results are manually assigned.

Scientific discovery is only valid if the obtained results can be replicated and the way

that they were obtained properly documented. Reusability and reproducibility are par-

ticularly important in scientific processes and a workflow management system should

save all relevant meta information needed to support these requirements [105]. Exam-

110

Chapter 4. Orchestration of Web/Grid Symbolic Services

ples of data that should be stored include the abstract workflow description, job requests

and obtained results, details regarding the configuration of the execution nodes that ex-

ecute the jobs of the workflow and execution duration. Execution engines store au-

tomatically some of the required data but additional features are often required to be

implemented. Once results of complicated or long running processes are obtained, they

should be stored and reused if possible.

Workflow description languages like WSFL or BPEL that are designed to be used for

describing workflows in format suitable for processing by workflow engines are com-

plicated and contain details that are not of immediate interest for application experts.

An overview of such languages, workflow engines and techniques used for automatic

composition of Web Services is given in [171, 146]. Application experts should use ap-

propriate high level languages, relevant and intuitive fora specific application domain,

to describe their workflows and not complicated languages that workflow engines un-

derstand [105]. High level languages must provide capabilities to compose services in

a seamless way while low level details are hidden. The actualservices’ details involved

in workflows’ execution can be filled-in at run time by supportcomponents. Auxiliary

management steps that cover transfer of required data or specific steps that should be

executed to interact with a specific type of service can also be automatically provided

[166].

The design of the workflow description languages for scientific workflows have to be

appropriate to support the way scientists interact with computing infrastructure. Clients

communicate with servers using massages that describe the actual request and not how

the goals should be achieved, therefore they are rather descriptive than instructive [34].

Consequently, the users should be able to invoke already deployed services rather than

defining themselves the code that needs to be executed to achieve a given goal. When

there is a need to combine several services to achieve a goal,high level constructs that

define the workflow should be provided to the user.

Current workflow execution engines are able to partially support the requirements men-

111

Chapter 4. Orchestration of Web/Grid Symbolic Services

tioned above either directly through auxiliary add-ons butnone of the existing solutions

is able to cover all the requirements stated in a way such thatthey are straightforward to

use. Additional components that extend the functionality provided by these engines have

to be implemented and integrated. Solutions that partiallyexist for particular domains

cannot be adopted without applying changes that make them suitable for the targeted do-

main. One simple example is the use of visual tools to composeand manage workflows

which may be appropriate for some domains but impossible to integrate with systems

that lack support for visual interfaces.

The requirements that are applicable for scientific workflows in general are also valid

for scientific domain of symbolic computations. The features mentioned above would

have a positive impact on the development and disseminationof symbolic computation

results. A successful solution for scientific workflow management for symbolic comput-

ing has therefore to provide support for these features. Within the framework of MONET

project, the broker component has the role to discover appropriate services that should be

invoked by matching the problem description that a client supplies with the capabilities

of existing services. Since more than one client uses the same broker, one of its design

requirements was to provide a planning service that should select services based on the

general state of the system and problem specific characteristics.

The planner was initially intended to also provide support for automatic composition

of services for the case in which a single service was not sufficient to solve a certain

problem [32]. Unfortunately, due to the complexity of the problem, a simpler solution

was considered [69]. Instead of automatic composition, thesystem was designed to

provide mechanisms that allow administrators of the systemto deploy BPEL workflows

that combine existing services. They proved the feasibility of the solution for services

that could be executed in sequence. The disadvantage of the solution they proposed

is that regular users were not able to describe and deploy their own workflows, and

therefore they were restricted to use only existing ones.

The Distributed Maple system described in [160] uses scheduler components to select

112

Chapter 4. Orchestration of Web/Grid Symbolic Services

and connect to Maple instances linked through a Java framework. Handles of tasks

may be used as input parameters to other services and therefore dependency relations

may be created. Dusher [83] relies on BPEL and WSRF to implement Bilateral Multi-

Conversation patterns by calling services that expose GAP. Using this technique, ses-

sions are created to a GAP instance and intermediary resultsare stored in resource prop-

erties of a WS-Resource.

The CAS Server components described in the previous chapter represent the foundations

of our architecture. Besides providing means to expose CASs’ functionality through

Grid Services interfaces, they implement features that canbe used to control the way

tasks are executed, and provide management and monitoring capabilities, implement

mechanisms to store and index for later retrieval the results of computations, provide

data management for large data sets. Without these featuresproviding a symbolic infras-

tructure that meets the requirements mentioned above wouldnot be possible. Our final

goal is to provide symbolic researchers a platform that is able to assist them in describ-

ing and controlling complicated workflows in a way that it is intuitive but sufficiently

complex to cover their needs. The user has to be able to createworkflows, send them to

be executed by specialized component and retrieve the results of their computations.

To support composition of symbolic services provided by CAS Servers, we have de-

signed and implemented the AGSSO component. This new component we introduce

is responsible for receiving computational workflows from clients and to manage them

on the behalf of clients. The role of the AGSSO component is toprovide on one hand

capabilities that are specific to a workflow manager combinedwith other capabilities

such as workflow and task management, service discovery and data manipulation. This

component and the functionality it provides are further discussed in Section 4.4.

4.1.2 Workflows and Workflow Patterns

The lifecycle of a workflow is composed of several stages thatare determined by the level

of detail known about its structure, services to be invoked and arguments that should be

113

Chapter 4. Orchestration of Web/Grid Symbolic Services

provided to match the parameters expected by services [76]:

1. Workflow as a template - general problems are described as workflows using con-

structs specific to a certain computation domain; the role ofa template workflow

is to describe in general terms the computational steps thathave to be undertaken

to solve a class of problems

2. Workflow instance - is obtained from a template workflow by supplying the argu-

ments matching the parameters expected by the workflow as input so it may be

executed;

3. Executable workflow - based on a workflow instance the workflow manager binds

the task of the workflow on specific computational resources

Depending on the architecture of the systems and the role various components have

in the workflow’s life cycle, the workflow could evolve from the template stage to the

executable stage within the boundaries of a single component, or different components

may participate to its life cycle. For example, Active BPEL Designer could be used to

describe the workflow template, to deploy it and to invoke it by providing arguments to

the resulting Web Service. More often though, the border line between the stages is not

obvious and more than one component collaborate on the workflow’s path from template

to executable.

Scientific platforms for workflow management decouple the stages of the workflow in

even more fine grained steps. The description of the workflow takes place at the client

component level where the user describes the workflow’s structure by combining abstract

computational constructs. At this level, constructs that are familiar to the user level of

expertise are used and based on the user actions, a workflow encoded using a generic

workflow language is created. Once the template workflow is described, the client com-

ponent submits the workflow to a specialized workflow management component which

translates the workflow into a workflow language specific to one of the available work-

114

Chapter 4. Orchestration of Web/Grid Symbolic Services

flow execution engines that the system uses. The resulting workflow is still a template

since specific input values are not specified yet.

As soon as the user specifies the input parameters, the workflow becomes an instance.

The stage of the workflow in which system determines the actual resources to be used

for execution influences the efficiency of the composition process and differentiates the

composition technique to be used. Available resources’ configurations are highly dy-

namic and heterogeneous. Over time new services are implemented while older ones

vanish or change their interface or the functionality they provide. Static composition is

based on existing services of which details are known at the workflow’s design time and

they cannot be replaced based on the state of the system at a given time. This type of

composition has the advantage that the services are known a priori and therefore compat-

ibility problems can be avoided. As a consequence, it is alsothe less flexible composition

technique because once a service is modified or no longer available the workflow itself

has to be altered or it will fail to execute.

Slightly more versatile is static composition with dynamicbindings. The structure of

the services to be used may be assumed at design time while theactual location of

the services may be determined based on the latest availableinformation just before

submitting a task to be computed. This type of composition ispossible if the technology

used for implementing the services permits decoupling of the description of the service’s

interface from the actual location where the service resides. In this case, the workflow

is static with regard to the interfaces but it remains valid if a service having the same

interface but hosted by another component of the architecture is chosen. Using this type

of composition may improve efficiency because the binding tothe actual services to use

is deferred until the service needs to be invoked. The best services may be selected based

on the current state and load of the system.

The most versatile but also the most error prone type of composition is the one in which

the actual services used to solve a problem are discovered atruntime. Typically, the

applications specialist describes a problem that needs to be solved and depending on

115

Chapter 4. Orchestration of Web/Grid Symbolic Services

the nature of the problem and input parameters the system is able to determine in an

automatic way which services have to be combined. To achievethis goal, the workflow

engine has to be able to understand the problem and to be able to match requirements

onto capabilities that existing services can provide. Clearly, the above solution is the

most versatile but due to lack of standards and insufficient support currently it can only

be applied in specific domains. A universal solution for dynamic composition represents

a desideratum still to be attained.

The primary role of a workflow management component is to combine the functionality

implemented by other software components, regardless the the technology used for com-

munication. Workflow execution patterns represent the building blocks that the user can

combine to describe a compound computation. Execution patterns have the advantage

of allowing the user to describe the solution at a high level of abstraction for which only

details that are of immediate concern of the user are specified. Usual control flow con-

structs that a programmer uses to implement algorithms havecorresponding counterparts

to be used for describing workflows.

Workflow patterns may also be used to evaluate the expressiveness and suitability of dif-

ferent languages and composition techniques used for expressing workflows [116, 27].

The workflow patterns are particularly important for describing the nature of interac-

tions that occur in distributed environments between autonomous components that are

orchestrated towards a common goal. The number of patterns that apply to Web service

composition is quite large and they try to capture behavioural nuances that may occur.

Several patterns though represent the foundations on whichthe other patterns rely upon.

Basic patterns identified in [139] were further used to investigate the expressiveness of

existing workflow languages [198]. A short overview of the most common workflow

patterns is presented below.

A common pattern, thesequence patternrepresents the sequential execution of two or

more tasks. The dependency between certain steps may be purely functional or imposed

by data dependencies that exist between these tasks. Due to the dependency amongst

116

Chapter 4. Orchestration of Web/Grid Symbolic Services

TASK 1

TASK 2

TASK 1 TASK 2

Synchronization

Point

Fork Point

Sequence (a) Parallel (b)

Figure 4.1: Sequence and Parallel Execution

them, the tasks have to executed one after another and a dependent task cannot be exe-

cuted unless all the tasks it depends on are finished. As shownin Figure 4.1(a),Task 2

must wait forTask 1to complete before it can be processed.

If there is no dependency among tasks, they may be executed inparallel as aparallel split

patternthat describes a process fork. If the subprocesses reunite at a certain moment of

the execution, that point is a join point and the parallel split is with synchronization.

As shown in Figure 4.1, the two tasks have no interdependencyand after the two are

completed the processing branches reunite. This pattern assumes that every branch is

executed only once. As a variation of this pattern, themultiple instances without syn-

chronizationpattern occurs when multiple instances of the same task mustbe executed

in parallel but no synchronization is required after they complete.

A task or a a group of tasks may have to be executed only if a condition is met. Con-

ventional programming languages provide the conditional constructif-then-else. Such

behaviour may be expressed usingconditional patternsdepicted in Figure 4.2. Theex-

clusive choice patternselects, amongst several possible branches, the branch that should

117

Chapter 4. Orchestration of Web/Grid Symbolic Services

TASK 1 TASK 2

Exclusive Choice

Point

 Exclusive Execution (a)

Cond

TASK 3

TASK 1 TASK 3

Non Exclusive

Choice

 Non Exclusive Execution (b)

Cond 1 Cond 3Cond 2

TASK 2

Synchronization

Point

Figure 4.2: Conditional Execution Patterns

be executed based on the evaluated condition. Because only one branch can be acti-

vated at a time the simple merge point that reunite the branches in Figure 4.2(a) is not

a synchronization point. Similarly, themultichoice pattern4.2(b), uses conditions to

determine if an execution branch should be activated or not.Unlike the first condi-

tional pattern, this pattern allows several branches to be simultaneously activated. For

all branches for which the corresponding condition is met the execution starts and the

tasks are executed in parallel.

One can potentially identify more than one possible approach that could be used for

solving a problem and may want to try them by executing them inparallel. The ap-

proach that provides the fastest answer is considered and all the rest of the executions

that were started and not yet completed are aborted. Severalsolving algorithms and

techniques are therefore tested at the same time by concurrent processes and, as soon as

one solution is obtained, the rest of the processes may be discarded. This execution pat-

tern,deferred choice patterndepicted in Figure 4.3(a), is particularly useful for symbolic

computations. It is often the case that the computer algebraspecialist may use multiple

118

Chapter 4. Orchestration of Web/Grid Symbolic Services

 Deferred Choice Execution (a)

TASK

Cond

Repetitive Execution (b)

Repeat If True

TASK 1 TASK 3

Parallel

Execution

TASK 2

TASK 4

Fastest Task

Wins

Figure 4.3: Deferred and Repetitive Patterns

algorithms to solve the same problem but it is difficult to predict which is the one that

will compute first.

Often there are situations when the same action must be executed several times with

various input arguments where the number of iterations is known in advance. Con-

ventional programming languages implement this constructasfor <codition> do... or

while <condition> do... loops. This behaviour is described as themultiple instances

with prior knowledge pattern. A variation of this pattern depicted in Figure. 4.3(b)

is themultiple instances without prior knowledgewhen an external factor that cannot

be anticipated determines the end of the loop execution. This pattern is also supported

by conventional programming languages in the form ofrepeat...until<condition> con-

structs. The number of iterations that must be executed whenthe second pattern is used

is determined by the processing itself. An example that fits this pattern is processing of a

list of objects to which new objects can be dynamically addedduring the execution. For

this type of problem the total number of objects that have to be processed is not known

119

Chapter 4. Orchestration of Web/Grid Symbolic Services

when the actual processing starts. The processing ends onlywhen there are no more

objects in the list to be processed.

Virtually any computation algorithm can be described usingthe execution patterns de-

scribed above. The task blocks from the diagrams above can represent atomic tasks or

they may be replaced with other patterns. Therefore, symbolic execution patterns that

are used in symbolic processing can also be described at abstract level using the above

patterns. Workflow engines that support these fundamental patterns may also be used to

execute workflows for symbolic computations with the remarkthat any symbolic evalu-

ation has to be done by a specialized component since workflowengines do not provide

support for symbolic computations.

4.1.3 Summary

The main characteristics that differentiate scientific workflows from business workflows

are their significant large size, the long time they require for execution and large num-

ber of task generated by iterative processing. Symbolic computation workflows have

similar characteristics with other scientific workflows anddedicated workflow execution

managers are the most efficient way to execute such workflows.

To be executed by workflow managers, workflows have to be expressed using special

languages that are suited for automated processing but verbose and complex. These

languages are not suited to be used by human users directly and therefore more intuitive,

clear and concise constructs that are easy to use by the humanexperts must be provided.

Such languages must provide means to combine existing execution patterns to describe

workflows while unnecessary details such as the address of the actual services to be used

for execution must be automatically filled in by the supporting system.

In addition to features that are already provided by existing workflow execution engines,

scientific workflows require:

120

Chapter 4. Orchestration of Web/Grid Symbolic Services

• mechanism to support provenance of obtained results;

• workflows re-execution capabilities;

• workflow steering that allow human experts to steer the execution of workflow’s

execution at runtime;

• workflow execution management such as cancellation, pause and resume of tasks.

Dynamic workflows have the advantage that they can solve problems by combining ser-

vices that are discovered at runtime. Opposed to dynamic workflows, static workflows

can only use services that were indicated at design time. Static composition with dy-

namic binding represents in-between solution because the structure of the workflow is

fixed at design time while services are selected at runtime.

4.2 Basic Patterns in Symbolic Computing

Examples of execution patterns in symbolic computing can beeasily drawn from the

manipulation capabilities that are offered by existing CASs. Most often, the CASs han-

dle mathematical formulae and structures as objects and list of objects. One of the most

developed CAS system is GAP. Using GAP, with a list of objects the user is able to

execute several types of operations: apply certain transformations to all the objects of

the list, analyse the properties of those objects, create new lists based on certain criteria.

Depending on the nature of the problem, manipulations on objects can even be possible

in parallel, on remote machines, if the computational gain motivates it.

The control structures used by general algorithms are oftenpart of the standard program-

ming constructs. While their syntax may vary from one CAS to another, systems such as

GAP [3], Maple [10], KANT/KASH [21] all provide control structures for control flow

and repetitive executions. A peculiarity of those systems is that repetitive constructs are

usually available in conjunction with lists of objects. Therefore these systems are not

121

Chapter 4. Orchestration of Web/Grid Symbolic Services

different with regard to their capabilities to describe arbitrary complicated algorithms, in

comparison with popular imperative languages such as Java or C/C++.

Algorithmic solutions of complex problems are obtained through execution of atomic

steps in a predefined order. It is the same case for solutions that are specific to symbolic

computing. Specific language constructs that control the execution flow within a CAS

can be mapped on control flow patterns used to compose Web Services. The actual pro-

cessing steps requested by a symbolic computing algorithm can also be mapped on Web

Services invocations. It is thus possible to translate an implementation of a symbolic

algorithm so it can be expressed in terms of workflow patternsand services invocations.

Languages that are currently used for describing Web Service workflows are too close

to the Web Service orchestration level to be used directly within a CAS. The description

of such workflows requires low level details such as the address of the composed Web

services and data conversion specification. It is thereforenecessary for CASs to provide

more abstract and versatile mechanisms to describe such workflows.

By analysing current CASs’ capabilities we can identify a mapping of CAS level con-

structs on more general workflow patterns. Even if it is not always obvious, in fact

symbolic computations specialists organize the processing instructions using workflow

patterns. Only when dealing with an external workflow execution engine these patterns

become more visible.

The simplest execution pattern used in symbolic computing is the sequence pattern. This

often arises when the user runs several commands one after another or if function com-

position is used. Usually, the current state of the system isstored by the command line

interface that the application specialist is using. When dealing with external workflow

engines, the actual steps of the computation have to be clearly identified and tasks have

to be defined explicitly. A hidden sequence pattern implied by a function composition

such as:

a:= func1(func2(b));

122

Chapter 4. Orchestration of Web/Grid Symbolic Services

must be clearly separated in smaller pieces using explicit sequence markers and task

isolation that the workflow engine can translate to invoke calls to external services:

sequence {

c = func2(b)

a = func1(c)

}

Conditional patterns are also allowed in most of the CAS processing languages. The

typical form in which they may be expressed is:

if (condition) {

//execute true branch statements

}

else {

//executed false branch statements

}

where the CAS is able to evaluate theconditionspecified within the control structure

above. In terms of workflow patterns executed by a workflow engine, this construct may

be expressed with a small modification:

boolean_value = evaluate_condition(condition)

if (boolean_value) {

//execute true branch statements

}

else {

//executed false branch statements

}

Since general purpose workflow engines are not expected to have any capabilities to

evaluate symbolic constructs and only simple numerical andboolean evaluation can be

used, expressing conditional patterns has to use additional service calls. As it can be

123

Chapter 4. Orchestration of Web/Grid Symbolic Services

seen in the code above, the evaluation of the condition may not be possible at workflow

engine level. The workaround is to use an additional evaluation service that takes the

symbolic condition as an input and offers back the result as aboolean. Whenever a

conditions has to be evaluated this way a custom service thatcan do the evaluation for

the workflow engine must be used.

Lists represent the main container of objects allowing the CAS to manipulate symbolic

objects, usually through repetitive constructs. Any batchprocessing that may be exe-

cuted by a CAS is thus related to its capabilities of processing lists. While the list itself

is stored within the client machine, the processing of objects composing the list may

be done on remote execution nodes. Described inpseudo-code, visiting every object

contained in a list can be done by applying a repetitive construct such as:

for (item in list) {

//execute transformation on item

}

Again, the workflow engine lacks symbolic capabilities and it is not able to understand

and evaluate OpenMath objects. All manipulations must be achieved by calling external

symbolic services that are able to understand and manipulate the objects. Every step of

the repetitive iteration over the elements of a list must be described explicitly by defining

tasks that can be executed as remote calls. Here we give an example of a multiple

instances with prior knowledge pattern in which the number of elements does not change

during execution:

end_index = s_size(list)

for (index = 1..end_index) {

item = get_item_with_index(list,index)

s_transformation(item)

}

In order to map the two constructs mentioned above, additional external services must

be invoked: for finding out theend indexwe need to invoke an external service that will

124

Chapter 4. Orchestration of Web/Grid Symbolic Services

determine the size of the list; moreover, the object situated at indexin the list must also

be retrieved by accessing an external service. The processing over the object itself has

also to be done by an external service.

end_index = s_size(list1)

list2 = s_create_empty_list()

for (index = 1..end_index) {

item = s_get_item(index, list1)

boolean_value = s_evaluate_object(item)

if (boolean_value) {

s_store_object(item, list2)

}

}

list = s_get_list(list2)

Listing 4.1: Implementation of Filtered Pattern

The two simple execution patterns mentioned above may be easily combined in order

to create more complicated execution scenarios. For instance, suppose we have a list

of objects and a selection function that decides a boolean value based on the value of a

object. We want to create a new list containing all the objects for which the condition

holds. This execution pattern, referred by symbolic computing specialists as thefiltered

pattern, may be achieved by creating a workflow that combines the two patterns above

and several pre-existing external services, as shown in Listing 4.1 where all function

calls having a name beginning with “s” represent calls to external services.

Using similar approaches, several other processing patterns may be easily implemented,

and to name only a few:

• Apply Inplace - apply a certain transformation on all the objects,

• Apply New - create a new list based on the transformed objectsof a given list,

• Count - count the objects having certain characteristics,

125

Chapter 4. Orchestration of Web/Grid Symbolic Services

• For Any - check if all objects in the list have certain characteristics,

• Fold - calculate a global value based on the elements of the list.

Another class of execution patterns derives from the basicring pattern. In [66] we

have implemented this pattern using three interdependent services. The basic idea of

this multiple instances with prior knowledge pattern is that the invoke of the services

describing the ring is done in sequence, repetitively, while certain conditions hold. The

general structure of the pattern is presented in Listing 4.2.

boolean_value = evaluate_condition(condition)

while (boolean_value) {

value1 = s_first_service(input)

value2 = s_second_service(value1)

boolean_value = evaluate_condition(condition)

input = value2

}

Listing 4.2: Basic Ring Pattern

Starting from the examples depicted above, one may imagine an infinite number of com-

binations. For instance a particularly useful execution pattern, deferred choice, uses

several external services to compute the same result over the same object, but using dif-

ferent techniques. Since only one result is needed, the execution ends when any of the

calls returns the result. In this pattern, a particular roleplays the basicparallel pattern

which allows starting multiple calls at the same time.

4.3 Composition Technologies and Tools

The requirements that computational systems built to support scientific processes in gen-

eral cannot be exclusively fulfilled using proprietary technologies such as RMI, CORBA

126

Chapter 4. Orchestration of Web/Grid Symbolic Services

and RPC. A comparison made by Gray [108] shows that Web Servicesare usually less

efficient in terms of resources consumption than RMI and CORBA. The performance

problems introduced by Web Services are not crucial and can be ignored given the ben-

efits that Web Services introduce. If computational overhead introduced by Web Ser-

vices is significant in the context of a certain application,technologies such as RMI and

CORBA should be considered. For the vast majority of applications the impact to ap-

plication efficiency is small and due to the advantages they introduce Web Services are

more and more adopted as the technology for providing services to potential customers.

Both industry and research communities have understood the benefits that automatic

composition may provide. Languages that allow a higher level description of the com-

putational steps together with corresponding platforms that automate workflow’s execu-

tion have several important benefits. On one hand the processof specifying a workflow

is more intuitive and less concerned with low level detail such as service invocation

mechanisms. On the other hand, automatic workflow management done by a specialized

server is more efficient, easier to control and more secure.

Given a set of Web Services that can be used to create a new application, the workflow

engine is able to orchestrate these services based on workflow’s description. One impor-

tant problem to solve is how to enable the workflow engine to discover the most suitable

Web Service to invoke for the given purpose. One solution is to consider ontologies for

describing the Web Service interface and define matching mechanisms. More details

of these methods are given in [156, 85]. While this solution isin principle applicable,

the diversity of Web Services, their interfaces and data types used makes this approach

feasible only for small areas of computation.

Dynamic composition approaches include AI planning mechanisms and ontology based

composition. The set of services dynamically selected to solve a particular problem may

change from one invocation to another. As a result, a dynamicdiscovery mechanism

must be used at runtime to decide which services should be invoked. The selection of

services must meet requirements regarding the functionality and the QoS to be provided.

127

Chapter 4. Orchestration of Web/Grid Symbolic Services

In this respect, several general problems may appear [169].The discovery problem, for

example, raises two sub-problems that need to be solved at the same time: obtaining a

service description and obtaining the location of the service. Reliability constitutes also

an issue since services may be occasionally unavailable.

In [156] it is noted that a generally accepted assumption is that each Web service can

be specified by its preconditions and effects in the planningcontext. A specialized lan-

guage, DAML-S [39] has direct support for AI planning techniques. The state change

produced by the execution of a Web service is specified through the precondition and

effect properties of the service profile.

As described in [135], the semantic Web vision is to make Web resources accessible by

content as well as by keywords. Web services play an important role in this scenario:

users and software agents should be able to discover, compose, and invoke content using

complex services. The main drawback of this approach is thatspecifying ontologies may

become a very complicated task.

4.3.1 Web Services Orchestration

Web Services rely to a great extent on XML and related technologies for describing

their interfaces and the messages exchanged between clientand Web Service. Their

suitability for automated machine processing has also encouraged the development of

specialized languages for describing Web service workflowsas XML based languages.

The first notable languages to appear, XLANG [158] and WSFL [25], enabled only static

composition of Web services [117]. XLANG relies on structured activities, whereas the

second one permits the creation of workflows by linking activities.

As demonstrated in [117], the XLANG language is more restrictive than WSFL in the

sense that some workflow patterns are not supported. One suchexample is arbitrary

cycles, similar to the ’goto’ mechanism used in unstructured programming [192]. The

128

Chapter 4. Orchestration of Web/Grid Symbolic Services

WSFL was superseded by the BPEL4WS V1.1 standard language whichlater was en-

hanced and adopted as a OASIS standard under the naming WS-BPEL2.0 [37]. Due

to its massive support from industry, the WS-BPEL 2.0 called inshort BPEL, now rep-

resents the industry standard for describing Web Services orchestration. Its pure XML

nature that on occasions makes describing workflows difficult motivated IBM to create a

hybrid language, BPELJ [134] that allows Java components to be easier integrated with

standard BPEL workflows.

Due to the acceptance of BPEL asde factostandard for describing Web Services orches-

tration, researchers have also investigated the suitability of BPEL and related technolo-

gies for describing scientific workflows. In order to analysethe suitability and expres-

siveness of a language multiple perspectives should be used[192, 191]. The language’s

power comes from the support it offers for existing control flow patterns, data flow pat-

terns and interaction patterns describing the relation between the process and the services

it has to interact with. In [198] the author demonstrates theway BPEL is able to support

most of the control flow patterns while [44] investigates multiple interaction patterns and

the way they can be expressed in BPEL.

Learning from the experience and shortcomings of its predecessors, BPEL tries to pro-

vide support for most of the features that industry and research communities found im-

portant while trying to keep the language itself simple. BPELis used to describe com-

posed Web Services as business processes. While the businessprocess itself is seen by

an external client just like any other Web Service, the workflow engine that executes the

process has the task to interact with partner Web Services that are the actual providers

of services. The interaction plan results from the analysisdone by the specialist that

identifies the Web Services that are needed to solve a particular problem and the control

flow and interaction patterns need to achieve its goal. External Web services called by

the process are partners playing specific roles in relation with the process.

The full workflow lifecycle identified in [76] is supported byBPEL. Abstract workflows

defined in BPEL capture the partners and the control flow of the process while actual

129

Chapter 4. Orchestration of Web/Grid Symbolic Services

details about the location of Web services to be used can be provided at runtime. Inter-

action with external Web Services is defined using the port types of the partner services.

Data types of the parameters used by partner port types can beautomatically discovered

from the WSDL documents and BPEL provides XML specific mechanisms to manip-

ulate data based on their specific format. This functionality is required because it is

often the case that the output received from one partner mustbe transformed to the input

expected by another partner interface.

Modelling a workflow can be achieved using several language constructs. They are

referred as BPEL activities, which are encoded as XML tags in the BPEL document

describing the workflow. The most important ones are:

• Communication activities: receive, invoke, reply, pick, onmessage, on alarm

• Control activities: if, elseif, else, switch, otherwise, while, repeatUntil, flow, wait,

exit, sequence, foreach

• Fault handling activities : throw, catch, catchall, terminate, compensate, compen-

sateScope, rethrow

• Data manipulation and scope: assign, copy, scope, validate

• Auxiliary activities: empty, extensionActivity

Some of the activities mentioned represent themselves containers that can hold other

activities. For instance, thesequenceactivity instructs the workflow engine to execute

one after another the activities that it contains, regardless if they are calls to other services

expressed using aninvokeactivity or an arbitrary combination of other activities.

An important requirement raised by scientific workflows is the ability to describe work-

flows by combining already defined ones. BPEL supports this requirement since a work-

flow document can be easily integrated into another document. Scopes of existing activ-

ities and for the workflow itself can be created to prevent naming clashing for constructs

130

Chapter 4. Orchestration of Web/Grid Symbolic Services

and variables that are defined to hold data. BPEL also offers support for exception

handling and and compensation activities to deal with execution errors that may occur.

Results obtained from partner services may be temporarily stored and manipulated using

XML based data manipulation mechanisms.

The most important control flow patterns have correspondingsupport in BPEL through

intuitive BPEL activities. Thesequenceactivity may be used to describe a sequence pat-

tern, conditional patterns may be expressedif andswitchactivities, repetitive patterns

may be expressed usingwhile, repeatUntiland foreachactivities. The order of execu-

tion can be specified on one hand using the structured activities describe above combined

with links that may be specified between activities. A link specifies a dependency rela-

tionship between a source activity and a target activity. The target activity can only be

started if all source activities on which it depends have been successfully completed.

Graphical interfaces, e.g. ActiveBPEL Designer [28], can beused to create abstract or

concrete workflows using a visual interface and to assist theuser in deploying the re-

sulted workflow. The user has to define the partners that the workflow process must call

and to combine these partners using control flow constructs.Once the workflow is spec-

ified the user may even test the workflow by using fake partnersautomatically provided

by the ActiveBPEL Designer environment. Such mock partners may be instructed to

return a particular value when they are invoked. After the workflow is deployed as a

process in the ActiveBPEL workflow engine it can invoked as regular Web Service by

an external client. Depending on how the workflow is constructed, each call may create

a separate instance of the workflow or it may reuse an existingone.

Any modification in the structure of the workflow requires that a new workflow is de-

ployed and therefore dynamic modifications of its structureare not possible at run time.

Workarounds for this issue may still be possible. One solution would be to break the

original workflow into multiple smaller workflows and have them executed one after

another. Thus, depending on the dynamic status of the workflow it may call one of the

existing workflows that can be individually be modified. Another similar option is to

131

Chapter 4. Orchestration of Web/Grid Symbolic Services

implement workflows that cover most of the possible scenarios and based on the inter-

nal state of the workflow and routing plan of the workflow to execute corresponding

sub-section of the initial workflow. None of thesestrive solutions is ideal but at least

alternatives are available if really needed.

Apart from the solution provided by BPEL language an important effort was conducted

in the scope of several research projects with the aim to provide versatile solution for

description and execution of workflows. While BPEL’s main intent was from the begin-

ning to provide support for Web Services composition, research initiatives have tried to

accommodate multiple distributed technologies. This approach is motivated by histor-

ical evolution of distributed computing platforms for scientific computations that were

developed over time using a wide range of technologies. Existing tools for scientific

computations could not be rebuild from scratch and therefore solutions that could still

use them had to be found. Since these systems do not target especially Web Services we

include them in the category of Grid workflow systems in a broader sense of the Grid

term and not restricted WSRF compliant services.

4.3.2 Orchestration in Grid Environments

The number of workflow systems for Grids is quite large and motivated by the interest to

provide a flexible way to describe and execute computationalsteps required by compu-

tations specific to science. Although the main middleware solutions for creating Grids,

such as Globus, Unicore and gLite provide mechanisms for resource management and

discovery, their capabilities for creating workflows are limited. Their intent is to pro-

vide solutions for exposing and managing computational resources at a lower level. It

is also possible that existing applications are not easy to integrate with Grid middle-

ware products without extensive refactoring. Depending onthe nature of the problem

to solve, most of the important research communities involved in scientific computing

have strived to design and implement tools and frameworks tosupport their own com-

putational domain. We investigate here some aspects of the main systems for workflow

132

Chapter 4. Orchestration of Web/Grid Symbolic Services

design and execution, while a more compressive overview canbe found in [199].

Triana [111, 130, 71, 177] is a problem solving environment that consists of several lay-

ers of components. Triana abstracts task executors as components using Triana custom

data types. Once external service providers are wrapped as components they can be used

inside the visual tool to build workflows. JACAW [112] may be used to integrate as

components any legacy tools implemented in C. Independent computational nodes on

which Triana is running are able to advertise their components.

The user can drag components to the worksheet and connect these components using

pipes. Workflows can be modelled as DAGs. The lack of cycles restricts the usability

of the system since loops cannot be implemented. Web Services and Grid Services can

be used within Triana if they are properly wrapped as components following Triana’s

model. Web Services can also be discovered by querying UDDI registries and automat-

ically wrapped as Triana components. The workflows created using the visual interface

can also be exported using a proprietary Triana format or as BPEL4WS workflow docu-

ment.

Taverna [140] is a workbench for creating and execution of workflows for life sciences.

Its main goals is to provide a versatile way to create workflows based on arbitrary ser-

vices for which no restrictions on data types used are assumed. This gives the important

benefit that virtually any service can be used as a executor ina Taverna workflow. On

the other hand, enforcing data matching rules and conversion of data from one format to

another has to be explicitly described within the system.

Execution units can be easily added to Taverna by querying existing UDDI registries or

specific registries implemented by Taverna system. It is also possible to extract service

descriptions from other sources such as existing workflows and even Web pages, by

using external capabilities of plug-ins or by querying semantic repositories. It is not

possible though to dynamically change the address of a service and therefore, static

binding is assumed. Workflows may be described as DAGs in which links between

133

Chapter 4. Orchestration of Web/Grid Symbolic Services

components describe the data flow links between one output port of one processor unit

to an input port of another processor unit.

Behind the scenes the SCUFL language is used to describe the actual workflow which

is interpreted by the Freefluo enactment engine. To communicate to a certain type of

service a processor type has to be defined for SCUFL due to historical reasons. Various

processor types are already available for Web Services, local Java programs, services

implementing the REST style interface but support for Grid Services is not provided.

When defining a workflow, except for the specific links created by the user, any other

control flow mechanisms is inferred from the structure of theworkflow. To execute a

certain task multiple times, the input for the execution unit should be an array rather

than a single value. In this case the system will invoke the service, external or locally

implemented, once for every data element in the provided array.

Sedna [86, 194] was developed in an early stage as a platform for solving theoretical

chemistry problems. They have chosen Globus as middleware for creating and manag-

ing computational nodes while BPEL was seen as candidate for orchestration of Grid

services created using Globus. A visual workbench allows users to describe workflows

using high level components that are stored internally by the application using a high

level description language. Execution components that areused to define the workflow

in the visual workbench still have to be defined in terms of port types and data types

specific to the BPEL and related technologies. One important facility of Sedna is that a

workflow can be deployed as a BPEL process to several workflow engines, among the

ActiveBPEL.

The actual tasks that are sent to Grid Services are describedusing the Job Submission

Description Language that is supported by Globus WS-GRAM. Based on their investiga-

tions, the authors conclude that BPEL and related technologies provide enough support

to be considered viable when compared with other similar solutions. Among the most

important advantages of BPEL is the support for control flow constructs, and scalability

and reliability of existing workflow engines that are heavily endorsed by industry actors.

134

Chapter 4. Orchestration of Web/Grid Symbolic Services

Load balancing and scheduling tools, such as Condor [179] andPBS [47], are able to

manage pools of resources usually available in LAN environments and to effectively

use these resources to solve computational tasks. DAGMan, the workflow management

component of Condor, is able to control the execution of static workflows expressed as

DAGs. Data dependencies among related tasks are specified byreferencing data place-

holders, e.g files, as input and output dependencies. Based onthese dependencies the

scheduler may decide if a certain task may be submitted for execution or it has to wait

for other tasks to finish. Based on scheduling capabilities ofCondor and DAGMan, P-

Grade [115] is a portal for creating and managing workflows. Among the types of tasks

that can be used to create workflows in P-Grade, executables,MPI and PVM jobs are

supported.

CRESS [174, 190, 122, 189] is a tool initially designed for composition of Web Ser-

vices that was later enhanced to also support static composition of Grid Services. Due

to the differences between Web Services and Grid Services, existing workflow engines

are not capable of seamlessly interacting with Grid Services. Based on the visual work-

flow environment that CRESS offers, the user is able to describeworfklows as DAGs in

which execution units represent already deployed Grid Services. The workflow is stored

internally using a proprietary language suitable for formal verification of the composi-

tion. For deployment, CRESS used a translator to a BPEL workflow format that can be

deployed in an ActiveBPEL workflow engine.

Globus Toolkit offers the possibility to describe and run remote jobs through its GRAM

component. In conjunction with the Globus, Swift [201] can execute workflows speci-

fied as input files. Workflow can be described using a functional language, SWIFTScript,

which is interpreted by the Swift execution engine. The resulted workflow can be visu-

alized as a precedence graph. It also permits restarting andrerunning workflows with

the option to execute only the jobs that were not executed successfully. The Java CoG

Kit [121] reunites a set of tools that can be used for expressing and executing Grid work-

flows. A specific workflow language can be used to describe workflows executed by the

Karajan workflow engine. Workflows may contain control flow constructs for creating

135

Chapter 4. Orchestration of Web/Grid Symbolic Services

sequences of tasks, define tasks that must be executed in parallel, and define execution

cycles in a similar way BPEL supports it.

Condor-G [97] is a product that mixes the inter-site communication capabilities of Globus

with the job management offered by Condor. As a result, the DAGMan component of

Condor-G can be used to describe and execute workflows. For every job the user can see

meta-information such as the issuer of a job, the status, thetime it was started/ended, the

command that started the job. In the case of a failure, DAGManis able to rerun only the

jobs that were not completed successfully. Using a combination of Condor-G and Stork,

workflows can be executed over a Grid[74].

Combinations of the tools mentioned above may be possible. This concept is demon-

strated in [77]. The Pegasus’s main responsibility is to analyse an abstract workflow and

to determine an efficient mapping between the tasks to execute to the actual resources

that are able to support their execution. Thus, an abstract workflow described in DAX

(an XML language for describing DAGs) can be transformed in aconcrete workflow. In

this case Pegasus provides complementary functionality toCondor which is the actual

resource manager and responsible for scheduling tasks’ executions.

Symbolic computation services may be part of a computational infrastructure that can be

used for solving complex problems. The analysis of the work conducted in the context of

building symbolic computing services by projects such as MONET [32], GENSS [137]

or MathBroker [43], has led us to the conclusion that dynamic discovery techniques im-

plemented using AI techniques for Web services, in general,and for symbolic services,

in particular, are not yet able to provide a wide-scale applicable solution. The discovery

process in MONET uses the MSDL ontology language and the MPDLproblem descrip-

tion language to retrieve the right mathematical services by interrogating modified UDDI

registries. A similar agent based approach is also used in GENSS.

Our approach differs in several respects. First of all, it uses the functionality offered by

remotely installed CASs as potential solvers of mathematically described problems. The

current system aims to integrate the processing capabilities of the functions implemented

136

Chapter 4. Orchestration of Web/Grid Symbolic Services

in remote CASs into the within user’s CAS system. The discoveryprocess uses as a main

criterion of selection the functionality implemented by a certain service to manage a

certain OpenMath call object. The OpenMath standard [157] ensures the interoperability

between Web services that expose functionality of different CASs.

Previous results obtained in the context of workflow patterns [139] are used within the

current approach to provide a higher level of abstraction. Implementation details are

hidden and the user can concentrate on the problem to solve and not on low level details

of implementation. The user can build arbitrary complex workflows using standard con-

structs (workflow patterns): the complex symbolic computation process is specified in

terms of workflow patterns and not in a specific workflow composition language.

As discussed in the previous chapter, Web Services and Grid Services are the best tech-

nologies for exposing CAS functionality. Existing solutions for Grid Workflow manage-

ment cannot be used without applying extensive modificationto the execution platforms

or without implementing additional components and adapters. Visual platforms for de-

scription of workflows cannot be integrated within the usualenvironments of CASs.

Using such platforms as standalone environments and CAS environments at the same

time would make the process of describing and execution of workflows for symbolic

computation difficult and error prone. BPEL language is the best choice for orchestrat-

ing Web and Grid Services even if it does not provide full support for Grid Services

orchestration.

4.4 Composition of CAS Servers Using AGSSO

Existing systems for distributed symbolic computing allowclient applications to dis-

cover and access remote services but they are not designed toprovide support for de-

scribing complicated workflows which can be managed automatically by specialized

execution engines. Their support for workflow management capabilities is limited and

they do not offer specific solutions for storing results or for transferring required data in

137

Chapter 4. Orchestration of Web/Grid Symbolic Services

a seamless way. While these capabilities may be provided to a certain extent by exter-

nal components, the computer algebra specialist would haveto explicitly integrate them

within the algorithms they implement, which is rarely a simple task. Existing frame-

works and technologies that are used in other research domains cannot be adopted for

symbolic computation systems without tailoring them to specific requirements of sym-

bolic research field.

In Chapter 3 we have introduced a set of components that were designed to support most

of the requirements identified earlier regarding usability, interoperability and extensi-

bility. The CAS Server components, the foundations on which our architecture is built

were already designed to support interoperability. Each CASServer provides the same

standard set of capabilities including support for discovery, task management and data

management, while the data encoding model used relies on already accepted standards.

Clients can submit computation requests encoded in one of theaccepted formats and

retrieve the results based on job identifiers. Re-routing of results to a specific URL iden-

tified service is also possible. Task level control capabilities such as pausing, resuming

and cancelling tasks is supported at CAS Server level and all obtained results can be

stored the CAS Server for later reference and provenance. In order to support discovery,

the CAS Servers are able to contact index services and advertise their current state and

information about services they provide.

The CAS Server’s standard interface makes composition of services they provide easier

and more reliable than composition of arbitrary symbolic services. The standardized

interfaces provide external client the guarantee that the structure of services provided

by the CAS Server components does not change over time, even ifthe symbolic capa-

bilities provided through services evolve. Standard data encoding used for describing

requests and computed results is another characteristic that makes composing these ser-

vices easier. A common problem related to dynamic composition is the variations in data

encodings used by the services involved in the composition.An execution engine that

needs to invoke two services in a sequence has to adapt the response received from the

first service to the data model that the second service is ableto understand. This problem

138

Chapter 4. Orchestration of Web/Grid Symbolic Services

does not arise if a single data model for encoding data is used.

To provide capabilities for description and execution of symbolic workflows of arbi-

trary complexity, several modifications have to be made to the original architecture. We

add specialized components at server side for managing workflow execution and we

enrich client components with additional capabilities that support description of work-

flows. The resulted architecture is depicted in Fig. 4.4. Within this architecture, the

AGSSO component and its specialized subcomponents represent the central manager of

the whole composition architecture. Its main role is to receive workflow instances de-

scribed at the client side, to deploy and to manage their execution by coordinating CAS

Servers and to store final results of the computation.

Several features already provided by the CAS Server components can no longer work

as expected for tasks that are part of a workflow without corresponding support from

the AGGSO components. Since AGSSO is a mediator between the actual clients and

services provided by CAS Servers, AGSSO must ensure that tasklevel control actions

are still available. When a task is paused as result of the user’s request the actual request

must be handled by AGSSO and if needed, routed to the CAS Serverthat executes the

particular task. Therefore, similar services that are available at the CAS Server level

should also be supported by the AGSSO component through its interface.

Symbolic workflows are described at the client side as workflow templates. High level

predefined constructs that match the most important execution patterns represent the

building blocks that the user can combine. Blended with native CAS capabilities, these

constructs provide an easy and intuitive way to describe complex computations. Since

the majority of CASs only provide command line interpreters,most of the workflows

should be described as scripts specific to a particular CAS. More advanced visual solu-

tions could also be an alternative for CASs that provide a visual interface. Because high

level constructs are used the code describing the workflow only contains calls to CAS

implemented functions matching workflow constructs. Through this calls the system can

be instructed to build the workflow in the format that will be sent to AGSSO. Unneces-

139

Chapter 4. Orchestration of Web/Grid Symbolic Services

….

 Client

 Client

….

AGSSO

Client

Manager

Main Registry

Process Manager

CAS Server

Local Registry

CAS CAS

Local Registry

CAS CAS CAS

….

Figure 4.4: Architecture for Grid Symbolic Services Orchestration.

sary details such as actual servers to be used to solve a certain task are omitted at client

side because it is AGSSO responsibility to discover the services to use.

The process of specifying workflows is simple and straightforward. As we will further

show in Section 5.2, due to its simplicity it can be easily adopted by any CAS. Specific

functions available in the CAS environments implement the required functionality to

construct the abstract workflow and to wrap and send it along with arguments to an

AGSSO component that will manage the workflow further. The XML language used

for encoding workflows presented in Table 6.1 is similar to the one of BPEL but it only

contains the minimum high level details of the composition.Some details that a complete

BPEL workflow contains such as addresses of services to invokeare not required at this

level and they will be added later by AGSSO. To demonstrate the viability of this solution

we have implemented a GAP specific package. The functions that the package contains

do not implement themselves the logic required to constructand submit the abstract

workflow. They only represent a thin layer that accesses the functionality provided by

a generic component implemented in Java which resides at client side. More details

and examples on how workflows are described and particular solutions implemented for

140

Chapter 4. Orchestration of Web/Grid Symbolic Services

GAP are provided in the next chapter.

For each workflow submitted to AGSSO, the client receives a workflow identifier. The

identifier must later be used as a reference for any management task that the client re-

quires, from execution management to results retrieval. Within a workflow, each indi-

vidual task has its own unique identifier and therefore, functionalities provided by CAS

Servers to cancel, pause and resume tasks can still be used bythe client by invoking the

corresponding operations on the AGGSO interface. The impact that such actions have

on tasks and on the workflow as a whole are further analysed in Section 6.2. Depending

on the status of the task a request to alter the state of a task will impact the task, a branch

of the workflow or even all tasks of the workflow.

The workflow instance received from the client is parsed by the Client Manager sub-

component of the AGSSO and transformed in a template workflowencoded in BPEL.

Once the workflow is generated the Client Manager deploys it tothe execution engine

and starts its execution. During the process of generating the BPEL workflow, required

details about which service types are required by the execution are also filled in by the

Client Manager. All CAS Servers have the same interface and therefore the invoke logic

is the same regardless which is the actual CAS Server that willbe selected to be invoked

at runtime. The addresses of the CAS Servers to invoke are determined in a dynamic

way immediately before a task is submitted to be executed.

Latest information about CAS Servers available, their status and their capabilities are

taken from theMain Registrysubcomponent which is a centralized index. Plug and

play components that implement various scheduling strategies can be easily added as

subcomponents of AGSSO. These components select suitable services based on func-

tionality mappings between tasks and service providers. A CAS Server is able to handle

a certain task if one of the CASs exposed through the CAS Server’s interface imple-

ments the required operations and OpenMath symbols used to describe the arguments

of the targeted operations. The information that Main Registry component provides is

guaranteed to be the newest available at the moment when a service is selected because

141

Chapter 4. Orchestration of Web/Grid Symbolic Services

CAS Servers notify the AGSSO components about any change in the structure of their

provided services. A more detailed description of the approach we used to test various

scheduling strategies is provided in Chapter 6.

The Client Manager subcomponent has also the role to keep track of the current status

of the workflow and of particular tasks. Based on this information it is able to detect

which tasks should be planned for execution and which tasks cannot be executed yet

due to dependencies to other tasks. When the workflow’s execution starts, based on

tasks dependencies AGSSO component schedules only the tasks that can be immediately

executed. During workflow’s execution, whenever a task is solved and the response is

received from the CAS Server, the Client Manager analyses if a new task can be started.

In describing a task that is part of the workflow the user has tospecify the type of CAS

that should be used to compute the task. This information is required because currently

it is not possible to determine the most suitable CAS to handlea certain task based on

its description. The specified CAS type can be general enough to match a entire class

of CASs or it can be refined to target a particular version of a CASexposed by a certain

CAS Server. At the CAS Server side, more than one CASs can be exposed through the

same interface but each CAS has a unique name in the scope of theCAS Server even if

several machines have the same version of a CAS installed and running. This naming

convention makes possible to target a particular CAS installed on a particular machine.

If for instance in the scope of two different CAS Servers two GAP instances are installed,

their name is unique and therefore the CAS Server can differentiate among them. For

each CAS, the CAS Server provides information about the configuration of the machine

it is installed on, e.g. processing power, storage capabilities, but it does not advertise its

IP address or machine name. If a user requires that a certain CAS should be handled by

a CAS named ’GAP’ and ’GAP v3.0’ and ’GAP v4.0’ are able to treatthe request, the

CAS Server has the liberty to choose the instance that is more appropriate. On the other

hand if more information is added to required type of CAS, suchas ’GAP v4.0’ and the

user especially requests that this particular instance to be used. The same rules apply at

142

Chapter 4. Orchestration of Web/Grid Symbolic Services

the workflow level when AGSSO component decides which CAS Server to use to solve

a task. Even if the whole system is designed to dynamically determine the most suitable

CAS Server, and in the context of a CAS Server, the most suitableCAS to execute a

task, naming schemes can easily be created to override this default behaviour if needed.

Based on the naming scheme described above even more advancedresource partitioning

can be enforced. Let’s assume that one group of servers should be exclusively dedicated

for long running tasks and for a set of privileged users whileother group of servers should

be used by general public. This partitioning is easy to achieve only by defining and ad-

vertising two separate AGSSO components. The CAS Servers that manage the dedicated

resource could advertise their resource to one AGSSO component while the others could

be advertised to another one. Anyone that has the right to submit workflows to the first

AGSSO component will have their tasks executed on the more powerful servers while

the rest of the clients will submit workflows to the another AGSSO component which is

only aware of a subset of the CAS Servers available within the architecture.

Bilateral Simple Conversation pattern (Section 3.2) is used by the AGSSO components

to submit tasks to a CAS Server and the same pattern is used by the CAS Server to

send back the result when the computation has finished. The structure of the request that

AGSSO component submits to the CAS Server have not changed. The same conversation

pattern is also used for management related requests both inthe interaction between the

client and AGSSO component on one side and, the AGSSO and CAS Server components

on the other side. The client is not aware of the underlying mechanisms and conversation

patterns that are used by the the CAS Server and AGSSO. Simple task descriptions

provided at client side are transformed to adhere to communication patterns used by

CAS Server. Specific initialization steps that need to be run when accessing a Grid

Service, data management and security related features areautomatically added to the

BPEL generated workflow by the Client Manager.

Originally developed for interactions with Web Services, workflow engines do not have

native support for interaction with Grid Services implemented using the WSRF specifi-

143

Chapter 4. Orchestration of Web/Grid Symbolic Services

cation. Moreover, Grid Services use the factory pattern forcreating and initializing of

Grid Services. It is thus necessary that a client invokes forinitialization, first the fac-

tory service which creates the corresponding WS-Resource andprovides an Endpoint

Reference (EPR) to identify the resource that can be used by theclient. This interaction

pattern is not usually foreseen for regular Web Services andnot natively supported. The

actual WS-BPEL workflow that the Client Manager generates has also to add required

invokes to cope with this requirement.

The actual execution engine that the AGSSO uses for workflow execution is the Ac-

tiveBPEL [28] engine. This engine is able to receive workflow descriptions expressed

using the WS-BPEL workflow language and to manage their execution. Extensions that

would allow the engine to communicate with Grid services andspecific hooks for storing

management data and results to a local database instance hadto be implemented. For

dealing with Grid Services, an enhanced version was also provide by [81]. Workflow

management capabilities required to control task’s execution are not provided by any

existing workflow engine. These capabilities are not implemented as additional features

of the engine itself. Instead of modifying the engine implementation we use additional

hooks and activities in the generated workflow to provide these additional capabilities

[64].

The actual size and complexity of the BPEL workflow described in the format required

when it is deployed to the ActiveBPEL engine is several times bigger than the abstract

workflow generated at client side. Several patterns, such asthe sequence pattern, have

direct correspondence with existing BPEL activities, but most of the patterns that we

provide do not have direct correspondents and therefore they are implemented as com-

binations of basic constructs. Using the Java API offered bythe ActiveBPEL engine we

generate constructs similar to those described in [198]. Patterns that can be implemented

with minimal efforts are the sequence pattern and the parallel/split pattern because of the

direct correspondence for these patterns in BPEL through thesequence and flow BPEL

activities. AGSSO is able to support also execution patterns such as conditional and

repetitive constructs.

144

Chapter 4. Orchestration of Web/Grid Symbolic Services

As we mentioned before in Subsection 4.1.1 reusability and reproducibility are important

aspects of scientific discovery. To ensure that these requirements are met, theMain

Registrycomponent stores all relevant details regarding workflows and their execution.

A workflow execution request received from a client is storedin theMain Registrybefore

any other processing starts. During the execution of the workflow, all details regarding

which job is assigned to which CAS Server, the time required for execution and the result

obtained are also stored in theMain Registry. Each CAS Server also records in itsLocal

Registrydetails regarding the jobs it receives and the hardware profile of the machine that

executed the tasks. Combining the information stored in theMain Registryand several

Local Registrycomponents of the CAS Servers executing the jobs, a complete image of

the execution can be created.

The AGSSO Server is the software component responsible for execution and manage-

ment of workflows for symbolic computations. For the actual execution of tasks it selects

suitable CAS Servers, submits task to them and collects obtained results. The main fea-

tures of the AGSSO Server are that it:

• transforms workflows expressed in a generic workflow language to the BPEL for-

mat used by the ActiveBPEL workflow execution engine;

• executes scheduling algorithms to select suitable CAS Servers for executing atomic

tasks;

• implements a registry that controls CAS Servers to which tasks should be submit-

ted and allows remote users to discover execution capabilities of registered CAS

Servers;

• uses capabilities provided by the ActiveBPEL execution engine to execute work-

flows, monitors and manages workflows’ execution;

• through capabilities exposed it allows users to manage deployed workflows which

include features for workflow execution management.

145

Chapter 4. Orchestration of Web/Grid Symbolic Services

4.5 Summary

In this chapter we have addressed the problem of composing functionality of CASs for

solving large symbolic problems. The design of the AGSSO Server component that we

present in this chapter is covered in [60, 61, 66, 148].

In Section 4.1 we analyse the general requirements raised byscientific workflows and

we come to the conclusion that similar requirements are valid for symbolic computation

workflows: support for workflows having a large number of tasks and that take a long

time to complete; the ability to control and to steer the execution of a workflow; the abil-

ity to review and reuse already obtained results; the ability to express workflows in ways

that are meaningful for application experts. Most of the current workflow execution en-

gines expect workflows to be expressed in terms of workflow patterns. A short overview

of the most important workflow patterns that are often used insymbolic computing is

presented in Subsection 4.1.2.

Most of the symbolic problems’ solutions are described algorithmically by combining

functions implemented by the local CAS instance. By analysingthe basic functional-

ity provided by CASs several execution patterns may be identified. In Section 4.2 we

demonstrate how basic patterns used in symbolic computations may be expressed using

workflow patterns. On one hand we demonstrate that existing workflow engines may

be used for handling symbolic computation workflows and on the other hand we pro-

vide a set of guidelines to help symbolic computation experts in the process of creating

symbolic computation workflows.

Most of the existing workflow execution engines lack supportfor specific features re-

quired by symbolic computations. An overview of tools and technologies used for de-

scriptions and execution of workflows is provided in Section4.3. The AGSSO Server

component described in Section 4.4 reuses capabilities of existing workflow engines and

provides additional capabilities to ensure required support for execution and manage-

ment of symbolic computation workflows.

146

Chapter 4. Orchestration of Web/Grid Symbolic Services

The actual components executing individual tasks are the CASServers. The AGSSO

Server receives symbolic computation workflows expressed by clients and transforms

them in executable workflow that are deployed to a workflow engine. It provides dy-

namic selection of computational nodes, i.e. CAS Servers andit provides support for

monitoring workflows’ execution. Its internal registry retains information about avail-

able CAS Server that tasks may be sent for execution and it alsostores computed results.

Capabilities already provided by the CAS Server components such as the ability to can-

cel, pause and resume a certain task are also supported by AGSSO Server. A user can

therefore submit and control workflows’ execution. The usercan experiment differ-

ent execution scenarios by skipping the actual execution ofsome tasks of the workflow

and manually provide expected result for those task while the workflow is running. To

provide this functionality we do not rely on workflow execution engines’ capabilities

to control the execution of the workflow but on additional hooks that exploit features

provided by CAS Servers. This approach is novel because we do not have to alter the

behaviour of the execution engine.

The AGSSO component improves the process of describing and execution workflows

for symbolic computations. The description process becomes easier and more intuitive

because the user only has to describe the solutions in high level building blocks. Such

workflow descriptions can be stored for later use, can be disseminated and the solutions

may be incrementally combined and improved. Because the actual services to be used

are dynamically selected by the AGSSO component, the user does not have to specify

such details. The overall efficiency of the system is also improved since components im-

plementing more efficient scheduling algorithms may be added to the system to improve

the way available computational resources are used.

Support for reusability and reproducibility is provided byAGSSO architecture by com-

bining information related to workflows’ execution stored by the Main Registrycom-

ponent of the AGSSO Server andLocal Registrycomponents of CAS Servers. It is

therefore possible to get detailed information about the workflows that were executed,

147

Chapter 4. Orchestration of Web/Grid Symbolic Services

the machines that were involved in the execution and the timerequired by individual

tasks to be completed. The same workflow can be rerun at a latertime and obtained

results can be thoroughly documented.

148

Chapter 5

Generic and Secure Access to Symbolic

Services

This chapter describes the design and capabilities of the Client Component of our archi-

tecture [60] and the security mechanisms that are used to ensure overall protection of the

architecture as a whole and of its components [63]. In Section 5.1 we describe the design

of the Client Component. We also discuss the capabilities thatthis component provides

for accessing remote Web and Grid Services. In Section 5.2 wepresent specific capa-

bilities related to the process of describing workflows for symbolic computations that

can be further executed by submitting them to an AGSSO Servers previously presented

in Chapter 4. General security mechanisms and the how they areintegrated within our

components are discussed in Section 5.3.

5.1 Client Component Requirements and Capabilities

Previous Chapters describe the two main components that provide the foundation for

building a massively distributed symbolic computations infrastructure. Both CAS Server

(Chapter 3) and AGSSO Server (Chapter 4) components rely on Weband Grid Services

149

Chapter 5. Generic and Secure Access to Symbolic Services

for interconnection with other components of the architecture and their capabilities are

exposed as Web/Grid Services. Due to the advantages they provide in terms of inter-

operability and usability, Web Services represent one of the most popular solutions for

implementing computational services accessible to remoteclients. It is also the case

for symbolic computations world in which Web/Grid Servicesare more and more used

for development of new capabilities and even for reimplementing existing ones initially

implemented using alternative solutions.

From the client’s point of view, Web Services are easier to use that other distributed tech-

nologies for several reasons. Software components developed at client side can adopt a

wider variety of technologies and platforms as long as they are able to formulate calls

specific to Web Services. This is only partially possible with CORBA while RMI re-

quires that Java and RMI specific mechanisms are used to implement both the server

and client components. The discovery process is much easierand the description of in-

terfaces is more clear if Web Service are used because the WSDLdocument provides a

description of the interfaces. Additionally, because Web Services rely to a large extent

on XML technologies, standardised XML technologies and related tools makes imple-

menting Web Services much easier, reliable and more secure.

Services offered by remote providers represent the building blocks that can be used to

build complex computational infrastructures. This architectural model is well suited to

the symbolic computations domain and this approach represents an important step ahead

in the overall development of computational platforms. On one hand, a large variety of

Web Services providing support for solving problems of non symbolic nature already

exist and may be accessed by remote clients, including clients specialized for solving

symbolic problems that may require support of non symbolic nature. On the other hand

a high number of mathematical services that provide supportfor symbolic and numeric

computations already exist and their number is constantly increasing.

Most of the current problems are complex and heterogeneous with regard to specific

computational domain. They can only be solved by dividing them in less complex prob-

150

Chapter 5. Generic and Secure Access to Symbolic Services

lems for which a certain solution algorithm may be applied. Therefore it is generally

required that more than one computational system has to be used to solve such problems

that may involve both symbolic and non-symbolic capabilities.

The NAG library [182] is know as one of the most reliable and complete libraries for

numerical computation. Within the framework of the Monet consortium in [128] the

authors describe a solution for accessing routines implemented by the NAG library in

C programming language as Web Services specific to the Monet platform. Apart from

this specific wrapper, Monet provides a framework that allows users to create symbolic

services and expose them through a Web Service interface. Similar mechanisms with the

ones used in Monet can be used to create new services based on the frameworks provided

by MathBroker and GENSS. Additionally, MathBroker project has also investigated the

feasibility of exposing services as WSRF compliant Web Services.

Other initiatives such as Maple2G [151] provide solutions for exposing particular CASs

through Web Services or Grid Services. A similar solution isthe one for Mathematica

described in [178]. Even if the components are not interconnected with the use of Web

Services they use alternative distributed solutions such as RMI than can be converted

to use Web Services with relatively little effort. It is especially the case of systems

that use as conversation pattern the Bilateral Simple Conversation because it does not

require handling session data at the server side. For the ones such as JavaMath [170]

which allows clients to establish computational sessions,the adaptation process is more

complicated but it can still be achieved.

Connectors that link various components of our architectureare based on Grid or Web

Services and any client that accesses the services providedby our architecture must

be able to formulate appropriate calls. Autonomous CAS Server components permit

clients to submit requests, to gather results of computations, to manage tasks and to

interrogate CAS Servers for provided functionality, all through Grid or Web Service

interfaces. Requests sent to the CAS Servers must be correctlyformulated not only

with regard to the SOAP message but they also have to follow one of the two supported

151

Chapter 5. Generic and Secure Access to Symbolic Services

encoding formats previously presented in Subsection 3.6.1and Subsection 3.6.2. The

AGSSO component uses Web Services to expose its functionality to clients but Grid

Services could also be used. Beyond the actual technology used to expose the AGSSO

Server interface, the client must also comply with the message format expected by the

various operations available. The most complex one is the format of the message request

describing new symbolic worflows managed by AGSSO which is further described in

Section 5.2.

With the support of the software components installed on thelocal machine users should

be able to access in a seamless way services offered by remoteproviders. As we stated

before, the capabilities to access remote Web or Grid services should be generic enough

to support access to generic services and not only to services with a specific interface or

that provide a specific type of functionality. These capabilities must be provided within

the CASs that computer algebra specialists use and not as additional software tools that

force the users to switch to a different environment. From the usability point of view, it

is also more convenient to access services directly within the CAS’s interface because

obtained results may be required for further processing within the CAS environment. We

have therefore designed the client components of our architecture to be easily integrated

within existing CAS environments. With the aid of several generic add-on components

CASs may be enriched to provide access to both arbitrary Web orGrid Services and to

specific services provided by the server components of the AGSSO architecture.

Usually the user only knows the address of a remote service oreven the address of a

UDDI registry or a Globus Grid Services container. To invokea certain service the

client must be able to discover and select the service it wants to access. Moreover, the

client component that prepares the calls has to be aware of the service’s interface. Access

to generic services can only be achieved if support is provided for the entire process of

interacting with remote services, from discovery of services and their interfaces to the

actual call and result parsing. Since services are not knowna priori, dynamic clients that

are able to interact with external services must be generated. A wide range of parameters

must be considered when generating Web service clients automatically. These include

152

Chapter 5. Generic and Secure Access to Symbolic Services

the service address, the port that the service provider listens to, the number and names

of the methods or the way that the service descriptor is obtained.

Several tools provide partial implementations of Web service automatic client compo-

nent generators. Eclipse [4] can generate a Java Bean proxy from a WSDL document

for Web services deployed on WebSphere servers. WebserviceStudio [23] can be used

to invoke Web service operations interactively within a testing environment for services

of which endpoint is known. It fetches the WSDL and based on service’s description it

generates a proxy from the WSDL and displays the list of methods available. The user

can then choose any method and provide the required input parameters. Systinet Devel-

oper for Eclipse [20] also supports client generation, the entry point being the WSDL

document describing the Web service and automatically generates Java client code that

calls the Web service; the developer must create the real method calls on the prepared

interfaces in the client code. Other solutions to generate the Java classes needed to in-

voke a Web Service programmatically are Novell exteNd Workbench [181], JAX-RPC

Stylus Studio [185], etc.

The ASSIST [35] framework aids the application developer byproviding them with a

proxy library whose entries are the stub methods for the remote Web service. These

are generated from the services WSDL file. The programmer mustinstantiate the stubs

with the code needed to invoke the services methods, and place calls to the stub methods

within the code provided by the framework modules. A different approach is taken

by Xydra-OntoBrew [99]. This provides on-the-fly WSDL to Web-form generation for

simple services and portlet clients: the Xydra servlet takes WSDL as input, generates an

XHTML form that allows the user to provide an input message, gathers the submitted

input values and converts name-value pairs into an XML message that is sent to the

Web service. Finally, it displays any result messages. WhileXydra is a sophisticated

response to the client code creation problem, simpler solutions are needed especially

when workflow execution of combined services is desired.

The tools mentioned above have some limitations and inconveniences related to the pro-

153

Chapter 5. Generic and Secure Access to Symbolic Services

cess that needs to be followed when implementing clients forremote services. They also

cannot be easily integrated with existing CASs because the process of code generation is

only partially automated. Additionally, these tools do notinclude Grid service capabili-

ties, and, as far as we are aware, there is no previous automatic generator that supports

WSRF-compliant services. MathGridLink [178] is a solution specific to Mathematica

for deploying Grid Services and accessing these services. The Maple2g [149] provides

a mechanism that can be used in Maple to submit and obtain result of Grid tasks. Its

capabilities are build over the standard Globus GRAM service. Therefore the tools men-

tioned above are not able to support access to generic Grid services but to services having

a particular interface and usage pattern.

To a certain extent the CAS itself has to implement features required to support the

process of interacting with remote services, one of the mostimportant requirement being

to handle data encoding in specific encoding formats. Remote service implementing

symbolic computation capabilities may expect that requestparameters are encoded using

a specific encoding format such as OpenMath. CAS Servers use OpenMath and SCSCP

compliant messages but other services may require other encoding models. Since the

CAS is the direct beneficiary of the services, it is its direct responsibility to ensure that

it is able to encode and decode specific data formats that are out of the scope of Web

Services in general. Except capabilities that are specific to symbolic computations, the

rest of the capabilities that are related to accessing remote services should be provided by

external components that can be accessed using native CAS routines. External packages

such as Apache Axis [40] provide such capabilities in a reliable way and they can be

integrated with existing CASs through adapters.

Within this chapter we describe a client side suite of packages that provide an easy

to use solution that can be used in conjunction with virtually any CAS. As a result,

CASs can be enabled to access external Web and Grid Services. Consistent security

mechanisms must be enforced within our AGGSS architecture to ensure that both server

side components and clients are effectively protected against security threats specific

to distributed environments. The second section of this chapter provides an overview of

154

Chapter 5. Generic and Secure Access to Symbolic Services

security mechanisms available in the context of Grids and describes how they are applied

within AGSSO.

5.1.1 Enabling CASs to Access to Grid and Web Services

The architecture of the client side component is composed oftwo types of components,

the ones that have the role to provide capabilities for interacting with generic remote

Web or Grid Services and a special category that are designedto be used in conjunction

with the services provided by the AGSSO components. All these components rely them-

selves on specialized components and packages developed bythird party providers. For

instance, components at the client side that allow access toWeb Services rely for some

of their implemented features on the capabilities offered by Apache Axis. Similarly,

other components provides support for features specific to Grid Services and rely on al-

ready existing APIs provided by Globus Toolkit. Whenever possible existing solutions

already well known and accepted by research communities andindustry are preferred

to ad-hoc solutions. The client side components provided byAGSSO have the role to

embed features such as security certificates management andfurther provide them as

routines accessible directly within the CASs’ command line environment. Due to spe-

cific design of the components we developed, they can be easily integrated within any

CAS.

In addition to the core functionality that allows access to remote services specific func-

tionality for managing data and preparing calls is provided. We have presented in the

previous chapter a solution for handling symbolic computation workflows. This solution

required that the client specifies the workflow in a specific format which can be under-

stood and managed by the AGSSO server. Even if the workflow instance that has to

be described at client side does not have a complicated structure, the fact that it must

be described using the specific XML language makes this task cumbersome to be done

manually. One of the components available at client level implements functions that

assist the user in creating workflows in the appropriate format. All features mentioned

155

Chapter 5. Generic and Secure Access to Symbolic Services

Client

SGServices

SGProxyCert

SGUtils

AGSSOCli

C
A

S

Web Services

Grid Services

AGSSO

Figure 5.1: Client Side Architecture

above are wrapped into a single stand-alone executable thatcan be accessed by any ex-

ternal component which is able to communicate through pipes. This represents the first,

the lowest level layer of the client side architecture.

The second layer of components that must exist at client sideare components that are

directly integrated within the CAS and they have the role to facilitate access within the

CAS environment to the features provided by the first layer. Within the CAS’s develop-

ment environment, the user should access already provided routines that makes access-

ing Web Services or describing complicated workflows simpleand intuitive. Packages

of functions specific to a certain CAS represent a thin layer and have the role to relay

requests to the specialised external components mentionedabove. This decoupling is in

many respects beneficial. Specific functionality does not have to be implemented within

the CAS and only a thin layer of routines which formulate appropriate requests to the

first layer have to be provided. Enabling a new type of CAS to access Web of Grid

services is easy and reliable because the core functionality is provided by external com-

ponents. If access to new technologies have to be provided within the CAS, they can be

easily added at a later time.

The general architecture of the client is presented in Figure 5.1. CASs access the func-

156

Chapter 5. Generic and Secure Access to Symbolic Services

tionality of the CAGS components by communicating with the RunManager component

which is a command line interpreter. RunManager is a completely generic interpreter

that exploits Java reflection capabilities to allow the execution of any class. The sub-

components of the clients side helper component are the following:

• SGServices: this provides support for three types of operations retrieval of the list

of services registered to a certain UDDI registry or Globus container; retrieval of

signatures for the exposed operations of a service; callingremote operations.

• SGProxyCert: this handles issues arising from the need to support singlesign-

on for users of the Grid and delegation of credentials: namely the creation and

destruction of proxy certificates. The component can also beused to retrieve in-

formation about the owner of a X509 certificate and about the lifetime of a proxy

certificate. Since a user may have more than one X509 certificate, but with only

one being used at a certain moment, when creating a proxy certificate, the location

of the certificate is automatically stored in a session file. When a proxy certificate

is needed, this default certificate is loaded and used.

• SGUtils: this provides additional functionality for explicit file transfer, file deletion

and remote job execution. This capabilities are related to generic services that Grid

environments build over Globus provide. For data specific management that the

AGSSO architecture provides, other services are involved which the user does not

have to call explicitly.

• AGSSOCli: this package reunites all the functionality required for users to ac-

cess capabilities provided by the components of the of AGSSOarchitecture. This

component is responsible for incrementally constructing the workflow in the for-

mat that the AGSSO server is able to understand and also specific capabilities to

interact with services provided by AGSSO and CAS Server components

157

Chapter 5. Generic and Secure Access to Symbolic Services

5.1.2 Use Case Scenario to Access Generic Web/Grid Services

One of the most important capabilities provided by CAGS is access to remote Web and

Grid Services. Part of the discovery process several capabilities are available: obtain-

ing a list of Grid/Web services registered at a certain URL; obtaining the signatures of

Web and Grid Services operations; calling an operation and retrieving the result of an

operation call. Secondary functionality related to arbitrary services include file transfer

using specialised Grid Services, job submission through WS-GRAM services, and man-

agement utilities for handling X.509 proxy certificates. A typical scenario of accessing a

Web or Grid Service usually has as a first step the discovery ofa service by consulting a

service’s details based on a registry URL (either a UDDI registry or a Globus Container).

Listing 5.1 depicts a typical execution scenario at client side.

1. start scenario(registry_URL)

2. if (is_Web_service_registry(registry_URL))

3. service_list:= get_Web_service_list(registry_URL,

toMatch,

options)

4. else

5. service_list:= get_Grid_service_list(registry_URL,

toMatch)

6. endif

7. service:= select_service(service_list)

8. operation_list:= get_operation_list(service,toMatch)

9. operation:=select_operation(operation_list)

10 [create_proxy_certificate();]

11. result:= call_operation(service,operation, parameters)

12. end scenario

Listing 5.1: Access to Web/Grid Services

Here,registry URL parameter is a valid URL of a UDDI registry or a Globus container.

The toMatch parameter is a selection string that must be a substring of the service name

in the get Web service list/get Grid service list combined with a substring of the opera-

158

Chapter 5. Generic and Secure Access to Symbolic Services

tion name in the get operation list. The selection functionsselect service/select operation

are user-defined functions that can be used to select the desired service/operation. Note

that this scenario assumes that the user only knows the registry URL. If the user al-

ready knows, for instance, the service URL and the signature of the operation, then the

unnecessary steps can be omitted.

5.1.3 Summary

Computer algebra specialists must be provided with simple and intuitive features within

the environment of the CAS they use to allow them to access remote Web and Grid Ser-

vices. They have to be able to access generic services but they also have to be provided

with additional support for describing and deploying workflows for symbolic computa-

tion.

The Client Component of our architecture provides:

• Features to discover and call remote Web and Grid Services;

• Features to support standard security mechanisms requiredby Grids, including

management of security certificates and establishing secure connections;

• Features to support description and execution of workflows.Workflows described

by the user are further submitted for execution to AGSSO Servers;

• Features to support workflow management, retrieval of results, steering of execu-

tion.

5.2 Workflow Description

Another important capability that is provided within CASs’ development environment

enables users to describe and deploy symbolic computation workflows. Once submit-

ted to an AGSSO Server, the workflow is parsed and executed according to the scenario

159

Chapter 5. Generic and Secure Access to Symbolic Services

previously presented in Section 4.4. Application specialists have to be provided with

constructs that allow them to describe workflows in a seamless way. Some of the details

required for the workflow to be complete and compatible with the workflow engine used

at AGSSO component level can be automatically added at server side and therefore they

can be skipped at client side. The user should only describe the solution for a certain

problem in terms of workflow patterns and data links between atomic tasks of the work-

flow. In Subsection 4.1.2 we have described the most common patterns that we have

identified in symbolic computations for which appropriate constructs should be avail-

able. In the following table we describe the mapping betweenthe workflows and the

functions available within the GAP environment that can be used to construct workflow

patterns. These functions are grouped under the package SWIP. Similar solutions may

be easily provided for other CASs with a minimal effort.

Several components at the client side are involved in the description of workflows. Spe-

cific packages implemented at CAS level have to provide functions that map the work-

flow constructs. Each call to such functions is forwarded to be handled by the AGSSSO-

Cli client support component which is the actual component where the workflow is con-

structed in the format in which it will be sent to the AGSSO server. Once the workflow

is created the user may submit it for execution to a prior known AGSSO server address.

Supported constructs for workflow description include constructs for sequence patterns,

conditional patterns, repetitive patterns and declaration of variables that may be used as

data containers. Variables declared at workflow level are ofspecial nature because they

are meant to be used at server level at workflow run time as opposed to variables that

are used at CAS level which are only valid in the context of the CAS. To demonstrate

these capabilities and the way they can be integrated withina CAS environment we have

implemented a special package for GAP.

Variables of the workflow are automatically managed with thedirect support of the work-

flow execution engine. The user may declare such variables and may even assign initial

values to these variables. Variables will be used to store intermediate values during the

execution of the workflow and therefore their state will onlybe modified as a result of

160

Chapter 5. Generic and Secure Access to Symbolic Services

XML WORKFLOW TAGS GENERATING CAS FUNCTION
<workflow> SWIP startWorkflow()
</workflow> SWIP endWorkflow()
<sequence> SWIP startSequence()
</sequence> SWIP endSequence()
<multichoice> SWIP startMultiChoice()
</multichoice> SWIP endMultiChoice()
<branch> SWIP startChoiceBranch(condition)
</branch> SWIP endChoiceBranch()
<if> SWIP if(condition)
</if> SWIP endIf()
<trueBranch> SWIP if(condition)
</trueBranch> SWIP else()
<falseBranch> SWIP else()
</falseBranch> SWIP endIf()
<parallel> SWIP startParallel()
</parallel> SWIP endParallel()
<foreach> SWIP startForeach(initValue, endValue)
</foreach> SWIP endForeach()
<while> SWIP startWhile(condition)
</while> SWIP endWhile()
<invoke .../> SWIP invoke(CasID, command, varReference)
<variable name=var1>
$value
</variable>

SWIP declareVariable(varName, varValue)

<casID> SWIP invoke(CasID, command, varReference)
<call> SWIP invoke(CasID, command, varReference)
<initValue> SWIP startForeach(initValue, endValue)
<endValue> SWIP startForeach(initValue, endValue)

Table 5.1: Mapping between XML workflow language and GAP functions.

workflow’s execution steps. At CAS level references to these variables may be used in

two main situations:

• For building conditional expressions that appear as part ofconditional patterns

• To mark data dependencies between different tasks

Variables that are meant to be used in expressions that are part of conditional or repetitive

patterns, e.g.whileor if constructs, may only contain numerical values encoded as plain

161

Chapter 5. Generic and Secure Access to Symbolic Services

strings. These numerical values may be used to express conditions and their value can be

be modified by storing results of remote service invocationswhen they are provided as

the third parameter of the SWIPinvoke function. This type of variable must be declared

using the SWIPdeclareVariable function. A typical declaration of this type of variable

is:

v1 :=SWIP_declareVariable("1");

The call of the SWIPdeclareVariable function has as effect the registration a new vari-

able at workflow level to which the value of “1” is assigned. The local variablev1 is

initialized with a value that represents the name of the variable in the context of the

workflow, e.g $variable1. Wheneverv1 is passed as argument of one of the functions of

the SWIP package, it will instruct the AGSSOCli component to record the appropriate

use of the workflow level variable.

Valid conditions are expressions that can be evaluated to boolean values by a subset of

rules defined by the XPath standard. This subset is for the moment limited to composing

simple expressions that contain decimal numbers, boolean and comparison operators,

grouping parentheses and variable handlers of workflow declared variables. Examples

of valid conditional expressions include:

5 < 4

1 >= $variable_1

where $variable1 represents a workflow variable that contains a value that may be eval-

uated to an integer when parsed by the workflow engine following internal variable eval-

uation rules.

The second category of variables contains variables that are used to link two or more

invoke activities with data pipes. If one invoke activity should use as input the result

that was produced by calling other services, these dependencies are expressed using the

second type of variables. During the workflow’s execution these variables contain values

encoded in OpenMath and they cannot be used directly to buildconditional expressions.

162

Chapter 5. Generic and Secure Access to Symbolic Services

A call to the SWIPinvoke() function of the SWIP package will return at CAS level the

name of a workflow level variable in which the result of the invoke will be stored. This

variable can afterwards be used as input for other invokes. The call at CAS level:

aVar:= invoke(...);

specifies that the CAS variableaVarstores a handle to the result obtained through invoke.

This handler can be used in a following call to mark that the result is used as input data

for another invoke. This is possible because the general format of a call is:

aVar:= invoke(’CASID’, call)

wherecall is a string that either describes a function and parameters or an OpenMath

object in the SCSCP format. Let aVar1 and aVar2 be two local variables that hold handles

$variable1 and $variable2 referencing results obtained by previous invokes. To obtain

the call of a remote function the call

aFunction($variable_1, $variable_2)

may be obtained by concatenation:

Concatenation("aFunction(",aVar1,",", aVar2,")";

5.2.1 Workflow Examples

In order to demonstrate the way different constructs may be used within GAP we pro-

vide several simple examples that have the role of clarifying how the functions of the

SWIP package may be used to describe workflows. The example in Listing 5.2 links in

sequence two functions that calculate the factorial for a given integer value. The first call

calculates at line 6factorial(3)while the second call at line 9 uses as input the value ob-

tained as output from the first call. Before issuing the actualinvokes, the values that have

163

Chapter 5. Generic and Secure Access to Symbolic Services

to be passed as parameters are constructed as OpenMath objects by using GAP string

manipulation capabilities, e.g. a call to the Concatenationfunction and specific func-

tions for constructing the OpenMath representations, e.g.the SWIPgetSCSCPFormat()

function.

1. LoadPackage("swip");

2. SWIP_startWorkflow();

3. SWIP_startSequence();

4. i1 := SWIP_getSCSCPFormat(

5. "scscp_transient_1.WS_factorial(3)");

6. v1 := SWIP_invoke("GAP",i1,"");

7. i2 := SWIP_getSCSCPFormat(Concatenation(

8. "scscp_transient_1.WS_factorial(",v1,")"));

9. v2 := SWIP_invoke("GAP",i2,"");

10. SWIP_endSequence();

11. SWIP_endWorkflow();

Listing 5.2: Sequence in GAP

The second example presented in Listing 5.3 depicts how two independent calls may be

run in parallel. The SWIPstartParallel() and SWIPendParallel() have the role to mark

the invokes that should be started in parallel, in our case the invokes at lines 6 and 9.

1. LoadPackage("swip");

2. SWIP_startWorkflow();

3. SWIP_startParallel();

4. i1 := SWIP_getSCSCPFormat(

5. "scscp_transient_1.WS_factorial(3)");

6. v1 := SWIP_invoke("GAP",i1,"");

7. i2 := SWIP_getSCSCPFormat(

8. "scscp_transient_1.WS_factorial(6)"));

9. v2 := SWIP_invoke("GAP",i2,"");

10. SWIP_endParallel();

11. SWIP_endWorkflow();

Listing 5.3: Parallel Execution in GAP

164

Chapter 5. Generic and Secure Access to Symbolic Services

Execution of a certain action for a number of times is a frequent requirement especially

when processing of a list of objects is needed. In Listing 5.4we assume that we know

beforehand the total number of executions required and we only need to invoke one or

more service for the given number of times. Since the worfkow’s execution is done

at server side, the variable that counts the number of service invokes done at a certain

stage of execution has also be managed within the workflow. The solution is to use a

variable that counts the number of invokes and update its value each time an invoke was

completed. Therefore, at line 3 we declare a new workflow variable and we assign to it

the value of 1. At line 4 we specify that the content of the while loop should be executed

if the condition holds. In our care the value of the workflow variable is smaller that

value of 5. The example demonstrates how the value of the worflow variable should be

updated, namely by invoking an external incremental service at line 7.

1. LoadPackage("swip");

2. SWIP_startWorkflow();

3. v1 :=SWIP_declareVariable("1");

4. SWIP_startWhile(Concatenation("5 > ",v1));

5. i1 := SWIP_getSCSCPFormat(Concatenation(

6. "scscp_transient_1.WS_increment(",v1,")");

7. v1 := SWIP_invoke("GAP",i1,"");

8. SWIP_endWhile();

9. SWIP_endWorkflow();

Listing 5.4: Repetitive Pattern in GAP

In Listing 5.5 we present the implementation of the ring workflow. For improved read-

ability we will omit to explicitly show how variables and values used in the GAP client

where encoded to be sent to the workflow engine. For example, in line 4. we write:

SWIP_startWhile("$n < 10");

while the correct GAP syntax should be:

SWIP_startWhile(Concatenation(n,"<10"));

165

Chapter 5. Generic and Secure Access to Symbolic Services

becausen is defined as a local variable in GAP that holds the reference to a variable

declared within the workflow. In the example presented in Listing 5.5 we create a ring of

three services. One service invoked in line 6. is responsible for incrementing the value

of the variablen and storing the result in the same variable. In line 7. the value held by

n is sent to another GAP instance to evaluate if the number is prime or not. The result of

the evaluation is stored in the variablem. After the call the value held bym will be “0”

if the number is not prime and “1” if the number is prime. Based on the value ofm the

value held byn is stored or not in line 10.

1. SWIP_startWorkflow();

2. n := SWIP_declareVariable("0");

3 m := SWIP_declareVariable("0");

4. SWIP_startWhile("$n < 10");

5. SWIP_startSequence();

6. SWIP_invoke("GAP1", "Inc($n)", "$n");

7 SWIP_invoke("GAP2", "IsPrime($n)", "$m");

8. SWIP_startMultiChoice();

9. SWIP_startChoiceBranch("$m == 1");

10. SWIP_invoke("Maple", "Store($n)");

11. SWIP_endChoiceBranch();

12. SWIP_endMultiChoice();

13. SWIP_endSequence();

14. SWIP_endWhile();

15. SWIP_endWorkflow();

Listing 5.5: Ring Pattern in GAP

The “ring workflow” example demonstrates a slightly more complicated workflow in

terms of structure. A similar workflow can be used to implement a solution for the orbit

enumeration algorithm [126].

166

Chapter 5. Generic and Secure Access to Symbolic Services

5.2.2 Workflow Level Task Management

One of the features that are important for controlling the behaviour of workflows is

execution management of submitted tasks. The execution of aworkflow is automatically

managed at the server side and the user does not have to issue aspecific command for the

workflow to be started. Once submitted, parsing of the workflow instance and execution

of individual tasks is done as soon as the required resourcesare available and the internal

state of the system permits it. Since the execution of certain tasks of the workflow may

take a long time to complete it is important to enable the userto control workflow’s

execution by issuing appropriate calls to the AGSSO server were the workflow was sent

for execution the user can request pausing or resuming of a workflow or of individual

tasks. Moreover, it is possible to change the result for a certain computation by manually

assigning a value to a certain task that overrides the actualresult of the computation for

that task.

Functionality provided by the AGSSOCli component allows theuser to retrieve infor-

mation about the structure of a certain workflow already submitted for execution and the

individual status of tasks based on a workflow or task identifier. This functionality lets

the user to verify that the submitted workflow was correctly parsed by the system. Ad-

ditional to the workflow’s structure the user receives information about task identifiers

of each task of the workflow and execution state for each task.Using the workflow and

specific task identifiers the user may alter the normal execution of the workflow.

Issuing a pause command can be done both at workflow and task level. If a task level

pause is issued, the task and all tasks that depend on the paused task are affected. The

pause request propagates to all tasks that have a dependencyrelation to the paused task.

In a similar way, resume of a task has also an impact not only onthe resumed task but

also on the dependent tasks. Cancelling of a workflow is also possible. Issuing a cancel

command has as result immediate cancellation of all tasks and freeing all resources used

by the workflow. Since workflow managers are not able to provide this functionality

through built-in features, additional hooks implemented at workflow and database level

167

Chapter 5. Generic and Secure Access to Symbolic Services

have to be created to provide this behaviour.

5.2.3 Summary

With the support of the Client Component integrated within theCAS, computer alge-

bra specialists may describe workflows by combining workflowexecution patterns as

building blocks: sequence, parallel, conditional and repetitive. For an already submitted

workflow, the user may obtain the status of the workflow or of a certain task part of the

workflow. Based on task identifiers the user can pause and resume tasks, can cancel

tasks, manually set result values and inspect already computed results.

5.3 Security for Symbolic Services

In Subsection 5.3.1 we briefly discuss the most important concepts related to security of

Grids. In Subsection 5.3.2 we discuss security mechanism used to ensure the security of

our architecture and the support provided for interacting with third party secure services.

5.3.1 Common Security Standards in Grids

Wide adoption of Grid technologies to build systems for scientific computing purposes

introduces the need of a careful consideration of the possible security threats that systems

based on these technologies are exposed to. Grid infrastructures are usually built upon

public communication infrastructure therefore they are vulnerable to common attacks

for the Internet world. The main types of security issues that Grid has to consider are

architecture related, infrastructure related and management related [68]. Confidentiality

of the data shared in the Grid environment and mechanisms to ensure authentication,

authorization mechanisms for access to resources and quality of service related issues

are part of the first category. The second category comprisessecurity problems related

168

Chapter 5. Generic and Secure Access to Symbolic Services

to host components and secure transport of data over the wire. The third one refers to

problems related to credential management, trust and monitoring services.

Trust among the participants that share and access remote resources is a central concept

of security and it is vital for Grid infrastructures. Virtual Organizations(VO) are estab-

lished based on the willingness of resource providers to share their computing capabil-

ities to other members of the VO. Reliable authentication mechanisms must therefore

be enforced to ensure that users and resource providers cooperate in a secure environ-

ment. The Grid Security Infrastructure (GSI) provided by Globus addresses these issues

related to security and provides solutions for secure communication. Standardized secu-

rity mechanisms enforced at Grid level ensure that securitybreaches are less frequent,

easier to detect and address.

The communication among various partners of a VO built usingGlobus middleware

relies to a great extent to HTTP and HTTPS communication protocols. Additional pro-

tocols such as GridFTP may also be used for data transfer. Thesecure communication

mechanisms implemented by Globus GSI implements secure communication by target-

ing two communication levels: transport and message. Transport level security applies

TLS encryption for all communication that is sent over the wire. This type of encryption

guaranties confidentiality and authentication at least from the server side and optionally

client authentication may also be enforced. Integrity of the messages exchanged is also

ensured through transport level encryption. Message levelencryption may be used to

encode only the message content while the rest of the communication is transmitted as

plain text and therefore confidentiality, authentication and integrity of the messages is

ensured. If authentication of the client and integrity of sent messages are required while

confidentiality is not mandatory a slightly more efficient solution is to send messages in

plain text and to append digital signatures that guarantee the authenticity of messages

and the identity of their originator. All these features arebased on X.509 standard.

Currently the most popular and wide spread solution for users’ authentication in Grid en-

vironments are solutions base on X.509 Public Key Infrastructure (PKI) [29], but other

169

Chapter 5. Generic and Secure Access to Symbolic Services

standards such as Kerberos Network Authentication Services [138] or plain security cre-

dentials management are also used. Anonymous authentication is possible especially

when the client’s identity is not particularly relevant. Globus GSI provides native sup-

port for authentication based on X.509 certificates but additional solutions that allow

integration with Kerberos based systems are available. Since authentication of the actors

participating in a distributed architecture can be achieved with different authentication

protocols, e.g. Kerberos and PKI, an interoperability between such services may be

sometimes required. A service responsible for providing a X.509 certificate based on a

Kerberos authentication was previously reported in [30].

VOs can easily be built over a hierarchy of Certificate Authorities that guarantee au-

thenticity of X.509 certificates exchanged amoung participants in the VO. The use of

security certificates provides further functional benefits. Single sign-on, delegation of

credentials and with them finer grained control over the identity of the users that are

entitled to access specific hardware and software resourcescan be easier provided. Del-

egation of credentials is particularly important mechanism if proxy components have

to access secure services on behalf of a client. The proxy itself may not be entitled to

access particular resources but while it acts on behalf of the client it may use its cer-

tificate to access them. To support credential delegation Globus provides the Credential

Management Service and the MyProxy component [45].

For Grid authentication purposes, each user has an X.509 certificate. This certificate

could be stored on the user’s system, but this solution makesthem vulnerable to theft by

trojans or viruses. MyProxy acts as an on-line credential repository for X.509 security

credentials which are composed of private keys and certificate tuple. Based on stored

credentials MyProxy generates proxy certificates, all via aTLS secured network con-

nections. Since proxy certificates expire after a relatively short period of time, usually

12 hours, the user must periodically renew them. The generated proxy is then stored in

the repository and is accessible via (username, password) combination. The password is

chosen by the user when first generates the proxy and has the same lifetime as the proxy

certificate. Additionally, MyProxy can be accessed throughthe network from various

170

Chapter 5. Generic and Secure Access to Symbolic Services

locations which proves to be an important advantage for mobile clients.

GSI offers implementations for both WS-Security and WS-SecureConversation. With

the latter, a security context is established resulting better performance when multiple

invocations take place among two communication partners. Credential delegation is

only available if a security context is established throughWS-SecureConversation. Au-

thorization mechanisms implemented by Globus GSI can be applied at Globus container

level, at service level and at resource level. The authorization scheme can be imple-

mented through authorization descriptors or dynamic Java settings. The default autho-

rization mechanisms can be extended by custom authorization handlers. An example of

an extended authorization mechanism is provided by POSITIF[72].

5.3.2 Security for SymGrid-Services Architecture

Security plays an important role for the SymGrid-Services architecture. To ensure that

security is properly enforced within the architecture two aspects have to be considered.

On one hand, the components that are part of the AGSSO architecture have to provide

appropriate security features as part of their standard capabilities. On the other hand for

components that are designed by third party providers such as independent services that

do not follow our design constraints, appropriate procedures and protocols that ensure

secure access to them have to be provided if components of theAGSSO architecture

behave like clients to such components. Third party services may themselves require

that certain security protocols are implemented by their clients. We also need to prevent

to the highest extent possible security problems that may arise by invoking malicious

services.

The main component types that AGSSO is composed of are CAS Servers responsible

for exposing CASs functionality through Grid Services interfaces, AGSSO components

responsible for managing workflows, and client components that formulate requests.

Additionally, the client components, through the CAGS module described in Section

171

Chapter 5. Generic and Secure Access to Symbolic Services

5.1 support users for accessing generic service providers that do not necessarily follow

the architectural constraints imposed by AGSSO. Appropriate support for security has

therefore to ensure that services themselves are protectedon one hand and on the other

hand that client components are able to access provided services in a secure way.

Secure communication can only be established if we considerand eliminate the security

threats specific for communication protocols that are used by the Grid middleware. Since

the architecture is built upon the public architecture of the Internet,security issues such

as the integrity, confidentiality, authorization and QoS requirements must be validated

for the use cases that the system is supposed to support.

The main types of users that will interact with the system areregular users and system

administrators. Regular users access the system through software components that are

part of their CAS of choice environment. It is also possible that more advanced users im-

plement themselves functionality to access remote services that do not necessarily rely

on existing CAGS components provided as part of AGSSO architecture. Additionally,

regular users may affect the security of the system by implementing CAS level functions

that are exposed later as services it they are not properly evaluated by the administrators

of the system. Administrators are privileged users that areable to control the way various

components of the system behave. Each CAS Server and each AGSSO server may have

their own administrators and part of their responsibility is to assess whether particular

functions exposed by CASs should be exposed as Grid Services.More advanced con-

figurations may also be possible if VO level authentication is used and specific admin-

istrators gain the privilege to control more than one CAS Server or AGSSO component.

Even if they are part in a bigger computational infrastructure, each component is still

autonomous and should be possible to control their configuration in an independent way.

Client Side Security Features

Security mechanisms at client side must ensure the integrity of data transmitted over the

wire and whenever possible authentication of the services that the client is interacting

172

Chapter 5. Generic and Secure Access to Symbolic Services

with. Authentication of the remote service is of high importance for client’s security

and its trust in the partner service. These are fundamental in the context of credential

delegation which will further allow the services to contactother services using client’s

credentials. Results obtained following a request for a computation can also be trusted

and considered as correct if the client is confident in the actual identity of the remote

service. The client has to identify itself in relation to theremote service if the security

policy of the service requires so. While in some cases username/password based authen-

tication may be available, enforcing authentication mechanisms such as those provided

by X.509 certificates represent standard security approachfor Grid Services.

The AGSSO infrastructure is available at client side through two subcomponents of the

AGSSOCli components, one specific for accessing services provided by AGSSO servers

and one that helps the user in the process of defining symboliccomputations workflows.

To submit workflows to an AGSSO server component that has a security mechanism en-

abled, several security steps must be executed. Using the MyProxy certificate repository

requires mutual authentication between the client and AGSSO server. Before the user

starts using AGSSO, the user stores his credentials in the MyProxy repository. At sub-

sequent calls the user must only provide his user name and password which are required

to enable the AGSSO server to obtain a proxy certificate. The AGSSO server uses the

proxy to further access resources on behalf of the client (see Figure 5.2). All communi-

cation between the client and MyProxy server is achieved through a private (encrypted)

TLS channel. The same security measure is applied for communication between the

Computer Algebra System or Portal and the ClientManager component of the AGSSO

server.

The steps required to access services provided by AGSSO are consistent and straight-

forward, therefore easy to follow. For accessing arbitraryservices though, the client

component has to be versatile enough to cope with various security mechanisms imple-

mented by third party services. The client side CAGS component provides support for

dealing with security features that enable the client to access third party Web and Grid

services. Unfortunately, for plain Web Services, issues such as trust and QoS do not have

173

Chapter 5. Generic and Secure Access to Symbolic Services

MyProxy Repository

Computer Algebra

System

OR

Web Portal

CAS WS�Resource1

CAS WS�Resourcen

<receive>

Start process

<invoke>

Invoke CAS�WS

<assign>

Initializations

<receive>

Receive computation result

from CAS�WS

<parallel forEach>

Invoke the CAS�WS in

parallel

<invoke>

Store result in

database

Workflow Engine

.

.

.

HTTPS

Store Proxy

F
e
tc

h
 P

ro
x
y

HTTPSClientManager (Grid Service)

User
USER=joe

PASSWORD=***

Workflow

description

Figure 5.2: Secure Symbolic Components Composition Architecture

a consistent solution. In this respect, it is a matter of user’s choice if a certain service is

to be trusted or not. Invoking secured Grid services offers ahigher level of confidence

because the invoker controls the identity of the services being used.

Among its capabilities, CAGS provides support for the service discovery process and ac-

cess functionality offered by services. Mechanisms to secure Web Services are similar to

those for Grid Services as both support security at transport and message level. Web Ser-

vices implement the security by using HTTP basic authentication and/or HTTPS com-

bined with username and password authentication at the lower level and the WS-Security

communication protocol at the upper levels which allows theuse of Kerberos tickets and

X.509 certificates. For Grid Services, using TLS encryptionat transport level and even

message level security is a common approach. One important feature that CAGS tool

offers support for is security certificates management.

For accessing secured Grid services developed based on Globus middleware, the client

component must provide a valid proxy certificate. This requirement is valid for all cus-

tom secured services but also by the standard services provided by Globus, such as WS-

174

Chapter 5. Generic and Secure Access to Symbolic Services

GRAM or RFT. The CAGS component is able to manage such certificates and imple-

ments required functionality for supplying the certificates to remote services whenever

this is required. Part of the steps of the authentication process are not transparent for

the user and therefore specific actions must be taken for managing the certificates. An

advantage of providing the user specific means to manage certificates is the possibility

for the user to switch between different certificates depending on the service the user

wants to access. Hiding the management process for the user would be possible with the

drawback that the same security certificate would have to be used regardless the remote

service accessed.

Secure Symbolic Service Composition

The main responsibility of the AGSSO server is to supervise the execution of symbolic

computation workflows submitted by clients. With security features enabled the user-

name and password provided by the user at client side are usedby the ClientManager

component of AGSSO to retrieve the proxy certificate of the client from the MyProxy

manager. The workflow engine uses the user’s proxy certificate for communicating with

parter CAS Servers. Scheduler components implemented at AGSSO server level have

the role to select the most suitable CAS Servers that should beused to execute a certain

task. Several criteria are used to determine the CAS Server but for a CAS Server to be

selected information about the CAS Server must already be stored in the Main Registry

maintained at AGSSO Server level.

The process of populating the Main Registry requires that both the AGSSO Server and

the partner CAS Server agree to exchange information about their capabilities. While

various information about their state is exchanged in an automatic way, as a first step

both AGSSO and CAS Server components must be set to accept thisinformation ex-

change. At AGSSO level the administrator must register the URLs of partner CAS

Servers. Therefore it is the responsibility of the administrator to ensure the CAS Servers

accepted as partners are suitable from the security and QoS point of view. Although not

175

Chapter 5. Generic and Secure Access to Symbolic Services

implemented currently, the scheduling algorithms may be instructed to use a separate

set of CAS Servers to submit tasks to for certain types of processing, or for requests

submitted by particular users. This way, resource partitioning at a fine grained level is

possible.

The AGSSO server component relies on ActiveBPEL for the actual execution of work-

flows. ActiveBPEL engine offers excellent capabilities for orchestrating Web Services

but it provides only basic support for security mechanisms through anonymous TSL

encryption at transport level. An extension of the ActiveBPEL engine that offers sup-

port for accessing GSI secured services was reported in [82]. Since security settings

may be applied for every operation of a Grid service interface, the authors proposed

to extend BPEL standard language in order to offer support forWS-Security and WS-

SecureConversation. These extensions together with some changes of the ActiveBPEL

engine enable the engine to apply additional security mechanisms needed to access Grid

services implementing security mechanisms supported by GSI.

When a process is invoked, the message is passed to the Globus’security and message

handlers added to the the Axis chain of handlers and these handlers automatically encrypt

and sign messages. The response from the services is also handled by Axis handler chain

which decrypts and checks the received message.

In order to integrate ActiveBPEL with the GSI implemented by Globus Toolkit 4 several

configurations must be made to the workflow engine. ActiveBPELuses Axis and thus

one way to enable the ActiveBPEL engine to run a process using the proxy certificate of

the user that requested its execution is through Axis handlers. This means that we need

to declaratively add some security handlers into ActiveBPEL’s message chains. When a

part of the process calls an external service, ActiveBPEL plays the role of a Client to that

Service. Thus, messages that originate from ActiveBPEL willneed all credentials added

prior to being sent. In both cases, the correct handlers mustbe placed in the message

chains.

176

Chapter 5. Generic and Secure Access to Symbolic Services

CAS Server Security Features

The CAS Server components allow exposing symbolic capabilities implemented by

CASs as Grid Services. The specific operations on the CAS Server’s interface repre-

sent access gates to CAS provided capabilities that are installed on the CAS Server.

Since these services are running in a Globus Toolkit container, all security features are

provided by Gobus GSI. Although GSI implements three security mechanisms - GSI Se-

cure Message, GSI Secure Conversation and GSI Transport - we have chosen to use only

GSI Transport for initial version and later extend our solution for integrating the other

security mechanism. At transport level security in GSI usespublic key cryptography and

it guarantees privacy, integrity and authentication.

For each new client that requests solving a symbolic computation task, a new WS-

Resource is created at the CAS Server level. Therefore security must be enabled at

WS-Resource level to guarantee that no other users except the entitled one may access

or modify the state of a resource. To configure security at individual resource level, a

security descriptor that describes the access policy must be provided when the service is

deployed. This descriptor instructs Globus container thatonly the user who instantiated

the resource is authorized to read or to modify its contents.

Because CASs installed on the CAS Server are exposed through theGrid Service in-

terface, a thorough analysis must be done to identify potentially harmful functions im-

plemented at CAS level that should not be available for remoteinvocations. Authoriza-

tion policy in effect at the computational node can be enforced by filtering access to

CAS’s functionality based on the information stored within the Local Registry of the

CAS Server. This registry holds information about the CAS systems that are installed

on the computational node, about the functions available tobe remotely invoked and the

users that are entitled to access the functionality.

The decision on who is authorized to access a certain serviceor computational resource

has two important components: functional and legal. At the functional level, a decision

177

Chapter 5. Generic and Secure Access to Symbolic Services

must be taken whether a call must be accepted and executed depending on details such

as the effect that the call has on the target system, the levelof security needed, the

resource utilization, etc. An equally important matter regards the legal right to access

a resource. The CAS Server implements functionality that allows administrators to edit

information within Local Registry of a specific CAS Server. This functionality is not

available through the Grid Service interface but through command line utilities. The

access to administrative command line utilities is controlled using proxy certificates for

authentication which makes possible implementing a VO wideadministration policy.

The informational structure of the local registry system allows to store the following

details:

• The name, version, local install path or the CAS

• For every CAS it lists the functions that should be accessiblefor remote invo-

cations, expected list of arguments, the name of package to be loaded when the

functions is called and a short description of the function

• Security details such as the users entitled to access them

The information stored in the Local Registry contains various details that allow the sys-

tem to restrict user’s access to specific functions which they are not entitled to call. Even

more, details regarding the machines and software packagesinstalled in the scope of

a certain CAS Server may be available for some users and hiddenfor others. Details

regarding which CAS is installed on which physical machine that lies behind the CAS

Server’s interface are not made public for security reasons. Even more, if particular

functions should be accessed only by privileged users, the rest of the users will not even

obtain their list during discovery process.

As noted before, the information provided in the Local Registry is synchronized with the

information maintained by partner Main Registries implemented by AGSSO servers. At

deployment time, when the tasks to be executed are mapped to the actual computational

178

Chapter 5. Generic and Secure Access to Symbolic Services

nodes that are going to perform the computations, the information stored in the Main

Registry of the AGSSO server plays an important role. If the AGSSO server determines

that a certain CAS Server is able to support a certain functionality it may schedule a task

to be solved by the particular CAS Server.

In the case when symbolic Grid services are accessed directly using the CAGS com-

ponent at client side and not by the AGSSO server, security isalso enforced using the

proxy certificate of the user. This certificate can be stored locally on the machine of the

user, but it could also be obtained using the MyProxy credential repository. After the

user is authenticated, the invoked Grid service will check if the user is authorized to call

the operation using a special gridmap file.

5.3.3 Conclusions

As a result of our investigation we conclude that security mechanisms provided by stan-

dard Grid Services are suitable for establishing a secure infrastructure for symbolic com-

putations. To enforce security in our architecture we rely to a large extend on security

mechanisms provided by the Grid middleware and we apply them. Globus GSI provides

support for the HTTPS protocol, for the use of Certification Authorities and X509 se-

curity certificates. ActiveBPEL execution engine does not provide native support for

orchestrating Grid Services but this shortcoming can be overcome by implementing cus-

tom extensions.

Additional security is enforced through mechanisms that rely on the specific features

provided by the CAS Server and the AGSSO Server components. Atboth CAS Server

level and AGSSO Server level, registries hold relevant information regarding users and

resources. Based on this information, system administrators may implement policies that

define trusted partner relations, restrict users to access particular features and eliminate

security threats.

179

Chapter 5. Generic and Secure Access to Symbolic Services

5.4 Summary

The design and capabilities of the Client Component of our architecture described in this

chapter were previously presented in [60, 150]. The security related issues that apply to

our overall architecture were previously discussed in [63].

Web and Grid Services represent a convenient solution for exposing computational ca-

pabilities to remote clients. The number and the variety of available services has rapidly

increased over the last years and represents a viable way of creating complicated appli-

cations based on already existing components. In Section 5.1 we describe the design

and capabilities of the Client Component. Due to its design theClient Component can

be easily integrated within any CAS with a minimum effort. Through its generic sub-

component which is CAS independent, the Client Component allows CASs to access

functionality provided by remote Web and Grid Services. Thesame component pro-

vides support for describing and submitting symbolic computation workflows to AGSSO

Server components previously described in Chapter 4.

As we show in Subsection 5.1.2 computer algebra specialistsdo not have to write them-

selves complicated code that allows them to access remote services. They only have

to use the appropriate functions provided by the Client Component to discover remote

services, invoke them and retrieve results. Providing thisfunctionality as an external

add-on and not directly and fully implemented within the CAS makes the adaptation of

the components easier in the case a migration to technologies other than Web and Grid

Services.

The CAGS component also implements features that assist the user in the process of

describing and managing workflows for symbolic computations (Section 5.1.2). The

user can describe such workflows by combining basic workflow patterns and the re-

sulted workflow can be submitted for automatic execution andmanagement by a AGSSO

Server. Within this chapter we have provided several examples implemented in GAP that

demonstrate the way sequences, parallel executions, conditional patterns and repetitive

180

Chapter 5. Generic and Secure Access to Symbolic Services

patterns may be used. The SWIP package implemented for GAP represents a thin layer

required to access the functionality provided by the CAGS component. In a similar way,

the same level of support can be provided with minimal effortwithin other CASs or even

other types of environments.

In Section 5.3 we analyse possible security threats that ourarchitecture have to face. For

our implementation we rely on security mechanisms providedby Globus GT4 middle-

ware. Among other features Globus GT4 provides mechanisms that allow building safe

Grid infrastructures by implementing several security standards. We have analysed po-

tential threats and we have presented a solution for secure access to AGSSO components

based on the standard security mechanism that are currentlyused in Grid environments.

The workflow engine that we use as a subcomponent of the AGSSO server is not pre-

pared to access secure Grid Services and small enhancementshave to be added to the

wokflow engine. At the client side we have developed the required means to allow

users to access secured services. Part of these capabilities, the CAGS component is able

to manage security certificates that are required for any user that needs to authenticate

while accessing secured Grid Services.

181

Chapter 6

Advanced Management and Fine

Tuning

In the previous chapters we have described the main components that represent the foun-

dations of the massively distributed architecture for symbolic computations that we en-

visage. Based on CAS Servers introduced in Chapter 3 and AGSSO Servers introduced

in Chapter 4 complex computational infrastructures may be created. In this chapter we

discuss several advanced features related to data management [65] (Section 6.1) and

management of workflows [64, 65] (Section 6.2). We also present a discrete event sim-

ulation platform that we use for verification and validationtesting and as a framework

for fine tuning of components, especially components involved in tasks’ scheduling [59]

(Section 6.3).

6.1 Resolving OpenMath References

This Section describes the general process that must be followed across our architecture

for resolving OpenMath references. In Subsection 6.1.1 we describe the general process

that we follow for resolving OpenMath references. In Subsection 6.1.2 we present the

182

Chapter 6. Advanced Management and Fine Tuning

different formats accepted to define OpenMath references byour components. In Sub-

section 6.1.3 we present the process of resolving OpenMath references if encountered in

a SCSCP call request while in Subsection 6.1.4 we present structure of the file obtained

as a result of the resolution process. A more complex exampleis given in Subsection

6.1.5 while in Subsection 6.1.6 we explain how the resolution process was integrated

with existing data management capabilities provided by Grids.

6.1.1 The Process of Resolving OpenMath References

Management of data in distributed environments requires a careful attention and viable

data management policies and constraints have to be enforced. Workflows specific to

symbolic computations often require that large sets of dataare exchanged between col-

laborating components. Autonomous components of the system may collaborate by

exchanging data which is only possible if compatible data encoding and data manage-

ment mechanism are used. In particular, the use of OpenMath as data encoding standard

requires that the system is able to understand OpenMath references and provide support

for resolving such references if they are used for describing OpenMath objects.

The OpenMath standard briefly described in Subsection 2.6.1provides means to encode

mathematical objects in a format that is platform independent and therefore that can be

used for communication between mathematical systems even if they do not use the same

data encoding model for internal manipulations of mathematical formulae. Represen-

tations of mathematical objects can sometimes be lengthy and as a result files holding

representations of mathematical objects may be large. Manipulating such large repre-

sentations requires significant time and computational resources. One possible solution

is to eliminate redundant definitions and to split composed objects into multiple files.

This can be done by using OpenMath references mechanisms presented in Subsection

2.6.1.

A compound OpenMath object may be defined by referring to objects defined in the

same document or even in external documents. For correct manipulation, a CAS parsing

183

Chapter 6. Advanced Management and Fine Tuning

the definition of a compound object must be able in most cases to access all definitions

of sub-objects of the compound object. If OpenMath references are encountered while

parsing, the CAS has to be able to access referenced definitions from files stored in

the local address space of the CAS. If the sub-objects are stored by remote hosts, they

have to be made available locally through mechanisms that are out of the scope of the

CAS and therefore they have to be provided by third party components, in our case the

CAS Server. The CAS Server component provides mechanisms to support the process

of resolving OpenMath references as described in the following subsections.

The resolution process is important both at AGSSO server level and CAS Server level

where the OpenMath objects are actually manipulated. At AGSSO server level, the

selection of a suitable CAS Server to resolve a particular task must take into account as

primary criterion the ability of a certain CAS to handle a particular task. A CAS is able to

understand a request only if it is able to recognize all OpenMath symbols used to define

the object. Therefore, the AGSSO server must know the complete list of OpenMath

symbols used to define the task before sending a task to be resolved by a certain CAS

Server.

AGSSO server components are not designed to store actual OpenMath object representa-

tions. These are stored by various CAS Servers which act as OpenMath objects storage

repositories. To support resolution processes that may occur at AGSSO server level

or within other CAS Servers, the CAS Server components implement functionality to

extract either lists of OpenMath symbols used within a certain object definition or to re-

trieve the object itself. Given a set of OpenMath referencestargeting OpenMath objects

that are stored as XML documents in the CAS Servers file system,the CAS Server is

able to extract:

• The list of OpenMath symbols used in the scope of the target OpenMath objects;

this operation is required at AGSSO server level during the process of selecting

the suitable CAS Server to handle a task

184

Chapter 6. Advanced Management and Fine Tuning

• The targeted objects stored in a separate file for later retrieval; this process occurs

when an OpenMath object is defined based on objects that are stored by other CAS

Servers. To parse the object, all required sub-objects mustbe accessible locally

for the CAS to read and interpret them

Whenever a task that is built using OpenMath references must be assigned for execution

by a CAS Server several steps must be executed. The initial task description is parsed

and all the OpenMath references are identified and extracted. Every OpenMath refer-

ence is investigated and references are grouped based on theCAS Server that hosts the

referenced objects. For each group of references a call to the corresponding CAS Server

is issued for retrieving the list of OpenMath symbols that are used to define referenced

objects. If a targeted object contains itself references toother OpenMath objects, the

CAS Server hosting the object is responsible for identifyingthem and it requests further

the list of OpenMath Symbols from the respective hosting CAS Servers. This recurrent

process generates therefore a chain of calls in which several CAS Servers collaborate for

retrieving the list of OpenMath symbols.

The information flow between CAS Servers is acyclic in order toprevent unnecessary

data transfer. At a certain step during the execution a chainof CAS Servers is constructed

and maintained system wide. Through the messages exchangedby collaborating CAS

Servers, each CAS Server is aware of the list of CAS Servers thatare already part of

the resolve chain and it does not formulate requests to the CASServers that are already

in the chain. Each CAS Server responds to requests that are formulated by its ancestor

in the chain and is able to formulate resolution requests, one at a time, to another CAS

Server which is not yet part of the chain. References that are in the scope of ancestor

CAS Server are not resolved but sent back as part of the resolveresponse it formulates.

In this way the order is preserved and unnecessary calls thatwould lead to a cycle are

avoided. Any CAS Server receives therefore a set of references that are in its scope and

provides as a response a set of symbols that it was able to discover and a set of references

that should be handled by CAS Server that have a higher rank in the resolution chain.

185

Chapter 6. Advanced Management and Fine Tuning

CAS Server 1 CAS Server 2

CAS Server 3

1

2

4

3

Request: OB1

R-Chain: [CS1]

Request: OB2

R-Chain: [CS1, CS2]

Unsolved References: [OB3]

Unsolved References:[OB3]

Figure 6.1: Cyclic Data Flow Prevention.

In the Figure. 6.1 we assume that the CAS ServerCS1discovers while reading a local

OpenMath object the OpenMath referenceOB1 referencing a object that is hosted by

CAS ServerCS2. Therefore it sends a request to CAS ServerCS2. The request contains

the referenceOB1 to be resolved and the current resolve chain which contains the CAS

ServerCS1. While reading the object targeted byOB1, the CAS ServerCS2discovers

another referenceOB2 to an object hosted by CAS ServerCS3and it sends a request

to CS3. The reference to be resolved isOB2and the resolve chain that the CAS Server

CS3receives is [CS1, CS2]. While reading the object targeted byOB2, CAS ServerCS3

discovers that a reference toOB3hosted on CAS ServerCS1has to be resolved. Instead

of sending a request toCS1, it sends back the result of the resolution operation toCS@

and a list of references that it can not resolve which contains the referenceOB3. This

reference is not solved by CAS ServerCS2either, becauseCS1is in the resolution chain

for CS2. It passes the unresolved reference toCS1together with the results obtained

so far. This algorithm makes sure that data is not create unnecessary data flow loops

and makes possible to identify potentially malformed OpenMath documents since cyclic

references are not allowed in OpenMath [184].

186

Chapter 6. Advanced Management and Fine Tuning

Unlike the partial resolution process described before that only requests lists of Open-

Math symbols, the resolution process for obtaining the actual OpenMath objects is

slightly more complex. The role of this process is to collectreferenced OpenMath ob-

jects to the machine on which they are going to be parsed by theCAS hosted on the

CAS Server. Any task submitted for execution to a CAS Server is described as an initial

call that may contain references to objects not hosted by theCAS Server. The first step

in the resolution process is to retrieve from the initial task description the list of refer-

ences. Objects that are local to the CAS Server are extracted from their original files

and stored in a single file. References that point to partner CASServers are grouped by

their hosting CAS Server, and requests are sent to partner servers. A server receiving a

node resolve request extracts OpenMath objects that are available locally to a temporary

file and a URL representing a download link to the file is sent back to the requesting

CAS Server. Similarly with the symbol resolve process, node resolve process constructs

resolve chains. The difference is that messages sent back tothe requesting CAS Server

contain in this case a list of URLs that can be used to retrieve the actual objects as files.

Delaying the actual retrieval of referenced objects to the end of the resolution process

improves communication efficiency because the referenced objects do not travel along

the resolution chain. They are hosted in temporary files created at hosting CAS Server

level and the download URL is only used by the CAS Server that actually needs to

collect the OpenMath objects. This CAS Server accesses the remote temporary files and

appends the content of those files to the common file where local objects were extracted.

At the end of this process, all objects required for execution are therefore located in a

single local file from which the executing CAS can retrieve them. Due to additional

manipulation of objects and update of references, the resolution process makes sure that

the content stored in the resulted file represents a valid OpenMath object in terms of

structure and OpenMath references links. The disadvantageof this approach is that it

is not able to detect changes that may occur in objects hostedby other CAS Servers

while the resolution process is still executed. Once referenced objects are extracted to

temporary files at different CAS Server levels they representstand-alone objects and

187

Chapter 6. Advanced Management and Fine Tuning

they are not kept in synchronization with the originals if the originals are modified after

extraction.

There are situations in which the resolution process is not required. This situation may

occur if one instance of CAS namedCAS1requires the support of another CAS installed

on a different machineCAS2to execute some computation without requiring the actual

computed results. In this scenario,CAS1sends a request toCAS2which results in the

creation of objectR. CAS1subsequently requests more computations to be done usingR

as input parameter. In this case it may be thatR is not needed atCAS1site, it may be to

large to be transferred fromCAS2to CAS1and evenCAS1may not able to understand

and useR. One solution is to use the concept of cookies implemented bySCSCP protocol

[95]. The second solution is to use OpenMath references. In both cases as a result of

the initial request which createsR, CAS1receives a SCSCP cookie or an OpenMath

reference that identifies the object. In subsequent calls made fromCAS1to CAS2the

cookie or reference is provided as part of the request.

Figure 6.2: Resolving OpenMath References.

To illustrate a slightly more complex resolution process weassume the following sce-

nario depicted in Fig 6.2. The generic client of an AGSSO server submits for execution

a workflow composed of multiple tasks. We assume that one of the tasks contains ref-

188

Chapter 6. Advanced Management and Fine Tuning

erences to an OpenMath object hosted by the CAS Server CS1. The object hosted on

CS1 also contains the references CS1OMR1 that targets an OpenMath object hosted in

a local document and CS1OMR2 that targets a OpenMath object hosted by CAS Server

CS2. We also assume that the object targeted by CS1OMR2 contains the reference

CS2OMR1 that targets an object hosted by CAS Server CS3. The symbol resolution

chain is thus:

CS1 → CS2 → CS3 (6.1)

For the AGSSO server to be able to select a suitable CAS Server to execute the task, it

has to determine in the first place the list of OpenMath symbols that it uses. Therefore

it formulates a resolve request to CS1. The CS1 formulates further a request to CS2

and suspends its internal resolution process until CS2 contacts back the CS1 server with

the response to the request. The response contains the list of symbols discovered by

CS2 and any other symbols that were discovered by descendantsof CS2 in the resolve

chain that are further contacted by CS2, in our case, CS3. At theend of this process,

CS1 responds to the resolve request of its client, here the AGSSO server, by sending the

list of discovered symbols. Based on the list of symbols that the task contains and the

capabilities of the CASs installed on the CAS Servers, the taskis assigned to the most

suitable CAS Server. For our scenario we assume that the task is sent to CS2.

When the task is received by the CS2, it is parsed and CS2 discovers that the call con-

tains a reference hosted by CS1. It sends a node resolve request to CS1 at which level

the object targeted by CS1OMR1 is copied to a temporary file. The CS1OMR2 points

to a CS2 object so at CS1 level there is nothing to do in this respect. Thus, CS1 re-

sponds to CS2 by sending the URL targeting the temporary file anda notice regarding

the CS1OMR2. At CS2 level, the object targeted by CS1OMR2 is parsed and the sys-

tem discovers that another object, hosted by CS3 is required.Similar with the previous

case, CS2 contacts CS3 and obtains a link to a temporary file. Since there are no other

references to be resolved, CS2 contacts CS1 and CS3 and downloads from them the tem-

189

Chapter 6. Advanced Management and Fine Tuning

porary files containing targeted objects. As a result of thisresolve process, all objects

required for execution are now stored locally to CS2.

6.1.2 OpenMath Reference Formats

The symbol resolution process only tries to discover the list of symbols that are used to

describe a certain task. The role of full resolution processis to make sure that all objects

required are downloaded and accessible to the CAS that will carry out the execution. A

task submitted for execution at CAS Server may contain references to OpenMath objects

located in the scope of the CAS Server or located on other CAS Servers. In OpenMath,

the general format of a OMR is:

<OMR href="URI" >

The format mentioned above is flexible enough to accommodateany naming scheme but

further restrictions to this format should be imposed to make it effective in the context

of distributed processing. For consistency reasons, we have imposed several format

restrictions. The accepted formats that the URI can take within OpenMath documents

handled by the AGSSO system are the following:

• Absolute URI should be used to designate resources by providing all the informa-

tion required to locate and retrieve them;

• Relative URIs suitable for identifying resources relative toa certain location pre-

viously supplied;

• Local file URIs which are used to fully identify resources thatare hosted by the

local machine;

The format used for describing absolute URIs is the same with the one used for identi-

fying Web pages. The format of the URI is:

190

Chapter 6. Advanced Management and Fine Tuning

http://host:port/path/to/file/filename/#identifier

The protocol part of the URI which for our purpose is designates as “http” may be in

our case disregarded if better transfer protocols are available. With Grids, other transfer

protocols for transferring data such as RFT are used instead of HTTP. Thehost and

port elements of the URI must identify valid CAS Server listeners that implement the

required interface for resolving OpenMath references. A client that needs to access a

certain resource will use the host and port information to call the appropriate services.

In the context of the server hosting the resource, the path tothe actual location of the

file containing the targeted resource should be identified bymapping the filepath section

of the URI (“path/to/file/filename”). The CAS Server provides an implementation for

which all the files accessible through the resolver interface are stored in a common root

directory. CAS Server automatically maps the file path to the actual location of the

file starting from this root directory. The last part or the URIrepresents the reference

identifierused to identify the OpenMath object within the targeted file.

Relative URIs may be used to reference OpenMath objects havingas start point the

location of the file in which such references reside. Therefore this type of reference can

only be used to identify resources that are hosted on the samemachine as the document

containing them. The general format is :

path/to/document/#identifier

for which to identify the actual file general rules applicable in Unix and Windows oper-

ating systems are used, also valid in the case of relative URLs. If the path to the file is

missing and only the “#identifier” part of the URI is present, the current file is assumed.

The support provided by CAS for dealing with OpenMath references is still under devel-

opment and there is no standard format accepted by all CASs that can be used to identify

and extract OpenMath objects based on their URI. GAP is able toretrieve OpenMath

objects from locally available XML documents if the format:

file:///path/to/file/#identifier

191

Chapter 6. Advanced Management and Fine Tuning

is used. Because the format mentioned above lacks information that would allow to

identify resources in a distributed environment URIs following the absolute URI format

presented above must therefore be transformed before they are sent for evaluation by the

CAS.

The resolution process for URIs starting from a request sent to a CAS Server is complex

and potentially involves coordination among several partners. Rewriting rules are needed

to ensure consistency and correctness of references even after the objects are moved from

one hosting CAS Server to another. Replica management may be very difficult if the

system has to keep track of various OpenMath objects that arehosted by different CASs.

At this stage of development AGSSO does not provide support for replica management

as a consequence identical objects that are hosted by two different CASs are considered

to be different.
the architecture depicted in Fig.2 :

CLIENT

CAS Server 1

CAS Server 2

1

2

3

Mssg 1: send task1 to CS1

Mssg 2: send task2 to CS2

(requires output from task1)

Mssg 3 (if referece

resolving is used):

request output of task1

Figure 6.3: Sample Resolver Scenario Architecture.

The use of OpenMath references is not only beneficial in the initial description of tasks.

The same mechanisms may be used to minimize network traffic and execution time

for sequences of tasks among which data dependencies exist.As a simple scenario we

assume that a client of a CAS Server submits for execution a task task1to theCASServer

CS1component and after completion of this task, it sends thetask2to CAS Server CS2

which requires the output fromtask1. The most efficient solutions for this situation is to

make sure that the response for task1 is not a self contained description of the result, but

192

Chapter 6. Advanced Management and Fine Tuning

an OpenMath object that contains an OpenMath reference to anobject hosted by CS1.

As input data fortask2the client does not provide the actual parameters but the absolute

reference that are resolved at CS2 level. Before starting the execution at CS2 level, CS2

contacts CS1 and obtains the actual parameters by resolving the OpenMath reference as

depicted in Fig. 6.3.

6.1.3 References in the Main SCSCP Call Document

The SCSCP call document describes the call and meta-information related to the call, in

concordance with the SCSCP specification. The document has twomain sections: the

header section where details regarding the call are specified; the body where an OMA

OpenMath objects attaches to a symbol identifying the remote operation to be executed,

and the objects that represent the parameters of invoked operations.

The CAS Server is able to handle OpenMath references that replace parameters of sub-

objects of the parameter objects but references are not accepted for replacing any other

section of the call, such as the header of the call. Since the CAS executing a certain

computation must be able to identify and retrieve the objects referenced within the call,

when sent to be parsed by the CAS this document must contain only absolute URIs. The

call document itself is not stored as a file on the machine where the CAS is installed and

therefore relative URIs have not associated meaning. Moreover, since the call is received

from a remote client, resources can only be correctly identified if they contain complete

information regarding the host from which the targeted objects must be retrieved.

During parsing, the original call document submitted by theclient is modified and pre-

pared to be submitted to a CAS. All absolute references are resolved and modified to

follow the local file URI format described above. All OpenMathobjects referenced are

retrieved from remote partners and they are stored in a localtemporary file from which

they may be read by the CAS. During rewriting process all unique identifiers of objects

in the OpenMath document are modified in order to avoid namingconflicts. The re-

trieved objects may in turn contain other references that may point either to the local

193

Chapter 6. Advanced Management and Fine Tuning

CAS Server or to other CAS Servers. These references must also be resolved before the

actual execution may start.

References to documents hosted on the local host or even to objects described in the

same document are rewritten to relative URIs which point to the same temporary docu-

ment. Objects that are locally hosted in other files than the temporary one are parsed and

inserted in the temporary file. The goal is to minimize the parsing effort that the CAS

must do to identify and retrieve objects required for processing. A similar approach

is used during the resolve process for references that are resolved on third party CAS

Server resolvers.

Absolute references discovered in the resolution process that do not point to local docu-

ments must be resolved through requests issued to CAS Serversthat host the resources.

When the resolver on the execution CAS Server discovers such references during the

parsing process, it formulates to the appropriate CAS Servera request that contains:

the list of references that the third party must resolve, newidentifiers that will replace

the identifiers of the targeted objects and a list of absoluteroot references that the third

party resolver must ignore. The identifiers are required because all discovered objects

are copied to a single file at the execution CAS Server,and therefore every node must

have a unique Id.

6.1.4 The Structure of the Consolidated Resource File

The temporary document containing all objects referenced directly or indirectly by the

task call must be a well formed XML document that complies with all OpenMath rules.

Because this file contains objects appended during the resolve process, we use a standard

OpenMath list specification structure. The basic structureof the file is:

<OMOBJ xmlns="http://www.openmath.org/OpenMath"

version="2.0" cdbase="http://www.openmath.org/cd">

<OMA>

194

Chapter 6. Advanced Management and Fine Tuning

<OMS cd="list1" name="list"/>

<OMOBJ > ... </OMOBJ >

<OMOBJ > ... </ OMOBJ >

</OMA>

</OMOBJ>

where the inner<OMOBJ>; ... </OMOBJ> must represent valid OpenMath objects

from which the starting and trailing OMOBJ tags are omitted. The resulted document

will thus contain a multi-dimensional list for which the depth and dimension depend on

the structure of the objects/references that must be resolved.

6.1.5 A More Elaborate Resolution Scenario

We assume that the SCSCP call (incomplete) presented in Listing 6.1 is sent to the CAS

Server CS2. At the CS2 level the call is parsed and the “http://cas1.ieat.ro/file1.txt#id1”

reference is discovered. This absolute URI must be changed inorder to be correctly

handled by the executing CAS. Because it is part of the main SCSCP call, the reference

is transformed to a local file URI pointing to new local temporary file that will contain

all objects obtained through the resolve process. Therefore the reference is modified

to “file///local repository/resultfile#newid1”. To retrieve the targeted object a call is

formulated to CS1 that contains the reference that needs to beresolved and the new ID

that must replace the old reference ID.

At CS1 level, the server extracts the object targeted in the reference and stores it in a tem-

porary file with the new XML ID “newid1”. All references that are discovered at the CS1

level and start with “http://cas2.ieat.ro/” are skipped from resolving. Now we assume

that, in the resolution process at CS1, two references “http://cas2.ieat.ro/file2.txt#id2”

and “/file11.txt#id11” are discovered. The targeted objects are copied to the a local

temporary file and the two references are changed: “http://cas2.ieat.ro/file2.txt#id1” is

changed to “#generatedId1CS1” and “/file2.txt#id2” is changed to “#generatedId2CS1”.

The ID of the XML targeted nodes are changed, in the temporaryfile, in our case from

195

Chapter 6. Advanced Management and Fine Tuning

“id11” to “generatedId2CS1”. The response of the resolve process at CS1 level informs

CS1 that the reference “http://cas2.ieat.ro/file2.txt#id1” was not resolved because it is

the scope of CS2 CAS Server. It also specifies the URL of the file hosted at CS1 level

which must be downloaded by CS2 : “http://cas1.ieat.ro/tempfile1.txt”.

At CS1 level, the message is received and the unresolved reference is resolved by iden-

tifying the targeted objects and by copying the objects, with updated identifiers, to the

local result files. In a similar way, the rest of references are resolved. When this phase

of resolution is completed, as the final step, the file is downloaded and its content is

copied to the result file. All its content is copied to the file designated by the reference

“file///local repository/resultfile”.

<OMOBJ xmlns = "http://www.openmath.org/OpenMath" >

<OMATTR>

<OMATP>

<OMS cd="scscp1" name="call_id" />

<OMSTR>194.102.63.120:26133:6766:dgsyte</OMSTR>

<OMS cd="scscp1" name="option_return_object" />

<OMSTR></OMSTR>

</OMATP>

<OMA>

<OMS cd="scscp1" name="procedure_call" />

<OMA>

<OMS cd="scscp_transient_1" name="WS_factorial" />

<OMI>..</OMI>

<OMR href ="http://cas1.ieat.ro/file1.txt#id1"></OMR>

</OMA>

</OMA>

</OMATTR>

</OMOBJ>

Listing 6.1: SCSCP Call with References

Because CASs are not expected to implement data transfer protocols used by various

196

Chapter 6. Advanced Management and Fine Tuning

distributed frameworks, the support for such operations must be provided by external

components, in our case the CAS Server component. The interface consists of two

operations. One operation allows third party clients to submit object requests while the

other one is able to store responses for requests that the current CAS Server previously

submitted to other CAS Servers. Through their implemented interface CAS Servers

provide support for:

• Handling requests received from external clients for resolving references that are

in the scope of the local CAS Server, i.e. hosted by the CAS Server

• Handle response messages for earlier requests that the CAS Server itself has for-

mulated to other CAS Server. This operation is required because the resolve pro-

cess may take a long time and therefore request/responses are handled using asyn-

chronous messages

6.1.6 Downloading Result Files

During execution all objects referenced by an OpenMath reference and used in the initial

call document or in a subsequent referenced object must be available locally. The CAS

executing the call should not and is not expected to contact remote machines to transfer

the requested objects.

There are often situations when the input data for a task and output data generated by

the processing of the task are large. In this situation combining multiple CASs in an ex-

ecution workflow requires moving this data from/to processing servers that are involved

in the computation. A rule of thumb in distributed computingis to minimize the load on

the network as much as possible.

The advantages of using OpenMath reference are easily identified. The result of task1

which may not be even needed directly at client side does not have to travel back and

forth on the network. Since CS1 and CS2 are server nodes it is highly probable that the

197

Chapter 6. Advanced Management and Fine Tuning

bandwidth capacity of the link between CS1 and CS2 exceeds by far the capacity of the

links between the client and CS1 and client and CS2. A collateral advantage of this set-

up is that the client requires little computation resourcesand can be even implemented

on hand held devices.

In general CAS lack network communication capabilities and therefore they should not

be expected to be able to coordinate transfer of files. CAS Server implements the refer-

ence resolver as a separate sub-component of the system and the file transfer is imple-

mented over the functionality provided by Globus RFT (Reliable File Transfer Protocol).

Security is also ensured by implemented mechanisms offeredby the Globus GSI.

6.1.7 Summary

The resolution process is the process through which references found in an OpenMath

document are handled. The components of the system collaborate to provide support for

two types of resolution processes:

• Partial resolution is the process to obtain the list of OpenMath symbols used to de-

fine a certain OpenMath object. The partial resolve process is required at AGSSSO

Server level to allow it to determine CAS Servers that are ableto execute a certain

task based on the functionality they provide;

• Full resolution is the process to obtain the complete description of an OpenMath

object which is defined based on OpenMath references. References used in the

definition of an OpenMath object are replaced by the actual referenced objects.

Usually the CAS has to have the full definition of the OpenMath objects involved

in the execution of a task, including referenced objects.

The AGSSO server and CAS Servers collaborate for resolving references but for retrieval

of actual data CAS Servers rely on Grid specific features for data management provided

by Globus Toolkit 4.

198

Chapter 6. Advanced Management and Fine Tuning

Figure 6.4: Task Life Cycle at Client Manager Level

6.2 Advanced Workflow Management

It is sometimes necessary to intervene in the normal executions of a workflow. Due to

various reasons the user may need to cancel or pause the execution and therefore addi-

tional management functionalities such as start/stop/resume are required. These actions

have a direct impact on the life cycle of the individual tasksfrom which the workflow

is composed of and adds an additional level of complexity forthe overall behaviour of

the system. In the following subsections we investigate thelife cycle of symbolic com-

putations workflows in the way they are handled at the AGSSO Server level and at CAS

Server level.

Any workflow submitted by the client to an AGSSO server is managed by Client Man-

ager Component which is responsible for tracking all detailsregarding computational

nodes that are part of the architecture and based on internalrationale to select the most

suitable machine to execute a certain task.

The initial status of a task is NOT RESOLVED (Fig. 6.4), since the task described

using the OpenMath language may contain unresolved references to external OpenMath

objects. Once the resolution process is successfully completed, the status of the task is

marked asRESOLVEDand the task is prepared for further analysis. The task is promoted

to the stateREADY FOR SCHEDULINGas soon as the task is activated, meaning that all

199

Chapter 6. Advanced Management and Fine Tuning

its predecessors are finished and therefore the tasks can be considered for execution. The

system can now run scheduling algorithms to select the most suitable CAS Server to send

the task for execution. Once the suitable CAS Server is selected the task is promoted to

the stateSCHEDULED. The following step is to send the task to be resolved to a CAS

Server. After the task is successfully submitted for execution, the internal state of the

task becomesSUBMITTED. Further evolution of the task’s state will only occur afterthe

CAS Server submits back the result or an error is returned. Successful completion moves

the task intoFINISHEDstate while if an error occurs the task is marked asCANCELED.

The execution workflow described above is the one that normally occurs if the tasks

follows the normal execution path. The user may decide to intervene in the normal

execution flow by issuing specific workflow management commands. A ’pause’ request

may be issued by the client at any stage of the workflow execution which has as effect

a change in the current state of task(s) that are in the scope of the request. If a task

has the statusNOT RESOLVEDit may be considered that the resolve phase was started

but it was not finished yet. Since pausing a task presumably means that the task will

be started at a later time it makes sense for the resolve phaseto continue. Thus, the

task’s new status becomesPAUSED NOT RESOLVED. If the task is paused while it is in

RESOLVED state the new status becomesPAUSED RESOLVED. A resume issued for a

task in the statePAUSED NOT RESOLVEDor PAUSED RESOLVEDwill have as effect

changing the state of the task toNOT RESOLVEDor RESOLVEDrespectively.

The parent-child dependency between tasks prevents a task to be scheduled immediately

after it is resolved. The task may beREADY FOR SCHEDULINGonly when all preced-

ing tasks were already resolved. If a pause is issued while the task is in one of the states

READY FOR SCHEDULINGor SUBMITTED, its state may change toPAUSED. Any

resume operation for a task that is inPAUSEDstate results changing of the task’s state

to READY FOR SCHEDULINGthat allows the system to run once more the scheduling

algorithms to select the CAS Server to which the task should besubmitted to.

A submitted task is no longer under complete control of the AGSSO server and any

200

Chapter 6. Advanced Management and Fine Tuning

change in its state has to be coordinated with the CAS Server that the tasks was submitted

to. Pausing a tasks in the stateSUBMITTED, may change the status either toPAUSED

SUBMITTEDor to PAUSED. The new state becomesPAUSEDif the worker was able

to pause the task at its level as well, which depends on the status of the task at the CAS

Server level and the functionality that the CAS itself provides as described further in

this section. If the underlying CAS does not support pausing,the task may continue

to run and the state of the task at AGSSO level becomesPAUSED SUBMITTED. If the

computation ends before the task is resumed the result obtained at CAS Server level is

not be sent back to the AGSSO server until the task is not resumed.

One useful behaviour that the system provides support for isdiscarding the computation

of a task and manually assignation of an expected result. Theuser can reconsider the

execution of a certain branch of a workflow or can discard a computation and manually

set a result. The later case allows the user to stop a long running task and provide the

result of the task without computing it. In such case, by manually assigning a result to

a task that is in the statePAUSEDor PAUSED SUBMITTEDand resuming the task will

have the effect promote the task to the stateFINISH. No further computation is therefore

done for this task and the manually assigned result is used asif it was the result of the

task execution. The result that will be used in the rest of thecomputation is the one

provided by the user.

A special action is the cancellation of a task in the workflow.This action may be taken

regardless the current state of a task and has a direct effecton all the tasks that depend

on the cancelled task. As a result of this action, all descendent tasks, direct or at deeper

level, are also cancelled.

At CAS Server level the life cycle of the task is similar to the one at AGSSO server

level (Figure 6.5). Once received by the CAS Server the task evolves based on the

internal processing and may be influenced from outside by theuser’s actions. The status

of the tasks is promoted fromNOT RESOLVEDto RESOLVEDif all references were

successfully resolved by the system. If the status isRESOLVEDall OpenMath objects

201

Chapter 6. Advanced Management and Fine Tuning

Figure 6.5: Task Life Cycle at Computational Node Level

required for the CAS to be able to execute the task were retrieved from their original

hosting CAS Servers. At CAS Server level once the task isRESOLVEDthe internal

scheduling algorithm may determine the actual CAS to which the task will be submitted.

The CAS may not be able to treat the task immediately and therefore, after scheduling,

the task may be put in the stateQUEUED instead ofRUNNING. The task is put in the

stateFINISHEDwhen the result was computed by the CAS.

Management actions such as pause/resume/cancel determinecorresponding modifica-

tions in the state of a task as it happens at the AGSSO server level. A task received by

the CAS Server from an AGSSO server is already in the stateSUBMITTEDat AGSSO

server level and depending on its current state within CAS Server, its state will change

accordingly. A pause requested for a task inNOT RESOLVEDstate will put the task in

the statePAUSED NOT RESOLVEDwhile if the task is already inRESOLVEDstate it

will be put onPAUSED RESOLVED. Therefore if the resolve process was already fin-

ished it will not be re-executed when the task is resumed. Because it is not possible to

freeze the execution of task at CAS level, even if a pause is requested by the user the ex-

ecution itself continues and from theRUNNINGstate the task is put in the statePAUSED

RUNNING. The evolution of the task at CAS Server level has also a directimpact on the

task’s state at AGSSO server level. If the task can be put at CASServer level in the state

PAUSEDit will also be put in the statePAUSEDat AGSSO Server level. If the task was

already started at CAS Server level and its state is modified toPAUSED RUNNING, at

202

Chapter 6. Advanced Management and Fine Tuning

NOT_RESOLVED RESOLVED

READY_FOR_SCHEDULING

SCHEDULEDSUBMITTEDFINISHED CAS Server

selected

Task sent to

CAS Server

NOT_RESOLVED RESOLVED

QUEUEDRUNNINGFINISHED

CAS

selected

Task sent

To CAS

AGSSO level

CAS Server level

AEVENT AGSSO_RESOLVE

C
A

S
_
A

E
V

E
N

T

CAS_RESOLVE

CAS_CEVENT

C
E

V
E

N
T

Figure 6.6: The Life Cycle of a Task at AGSSO and CAS Server level.

AGSSO server level the state of the task is set toPAUSED SUBMITTED. The correlated

relation between the states of the task at system level is depicted in Figure 6.6.

6.2.1 Summary

The life cycle of the task at AGSSO Server level and CAS Server level are similar. The

typical life cycle follows the following steps:

1. The task is received by the component, AGSSO Server of CAS Server;

2. OpenMath references are resolved. At CAS Server level fullresolve process is

applied while at AGSSO Server level only partial resolutionis required;

3. The task is sent for execution;

4. The result is obtained.

203

Chapter 6. Advanced Management and Fine Tuning

At user request, the execution of a particular task may be paused or even cancelled, with a

direct impact on the state of the other related tasks. The system uses the above mentioned

life cycle and information on the current state of the systemto determine and control the

status of each task. Insight regarding task life cycle is also important for ensuring that

the system behaves as expected and as support in developmentof event-based simulation

platforms such as the one presented in Section 6.3.

6.3 Event Based Simulation Framework

In this Section we describe an event-based simulation framework for testing the CAS

Server and AGSSO Server components and for providing a test bed environment suitable

for optimization of different scheduling algorithms. In Subsection 6.3.1 we present the

overall design of the framework. In Subsection 6.3.2 we discuss preliminary results

obtained by testing several generic scheduling algorithms.

6.3.1 Simulation Design

Building a distributed architecture is usually not a trivialtask as every execution unit in

the distributed architecture must act autonomously. The more advanced the implemented

functionality is, the less easy is to predict the system’s behaviour. In general, testing such

architectures in real life environments does not provide a sufficient level of confidence

and alternative solutions must be sought. One such alternative is to create a simulated

environment. Building a simulated environment for our system offers two important

benefits. The immediate one is to validate the implementation by testing not only the

separate software components but also their functionalitywhen integrated in the broader

SymGrid-Services architecture. Due to the complexity of the system, testing it in the

simulated environment helps us to identify problems prior to deploying the system on a

real life computational architecture.

204

Chapter 6. Advanced Management and Fine Tuning

A second important benefit of a simulated environment is thatit offers valuable informa-

tion regarding the efficiency of the system. The tasks submitted by a user are analysed

by the system and the system tries to find the most suitable computational resources

that meet the task’s requirements. This is achieved by usingscheduling algorithms im-

plemented at two levels of the architecture, as it is described in the following sections.

Unfortunately, symbolic computing is atypical with respect to estimating the time re-

quired for a task to be completed. Polynomial factorizations offer a relevant example

because the time required to factories a polynomial does notvary in a predictable way

with respect to the input (e.g. givenP(x) it is hard to estimate its cost by relying on the

cost ofP(x+1) or P(x-1)).

In a real life environment, using prior knowledge regardingthe hardware infrastructure

on which SymGrid-Services is deployed and regarding the structure of the tasks that

are most often resolved by the system, it is possible to do finetuning of the system in

order to achieve greater performance. With such prior knowledge, different scheduling

algorithms may be tested for effectiveness and different segregation schemes may be

implemented. For efficiency reasons, it is not uncommon in computer farms to apply

segregation policies to prevent powerful machines to execute short running tasks or to

avoid computational-intensive tasks to be submitted to less powerful computer system.

In the following sub-sections we describe the simulation environment that we have used

to test the efficiency of various scheduling algorithms for mathematical problems. The

solution uses the discrete event simulation approach tailored to the behaviour and the life

cycle of workflows comprising interdependent tasks from themoment they are submitted

for execution until their executions ends.

Experiments can be run using various testing and simulationplatforms. These include

real platforms, simulators and emulators. Real platforms provide better understanding

of the system’s behaviour in a real time environment but makes testing of different set-

ups difficult. Emulators permit flexible testing of existingcomponents by reproducing

controlled system calls. If a simulation platform is used, both the components of the

205

Chapter 6. Advanced Management and Fine Tuning

architecture to test and the environment in which it is expected to execute must be cre-

ated. Simulated platforms represent an usual solution for testing distributed applications

under specific circumstances. Examples of such platforms are described in Bricks [173],

SimGrid [67], OptorSim [48], GridSim [54], GridNet [120], Wrekavoc [56] etc.

While some of the simulation platforms mentioned above may beused without extensive

adaptation in some cases, the particularities of the AGSSO architecture makes reusing

already existing simulation platforms a complex task. Therefore we have designed and

implemented required components that allow us to simulate the behaviour of AGSSO

using the discrete-event simulation mode. Ore goal is to reuse as much as possible of

the actual components of the AGGSO architecture. Workflows that would be specified

at client side are replaced by generated ones using custom implemented random gener-

ators. The structure of generated workflows, the structure of the tasks and the resources

they require to be resolved are influenced by configuration parameters of the generators.

Therefore a wide range of possible scenarios can be tested without actually executing

tasks.

Our simulator aims at mimicking the flow of events that occur inside SymGrid-Services

from the moment a workflow is submitted and until its completion. To fulfil this goal,

the tasks themselves do not need to be executed by a CAS since from the simulation

point of view only details such as time needed for the task to be sent to the CAS Server,

time needed for potential OpenMath references to be resolved time needed for the task

to be completed and time required to transfer the result are relevant. All these values are

actually generated by the simulation platform.

Based on the two-level architecture of the composition framework we have identified

several events specific to the simulation environment whichhave to be processed:

• AEVENT - signals the arrival of a new submission in the system. Typically this

is represented by a new workflow. The submitting client needsto be registered in

the system’s database.

206

Chapter 6. Advanced Management and Fine Tuning

• AGSSO RESOLVE - marks the end of the OpenMath resolution process of one

or more workflow tasks. This means that the system has identified the CAS servers

able to execute the tasks. Once this step is accomplished thescheduler component

at the AGSSO level finds the best server for executing the tasks. No rescheduling

is possible at this level and thus selecting the optimal server plays a vital role for

the global computation costs.

• CAS AEVENT - represents the moment when a task is received by the CAS

Server and placed inside its waiting queue.

• CAS RESOLVE - is similar with the correspondingAGSSORESOLVEevent.

The only difference is that at this stage the task symbol or method reference links

are replaced with the actual content that is transported from the remote hosts to

the CAS Server. Once this step is completed the scheduler at server level is started

in order to load balance the usage of available CASs. Additionally, a number of

tasks can be started on each CAS depending on the maximum number of instances

each CAS can handle and on the number of already running ones. Rescheduling is

achieved each time this event is triggered. The reason is because each new resolved

task needs to be scheduled on the least loaded CAS in order to start executing it as

soon as possible.

• CAS CEVENT - is triggered each time a task has completed its execution. The

result is stored in a database and the response is sent back toAGSSO;

• CEVENT - is triggered when the result from the CAS is received by AGSSO.

All tasks depending on the current one are inspected and possibly activated for

scheduling.

The events that occur during simulation are closely linked with the actual states of tasks

handled by the system. For instance a CASEVENT that the simulation platform must

handle means that a particular task was finished and the status of the task has changed

to FINISHED. While in a real life environment events occur dueto normal evolution of

207

Chapter 6. Advanced Management and Fine Tuning

the system’s state, i.e. a CASEVENT occurs because a CAS finished resolving a task,

in the simulated environment the next event is calculated byselecting the event having

the minimum due time. The algorithm presented in Listing 6.2describes the way the

simulation platform executes the simulation process.

Simulation starts from the reference time “0” and the current time is increased with each

new event that is handled. Initially, because no tasks were previously generated, the

system will generate a workflow and the new reference time of the simulation platform

becomes the time of the AEVENT. Each workflow and within the workflow each task is

defined by the time needed for it to change its state from the initial state to the final state

when the task is resolved. If the task’s execution started atmoment T and it requires N

time units for it to be completed, the simulation platform will change its state to FIN-

ISHED when reference time becomes T+N. Next event that occurs is always determined

as the minimum due time of any event active within the simulation platform.

208

Chapter 6. Advanced Management and Fine Tuning

1. INPUT: totalNumberOfClients

2. arriveEcart := 0

3. WHILE (nrOfRequests < totalNumberOfClients

4. OR NOT(finished workflows)) BEGIN

5. nextEvent := getNextEventType()

6. IF (nextEvent = AEVENT) BEGIN

7. handleAEVENT();

8. eventTime := currentTime

9. arriveEcart := generateNextWorkflowArivalTime()

10. nrOfRequests := nrOfRequests + 1

11. ELSIF (nextEvent = AGSSO_RESOLVE)

12. handleAGSSO_RESOLVEEvent();

13. ELSIF{nextEvent = CAS_AEVENT}

14. handleCAS_AEVENTEvent();

15. ELSIF(nextEvent = CAS_RESOLVE)

16. handleCAS_RESOLVEEvent();

17. ELSIF(nextEvent = CAS_CEVENT)

18. handleCAS_CEVENTEvent();

19. ELSIF(nextEvent = CEVENT)

20. handleCEVENTEvent();

21. ENDIF

22. END WHILE

Listing 6.2: Event Based Simulation Algorithm

As described by the Listing 6.3 for the purpose of simulationeach task is defined by

several characteristics: the amount of memory required forit to be executed; the size

of data that must be transferred to the execution host; the list of OpenMath symbols

and methods it contains; the time required to resolve OpenMath references it contains;

and its relation with other tasks of the workflow. All these details are generated auto-

matically to match specific statical distribution models. Their values may be expressed

directly as units of time needed for a certain processing to be completed or as orders of

magnitude that influence the time required. Some details such as estimated execution

and completion times on a certain resource and transfer costs to and from the server can

209

Chapter 6. Advanced Management and Fine Tuning

only be determined when theAGSSORESOLVEevent occurs. These details cannot be

known prior to the selection of the server, a procedure whichtakes place after the task is

resolved at AGSSO level.

BEGIN handleAEVENT()

$n := generate_number_of_tasks();

FOR (i = 1..n} BEGIN

nSymb := generate_no_symbols();

nMet := generate_no_methods();

mem := generate_memory_req();

parents := generate_parent_tasks();

size := generate_size();

res := generate_resolve_time();

generate_task(nSymb,nMet,mem,size,parents,res);

ENDFOR

FOR (generated_tasks()) BEGIN

taskState := NOT_RESOLVED;

insert_task_in_database()

ENDFOR

generate_next_workflow_arrival_time();

END

Listing 6.3: Generation of New Tasks

The algorithm described in Listing 6.4 shows the actions that have to be taken by the

simulation platforms when a task changes its state to RESOLVED at AGSSO server

level.

210

Chapter 6. Advanced Management and Fine Tuning

BEGIN handleAGSSO_RESOLVEEvent()

FOR (ready_to_be_resolved_tasks) BEGIN

resolve_task()

taskState := RESOLVED;

eet := generate_execution_time();

tc := generate_transfer_costs();

update_task();

taskState := READY_FOR_SCHEDULING;

schedule_tasks();

taskState := SCHEDULED;

ENDFOR

END

Listing 6.4: Handling Resolved Tasks

Tasks that are ready to be executed are analysed by scheduling algorithms and the most

suitable CAS Server is elected to execute the task based on itsrequirements and on

resources that a certain CAS Server provides. At this level various scheduling algorithms

may be tested and their efficiency for a certain configurationmay be determined. Once

the CAS Server is elected, the task is sent to the CAS Server and the resolve process at

CAS Server level is started, following the procedure presented in Listing 6.5.

BEGIN handleCAS_AEVENTEvent()

FOR (ready_to_arrive_tasks) BEGIN

taskState := NOT_RESOLVED;

res := generate_resolve_time()

insert_task_in_database()

ENDFOR

END

Listing 6.5: Handling Tasks at CAS Server Level

Depending on the loading of the CAS Server a certain task may beput in a waiting queue

211

Chapter 6. Advanced Management and Fine Tuning

or the task is immediately submitted to the CAS for execution as described in Listing 6.6.

BEGIN handleCAS_RESOLVEEvent()

FOR (ready_to_be_resolved_tasks) BEGIN

resolve_task()

taskState := RESOLVED

schedule_task()

$taskState := QUEUED

ENDFOR

FOR (<can start> tasks) BEGIN

taskState := RUNNING

ENDFOR

Listing 6.6: Task Resolution at CAS Server Level

When the tasks is completed at CAS Server level its state is changed to FINISHED

(Listing 6.7). The result is sent back to the AGSSO server anddepending on its size, its

transfer requires a certain amount of time units.

BEGIN handleCAS_CEVENTEvent()

FOR(ready_to_complete_CAS_tasks) BEGIN

taskState := FINISHED;

ENDFOR

END

Listing 6.7: End of Task Execution at CAS Server Level

Once a task has finished and the result is received by AGSSO server task’s state is

changed accordingly (Listing 6.8). As a result, other tasksthat depend on the finished

task completion may further be marked as ready to be analyzedand started.

212

Chapter 6. Advanced Management and Fine Tuning

BEGIN handleCEVENTEvent()

FOR (ready_to_complete_AGSSO_tasks) BEGIN

taskState := FINISHED

ENDFOR

END

Listing 6.8: End of Task Execution at AGSSO Level

SymGrid-Services relies on statuses to handle tasks duringthe entire period from work-

flow submission to completion. Two sets of statuses are used:one for the AGSSO level

(see upper part of Figure 6.6) and one for the CAS server level (see lower part of Fig-

ure 6.6). In order to address this matter the simulator’s events directly handle the status

management as shown by the algorithms described above. Eachof these algorithms is

called when the corresponding event occurs during the simulated execution.

6.3.2 Simulation Results

One of the main purposes of the simulation platform is to better understand the impact of

a real life architecture and the use of different schedulingalgorithms used atAGSSOand

CAS Serverlevels. The different structures of the workflows and the size of the tasks

comprising the workflows are two of the important details that should be considered

when various scheduling algorithms are used. The result presented here were part of a

study previously published in [59].

The first configuration used for testing is the same as the reallife hardware archi-

tecture that brings together the computational clusters used currently by the SCIEnce

project [19]. The two clusters, the one in Timisoara, Romaniaand the other in St. An-

drews, United Kingdom are homogeneous with regard to the hardware profiles and in the

software capabilities installed on the machines. In this first set-up, the AGSSO compo-

nent is installed on the SCIEnce cluster based in Timisoara. The two clusters also act as

213

Chapter 6. Advanced Management and Fine Tuning

CAS Server components with CASs installed on the nodes of the cluesters. Therefore,

we have two CAS Servers, which in turn have eight computational nodes each. Each

node of the cluster hosts one instance of GAP respectively.

For testing purposes we have selected three scheduling algorithms: MinQL [98], MaxMin

and MinMin [164]. MinQL algorithm ensures that tasks starvation does not occur since

the age of the task is considered as a selections criterion. Tests run with this algorithm

also use as selection criteria the CPU speed of machines. MinMin first computes the

fastest estimated completion time for each task on every resource and it assigns the task

to the resource where it would be computed in the shortest time. The MaxMin algorithm

is similar to MinMin except for the fact that it assigns the longest estimated running task

to the resource for which the value was obtained. The aim of MaxMin is to balance

execution of task requiring a long time to complete with tasks having shorter ones.

At AGSSO level only MinQL is used while at CAS server level any of the listed al-

gorithms can be chosen. The reason for this approach is that at AGSSO level there is

no rescheduling the target being to balance the number of tasks on the existing CAS

servers. At CAS server level we require periodical rescheduling as some CAS could

execute tasks faster then others. In our tests we have considered several parameters that

would help us to draw conclusions related to the computed results. The makespan repre-

sents the total time of execution, from the first moment when atask arrives in our system

to the moment when all workflows expected to be simulated by the system are marked

as successfully completed.

During the execution, the scheduling algorithms may find allcomputing resources busy

so the task is put into a waiting queue. An important indicator in this respect is the

average waiting time related to the executed tasks. We must note here that, due to internal

considerations of scheduling algorithms, it is possible that the task is stored in a waiting

queue even if a free server is available. This should not though occur often and waiting

time should be in this case small in comparison with the average execution time.

Usually, scheduling algorithms try to assign tasks to computing severs so the average

214

Chapter 6. Advanced Management and Fine Tuning

 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 4 6 8 10 12 14 16

A
vg

 W
ai

tin
g

T
im

e

CAS-Server

MinQL-MinQL-10

(a) 10 workflows

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 2 4 6 8 10 12 14 16

A
vg

 W
ai

tin
g

T
im

e

CAS-Server

MinQL-MinQL-20

(b) 20 workflows

Figure 6.7: Average waiting time for each CAS when the MinQL scheduling algorithm
is used at both levels.

load for every machine is balanced. As the following diagrams will show, it is possible

that some servers have a greater load due to the structure of the generated workflows.

For our purpose we use workflows that combine several execution patterns which may

directly affect the load profiles. When dealing with workflowscontaining sequences, it

may be possible that the same machine executes all the tasks of the sequence.

Since the simulation is based on the next-event model, the units of time used in the fig-

ures are abstract. For the load diagrams the values used on the Oy axis represent sub

unitary values obtained by dividing the execution time of a given server to the total run-

ning time. If we consider that tasks at both AGSSO and CAS Server level are scheduled

with MinQL algorithm and we submit ten respectively twenty execution workflows the

average waiting time in our simulation is relatively small for all servers as can be seen

in Figure 6.7. This demonstrates that the scheduling algorithms behave as expected and

that the values are similar for the two cases.

When using different scheduling algorithms at CAS Server level we notice a slight mod-

ification in the average waiting time profile (see Figures 6.8and 6.7(b)). This is due

to the fact that MinMin and MaxMin are not load balancing algorithms. This results in

higher average waiting time for certain servers.

As we can observe from Figure 6.9 the load when MinQL algorithm is not affected by

the number of workflows executed and load between executionsCAS is balanced. Not

215

Chapter 6. Advanced Management and Fine Tuning

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 4 6 8 10 12 14 16

A
vg

 W
ai

tin
g

T
im

e

CAS-Server

MinQL-MaxMin-20

(a) MinQL-MaxMin

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 2 4 6 8 10 12 14 16

A
vg

 W
ai

tin
g

T
im

e

CAS-Server

MinQL-MinMin-20

(b) MinQL-MinMin

Figure 6.8: Average waiting time per CAS for 20 workflows when different scheduling
algorithms are used at the two levels.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16

Lo
ad

CAS-Server

MinQL-MinQL-10

(a) 10 workflows

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 2 4 6 8 10 12 14 16

Lo
ad

CAS-Server

MinQL-MinQL-20

(b) 20 workflows

Figure 6.9: Average load for each CAS when the MinQL scheduling algorithm is used
at both levels.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12 14 16

Lo
ad

CAS-Server

MinQL-MaxMin-20

(a) MinQL-MaxMin

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 2 4 6 8 10 12 14 16

Lo
ad

CAS-Server

MinQL-MinMin-20

(b) MinQL-MinMin

Figure 6.10: Average load per CAS for 20 workflows when different scheduling algo-
rithms are used at the two levels.

the same conclusion can be drawn from the situation when we use MinMin or MaxMin

algorithms. These two algorithms led unbalanced loads of the CASs (see Figure 6.10).

216

Chapter 6. Advanced Management and Fine Tuning

Workflow no. MinQL-MinQL MinQL-MaxMin MinQL-MinMin
10 22758± 6026 21230± 5425 24397± 5092
20 42247± 5398 37935± 8327 37450± 6261

Table 6.1: Makespan comparison.

Table 6.1 depicts the average schedule makespan (includingthe standard deviation ob-

tained from the tests). It can be noticed that when MaxMin andMinMin are used at the

CAS Server level the obtained makespan is better than the casewhen MinQL is used at

both levels. MinMin and MaxMin algorithms use task estimates when taking scheduling

decisions while MinQL focuses on load balancing.

6.3.3 Conclusions

We use the event based simulation platform presented in thissection to evaluate the cor-

rectness in execution of the two most important components of our architecture, the CAS

Server and the AGSSO Server components. We also demonstratethat it is possible to use

various scheduling algorithms at both CAS Server and AGSSO Server level. Although

the scheduling algorithm used in this section are not specifically tailored for handling

symbolic tasks, more efficient algorithms may be developed and tested using the event

based simulation platform.

6.4 Summary

This chapter presents several novel features of our architecture, and these have been

published as follows. The basic concepts for data management based on OpenMath

references and the design and functionality for workflow management are reported in

[65]. The design of, and results from, the distributed CAS simulation platform presented

in this chapter are reported in [59].

217

Chapter 6. Advanced Management and Fine Tuning

In Section 6.1 we describe how collaborating CAS Servers can resolve OpenMath ref-

erences encountered while parsing an OpenMath document. Wehave defined a pattern

for expressing references based on the OpenMath standard and we have defined a set of

algorithms that minimise the computational resources required for resolving OpenMath

references. We have also described a set of components that rely on Grid Services for

transferring data between computational nodes.

Section 6.2 describes the process of managing the executionof workflows. In the con-

text of our system we have abstracted the execution process and we have identified the

generic states that a symbolic computation task may attain.The identified life cycle

takes into consideration the use of OpenMath references fordata management and cap-

tures the steps required to retrieve the definition of a compound OpenMath object even

if its definition is dispersed over multiple hosting nodes. The life cycle also captures

the behaviour of the system and steps that need to be executedat various levels of the

architecture if execution management capabilities are used, such as pausing, resuming

or cancelling a task or even an entire workflow.

Section 6.3 describes a discrete event simulation platformdesigned to verify and vali-

date the system. In a real environment actions executed by the AGSSO Server and CAS

Servers are triggered by specific events that occur, e.g. receipt of a new workflow to

execute; tasks resolution completes; tasks are submitted for execution to CAS Servers;

tasks execution finishes. The platform receives as input workflows composed of tasks

and executes the steps required for execution of the workflows except the actual execu-

tion of tasks. Event based simulation platform is appropriate for testing and fine tuning

of scheduling algorithms. To demonstrate this functionality we have run the simulation

platform with different scheduling algorithms installed at AGSSO and CAS Server level,

namely the MinQL, MaxMin and MinMin algorithms. We find that,because MinMin

and MaxMin are not load balancing algorithms they induce unbalanced loads, and hence

the average waiting time is higher with these algorithms.

218

Chapter 7

Conclusions and Future Work

This chapter summarizes the main achievements of the thesis(Section 7.1), discusses the

limitations of the work (Section 7.2), and outlines some potential solutions that could be

provided by further research (Section 7.3).

7.1 Summary

Algorithms for symbolic computations are often complex andthey may required a long

time to complete. The amount of data they process or generatemay also be consider-

able. Latest advances in distributed computing may providethe required computational

resources to support the requirements that symbolic computations raise. Computational

Grids represent one of the possible technologies that may beconsidered for building

a computational infrastructure due to several immediate advantages: it provides stan-

dard support for data management; it provides standard mechanisms for aggregating and

managing resources; it ensures security of the shared resources by implementing well

established security policies and mechanisms.

Requirements for an infrastructure that would provide the resources to support symbolic

computations field were first investigated more than two decades ago (Section 2.1). In

219

Chapter 7. Conclusions and Future Work

order to develop a platform for symbolic computations, we have analysed the capabilities

and constraints of various architectural styles and distributed computation technologies

and based on our analysis we have come to the conclusion that Web Services and Grid

Services are the most suitable current technologies for building a distributed computa-

tional infrastructure for symbolic computation (Section 2.3). Among the most important

problems that have to be addressed is the lack of interoperability between various sys-

tems for symbolic computation. Using a common encoding datamodel for exchanging

data between various systems, such as OpenMath, representsan important step ahead

towards interoperable systems.

The CASs represent the main tools for symbolic computations and the level of expertise

and complexity of these systems makes them valuable and impossible to be replaced

or reengineered. To enable these systems to be used as part ofmassively distributed

execution environments, these systems have to be enhanced and additional support com-

ponents have to be implemented. In Section 3.2 we analyse themost important require-

ments that should drive a generic interface to expose CASs functionality to be available

for remote invocations. Several architectural styles are considered in Figure 3.1 and

based on our analysis the server centric architectural style is the most suited to be used

as a model for developing an infrastructure for symbolic computations. In Section 3.3

we describe our solution for exposing multiple CASs through aunitary interface exposed

using Grid/Web Services. Its architecture is depicted in Figure 3.2.

The role of the CAS Server component is to provide a consistentinterface through

which functionality of existing CASs can be exposed as Grid/Web Services. Using CAS

Servers as foundations, the AGSSO servers provide capabilities to orchestrate multiple

CASs for solving compound symbolic computation problems. Asdepicted in Figure

4.4, AGSSO has the role to manage the execution steps of symbolic workflows and to

discover the most appropriate resources for solving a particular problem. To achieve

this goal, the AGSSO server combines state of the art capabilities provided by workflow

management engines with specially designed components that offer support for schedul-

ing, data management and discovery of resources.

220

Chapter 7. Conclusions and Future Work

The design of the AGSSO component considers the differencesbetween business work-

flows and the workflows for scientific computations describedin Subsection 4.1.1 and

provides a set of capabilities to address these differences. While business workflows

are usually composed of a small number of short running tasks, scientific workflows are

different. Their tasks are long running and the number of cycles that have to be executed

is usually high. Therefore, efficient management of such workflows cannot be achieved

without capabilities to control and steer their execution.Features that enable the user to

pause/resume/cancel or to alter values of computations while the workflow runs are of

paramount importance. The general lifecycle of a workflow and the impact of workflow

management actions on an executing workflow are discussed inSection 6.2.

The role of the Client Components of our architecture is to assist the user with de-

scription of symbolic computation workflows or while accessing functionality of remote

Web/Grid services. The Client Component depicted in Figure 5.1 does not require that

fundamental changes are made within existing CASs. Its role is to provide a versatile

solution for accessing remote Web and Grid Services from within CASs native environ-

ment. It also provides support for describing workflows for symbolic computations as

compositions of basic workflow patterns described in Section 4.2. The process of de-

scribing workflows is simple and intuitive on one hand, and powerful enough to cover

most of the expected computational scenarios on the other hand.

The main data encoding model that our components use to exchange data is OpenMath.

Its capabilities to encode semantic rich mathematical content and the associated XML

format makes OpenMath the most suitable choice for encodingmathematical content.

One of the features that OpenMath provides is the mechanism of OpenMath references.

Currently there is little support provided for managing OpenMath references. In Section

6.1 we describe a set of software components that support solving OpenMath references

in the context of distributed environments.

Finally, to assist the process of fine tuning for various components of the system we

have developed a simulation platform. Using the simulationplatform we have made

221

Chapter 7. Conclusions and Future Work

initial investigations towards refining scheduling algorithms used at AGSSO server level

and CAS Server level. In Section 6.3 we have presented the basic algorithms used to

simulate the execution of our framework. For testing purposes we have considered so

far the implementations of the MinQL [98], the MaxMin and MinMin [164] scheduling

algorithms. The results were presented in Figure 6.7, Figure 6.8, Figure 6.9 and Figure

6.10. It can be noticed that when MaxMin and MinMin are used atthe CAS Server level

the obtained makespan is better than in the case when MinQL isused at both levels.

MinMin and MaxMin algorithms use task estimates when takingscheduling decisions

while MinQL focuses on load balancing.

As a result of our research we conclude the following:

1. An infrastructure for symbolic computations has to rely on CAS provided capa-

bilities because CASs are the most advanced software tools for solving symbolic

computation problems. Functions implemented by CASs have tobe made avail-

able for remote clients;

2. The most appropriate technologies to use for exposing CASs’ functions for remote

invocations are Grid and Web Services. These technologies are suitable because

they provide standard mechanisms for advertising serviceswhich facilitates the

discovery of new services, they have a standard data encoding model which relies

on XML, and they are platform independent. Web and Grid services are accessed

using HTTP/HTTPS protocol which raises less security concerns and is usually al-

lowed by standard security policies. Additionally, Grid Services provide standard-

ized security capabilities which raises the overall security of the computational

system that uses them;

3. The structure of the interface exposing CASs must be consistent over time and

must provide at least the following mandatory capabilities: a single operation

through which remote clients may submit symbolic computation requests irre-

spective the functions and CASs that executes the requests; aset of operations that

222

Chapter 7. Conclusions and Future Work

support the discovery process; non blocking mechanisms to retrieve computed re-

sults. More advanced functionality that allows task level management for pausing,

resuming or cancelling tasks may also be beneficial;

4. One of the most versatile languages orchestrating Web Services is BPEL. Several

execution engines that use BPEL exist. ActiveBPEL is one of themost popu-

lar open source execution engines and it can also be extendedto orchestrate Grid

Services. Other existing software tools for describing andexecution of Grid Ser-

vices exist but they can not be easily integrated with existing CASs. Our AGSSO

Server relies on ActiveBPEL for managing workflows but it provides additional

features such as automatic workflow generation, task management and support for

provenance and reproducibility;

5. Provenance and reproducibility of scientific results areof paramount importance

for validating research. Data captured by executing CAS Servers and AGSSO

Servers allow us to construct a detailed picture of the stepsexecuted as part of

a workflow. Therefore we can document any workflow execution and based on

gathered information the workflow can be rerun.

6. Data management should rely on existing data exchange protocols and technolo-

gies. We have developed algorithms and software componentsto assist in the pro-

cess of resolution of OpenMath references which makes data management easier

and more efficient.

7.2 Limitations

The architecture that we propose within this thesis has several limitations that are par-

tially related to specific implementations of the CAS Server,AGSSO Server and Client

Component and limitations that are related to the functionality that current CASs pro-

vide. Within this section we address these types of limitations.

223

Chapter 7. Conclusions and Future Work

The Client Component currently supports interactions with any type of Web Services but

it only supports Grid Services implemented using the Globus4 framework, which are

WSRF compliant Grid Services. Previous Globus Grid Services such as the ones that

are implemented using Globus 2.4 or Globus 3 are not supported. Therefore, the client

component can not access Grid Services for symbolic computations that are not imple-

mented as Web Services or as Globus 4 Grid Services. Similarly, Grid Services that are

implemented using gLite middleware cannot be used as part ofthe current architecture.

At client side the CAS specialist may describe workflows for symbolic computation

based on services that are exposed by CAS Servers. Even if Web or Grid Services im-

plemented by third party providers may be invoked using the Client Component, these

cannot be used as part of the automatic workflow execution. Asdescribed in Section 4.4

the AGSSO Server can only compose services exposed by CAS Server components. Ad-

ditionally the implementation to support the differed choice execution pattern is not fully

tested and due to lack of reliability it was not included in the set of features implemented

at client side.

Although the support for OpenMath is increasing, OpenMath is not yet fully supported

for encoding mathematical content within all CASs. Althoughwe provide a workaround

for building symbolic computation infrastructures using CASs that do not support Open-

Math, the full range of functionality is only available if the mathematical content is en-

coded using OpenMath. At client side as well as at CAS Server level our architecture

relies on the support that CASs provide in this respect.

Scheduling and discovery play an important role in the correctness and overall efficiency

of our architecture. At AGSSO Server level and CAS Server level scheduling algorithms

are used to select the most suitable resources to be used for running tasks. So far we have

investigated the behaviour of the system based on several algorithms but these algorithms

are not specifically tailored for symbolic computations. Therefore the scheduling strate-

gies should be improved to match the specific profiles and requirements of symbolic

computation tasks.

224

Chapter 7. Conclusions and Future Work

Currently the system does not fully provide support for pausing and resuming the exe-

cution of tasks that fully preserves already finished computation steps. To provide this

functionality the CAS engine executing the task should be able to save the current state

of execution and to resume it later. Depending on the state ofthe task that needs to be

paused the status of the task is changed by the system and someof the intermediary

results are discarded.

7.3 Future Work

The experience of the last decades shows that technology andbest practices in the dis-

tributed computations world evolve at an accelerated pace.It is therefore important to

determine a set of requirements, constraints and models forsymbolic computations that

are as much as possible independent of the underlying technology. Within this thesis we

have analysed the most important requirements that symbolic computations raise and we

have designed a set of components and related algorithms that are to a great extent inde-

pendent of the actual distributed technologies used for interconnecting the implemented

components. The architecture we have designed was implemented by relying on exist-

ing best practices in Grids. Further research to evaluate our architecture in the context of

other technologies as the ones used in cloud computing may provide additional insights.

Establishing repositories of precomputed results may havea significant impact on the

time required to conduct research experiments in certain areas of symbolic computation.

Currently our implementation does not support querying of such repositories which by

itself does not require fundamental changes in our implementation. One simple approach

for establishing computed result repositories is to compute every such required result and

stored it so it can be later reused. A more complex and also more valuable solution is to

establish mathematical equivalence between problems on one hand and obtained result

on the other hand. Equivalence of mathematical objects may be sometimes difficult to

determine and further research is required both in the area of mathematical equivalence

225

Chapter 7. Conclusions and Future Work

and with regard to equivalence of algorithms. For instance the system should be able

to automatically detect if two workflows are equivalent evenif they are expressed in a

different form.

The irregular nature of symbolic computations algorithms makes prediction of required

resources and completion time difficult. Therefore, more suitable scheduling algorithms

that are able to consider characteristics specific to symbolic computations have to be de-

veloped. This goal can only be attained as a result of a long term and careful monitoring

of the execution patterns, types of task of symbolic nature and underlying CASs used by

computer algebra specialists. Using simulation platformsmay provide preliminary con-

clusions but they have to be combined results obtained basedon real life environments.

226

Bibliography

[1] Web Services Description Language (WSDL) 2.0, The World Wide Web Consor-

tium (W3C), http://www.w3.org/TR/wsdl20/, 2007.

[2] A Framework for Brokering Distributed Mathematical Services (MathBroker),

http://www.risc.jku.at/projects/mathbroker/, 2011.

[3] GAP - Groups, Algorithms, and Programming, Version 4.4.12, The GAP Group,

http://www.gap-system.org, 2011.

[4] Generating a Java Client Proxy and a Sample Application

from a WSDL Document using the Axis run-time Environment,

http://publib.boulder.ibm.com/infocenter/radhelp/v8r5/index.jsp?to-

pic=%2Forg.eclipse.jst.ws.axis.ui.doc.user%2Ftopics%2Ftsampappa.html.

Technical report, Eclipse IBM, 2011.

[5] gLite Grid Middleware, CERN, http://glite.cern.ch, 2011.

[6] Grid Computing Toolbox, Maplesoft, http://www.maplesoft.com/products/tool-

boxes/gridcomputing/index.aspx, 2011.

[7] Grid-Enabled Numerical and Symbolic Services(GENSS),

http://genss.cs.bath.ac.uk/, 2011.

[8] gridMathematica, Wolfram Research, http://www.wolfram.com/gridmathematica/,

2011.

227

Bibliography

[9] Java Remote Method Invocation (RMI), http://www.oracle.com/technetwork/ja-

va/javase/tech/index-jsp-136424.html, 2011.

[10] Maple Computer Algebra System, Maplesoft Inc., http://www.maplesoft.com/,

2011.

[11] Mathematics on the Net (MONET) Consortium, http://monet.nag.co.uk/monet/,

2011.

[12] Maxima, http://maxima.sourceforge.net/, 2011.

[13] MuPad, SciFace Software Gmbh, http://www.sciface.com, 2011.

[14] QMath, http://www.matracas.org/qmath/, 2011.

[15] REDUCE, http://reduce-algebra.com/, 2011.

[16] SCSCP C/C++ Package, http://www.imcce.fr/Equipes/ASD/trip/scscp/, 2011.

[17] SCSCP Java Package, http://java.symcomp.org/, 2011.

[18] Sentido, http://www.matracas.org/sentido/, 2011.

[19] Symbolic Computation Infrastructure for Europe (SCIEnce),

http://www.symbolic-computing.org/, 2011.

[20] Systinet Developer for Eclipse, Sysnet, http://www.systinet.com/, 2011.

[21] The Kant Group, Technical University of Berlin, http://page.math.tu-

berlin.de/˜kant/, 2011.

[22] Universal Description Discovery and Integration (UDDI), https://www.oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm, 2011.

[23] WebServiceStudio 2.0, http://www.gotdotnet.com/team/, 2011.

[24] Wolfram Mathematica, Wolfram Research, http://www.wolfram.com/, 2011.

[25] WSFL, IBM, http://xml.coverpages.org/wsfl.html, 2011.

228

Bibliography

[26] Axiom Computer Algebra System, http://axiom-developer.org/, 2012.

[27] W. v. D. Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow pat-

terns. Technical report, Queensland University of Technology, Brisbane, 2002.

[28] Active Endpoints. ActiveBPEL Designer, http://www.active-

endpoints.com/active-bpel-engine-overview.htm, 2011.

[29] C. Adams, S. Farrell, and T. Kause. Internet X. 509 publickey infrastructure

certificate management protocol (CMP).Internet Engineering Task Force, pages

1–96, 2005.

[30] M. Ahsant, M. Surridge, T. Leonard, A. Krishna, and O. Mulmo. Dynamic Trust

Federation in Grids. InProceedings of the 4th international conference on Trust

Management, number 511563, pages 3–18, Pisa, Italy, 2006. Springer.

[31] M. Aird, W. Medina, J. Davenport, and J. Padget. Description and generation of

mathematical web services. In(e-Proceedings Internet Accessible Mathematical

Computation) IAMC 2004, Santander Spain, 2004.

[32] M. Aird, W. Medina, and J. Padget. MONET: service discovery and composition

for mathematical problems.CCGrid 2003. 3rd IEEE/ACM International Sympo-

sium on Cluster Computing and the Grid, 2003. Proceedings., pages 678–685,

2003.

[33] I. a. Ajwa. A case study of Grid Computing and computer algebra: parallel

Gröbner Bases and Characteristic Sets.The Journal of Supercomputing, 41(1):53–

62, Mar. 2007.

[34] A. Akram, D. Meredith, and R. Allan. Evaluation of BPEL to scientific work-

flows. InCluster Computing and the Grid, 2006. CCGRID 06. Sixth IEEE Inter-

national Symposium on, volume 1, pages 269–274. IEEE, 2006.

229

Bibliography

[35] M. Aldinucci, M. Danelutto, A. Paternesi, R. Ravazzolo, and M. Vanneschi.

Building interoperable grid-aware assist applications viaweb services. InPar-

allel Computing Conference, volume 33, 2005.

[36] A. A. Almonaies, J. R. Cordy, and R. T. Dean. Legacy system evolution towards

service-oriented architecture. InInternational Workshop on SOA Migration and

Evolution (SOAME10), pages 53–62. IEEE Computer Society, 2010.

[37] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch, F. Curbera, M. Ford,

Y. Goland, A. Guizar, N. Kartha, and Others. Web services business process

execution language version 2.0. Technical Report April, OASIS, 2007.

[38] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK

Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia, third

edition, 1999.

[39] A. Ankolekar, M. Burstein, and J. Hobbs. DAML-S: Semantic markup for web

services. InProceedings Semantic Web Working Symposium, pages 411–430.

Stanford University, Stanford, 2001.

[40] Apache Software Foundation. Apache Axis, http://axis.apache.org/axis/, 2011.

[41] L. Aversano, G. Canfora, A. Cimitile, and A. De Lucia. Migrating legacy systems

to the Web: an experience report.Proceedings Fifth European Conference on

Software Maintenance and Reengineering, pages 148–157, 2001.

[42] R. Baraka, O. Caprotti, and W. Schreiner. Publishing and Discovering Mathemat-

ical Service Descriptions: A Web Registry Approach. Technical report, Technical

report, RISC-Linz Technical Report, 2004.

[43] R. Baraka and W. Schreiner. Querying registry-publishedmathematical Web Ser-

vices. 20th International Conference on Advanced Information Networking and

Applications - Volume 1 (AINA’06), pages 767–772, 2006.

230

Bibliography

[44] A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns: Towards

a reference framework for service-based business process interconnection. Tech-

nical report, Faculty of IT, Queensland University of Technology, Queensland,

2005.

[45] J. Basney, M. Humphrey, and V. Welch. The MyProxy online credential reposi-

tory. Software: Practice and Experience, 35(9):801–816, July 2005.

[46] L. Bass, P. Clements, and R. Kazman.Software architecture in practice. Addison-

Wesley Longman Publishing Co., Inc., 2003.

[47] A. Bayucan, R. L. Henderson, C. Lesiak, B. Mann, T. Proett, and D. Tweten.

Portable batch system: External reference specification. Technical report, MRJ

Technology Solutions, 1999.

[48] W. H. Bell, D. G. Cameron, A. P. Millar, L. Capozza, K. Stockinger, and F. Zini.

Optorsim: A grid simulator for studying dynamic data replication strategies.In-

ternational Journal of High Performance Computing Applications, 17(4):403–

416, 2003.

[49] A. Boyle and B. Caviness. Future directions for research insymbolic computation.

In A. Boyle and B. Caviness, editors,Report of a Workshop on Symbolic and

Algebraic Computation, page 95, 1990.

[50] R. Brent. Some parallel algorithms for integer factorisation. In Euro-Par’99

Parallel Processing, pages 1–22, London, 1999. Springer-Verlag London.

[51] S. Buswell, O. Caprotti, and M. Dewar. Mathematical Service Description Lan-

guage: Final Version. Technical report, Monet Consortium, 2003.

[52] G. Butler. Software architectures for computer algebra: a case study. InDesign

and Implementation of Symbolic Computation Systems (DISCO 96), pages 277–

286. Springer-Verlag London, 1996.

231

Bibliography

[53] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G: An architecture for a resource

management and scheduling system in a global computationalgrid. In High Per-

formance Computing in the Asia-Pacific Region, pages 283 – 289. IEEE Computer

Society, 2000.

[54] R. Buyya and M. Murshed. Gridsim: A toolkit for the modeling and simulation

of distributed resource management and scheduling for gridcomputing.Concur-

rency and Computation: Practice and Experience, 14(13-15):1175–1220, 2002.

[55] G. Canfora, A. Fasolino, G. Frattolillo, and P. Tramontana. Migrating interac-

tive legacy systems to Web services.Conference on Software Maintenance and

Reengineering (CSMR’06), pages 10 – 36, 2006.

[56] L. Canon, O. Dubuisson, J. Gustedt, and E. Jeannot. Defining and controlling the

heterogeneity of a cluster: The Wrekavoc tool.Journal of Systems and Software,

83(5):786–802, 2010.

[57] O. Caprotti and W. Schreiner. MathBroker Overview. Technical report, Johannes

Kepler University, Linz, 2002.

[58] A. Carstea, M. E. Frincu, A. Konovalov, G. Macariu, and D.Petcu. On service-

oriented symbolic computing.Parallel Processing and Applied Mathematics,

pages 843–851, 2007.

[59] A. Carstea, M. E. Frincu, G. Macariu, and D. Petcu. Event-Based Simulator for

SymGrid-Services Framework.International Journal of Grid and Utility Com-

puting, 2(1):33–44, 2011.

[60] A. Carstea, M. E. Frincu, G. Macariu, D. Petcu, and K. Hammond. Generic

Access to Web and Grid-based Symbolic Computing Services: the SymGrid-

Services Framework.Sixth International Symposium on Parallel and Distributed

Computing (ISPDC’07), pages 22–22, July 2007.

[61] A. Carstea and G. Macariu. Towards a grid enabled symbolic computation archi-

tecture.Pollack Periodica, 3(2):15–26, 2008.

232

Bibliography

[62] A. Cârstea, G. Macariu, M. Frincu, and D. Petcu. Composing Web-based mathe-

matical services. InSymbolic and Numeric Algorithms for Scientific Computing,

2007. SYNASC. International Symposium on, pages 327–334. IEEE, 2007.

[63] A. Carstea, G. Macariu, M. E. Frincu, and D. Petcu. SecureOrchestration of

Symbolic Grid Services. InProceedings of High Performance Grid Middleware

(HiperGRID 2008), pages 25–33, Bucharest, 2008. Politehnica Press - IEEE Ro-

mania Section.

[64] A. Carstea, G. Macariu, M. E. Frincu, and D. Petcu. Workflow Management for

Symbolic Grid Services.2008 10th International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, pages 373–379, 2008.

[65] A. Carstea, G. Macariu, M. E. Frincu, and D. Petcu. Description and Execution

of Patterns for Symbolic Computations.2009 11th International Symposium on

Symbolic and Numeric Algorithms for Scientific Computing, pages 197–204, Sept.

2009.

[66] A. Carstea, G. Macariu, D. Petcu, and A. Konovalov. Pattern based composition

of Web services for symbolic computations.Computational ScienceICCS 2008,

pages 126–135, 2008.

[67] H. Casanova, A. Legrand, and M. Quinson. SimGrid: a generic framework for

large-scale distributed experiments. InComputer Modeling and Simulation, 2008.

UKSIM 2008. Tenth International Conference on, pages 126–131. IEEE, 2008.

[68] A. Chakrabarti. Taxonomy of Grid Security Issues. InGrid Computing Security,

pages 33–47. Springer, 2007.

[69] D. Chicha, Yannis Riem, Manfred Roberts. The MONET Broker. Deliverable

D16-D18. Technical report, The MONET Consortium, 2004.

[70] M. Chowdhury and M. Iqbal. Integration of legacy systemsin software architec-

ture. SAVCBS 2004 Specification and Verification of Component-BasedSystems,

page 110, 2004.

233

Bibliography

[71] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields,

I. Taylor, and I. Wang. Programming scientific and distributed workflow with

Triana services. Concurrency and Computation: Practice and Experience,

18(10):1021–1037, Aug. 2006.

[72] F. Clemente, A. Ortega, and J. Blaya. Distributed Provision and Management of

Security Services in Globus Toolkit 4.Grid Computing, High Performance and

Distributed Applications (GADA) 2006 International Conference, pages 1325–

1335, 2006.

[73] S. Comella-Dorda, K. Wallnau, R. Seacord, and J. Robert. A survey of legacy

system modernization approaches. Technical Report April, Software engineering

institute, Carnegie Mellon, 2000.

[74] P. Couvares, T. Kosar, A. Roy, J. Weber, and K. Wenger. Workflow management

in Condor. InWorkflows for e-Science, pages 357–375. Springer Verlag, 1 edition,

2007.

[75] A. De Lucia, G. Di Lucca, A. Fasolino, P. Guerra, and S. Petruzzelli. Migrat-

ing legacy systems towards object-oriented platforms.Proceedings International

Conference on Software Maintenance, pages 122–129, 1997.

[76] E. Deelman and Y. Gil. Managing Large-Scale Scientific Workflows in Dis-

tributed Environments: Experiences and Challenges.2006 Second IEEE Interna-

tional Conference on e-Science and Grid Computing (e-Science’06), pages 144–

144, Dec. 2006.

[77] E. Deelman, M. Livny, G. Mehta, A. Pavlo, G. Singh, M. Su,K. Vahi, and

R. Wenger. Pegasus and DAGMan From Concept to Execution : Mapping Scien-

tific Workflows onto Today’s Cyberinfrastructure. InHigh Performance Comput-

ing and Grids in Action, pages 56–74. IOS, Amsterdam, 2008.

234

Bibliography

[78] M. Diab. Systolic architectures for multiplication over finite field GF(mˆ2). In

Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8),

pages 329–340. Springer-Verlag, 1991.

[79] E. Dolan, P. Hovland, J. Moré, B. Norris, and B. Smith. Remote Access to Mathe-

matical Software. Technical report, Argonne National Laboratory, Argonne, 2001.

[80] J. Dongarra. NetSolve: A network server for solving computational science prob-

lems.Journal of Supercomputer Applications and High Performance Computing,

11(3):212—-223, 1997.

[81] T. Dörnemann, T. Friese, S. Herdt, and E. Juhnke. Grid workflow modelling

using grid-specific BPEL extensions. InGerman e-Science Conference, pages

1–9, 2007.

[82] T. Dornemann, M. Smith, and B. Freisleben. Composition and Execution of

Secure Workflows in WSRF-Grids. InCluster Computing and the Grid, 2008.

CCGRID’08. 8th IEEE International Symposium on, pages 122–129. IEEE, May

2008.

[83] A. Duscher. An Execution Environment for MathematicalServices based on

WSRF and WS-BPEL. Technical report, Johannes Kepler University, Linz, 2005.

[84] A. Duscher. Interaction patterns of mathematical services. Technical report, Jo-

hannes Kepler University, Linz, Austria, 2006.

[85] S. Dustdar and W. Schreiner. A survey on web services composition. Journal of

Web and Grid Services, 1(1):1–30, 2005.

[86] W. Emmerich, B. Butchart, L. Chen, B. Wassermann, and S. L. Price. Grid Service

Orchestration Using the Business Process Execution Language (BPEL). Journal

of Grid Computing, 3(3-4):283–304, Jan. 2006.

[87] P. Enslow. What is a ”Distributed” Data Processing System? Computer, 11(1):13–

21, Jan. 1978.

235

Bibliography

[88] R. Fielding.Architectural styles and the design of network-based software archi-

tectures. PhD thesis, University of California, Irvine, 2000.

[89] J. Fischer, A. Schreiber, and M. Strietzel. Script Wrapper for Software Integra-

tion Systems. InHigh Performance Computing and Networking, pages 560–563.

Springer, 2000.

[90] I. Foster. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

International Journal of High Performance Computing Applications, 15(3):200–

222, Aug. 2001.

[91] I. Foster. Globus toolkit version 4: Software for service-oriented systems.Net-

work and Parallel Computing, pages 2–13, 2005.

[92] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology of the grid:

An open grid services architecture for distributed systemsintegration. InOpen

Grid Service Infrastructure WG, Global Grid Forum, volume 22, pages 1–5. Ed-

inburgh, 2002.

[93] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the grid.

In G. F. T. H. Fran Berman, editor,Grid Computing: Making the Global Infras-

tructure a Reality, pages 217–249. John Wiley and Sons Inc, 2003.

[94] A. Franke and M. Kohlhase. System description: MathWeb, an agent-based

communication layer for distributed automated theorem proving. Automated

DeductionCADE-16, pages 676–676, 1999.

[95] S. Freundt, P. Horn, A. Konovalov, and S. Linton. Symbolic computation software

composability.Intelligent Computer Mathematics, page 285, 2010.

[96] S. Freundt, P. Horn, A. Konovalov, S. Linton, and D. Roozemond. Symbolic

Computation Software Composability Protocol (SCSCP) specification. Technical

report, SCIEnce, 2008.

236

Bibliography

[97] J. Frey, T. Tannenbaum, M. Livny, and I. Foster. Condor-G: A computation man-

agement agent for multi-institutional grids.Cluster Computing, pages 55–63,

2002.

[98] M. E. Frincu, G. Macariu, and A. Carstea. Dynamic and adaptive workflow ex-

ecution platform for symbolic computations.Pollack Periodica, 4(1):145–156,

Apr. 2009.

[99] D. Gannon, J. Alameda, O. Chipara, M. Christie, V. Dukle, L. Fang, M. Farrellee,

G. Kandaswamy, D. Kodeboyina, S. Krishnan, and Others. Building grid portal

applications from a web service component architecture. InProceedings of the

IEEE, volume 93, pages 551–563. IEEE, 2005.

[100] D. Garlan, R. Allen, and J. Ockerbloom. Architectural mismatch: why reuse is so

hard. IEEE Software, 12(6):17–26, 1995.

[101] D. Garlan and J. M. Ockerbloom. Architectural Mismatch : Why Reuse is Still

So Hard.IEEE Software, 25(4):66–69, 2009.

[102] D. Garlan and M. Shaw. An introduction to software architecture. Advances in

software engineering and knowledge engineering, 1(January):1–40, 1993.

[103] M. Gastineau and J. Laskar. TRIP 1.2.0, http://www.imcce.fr/trip/.

[104] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,and V. Sunderam.

PVM Parallel Virtual Machine, User’s Guide and Tutorial forNetworked Parallel

Computing. MIT Press, 1994.

[105] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D. Gannon, C. Goble,

M. Livny, L. Moreau, and J. Myers. Examining the challenges of scientific work-

flows. Computer, 40(12):24–32, Feb. 2007.

[106] T. Glatard, D. Emsellem, and J. Montagnat. Generic webservice wrapper for ef-

ficient embedding of legacy codes in service-based workflows. In Grid-Enabling

237

Bibliography

Legacy Applications and Supporting End Users Workshop (GELA06),, Paris,

France, 2006. IEEE Computer Society.

[107] J. Grabmeier, E. Kaltofen, and V. Weispfenning.Computer Algebra Handbook.

Springer-Verlag New York, Inc., 2003.

[108] N. Gray. Comparison of Web Services, Java-RMI, and CORBA service imple-

mentations. InThe Fifth Australasian Workshop on Software and System Archi-

tectures (AWSA 2004), page 52. Australian Computer Society, 2004.

[109] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research in

algebraic geometry, http://www.math.uiuc.edu/Macaulay2/, 2012.

[110] K. Hammond, A. Zain, G. Cooperman, D. Petcu, and P. Trinder. SymGrid: a

framework for symbolic computation on the Grid.Euro-Par 2007 Parallel Pro-

cessing, pages 457–466, Sept. 2007.

[111] Y. Huang, I. Taylor, D. Walker, and R. Davies. Wrapping legacy codes for grid-

based applications. InProceedings International Parallel and Distributed Pro-

cessing Symposium, page 7. IEEE Computer Society, 2003.

[112] Y. Huang and D. Walker. JACAW: A Java-C Automatic Wrapper. Technical

report, Cardiff University, Wales, UK, 2002.

[113] T. Jebelean. Integer and rational arithmetic on MasPar. Design and Implementa-

tion of Symbolic Computation, LNCS 1128:162–173, 1996.

[114] T. Jebelean, M. Dragan, D. Tepeneu, and V. Negru. Parallel Algorithms for Prac-

tical Multiprecision Arithmetic Using the Karatsuba Method. Technical report,

RISC, Linz, Austria, 2000.

[115] P. Kacsuk and G. Sipos. Multi-Grid, Multi-User Workflows in the P-GRADE

Grid Portal.Journal of Grid Computing, 3(3-4):221–238, Jan. 2006.

[116] B. Kiepuszewski. Expressiveness and suitability of languages for control flow

modelling in workflows. PhD thesis, Queensland University of Technology, 2002.

238

Bibliography

[117] B. Kiepuszewski, A. ter Hofstede, and C. Bussler. On structured workflow mod-

elling. In Advanced Information Systems Engineering, pages 431–445. Springer,

2000.

[118] M. Kohlhase. OMDoc: An infrastructure for OpenMath content dictionary infor-

mation.ACM SIGSAM Bulletin, 34(2):43–48, 2000.

[119] M. Kohlhase. Omdoc: Towards an internet standard for the administration, dis-

tribution, and teaching of mathematical knowledge.Artificial Intelligence and

Symbolic Computation, pages 32–52, 2001.

[120] H. Lamehamedi, Z. Shentu, B. Szymanski, and E. Deelman.Simulation of dy-

namic data replication strategies in data grids. InParallel and Distributed Pro-

cessing Symposium, 2003. Proceedings. International, page 10. IEEE Computer

Society, 2003.

[121] G. Laszewski and M. Hategan. Workflow Concepts of the Java CoG Kit. Journal

of Grid Computing, 3(3-4):239–258, Jan. 2006.

[122] K. Leai, L. Tan, and K. J. Turner. Automated Analysis and Implementation of

Composed Grid Services.South-East European Workshop on Formal Methods,

(November):51–64, 2007.

[123] A. Leykin. On parallel computation of Gröbner bases. InICPP Workshops, pages

160–164. IEEE Computer Society, 2004.

[124] S. Linton and A. Solomon. OpenMath, IAMC and GAP. InProceedings of ISSAC

99/IAMC workshop, pages 1–14. ACM SIGSAM/SIGNUM, 1999.

[125] F. Lu, H. Huang, Z. Xu, and H. Yu. A Middleware for legacyapplication wrap-

per. First International Conference on Semantics, Knowledge and Grid, (Skg

2005):47–47, Dec. 2005.

[126] F. Lubeck and M. Neunhoffer. Enumerating large orbitsand direct condensation.

Experimental Mathematics, 10(2):197–206, 2001.

239

Bibliography

[127] S. Ludwig, W. Naylor, J. Padget, and O. Rana. Matchmaking support for math-

ematical web services. InProceedings of the UK e-science all hands meeting,

number 1, 2005.

[128] S. Ludwig, O. Rana, W. Naylor, and J. Padget. Matchmaking Portal for the Dis-

covery of Numerical and Symbolic Services. InProceedings of 4th UK e-Science

Programme All Hands Meeting (AHM), Nottingham, UK, 2005.

[129] G. Macariu, A. Ĉarstea, M. E. Fr\ˆ\incu, and D. Petcu. Towards a Grid Oriented

Architecture for Symbolic Computing.2008 International Symposium on Parallel

and Distributed Computing, pages 259–266, 2008.

[130] S. Majithia, M. Shields, I. Taylor, and I. Wang. Triana: a graphical Web service

composition and execution toolkit. InProceedings. IEEE International Confer-

ence on Web Services, 2004., pages 514–521. IEEE Computer Society, 2004.

[131] M. Matooane. Parallel systems in symbolic and algebraic computation. Technical

Report 537, University of Cambridge, Cambridge, 2002.

[132] J. McCall, P. Richards, and G. Walters. Factors in software quality. Technical

Report November, General Electric Company, 1977.

[133] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.

International Journal of Supercomputer Applications, 8(3/4):623, 1994.

[134] B. Michael, G. Yaron, K. Matthias, L. Frank, P. Gerhard,R. Dieter, and

R. Michael. BPELJ : BPEL for Java Authors. Technical Report March, BEA

Systems Inc and IBM Corporation, 2004.

[135] N. Milanovic and M. Malek. Current solutions for web service composition.IEEE

Internet Computing, 8(6):51–59, 2004.

[136] M. Morii and Y. Takamatsu. Exponentiation in finite fields using dual basis

multiplier. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,

508/1991:354–366, 1991.

240

Bibliography

[137] W. Naylor and J. Padget. Semantic matching for mathematical services. InMath-

ematical Knowledge Management, pages 174–189. Springer, 2006.

[138] C. Neuman, T. Yu, and S. Hartman. The Kerberos Network Authentication Ser-

vice (V5), July 2005.URL ftp://ftp. isi. edu/in-notes/rfc1510. txt. RFC, (July):1–

119, 2005.

[139] R. Nick, A. ter Hofstede, W. van der Aalst, and N. Mulyar.Workflow Control-

Flow Patterns: A Revised View. Technical report, BPM Center Report, 2006.

[140] T. Oinn, M. Greenwood, M. Addis, M. N. Alpdemir, J. Ferris, K. Glover,

C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Sen-

ger, R. Stevens, A. Wipat, and C. Wroe. Taverna: lessons in creating a workflow

environment for the life sciences.Concurrency and Computation: Practice and

Experience, 18(10):1067–1100, Aug. 2006.

[141] Organization for the Advancement of Structured Information Standards (OA-

SIS). WS-BaseFaults Standard, http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-BaseFaults-1.2-draft-02.pdf, 2011.

[142] Organization for the Advancement of Structured Information Stan-

dards (OASIS). WS-Notification Standard, http://www.oasis-

open.org/committees/tchome.php?wgabbrev=wsn, 2011.

[143] Organization for the Advancement of Structured Information Standards (OA-

SIS). WS-Resource Standard, http://docs.oasis-open.org/wsrf/wsrf-ws resource-

1.2-spec-os.pdf, 2011.

[144] Organization for the Advancement of Structured Information Standards (OASIS).

WS-ResourceLifetime Standard, http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ResourceLifetime-1.2-draft-03.pdf, 2011.

[145] Organization for the Advancement of Structured Information Standards (OA-

SIS). WS-ServiceGroup Standard, http://docs.oasis-open.org/wsrf/2004/06/wsrf-

WS-ServiceGroup-1.2-draft-02.pdf, 2011.

241

Bibliography

[146] C. Peltz. Web services orchestration and choreography. Computer, 36(10):46–52,

Oct. 2003.

[147] D. Petcu. Between Web and Grid-based Mathematical Services. InComput-

ing in the Global Information Technology, 2006. ICCGI’06. International Multi-

Conference on, page 41. IEEE, 2007.

[148] D. Petcu, A. Carstea, G. Macariu, and M. E. Frincu. Service-oriented Sym-

bolic Computing with SymGrid.Scalable Computing: Practice and Experience,

9(2):111–124, 2008.

[149] D. Petcu and D. Dubu. An Extension of Maple for Grid and Cluster Computing.

Studies in Informatics and Control, 14(1):31, 2004.

[150] D. Petcu, G. Macariu, A. Carstea, and M. E. Frincu. Service-Oriented Sym-

bolic Computations. InHandbook of Research on P2P and Grid Systems for

Service-Oriented Computing: Models, Methodologies and Applications, pages

1053–1075. Information Science Publishing, 2010.

[151] D. Petcu, M. Paprzycki, and D. Dubu. Design and implementation of a grid

extension for Maple.Scientific Programming, 13(2):137–149, 2005.

[152] D. Petcu, D. Tepeneu, M. Paprzycki, and T. Ida. Symbolic computations on Grids.

Engineering the Grid: status and perspective, pages 1–17, 2006.

[153] D. Petcu, D. Tepeneu, M. Paprzycki, T. Mizutani, and T.Ida. Survey of Symbolic

Computations on the Grid. In3rd International Conference: Science of Electronic

Technologies of Information and Telecommunications, Tunisia. IEEE Computer

Society, 2005.

[154] K. Qian, X. Fu, and L. Tao.Software architecture and design illuminated. Jones

& Bartlett Publishers, 2009.

242

Bibliography

[155] J. Ransom, I. Somerville, and I. Warren. A method for assessing legacy systems

for evolution. InProceedings of the Second Euromicro Conference on Software

Maintenance and Reengineering, pages 128–134. IEEE Comput. Soc, 1998.

[156] J. Rao. A survey of automated web service composition methods. InSemantic

Web Services and Web Process Composition, volume LNCS 3387/, pages 43–54.

Springer Verlag, 2005.

[157] M. Riem. The OpenMath Guide. Technical report, RIACA, 2004.

[158] Satish Thatte. XLANG, Web Services for Business Process Design. Technical

report, Microsoft Corporation, 2001.

[159] W. Schreiner. A Distributed Computer Algebra System Based on Maple and Java.

Technical Report RISC Report Series, University of Linz, Schloss Hagenberg,

Linz, Austria, 1999.

[160] W. Schreiner, C. Mittermaier, and K. Bosa. Distributed Maple: Parallel com-

puter algebra in networked environments.Journal of Symbolic Computation,

35(3):305–347, 2003.

[161] M. Senger, P. Rice, and T. Oinn. Soaplab-a unified Sesamedoor to analysis tools.

In Proceedings of the UK e-Science All Hands Meeting, volume 18, pages 509–

513, 2003.

[162] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Netsolve: Grid enabling

scientific computing environments.Advances in Parallel Computing, 14(May

2005):33–51, 2005.

[163] M. Shaw. Architectural issues in software reuse: it’snot just the functionality, it’s

the packaging.Journal of Parallel and Distributed Computing, 59(2):107 – 131,

1999.

243

Bibliography

[164] M. Shoukat, M. Maheswaran, and S. Ali. Dynamic mappingof a class of inde-

pendent tasks onto heterogeneous computing systems.Distributed Computing,

1999.

[165] E. Sibert, H. Mattson, and P. Jackson. Finite field arithmetic using the connection

machine.Computer Algebra and Parallelism, pages 51–61, 1992.

[166] A. Slominski. Adapting BPEL to scientific workflows. InWorkflows for e-

Science, pages 208–226. 2007.

[167] H. Sneed. Encapsulating legacy software for use in client/server systems.Pro-

ceedings of WCRE ’96: 4rd Working Conference on Reverse Engineering, pages

104–119, 1996.

[168] H. Sneed. Wrapping legacy software for reuse in a SOA. InMultikonferenz

Wirtschaftsinformatik, volume 2, pages 345–360. GITO mbH Verlag, 2006.

[169] A. Solomon. Distributed computing for conglomerate mathematical systems.Al-

gebra, Geometry and Software System, pages 309–325, 2007.

[170] A. Solomon and C. Struble. JavaMath: an API for internetaccessible mathemati-

cal services. InComputer mathematics: proceedings of the fifth Asian Symposium

(ASCM 2001), Matsuyama, Japan, 26-28 September 2001, pages 151–160. World

Scientific Pub Co Inc, 2001.

[171] B. Srivastava and J. Koehler. Web service composition-current solutions and open

problems. InICAPS 2003 Workshop on Planning for Web Services, volume 35,

pages 28 – 35. AAAI Press, 2003.

[172] H. Stockinger. Grid Computing: A Critical Discussion onBusiness Applicability.

IEEE Distributed Systems Online, 7(6):2–2, June 2006.

[173] A. Takefusa, S. Matsuoka, H. Nakada, K. Aida, and U. Nagashima. Overview of

a performance evaluation system for global computing scheduling algorithms. In

244

Bibliography

High Performance Distributed Computing, 1999. Proceedings. The Eighth Inter-

national Symposium on, pages 97–104. IEEE, 1999.

[174] K. L. L. Tan and K. J. Turner. Orchestrating grid services using BPEL and Globus

Toolkit 4. In Proc. 7th PGNet Symposium, pages 31–36. School of Computing,

Liverpool John Moores University, 2006.

[175] A. S. Tanenbaum and M. V. Steen.Distributed Systems Principles and Paradigms.

Prentice Hall, 2003.

[176] B. H. Tay and A. L. Ananda. A Survey of Remote Procedure Call. ACM SIGOPS

Operating Systems, 24(3):68–79, July 1990.

[177] I. Taylor, M. Shields, I. Wang, and A. Harrison. VisualGrid Workflow in Triana.

Journal of Grid Computing, 3(3-4):153–169, Jan. 2006.

[178] D. Tepeneu and T. Ida. MathGridLink-A bridge between Mathematica and the

Grid. Proc. JSSST, 3:74–77, 2003.

[179] D. Thain and T. Tannenbaum. Distributed computing in practice: The Condor

experience.Practice and Experience, 17(2-4):323–356, 2005.

[180] The MONET Consortium. MONET Architecture Overview. Deliverable D04.

Technical report, 2003.

[181] The Novell Corporation. Novell exteNd Workbench,

http://www.novell.com/developer/ndk/extend.html.

[182] The Numerical Algorithms Group. NAG Numerical Library,

http://www.nag.com/numeric/numericallibraries.asp, 2011.

[183] The Object Management Group (OMG). Common Object Request Bro-

ker(CORBA), http://www.omg.org/spec/CORBA/3.1.1/, 2011.

[184] The OpenMath Society. OpenMath, http://www.openmath.org/, 2011.

245

Bibliography

[185] The Progress Software Corporation. Stylus Studio, http://www.stylusstudio.com,

2012.

[186] The World Wide Web Consortium(W3C). Mathematical MarkupLanguage

(MathML) , http://www.w3.org/TR/MathML3/chapter4.html#contm.strict, 2011.

[187] The World Wide Web Consortium(W3C). Mathematical MarkupLanguage

(MathML), http://www.w3.org/TR/MathML3/, 2011.

[188] The World Wide Web Consortium(W3C). WS-ADDRESSING,

http://www.w3.org/Submission/ws-addressing/, 2011.

[189] K. J. Turner. Representing and analysing composed web services using Cress.

Journal of Network and Computer Applications, 30(2):541–562, Apr. 2007.

[190] K. J. Turner and K. Tan. Graphical composition of grid services. InProceedings

of the 3rd international conference on Rapid integration ofsoftware engineering

techniques, number May, pages 1–17. Springer-Verlag, 2006.

[191] W. van der Aalst. Dont go with the flow: Web services composition standards

exposed.IEEE intelligent systems, 18(1):72–76, 2003.

[192] W. van Der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros. Workflow

patterns.Distributed and parallel databases, 14(1):5–51, 2003.

[193] D. Wagner. MathLink mode.The Mathematica Journal, 1996.

[194] B. Wassermann, W. Emmerich, B. Butchart, N. Cameron, L. Chen, and J. Pa-

tel. Sedna: A BPEL-based environment for visual scientific workflow modeling.

Workflows for e-Science, pages 428–449, 2007.

[195] S. Watt.Bounded parallelism in computer algebra. PhD thesis, Waterloo, 1986.

[196] S. Watt. On the future of Computer Algebra Systems at thethreshold of 2010.

Proceedings ASCM-MACIS, pages 422–430, 2009.

246

Bibliography

[197] A. Weber, W. K̈uchlin, and B. Eggers. Parallel computer algebra software asa

Web component.Concurrency: Practice and Experience, 10(11-13):1179–1188,

Sept. 1998.

[198] P. Wohed, W. v. D. Aalst, M. Dumas, and A. ter Hofstede. Analysis of web

services composition languages: The case of BPEL4WS.Conceptual Modeling-

ER 2003, pages 200–215, 2003.

[199] J. Yu and R. Buyya. A Taxonomy of Workflow Management Systems for Grid

Computing.Journal of Grid Computing, 3(3-4):171–200, Jan. 2006.

[200] A. Zain, K. Hammond, and P. Trinder. SymGrid-Par: Designing a framework

for executing computational algebra systems on Computational Grids. In Intl.

Conference on Computer Science (ICCS), pages 617–624, Beijing, 2007. Springer

Verlag.

[201] Y. Zhao, M. Hategan, B. Clifford, I. Foster, G. von Laszewski, V. Nefedova,

I. Raicu, T. Stef-Praun, and M. Wilde. Swift: Fast, Reliable, Loosely Coupled

Parallel Computation.2007 IEEE Congress on Services (Services 2007), pages

199–206, July 2007.

247

