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Business Process Management (BPM) research resulted in a plethora of methods, techniques, and tools to support the design,
enactment, management, and analysis of operational business processes. This survey aims to structure these results and provide
an overview of the state-of-the-art in BPM. In BPM the concept of a process model is fundamental. Process models may be used
to configure information systems, but may also be used to analyze, understand, and improve the processes they describe. Hence,
the introduction of BPM technology has both managerial and technical ramifications and may enable significant productivity
improvements, cost savings, and flow-time reductions. The practical relevance of BPM and rapid developments over the last decade

justify a comprehensive survey.

1. Introduction

Business Process Management (BPM) is the discipline that
combines knowledge from information technology and knowl-
edge from management sciences and applies this to operational
business processes [1, 2]. It has received considerable attention
in recent years due to its potential for significantly increasing
productivity and saving costs. Moreover, today there is
an abundance of BPM systems. These systems are generic
software systems that are driven by explicit process designs to
enact and manage operational business processes [3].

BPM can be seen as an extension of Workflow Manage-
ment (WEM). WEM primarily focuses on the automation
of business processes [4-6], whereas BPM has a broader
scope: from process automation and process analysis to
operations management and the organization of work. On
the one hand, BPM aims to improve operational business
processes, possibly without the use of new technologies. For
example, by modeling a business process and analyzing it
using simulation, management may get ideas on how to
reduce costs while improving service levels. On the other
hand, BPM is often associated with software to manage,
control, and support operational processes. This was the
initial focus of WEM. However, traditional WFM technology
aimed at the automation of business processes in a rather

mechanistic manner without much attention for human
factors and management support.

Process-Aware Information Systems (PAISs) include tra-
ditional WEM systems and modern BPM systems, but also
include systems that provide more flexibility or support
specific processes [7]. For example, larger ERP (Enter-
prise Resource Planning) systems (e.g., SAP and Oracle),
CRM (Customer Relationship Management) systems, case-
handling systems, rule-based systems, call center software,
and high-end middleware (e.g., WebSphere) can be seen
as process-aware, although they do not necessarily control
processes through some generic workflow engine. Instead,
these systems have in common that there is an explicit
process notion and that the information system is aware of
the processes it supports. Also a database system or e-mail
program may be used to execute steps in some business
process. However, such software tools are not “aware” of
the processes they are used in. Therefore, they are not
actively involved in the management and orchestration of
the processes they are used for. BPM techniques are not
limited to WFM/BPM systems, but extend to any PAIS. In
fact, BPM techniques such as process mining [8] can be used to
discover and analyze emerging processes that are supported
by systems that are not even “aware” of the processes they are
used in.



The notion of a process model is foundational for BPM.
A process model aims to capture the different ways in which
a case (i.e., process instance) can be handled. A plethora of
notations exists to model operational business processes (e.g.,
Petri nets, BPMN, UML, and EPCs). These notations have in
common that processes are described in terms of activities
(and possibly subprocesses). The ordering of these activities
is modeled by describing causal dependencies. Moreover, the
process model may also describe temporal properties, specify
the creation and use of data, for example, to model decisions,
and stipulate the way that resources interact with the process
(e.g., roles, allocation rules, and priorities).

Figure1l shows a process model expressed in terms
of a Petri net. The model allows for the scenario
(a,c,e, f, g1, j,k,I). This is the scenario where a car is
booked (activity a), extra insurance is added (activity c),
the booking is confirmed (activity e), the check-in process
is initiated (activity f), more insurance is added (activity
g), a car is selected (activity i), the license is checked
(activity j), the credit card is charged (activity k), and the
car is supplied (activity ). Another example scenario is
(a,c,d,d,e, f,h,k, j,i,I) where the booking was changed
two times (activity d) and no extra insurance was taken at
check-in (activity h).

Figure 1focuses on control flow and does not model data,
decisions, resources, and so forth. The control-flow perspective
(modeling the ordering of activities) is often the back-
bone of a process model. However, other perspectives such
as the resource perspective (modeling roles, organizational
units, authorizations, etc.), the data perspective (modeling
decisions, data creation, forms, etc.), the time perspective
(modeling durations, deadlines, etc.), and the function per-
spective (describing activities and related applications) are
also essential for comprehensive process models.

The Petri net notation is used to model the control
flow in Figure 1. However, various alternative notations (e.g.,
BPMN, UML, and EPCs) could have been used. Discussions
on different notations tend to distract BPM professionals
from the key issues. The workflow patterns [9] describe the
key functionalities in a language-independent manner. Obvi-
ously, there are differences in expressiveness and suitability
among languages; however, these are only relevant for the
more advanced patterns. Moreover, the study in [10] revealed
that business process modelers typically only use a fraction
of an elaborate language like BPMN. This illustrates the
disconnect between BPM standardization efforts and the real
needs of BPM professionals.

The model shown in Figure 1 could have been made by
hand or discovered using process mining [8]. As a matter
of fact, models can have very different origins. Moreover,
models may also serve very different purposes. The model
in Figurel can be used to configure a BPM system. After
configuration, new cases are handled according to the rules
specified in the model. However, the model can also be used
for analysis (without aiming at system support); for example,
after adding timing information and frequencies it can be
used for “what-if” analysis using simulation. Sometimes,
process models are merely used for discussion or training.
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Figure 2 provides a high-level view on four-key BPM-
related activities: model, enact, analyze, and manage. Process
models obtained through modeling can be used for enact-
ment (e.g., execution using a BPM or WFM system) and
analysis (e.g., what-if analysis using simulation). BPM is a
continuous effort; that is, processes need to be managed and
BPM does not stop after completing the process design or
system implementation. Changing circumstances may trigger
process adaptations and generate new analysis questions.
Therefore, it is important to continuously monitor processes
(e.g., using process mining).

This paper aims to survey the maturing BPM discipline.
Section 2 provides a historic overview of BPM. Section 3
further structures the BPM discipline. For example, processes
are classified using BPM-relevant properties. Section 4 lists
various BPM use cases. These use cases refer to the creation
of process models and their usage to improve, enact, and
manage processes. Section 5 discusses six key BPM concerns
in more detail: process modeling languages, process enact-
ment infrastructures, process model analysis, process min-
ing, process flexibility, and process reuse. Section 6 concludes
the paper with an outlook on the future of BPM.

2. History of BPM

Business Process Management (BPM) has various roots in
both computer science and management science. Therefore,
it is difficult to pinpoint the starting point of BPM. Since
the industrial revolution, productivity has been increasing
because of technical innovations, improvements in the orga-
nization of work, and the use of information technology.
Adam Smith (1723-1790) showed the advantages of the
division of labor. Frederick Taylor (1856-1915) introduced
the initial principles of scientific management. Henry Ford
(1863-1947) introduced the production line for the mass
production of “black T-Fords.” It is easy to see that these ideas
are used in today’s BPM systems.

Around 1950, computers and digital communication
infrastructures started to influence business processes. This
resulted in dramatic changes in the organization of work
and enabled new ways of doing business. Today, innovations
in computing and communication are still the main drivers
behind change in almost all business processes. Business pro-
cesses have become more complex, heavily rely on informa-
tion systems, and may span multiple organizations. Therefore,
process modeling has become of the utmost importance. Process
models assist in managing complexity by providing insight
and by documenting procedures. Information systems need
to be configured and driven by precise instructions. Cross-
organizational processes can only function properly if there is
common agreement on the required interactions. As a result,
process models are widely used in today’s organizations.

In the last century many process modeling techniques
have been proposed. In fact, the well-known Turing machine
described by Alan Turing (1912-1954) can be viewed as a
process model. It was instrumental in showing that many
questions in computer science are undecidable. Moreover,
it added a data component (the tape) to earlier transition
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FIGURE 1: A process model expressed in terms of a Petri net and an event log with some example traces.

Analyze

FIGURE 2: A high-level view on BPM showing the four key activ-
ities: model (creating a process model to be used for analysis or
enactment), enact (using a process model to control and support
concrete cases), analyze (analyzing a process using a process model
and/or event logs), and manage (all other activities, e.g., adjusting
the process, reallocating resources, or managing large collections of
related process models).

systems. Petri nets play an even more prominent role in
BPM as they are graphical and able to model concurrency. In
fact, most of the contemporary BPM notations and systems
use token-based semantics adopted from Petri nets. Petri
nets were proposed by Carl Adam Petri (1926-2010) in
1962. This was the first formalism treating concurrency as
a first-class citizen. Concurrency is very important as in
business processes many things may happen in parallel.
Many cases may be handled at the same time and even
within a case there may be various enabled or concurrently
running activities. Therefore, a BPM system should support
concurrency natively.

Since the seventies there has been consensus on the
modeling of data (cf. the Relational Model by Codd [11]
and the Entity-Relationship Model by Chen [12]). Although
there are different languages and different types of Database
Management (DBM) systems, there has been consensus on
the fundamental concepts for the information-centric view of
information systems for decades. The process-centric view on
information systems on the other hand can be characterized
by the term “divergence” There is little consensus on its
fundamental concepts. Despite the availability of established
formal languages (e.g., Petri nets and process calculi), indus-
try has been pushing ad hoc/domain-specific languages. As a
result there is a plethora of systems and languages available
today (BPMN, BPEL, UML, EPCs, etc.), some of which will
be discussed in Section 5.1.

Figure 3 sketches the emergence of BPM systems and
their role in the overall information system architecture.
Initially, information systems were developed from scratch;
that is, everything had to be programmed, even storing
and retrieving data. Soon people realized that many infor-
mation systems had similar requirements with respect to
data management. Therefore, this generic functionality was
subcontracted to a DBM system. Later, generic functionality
related to user interaction (forms, buttons, graphs, etc.) was
subcontracted to tools that can automatically generate user
interfaces. The trend to subcontract recurring functionality to
generic tools continued in different areas. BPM systems can
be seen in this context: a BPM system takes care of process-
related aspects. Therefore, the application can focus on
supporting individual/specific tasks. In the mid 1990s, many
WEM systems became available. These systems focused on
automating workflows with little support for process analysis,
process flexibility, and process management. BPM systems
provide much broader support, for example, by supporting
simulation, business process intelligence, case management,
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FIGURE 3: Historic view on information systems development
illustrating that BPM systems can be used to push “process logic”
out of the application (adapted from [13]).

and so forth. However, compared to the database market, the
BPM market is much more diverse and there is no consensus
on notations and core capabilities. This is not a surprise as
process management is much more challenging than data
management.

A good starting point for exploring the scientific origins
of BPM is the early work on office information systems. In
the seventies, people like Skip Ellis, Anatol Holt, and Michael
Zisman already worked on the so-called office information
systems, which were driven by explicit process models [1,
14-22]. Ellis et al. [14-16, 23] developed office automation
prototypes such as Officetalk-Zero and Officetalk-D at Xerox
PARC in the late 1970s. These systems used Information Con-
trol Nets (ICN), a variant of Petri nets, to model processes.
Office metaphors such as inbox, outbox, and forms were
used to interact with users. The prototype office automation
system SCOOP (System for Computerizing of Office Pro-
cesses) developed by Michael Zisman also used Petri nets
to represent business processes [20-22]. It is interesting to
see that pioneers in office information systems already used
Petri-net-based languages to model office procedures. During
the seventies and eighties, there was great optimism about
the applicability of office information systems. Unfortunately,
few applications succeeded. As a result of these experiences,
both the application of this technology and research almost
stopped for a decade. Consequently, hardly any advances
were made in the eighties. In the nineties, there was a
clear revival of the ideas already present in the early office
automation prototypes [4]. This is illustrated by the many
commercial WEM systems developed in this period.

In the mid-nineties, there was the expectation that WFM
systems would get a role comparable to Database Manage-
ment (DBM) systems. Most information systems subcontract
their data management to DBM systems and comparatively
there are just a few products. However, these products are
widely used. Despite the availability of WFM/BPM systems,
process management is not subcontracted to such systems at
ascale comparable to DBM systems. The application of “pure”
WEM/BPM systems is still limited to specific industries such
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as banking and insurance. However, WFEM/BPM technology
is often hidden inside other systems. For example, ERP
systems like SAP and Oracle provide workflow engines.
Many other platforms include workflow-like functionality.
For example, integration and application infrastructure soft-
ware such as IBM’s WebSphere and Cordys Business Oper-
ations Platform (BOP) provides extensive process support.
In hindsight, it is easy to see why process management
cannot be subcontracted to a standard WFM/BPM system
at a scale comparable to DBM systems. As illustrated by the
varying support for the workflow patterns [9, 24, 25], process
management is much more “thorny” than data management.
BPM is multifaceted, complex, and difficult to demarcate.
Given the variety in requirements and close connection
to business concerns, it is often impossible to use generic
BPM/WEM solutions. Therefore, BPM functionality is often
embedded in other systems. Moreover, BPM techniques are
frequently used in a context with conventional information
systems.

BPM has become a mature discipline. Its relevance is
acknowledged by practitioners (users, managers, analysts,
consultants, and software developers) and academics. This
is illustrated by the availability of many BPM systems and a
range of BPM-related conferences.

In this survey we will often refer to results presented at
the Annual International BPM Conference. The International
BPM Conference just celebrated its 10th anniversary and its
proceedings provide a good overview of the state-of-the-
art: BPM 2003 (Eindhoven, The Netherlands) [26], BPM
2004 (Potsdam, Germany) [27], BPM 2005 (Nancy, France)
[28], BPM 2006 (Vienna, Austria) [29], BPM 2007 (Brisbane,
Australia) [30], BPM 2008 (Milan, Italy) [31], BPM 2009
(Ulm, Germany) [32], BPM 2010 (Hoboken, NJ, USA) [33],
BPM 2011 (Clermont-Ferrand, France) [34], and BPM 2012
(Tallinn, Estonia) [35]. Other sources of information are the
following books on WFM/BPM: (first comprehensive WFM
book focusing on the different workflow perspectives and
the MOBILE language [5]), [36] (edited book that served
as the basis for the BPM conference series), [4] (most cited
WEM book; a Petri-net-based approach is used to model,
analyze, and enact workflow processes), [19] (book relating
WEM systems to operational performance), [7] (edited book
on process-aware information systems), [6] (book on produc-
tion WEM systems closely related to IBM’s workflow prod-
ucts), [37] (visionary book linking management perspectives
to the pi calculus), [2] (book presenting the foundations of
BPM, including different languages and architectures), [38]
(book based on YAWL and the workflow patterns), [8] (book
focusing on process mining and BPM), and [39] (book on
supporting flexibility in process-aware information systems).
Most of these books also provide a historical perspective on
the BPM discipline.

3. Structuring the BPM Discipline

Before discussing typical BPM use cases and some of the key
concerns of BPM, we first structure the domain by describing
the BPM life-cycle and various classifications of processes.
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FIGURE 4: The BPM life cycle consisting of three phases: (1)
(re)design, (2) implement/configure, and (3) run and adjust.

Figure 4 shows the BPM life-cycle. In the (re)design phase,
a process model is designed. This model is transformed into
a running system in the implementation/configuration phase.
If the model is already in executable form and a WEM or
BPM system is already running, this phase may be very
short. However, if the model is informal and needs to be
hardcoded in conventional software, this phase may take
substantial time. After the system supports the designed
processes, the run and adjust phase starts. In this phase,
the processes are enacted and adjusted when needed. In the
run and adjust phase, the process is not redesigned and no
new software is created; only predefined controls are used to
adapt or reconfigure the process. Figure 4 shows two types
of analysis: model-based analysis and data-based analysis.
While the system is running, event data are collected. These
data can be used to analyze running processes, for example,
discover bottlenecks, waste, and deviations. This is input for
the redesign phase. During this phase process models can be
used for analysis. For example, simulation is used for what-if
analysis or the correctness of a new design is verified using
model checking.

The scope of BPM extends far beyond the implementation
of business processes. Therefore, the role of model-based and
data-based analyses is emphasized in Figure 4.

Business processes can be classified into human-centric
and system-centric [40] or more precisely into Person-to-
Person (P2P), Person-to-Application (P2A), and Application-
to-Application (A2A) processes [7].

In P2P processes, the participants involved are primarily
people; that is, the processes predominantly involve activities
that require human intervention. Job tracking, project man-
agement, and groupware tools are designed to support P2P
processes. Indeed, the processes supported by these tools are
not composed of fully automated activities only. In fact, the
software tools used in these processes (e.g., project tracking
servers, e-mail clients, video-conferencing tools, etc.) are
primarily oriented towards supporting computer-mediated
interactions. Recently, the importance of social networks
increased significantly (facebook, twitter, linkedin, etc.) and

5
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frame framed framed framed
P2P
Knowledge
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A2A

FIGURE 5: Classification of processes: most processes can be found
around the diagonal.

BPM systems need to be able to incorporate such computer-
mediated human interactions [41]. The term “Social BPM”
refers to exploiting such networks for process improvement.

On the other end of the spectrum, A2A processes are
those that only involve activities performed by software
systems. Financial systems may exchange messages and
money without any human involvement; logistic information
systems may automatically order products when inventory
falls below a predefined threshold, Transaction processing
systems, EAI platforms, and Web-based integration servers
are examples of technologies to support A2A processes.

P2A processes involve both human activities and interac-
tions between people, and activities and interactions involv-
ing applications which act without human intervention. Most
BPM/WEM systems fall in the P2A category. In fact, most
information systems aim at making people and applications
work in an integrated manner.

Note that the boundaries between P2P, P2A, and A2A
are not crisp. Instead, there is a continuum of processes,
techniques, and tools covering the spectrum from P2P (i.e.,
manual, human-driven) to A2A (automated, application-
driven).

Orthogonal to the classification of processes into P2P,
P2A, and A2A, we distinguish between unframed, ad hoc
framed, loosely framed, and tightly framed processes [7] (cf.
Figure 5).

A process is said to be unframed if there is no explicit pro-
cess model associated with it. This is the case for collaborative
processes supported by groupware systems that do not offer
the possibility of defining process models.

A process is said to be ad hoc framed if a process model is
defined a priori but only executed once or a small number
of times before being discarded or changed. This is the
case in project management environments where a process
model (i.e., a project chart) is often only executed once. The
same holds for scientific computing environments, where
a scientist may define a process model corresponding to
a computation executed on a grid and involving multiple
datasets and computing resources [42]. Such a process is often
executed only once (although parts may be reused for other
experiments).

A loosely framed process is one for which there is an a
priori defined process model and a set of constraints, such
that the predefined model describes the “normal way of doing
things” while allowing the actual executions of the process



to deviate from this model (within certain limits). Case-
handling systems aim to support such processes; that is, they
support the ideal process and implicitly defined deviations
(e.g., skipping activities or rolling back to an earlier point in
the process).

Finally, a tightly framed process is one which consistently
follows an a priori defined process model. Tightly framed
processes are best supported by traditional WEM systems.

As Figure 5 shows, the degree of framing of the underly-
ing processes (unframed, ad hoc, loosely, or tightly framed)
and the nature of the process participants (P2P, P2A, and
A2A) are correlated. Most processes are found around the
diagonal. Knowledge-intensive processes tend to be less
framed and more people-centric. Highly repeatable processes
tend to be tightly framed and automated.

As with P2P, P2A, and A2A processes, the boundaries
between unframed, ad hoc framed, loosely framed, and
tightly framed processes are not crisp. In particular, there is
a continuum between loosely and tightly framed processes.
For instance, during its operational life a process considered
to be tightly framed can start deviating from its model so
often and so unpredictably, that at some point in time it may
be considered to have become loosely framed. Conversely,
when many instances of a loosely framed process have been
executed, a common structure may become apparent, which
may then be used to frame the process in a tighter manner.

Figures 4 and 5 illustrate the breadth of the BPM spec-
trum. A wide variety of processes—ranging from unframed
and people-centric to tightly framed and fully automated—
may be supported using BPM technology. Different types of
support are needed in three main phases of the BPM life-
cycle (cf. Figure 4). Moreover, various types of analysis can be
used in these phases: some are based on models only whereas
others also exploit event data. In the remainder we present
a set of twenty BPM use cases followed by a more detailed
discussion of six key concerns. The use cases and key concerns
are used to provide a survey of the state-of-the-art in BPM
research. Moreover, the proceedings of past BPM conferences
are analyzed to see trends in the maturing BPM discipline.

4. BPM Use Cases

To further structure the BPM discipline and to show “how,
where, and when” BPM techniques can be used, we provide
a set of twenty BPM use cases. Figures 6, 7, 8, 9, 10, 11, 12,
and 13 show graphical representations of these use cases.
Models are depicted as pentagons marked with the letter
“M” A model may be descriptive (D), normative (N), and/or
executable (E). A “D|NI|E” tag inside a pentagon means
that the corresponding model is descriptive, normative, or
executable. Tag “E” means that the model is executable.
Configurable models are depicted as pentagons marked with
“CM?” Event data (e.g., an event log) are denoted by a
disk symbol (cylinder shape) marked with the letter “E”
Information systems used to support processes at runtime
are depicted as squares with rounded corners and marked
with the letter “S” Diagnostic information is denoted by
a star shape marked with the letter “D” We distinguish
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between conformance-related diagnostics (star shape marked
with “CD”) and performance-related diagnostics (star shape
marked with “PD”).

The twenty atomic use cases can be chained together in
so-called composite use cases. These composite cases cor-
respond to realistic BPM scenarios.

4.1. Use Cases to Obtain Models. The first category of use
cases we describe have in common that a process model is
produced (cf. Figures 6 and 7).

4.1.1. Design Model (DesM). Use case design model (DesM)
refers to the creation of a process model from scratch by a
human. Figure 6 shows the creation of a model represented
by a pentagon marked with the letter “M” This is still the
most common way to create models. The handmade model
may be descriptive, normative, or executable. Descriptive
models are made to describe the as-is or to-be situation.
A descriptive model may describe undesirable behavior. If
the model only describes the desired behavior, is called
normative. A normative model may describe a rule like
“activities x and y should never be executed by the same
person for a given case” even though in reality the rule is
often violated and not enforced. An executable model can
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be interpreted unambiguously by software, for example, to
enact or verify a process. Given a state or sequence of past
activities, the model can determine the set of possible next
activities. A model may be executable and descriptive or
normative; that is, the three classes are not mutually exclusive
and combinations are possible.

4.1.2. Discover Model from Event Data (DiscM). The term
“Big Data” is often used to refer to the incredible growth of
event data in recent years [43]. More and more organizations
realize that the analysis of event data is crucial for pro-
cess improvement and achieving competitive advantage over
competitors. Use case discover model from event data (DiscM)
refers to the automated generation of a process model using
process mining techniques [8].

The goal of process mining is to extract knowledge
about a particular (operational) process from event logs;
that is, process mining describes a family of a posteriori
analysis techniques exploiting the information recorded in
audit trails, transaction logs, databases, and so forth (cf.
Section 5.4). Typically, these approaches assume that it is
possible to sequentially record events such that each event
refers to an activity (i.e., a well-defined step in the process)
and is related to a particular case (i.e., a process instance).
Furthermore, some mining techniques use additional infor-
mation such as the performer or originator of the event (i.e.,
the person/resource executing or initiating the activity), the
timestamp of the event, or data elements recorded with the
event (e.g., the size of an order).

A discovery technique takes an event log and produces a
model without using any a priori information. An example
is the «a-algorithm [44]. This algorithm takes an event log
and produces a Petri net explaining the behavior recorded
in the log. For example, given sufficient example executions
of the process shown in Figure 1, the «-algorithm is able to
automatically construct the corresponding Petri net without
using any additional knowledge. If the event log contains

information about resources, one can also discover resource-
related models, for example, a social network showing how
people work together in an organization.

4.1.3. Select Model from Collection (SelM). Large organiza-
tions may have repositories containing hundreds of process
models. There may be variations of the same model for
different departments or products. Moreover, processes may
change over time resulting in different versions. Because
of these complexities, (fragments of) process models may
be reinvented without reusing existing models. As a result,
even more process models need to coexist, thus further
complicating model management. Therefore, reuse is one of
the key concerns in BPM (cf. Section 5.6).

Use case select model from collection (SelM) refers to the
retrieval of existing process models, for example, based on
keywords or process structures. An example of a query is
“return all models where activity send invoice can be followed
by activity reimburse” Another example is the query “return
all models containing activities that need to be executed by
someone with the role manager”

4.1.4. Merge Models (MerM). Use case SelM selects a com-
plete model from some repository. However, often new
models are created from existing models. Use case merge
models (MerM) refers to the scenario where different parts
of different models are merged into one model. For example,
the initial part of one model is composed with the final part of
another process, a process model is extended with parts taken
from another model, or different process models are unified
resulting in a new model. Unlike classical composition the
original parts may be indistinguishable.

4.1.5. Compose Model (CompM). Use case compose model
(CompM) refers to the situation where different models are
combined into a larger model. Unlike use case MerM the
different parts can be related to the original models used in
the composition.

The five use cases shown in Figures 6 and 7 all produce
a model. The resulting model may be used for analysis or
enactment as will be shown in later use cases.

4.2. Use Cases Involving Configurable Models. A configurable
process model represents a family of process models, that
is, a model that through configuration can be customized
for a particular setting. For example, configuration may
be achieved by hiding (ie., bypassing) or blocking (i.e.,
inhibiting) certain fragments of the configurable process
model [45]. In this way, the desired behavior is selected. From
the viewpoint of generic BPM software, configurable process
models can be seen as a mechanism to add “content” to these
systems. By developing comprehensive collections of config-
urable models, particular domains can be supported. From
the viewpoint of ERP software, configurable process models
can be seen as a means to make these systems more process-
centric, although in the latter case quite some refactoring is
needed as processes are often hidden in table structures and
application code. Various configurable languages have been
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FIGURE 9: Abstract example illustrating the use cases related to configurable process models. A configurable model may be created from
scratch (use case DesCM) or from existing process models (use case MerCM). The resulting configurable model can be used to generate

concrete models by hiding and blocking parts (use case ConCM).

proposed as extensions of existing languages (e.g., C-EPCs
[46], and C-SAP, C-BPEL) but few are actually supported
by enactment software (e.g., C-YAWL [47]). Traditional
reference models [48-50] can be seen as configurable process
models. However, configuration is often implicit or ad hoc
and often such reference models are not executable.

Figure 8 shows three use cases related to configurable
process models.

4.2.1. Design Configurable Model (DesCM). Configurable
process models can be created from scratch as shown
by use case design configurable model (DesCM). Creating

a configurable model is more involved than creating an
ordinary nonconfigurable model. For example, because of
hiding and/or blocking selected fragments, the instances of a
configured model may suffer from behavioral anomalies such
as deadlocks and livelocks. This problem is exacerbated by
the many possible configurations a model may have, and by
the complex domain dependencies which may exist between
various configuration options [51].

4.2.2. Merge Models into Configurable Model (MerCM). A
configurable process model represents a family of process
models. A common approach to obtain a configurable model
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FIGURE 11: Use cases for model-based analysis.
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is to merge example members of such family into a model that
is able to generate a least of the example variants. The merging
of model variants into a configurable model is analogous to
the discovery of process models from example traces.

Figure 9 illustrates the use case merge models into con-
figurable model (MerCM). Two variants of the same process
are shown in the top-left corner. Variant 1 models a process
where activity a is followed by activity b. After completing
b, activities d and f can be executed in any order, followed
by activity g. Finally, h is executed. Variant 2 also starts with
activity a. However, now a is followed by activities d and f
or d and e. Moreover, after completing g the process can loop
back to a state where again there is a choice between d and f
ordande.

The two variants can be merged into the configurable
model shown in the center of Figure 9. Activities c and e can
be blocked and activity b can be hidden. If we block ¢ and
e and do not hide b (i.e,, b is activated), we obtain the first
variant. If we do not block ¢ and e and hide b, we obtain the
second variant.

9
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FIGURE 12: Use cases where diagnostics are obtained using both
model and log.
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FIGURE 13: Use cases to repair, extend, or improve process models.

4.2.3. Configure Configurable Model (ConCM). Figure 9 also
illustrates use case configure configurable model (ConCM).
This use case creates a concrete model from some config-
urable process model by selecting a concrete variant; that is,
from a family of process variants one member is selected. The
bottom part of Figure 9 shows a variant created by blocking
activities ¢ and e and hiding activity b.

Figure 9 is a bit misleading as it only shows the control
flow. Data-related aspects and domain modeling play an
important role in process configuration. For example, when
configuring ERP systems like SAP R/3 the data-perspective is
most prominent.

4.3. Use Cases Related to Process Execution. BPM systems are
used to enact processes based on executable process models.
In fact, the initial focus of WFM systems was on process
automation and implementation and not on the manage-
ment, analysis, and improvement of business processes (cf.
Figure 10).

4.3.1. Refine Model (RefM). Only executable models can be
enacted. Therefore, use case refine model (RefM) describes
the scenario of converting a model tagged with “D|N” into
a model tagged with “E;” that is, a descriptive or normative
model is refined into a model that is also executable. To make
a model executable one needs to remove all ambiguities; that
is, the supporting software should understand its meaning.
Moreover, it may be necessary to detail aspects not considered
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relevant before. For example, it may be necessary to design a
form where the user can enter data.

4.3.2. Enact Model (EnM). Executable models can be inter-
preted by BPM systems and used to support the execution of
concrete cases. Use case enact model (EnM) takes as input a
model and as output a running system. The running system
should be reliable, usable, and have a good performance.
Therefore, issues like exception handling, scalability, and
ergonomics play an important role. These factors are typically
not modeled when discussing or analyzing processes. Yet
they are vital for the actual success of the system. Therefore,
Section 5.2 discusses the process enactment infrastructure as
one of the key concerns of BPM.

4.3.3. Log Event Data (LogED). When process instances (i.e.,
cases) are handled by the information system, they leave
traces in audit trails, transaction logs, databases, and so forth.
Even when no BPM/WEM systems is used, relevant events
are often recorded by the supporting information system. Use
case log event data (LogED) refers to the recording of event
data, often referred to as event logs. Such event logs are used
as input for various process mining techniques. Section 5.4
discusses the use of event data as one of the key concerns of
BPM.

4.3.4. Monitor (Mon). Whereas process mining techniques
center around event data and models (e.g., models are discov-
ered or enriched based on event logs), monitoring techniques
simply measure without building or using a process model.
For example, it is possible to measure response times without
using or deriving a model. Modern BPM systems show
dashboards containing information about Key Performance
Indicators (KPIs) related to costs, responsiveness, and quality.
Use case monitor (Mon) refers to all measurements done at
runtime without actively creating or using a model.

4.3.5. Adapt While Running (AdaWR). BPM is all about
making choices. When designing a process model choices are
made with respect to the ordering of activities. At runtime,
choices may be resolved by human decision making. Also
process configuration is about selecting the desired behavior
from a family of process variants. As will be explained in
Section 5.5, flexibility can be viewed as the ability to make
choices at different points in time (design time, configuration
time, or runtime). Some types of flexibility require changes of
the model at runtime. Use case adapt while running (AdaWR)
refers to the situation where the model is adapted at runtime.
The adapted model may be used by selected cases (ad hoc
change) or by all new cases (evolutionary change). Adapting
the system or process model at runtime may introduce all
kinds of complications. For example, by making a concurrent
process more sequential, deadlocks may be introduced for
already running cases.

4.4. Use Cases Involving Model-Based Analysis. Process mod-
els are predominantly used for discussion, configuration, and
implementation. Interestingly, process models can also be
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used for analysis. This is in fact one of the key features of BPM.
Instead of directly hard-coding behavior in software, models
can be analyzed before being put into production.

4.4.1. Analyze Performance Based on Model (PerfM). Exe-
cutable process models can be used to analyze the expected
performance in terms of response times, waiting times,
flow times, utilization, costs, and so forth. Use case analyze
performance based on model (PertM) refers to such analyses.
Simulation is the most widely applied analysis technique in
BPM because of its flexibility. Most BPM tools provide a
simulation facility. Analytical techniques using, for example,
queueing networks or Markov chains can also be used to
compute the expected performance. However, these are rarely
used in practice due to the additional assumptions needed.

4.4.2. Verify Model (VerM). Before a process model is put into
production, one would like to get assurance that the model is
correct. Consider, for example, the notion of soundness [13,
52]. A process model is sound if cases cannot get stuck before
reaching the end (termination is always possible) and all parts
of the process can be activated (no dead segments). Use case
verify model (VerM) refers to the analysis of such properties
using techniques such as model checking.

Section 5.3 elaborates on model-based analysis as one of
the key concerns of BPM.

4.5. Use Cases Extracting Diagnostics from Event Data. A
process model may serve as a pair of glasses that can be used
tolook at reality. As Figure 12 shows, we identify two use cases
where diagnostic information is derived from both model
and event data.

4.5.1. Check Conformance Using Event Data (ConfED). Event
data and models can be compared to see where modeled
and observed behavior deviates. For example, one may replay
history on a process model and see where observed events
do not “fit” the model. Use case check conformance using
event data (ConfED) refers to all kinds of analysis aiming
at uncovering discrepancies between modeled and observed
behaviors. Conformance checking may be done for auditing
purposes, for example, to uncover fraud or malpractices.

4.5.2. Analyze Performance Using Event Data (PerfED). Event
data often contain timing information; that is, events have
timestamps that can be used for performance analysis. Use
case analyze performance using event data (PerfED) refers
to the combined use of models and timed event data. By
replaying an event log with timestamps on a model, one
can measure delays, for example, the time in-between two
subsequent activities. The result can be used to highlight bot-
tlenecks and gather information for simulation or prediction
techniques.

4.6. Use Cases Producing New Models Based on Diagnostics or
Event Data. Diagnostic information and event data can be
used to repair, extend, or improve models (cf. Figure 13).
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4.6.1. Repair Model (RepM). Use case ConfED can be used
to see where reality and model deviate. The corresponding
diagnostics can be used as input for use case repair model
(RepM;) that is, the model is adapted to match reality better
[53]. On the one hand, the resulting model should correspond
to the observed behavior. On the other hand, the repaired
model should be as close to the original model as possible.
The challenge is to balance both concerns.

4.6.2. Extend Model (ExtM). Event logs refer to activities
being executed and events may be annotated with additional
information such as the person/resource executing or initiat-
ing the activity, the timestamp of the event, or data elements
recorded with the event. Use case extend model (ExtM) refers
to the use of such additional information to enrich the process
model. For example, timestamps of events may be used to
add delay distributions to the model. Data elements may be
used to infer decision rules that can be added to the model.
Resource information can be used to attach roles to activities
in the model. This way it is possible to extend a control-flow-
oriented model with additional perspectives.

4.6.3. Improve Model (ImpM). Performance-related diagnos-
tics obtained through use case PerfED can be used to generate
alternative process designs aiming at process improvements,
for example, to reduce costs or response times. Use case
improve model (ImpM) refers to BPM functionality helping
organizations to improve processes by suggesting alternative
process models. These models can be used to do “what-if”
analysis. Note that unlike RepM the focus of ImpM is on
improving the process itself.

4.7 Composite Use Cases. The twenty atomic use cases should
not be considered in isolation; that is, for practical BPM
scenarios these atomic use cases are chained together into
composite use cases. Figure 14 shows three examples.

The first example (Figure 14(a)) is the classical scenario
where a model is constructed manually and subsequently
used for performance analysis. Note that the use cases design
model (DesM) and analyze performance based on model
(PerfM) are chained together. A conventional simulation not
involving event data would fit this composite use case.

The second composite use case in Figure 14 combines
three atomic use cases: the observed behavior extracted from
some information system (LogED) is compared with a man-
ually designed model (DesM) in order to find discrepancies
(ConfED).

Figure 14(c) shows a composite use case composed of
five atomic use cases. The initially designed model (DesM)
is refined to make it executable (RefM). The model is used
for enactment (EnM) and the resulting behavior is logged
(LogED). The modeled behavior and event data are used
to reveal bottlenecks (PerfED); that is, performance-related
information is extracted from the event log and projected
onto the model.

The composite use cases in Figure 14 are merely examples;
that is, a wide range of BPM scenarios can be supported by
composing the twenty atomic use cases.

1

4.8. Analysis of BPM Conference Proceedings Based on Use
Cases. After describing the twenty BPM uses cases, we
evaluate their relative importance in BPM literature [54].
As a reference set of papers we used all papers in the
proceedings of past BPM conferences, that is, BPM 2003-
BPM 2011 [26-34] and the edited book Business Process
Management: Models, Techniques, and Empirical Studies [36].
The edited book [36] appeared in 2000 and can be viewed as
a predecessor of the first BPM conference.

In total, 289 papers were analyzed by tagging each paper
with the use cases considered [54]. As will be discussed in
Section 5.7, we also tagged each paper with the key concerns
addressed. Since the BPM conference is the premier confer-
ence in the field, these 289 papers provide a representative
view on BPM research over the last decade.

Most papers were tagged with one dominant use case,
but sometimes more tags were used. In total, 367 tags were
assigned (on average 1.18 use cases per paper). For example,
the paper “Instantaneous soundness checking of industrial
business process models” [55] presented at BPM 2009 is a
typical example of a paper tagged with use case verify model
(VerM). In [55], 735 industrial business process models are
checked for soundness (absence of deadlock and lack of
synchronization) using three different approaches. The paper
“Graph matching algorithms for business process model
similarity search” [56] presented at the same conference was
tagged with the use case select model from collection (SelM)
since the paper presents an approach to rank process models
in a repository based on some input model. These examples
illustrate the tagging process.

By simply counting the number of tags per use case and
year, the relative frequency of each use case per year can be
established. For example, for BPM 2009 four papers were
tagged with use case discover model from event data (DiscM).
The total number of tags assigned to the 23 BPM 2009 papers
is 30. Hence, the relative frequency of DiscM is 4/30 =
0.133. Table 1 shows all relative frequencies including the one
just mentioned. The table also shows the average relative
frequency of each use case over all ten years. These averages
are shown graphically in Figure 15.

Figure 15 shows that use cases design model (DesM) and
enact model (EnM) are most frequent. This is not very
surprising as these use cases are less specific than most
other use cases. The third most frequent use case—verify
model (VerM)—is more surprising (relative frequency of
0.144). An example paper having such a tag is [55] which
was mentioned before. Over the last decade there has been
considerable progress in this area and this is reflected by
various verification papers presented at BPM. In this context
it is remarkable that the use cases monitor (Mon) and analyze
performance using event data (PerfED) have a much lower
relative frequency (resp., 0.009 and 0.015). Given the practical
needs of BPM one would expect more papers presenting
techniques to diagnose and improve the performance of
business processes.

Figure 16 shows changes of relative frequencies over time.
The graph shows a slight increase in process-mining-related
topics. However, no clear trends are visible due to the many
use cases and small number of years and papers per year.
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FIGURE 15: Average relative importance of use cases (taken from
Table1).

Therefore, the 289 BPM papers were also analyzed based on
the six key concerns presented next (cf. Section 5.7).

5. BPM Key Concerns

The use cases refer to the practical/intended use of BPM
techniques and tools. However, BPM research is not equally
distributed over all of these use cases. Some use cases provide
important engineering or managerial challenges, but these
are not BPM specific or do not require additional BPM
research. Other use cases require foundational research and
are not yet encountered frequently in practice. Therefore,
we now zoom in on six key concerns addressed by many
BPM papers: process modeling languages, process enactment

infrastructures, process model analysis, process mining, pro-
cess flexibility, and process reuse.

5.1. Process Modeling Languages. The modeling and anal-
ysis of processes plays a central role in business process
management. Therefore, the choice of language to represent
an organization’s processes is essential. Three classes of
languages can be identified.

(i) Formal languages: processes have been studied using
theoretical models. Mathematicians have been using
Markov chains, queueing networks, and so forth to
model processes. Computer scientists have been using
Turing machines, transition systems, Petri nets, tem-
poral logic, and process algebras to model processes.
All of these languages have in common that they have
unambiguous semantics and allow for analysis.

(ii) Conceptual languages: users in practice often have
problems using formal languages due to the rigorous
semantics (making it impossible to leave things inten-
tionally vague) and low-level nature. They typically
prefer to use higher-level languages. Examples are
BPMN (Business Process Modeling Notation, [57,
58]), EPCs (Event-Driven Process Chains, [59-61]),
UML activity diagrams, and so forth (see Figure 17
for some examples). These languages are typically
informal; that is, they do not have a well-defined
semantics and do not allow for analysis. Moreover,
the lack of semantics makes it impossible to directly
execute them.

(iii) Execution languages: formal languages typically
abstract from “implementation details” (e.g., data
structures, forms, and interoperability problems) and
conceptual languages only provide an approximate
description of the desired behavior. Therefore, more
technical languages are needed for enactment.



ISRN Software Engineering

13

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

2000 2003 2004 2005 2006 2007 2008 2009 2010 2011

Improve model (ImpM)
Extend model (ExtM)
Repair model (RepM)

Verify model (VerM)

Monitor (Mon)

Log event data (LogED)
Enact model (EnM)
Refine model (RefM)

Compose model (CompM)
Merge models (MerM)

Design model (DesM)

Analyze performance using event data (PerfED)
Check conformance using event data (ConfED)

Analyze performance based on model (PerfM)
Adapt while running (adaWR)

Configure configurable model (ConCM)
Merge models into configurable model (MerCM)
Design configurable model (DesCM)

Select model from collection (SelM)
Discover model from event data (DiscM)

FIGURE 16: Development of the relative importance of each use case plotted over time (derived from Table 1).

An example is the BPEL (Business Process Execution
Language, [62]) language. Most vendors provide a
proprietary execution language. In the latter case, the
source code of the implemented tool determines the
exact semantics.

Note that fragments of languages like BPMN, UML, BPEL,
and EPCs have been formalized by various authors [63, 64].
However, these formalizations typically cover only selected
parts of the language (e.g., abstract from data or OR-joins).
Moreover, people tend to use only a small fragment of
languages like BPMN [10]. To illustrate problems related to
the standardization of industry-driven languages, consider
the OR-join semantics described in the most recent BPMN
standard [57]. Many alternative semantics have been pro-
posed and are used by different tools and formalizations [65-
68]. There is a tradeoff between accuracy and performance
and due to the “vicious circle” [66, 69] it is impossible to
provide “clean semantics” for all cases. In fact, the OR-join
semantics of [57] is not supported by any of the many tools
claiming to support BPMN.

Figure 18 illustrates the “vicious circle” paradox [66, 69].
The intuitive semantics of an OR-join is to wait for all tokens
to arrive. In the state shown in Figure 18, each OR-join has
a token on one of its input arcs (denoted by the two black
dots). The top OR-join should occur if it cannot receive a
token via its second input arc. By symmetry, the same holds
for the second OR-join. Suppose that one OR-join needs to
wait for a second token to arrive, then also the other OR-
join needs to wait due to symmetry. However, in this case the
process deadlocks and no second token will be received by
any of the OR-joins; that is, none of the OR-joins should have
blocked. Suppose that one OR-join does not wait for a second
token to arrive, then, by symmetry, also the other OR-join can
move forward. However, in this case each OR-join receives a
second token and in hindsight both should have blocked. The
example shown has no obvious interpretation; however, the
paradox revealed by the “vicious circle” also appears in larger,
more meaningful, examples where one OR-join depends on
another OR-join.

Thus far, we only considered procedural languages like
Petri nets, BPMN, UML activity diagrams, and BPEL.
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FIGURE 18: An example of a so-called “vicious circle” in a BPMN
model with two OR-joins.

Although lion’s share of BPM research is focusing on such
languages, there is also BPM research related to more
declarative forms of process modeling. Procedural process
models take an “inside-to-outside” approach; that is, all
execution alternatives need to be specified explicitly and new
alternatives must be explicitly added to the model. Declara-
tive models use an “outside-to-inside” approach: anything is
possible unless explicitly forbidden. To illustrate the “outside-
to-inside” approach of modeling we use the example shown
in Figure 19. The example is expressed in terms of the Declare
language [70, 71] and is intended to be witty; it does not
model a realistic business process but illustrates the modeling
constructs. The Declare model consists of four activities (a =
eat food, b = feel bad, ¢ = drink beer, and d = drink wine) and
four constraints (c1, ¢2, ¢3, and c4). Without any constraints
any sequence of activities is allowed as only constraints can
limit the allowed behavior.

Declare is grounded in Linear Temporal Logic (LTL) with
finite-trace semantics; that is, each constraint is mapped onto
an LTL formula using temporal operators such as always ([J),

eventually (0), until (U), weak until (W), and next time (O)
[72, 73]. The construct connecting activities ¢ and d is the so-
called noncoexistence constraint. In terms of LTL constraint
cl means “~((Qc) A (Od));” that is, Oc and (d cannot both
be true. Hence, it is not allowed that both ¢ and d happen
for the same case (beer and wine do not mix well). However,
in principle, one of them can occur an arbitrary number
of times. There are two precedence constraints (c2 and c3).
The semantics of precedence constraint c¢2 which connects a
to ¢ can also be expressed in terms of LTL: “(=c)Wa;” that
is, ¢ should not happen before a has happened. Since the
weak until (W) is used in “(nc)Wa’, traces without any a
and ¢ events also satisfy the constraint. Similarly, d should
not happen before a has happened: “(-d)Wa.” There is one
branched response constraint: c4. The LTL formalization of the
constraint connecting b to ¢ and d is “0(b = (Oc Vv Od));”
that is, every occurrence of b should eventually be followed
by c or d. However, there does not need to be a one-to-one
correspondence; for example, four occurrences of activity b
may be followed by just one occurrence of activity c. For
example, trace (a,¢,¢,a,b,b,b,b,c) is allowed. Whereas in a
procedural model, everything is forbidden unless explicitly
enabled, a declarative model allows for anything unless
explicitly forbidden. Trace (a,a,c,d) is not allowed as it
violates c1 (cannot drink both wine and beer). Trace (b, ¢, c)
is not allowed as it violates c2 (cannot drink beer before eating
food). Trace (a,c,b) is not allowed as it violates c4 (after
feeling bad one should eventually drink beer or wine). For
processes with a lot of flexibility, declarative models are often
more appropriate [70, 71].

Recently, more and more authors realized that conven-
tional process modeling languages such as BPMN, UML
ADs, Statecharts, BPEL, YAWL, WE-nets, and EPCs provide
only a monolithic view on the real process of interest. The
process is “flattened” to allow for a diagram that describes
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FIGURE 19: Example illustrating the declarative style of process modeling where anything is possible unless explicitly forbidden by constraints.

the life-cycle of one case in isolation. Proclets [74] are one
of the few business process modeling languages not forcing
the modeler to straightjacket processes into one monolithic
model. Instead, processes can be decomposed into a collec-
tion of interacting proclets that may have one-to-many or
many-to-many relationships (following the cardinalities in
the corresponding data model). For example, one order may
result in multiple deliveries and one delivery may involve
order lines of different orders. This cannot be handled by the
classical refinement of activities. However, order, order line,
and delivery proclets may coexist independent of one another
and are only loosely coupled. For example, an orderline exists
because it was created in the context of order. However,
the actual delivery of the corresponding item depends on
inventory levels, transportation planning, and competing
orders.

Object-oriented and artifact-centric approaches use ideas
related to proclets [75-80]. These approaches aim to provide
a better balance between process-centric and data-centric
modeling.

There is an increasing interest in understanding and
evaluating the comprehensibility of process models [81-
83]. The connection between complexity and process model
understanding has been shown empirically in recent publi-
cations (e.g., [84-87]) and mechanisms have been proposed
to alleviate specific aspects of complexity (e.g., [88-90]).
In [82, 83], various change patterns have been proposed.
The goal of these patterns is to modify the process model
to make it more understandable. The collection of patterns
for concrete syntax modifications described in [82] includes
mechanisms for arranging the layout, for highlighting parts
of the model using enclosure, graphics, or annotations, for
representing specific concepts explicitly or in an alternative
way, and for providing naming guidance. A collection of
patterns for abstract syntax modifications has been presented
in [83]. These patterns affect the formal structure of process
model elements and their interrelationships (and not just
the concrete syntax). For example, a process model may be
converted into a behavioral equivalent process model, that is
block structured and thus easier to understand.

The existence and parallel use of a plethora of languages
causes many problems. The lack of consensus makes it
difficult to exchange models. The gap between conceptual

languages and execution languages leads to rework and
a disconnect between users and implementers. Moreover,
conceptual languages and execution languages often do not
allow for analysis.

The Workflow Patterns Initiative [91] was established in
the late nineties with the aim of delineating the fundamental
requirements that arise during business process modeling on
a recurring basis and describe them in an imperative way.
Based on an analysis of contemporary workflow products
and modeling problems encountered in various workflow
projects, a set of twenty patterns covering the control-flow
perspective of BPM was created [9]. Later this initial set
was extended and now also includes workflow resource pat-
terns [24], workflow data patterns [25], exception handling
patterns [92], service-interaction patterns [93], and change
patterns [94].

These collections of workflow patterns can be used to
compare BPM/WEFM languages and systems. Moreover, they
help focusing on the core issues rather than adding new
notations to the “Tower of Babel for Process Languages.
The lack of consensus on the modeling language to be used
resulted in a plethora of similar but subtly different languages
inhibiting effective and unified process support and analysis.
This “Tower of Babel” and the corresponding discussions
obfuscated more foundational questions.

5.2. Process Enactment Infrastructures. The Workflow Man-
agement Coalition (WfMC) was founded in August 1993 as
an international nonprofit organization. In the early 1990s,
the WEMC developed their so-called reference model [95, 96].
Although the detailed text describing the reference model
refers to outdated standards and technologies, it is remarkable
to see that after almost twenty years the reference model of
the WEMC still adequately structures the desired functionality
of a WEM/BPM system. Figure 20 shows an overview of
the reference model. It describes the major components and
interfaces within a workflow architecture. In our description
of the reference model we use the original terminology.
Therefore, “business processes” are often referred to as “work-
flows” when explaining the reference model.

The core of any WFM/BPM system is the so-called
workflow enactment service. The workflow enactment service
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provides the run-time environment which takes care of
the control and execution of workflows. For technical or
managerial reasons the workflow enactment service may
use multiple workflow engines. A workflow engine handles
selected parts of the workflow and manages selected parts of
the resources. The process definition tools are used to specify
and analyze workflow process definitions and/or resource
classifications. These tools are used at design time. In most
cases, the process definition tools can also be used for
business process modeling and analysis. Most WFM/BPM
systems provide three process definition tools: (1) a tool with
a graphical interface to define workflow processes, (2) a tool
to specify resource classes (organizational model describing
roles, groups, etc.), and (3) an analysis tool to analyze a
specified workflow (e.g., using simulation or verification).
The end user communicates with the workflow system via
the workflow client applications. An example of a workflow
client application is the well-known in-basket also referred to
as work-list. Via such an in-basket work items are offered to
the end user. By selecting a work item, the user can execute
a task for a specific case. If necessary, the workflow engine
invokes applications via Interface 3. The administration and
monitoring tools are used to monitor and control the work-
flows. These tools are used to register the progress of cases
and to detect bottlenecks. Moreover, they are also used to set
parameters, allocate people, and handle abnormalities. Via
Interface 4 the workflow system can be connected to other
workflow systems.

To standardize the five interfaces shown in Figure 20,
the WEMC aimed at a common Workflow Application Pro-
gramming Interface (WAPI). The WAPI was envisaged as a
common set of API calls and related interchange formats
which may be grouped together to support each of the five
interfaces (cf. [96]). The WEIMC also started to work on a
common language to exchange process models soon after it
was founded. This resulted in the Workflow Process Defi-
nition Language (WPDL) [97] presented in 1999. Although
many vendors claimed to be WEIMC compliant, few made a
serious effort to support this language. At the same time, XML
emerged as a standard for data interchange. Since WPDL
was not XML based, the WIMC started working on a new
language: XPDL (XML Process Definition Language). The
starting point for XPDL was WPDL. However, XPDL should
not be considered as the XML version of WPDL. Several
concepts have been added/changed and the WIMC remained
fuzzy about the exact relationship between XPDL and WPDL.
In October 2002, the WEMC released a “Final Draft” of
XPDL [98]. The language developed over time, but before
widespread adoption, XPDL was overtaken by the Business
Process Execution Language for Web Services (BPEL) [62, 99].
BPEL builds on IBM’s WSFL (Web Services Flow Language)
[100] and Microsofts XLANG (Web Services for Business
Process Design) [101] and combines accordingly the features
of a block-structured language inherited from XLANG with
those for directed graphs originating from WSFL. BPEL
received considerable support from large vendors such as
IBM and Oracle. However, in practical terms also the rele-
vance of BPEL is limited. Vendors tend to develop all kinds
of extensions (e.g., for people-centric processes) and dialects
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of BPEL. Moreover, the increasing popularity of BPMN is
endangering the position of BPEL (several vendors allow for
the direct execution of subsets of BPMN thereby bypassing
BPEL). Furthermore, process models are rarely exchanged
between different platforms because of technical problems
(the “devil is in the details”) and too few use cases.

Figure 21 shows the BPM reference architecture proposed
in [1]. It is similar to the reference model of the WEMC, but
the figure details the data sets used and lists the roles of the
various stakeholders (management, worker, and designer).
The designer uses the design tools to create models describing
the processes and the structure of the organization. The
manager uses management tools to monitor the flow of work
and act if necessary. The worker interacts with the enactment
service. The enactment service can offer work to workers and
workers can search, select, and perform work. To support the
execution of tasks, the enactment service may launch various
kinds of applications. Note that the enactment service is the
core of the system deciding on “what,” “how;” “when,” and “by
whom?” Clearly, the enactment service is driven by models
of the processes and the organizations using the system. By
merely changing these models the system evolves and adapts.
This is the ultimate promise of WFM/BPM systems.

Service-Oriented Computing (SOC) has had an incredible
impact on the architecture of process enactment infrastruc-
tures. The key idea of service orientation is to subcontract
work to specialized services in a loosely coupled fashion.
In SOC, functionality provided by business applications is
encapsulated within web services, that is, software compo-
nents described at a semantic level, which can be invoked
by application programs or by other services through a
stack of Internet standards including HTTP, XML, SOAP,
WSDL, and UDDI [102-107]. Once deployed, web services
provided by various organizations can be interconnected
in order to implement business collaborations, leading to
composite web services. Although service-orientation does
not depend on a particular technology, it is often associated
with standards such as HTTP, XML, SOAP, WSDL, UDDI,
and BPEL. Figure 22 shows an overview of the “web services
technology stack” and its relation to BPMN and BPEL.

In a Service-Oriented Architecture (SOA) services are
interacting, for example, by exchanging messages. By com-
bining basic services more complex services can be created
[103, 107]. Orchestration is concerned with the composition
of services seen from the viewpoint of single service (the
“spider in the web”). Choreography is concerned with the
composition of services seen from a global viewpoint focus-
ing on the common and complementary observable behavior.
Choreography is particularly relevant in a setting where
there is no single coordinator. The terms orchestration and
choreography describe two aspects of integrating services to
create end-to-end business processes. The two terms overlap
somewhat and their distinction has been heavily discussed
over the last decade.

SOC and SOA can be used to realize process enactment
infrastructures. Processes may implement services and, in
turn, may use existing services. All modern BPM/WFM sys-
tems provide facilities to expose defined processes as services
and to implement activities in a process by simply calling
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Interface 4

Other workflow
enactment service(s)

Workflow

engine(s)

Interface 3

delivery model, the consumer creates the software using tools
and libraries from the provider. The consumer also controls
software deployment and configuration settings. However,
the provider provides the networks, servers, and storage.
The Iaa$ delivery model, also referred to as “hardware as a
service,” offers only computers (often as virtual machines),
storage, and network capabilities. The consumer needs to
maintain the operating systems and application software.
The above discussion of different technologies illustrates
that there are many ways to implement the functionality
shown in Figure 21. There are both functional and nonfunc-
tional requirements that need to be considered when imple-
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other services. See, for example, the YAWL architecture [38]
which completely decouples the invocation of an activity
from the actual execution of the activity.

Interactions between different processes and applications
may be more involved as illustrated by the service interaction
patterns by Barros et al. [93] and the enterprise integration
patterns by Hohpe and Woolf [108].

For the implementation of process enactment infras-
tructures, cloud computing and related technologies such as
Software as a Service (SaaS), Platform as a Service (PaaS),
and Infrastructure as a Service (IaaS) are highly relevant.
Saas$, often referred to as “on-demand software,” is a software
delivery model in which the software and associated data are
centrally hosted on the cloud. The SaaS provider takes care
of all hardware and software issues. A well-known example is
the collection of services provided by Safesforce. In the Paa$S

menting a process-aware information system. The different
collections of workflow patterns can be used to elicit func-
tional requirements. For example, the control-flow-oriented
workflow patterns [9] can be used to elicit requirements
with respect to the ordering of activities. An example is the
“deferred choice” pattern [9], that is, a choice controlled
by the environment rather than the WFM/BPM system.
An organization needs to determine whether this pattern
is important and, if so, the system should support it. The
workflow resource patterns [24], workflow data patterns [25],
and exception handling patterns [92] can be used in a similar
fashion. However, architectural choices are mostly driven by
nonfunctional requirements related to costs, response times,
and reliability.

Several BPM research groups are concerned with the per-
formance of WFM/BPM systems. Although the core process
management technology by itself is seldom the bottleneck,
some process-aware information systems need to deal with
millions of cases and thousands of concurrent users. Note
that process-related data are typically small compared to the
data needed to actually execute activities. The process state
can be encoded compactly and the computation of the next
state is typically very fast compared to application-related
processing. However, since WFEM/BPM systems needs to
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control other applications, architectural considerations are
important for the overall system’s performance. For example,
when the number of cases handled per hour grows over time,
there is a need to reconfigure the system and to distribute
the work over more computing nodes. Cloud computing and
Saa$ provide the opportunity to outsource such issues. Load
balancing and system reconfiguration are then handled by the
service provider.

Another concern addressed by BPM research is the
reliability of the resulting information system. WFEM/BPM
systems are often the “spider in the web” connecting dif-
ferent technologies. For example, the BPM system invokes
applications to execute particular tasks, stores process-related
information in a database, and integrates different legacy and
web-based systems. Different components may fail result-
ing in loss of data and parts of the systems that are out
of sync. Ideally, the so-called ACID properties (Atomicity,
Consistency, Isolation, and Durability) are ensured by the
WEM/BPM system; atomicity: an activity is either success-
fully completed in full (commit) or restarted from the very
beginning (rollback), consistency: the result of an activity
leads to a consistent state, isolation: if several tasks are carried
out simultaneously, the result is the same as if they had been
carried out entirely separately, and durability: once a task is
successfully completed, the result must be saved persistently
to ensure that work cannot be lost. In the second half of the
nineties many database researchers worked on the so-called
workflow transactions, that is, long-running transactions
ensuring the ACID properties at a business process level [40,
109-113]. Business processes need to be executed in a partly
uncontrollable environment where people and organizations
may deviate and software components and communication
infrastructures may malfunction. Therefore, the BPM system
needs to be able to deal with failures and missing data.
Research on workflow transactions [40, 109-113] aims to
gracefully handle exceptions and maintain system integrity
at all times.

Related to reliability are security concerns. WFM/BPM
systems should ensure that only authorized people can
execute activities and access data [114]. Role-Based Access
Control (RBAC, [115]) techniques can be applied in this
setting. The workflow resource patterns [24] also incorporate
RBAC functionalities. Moreover, process-specific security
patterns such as the “four-eyes principle” (the same person
may not execute two dependent tasks for the same case even
if the person has the appropriate role for both tasks) are
incorporated. Cloud computing and Saa$ technologies fuel
new security-related anxieties. Multi-tenancy, that is, multi-
ple organizations using the same system, is interesting from a
cost perspective. Costs are shared by different organizations
using economies of scale. Moreover, load balancing and
reconfiguration can be supported in a better manner when
many tenants are sharing a large common infrastructure.
For example, smaller organizations may share a workflow
engine, whereas larger organizations use many engines at
the same time. This is all handled by the service provider.
For the service consumer these system (re)configurations
are invisible. However, multi-tenancy implies that different,
possibly competing, organizations are using the same cloud
or Saa$S system. Therefore, the process infrastructure should
ensure that information from one tenant cannot leak to
another tenant.

5.3. Process Model Analysis. There are two mainstream
approaches for model-based analysis: verification and perfor-
mance analysis. Verification is concerned with the correctness
of a system or process. Performance analysis focuses on flow
times, waiting times, utilization, and service levels. Unlike
process mining, these approaches do not use event data and
perform analysis using just the model.

A typical correctness property used for verification is
the soundness notion [I3, 52]. Soundness was originally
defined for workflow nets (WF-nets) but it applies to all
modeling techniques. A WF-net is a Petri net with a dedicated
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source place where the process starts and a dedicated sink
place where the process ends. Moreover, all nodes are on
a path from source to sink. A token on the source place
denotes the initial state. The state with just a token on the
sink place denotes the desired end state. Such a WF-net
models the life cycle of cases of a given kind. Examples
of cases are insurance claims, job applications, customer
orders, replenishment orders, patient treatments, and credit
applications. The process model is instantiated once for each
case. Each of these process instances has a well-defined start
(case creation) and end (case completion). In-between these
points, activities are conducted according to a predefined
procedure. One model may be instantiated many times. For
example, the process of handling insurance claims may be
executed for thousands or even millions of claims. These
instances can be seen as copies of the same WEF-net; that is,
tokens of different cases are not mixed.

Not every WF-net represents a correct process. The
modeled process may exhibit errors such as deadlocks, activ-
ities that can never become active, livelocks, and improper
termination (i.e., garbage being left in the process after
completion). Consider, for example, the WF-net shown in
Figure 23 exhibiting several problems.

A WFEF-net is sound if and only if (a) from any reachable
state it is possible to reach a state with a token in the sink
place (option to complete), (b) any reachable state having a
token in the sink place does not have a token in any of the
other places (proper completion), and (c) for any transition
there is a reachable state enabling it (absence of dead parts)
[13, 52]. The WEF-net shown in Figure 23 obviously violates all
three properties. For subclasses of WF-nets, soundness can be
analyzed without constructing the state space. For example,
for free-choice Petri nets, that is, processes where choice and
synchronization can be separated, soundness can be checked
by analyzing the rank of the corresponding incidence matrix
[13, 116]. Hence, soundness can be checked in polynomial
time for free-choice WF-nets. Invariants can often be used
to diagnose soundness problems; for example, the absence
of particular place and transition invariants for the short-
circuited WF-net provides possible causes for nonsoundness.
However, most of the more interesting verification questions
require the exploration of (a part of) the state space. See [13,
52, 55, 65, 68, 117-131] for examples of verification techniques
analyzing soundness-related properties for workflows and
business processes

Soundness is a generic property, but sometimes a more
specific property that needs to be investigated; for example,
“the ticket was checked for all rejected requests.” Such proper-
ties can be expressed in temporal logic [72,73]. As mentioned
earlier Linear Temporal Logic (LTL) is an example of a
temporal logic that, in addition to classical logical operators,
uses temporal operators such as always ([J), eventually (),
until (1), weak until (W), and next time (O). The expression
Ob = g means that for all cases in which b (skip
extra insurance) is executed also g (add extra insurance) is
executed. Another example is [J(e = ¢I) that states that
any occurrence of e will eventually be followed by [ (after
confirmation eventually a car is supplied). Model checking
techniques can be used to check such properties [72].
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Another verification task is the comparison of two
models. For example, the implementation of a process is
compared to the high-level specification of the process.
There exist different equivalence notions (trace equivalence,
branching bisimilarity, etc.) [132, 133]. Trace equivalence
considers two transition systems to be equivalent if their
execution sequences are the same. More refined notions like
(branching) bisimilarity also take the moment of choice into
account [132, 133]. Two process models are bisimilar if the
first model can, “mimic any move” of the second, and vice
versa. Consider, for example, the processes P = a - (b + ¢)
and Q = a - b + a - c. Both processes can generate traces
(a,b) and (a, c). However, in process P the choice between
b and c is made after the occurrence of a, whereas in Q this
choice is made upfront, that is, before the concurrence of a.
To understand that such differences are relevant replace a, b,
and c by “take exam,” “pass,” and “fail,” respectively.

Also in the context of services soundness-like properties
have been investigated [117, 134-144]. These techniques focus
on uncovering problems related to interactions between
different parties or services. For example, one service is
waiting for the other service to make the first move and
vice versa. Note that one can easily design services that
cannot interoperate with any other service. The approach
using the so-called operating guidelines [144] computes a
finite characterization of all partner services, that is, services
that can interoperate well with a given service.

Configurable models represent families of process models
[46, 47, 145-147]. A configurable model can be configured
to obtain a specific process model that is subsequently used
to handle individual cases, for instance, to process customer
orders. Various configurable languages have been proposed
as extensions of existing languages (e.g., C-EPCs [46], C-
iEPCs [146], C-WF-nets [148], C-SAP, and C-BPEL [47]) but
few are actually supported by enactment software (e.g., C-
YAWL [47]). Process configuration is notoriously difficult
as there may be all kinds of interdependencies between
configuration decisions. In fact, an incorrect configuration
may lead to behavioral issues such as deadlocks and livelocks.
The approach presented in [148] derives propositional logic
constraints from configurable process models that, if satisfied
by a configuration step, guarantee the behavioral correctness
of the configured model. The approach in [51] ensures this by
using partner synthesis: for a configurable process model a
finite representation of all correct configurations is generated.

There are various tools to verify process/workflow mod-
els. A classical example is Woflan that is tailored towards
checking soundness [149]. Also workflow systems such as
YAWL [150] provide verification capabilities [68]. The tool
Wendy [151] is an example of a tool tailored towards partner
synthesis. See [55, 124] for a comparative evaluation of several
verification tools checking soundness-related properties.

Obviously, model-based analysis is not limited to correct-
ness. In fact, from a management point of view, performance
analysis is more relevant. The performance of a process or
organization can be defined in different ways. Typically, three
dimensions of performance are identified: time, cost, and
quality. For each of these performance dimensions different
Key Performance Indicators (KPIs) can be defined. When
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looking at the time dimension the following performance
indicators can be identified.

(i) The lead time (also referred to as flow time) is the total
time from the creation of the case to the completion
of the case. In terms of a WF-net, this is the time it
takes to go from source place to sink place. One can
measure the average lead time over all cases. However,
the degree of variance may also be important; that is, it
makes a difference whether all cases take more or less
two weeks or if some take just a few hours, whereas
others take more than one month. The service level is
the percentage of cases having a lead time lower than
some threshold value, for example, the percentage of
cases handled within two weeks.

(ii) The service time is the time actually worked on a case.
One can measure the service time per activity (e.g.,
the average time needed to make a decision is 35
minutes) or for the entire case. Note that in case of
concurrency the overall service time (i.e., summing
up the times spent on the various activities) may
be longer than the lead time. However, typically the
service time is just a fraction of the lead time (minutes
versus weeks).

(iii) The waiting time is the time a case is waiting for
a resource to become available. This time can be
measured per activity or for the case as a whole. An
example is the waiting time for a customer who wants
to talk to a sales representative. Another example is
the time a patient needs to wait before getting a knee
operation. Again one may be interested in the average
or variance of waiting times. It is also possible to
focus on a service level, for example, the percentage of
patients that have a knee operation within three weeks
after the initial diagnosis.

(iv) The synchronization time is the time an activity is not
yet fully enabled and waiting for an external trigger or
another parallel branch. The time the case is partially

enabled (i.e., waiting for synchronization rather than
an available resource) is counted as synchronization
time.

Performance indicators can also be defined for the cost
dimension. Different costing models can be used, for exam-
ple, Activity-Based Costing (ABC), Time-Driven ABC, and
Resource Consumption Accounting (RCA) [152]. The costs
of executing an activity may be fixed or depend on the type
of resource used, its utilization, or the duration of the activity.
Resource costs may depend on the utilization of resources. A
key performance indicator in most processes is the average
utilization of resources over a given period; for example, an
operating room in a hospital has been used 85% of the time
over the last two months.

The quality dimension typically focuses on the “product”
or “service” delivered to the customer. Like costs, this can be
measured in different ways. One example is customer satis-
faction measured through questionnaires. Another example
is the average number of complaints per case or the number
of product defects.

Whereas verification focuses on the (logical) correct-
ness of the modeled process, performance analysis aims at
improving processes with respect to time, cost, or qual-
ity. Within the context of operations’ management many
analysis techniques have been developed [153-156]. Some
of these techniques “optimize” the model given a particular
performance indicator. For example, integer programming
or Markov decision problems can be used to find optimal
policies. For typical BPM problems “what if” analyses using
simulation, queueing models, or Markov models are often
most appropriate. Analytical models typically require many
assumptions and can only be used to answer particular
questions. Therefore, one often needs to resort to simulation.
Most BPM tools provide simulation capabilities.

Although many organizations have tried to use simula-
tion to analyze their business processes at some stage, few are
using simulation in a structured and effective manner. This
may be caused by a lack of training and limitations of existing
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tools. However, there are also several additional and more
fundamental problems. First of all, simulation models tend
to oversimplify things. In particular the behavior of resources
is often modeled in a rather naive manner. People do not
work at constant speeds and need to distribute their attention
over multiple processes. This can have dramatic effects on
the performance of a process and, therefore, such aspects
should not be “abstracted away” [157, 158]. Second, various
artifacts readily available are not used as input for simulation.
Modern organizations store events in logs and some may
have accurate process models stored in their WFM/BPM
systems. Also note that in many organizations, the state of
the information system accurately reflects the state of the
business processes supported by this system. Nevertheless,
such information (i.e., event logs and status data) is rarely
used for simulation or a lot of manual work is needed to
feed this information into the model. Third, the focus of
simulation is mainly on “design” whereas managers would
also like to use simulation for “operational decision making,
that is, solving the concrete problem at hand rather than some
abstract future problem. Fortunately, short-term simulation
[157] can provide answers for questions related to “here
and now”” The key idea is to start all simulation runs from
the current state and focus on the analysis of the transient
behavior. This way, a “fast forward button” into the future, is
provided [8, 157].

Verification and performance analysis heavily rely on the
availability of high-quality models. When the models and
reality have little in common, model-based analysis does
not make much sense. For example, some process model
may be internally consistent and satisfy all kinds of desirable
properties. However, if the model describes a highly idealized
version of reality, it may be useless for governance and
auditing purposes as in reality all kinds of deviations may
take place. Similar comments hold for simulation models. It
may be that the model predicts a significant improvement,
whereas in reality this is not the case because the model is
based on flawed assumptions. All of these problems stem
from a lack of alignment between handmade models and
reality. Process mining, discussed next, aims to address these
problems by establishing a direct connection between the
models and actual low-level event data about the process.

5.4. Process Mining. As information systems are becoming
more and more intertwined with the operational processes
they support, multitudes of events are recorded by these
systems. The goal of process mining is to use such event
data to extract process-related information, for example, to
automatically discover a process model by observing events
recorded by some system or to check the conformance of
a given model by comparing it with reality [8, 159]. This
provides new means to improve processes in a variety of
application domains. There are two main drivers for this new
technology. On the one hand, more and more events are
being recorded thus providing detailed information about the
history of processes. On the other hand, vendors of Business
Process Management (BPM) and Business Intelligence (BI)
software have been promising miracles. Although BPM and
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BI technologies received lots of attention, they did not live
up to the expectations raised by academics, consultants, and
software vendors. Hence, despite the omnipresence of event
data, most organizations diagnose problems based on fiction
rather than facts.

Process mining is an emerging discipline providing
comprehensive sets of tools to provide fact-based insights
and to support process improvements [8, 160]. This new
discipline builds on process model-driven approaches and
data mining. However, process mining is much more than an
amalgamation of existing approaches. For example, existing
data mining techniques are too data centric to provide a
comprehensive understanding of the end-to-end processes
in an organization. BI tools focus on simple dashboards
and reporting rather than clear-cut business process insights.
BPM suites heavily rely on experts modeling idealized to-be
processes and do not help the stakeholders to understand the
as-is processes.

Figure 24 shows the process mining framework described
in [8]. The top of the diagram shows an external “world”
consisting of business processes, people, and organizations
supported by some information system. The information
system records information about this “world” in such a
way that events logs can be extracted. The term prove-
nance used in Figure 24 emphasizes the systematic, reliable,
and trustworthy recording of events. The term provenance
originates from scientific computing, where it refers to the
data that is needed to be able to reproduce an experiment
[42, 161]. Business process provenance aims to systematically
collect the information needed to reconstruct what has
actually happened in a process or organization [162]. When
organizations base their decisions on event data it is essential
to make sure that these describe history well. Moreover, from
an auditing point of view it is necessary to ensure that event
logs cannot be tampered with. Business process provenance
refers to the set of activities needed to ensure that history, as
captured in event logs, “cannot be rewritten or obscured” such
that it can serve as a reliable basis for process improvement
and auditing.

As shown in Figure 24, event data can be partitioned into
“premortem” and “postmortem” event logs. “Postmortem”
event data refer to information about cases that have com-
pleted; that is, these data can be used for process improve-
ment and auditing, but not for influencing the cases they refer
to. “Premortem” event data refer to cases that have not yet
completed. If a case is still running, that is, the case is still
“alive” (premortem), then it may be possible that information
in the event log about this case (i.e., current data) can be
exploited to ensure the correct or efficient handling of this
case.

“Postmortem” event data are most relevant for offline
process mining, for example, discovering the control flow of
a process based on one year of event data. For online process
mining mixtures of “premortem” (current) and “postmortem”
(historic) data are needed. For example, historic information
can be used to learn a predictive model. Subsequently,
information about a running case is combined with the
predictive model to provide an estimate for the remaining
flow time of the case.
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FIGURE 24: Overview of the process mining spectrum.

The process mining framework described in [8] also
distinguishes between two types of models: “de jure models”
and “de facto models” A de jure model is normative; that is, it
specifies how things should be done or handled. For example,
a process model used to configure a BPM system is normative
and forces people to work in a particular way. A de facto model
is descriptive and its goal is not to steer or control reality.
Instead, de facto models aim to capture reality. As shown
in Figure 24 both de jure and de facto models may cover
multiple perspectives including the control-flow perspective
(“How?”), the organizational perspective (“Who?”), and the
case perspective (“What?”). The control-flow perspective
describes the ordering of activities. The organizational per-
spective describes resources (worker, machines, customers,
services, etc.) and organizational entities (roles, departments,
positions, etc.). The case perspective describes data and rules.

In the middle of Figure 24 ten process mining-related
activities are depicted. These ten activities are grouped into
three categories: cartography, auditing, and navigation. The
activities in the cartography category aim at making “process
maps.” The activities in the auditing category all involve a

de jure model that is confronted with reality in the form of
event data or a de facto model. The activities in the navigation
category aim at improving a process while it is running.

Activity discover in Figure 24 responds to use case DiscM
(discover model from event data) described earlier. Lion’s
share of process mining research has been devoted to this
activity [8, 163]. A discovery technique takes an event log
and produces a model without using any additional a priori
information. An example is the x-algorithm [44] that takes
an event log and produces a Petri net explaining the behavior
recorded in the log. If the event log contains information
about resources, one can also discover resource-related mod-
els, for example, a social network showing how people work
together in an organization.

Since the mid-nineties several groups have been working
on techniques for process discovery [44, 160, 164-169]. In
[170] an overview is given of the early work in this domain.
The idea to apply process mining in the context of workflow
management systems was introduced in [164]. In parallel,
Datta [166] looked at the discovery of business process
models. Cook and Wolf investigated similar issues in the
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context of software engineering processes [165]. Herbst [171]
was one of the first to tackle more complicated processes, for
example, processes containing duplicate tasks.

Most of the classical approaches have problems dealing
with concurrency. The a-algorithm [44] is an example of
a simple technique that takes concurrency as a starting
point. However, this simple algorithm has problems dealing
with complicated routing constructs and noise (like most
of the other approaches described in the literature). Process
discovery is very challenging because techniques need to
balance four criteria: fitness (the discovered model should
allow for the behavior seen in the event log), precision (the
discovered model should not allow for behavior completely
unrelated to what was seen in the event log), generaliza-
tion (the discovered model should generalize the example
behavior seen in the event log), and simplicity (the discovered
model should be as simple as possible). This makes process
discovery a challenging and highly relevant research topic.

Activity enhance in Figure 24 corresponds to use cases
RepM (repair model) and ExtM (extend model). When
existing process models (either discovered or handmade)
can be related to events logs, it is possible to enhance these
models. The connection can be used to repair models [53] or
to extend them [172-175].

Activity diagnose in Figure 24 does not directly use event
logs and focuses on classical model-based process analysis as
discussed in Section 5.3.

Activity detect compares de jure models with current
“premortem” data (events of running process instances) with
the goal to detect deviations at run time. The moment a
predefined rule is violated, an alert is generated [176-178].

Activity check in Figure 24 refers to use case Con-
fED (check conformance using event data). Historic “post-
mortem” data can be cross-checked with de jure models.
The goal of this activity is to pinpoint deviations and quan-
tify the level of compliance. Various conformance checking
techniques have been proposed in the literature [179-188].
For example, in [187] the fitness of a model is computed
by comparing the number of missing and remaining tokens
with the number of consumed and produced tokens during
replay. The most sophisticated technique described in [179-
181] creates the so-called alignment which relates a trace in
the event log to an execution sequence of the model that is
as similar as possible. Ideally, the alignment consists of steps
where log and model agree on the activity to be executed.
Steps where just the model “makes a move” or just the log
“makes a move” have a predefined penalty. This way the
computation of fitness can be turned into an optimization
problem: for each trace in the event log an alignment with
the lowest costs is selected. The resulting alignments can be
used for all kinds of analysis since any trace in the event log is
related to an execution sequence of the model. For example,
timestamps in the model can be used to compute bottlenecks
and extend the model with performance information (see
activity enhance in Figure 24).

Activity compare highlights differences and commonali-
ties between a de jure model and a de facto model. Traditional
equivalence notions such as trace equivalence, bisimilarity,
and branching bisimilarity [132, 133] can only be used

ISRN Software Engineering

to determine equivalence using a predefined equivalence
notion; for example, these techniques cannot be used to
distinguish between very similar and highly dissimilar pro-
cesses. Other notions such a graph-edit distance tend to focus
on the syntax rather than the behavior of models. Therefore,
recent BPM research explored various alternative similarity
notions [56,189-193]. Also note the Greatest Common Divisor
(GCD) and Least Common Multiple (LCM) notions defined
for process models in [194]. The GCD captures the common
parts of two or more models. The LCM embeds all input mod-
els. We refer to [189] for a survey and empirical evaluation of
some similarity notions.

Activity promote takes (parts of) de facto models and
converts these into (parts of) de jure models; that is, models
used to control or support processes are improved based
on models learned from event data. By promoting proven
“best practices” to de jure models, existing processes can be
improved.

The activities in the cartography and auditing categories
in Figure 24 can be viewed as “backward-looking” The last
three activities forming the navigation category are “forward-
looking” and are sometimes referred to as operational support
[8]. For example, process mining techniques can be used to
make predictions about the future of a particular case and
guide the user in selecting suitable actions. When comparing
this with a car navigation system from TomTom or Garmin,
this corresponds to functionalities such predicting the arrival
time and guiding the driver using spoken instructions.

Activity explore in Figure 24 visualizes running cases and
compares these cases with similar cases that were handled
earlier. The combination of event data and models can be
used to explore business processes at run time and, if needed,
trigger appropriate actions.

By combining information about running cases with
models (discovered or handmade), it is possible to make
predictions about the future, for example, predicting the
remaining flow time or the probability of success. Figure 24
shows that activity predict uses current data and models
(often learned over historic data). Various techniques have
been proposed in BPM literature [195-197]. Note that already
a decade ago Staffware provided a so-called “prediction
engine” using simulation [198].

Activity recommend in Figure 24 aims to provide func-
tionality similar to the guidance given by car navigation
systems. The information used for predicting the future
can also be used to recommend suitable actions (e.g., to
minimize costs or time) [176, 199]. Given a set of possible
next steps, the most promising step is recommended. For
each possible step, simply assume that the step is made and
predict the resulting performance (e.g., remaining flow time).
The resulting predictions can be compared and used to rank
the possible next steps.

The ten activities in Figure 24 illustrate that process
mining extends far beyond process discovery. The increasing
availability and growing volume of event data suggest that the
importance of process mining will continue to grow in the
coming years.
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flexibility by underspecification, and flexibility by change.

5.5. Process Flexibility. Effective business processes must be
able to accommodate changes in the environment in which
they operate, for example, new laws, changes in business
strategy, or emerging technologies. The ability to encompass
such changes is termed process flexibility and is definitely a key
concern of BPM as reflected by various publications [200-
207]. Modern processes and information systems need to be
able to deal with both foreseen and unforeseen changes. This
quality of a process—termed flexibility—reflects its ability to
deal with such changes, by varying or adapting those parts
of the business process that are affected by them, whilst
retaining the essential format of those parts that are not
impacted by the variations. Indeed, flexibility is as much
about what should stay the same in a process as what should
be allowed to change [208, 209].

In [209] a taxonomy of process flexibility is presented. The
taxonomy identifies four main flexibility types: flexibility by
definition, flexibility by deviation, flexibility by underspecifi-
cation, and flexibility by change (cf. Figure 25).

Flexibility by definition is the ability to incorporate alter-
native execution paths within a process definition at design
time such that selection of the most appropriate execution
path can be made at runtime for each process instance. For
example, an XOR-split defined at design time adds the ability
to select one or more activities for subsequent execution from
a set of available activities. Parallelism defined at design time
leaves the actual ordering of activities open and thus provides
more flexibility than sequential routing. All WFM/BPM
systems support this type of flexibility. However, declarative
languages make it easier to defer choices to runtime.

The classical workflow patterns mentioned earlier [9, 91]
can be viewed as a classification of “flexibility by definition”
mechanisms for procedural languages. For example, the
“deferred choice” pattern [9] leaves the resolution of a choice
to the environment at runtime. Note that a so-called “flower
place” in a Petri net, that is, a place with many transitions that
have this place as only input and output place, provides a lot of
flexibility. Also declarative languages like Declare [70, 71] can
be used to provide a lot of flexibility at runtime. (As discussed
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in Section 5.1, declarative models use an “outside-to-inside”
approach: anything is possible unless explicitly forbidden).

Flexibility by deviation is the ability for a process instance
to deviate at runtime from the execution path prescribed by
the original process without altering the process definition
itself. The deviation can only encompass changes to the
execution sequence for a specific process instance and does
not require modifications of the process definition. Typical
deviations are undo, redo, and skip.

The BPM]|one system of Perceptive/Lexmark (based on
the FLOWer system developed by Pallas Athena) is a system
that provides various mechanisms for deviations at runtime.
The case handling paradigm [200] supported by BPM|one
allows the user to skip or redo activities (if not explicitly
forbidden and assuming the user is authorized to do so).
Moreover, data can be entered earlier or later because the state
is continuously recomputed based on the available data.

Flexibility by underspecification is the ability to execute an
incomplete process specification, that is, a model that does
not contain sufficient information to allow it to be executed
to completion. An incomplete process specification contains
one or more so-called placeholders. These placeholders are
nodes which are marked as underspecified (i.e., “holes” in
the specification) and whose content is specified during the
execution of the process. The manner in which these place-
holders are ultimately enacted is determined by applying one
of the following approaches: late binding (the implementation
of a placeholder is selected from a set of available process
fragments) or late modeling (a new process fragment is
constructed in order to complete a given placeholder). For
late binding, a process fragment has to be selected from
an existing set of fully predefined process fragments. This
approach is limited to selection and does not allow a new
process fragment to be constructed. For late modeling, a new
process fragment can be developed from scratch or composed
from existing process fragments.

In the context of YAWL [150], the so-called worklets
approach [201] has been developed which allows for late
binding and late modeling. Late binding is supported through
the so-called “ripple-down rules,” that is, based on context
information the user can be guided to selecting a suitable
fragment. In [210] the term “pockets of flexibility” was
introduced to refer to the placeholder for change. In [211] an
explicit notion of “vagueness” is introduced in the context of
process modeling. The authors propose model elements such
as arc conditions and task ordering to be deliberately omitted
from models in the early stages of modeling. Moreover,
parts of the process model can be tagged as “incomplete” or
“unspecified”

Flexibility by change is the ability to modify a process
definition at run time such that one or all of the currently
executing process instances are migrated to a new process
definition. Changes may be introduced both at the process
instance and the process type levels. A momentary change
(also known as change at the instance level) is a change affect-
ing the execution of one or more selected process instances.
An example of a momentary change is the postponement
of registering a patient that has arrived to the hospital
emergency center: treatment is started immediately rather
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than spending time on formalities first. Such a momentary
change performed on a given process instance does not
affect any future instances. An evolutionary change (also
known as change at the type level) is a change caused by
modification of the process definition, potentially affecting all
new process instances. A typical example of the evolutionary
change is the redesign of a business process to improve
the overall performance characteristics by allowing for more
concurrency. Running process instances that are impacted by
an evolutionary or a momentary change need to be handled
properly. If a running process instance is transferred to the
new process, then there may not be a corresponding state
(called the “dynamic change bug” in [203]).

Flexibility by change is very challenging and has been
investigated by many researchers. The ability to adapt the
structure of running workflow was investigated in the context
of the WASA system [207]. In the context of the ADEPT
system, flexibility by change has been examined in detail
[205, 206]. This work shows that changes can introduce all
kinds of anomalies (missing data, deadlocks, double work,
etc.). For example, it is difficult to handle both momentary
changes and evolutionary changes at the same time, for
instance, an ad hoc change made for a specific instance may
be affected by a later change at the type level. The declarative
workflow system Declare has been extended to support both
evolutionary and momentary changes [204] thus illustrating
that a declarative style of model simplifies the realization of
all kinds of flexibility support.

See also [40, 208, 210, 212-215] for other classifications of
flexibility.

5.6. Process Reuse. BPM initiatives within larger organiza-
tions resulted in collections of hundreds or even thousands
of process models. Such large collections of process models
provide new challenges, sometimes referred to as “BPM-
in-the-large” [216]. A recent survey [217] shows that since
2005 there has been a growing research interest in the
management of large collections of business process models.
The survey also refers to examples of large collections,
for example, Suncorp’s process model repository containing
more than 6,000 insurance-related processes. Organizations
having hundreds or thousands of process models often have
problems maintaining these models. Some models may be
outdated, parts of models may have been duplicated, and
due to mergers there may be different models for similar
or even identical processes. Reuse is limited; that is, even
though many processes share activities, subprocesses, and
organizational entities, processes are often modeled from
scratch. BPM research aims to support the reuse of process
modeling efforts.

Process model repositories allow for the storage and
retrieval of process models. Most business process modeling
tools, for example, tools like ARIS [218, 219], provide such
facilities. The well-known SAP reference model consisting
of over 600 nontrivial process models (expressed in terms
of EPCs) has been distributed with the ARIS toolset. A
more recent initiative is APROMORE [220, 221], an advanced
process model repository providing a rich set of features for
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the analysis, management, and usage of large sets of process
models.

Figure 26 shows various activities related to the manage-
ment of large collections of business process models stored in
some repository.

Activity search in Figure 26 refers to use case SelM (select
model from collection). Given a query, a set of models
is returned. The returned models are often ranked based
on some metric (e.g., similarity or popularity). The query
may refer to syntax (i.e., structure and labels) or behavior.
Example queries referring to only the syntax are “Find all
process models that contain both activities X and Y, “Find
all process models containing activities executed by people
having role R and “Find all process models containing
activities accessing data element D” An example of a query
that also refers to behavior is “Find all process models where
activity X is always followed by Y” Sometimes behavior can
be derived from the syntax, for example, for free-choice nets
[116, 130]. Queries referring to behavior typically use some
temporal logic, for example, LTL with standard temporal
operators such as always (0J), eventually (0), until (1), weak
until (W), and next time (O) [72, 73]. Such queries can be
formulated graphically using a language like Declare [70,
71]. Another query language is the Business Process Model
Notation Query (BPMN-Q) language [222]. BPMN-Q can
be used to define patterns using an extension of the BPMN
syntax. Both Declare and BPMN-Q can also be used for
compliance checking.

A model similarity search [56, 189-191] is a particular
query looking for the model most similar to a given model.
For model similarity searches both syntax and behavior can
be used. For example, given one model one may want to
find another model that has the smallest edit distance (i.e.,
the number of atomic edit operation to convert one model
into another model). However, two behavioral equivalent
models may have many different syntactical differences.
Therefore, various approaches consider (an abstraction of)
behavior. Since it is often intractable to compare state spaces
or execution sequences, these approaches use abstractions of
models such as direct succession [8] or eventual succession
[189, 223].

Queries can refer to multiple perspectives. However, cur-
rent research seems to focus on control-flow-related queries.

Activity merge in Figure 26 corresponds to use cases
MerM (merge models) and MerCM (merge models into
configurable model). A set of models is merged into a single
model that captures (most of) the behavior of the original
models. For example, in [224] models of ten Dutch munic-
ipalities are merged into configurable process models [46, 47,
146]. Different techniques for process model merging have
been proposed in the literature [145, 225-227]. When merg-
ing process models it is interesting to analyze commonalities
and differences. In the context of inheritance of dynamic
behavior, notions such as the Greatest Common Divisor
(GCD) and Least Common Multiple (LCM) of process model
variants have been defined [194]. When merging models it is
often not sufficient to just consider the syntax of the model.
Also behavioral issues need to be considered. For example, a
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FIGURE 26: Overview of the main activities related to the management of large process model collections.

sequential process may be embedded in a more concurrent
model.

In [227] three requirements are listed for model merging.
First of all, the behavior of the merged model should subsume
the behaviors of all input models. Any execution sequence
possible in one of the original models should be possible
according to the merged model (possibly after configuration).
Second, it should be possible to trace back each element in the
merged model. For example, for each activity in the merged
model it should be indicated from which of the input models
it originated. Third, given the merged model it should be
possible to reconstruct each of the input models; that is, each
of the input models should correspond to a configuration
of the resulting merged model. For example, in Figure 9 the
two input models can be reconstructed from the configurable
model by selecting appropriate configurations.

The approaches described in [145, 224-227] produce
configurable process models [46, 47, 146]. In [228, 229] an
approach is presented that does not produce a configurable
model and does not aim to address the three requirements
listed in [227]. This approach produces a model that has
the smallest edit distance to all original models; that is,
modification rather than configuration is used to create
process model variants.

Activity cluster in Figure 26 aims to identify a set of
related process models. For example, models may be clustered
in groups based on similarity search [189]. Clusters of related
models may be used as input for merging, unification, or
refactoring.

Activity unify/refactor in Figure 26 takes a set of models
as input and aims to improve these models by aligning them,
removing redundancies, and applying modeling conventions
consistently. Note that large collections of process models
often have overlapping process fragments without explicitly
reusing parts. Shared subprocesses may be modeled differ-
ently, models may use different conventions, and there may
be different versions of the same processes. Model similarity
search can be used to identify possible redundancies before
adding a new model.

Activity convert in Figure 26 refers to the various map-
pings from one notation to another notation. As described
in use case RefM (refine model) a conceptual model may
be converted into an executable model. It may also be
converted into a formal model that allows for analysis.
Often a repository contains models using different formats

while referring to the same process. It is far from trivial to
keep all of these models consistent, for example, changes in
the conceptual model should be reflected in the executable
model.

A general problem affecting all activities in Figure 26 is
the use for informal text. The same activity may be labeled
“approve claim” in one process and “evaluate insurance
claim” in another process. As a result the correspondence
between both activities may be missed and redundancies
and inconsistencies remain unnoticed. To determine the
similarity between activity names in different models one can
use naive approaches such as the string edit distance [230] or
linguistic similarity (e.g., similarity based on WordNet [231]).
However, it is better to use a common ontology. Semantic
technologies [232] aim to address obvious problems related
to string edit distance and linguistic similarity. However,
in practice, few process model collections use a common
ontology. Therefore, in most cases, semantical annotations
still need to be added to process models before being able to
use semantic technologies.

5.7. Evolution of Key Concerns in BPM Conference Proceedings.
As for the use cases, the papers in [26-34, 36] were tagged
with one, or sometimes more, key concerns [54]. A total of
342 tags were assigned to the 289 papers (1.18 tag per paper
on average). The tags were used to determine the relative
frequencies listed in Table 2. For example, for BPM 2010
four papers were tagged with key concern process reuse. The
total number of tags for BPM 2010 is 25. Hence, the relative
frequency is 4/25 = 0.16. The bottom row gives the average
relative frequency of each concern over all 10 years.

Figure 27 shows the average relative frequency of each
concern in a graphical manner. As expected, the first three
concerns are most frequent. The fourth and sixth concern
(process mining and process reuse) are gaining importance,
whereas the relative frequency of the process flexibility
concern seems to decrease over time (see Figure 28).

It should be noted that the tagging of the 289 papers with
use cases and key concerns is highly subjective. It is unlikely
that two BPM experts would use precisely the same tags for all
papers. For example, to tag a paper one needs to decide what
the key contribution of the paper is. Many papers are rather
broad and difficult to classify. For example, papers on topics
such as “Social BPM,” “BPM Maturity,” “BPM in Healthcare,
and “BPM Security” cannot be tagged easily, because these
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TABLE 2: Relative importance of concerns over the years.
Process Process Process model
Year modeling enactment . Process mining Process flexibility Process reuse
languages infrastructures analysis
2000 0.355 0.161 0.290 0.000 0.161 0.032
2003 0.325 0.200 0.250 0.050 0.075 0.100
2004 0.286 0.238 0.238 0.143 0.048 0.048
2005 0.288 0.231 0.212 0.058 0.096 0.115
2006 0.154 0.308 0.288 0.096 0.077 0.077
2007 0.387 0.097 0.194 0.194 0.065 0.065
2008 0.324 0.108 0.297 0.135 0.081 0.054
2009 0.148 0.111 0.370 0.222 0.037 0.111
2010 0.240 0.240 0.200 0.160 0.000 0.160
2011 0.143 0.171 0.200 0.314 0.000 0.171
Average 0.265 0.187 0.254 0.137 0.064 0.093
0.3 Given a process, different perspectives can be considered:
025 1 the control-flow perspective (“What activities need to be
executed and how are they ordered?”), the organizational
021 perspective (“What are the organizational roles, which activ-
0.15 A ities can be executed by a particular resource, and how
01 1 is work distributed?”), the case/data perspective (“Which
characteristics of a case influence a particular decision?”),
0.05 1 . and the time perspective (“What are the bottlenecks in my
0 - process?”), and so forth. The use cases and key concerns
gﬂ g é %b g % are neutral/orthogonal with respect to these perspectives.
B 3 g E '% 2 Although most papers focus on the control-flow perspective,
= 2 c} % = g there are several papers that focus on the organizational per-
£ v g 2 § & spective, for example, papers dealing with optimal resource
< = 2 & allocations or role-based access control. It would have been
g % 3 useful to add additional tags to papers based on the perspec-
§ é . tives considered.
& 2 Despite these limitations, Tables 1 and 2 provide a nice
g
o

FIGURE 27: Average relative importance of concerns (based on
Table 2).

topics seem orthogonal to the use cases and key concerns.
This explains why broad use cases like design model (DecM)
and enact model (EnM) score relatively high.

The key concerns were identified before tagging the
papers [54]. In hindsight there seem to be at least three
potentially missing concerns: process integration, patterns,
and collaboration. Many papers are concerned with web
services and other technologies (e.g., SaaS, PaaS, clouds,
and grids) to integrate processes. These are now tagged as
process enactment infrastructures (second concern). In the
BPM proceedings there are various papers proposing new
patterns collections or evaluating existing languages using
the well-known workflow patterns [9, 24]. These are now
tagged as process modeling languages (first concern). Another
recurring concern seems to be collaboration, for example,
collaborative modeling or system development.

overview of developments in the BPM discipline. Comparing
papers published in the early BPM proceedings with papers
published in more recent BPM proceedings clearly shows that
the BPM discipline progressed at a remarkable speed. The
understanding of process modeling languages improved and
analysis techniques have become much more powerful.

6. Outlook

Over the last decade there has been a growing interest in
Business Process Management (BPM). Practitioners have
been using BPM technologies to model, improve, and enact
business processes. Today, a plethora of BPM systems and
tools is available. Academics have been developing new
techniques and approaches to support more advanced forms
of BPM. This survey describes the state-of-the-art in BPM.
The BPM discipline has been structured in various ways and
developments have been put in their historic context. The
core of the survey is based on a set of twenty BPM use cases
and six BPM key concerns. The use cases show “how, where,
and when” BPM techniques can be used. The six key concerns
highlight important research areas within the BPM discipline.
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TABLE 3: Relation between the twenty use cases and six key concerns (+ = related and ++ = strongly related).
Process Process Process
Use case modeling enactment model Pr.oc.ess Pr(.)c.e§s Process
languages  infrastructures analysis mining flexibility reuse
Design model (DesM) ++ + +
Discover model from event data (DiscM) ++
Select model from collection (SelM) T+
Merge models (MerM) T+
Compose model (CompM) +
Design configurable model (DesCM) + ++
Merge models into configurable model (MerCM) ++
Configure configurable model (ConCM) T+
Refine model (RefM) + + +
Enact model (EnM) + ++ +
Log event data (LogED) + ++
Monitor (Mon) +
Adapt while running (AdaWR) T+
Analyze performance based on model (PerfM) ++
Verify model (VerM) ++ +
Check conformance using event data (ConfED) ++
Analyze performance using event data (PerfED) ++
Repair model (RepM) T+
Extend model (ExtM) T+
Improve model (ImpM) ++ +

Table 3 relates the BPM use cases and BPM key concerns. As
shown, the six key concerns cover the twenty use cases well.

The BPM discipline has developed at an amazing speed.
However, a careful analysis of BPM literature also reveals
some weaknesses.

Many papers introduce a new modeling language. The
need for such new languages is often unclear, and, in many
cases, the proposed language is never used again after
publication. A related problem is that many papers spend
more time on presenting the context of the problem rather
than the actual analysis and solution. For example, there are
papers proposing a new verification technique for a language
introduced in the same paper. Consequently, the results
cannot be used or compared easily.

Many papers cannot be linked to one of the twenty use
cases in a straightforward manner. Authors seem to focus
on originality rather than relevance and show little concern
for real-life use cases. One could argue that some of these
papers propose solutions for rather exotic or even nonexisting
problems.

Our use-case-based analysis of existing literature shows
that various use cases are neglected by both BPM researchers
and BPM software. For example, use cases related to improv-
ing the performance of processes seem to be neglected. It
is remarkable that there are hardly any tools that provide
suggestions for redesigning processes. Simulation tools just

provide “what-if” analysis without suggesting better alter-
natives. Moreover, business “intelligence” tools do not use
event data to suggest better process designs. The active
classification of tools and publications using the use cases
may simulate academics and practitioners to focus on process
improvement scenarios.

Many papers describe implementation efforts; however,
frequently the software is not available for the reader. More-
over, regrettably, many of the research prototypes seem to
“disappear” after publication. As a result, research efforts get
lost.

Many papers include case studies, for example, to test a
new technique or system, which is good. Unfortunately, most
case studies seem rather artificial. Often the core contribution
of the paper is not really evaluated or the case study is
deliberately kept vague.

To address the weaknesses just mentioned, authors and
tool developers are encouraged to clearly state which of the
BPM use cases their results (algorithms, procedures, tools,
etc.) aim to support. The twenty use cases presented in
this paper can serve as the starting point for a commonly
agreed-upon taxonomy of BPM use cases. The current use
cases could be subdivided in more specific ones. Such a
structuring would hopefully result in collections of bench-
mark problems, comparable to the datasets used in data
mining and model checking competitions. Practitioners and
academics are encouraged to share open-source software and
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data sets (collections of process models, event logs, etc.).
Currently, many prototypes are developed from scratch and
“fade onto oblivion” when the corresponding research project
ends. Moreover, it is often impossible to compare different
approaches in a fair manner as experiments are incomparable
or cannot be reproduced. Given the importance of BPM,
these weaknesses need to be tackled urgently. This survey is a
modest attempt to guide BPM research towards the real key
challenges in our field.
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