6,226 research outputs found

    Filter Bank Fusion Frames

    Get PDF
    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.Comment: keywords: filter banks, frames, tight, fusion, erasures, polyphas

    Redundancy-Optimal FF Codes for a General Source and Its Relationships to the Rate-Optimal FF Codes

    No full text

    Source Coding Optimization for Distributed Average Consensus

    Full text link
    Consensus is a common method for computing a function of the data distributed among the nodes of a network. Of particular interest is distributed average consensus, whereby the nodes iteratively compute the sample average of the data stored at all the nodes of the network using only near-neighbor communications. In real-world scenarios, these communications must undergo quantization, which introduces distortion to the internode messages. In this thesis, a model for the evolution of the network state statistics at each iteration is developed under the assumptions of Gaussian data and additive quantization error. It is shown that minimization of the communication load in terms of aggregate source coding rate can be posed as a generalized geometric program, for which an equivalent convex optimization can efficiently solve for the global minimum. Optimization procedures are developed for rate-distortion-optimal vector quantization, uniform entropy-coded scalar quantization, and fixed-rate uniform quantization. Numerical results demonstrate the performance of these approaches. For small numbers of iterations, the fixed-rate optimizations are verified using exhaustive search. Comparison to the prior art suggests competitive performance under certain circumstances but strongly motivates the incorporation of more sophisticated coding strategies, such as differential, predictive, or Wyner-Ziv coding.Comment: Master's Thesis, Electrical Engineering, North Carolina State Universit

    Error Mitigation Using Approximate Logic Circuits: A Comparison of Probabilistic and Evolutionary Approaches

    Get PDF
    Technology scaling poses an increasing challenge to the reliability of digital circuits. Hardware redundancy solutions, such as triple modular redundancy (TMR), produce very high area overhead, so partial redundancy is often used to reduce the overheads. Approximate logic circuits provide a general framework for optimized mitigation of errors arising from a broad class of failure mechanisms, including transient, intermittent, and permanent failures. However, generating an optimal redundant logic circuit that is able to mask the faults with the highest probability while minimizing the area overheads is a challenging problem. In this study, we propose and compare two new approaches to generate approximate logic circuits to be used in a TMR schema. The probabilistic approach approximates a circuit in a greedy manner based on a probabilistic estimation of the error. The evolutionary approach can provide radically different solutions that are hard to reach by other methods. By combining these two approaches, the solution space can be explored in depth. Experimental results demonstrate that the evolutionary approach can produce better solutions, but the probabilistic approach is close. On the other hand, these approaches provide much better scalability than other existing partial redundancy techniques.This work was supported by the Ministry of Economy and Competitiveness of Spain under project ESP2015-68245-C4-1-P, and by the Czech science foundation project GA16-17538S and the Ministry of Education, Youth and Sports of the Czech Republic from the National Programme of Sustainability (NPU II); project IT4Innovations excellence in science - LQ1602

    Object coding of music using expressive MIDI

    Get PDF
    PhDStructured audio uses a high level representation of a signal to produce audio output. When it was first introduced in 1998, creating a structured audio representation from an audio signal was beyond the state-of-the-art. Inspired by object coding and structured audio, we present a system to reproduce audio using Expressive MIDI, high-level parameters being used to represent pitch expression from an audio signal. This allows a low bit-rate MIDI sketch of the original audio to be produced. We examine optimisation techniques which may be suitable for inferring Expressive MIDI parameters from estimated pitch trajectories, considering the effect of data codings on the difficulty of optimisation. We look at some less common Gray codes and examine their effect on algorithm performance on standard test problems. We build an expressive MIDI system, estimating parameters from audio and synthesising output from those parameters. When the parameter estimation succeeds, we find that the system produces note pitch trajectories which match source audio to within 10 pitch cents. We consider the quality of the system in terms of both parameter estimation and the final output, finding that improvements to core components { audio segmentation and pitch estimation, both active research fields { would produce a better system. We examine the current state-of-the-art in pitch estimation, and find that some estimators produce high precision estimates but are prone to harmonic errors, whilst other estimators produce fewer harmonic errors but are less precise. Inspired by this, we produce a novel pitch estimator combining the output of existing estimators

    Analysis and design of algorithm-based fault-tolerant systems

    Get PDF
    An important consideration in the design of high performance multiprocessor systems is to ensure the correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) was suggested as a cost-effective concurrent error detection scheme. The research was motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a matrix-based model was developed and, based on that, algorithms for both the design and analysis of ABFT systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the complexity further, a hierarchical approach is developed for the analysis of large systems

    Spiking neural networks for computer vision

    Get PDF
    State-of-the-art computer vision systems use frame-based cameras that sample the visual scene as a series of high-resolution images. These are then processed using convolutional neural networks using neurons with continuous outputs. Biological vision systems use a quite different approach, where the eyes (cameras) sample the visual scene continuously, often with a non-uniform resolution, and generate neural spike events in response to changes in the scene. The resulting spatio-temporal patterns of events are then processed through networks of spiking neurons. Such event-based processing offers advantages in terms of focusing constrained resources on the most salient features of the perceived scene, and those advantages should also accrue to engineered vision systems based upon similar principles. Event-based vision sensors, and event-based processing exemplified by the SpiNNaker (Spiking Neural Network Architecture) machine, can be used to model the biological vision pathway at various levels of detail. Here we use this approach to explore structural synaptic plasticity as a possible mechanism whereby biological vision systems may learn the statistics of their inputs without supervision, pointing the way to engineered vision systems with similar online learning capabilities
    corecore