@ https://ntrs.nasa.gov/search.jsp?R=19900019036 2020-03-19T21:08:28+00:00Z
ko W

August 1990 \ coT UILU-ENG-90-2231
R CRHC-90-3

Center for Reliable and High-Performance Computing

F2rB6

ANALYSIS AND DESIGN
OF ALGORITHM-BASED
FAULT-TOLERANT SYSTEMS

V. S. Sukumaran Nair

AL YCLT ANT OUSIGN OF NIO=-23352
(NASA-CR-185074) ANALYTLT ANT chlhn ;

ALGNRTTHM-UALT Y EAUL T-T7LTRANT TYSTEMS

) . o v, CoeL N9n
(I1linois univ.) 130 o et unclas

Gi3lol 0297251

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited.

Al e b o hn A ae i

ECURITY CLASSIFI ION OF THIS Pa

REPORT DOCUMENTATION PAGE

h 1a. REPORT SECURITY CLASSIFICATION
Unclassified

-

1D. RESTRICTIVE MARKINGS
None ‘

2a. SECURITY CLASSIFICATION AUTHORITY

3. OISTRIBUTION/AVAILABIUTY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S)
UILU-ENG-90-2231 (CRHC-90-3)

5. MONITORING QRGANIZATION REPORT NUMBER(S)
NASA NAG 1-613

6a. NAME OF PERFORMING ORGANIZATION
- Coordinated Science Lab
University of Illinois

6b. OFFICE SYMBOL
(If applicable)

N/A

7a. NAME OF MONITORING ORGANIZATION
NASA

6¢. ADDRESS (City, State, and ZIP Code)

- 1101 W. Springfield Avenue
Urbana, IL 61801

7b. ADORESS (City, State, and ZIP Code)

NASA Langley Research Center, Hampton, VA
23665 and Arlington, VA 22217

8a. NAME OF FUNDING / SPONSORING

8b. OFFICE SYMBOL

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

- ORGANIZATION (If applicable)
NASA
8¢. ADDRESS (City, State, and Z2IP Code) 10. SOURCE OF FUNDING NUMBERS
- PROGRAM PROJECT TASK WORK UNIT
7b. ELEMENT NO. |NO. NO. ACCESSION NO.

~ [11. TITLE (Include Security Classification)

""Analysis and Design of Algorithm-Based Fault-Tolerant Systems'

12. PERSONAL AUTHOR(S)

NAIR, V. S. SUKUMARAN

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPQRT (Year. Month, Day) NS. PAGE COUNT
Technical FROM TO August 135

16. SUPPLEMENTARY NOTATION

-117. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP fault-tolerance, concurrent error detection, ABFT, Matrix-
based model, detectability, fault locatability, FTMP systems
hierarchical design

9. ABSTRACT (Continue on reverse if necessary and identify by block number)

An important consideration in the design of high performance multiprocessor systems is to ensure the
correctness of the results computed in the presence of transient and intermittent failures. Concurrent error detection

_ and correction have been applied to such systems in order to achieve reliability. Algorithm Based Fault Tolerance

(ABFT) has been suggested as a cost-effective concurrent error detection scheme.The research reported in this
thesis has been motivated by the complexity involved in the analysis and design of ABFT systems. To that end, a
matrix-based model has been developed and, based on that, algorithms for both the design and analysis of ABFT
systems are formulated. These algorithms are less complex than the existing ones. In order to reduce the com-
plexity further, a hierarchical approach is developed for the analysis of large systems.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT

4 EluncLassiFlEOUNUMITED [SAME AS RPT. CJ oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

223. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢c. OFFICE SYMBOL

—DD FORM 1473, sa MaRr 83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
ULCLASSIFIED

ANALYSIS AND DESIGN OF
ALGORITHM-BASED FAULT-TOLERANT SYSTEMS

BY
V. S. SUKUMARAN NAIR

B.Sc. Engg., University of Kerala, 1984
M.S., University of Illinois, 1988

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1990

Urbana, Illinois

iii
ANALYSIS AND DESIGN OF
' ALGORITHM-BASED FAULT-TOLERANT SYSTEMS

V. S. Sukumaran Nair
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign, 1990

An important consideration in the design of high performance multiprocessor sys-
tems is to ensure the correctness of the results computed in the presence of transient and
intermittent failures. Concurrent error detection and correction have been applied to such
systems in order to achieve reliability. Algorithm Based Fault Tolerance (ABFT) has
been suggested as a-cost-effective concurrent error detection scheme. The research
reported in this thesis has been motivated by the complexity involved in the analysis and
design of ABFT systems. To that end, a matrix-based model has been developed and,
based on that, algorithms for both the design and analysis of ABFT systems are formu-
lated. These algorithms are less complex than the existing ones. In order to reduce the
complexity further, a hierarchical approach is developed for the analysis of large sys-

tems.

DEDICATION

To my Parents and Brothers

And to the memory of my Uncle K. N. Pillai

iv

ACKNOWLEDGEMENTS

I am deeply grateful to my thesis advisor, Professor Jacob A. Abraham, for his
patient guidance and helpful suggestions. His encouragement, concermn, and insight in
academic as well as nonacademic matters were invaluable sources of support throughout
the course of this work. I would also like to thank Professors Prithviraj Banerjee, Rav-
ishankar K. Iyer, W. Kent Fuchs, and C. L. Liu for being members of my dissertation
committee and for their time and support. I gratefully acknowledge Robert Mueller-
Thuns and Professor Daniel G. Saab for many interesting discussions and helpful sugges-
tions. The friendship of Madhav Desai, Rabindra Roy, Subhodev Das, and Abbas Butt
deserves special mention. I am also thankful to my colleagues and friends in the Center
for Reliable and High Performance Computing (CRHC) at the Coordinated Science
Laboratory. A big thank you to: Biju, Leena, James, Kunjumol, Thomas Panthaplam,
G’mon, Thomas, Abe, and Manoj Franklin for making me feel at home away from home.
Finally, I would like to thank my parents and brothers for their everlasting love and sup-

port which made this thesis a reality.

This research was supported by the National Aeronautics and Space Administration

(NASA) under Contract NAG 1-613 at the University of Illinois.

e

vi

TABLE OF CONTENTS
CHAPTER PAGE
1. INTRODUGCTION ..uoovcecersamressssenssssasssssssstssssassassssassssssasissmsssassssasstassssasssssacsss 1
1.1. Fault-Tolerant MultiproCeSSOT SYSIEIMS ...cveiencuiocisusnianminsnensasasasnienenes 1
1.2. Concurrent Error Detection (CED) .ccccuiiiueieiennecscsciisennensmescencsesncacecs 4
1.3. Previous RESCATCRcccececirireiinneensssssssisssnsstissacscssisssssunnasancnsatensanensess 5
1.4, Thesis OULNEccoeeeeeemsasseresesssssssasssassssissssssnsssasssassssnissasasatsssasasssssiasass 7
2 ALGORITHM-BASED FAULT TOLERANCE .occovineuctnsiunenmsnsnansnsencnnensnnes 11
2.1. TNITOAUCTION ...vererrerrreencoesessssessssensansssassronssassansonsnsssssonsasssassssasassusassasenses 11
2.2. General System DESCTIPHONccceriremmsmimisrasusesissiseninsssnsacesssusaseees 12
2.2.1. Faults aNd EITOTScccceceeecsreressnenssssnsosssssssasnsisnsanssantassssssssnenss 13
2.2.2. The concept of (g, h) Checks .commmiimircniscricirenciiccacecees 15
2.3. CharacteristiCs Of ABFTcciiriiiseieeesistenscsnninneisnessssssssnsssnsssnesasease 17
2.4. ABFT Techniques for Matrix OpeTationscceescecscusinmnsnsnssisasisnrecs 18
2.4.1. Real-number codes for fault-tolerant matrix operations 20
2.4.1.1. General description of linear codescccceveeneeee 21
2.4.2. SYStEMAC COUES wuovereruruccrcusisusrrssnssasasusasesasusinmasasnasssecssescas 22

2.5, CONCIUSIONS ..veereerrererreesersassessssssstssassenssssassssstsstssassesnsasssssssssastisssonssassass 26

3. A MODEL FOR ALGORITHM-BASED FAULT TOLERANCEccceeceieeee

3.1. TNOQUCHON .ceeereereissecsuassansaensnsscssstessosusannasssssnse

3.2. Graph Representation of a Systemcccoceeeuuseee

3.2.1. Detection and location of faults using

....................................

the graph model

3.2.1.1. Conditions on fault deteCHONccccoveerearricemrscrsianens

3.2.1.2. Conditions on fault location

....................................

3.2.2. Limitations of the graph-theoretic modelcccoewicecsusecen.

3.3. An Improved Matrix-Based Modelc.cccceeeve

3.3.1. The model MatriCesccccerecnrcssencsaeens

....................................

....................................

3.3.2. Physical significance of the model matricesooeueeunsenese

3.3.3. Check invalidationcceeccescceisnnens

3.4. CONCIUSIONS ..eeeeveercaccrancssensansssnassnsssscessassanesasssas

....................................

3.4.1. Comparison between the graph model and the matrix

4. ANALYTICAL APPLICATIONS OF THE MATRIX-BASED MODEL

4.1. INrOQUCHON ...cocecerecrersrnisenesnrasneessssiasessasssanssnaane
4.2. Fault Analysis of a SyStemcccccceeeumeiiinaseccces

4.3. Analysis for Fault Detectabilitycccceneecncnce

....................................

....................................

...................................

4.3.1. Algorithm to check whether R is completely detectable

4.4. Analysis for Fault Locatabilityc.ccoeeueeeen

4.4.1. Physical significance of disagreement

....................................

...................................

vii

27

27

29

33

34

35

36

36

38

39

40

43

43

45

51

54

4.5. Complexity of the Algorithms

4.6. Examples for the Applications of the 1Y, (075 1<) OO IRRROPI

4.7. An Alternative Approach to Check Invalidationeceimessesmsesense

4.7.1. Secondary analysis

4.7.1.1. Algorithm to check whether f is AN STS ccvevevecrrnnnnne

4.7.2. Analysis to determine actual locatability ...coovvercveresnnoniiesanes

4.8. Further EXtensionsccccceeceeees

--

4.8.1. Description of the diagnostic algorithmc..coovureunemssiessiscees

4.9. Results and Conclusions

5. DESIGN OF ABFT SYSTEMS
5.1. InrodUCHONccoveinecnccciscessesananes

5.2. Previous WOrKcoccercccccssasnennnns

5.2.1. A few sample bounds

5.2.2. Limitationscccceeeesnees

...

..

...

5.3. A New Approach for the Design of FTMP Systems c.......ccesesrisseaceee

5.3.1. Problem definition

...

5.3.2. Construction of the actual SYSIEM ...ccccecivcirismnsinsrisntacssaisanias

5.3.3. Comparisca with previous SChemesc.cececeuecercuriicsssnianiinns

5.4. CONCIUSIONS ..euvreeereecsrsareeeereeserasens

5.4.1. An alternative approach

...

...

viii

59

68

69

71

74

76

77

78

80

80

81

82

83

84

84

88

92

92

93

6. HIERARCHICAL DESIGN AND ANALYSIS .oococciunesiunsmmmassmssancussussnsssasnasss 94
6.1. INETOQUCHON «.vcvrrererensescscsesersssasasssssssestssssnssssssssssassasasienasssssacatasssasssssass 94

6.2. Independent and Orthogonal CheCkS w...ccuueruuisumsseumssemsssennsmassrinsensenees 96

6.3. The Hierarchical APPrOAChcieeccsistsiemimsssisenmssssssssissscnsssssssnensnanes 99

6.3.1. Construction of a hierarchical SYStEmccceeueeiuemiancucrscenens 102

6.3.2. The number of checks in the hierarchical systemc....... 109

6.3.3. Hierarchical analysis Of SYStEMSccocemimersrecsusuincsnniassccnens 114

6.4, CONCIUSIONS .e.vevrerereneccsesssssansssneassssssssssensasnassnssssstsssssnssassssesisssucssasesess 116

7. CONCLUSIONS ..uvevcruceremininsisosnsmasssssssssasssssssassssssssstssssssssnasassssasmstsssssnsasssssesacs 117
7.1. SummAry Of RESUILS .ovvueueiusiiuissestassesscnssmsssasenasmassessenssissessanssasssaseases 117

7.2. Suggestions for Future Research ...cccceoecuesiuectmmimaseseissssiussnsseassussense 119
REFERENGCESooccvieeeiessseresmnsssssstsssssassessassssssssssssssssesassnsasasssassssssusatasassssassssssss 122

LIST OF FIGURES
Figure Page
1.1, SCOPE Of thiS tESIS ..uurrrerersssesssssssensssmmusssssssusssssmsssmassmrsssesssemssssmmsssnassmmasenssenasesnsssseses 10
2.1. Matrix multiplicationon a mesh-connected ProOCESSOr AITAYccoceresssssssranssnsssusasssass 20
3.1. Graphical representation of the system in Example 3.1 .covineninescncnisinnsnensnensasnenes 32
4.1. Graphical representation of an EXAMPLE SYSIEM ..uvorvereeecssssresesssnsnrsssssasaenscasessnsasianes 47
42. Example for error collapsingccceeecussncerenens . treereessssntsseesesnnens 49
4.3. Fault patterns Of Cardinality S 2 ..cccuvierummmimeemssscussimmismmsssuessnissstusssnsssinsssmsssmssenssess s 56
44. The PC matrix of the hypothetiCal SYSIEM ...cocucreerersecsssrseusmumasnssmsencasisenenssnsanseseas 58
4.5. Processor arrayscccoeoeees reneressessssesssmssesessntessatesnaesastresse SRt esasaT sttt assrus snrnasranes 63
4.6. AOSP AICHILECIUTEcoeeueereseceseresssesssnssrsssssssssssassssssassastssssissssasinsssssssssssssoasetasissasassonses 67
4.7. Data rotation in the NYPETCUDEcceverssucsssnsssarsrsnsnssecsesmsssanssinaneasossssesscasanssssseners 68
5.1. CONStruction Of @ PrOQUCE SYSIEIM ...uecevecussssiessssmnssnmsssessstasississassasssonasasesssssaiscasesses 87
5.2. Design of the final system from the PrOQUCE SYSTET ..vovureeuseusersnssssnassnsnssasensnsassssnasens 91
6.1. INAEPENAENL CHECKS ..u.ouuerrarrusrsuscessmusssnssmssansssusssasssissssssmasssusssssssassssssnssesmsiasissensennses 97
6.2. Examples for unbounded and bounded SYSIEMS .cc.....ccovummrssesssrsssssssseessssssssssessses 101
6.3. Hierarchical expansion Of 2 DasiC SYSIEMcccewreemerssescuscssescusmmnsmasnsncnsssessssasnssnsnsenss 103
6.4. Hierarchical expansion of 2 iNEAr AITAYceeiemscnssccsesssmmerssnsuissessansassecsiasasasaes 109
6.5. Hierarchical expansion of AOSP arChiteCtUreccoeecceeeoeissinsasminusessessrmassseninssaseene 110
6.6. Unnecessary checks in the second level of RIELArCRY ..ccvvveevenierennrnntnrecassnnssnsnessannanees 112

6.7. The PC matrix of a hierarchical SYSIemMcccocoinuesuiiiimssrnnsescecssnsisscsinsusnsisrssssareresssases 115

CHAPTER 1.

INTRODUCTION

1.1. Fault-Tolerant Multiprocessor Systems

Multiprocessing has become a viable alternative to serial computing to meet the
high-performance requirements in various scientific, engineering, medical, military, and
basic research areas. High speed of computation, high throughput, large volumes of pro-

cessed data, and long periods of reliable operation are some of the common requirements
in most of these applications. With the help of modem VLSI technology, complex pro-
cessor chips containing up to 10° transistors have been designed and marketed to meet

the high computation requirements.

Unfortunately, performance and reliability are two contradicting requirements. As
the rate of computation increases, the probability of an error in the computed result also
increases. There are various reasons for this. First of all, the complexity of the processor
increases with its computation capability; it has been observed that the failure rate
increases exponentially with the complexity of the chip [1]. Another observation in this
regard is that as the computation and the communication load increase, the failure rate in
the system also increases [2]. (Note that an increased computation rate has to be supple-

mented with increased communications between the processors.)

‘Long periods of reliable computing are necessary in areas such as medical instru-
mentation where a failure may lead to fatalities. Another scenario may be where the sys-
tem is inaccessible for repair; for instance, a space satellite, unattended after its launch, is
expected to deliver accurate data from space for a long period of time. To meet these

acute reliability requirements, the computer should be able to withstand failures.

Two methods have been suggested for handling failures in an electronic system:
fault avoidance and fault tolerance [3]. In fault avoidance, the system tries to evade
faults by design as well as by protection against fault inducing environments. However,
it is applicable only when there is an a priori knowledge of all the possible faults. Quite
often that is not the case. Furthermore, the cost involved in fault avoidance techniques is

high. Therefore, fault tolerance has been accepted as the cost effective choice.

Two approaches to achieve fault tolerance have been the static or masking redun-
dancy techniques and the dynamic redundancy techniques. In the former, failures are
tolerated by masking their effects; triplication and voting [4], duplication and comparison
[5], and quadded logic [6] are some examples. In the dynamic redundancy approach, first
the presence of a fault is detected and then a corrective action is taken in the form of
replacing the failed unit, recomputing the result, or reconfiguring the system to isolate the
faulty module from the rest of the system. Systems with dynamic redundancy are pre-
ferred to systems with static redundancy due to their greater mean lifetime gains, greater
isolation against catastrophic faults, ability to survive until all spares are exhausted, and
their potential to utilize the lower failure rate of the redundant (usually unpowered) unit.
However, the fault tolerance capabilities of the system are highly dependent on the qual-

ity of the fault detection and recovery schemes.

Various recovery schemes, especially reconfiguration schemes, have been studied
extensively in the past [7, 8,9, 10]. The area of fault detection seems to be less attended.
One observes that fault detection is a more difficult problem than the reconfiguration
problem. With the potential of microelectronic technology to provide more redundant
processing nodes along with sophisticated switching networks interconnecting them,
reconfiguration and replacement have become less complex issues. In contrast, detection
of a fault in the system has become all the more complicated due to the complex interac-
tion between the component processors. In order to harness fully the fault tolerance
potentials of modern VLSI architecture, one must have efficient and high quality fault
detection schemes. The main theme of discussion in this thesis is the detection of faults

in multiprocessor systems.

A fault can be detected either by off-line checking or by concurrent checking. In
the first method, the system is brought off-line and checked for the presence of faults.
Even though ttﬁs approach has the advantage that it does not affect the real-time perfor-
mance of the system, its application is limited since it can detect only permanent faults.
Unfortunately, studies show that [11] more than 85% of major system failures are tran-
sient in nature. Furthermore, a strong relationship has been observed between the
occurrence of transients and the level of system activity. Therefore, it becomes impera-
tive to check for faults in a system while it is in operation. The current trend is to include

Concurrent Error Detection (CED) capability in the design of digital systems.

1.2. Concurrent Error Detection (CED)

Traditionally, systems with CED are implemented using self-checking circuits [12]
or by hardware duplication and comparison of their results [5]. Self-checking circuits are
specially designed to operate on data elements encoded using error-detecting éodcs.
Duplication of circuits can be considered as a special type of self-checking circuits that
employ the duplication code. Since these traditional techniques require 200 to 300%
hardware icdundancy, they are usually very expensive. This puts the pressure on the sys-

tem designer to come up with cost effective schemes.

The quality of CED techniques depends heavily upon the level at which checking is
implemented: the gate, functional or system level. Gate level techniques such as those
using error detecting/correcting codes usually assume the conventional stuck-at fault
model. Studies show, however, that there are faults which cannot be covered by the
stuck-at fault model [13]. Further, due to the shrinking device dimensions, a physical
defect affecting a small local area of a chip can result in faults in several gates. This

points to the need for a higher-level fault model instead of the stuck-at fault model.

Algorithm-based fault tolerance (ABFT), proposed by Huang and Abraham [14], is
a fault tolerance scheme that uses CED techniques at a functional level. System level
applications of ABFT techniques have also been investigated [15]. These techniques
assume a general fault model which allows any single module in the system to be faulty
[14]. Even though the faults are modeled at a high level, they cover all the lower-level
stuck-at faults; also the techniques are independent of the logic design and the type of the

IC used.

ABFT is widely applicable and it has proved its cost-effectiveness especially when
applied to array processors [16]. A detailed description of ABFT techniques may be
found in Chapter 2. The objective of this thesis is to develop efficient analysis and

design algorithms for ABFT systems.

1.3. Previous Research

The problem of locating faulty processors within a multiple processor system by
temporarily halting normal operation and placing the system in a diagnostic mode has
originally been studied using the PMC model [17] which assumed that the processors can
individually test other processors. A test may be any sort of check by one processor on
the operation of some other, including applying test vectors and checking the resulting
outputs. On the basis of the test responses, the test outcome is classified as "pass" or

"fail." The test evaluation is always accurate if the testing unit is fault-free.

The PMC model is limited to systems in which each unit alone can test some other
units; also, different failure rates for the units in the system are not characterized. Russel
and Kime generalized this model by broadly interpreting the concepts of faults and test
[18,19]. In this model, a complete testing of a unit requires combined operation of more
than one unit. An algebraic approach to digital system fault diagnosis was suggested by
Adham and Friedman [20]. Here, a set of fault patterns is described by a Boolean
expression. To be applied to large systems, this approach requires tools for efficiently
manipulating Boolean expressions containing large number of variables. Another gen-

eralization of the PMC model has been suggested by Maheswari and Hakimi [21]. Their

model incorporates the probabilistic nature of fault occurrence. This model was further
extended by Fujiwara and Kinoshita [22].

The analysis of ABFT systems is much harder than the analysis of systems con-
sidered in the above mentioned studies. In the PMC model and in its generalizations,
researchers assume that complete tests are available for individual processors [18, 19].
That is, if the tested unit is faulty and the tester is fault-free, then the test is guaranteed to
fail. However, in systems using ABFT, a particular fault pattern can produce a number
of different error patterns. The checking operations detect the errors directly and the
faults indirectly. Since the error detectability of the checks is finite, even if the check
evaluating processor is fault-free, a fault in the checked unit may be undetected if the
number of errors caused by that fault is larger than the error detectability of the check.
(We denote these kinds of checks as incomplete checks.) Therefore, fault analysis in
such systems is much more complex than conventional fault analysis. It may be
observed that the systems using incomplete checks are supersets of systems using com-
plete checks. This is because a complete check can be viewed as an incomplete check

with infinite error detectability.

The first attempt towards modeling ABFT systems was made by Banerjee and Abra-
ham [23] who proposed a graph-theoretic model. In this model, the system is represented
by a tripartite graph having three groups of nodes: nodes of type F corresponding to the
possible faulty processors, nodes of type E corresponding to the output data elements on
which the errors may occur, and nodes of type C corresponding to the checks. There is an
edge from an F node i to an E node j if data element d; is affected by processor P;. There

is an edge from node j of type E to node k of type C if the data element d; is checked by

check c,. For the analysis of faults in the system, a generalized error table (GET array) is
constructed from the graph model [23]. The GET array contains all possible error com-
binations of the faults under consideration. The detectability or locatability of a fault is
determined by observing whether all the error patterns produced by that fault are detected

or located by the checks provided.

Even though this model can be used for the accurate analysis of systems using
ABFT, it has some limitations. The complexity of the analytical algorithms based on this
model is exponential in the number of data elements in the system. This leads to enor-
mous memory and time requirements. Inefficient handling of invalidation of checks, per-
formed by faulty processors, is another drawback of the model. However, the model

gives a theoretical framework for representing fault-tolerant systems.

1.4. Thesis Outline

This thesis is organized in the following way. A detailed description of ABFT sys-
tems is given in Chapter 2. A general description of the multiprocessor systems which
are candidate architectures for the application of ABFT is provided. The concept of (g,
h) checks is discussed and examples are given. We consider fault-tolerant matrix multi-
plication in detail and derive a general set of real-number codes for fault-tolerant matrix
operations on processor arrays.

In Chapter 2, first we briefly describe the graph-theoretic model. Then we present
the new matrix-based model. In this model, the relationship between processors, data,
and the checking operations are represented in terms of three matrices, the PD matrix, the

DC matrix, and the PC matrix. The physical significance of the model matrices is

explained with examples. The problem of invalidating the checks performed by faulty
processors is transformed into a problem of error detection at the output of the faulty pro-

cessor. This eventually simplifies the complexity of the analysis algorithms.

Based on this model, algorithms are developed for determining the fault detectabil-
ity and locatability of ABFT systems. Unlike the algorithms based on the graph model,
these algorithms do not need exhaustive enumeration of errors in order to analyze the
system completely; instead, we propose an error collapsing téchnique which reduces the
complexity of the analytical algorithms from exponential to linear in the number of data
elements, and polynomial in the number of processors. Application of these algorithms
for the analysis of ABFT systems is illustrated with some realistic exampies. Finally we
propose an alternative method for the invalidation of checks performed by faulty proces-

SOrs.

Chapter 4 deals with the design of ABFT systems. We propose a straightforward
methodology for designing such systems. The advantage of this technique is that it can
handle error detectability and locatability simultaneously. Also, when the processors in
the system are producing large volumes of data, the new technique results in a smaller

number of checks when compared to those for the existing algorithms.

Even though the complexities of the analysis algorithms are less than the complexi-
ties of the previous algorithms [23], the computation may require a large amount of time
and memory when the system has a large number of processors producing huge volumes
of data. In contrast, a hierarchical approach will reduce the complexity of the algorithms

to a polynomial in the logarithm of the processors in the system. In Chapter 6 we illus-

trate a particular hierarchical approach to build large fault-tolerant multiprocessor sys-

tems. Based on this approach a hierarchical analysis procedure is outlined.

In Chapter 7 we give a summary of the results in the thesis. Finally, some pointers
are given towards future research in the related area. In order to make it easy for the
reader to place the thesis in the vast arca of reliable computing, a relational tree diagram
is shown in Figure 1.1. The area enclosed in the dotted rectangle represents the area
covered in this thesis. Even though the figure suggests that the analysis and design tech-
niques developed in this thesis are pertinent to ABFT systems, it should be noted that

these techniques are applicable to other types of fault-tolerant systems as well.

Reliable Computing

N

Fault Avoidance Fault Tolerance

T

Dynamic Redundancy Static Redundancy

N

Detection Recovery

Concurrent
Gate Level
Complete Checks Incomplete Checks
re=- “/ """""""""" A

;

Matrix Model

I

Analysis Design Hierarchical
Approach

Graph Model

- am e - -

Figure 1.1. Scope of this thesis.

10

11

CHAPTER 2.

ALGORITHM-BASED FAULT TOLERANCE

2.1. Introduction

As discussed in the preceding chapter, fault detection and diagnosis are integral
parts of any fault tolerance scheme. There are two ways to detect faults: (1) by off-line
checking and (2) by concurrent checking. In an off-line checking scheme, the computer
(processor) is checked for its correctness while it is not performing any useful computa-
tion. This approach has the advantage that the performance of the computer will be unaf-
fected by the checking operation; however, this kind of checking can detect only per-
manent faults. Transient faults, which constitute 75-80% of faults in a computer system
[11], will not be detected by off-line checks. In order to detect transient faults, con-
current error detection schemes such as duplication and comparison have been suggested.
These schemes suffer from 200-300% hardware or time redundancy. In many applica-
tion areas this amount of overhead is unaffordable. This motivated researchers to

develop new schemes that require less overhead.

A concurrent error detection scheme calied algorithm-based fault tolerance (ABFT)
has been suggested by Huang and Abraham for attaining the above objectives [14]. In
ABFT the input data elements are encoded in the form of error detecting or correcting

codes. The original non-fault-tolerant algorithm is modified to operate on encoded data

12

and produce encoded outputs, from which useful information can be recovered easily.
The modified algorithm will take more time to operate on the encoded data when com-
pared to the original algorithm, and this time overhead must not be excessive. The task
distribution among the processing elements is done in such a way that any malfunction in
a processing element will affect only a small portion of the data, which can be detected

and corrected using the properties of the encoding.

It has been observed that ABFT techniques are very cost effective when applied to
processor arrays. In this chapter we give a general description of systems which are
good candidates for the application of ABFT. The concept of algorithm based fault toler-

ance will be illustrated with some application examples.

2.2. General System Description

In this section, we describe the general features of multiprocessor systems which are
candidate architectures for the application of ABFT techniques. It may be noted, how-
ever, that the application of ABFT techniques is not limited to multiprocessor systems;
they are also applicable to algorithms running on uniprocessors, probably with less
efficiency.

An algorithm executing on a multiple processor system is specified as a sequence of
operations performed on a set of processors in some discrete time steps. Each processor
has a local memory on which it ~an perform reads and writes. It can aiso communicate
with other processors in the system through buffers at various input and output ports. A
processor cannot read or write from any other processor’s local memory even in the pres-

ence of a fault. This is not an unrealistic assumption since most of the existing fault-

13

tolerant multiprocessor systems are of the message passing type rather than the shared
memory type. This is because in a shared memory architecture, error confinement is
difficult, often, impossible. However, the concept of distributed shared virtual memory
has been developed to support shared memory programming models in loosely coupled
distributed multiprocessor systems [24]. These architectures have the advantages of a
distributed memory parallel machine in a hardware point of view, whereas, in a software
point of view they have the additional advantages such as ease in process migration, ease
in passing complex data structures &mong processors and ease in object synchronization
in object-oriented systems. Error recovery in such systems is described in {25]. In this
thesis we deal exclusively with machines using message passing paradigm for communi-

cation among the processors.

2.2.1. Faults and errors

A fault is any condition that causes a malfunction in a single processor while per-
forming operations. Some of the major causes which result in faults are: (1) manufactur-
ing defects such as photolithography errors, deficiencies in process quality and improper
designs; (2) wear out in the field due to electromigration, hot electron injection etc.; (3)
environmental effects such as alpha particles and cosmic radiations [26,27]. The man-

ifestations of these faults are called errors [28].

An error is any discrepancy between the expected result of an operation and the
actual result of the operation. Since a processor performs different types of operations, a
fault in the processor may result in errors in any of those operations. For example, if the

processor is performing some data computation, a fault in the processor may produce a

14

wrong value of the data. If the processor is trying to read an address location, a fault may
cause wrong address selection (addressing fault). However, certain types of faults may
not produce any error at all.

Algorithm-based fault tolerance schemes are based on functional fault models that
allow any single module in the system to be faulty [14]. Even though the faults and
errors are treated at a high level, the model covers all the stuck-at faults and the
corresponding errors in the lower gate and circuit levels. In addition, the model is
independent of the type of design or technology used in the IC. In summary, we assume
Byzantine type of faults [29]. |

In order to detect the presence of a fault in a processor, we resort to a technique
called data value checking [30]. Here, a fault is detected by detecting errors in the final
data value generated by the processor. One observes that the problem of detection of
various faults such as addressing faults can be translated to the problem of detecting
errors in the computed results [31]. Therefore, all the faults are treated uniformly as

those corrupting the final, computed result.

On the other hand, if a particular fault does not necessarily produce any errors in the
final data value computed by that processor, we may disregard the presence of that fault.
The computed result of a processor may be checked by one or more other processors in
the system. Processors which check the output of one or more processors are called
check evaluating processors or, in short, check processors. The evaluation of a fault in a
check processor can also be translated to the problem of error detection at the output of

that processor as we show in Chapters 3 and 4.

15

We assume that any processor in the system is capable of performing useful compu-
tations, check evaluation, or both. A check on the data element is any combination of
hardware and software procedures performed on the data by processors which use the
encoding of the data to generate a "pass" or "fail" output.

Let g be the total number of checks that are applied on the data to perform the sys-
tem level checking and C = {c1,2...0Cq) denote the set of checks. Let n be the total
number of data and pseudo-data elements and A = {e;.€2,...€,) be the set of errors in the
data and pseudo-data elements. The set E represents the sets of error patterns = (E',
E2,..., E?'}, consisting of all subsets of A. Let N be the number of processors in the sys-
tem which includes both the processors performing useful computations as well as the
processors performing the evaluation of the checks. Faults in the processors can be
denoted by the setv = {f1, f2,.... fv), where f; denotes a fault in processor p;. The set F =
(F!, F2,.., F2') consists of all subsets of v, and each fault pattern, F* e F, is permissible

in the system. Fault patterns consisting of ¢ or fewer faults are called ¢—faults.
DEFINITION 2.1. DATA (P,) is the set of data elements affected by processor P. O

DEFINITION 2.2. CHECK (d;) is the set of checks that evaluates the correctness of

the data element d;. (]

2.2.2. The concept of (g, h) checks

Formally, a (g, &) check is one which is defined on g data elements, d,, d2, ..., and
dg, and evaluated by a check-evaluating processor such that

(1) the check passes (outputs 0) if

(1.1) the check-evaluating processor is not faulty, and none of the data elements

16

is in error;

(2) the check fails (outputs 1) if
(2.1) at least one data element is erroneous and the number of erroneous elements
among the g data elements does not exceed 4 and the check-evaluating processor
is not faulty;

(3) the check is invalid (may output O or 1) if either
(3.1) more than 4 data elements are erroneous, or

(3.2) the check evaluating processor is faulty.
The variable 4 is referred to as the error detectability of the check.

Note that these checks are different from the complete checks defined in [17,19]. In
those works, the authors assume that whenever a checked unit is faulty and at least one of
the checked units is fault-free, the fault in the checked unit will always be detected. The
(g, h) checks are incomplete in this sense. In other words, even when all the checking
units are fault-free and the checked unit is faulty, the fault may go undetected. Condition
3.1 covers this possible incompleteness of (g, h) checks in the sense that even if the
check evaluating processor is fault-free, it may not detect a fault in another processor if
the number of erroneous data elements, checked by that processor, exceeds h. We illus-

trate another important property of (g, h) checks in the following example.

EXAMPLE 2.1. Consider a check C which checks the equality of n data elements
when they are all correct. Since the checking operation is done on n data elements, g = n.
Any error on up to n—1 number of data elements will be detected by the check. However,

if the error occurs on all the # data elements in such a way that the resulting numbers are

17

still the same, the check will not detect that error. Therefore, the error detectability 4 of
the check is n—1. It may be noted that, even though the check can detect a multiple
number of faults, it cannot locate an error. In general, this is an important distinction
between (g, h) checks and error detecting/correcting codes such as Hamming codes

where the error detectability of ¢ implies an error correctability (locatability) of [-;—} [12].
(]

Having described the general features of a system supporting algorithm-based fault
tolerance, we will present the salient features of ABFT techniques and illustrate them

with some application examples.

2.3. Characteristics of ABFT
This technique is distinguished by three characteristics:

(1) Encoding the input data stream.

(2) Redesign of the algorithm to operate on the coded data.

(3) Distribution of the additional computational steps among the various computational
units in order to exploit maximum parallelism.

The input data are encoded in the form of error detecting or correcting codes. The
modified algorithm operates on the encoded data and produces encoded data output, from
which useful information can be recovered very easily. Obviously, the modified algo-
rithm will take more time to operate on the encoded data when compared to the original
algorithm; this time overhead must not be excessive. The task distribution among the

processing elements should be done in such a way that any malfunction in a processing

18

element will affect only a small portion of the data, which can be detected and corrected
using the properties of the encoding.

Signal processing has been the major application area of ABFT until now, even
though the technique is applicable in other types of computations as well. Since the
major computational requirements for many important real-time signal processing tasks
can be formulated using a common set of matrix computations, it is important to have
fault tolerance techniques for various matrix operations [32]. Coding techniques based
on ABFT have already been proposed for various computations such as matrix operations
[14,33], FFT [34], QR factorization, and singular value decomposition [35]. Real-
number codes such as the Checksum [14] and Weighted Checksum codes [16] have been
proposed for fault-tolerant matrix operations such as matrix transposition, addition, mul-
tiplication and matrix-vector multiplication. Application of these techniques in processor
arrays and multiprocessor systems has been investigated by various researchers
[36,15,37]. In order to illustrate the application of ABFT techniques, we discuss fault-
tolerant matrix operations in detail. We present some previous results in the area and
then present some new results related to encoding schemes for fault-tolerant matrix

operations.

2.4. ABFT Techniques for Matrix Operations

As mentioned in the preceding chapter, various methods such as checksum encod-
ing, weighted checksum encoding and average checksum codes have been proposed for
fault-tolerant matrix operations. These encoding schemes are especially suitable for

computations in processor arrays [38].

19

EXAMPLE 2.2. Consider multiplying two 2x2 matrices A and B.

21 10
A= [-1 o] B =[3 2]-
We append an additional row (checksum row) to matrix A and an additional column
(checksum column) to matrix B. Now the product of these appended matrices will have
an additional row and an additional column that satisfy the checksum property.
21 101 527
-10 x|:325} =|-10-1}.
4 26

The implementation of this multiplication on a mesh-connected processor array is
shown in Figure 2.1. Here the encoded A matrix is broadcasted among the processors in
a horizontal direction and the encoded B matrix is broadcasted vertically as shown in the
figure. The resultant matrix entries are shown within the rectangles, representing the pro-
cessors. It has been shown that this kind of computational setup can detect three simul-

taneous faults or locate a single fault in the array. O

The use of the checksum codes is limited due to the inflexibility of the encoding
schemes and also due to potential numerical problems. Numerical errors may also be
misconstrued as errors due to physical faults in the system. A generalization of the exist-
ing schemes has been suggested as a solution to these shortcomings [39]. In order to
complement those results, we prove that for every linear code defined over a finite field,
there exists a corresponding linear real-number code with similar error detecting and

correcting capabilities.

20

1 0 1

3 2 5
2,1 e 2 7 |
-lgo PR -l 0 _1 —

Figure 2.1. Matrix multiplication on a mesh-connected processor array.

2.4.1. Real-number codes for fault-tolerant matrix operations

Real-number codes are codes defined over the field of real numbers. This is a high
level encoding scheme. In this section, we develop a general set of real-number codes
for fault-tolerant matrix operations. We use the general definition of encoded matrices as
given in [38].

DEFINITION 2.3. An encoder vector is a vector whose inner product with a
column/row vector will produce a column/row check element. (]

DEFINITION 2.4. An encoder vector is said to be a Valid Encoder Vector (VEV) if it
produces check elements whose properties will be preserved during matrix multiplica-

tion, addition, transposition and LU-decomposition.

21

It has been proved that linearity is a necessary and sufficient condition for an encod-

ing vector to be a VEV. Therefore, in the following discussion we consider only linear

encoding schemes.

2.4.1.1. General description of linear codes

A data sequence {x;} over any finite field can be divided into blocks of k¥ symbols
which are processed independently. A typical block may be represented as a row vector
of length &

x=[X1, X2, ... %]
and the corresponding code vector is given as
y=D1. Y2 - ¥al-
Here x and y are related by
y=xG
where G is an kxn matrix called the generator matrix [40, 41]. Thus the row space of G is
the linear code Y, and a vector is a code if and only if it is a linear combination of the
rows of G. Such a code is called an (n, k) code. Error detection is accomplished with the
help of the parity check matrix H which satisfies the condition
GHT=0
The number of errors which can be detected and corrected by a code can be

described in terms of the Hamming weight [12,41,40] of the code. A code of Hamming

weight d + 1 can detect at most d errors and correct at most {% errors [12,42]. Emor

detectability may also be expressed in terms of the linear independence of columns of the

matrix HT. A code is ¢ error detectable if and only if any set of < ¢ number of columns of

22

HT are linearly independent [41]. In order to derive a correspondence between finite-

field codes and real-number codes, we make use of the second definition of error detecta-

bility.

2.4.2. Systematic codes

Systematic codes are a special class of linear (n, k) codes. Here, (n-k) check ele-

ments are appended to k actual data elements. If the actual data word is
x=[x1, X2, ...,X)
the corresponding code word is
y=[X1, X2, ... Xk €1, €20 -+« 1Cnk]
The generator matrix G of the systematic codes is of the form
G=[l | P], (1)

where I, is a k-dimensional unit matrix and P is a (k x n—&) matrix. A matrix H of the

form [-PT | I,_,] will form a parity check matrix.

In most of the high speed processing techniques, systematic encoding is preferred
because once the received (or computed) result is found to be error free, retrieval of the
actual information from the code vector is straightforward. Checksum and weighted
checksum encodings are examples of systematic encoding. However, it has been proved
that any linear encoding is equivalent to a systematic encoding scheme, in the sense that
any linear generator matrix can be transformed into another combinatorially equivalent
generator matrix [41] of the form given in Equation (1). Therefore, in the following dis-

cussion we will not make any distinction between a linear code and a systematic linear

code.

23

LEMMA 2.1. Vectors which are linearly independent over a finite field are also

linearly independent over the field of real numbers.

PROOF: Let us consider a finite field GF(q) where the additions and multiplications
are done (modulo q). Suppose vi, V2, ... Vx are linearly independent over the field
GF(q). Let A be the matrix whose columns/rows are the vectors vi, vz, ..., Vk- By
definition of linear independence [43], there exists an kxk submatrix D of A such that

ID | (mod q) #0,
where 1D | is the determinant of the submatrix D. For determining the linear dependence
or independence of these vectors over the field of real n@bcrs, we take the linear combi-
nation of the rows of A, where the rows are multiplied by real numbers rather than by ele-

ments from GF(q). If r; is the real number multiplicand of vector v;, in the place of IDI,

imd
we will have ([Jr) D1, which is not equal to zero, since D | (mod q) # 0. Therefore,

i=1
the vectors v, through v; are linearly independent over the field of real numbers. O
LEMMA 2.2. If vectors vy, v, ..., v are linearly dependent over a finite field

GF(q), they are not necessarily linearly dependent over the field of real numbers.

PROOF: If v,, vs, ..., v are linearly dependent, it implies that any submatrix D of
A is such that

ID | (mod q)=0,

i=l
which does not imply that ([Jr:) ID | =0; therefore, the vectors need not be linearly

im]

dependent over the field of real numbers. O

24

THEOREM 2.1. For any r—error detecting code defined over a finite field, there exists
a corresponding code over the field of real numbers, with the same generator matrix and

the same parity check matrix, whose error detectability is 2 ¢.

PROOF: Let C; be a t—error detecting code defined over a finite field with generator
matrix G, and parity check matrix H;. From the previous discussion, we know that every
set of r, or smaller number, of columns of H}' will be linearly independent over the finite
field. Then, by Lemma 2.1, these columns are also linearly independent over the field of
real numbers, which implies that for a code C, over the field of real numbers having gen-
erator matrix G, =Gy and parity check matnx H, = Hy, the error detectability will be at
least equal to r. By Lemma 2.2, it may be possible that a larger number of columns of HT
are linearly independent which effectively increases the error detecting capability of the

code. Thus, the error detectability of C, is greater than or equal to «. O

The set of single—error correcting linear real-number codes presented in [44] is one

special case of the general sets of codes established by Theorem 2.1.

EXAMPLE 23. Consider the finite field GF(7) employing symbols
{-3,-2,-1,0,1,2,3}). A matrix with all distinct columns of length two will define the

parity matrix H of a Hamming code over the finite field GF(7). Let

11 111110
H=| 3 2 112301]

This will also define a real-number code by regarding H as being over the real numbers.

25

The corresponding generator matrix is

100000 -1 37
010000-1 2
001000-11
G=p00100-1-1{"
000010 -1-2
000001 -1-3]

This real-number code can detect at least two errors or correct one error. a

EXAMPLE 2.4. Let us consider simple parity encoding over the field of binary
numbers. It is known that parity codes are single error detecting [40], (that is, the Ham-

ming distance is two) with a generator matrix

G=[I,1P]
where P=[1,1,. .. 1]7. It can be observed that the corresponding code (as in
Theorem 2.1) over the field of real numbers is the simple row checksum code. O

The one to one correspondence between finite-field codes and real-number codes is
a powerful result from an implementation point of view: (1) since most of the existing
codes are proposed for finite fields, adapting those codes for real-number computations
will be easier than inventing new codes for real-numbers; (2) the real number codes lend
themselves to implementation in digital signal processors employing standard arithmetic
units; (3) furthermore, they can be conveniently implemented in software which does not
efficiently admit the bit by bit representation and manipulation required by finite field

codes.

The application of these general sets of codes greatly improves the numerical per-

formance of the fault tolerance scheme [32]. Details may be found in {38].

26

2.5. Conclusions

We discussed the salient features of ABFT techniques. A detailed description of
systems supporting ABFT was presented with examples. The concept of (g,h) checks
was eclaborated and the distinctions between these checks and the Hamming codes were
highlighted. Finally, we considered fault-tolerant matrix operations using ABFT on a
processor array. In the process of developing a general set of codes for fault-tolerant
matrix operations, we proved a fundamental theorem relating the error detectability of

finite field codes and the error detectability of the corresponding real-number codes.

27

CHAPTER 3.

A MODEL FOR ALGORITHM-BASED FAULT TOLERANCE

3.1. Introduction

As discussed in the previous chapter, ABFT techniques are being more and more
widely applied. Due to the critical nature of most of the application areas, it is necessary
to know the fault tolerance capabilities of the computer system before it is put to the
application. This requires an analytical procedure, which in turn requires a good model
to represent the system in general.

The analysis of ABFT systems is difficult when compared to the analysis of conven-
tional fault-tolerant systems such as TMR and TTR. In conventional designs of fault-
tolerant systems, designers assume that complete tests are available for individual proces-
sors [18, 19]. That is, if the tested unit is faulty and the tester is fault-free, then the test is
guaranteed to fail. However, in ABFT systems, errors in computed results are detected
directly and the faults are detected indirectly. Most of the time there does not exist a
one-to-one correspondence between errors and faults. One fault may produce multiple
errors. If a processor is computing more than one data element, a fault in that processor
may or may not produce an error in one or more of those data elements. For instance, a
processor computing 3 data elements may generate 8 different error patterns (including

the case where it does not cause any error in any three of the computed results) when it

28

becomes faulty. In order to detect a fault in a processor, the checking operations done on
the processor must be able to detect all the possible error combinations. The error detec-
tability of the checks in the system is limited and hence the checks can detect an error
only if the size of the error pattern does not exceed the error detectability of the checks.
Therefore, situations may arise such that there are fault free processors checking a faulty
processor, and still the fault is not being detected. This incomplete nature of the checks

adds to the complexity of the analysis of ABFT systems.

The first attempt towards modeling ABFT systems was made by Banerjee and Abra-
ham [23] who proposed a graph-theoretic model. In this model, tﬁc system is represented
as a tripartite graph having three groups of nodes: nodes of type F corresponding to the
possible faulty processors, nodes of type E corresponding to the output data elements on
which the errors may occur, and nodes of type C corresponding to the checks. Even
though the model is especially suitable for the analysis of faults in systems using ABFT,
the analysis of conventional redundancy techniques such as duplication, triplication, or
NMR can easily be done using this model. The limitation of the model is that the com-
plexity of the analytical algorithms based on this model is exponential in the number of
data clements in the system. This leads to enormous memory and time requirements for
the analysis of complex systems with a large number of processors, with each processor
producing large volumes of data. However, the model forms a theoretical framework for
representing fault-tolerant systems.

In order to assuage the complexity of the analysis algorithms, we propose a matrix-

based model. In this model, we define three matrices, the PD (Processor-Data) matrix,

the DC (Data-Check) matrix and the PC (Processor-Check) matrix, which describe the

29

system as a whole. The PD matrix represents the relationship between the processors and
the data elements computed by them. The DC matrix contains the information regarding
which check is checking which data element. The PC matrix is the product of the PD

and the DC matrices.

If a check processor becomes faulty, the checking operations performed by that pro-
cessor should be invalidated. To that end we introduce pseudo-data elements associated
with every check processor. A fault in the checkprocessor will always produce an error in
the pseudo-data element since an infinite weight is assigned to that data element. Thus,
check invalidation is translated to a problem of error detection at the output of a faulty

Processor.

In this chapter we first give a brief description of the graph model. For completeness
of the thesis, we discuss various fault detection and location constraints based on the
model. The motivation for developing a new model is given by highlighting some of the
limitations of the graph model. Then the matrix model is developed and the significance
of the model matrices is explained. The modeling of ABFT systems using both the
models is illustrated with examples. Finally, in the conclusion, we provide a critical

comparison between the models.

3.2. Graph Representation of a System

In this model, the system is represented as an undirected graph with four sets of
nodes and edges between them. The first set of nodes (called processor nodes) represent
the processors performing useful computations. The results of the useful computations of

the algorithm form the second set of nodes (called data nodes). The set of checks form

30

the third set of nodes (called check nodes). The checks are performed on a set of check-
ing processors, which form the fourth set of nodes (called evaluator nodes).

Edges between processor and data nodes represent dependencies of the result data
elements on the processors. There is an edge from a processor node p; to a data node d; if
d; € DATA(p;). Edges between data and check nodes represent the definitions of the
checks on the data elements. If check c, operates on data element d;, then there is an
edge between data node 4; and check node c,. Edges between check and evaluator nodes
model the check evaluation process. If an evaluator p; participates in the evaluation of a

check c,, there is an edge between the evaluator node p; and check node c;.

A fifth set of nodes, the "pseudo-data” nodes, is introduced to facilitate a uniform
network to treat faults in processors performing useful computations and faults in proces-
sors performing check evaluations. Every check has associated with it a number of pro-
cessors involved in the evaluation of the check. For every check-evaluator pair, (check
Ck» Processor p;), there is a pseudo-data node. Since there is a one-to-one correspondence
between an evaluating processor and a pseudo-data node for a given check, a fault in a
processor evaluating a check means the same as an error in the corresponding pseudo-

data element.

The notion of invalidation of checks has been extended as errors in the pseudo-data
elements. In the ordered set of errors, whenever there is an error in a pseudo-data ele-
ment, the corresponding checking operation is considered to be invalid. The errors in
pseudo-data elements and actual data elements are treated identically so that faults in
processors performing useful computations and faults in check-evaluating processors can

be considered without any distinction. With these observations, the system graph can be

31

simplified by merging the data and pseudo-data nodes and the processor and evaluator
nodes. The resulting graph has three sets of nodes: processor nodes, data nodes and

check nodes.

EXAMPLE 3.1. Consider a hypothetical system having 4 processors P, through Pj.
Processors P, and P produce useful data elements whereas processors P3, and P4 per-
forms check evaluations. The relationships among the processors, data, and checking
operations are as given in the following.

DATA(P,) = {d,, d3, d3}

DATA(P3) = (d2, d4)

DATA(P3) = {ds}

DATA(P4) = {ds, d7}

CHECK (dy)={C1)

CHECK (d2)=(C2}

CHECK (d3)={C,)

CHECK (d4) = {C2, C3}

CHECK (ds)=(C,)

CHECK (dg) = {C2}-

CHECK (d7)=(C3}.

It may be noted that data elements ds, d, and d, are pseudo-data elements corresponding
to checks C,, C3, and C3, respectively. Figure 3.1 shows a graphical representation of

the system. a

The model can be easily extended for systems having fault-secure checking units.

In such a case, a check is invalid if and only if the corresponding pseudo-data element is

32

d7

Figure 3.1. Graphical representation of the system in Example 3.1.

erroneous and at least one of the useful data elements evaluated by the check is errone-
ous. If none of the useful data elements evaluated by the check are erroneous, the check
is not invalidated and it will detect an error in the pseudo-data element and hence the

fault in the checking processor can be detected.

3.2.1. Detection and location of faults using the graph model

In this section, we describe the fault detection and location constraints derived in
[23] using the graph model. To that end, we explain some terminologies used in that
study.

The set of checks that may fail for an error pattern E‘ is denoted by FAIL(E').
When E' consists of a single data element, dj, the set of checks in FAIL(E®) is guaranteed

to fail. When E* contains more than one element, the condition on the set of checks in

33

FAIL(E") is that they "may fail" instead of being "guaranteed to fail.” This is because it
is quite possible that a check that is guaranteed to fail for an error in a single data ele-
ment might become invalidated in the presence of other errors. However, if a check is
not a member of FAIL (E), it is guaranteed to pass. The set of checks that are invalidated
by the presence of the error pattern E‘ is denoted by INVAUD (EY). Then a generalized
error table, GET, which is a 2* x ¢ array can be defined [23] such that GET;, = 0,1,orX,
(where X denotes an invalid entry) if for error pattern E/ present, check ¢, is known to
always pass, always fail, or have an unknown result.

In the following, we define two terms masking and exposing of faults in the context of
error patterns produced by those faults. These terms are frequently used in upcoming
discussions.

DEFINITION 3.1. A fault pattern F/ is said to be masked by a fault pattern F* if and
only if there exist error patterns, E™ € ERROR(F/) and E" € ERROR (F*), such that
FAIL(E™) ¢ INVALID (E"). O

DEFINITION 3.2. A fault in F/ is exposed if it is not masked by F/. Suppose f, € F/
such that it is exposed in F/. This implies that for all error patterns E™ € ERROR (f,) and

E"™ € ERROR (FY), FAIL(E™) ¢INVALID (E"). a

3.2.1.1. Conditions on fault detection

An algorithm has t-fault-detectability iff some check in C will definitely fail pro-

vided the number of faults present in the system, on which the algorithm is executed,

34

does not exceed . It was implicitly assumed that no check will fail if the system is fault-

free. With these formulations, conditions are derived for r-fault-detectability [45].

THEOREM 3.1. An algorithm A executing on a computing system S has ¢-fault-
detectability if and only if, for every non-zero Fi € F(p), it is implied that for all E/
ERROR (F"), GET} = 1 for some ¢, € C.

PROOF: The proof of this theorem is given in [23].

This necessary and sufficient condition for fault detection is difficult to evaluate in
practice. Instead, the concept of closure of a fault has been introduced (23], which is very
similar to the closure of faults defined in [18]. Despite this concept, the algorithm for
fault detection is based on the exhaustive enumeration of all error combinations and

hence is exponential. However, it forms a basis for a condition for fault detection.

3.2.1.2. Conditions on fault location

An algorithm is said to have -fault-locatability if and only if the application of the
check set identifies precisely which faults are present, provided the number of faults does
not exceed ¢. In order to evaluate the fault locatability of a system, the concept of row
intersection has been used [23], similar to the row intersection operation (denoted by IT)
defined in [18].

THEOREM 3.2. An algorithm has ¢-fault-locatability if and only if, for all unequal
fault patterns, F*, F/ € F(¢), it is implied that for all E™ € ERROR (F'), and for all E" €

ERROR (F1)

35

GET,, 11 GET, =2

PROOF: The proof of this theorem is given in [23].

It has been observed [23] that a system is ¢—fault locatable if in any fault pattern of
cardinality &, min(k, 2t+1-k) faults are exposed for k=1,2,...minQ2%n). Algorithms
have been developed for determining the fault locatability of systems using this sufficient
condition which again need the exhaustive enumeration of all error patterns. Based on
these results, we derive better sufficiency conditions for t—fault locatability along with

our second model.

3.2.2. Limitations of the graph-theoretic model

Here we summarize the drawbacks of the graph model. As discussed in the preced-
ing sections, the analysis algorithms based on this model need exhaustive enumeration of
all error patterns and hence are of exponential complexity. Since one pseudo-data ele-
ment is introduced for every checking operation, that will effectively increase the number

of data elements in the system which in turn means a larger exponent of complexity.

In the next section we propose a matrix-based model which does not have the
above mentioned drawbacks. In order to incorporate the invalidation of checks done by
faulty processors, we introduce one pseudo-data element per checking processor instead
of one for each checking operation (note tﬁat a processor may perform more than one
checking operation). The analysis algorithms are of linear complexity in the rumber of

data elements, and polynomial in the number of processors.

36

3.3. An Improved Matrix-Based Model

In an improved model for multiple processor systems, the relationships between
processors, data, and checks can be represented by three fundamental matrices, the PD
(Processor-Data) matrix, the DC (Data-Check) matrix, and the PC (Processor-Check)
matrix [46]. Unlike the graph-theoretic model described in the previous section, we do
not make any assumptions regarding the fault secureness of the check evaluating proces-
sors in this model. Instead, the model is developed with the following general assump-
tions. Whenever a check evaluating processor becomes faulty, all of the checks done by
that processor become invalid (Byzantine type faults are assumed here). If a processor is
performing both useful computation and check evaluation, we icientify two kinds of
faults associated with it: (1) observable faults and (2) unobservable faults. For an observ-
able fault, at least one of the data elements produced by the faulty processor will be
erroneous, whereas for an unobservable fault all the useful computation results from the
processor will be correct. In both the above cases, all of the check evaluations done by

the faulty processor will be deemed to be invalid.

3.3.1. The model matrices

In the new model for multiple processor systems, the relationships between proces-
sors, data, and checks are represented by three fundamental matrices, the PD (Processor-
Data) matrix, the DC (Data-Check) matrix, and the PC (Processor-Check) matrix. We
define the following model matrices in terms of parameters N, the number of processors,

n, the number of data elements, and ¢, the number of checking operations in the system.

37

DEFINITION 3.3. The PD matrix is an Nxa matrix such that

_[1 ifdj e DATA(P)
PD;j "{0 otherwise a
DEFINITION 3.4. The DC matrix is an nxq matrix such that
_ 1 iij € CHECK(d,’)
DC;; '{0 otherwise =

DEFINITION 3.5. The PC matrix is an Nxg matrix which is the product of the PD
and DC matrices. ' (|

It may be noted that so far in this model we have considered only actual data ele-
ments. Until now, there is no relationship established between a checking operation and
the processor which performs that operation. (It may be noted that in the graph model
this relationship was accounted for through pseudo-data elements.) However, we will
incorporate this relationship between processors and checks performed by them in the

next section by defining a new set of pseudo-data nodes.

Untl now, there exists a correspondence between the system graph and the model
matrices. If we split the tripartite graph into two bipartite graphs, a processor-data graph
and a data-check graph, the PD and DC matrices are the adjacency matrices of those
bipartite graphs, respectively. Now construct another bipartite graph having the set of
processor nodes and the set of check nodes as its parts such that there is an edge from
node P; to node c; if there is a path of length two between thes= two nodes in the original
system graph. The PC matrix is the adjacency matrix of this new graph (can be a multi-
graph). However, the correspondence between the graph model and the matrix model

will be lost once we introduce the concept of pseudo-data elements.

3.3.2. Physical significance of the model matrices

The physical significances of the PD and the DC matrices are clear from their
definitions. In the PC matrix, PC;; represents the number of data elements of P; checked
by check C;. It can be seen that entries in the PD and DC matrices arc either aQora 1,

whereas the PC matrix can have elements as large as n.

The importance of these matrices in the analysis of faults in the system will be
revealed in the following discussion. Without loss of generality, we can use the same
matrices for representing faults and errors in the system. The only difference is that in
the PD and PC matrices, the row corresponding to P; stands for a fault in processor P;.
Those elements of row P; of the PD matrix will be 1 if the corresponding data elements
are erroncous due to a fault in processor P;.

PD__={1 if d; is erroneous when P is faulty

7710 otherwise

With this interpretation of matrix entries, it is easy to observe that each row in the fuﬁda—
mental PD matrix, defined earlier, represents a faulty processor whose output data ele-
ments are all wrong. The PD matrix will be different for different error combinations at
the output. For coherence of terminology, the PD matrices resulting from various output
error combination are called the syndromes of the original PD matrix as in Definition 3.3.
Correspondingly, we will also have different syndromes of the PC matrix. The DC
matrix will te independen—t of the output error combination and is determined only by the

system designer and hence, has only one syndrome which is the DC matrix itself.

39

3.3.3. Check invalidation

In order to accommodate the invalidation of checks performed by the faulty proces-
sors, we introduce pseudo—data elements into the system model. These pseudo—data ele-
‘ments are conceptually similar to the pseudo-data nodes associated with the graph
model, but are modeled and used differently. If a processor is performing one or more
.check evaluations, a pseudo—data element of infinite weight is attached to that processor.
Later, every check done by that processor is assumed to be checking the correctness of its
pseudo-data element also. If the pseudo-data element is erroneous, all of the checks done
by that processor become invalid, since such a data element has infinite weight. Thus,
check invalidation is translated into a problem of error detection at the output of a faulty

Processor.

Accordingly, the model matrices are extended as follows. Suppose m is the number

of processors performing check evaluations.

DEFINITION 3.6. The PD matrix is an Nx(n+m) matrix such that

if d; € DATA(P))
ifd; is the pseudo data element of P;

PD,'J' =
otherwise O

o8 -

DEFINITION 3.7. The DC matrix is an (n+m)xg matrix such that

if C; € CHECK (d))
DCij=41 if Cj is resident in P, and d; is the pseudo data element of Py
otherwise a

(e o

The PC matrix is obtained by finding the product of the PD and the DC matrices.

40

EXAMPLE 3.2. Let us consider the system shown in Figure 3.1. The check ¢, is
performed by processor P; and the checks ¢, and c3 are performed by P,. The

corresponding PD, DC, and PC matrices are

(100
11100 0 010
010100 100
D=l0000~0{ PC€=|011
00000 o 100
01 1]
210
021
PC=PDXDC=|_ ¢ ol-
0 o =) O

3.4. Conclusions

In this chapter we have presented a new matrix-based model for the analysis and
design of fault-tolerant multiprocessor systems. The great complexity of the analysis
algorithms based on the existing graph-theoretic model was the prime motivating factor
in proposing the new médel. How the reduction in complexity is achieved will be dis-
cussed in the next chapter. It should be noted that the matrix model is not the matrix
equivalent of the graph model proposed in {23]. There are subtle differences in the for-
mulations of the models. In the following, we summarize a comparison between the

graph model and the matrix model.

3.4.1. Comparison between the graph model and the matrix model

As described earlier in the chapter, the graph model consists of a tripartite graph.

Processors, data elements, and checks are the three parts in the graph. In the matrix

41

model we also identify these three entities, whose relationships are represented as the
PD, DC, and the PC matrices.

The main difference between the two models lies in the way check invalidation is
handled when the processor performing that check is faulty. In the graph-theoretic model
a pseudo-data node was defined along with each check in the system. This approach was
borne out from the definition of fault—secure checks [12], in which checks are capable of
indicating their correctness also. In the graph model these pseudo-data nodes are dis-
tinguished from the actual data nodes by their respective positions in the set of data

nodes. The disadvantages of this approach are:

(1) The ordering of the data elements has to be preserved during the analysis; in other
words, every data element (including the actual data and the pseudo-data) has its
own identity. It is this constraint which causes an exponential complexity of the

corresponding analysis algorithm as we shall see in the next chapter.

(2) Every time a new check is added in the system, a new pseudo-data element is also
added. Therefore, the complexity of the analysis algorithm is exponential not only

in the number of data elements but also in the number of checks, in an indirect way.

In the matrix-based model, whenever a processor is performing one or more checks,
one pseudo-data element of infinite weight is added to the output data set of that proces-
sor (the actual data elements assume unit weight in the model). The pseudo-data ele-
ments and the actual data elements are distinguished from each other by their weights
rather than by their positions. This permits a special grouping of actual data elements in

a system while considering all the possible error patterns; data elements within a group

42

do not have individual identity. Based on this grouping, we illustrate an
error collapsing technique, which eventually results in much less complex analysis algo-
rithms.

In the graph model, the system information is distributed and processed in two
domains: the processor-data domain and the data-check domain. In the matrix model we
introduced one more domain of operation, the processor-check domain. In fact, the PC
matrix, which represents the processor-check domain, is our main work space. The PC
domain is derived from the PD and DC domains, during which some information may be
lost. However, most of the lost information happens to be unnecessary for the analysis as
we shall see in the next chapter. Whenever necessary, we go back to the PD and DC
domains to supplement the information to the PC domain. Again, selecting the PC

domain as the main domain of analysis greatly simplifies the analysis procedure.

-

43

CHAPTER 4.

ANALYTICAL APPLICATIONS OF THE MATRIX-BASED MODEL

4.1. Introduction

In this chapter we describe the applications of the matrix-based model for the
analysis of ABFT systems. Following the definitions given in the previous chaptcr, we
develop algorithms for determining the fault detectability and locatability of ABFT sys-
tems. These algorithms are much less complex than the algorithms based on the graph-
theoretic model. The new algorithm for the fault detectability analysis is of linear com-
plexity in the number of data elements in the system, whereas the complexity of the loca-
tability algorithm is quadratic in the number of data elements. The reduction in complex-
ity is achieved by using: (1) a special error collapsing technique which allows the
analysis of a system without having to enumerate all the possible error combinations; (2)
simpler sufficiency conditions which are developed in this thesis. Even though these
algorithms are developed particularly for the analysis of ABFT systems, they are applica-
ble to the analysis of conventional fault-tolerant architectures such as N-modular struc-
tures.

We illustrate the applications of the algorithms by analyzing various fault-tolerant
signal processing architectures. Finally we provide an alternative method for the invali-

dation of checks performed by faulty processors.

4.2. Fault Analysis of a System

As far as the fault detectability and locatability of a system are concerned, we have
to consider only the observable faults, since the unobservable faults are not going to
cause any error in the useful data elements. However, it is necessary to consider the
detectability and locatability of observable faults in the presence of unobservable faults.
For example, consider a fault pattern consisting of faults on three processors Py, P, and
P3. Let the fault present in P, be an observable fault, and the faults in P, and P; be
unobservable faults. Now, for the system to be 3—fault detectable, _it is necessary that the

observable fault in P, be detectable in the presence of unobservable faults in P, and P5.

Therefore, if a fault is not observable, instead of assuming that that particular fault
is not present, in our analysis we consider it as a detectable fault. In order to define the
fault detectability and locatability of a system, we introduce the concept of observability
of a fault pattern.

DEFINITION 4.1. A fault pattern is observable if and only if at least one of the indivi-
dual faults present in it is observable. a

DEFINITION 4.2. A fault pattern is said to be completely detectable if it is either unob-
servable or it is detectable for all the possible output error combinations. a

In the following, we will use the terms faults and fault patterns interchangeably to
mean either an individual fault or a set of faults depending on the situation.

DEFINITION 4.3. A fault-tolerant system has t—fault detectability if and only if some
check C; will definitely fail, provided the cardinality of any observable fault pattern does

not exceed ¢.

45

4.3. Analysis for Fault Detectability

For the analysis we define matrices 'PD and "PC which are derived from the PD and
the PC matrices, respectively.

DEFINITION 4.4. The "PD matrix is defined as the matrix whose rows are formed by
adding r different rows of matrix PD, for all possible different combinations of r rows,
and then setting all nonzero elements, except the infinity elements, to 1. O
Note that a nonzero element greater than 1 results from the addition of rows of the PD
matrix if the processors corresponding to those rows have common data elements. These

nonzero elements are set to 1 in order to avoid duplication of the same data element.
DEFINITION 4.5. Matrix "PC is the product of "PD and the DC matrix. |

TPCis an [;} xq matrix. In the fault analysis, each row of TPD and "PC will represent the

situation in which r faults are present simultaneously. As a special case, it may be

observed that 'PC = PC.

DEFINITION 4.6. The row R of 'PC is said to be completely detectable if and only if
the fault represented by R is completely detectable. O
If R represents an observable fault, there should be at least one element in the row R
which is less than or equal to the error detectability (h) of the check used, for all possible
errors. If we enumerate all the possible error combinations, the algorithm to check the
complete detectability of a row will be as complex as the previous ones. Instead, we use
an error collapsing technique so that the algorithm converges much faster and needs less

storage.

4.3.1. Algorithm to check whether R is completely detectable
The algorithm is outlined as ALGORITHM 1.

In the following discussior; we will describe how the algorithm works. In the first
step, if the entries of R are all zeros or infinity, then it is an unobservable fault and hence
is a completely detectable fault. On the other hand, if some of the entries are zeros and the
rest are greater than A, it means that the errors caused by the fault are not detectable, and
hence the fault is not detectable.' As mentioned before, in the case of analysis of faults in
systems, the fundamental matrices PD and PC represent the situation in which all the out-
put elements of a faulty processor are erroneous [46]. In the algorithm we start with a
row R which is a combination of some rows of the PC matrix. Therefore, R represents a
fault such that the output data elements of the processors associated with R are all errone-

ous. If at least one element of R is less than or equal to 4 and greater than zero (we call

ALGORITHM L

(1) If the elements of row R are either zero or infinity, R is completely detectable, stop.
Otherwise, go to step 2.

(2) If there is no element in row R which is less than or equal to 4 and greater than 0, R
is not completely detectable, stop. Otherwise go to step 3.

(3) Findall jsuchthatO <R;<h.

4) IfDC;=1 set TPDg; =0, where i =1, 2,...q. Do the same for all j obtained from
step 3.

(5) If the elements of the syndrome of R are either zero or infinity, then R is competely
detectable, stop. Otherwise go to step 6.

(6) Find the new "PC matrix by multiplying the new "PD matrix obtained from step 3
with the DC matrix and go to step 1.

47

such an entry a "valid entry”) we can conclude that the fault is detectable by some checks
provided all the data elements from the faulty processors are erroneous. This does not

imply that the fault will be detected for all possible error combinations.

For example, consider a system which is graphically represented in Figure 4.1.
Here,
DATA(P) = {d}, d2)
DATA(P3) = {d3}
CHECK (d,) = CHECK (d3) = {C, }
CHECK (d3)=1{C2}
Then we ﬁave the fundamental matrices
110 10 11
s3] ocefol] reeld)
10
Obviously, the system is single fault detectable if h=1. In order to check whether the sys-
tem is 2—fault detectable we compute 2pC which is equal to 2, 1]. Since there isalin

this row, the fault is detectable when all the data elements (d,, d2, and d3) are erroneous.

dl

P1 cl
d2

o
P2 a3

Figure 4.1. Graphical representation of an example system.

48

Now consider the situation in which the faulty processor P, produces an error in d,
alone. A fault in P, will definitely cause an error in d3. Thus, errors in d; and d3 will
invalidate the check C,; at the same time, check C, will pass since the data element d, is
not erroneous. As a result if P, and P, are faulty, the fault may not be detected, and

hence the system is not 2—fault detectable.

This discrepancy is taken care of in Step 4 of Algorithm 1. The objective is to
check whether the fault is detectable for all possible output error combinations. For that,
we use a technique called error collapsing. All the elements of 'PD which contributed to
the valid entries of row R are set to zero. By doing this, effectively we are removing~
those errors which are detectable at the output. We may remove all those errors simul-
taneously, because if at least one of them were not removed, that would be detectable at

the output and hence the fault is detectable.

The new "PC is calculated by multiplying the "PD matrix obtained after error col-
lapsing with the DC matrix. This new matrix will be different from the old 'PC in two
ways. The new matrix will have zeros in the corresponding positions where the old "PC
had valid entries. Some of the invalid entries in the old matrix might have become valid
entries in the new matrix. This is because removal of errors may make some of the
invalid checks valid.

This iteration is done as given in Algorithm 1 to check the complete detectability of
row R. It may be noted that the same algorithm can be used for determining the fault
detectability of systems having fault-secure check evaluation processors. In such a case,

all the infinity values are set to zero and the analysis is done in the same way.

49

EXAMPLE 4.1. In this example, we present a simple instance of how error collaps-
ing can help in reducing the complexity of analysis. In Figure 4.2, processor P produces
three data elements d;, d2, and d;. Data element d; (i = 1, 2, 3) is checked by check c;.
Also, note that the check ¢; checks data d; only. We assume that the error detectability &

of the checks is equal to 1.

In order to detect or locate a fault in processor P, we start the analysis by determin-
ing the detectability and locatability of the worst possible error; here we start with the
case where all three data elements are erroncous. Since check ¢; is checking d; only, an
error in d; will always be detected by c; irrespective of the status of the rest of the data in
the system. Thus, we need check the detectability and locatability of only one error pat-
tern (in which all the data elements are erroneous) instead of checking for all the possible

(eight in this case) error combinations. a

In the following example, we illustrate the application of the error collapsing tech-

nique, for the analysis of a hypothetical fault-tolerant multiprocessor system.

d1
o cl
42
P o oc2
d3
o c3

Figure 4.2. Example for error collapsing.

50

EXAMPLE 4.2, Consider a 4-processor fault-tolerant system (for simplicity of illus-
tration, we assume that the checks will yield valid results even when the processors

which perform those checking operations are faulty) whose PD and DC matrices are -

1 0 0]
111000 010
010100 100
PD=1p000010 PC=l011]
000001 100
Oll
The corresponding PC matrix is

210] g,

021 g,

C=l100|R;"

011 R4

Assuming that the error detectability of the checks A =1, we consider complete
detectability of rows R, and R,. Since the second element of R, is a valid entry, we col-
lapse the corresponding error PD ; of the PD matrix. The rcsﬁlting row syndrome of R
is [2 0 0] which has no valid entires at all, and hence is undetectable. Therefore, R, is
not completely detectable. In the case of R3, if we collapse the error PD, 4 corresponding
to the valid entry in R,, the resulting row syndrome will be [0 1 0] which still has one
valid entry. If we further collapse the error corresponding to that syndrome also, the

resultant syndrome will be [0 0 0]. Then by Algorithm 1, R, is completely detectable. O
DEFINITION 4.7. The matrix "PC is said to be completely detectable if and only if
all rows of "PC are completely detectable. 0O

THEOREM 4.1. A fault-tolerant system is r—fault detectable if and only if the

matrices iPC, fori=1, 2, ...t are completely detectable.

51

PROOF:

Proof for the necessary condition, (by contradiction): If possible, let the system be
t—fault detectable, and let iPC not be completely detectable for some i <t This will
imply that there exists a fault pattern of cardinality < ¢ which is not completely detect-

able. Therefore, the system is not t—fault detectable which is a contradiction.

Proof for the sufficiency condition: Complete detectability of ipC implies that
every fault pattern represented by the rows of 'PC are completely detectable. Therefore,
the hypothesis of the theorem implies that every fault pattern of cardinality < is detect-

able and hence the system is r—fauit detectable. | a

4.4. Analysis for Fault Locatability

Analyzing the system for its fault locatability is a much harder problem when com-
pared to the problem of finding the fault detectability. This is because, in the case of
locatability, we have to check not only whether some faults are detected, but also

whether that fault is distinguishable from other faults.

DEFINITION 4.8. A system is said to have ¢—fault locatability if and only if the appli-
cation of the check set identifies precisely which faults are present, provided the cardinal-

ity of any observable fault pattern does not exceed ¢. O
LEMMA 4.1. A necessary condition for t—fault locatability for t 21 of a system is
that Z,PD; < 1 for all j.
PROOF: We may prove the lemma by contradiction. Z,PD;; <1 implies that there

can be at most one 1 in every column of the PD matrix which means DATA(P) N

DATA(P;) = ¢ for all i=j. If possible, let there be more than one 1 in a column, which

52

implies that the data sets produced by certain processors are not disjoint. In that case, if
an error is observed in the common data element or elements, it will not be possible to
conclude which faulty processor produced that error. Therefore, the system is not single
fault locatable. Therefore, the assumption that there is more than one 1 in a column is

wrong, and hence the proof. | O

In most of the existing multiprocessor systems, processors have nondisjoint output
data sets so that the assumption DATA(P;) N DATA(P;) = ¢ is not valid. In those systems,
locating a faulty processor will not be possible according to Lemma 4.1. However, pro-
cessors whose data scts’havc nonempty intersections with other processors can be col-

lapsed into processor classes [23] so that the processor classes will have disjoint data sets.

DEFINITION 4.9. A processor class x; represents a maximal set of processors such
that for each processor p; € =;, there exists another processor p; € «;, such that DATA (p;)

A DATA (py) = D. O

Any processor not belonging to any such processor class constitutes a class by itself.
One may be able to locate a faulty processor class (a processor class is said to be faulty if
at least one of the processors in the class is faulty) during the fault diagnosis of the sys-
tem. The PD matrices for the processor classes are found by adding together the rows of
the PD matrix corresponding to the processors in the processor class and by setting all
nonzero elements to 1.

In the example given in Section 2.2 for the model matrices of a system, DATA(P,) N
DATA(P;) = {d;}. Here, P, and P, will form a processor class. Processors P; and P,

form two different processor classes. Now the corresponding PD and PC matrices are

53

111100 221
PD=|000010 PC=|100|.
000001 011

For convenience, in the forthcoming discussipn, we use the term locatability t0 mean
class locatability.

DEFINITION 4.10. Rows R, and R of matrix kpC are said to have 1 - 0 disagreement
if there is at least one valid element in row R, such that R, has a zero in the correspond-
ing position. O

DEFINITION 4.11. Rows R, and R; of matrix kp(C are said to have 0 — 1 disagreement
if there is at least one O in either row Ry or R such that the other row has a valid element
in the corresponding position. O

EXAMPLE 4.3. Consider the PC matrix given below.

R 1221
PC =R, |100|.
R3lo11
Here, R, and R, have 1-0 disagreement whereas R, and R, have only 0 — 1 disagreement.

It can be seen that R, and R3 have no disagreement at all. a
DEFINITION 4.12. If all pairs of rows of XpC have 0 - 1 disagreement, then kpC is
said to have a 0 — 1 disagreement. O

DEFINITION 4.13. PC has 1 — 0 disagreemens with “PC if and only if every row R of

PC has 1 — 0 disagreement with all rows of “PC hich do not contain R. O

It may be noted that a 1-0 disagreement implies a 0- 1 disagreement, whereas a
0- 1 disagreement does not imply a 1-0 disagreement. That is, 1 -0 disagreement is a

stronger condition than a 0 — 1 disagreement.

54

4.4.1. Physical significance of disagreement

When two rows of 'PC have 0-1 disagreement, that means that the faults
corresponding to those rows are distinguishable provided the outputs from the processors
involved in those faults are all erroneous. A 1 -0 disagreement between PC and "PC will
imply that every individual fault is exposed (or not masked) (as defined in Chapter 3) in
all fault patterns of cardinality r+1. This is because every row R in PC has a
1~ 0 disagreemens with all rows of "PC which do not contain R. In both of the above
cases we need all data outputs from a faulty processor to be erroneous, which may not be
the case all the time. Therefore, we define a stronger relation between rows, namely,

complete disagreement.

DEFINITION 4.14. A disagreement (0-1, or 1 -0) between two rows is called a
complete disagreement, if the disagreement exists for all possible error combinations

caused by the faults associated with those rows. |

The disagreement defined in[31] was similar to the 0-1 disagreement defined in this
thesis. However, it must be noted that the disagreement used in [31] was defined in the

set of error patterns rather than in the set of fault patterns.

In order to check for the complete disagreement between two rows we use an algo-
rithm similar to the one used for finding the complete detectability. The procedure is
outlined in Algorithm 2. Whenever there is a disagreement between rows, the valid entry
or entries which caused the disagreement are set to zero by error collapsing as described
in Algorithm 1. The algorithm always converges because removal of an error will never

convert 20 to a 1 or a higher value, whereas it may or may not decrease the values of

v

55

nonzero entries. (Henceforth, we use the term disagreement tO mean
complete disagreement.) Now we prove some necessary and sufficient conditions for the

t-fault locatability of a system, and develop an algorithm for the analysis.

From previous discussions in Chapter 3, we observe that whenever the cardinality
of the fault pattern is < ¢, all individual faults should be exposed in order for the fault pat-
tern to be locatable. When the cardinality is 2¢ — r for 0 <7 <¢, a minimum of + 1 faults
should be exposed. In order to check whether the system is t-fault locatable, we have to
consider all fault patterns of cardinality <2:. We prove a simpler sufficient condition for

t—fault locatability so that we need to consider only fault patterns of cardinality at most «.

THEOREM 4.2. A necessary and sufficient condition for r—fault locatability is that all
individual faults are exposed in every fault pattern of cardinality <¢, and all fault patterns
of cardinality ¢ are distinguishable from each other.

PROOF: We prove this theorem through a simple construction. We use rectangles

to represent faults. The length of the rectangle corresponds to the cardinality of the fault

ALGORITHM 2.
Input to the algorithm are rows R; and R, whose complete
disagreement is to be checked.
(1) Check whether R, and R, have a disagreement. If not, output NO, stop. Otherwise
go to (2).
(2) Collapse errors and check whether the syndrome elements of either R, or R, are all
zeros or infinity. If so, output YES, stop. Else go to step 1.

56

pattern. When two fault patterns have common individual faults, the rectangles overlap
in their positions. Consider two faults F; and F whose cardinalities are <¢.

Case 1.
Let the cardinality of Fy = |F | =¢tand F; C F,. The representation using rectangles is
shown in Figure 4.3. By assumption, all individual faults in F are exposed (since the
cardinality is <r), which implies that there is a 0 - 1 disagreement between regions A and B.

But F, = B which implies F has a 0 - 1 disagreement with F;. That is, F; and F, are dis-

tinguishable:
Case 2.
Case 1. Case 2.
e t | e t —
F, A B Fy L a | B | C F,
F2 j Fl A B
L B | ¢ |m
Case 3
rl_a | B | F A Bl
Fs B C P, LA B C
e >t > = t -

Figure 4.3. Fault patterns of cardinality <.

57

Let IF | =tand IF;l =r <t. Also Fy N Fy= &. We augment F, with some faults con-
tained in pattern F, such that the augmented F, (F7) has cardinality z. Now F, and F’,
are distinguishable by the assumption of the theorem. That is, region A has a
0 - 1 disagreement with region C. (Note that since region B is common to both F, and F';,
it will not contribute to the distinguishability of the faults.) But C = Fz. and hence F; and
F, are distinguishable.

Case 3.

Let IF;1 <t, |IF;l <tand F, N"F,# @ ,also |Fy U F3| >t (This is the most general
case.) In the figure we construct a fault 7', by augmenting F; with some faults (C?) from
region C such that |F", | =¢. Similarly F’; is constructed by adding a portion of A (4") to
F,. Now F’; and F’, are distinguishable, which means regions A — A (part of region A
which contains the faults which are not contained in A”) and C - C” have a 0 — 1 disagree-
ment. ButA-A’ c Fy, and C -C’ c F,. Therefore, F, and F; have a 0 - 1 disagreement
and are hence distinguishable.

Thus any two fault patterns of cardinality <: are distinguishable and hence the
sufficiency condition is proved. Proof for the necessary condition follows from the
definition of t—fault locatability. |

The above results may be translated into the domain where we use the new model
for the analysis of fault-tolerant systems.

THEOREM 4.3. A given fault-tolerant system is ¢—fault locatable if and only if
matrices PC and iPC, for i=1,2,...(-1), have 1-0disagreement, and 'PC has

0 - 1 disagreement with itself.

58

PROOF: The condition that PC has 1 -0 disagreement with 'PC implies that all indi-
vidual faults are exposed in fault patterns of cardinality <z Since 'PC has 0 - 1 disagree-
ment with itself, all fault patterns of cardinality ¢ are distinguishable. Hence the system is

t—fault locatable by Theorem 4.2. 0

EXAMPLE 4.4. Now we will present a hypothetical system in order to illustrate the
various concepts we developed in the preceding sections. Consider a computing system
consisting of 5 processors each of which produces one data element each. Every proces-
sor performs useful computation as well as 4 checking operations on the data produced
by the remaining 4 processors. The PC matrix for such a system is shown in Figure 4.4.
In this example we assume that the processors involved in checking operations are not
fault secure. Complete analysis of the system shows that it is 4—fault detectable and
2—fault locatable. It may be noted that this is the maximum detectability and locatability

possible with a system having 5 processors.

o o0 0o 1000100010001000
1 000 o 0 0ew010001000100
PC= 01000100 oeww00100010
001000100010 oo o 0390001

0001 00010001000 1l o o oo

Figure 4.4. The PC matrix of the hypothetical system.

59

4.5. Complexity of the Algorithms.

In the following, we provide a rigorous analysis of complexities of various algo-
rithms proposed in preceding sections. Assume that n = N xd, where a is the total number
of data elements, N is the total number of processors, and d is the average number of data
elements produced by each processor. Complexity of the algorithm based on the graph-
theoretic model for determining the fault detectability (¢ faults) is exponential in the
number of data elements 7 in the system. The algorithm has to check the detectability of
all possible error combinations caused by every fault in F (¢).

Therefore, the complexity is

0 (‘f‘[“ﬂ x 2,

im]

o[x2¥)

im]

n

=ov'x2¥)
which is polynomial in N for a given value of t « N (which is usually the case) and
exponential in n.
Because of the error collapsing technique we use, the complexity of the algorithm

based on our second model is linear in the number of data elements as shown in the fol-

im+1
lowing. The complexity of the detectability algorithm is O (i [1:] x f (id)), where

iml
£ (id) is the number of steps taken in error collapsing which is bounded by 1 < f (id) < (id).

More simplification will yield that the complexity

=0(N'x%)

=0 (N xnr),

which is a polynomial in ¥ and a linear expression in n.

The complexity of the algorithms for fault locatability analysis is higher than the
complexity of the detectability algorithms. In the graph theoretic model based algo-
rithms [23] I—fauit locatability of the system is determined by checking whether every

individual fault is observable in the presence of fault patterns of cardinality ranging up to

in &
21. Therefore, the complexity is O (3 [Ij 24 x N>x24)=0(N¥* x2 ¥). Due to the

l.-l -
new sufficient condition established in Theorem 4.2 and due to the error collapsing tech-

nique, the complexity of the algorithm based on the matrix model is only

0 (E(N) x sy xtixr @+ (N xfadn =0 Wit x 1302 + N3 Ix i,

i=l
Here the second term corresponds to the complexity involved in comparing faults of car-

dinality / among themselves. It may be noted that the complexity is a polynomial in &

and a quadratic in n.

4.6. Examples for the Applications of the Model

In this section, we present a few carefully selected examples to illustrate the appli-

cation of the model for the analysis of few realistic fault-tolerant architectures.

EXAMPLE 4.5. Consider matrix multiplication using checksums on a mesh con-
nected piocessor array. The fault tolerance scheme has been proposed by Huang and

Abraham [47]. We will briefly describe the system below.

Multiplication of two 3x3 matrices X and Y is done on a mesh connected processor

array as shown in Figure 4.5(a). We assume that input data elements are broadcast on

61

buses; the processors input the data from the buses. Under a processor failure, we
assume that only the corresponding data element of the output matrix Z becomes errone-
ous. After the computation, the result Z resides in the local memories of the processors.
Now the checking operations (six of them, three for rows and three for columns) are per-
formed.

Thus, we have

DATA (P) =d; fori=1,2,...9.

CHECK(d,, d2, d3)=C,

CHECK(d,4, ds, dg)=C2

CHECK(d7, ds, dg)=C3

CHECK(d,, d4,d7)=C4

CHECK(dy, ds, dg)=Cs

CHECK(d3, dg, d9)=Cs.

First, we do the analysis of the system assuming that the check evaluating proces-

sors, P3, Pg, P17, Pg and Py are fault secure. In that case, the fundamental matrices of the

system will be

PD =14, where I, is the identity matrix of order 9.

10010 0]
100010
100001
010100
pDC=l010010].
010001
001100
001010
001001

62

PC =PDXDC =DC, since PD =1.

During the analysis of the system for ¢—fault detectability, we see that 'PC is com-
pletely detectable for r=1,2,3. In 4pC the row R corresponding to the sum of rows
P,,P,3,Psand Ps of PCis [22220]. Since error detectability of checksum encoding is
1 (i.e., h=1) none of the elements in R is valid. Therefore, R and hence 4PC is not com-

pletely detectable. Then, by Theorem 4.1, the system is 3—fault detectable. O

Next, we will consider the fault locating capability of the algorithm. Since the
matrix PC has a 0- 1 disagreement with itself, the algorithm is 1-fault locatable. In the
analysis procedure we observe that PC does not have 1 -0 disagreement with 2pC. For
example, row P; of PCis ({1 0 0 1 0 0] and this does not have a 1 - 0 disagreement with
the row P,P, (i.e., the sum of P, and P4) of 2PC which is equal to [1 1 0 1 1 0]. Hence
the system is at most 2-fault locatable. As a next step we check whether all faults of car-
dinality 2 are distinguishable. For that, 2pC should have 0 -1 disagreement with itself.
One can observe that rows P\Ps=[110110]and P,P4=[110110]of 2PC do not
have 0 - 1 disagreement. Hence 2pC does not have 0-1 disagreement and the system is

1—fault locatable by Theorem 4.3.

Now we will analyze the same system with the assumption that the check evaluating
processors are not fault secure. According to the definition of the fundamental matrices,
we attach one pseudo—data element each to every check evaluating processor. It may be
observed that the system is O—fault detectable and O—faulr locatable. This is because, the
data element dy produced by processor Py is checked only by processor Py. If there

occurs a fault in Py, all the checks done by P are considered to be invalid and hence the

63

‘__4__}' 5H 6 I H
|] T
l]

(a) Mesh connected array (b) 4-node hypercube

Figure 4.5. Processor arrays.

error in dg cannot be detected. On the other hand, from the description of the algorithm
it may be noticed that dg is not a useful data element as far as the original matrix muld-
plication is concerned. Therefore, an error in dg may be disregarded during the analysis,
which effectively means that the element dy can be taken off from the model. As far as
check evaluation is concerned, processor Py checks the correctness of data elements d3,
dg, d7, and dg which are also not useful data elements. Thus, the processor Py is not
doing any useful job in terms of computation or check evaluation. Therefore, we remove
P, from the model. As mentioned before, since the actual data elements produced by
other check evaluating processors are also not useful for the original matrix multiplica-
tion, they are also discarded. Therefore, the final model should be such that each check
evaluating processor has only one pseudo-data element associated with it. Accordingly,

the fundamental matrices are

(1000000
0100000
000000
0001000
0000100
000000
000000
_0000000

PD =

SOOOOOOQ

L

101 0]
1001
1000
0110
DC=1g101]
0100
0010
0001

The complete analysis shows that the system is 2—fault detectable and 1-fauit locat-

able.

EXAMPLE 4.6. In this example we analyze an algorithm for fault-tolerant matrix
multiplication using checksum encoding done on a hypercube. We consider partitioned
matrix multiplication done on a 4-node hypercube as shown in Figure 4.5 (b). In the
figure, the circles represent the hypercube nodes and the square represents the host pro-
cessor. In the fault-tolerant algorithm suggested in [15], processor 1 checks the correct-
ness of the data computed by processor 2 and sends a "pass" or "fail" signal to the host
processor. At the same time processor 2 checks the data computed by processor 1 and
sends a signal to the host. Similarly, processors 3 and 4 also check each other and notify

the host of the result. 0

65

Here, even though every processor P; for i=1, 2, 3, 4, produces data d;, it is not
necessary to include them in the PD matrix. This is because the check by the host pro-
cessor is done only on the flag signals generated by the node processors. Let ¢; be the
flag signal generated by P;. Then, from the description of the algorithm, we have
CHECK (e;, e2)=C
CHECK (e3, €4)=C2.

Since both the checks are resident in the host processor, if the host processor fails, all
checks performed in the system will become invalid, and in that case it is O—fault detect-
able. However, we are interested in the fault tolerance of the hypercube nodes, provided
the host processor does all the checks correctly. Now the PC matrix is

1

1

0y
01

PC=

It can be seen that the system is 1—fault detectable and O—fault locatable. However, if
the mutual checking processor pairs are changed in the fault-tolerant algorithm, that is if
instead of 1, 2 and 3, 4, checking is done by pairs 1, 3 and 2, 4 and flag signals sent to the
host processor, in effect we are adding two more checks given by
CHECK (ey, e3)=C>
CHECK (e, €4)=Cj.

The new PC matrix is

1010

1001
PC=19110|

0101

66

Carrying out a similar analysis we found that the the algorithm is 3—fault detectable and
1—fault locatable. This example, was specifically chosen in order to illustrate the impor-

tance of selecting data elements for the PD matrix so that the analysis will be easier.

EXAMPLE 4.7. In this example we consider the Advanced Onboard Signal Proces-
sor (AOSP) architecture [48]. The AOSP is an architectural concept for an advanced sig-
nal processing computer that provides a fault-tolerant environment capable of supporting
a wide range of signal processing applications. It is a loosely-coupled distributed mul-
tiprocessor system in which a large number of identical processors known as Array Com-
puting Elements (ACEs) communicate both data and control information via packetized

messages over networks of high-speed buses.

In order to achieve fault tolerance, one may incorporate some kind of system level
fault diagnosis in the AOSP architecture. In this example we consider an AOSP with sys-
tem level fault diagnosis. The encoding scheme to be used depends on the particular sig-
nal processing application for which AOSP is used. In the example we do not assume
any particular computation or encoding scheme. The only assumption made is that the

encoding scheme can detect one error (i.e., h=1).

The architecture of the AOSP is depicted in Figure 4.6. Due to the high density of
the interconnection network, we have the luxury of having a fault-tolerant scheme in
which any arbitrary processor can check the correctness of the computation done by any
other processor. As an example we consider a scheme in which
CHECK(dy, d4, d3)=C,

CHECK (dg, dg, d1)=C,

67

N
N

N

® <
NI

N

Figure 4.6. AOSP architecture.

CHECK(d4, d2, d9)=C3
CHECK(dy, ds, d9)=Cy4
CHECK(d3, ds, d7)=C35s
CHECK(d3, ds, d9) =Cs.
Suppose that the checks ¢, through c¢ are performed by processors Py, P2, P3, Pa,
Pg, and P;, respectively. The analysis shows that the system is 1-fault detectable and

O—fault locatable. a

EXAMPLE 4.8. Consider an 8 node hypercube (3-cube) performing partitioned vec-
tor computations. Each node computes three partitions (subdivisions) of the same vector.
After the first set of computations, the partial results are rotated in the clockwise direc-
tion in the lower dimension (involving four processors each) for further iteration as
shown in Figure 4.7. Each computed part is check evaluated by three neighboring pro-

cessors in their order (i.e., the first neighbor checking the first part, the second neighbor

68

checking the second part and so on). It can be determined that the fault detectability of

the system is 1, 2 and 5 for an error detectability of 1, 2 and 3, respectively.

4.7. An Alternative Approach to Check Invalidation

In this section we reconsider the problem of invalidation of checks, performed by
faulty processors and develop an alternative method to handle the problem.

In this approach the analysis procedure is divided into two steps; (1) primary
analysis, and (2) secondary analysis.

DEFINITION 4.15. Home Processor of a check is defined as the processor which per-
forms that checking operation.

The primary analysis consists of analyzing the system with the assumption that a
check will not be invalidated if its home processor is faulty. In the secondary step, some

additional information related to the correspondence between processors and checking

Q >

{

P\

T\

J
\

< @)

Figure 4.7. Data rotation in the hypercube.

69

operations performed by them is derived. With the help of the results obtained in the
primary and secondary analyses, the actual fault tolerance capabilities of the system are
determined. Even though this approach is more tedious than the one using
pseudo data elements, it has the advantage that it will induce an easier design technique;
first design the primary system and then decide the home processors for various checking

operations using the properties we derive in the next section.

4.7.1. Secondary analysis

Before going into the details of the procedure, we define the following parameters

associated with a fault-tolerant multiprocessor system.

DEFINITION 4.16. Self —Tested Set (STS) is defined as a set of processors such that at
least for one particular possible output error combination of these processors, every valid

check done on these processors is resident in that set itself.

EXAMPLE 4.9. Consider a system described as
DATA(P)) = {d;, d3, d3)
DATA(P) = (d2. d4)
DATA (P3) = {ds)
DATA(P,) = {d¢)
CHECK (d1)=(C1)
CHECK (d3)={C3)
CHECK (d3)={C,)
CHECK (d4)={C3, C3)

CHECK (ds)={C,)}

70

CHECK (dg)={C3. C3}.

Now assume that check ¢, is resident in processor P,, ¢ in P3, and check c3 in P,.
It can be observed that if processors P, and P are faulty and if the corresponding error
pattern is d,, ds, the valid check operations done on the output error pattern are c¢; and
c,. These two checks are resident among processors P, and P; and hence the set {P,,
P3} is an STS.

Iﬁ further discussions, the cardinality of an STS is denoted by S.

DEFINITION 4.17. An STS is called a minimal STS if removal of at least one proces-
sor from that set will destroy the property of the STS.

DEFINITION 4.18. S, is defined as the cardinality of the smallest minimal STS of
the system.

Let f be a fault pattern involving processors Py, P2, ... P;and letc,, ¢3, ... c; be the
checks which give valid output (that is, detect the fault) when all the data elements pro-
duced by the faulty processors are erroneous. Three cases may arise as described below.

Case 1

The checks ¢y, c3, ... c; are resident in the processors of set f. In that case, set f is
an STS.

Case 2.

Amony the set of valid checks, some of them are resident in f and some of them are
not resident in f. This does not guarantee that f is not an STS, since there may exist a par-
ticular error pattern for which f .is an STS. In order to check that, enumerating all error

combinations will be inefficient. Instead, we propose an error collapsing technique.

71

(Distinguish this error collapsing technique from the one described in Section 3)
Case 3.

All the valid checks are resident outside the set f. This is a special instance of

Case 2, where the number of checks resident in set fis equal to zero.

4.7.1.1. Algorithm to check whether fis an STS
The procedure is given in ALGORITHM 3.

In order to simplify the implementation of the algorithm for determining whether a
given set of processors form an STS, we define one more model matrix called an H
(home) matrix which gives the relationship between processors and checking operations

resident in them.

DEFINITION 4.19. The H matrix is an nx/ matrix such that

H.= 1 iijisresidentinP,-
§=10 Otherwise

ALGORITHM 3.
(1) Collapse errors which are checked by those checks which are not resident in f.

(2) If at least one processor in f is left with no output error at all, then f is not an STS.
Otherwise go to step 3.

(3) Find the new set of valid check elements. If all of them are in f then the situation is
equivalent to Case 1, and fis an STS. Otherwise go to step 1.

72

DEFINITION 4.20. The matrix "H is defined as the one whose rows are formed by
adding r different rows of matrix H, for all possible different combinations of rows.

It may be noted that the PC matrix and the H matrix will have the same dimensions,
and hence "PC and "H will also have same dimensions.

DEFINITION 4.21. (Covering) A valid check is said to be covered with respect to
row R of "PC if row R of "H has a one in the corresponding position.

DEFINTTION 4.22. A row R of "PC is said to be covered if all the valid entries in that
row are covered.

DEFINITION 4.23. A row R of "PC is said to be completely covered if row R is
covered for at least one possible error syndrome.

The physical significance of covering is that if a check is covered with respect to R,
the check operation is resident in the processor set R. If row R is covered, then all the
valid check operations are resident in the processor set R itself when all the output data
elements are erroneous. Complete covering implies that all the valid check operations
are resident in set R itself for at least one possible output error combination.

LEMMA 4.2. A processor set fis an STS if and only if it is completely covered.

PROOF: Proof follows from the definitions of STS and complete covering. a

Now the previous algorithm to determine the STS nature of a processor set can be
restated and implemented in terms of covering. The algorithm is called the STS ALGO-
RITHM.

EXAMPLE 4.10. In Example 4.9, given to illustrate the property of STS, the PC and

the H matrices are

73

STS ALGORITHM
To check whether fis an STS.

(1) Collapse errors which are not covered with respect to f.
(2) If at least one row of the PD matrix is zero, then f is not completely covered, and
hence not an STS. Otherwise go to step 3.

(3) Check whether the new syndrome obtained after error collapsing is covered. If so, f
is an STS; otherwise go to step 1.

21 00
021 10
PC=l10d #=|01
011 001

Consider the row [1 2 1] of 2PC (sum of 274 and 3™ rows of PC), the corresponding
row in 24 is [1 1 0]. If h=1, only the third check is uncovered. If we collapse the
corresponding error, the new syndrome will be [1 1 0] which is covered. Therefore, the

row [1 2 1] is completely covered, and hence, processors P, and P; form an STS.

THEOREM 4.4. If ¢ is the fault detectability of a system obtained after primary
analysis, any fault pattern of cardinality <S¢ is undetectable if and only if the set of proces-
sors involved in the fault is an STS.

PROOF:

Proof for the sufficiency condition follows from the definition of STS.

Proof for the necessary condition, (by contradiction): Let the fault pattern F be undetect-

able, at the same time F is not an STS. By the definition of an ST, this implies that set

74

is such that for every output error pattern, there exists at least one valid check operation

which is resident in a processor outside the set F and hence the fault is detectable. a

THEOREM 4.5. The actual fault detectability of the system f,, = min(t, S — 1),

where ¢ is the value of fault detectability obtained after primary analysis.

PROOF: Proof of the theorem follows from Lemma 4.2. O

4.7.2. Analysis to determine actual locatability

The actual locatability [,., of a system can be determined by a similar type of
analysis. Instead of STS we define another type of processor set called
Self ~Locating Set (SLS). |

DEFINITION 4.24. Seif Locating Set (SLS) is a set of processors for which at least one
output error combination exists such that all the valid check operations, which distin-
guish faults in these processors from all other faults of cardinality less than or equal to

the cardinality of the processor set, are resident in the given processor set itself.

In the following, we formulate an algorithm to determine whether the given set is an

SLS.

Let f=(P,, P5, ..., P,). Thatis, fe "PC. Now to check whether fis an SLS we use the
SLS ALGORITHM.
THEOREM 4.6. Actual fault locatability /,., of a system is
loce =min(l, SLopn — 1),
where { is the fault locatability obtained in the primary analysis and S, is the cardinality

of the smallest minimal SLS.

75

SLS ALGORITHM

For all rows P;s in the PC matrix which are also

elements of the set f

(1) Find all the checks which fauscs complete 1-0 disagreement with the row f - P; (ie.,
the set fexcluding P;) of lpc.

(2) If all checks are covered with respect to f, then fis an SLS. Otherwise, go to step 3.

(3) Find all the checks which are not covered, and collapse corresponding errors. In
any stage if row P; of PC becomes zero, then fis not an SLS. Otherwise go to step 2.

PROOF: Proof of the theorem is similar to the proof of Theorem 4.4. O

EXAMPLE 4.11. In this example we present a complete analysis of a system using
the secondary analysis we developed in this section. We consider the fault-tolerant AOSP
architecture illustrated in Example 4.7. The check operations are distributed among the
processors in such a way that the H matrix is

00000
00000
000001
00000
H=|00000
01000
00001
10000

00110

From the primary analysis of the system, using the fundamental matrices, we have
already found that the system is 3—fault detectable and single fault locatable; i.e., t =3 and

I=1

76

Secondary analysis: It may be observed that none of the rows of PC are covered,
whereas the row corresponding to the sum of rows Pg and P¢ in 2PC is[110000] and
is covered. (Note that the corresponding row in 2H isalso[1 10000}].) Thus, Spin =2

and by Theorem 4.4, actual fault detectability ¢,., = min(3, 1) =1.

According to the check distributions, check ¢, is the one and only check which dis-
tinguishes the faults in processors Ps and Ps. However, this check is covered by the 8

row of the # matrix and hence SL;, =1. The actual fault locatability /,., = min(1, 0) =0.

4.8. Further Extensions

Applications of the matrix-based model for the diagnosis of faults in a fault-tolerant

system were further investigated by Vinnakota and Jha in [49].

The diagnosis problem is defined as, given a syndrome S, determine which fault
produced that syndrome. The authors used the matrix-based model for locating and iden-
tifying a fault, once its presence is detected. They observe that those faults which do not
have 1-0 disagreement with every row of l'IPCS are not elements of the candidate fault
pattern. This is borne out from the fact that for every locatable fault F, every processor in
F is checked by at least one valid check that does not check any other processor in F.
Based on this observation, an algorithm has been proposed. However, this algorithm
tackles the problem in a roundabout fashion. Therefore, we suggest a straightforward

algcrithm for identifying the fault present.

DEFINITION 4.25. The matrix PCs is obtained by deleting all the columns of the PC
matrix, corresponding to the 0’s in the syndrome S and then deleting all the resulting zero

rows.

77

DEFINITION 4.26. PCs, is the matrix obtained by deleting the rows in PCs which do

not have a complete 1-0 disagreement with Mpcs. O

4.8.1. Description of the diagnostic algorithm

Motivation behind performing up to step 3 is obvious from the definitions of the
matrices PCs and PCs,. In PCs, we have included only checks which are flagging a valid
"error" output (that is the output is 1). Therefore, if the number of rows in PCs, is <,
there cannot be any row representing a nonfaulty processor. If the number of rows in
PCs, is > 1, the size of the fault present cannot be larger than [by definition of
I—fault locatability. However, we have to check whether the fault present is of cardinality

< 1. In the following discussion we find that that is also not possible.

If possible, let the fault pattern F be of size less than I. Again, by the definition of

PCs,, F is checked by all the checks in PCs,. Then for any processor p in PCs, which is

DIAGNOSTIC ALGORITHM

(1) Compute PCs for the given syndrome S.

2) Compute “'PCs.

(3) Compute PCs,.

(4) If the number of rows in PCs, is < I, then the processors corresponding to the rows of
PCj, represent the components of the required fault pattern. Otherwise go to step 5.

(5) Compute lPCS,. The row which corresponds to the given syndrome represeilts the
fault to be diagnosed.

78

fault-free, the set of checks that check that processor are checking the processors in the
fault pattern F which are also fewer than ! in number. This contradicts the conditions for
l—fault locatability. Therefore, the only possibility is that the fault pattern that we are
looking for is of cardinality /.

Now to determine exactly which fault pattern has occurred, we have to consider all
the I—combinations of the faults represented by the rows of PCs,. Then, by checking the
equality of the rows of l1"Cs, with the given syndrome, we can conclude which fault has
been present in the system.

It should be noted that the diagnosis procedure described here needs an a priori
knowledge of the fault locatability of the system; one can determine the locatability of
the system using Algorithm 2 given earlier in this chapter. In fact, the diagnosis pro-
cedure could be integrated with the procedure for determining the fault locatability of the

system.

4.9. Results and Conclusions

The concept of concurrent fault diagnosis involves the application of checking
operations on the data generated by multiprocessor systems to obtain reliable results. We
have proposed a new matrix-based model for analyzing the fault-detecting and -locating
capability of such systems. A uniform framework was constructed in which faults in the
processors performing useful computations can be treated along with taults in the proces-
sors evaluating the checks. The necessary and sufficient conditions for fault detection
and location were derived. The algorithms based on these derived conditions' are less

complex than the existing algorithms because of the error collapsing technique we intro-

79

duced and because of the simpler sufficiency conditions. The algorithms were used to
determine the fault detectability and locatability of some realistic systems.

These algorithms have been implemented in C under UNIX on SUN workstations.
The program takes the algorithm/system description as its input. The program analyzes
the system for its fault detectability first, and then uses that result to evaluate the locata-
bility. Some typical run times are given in Table 4.1 for some of the example systems
discussed in the preceding sections. In the table, 5, through S4 are the systems described

in Examples 4.6, 4.5, 4.7, and 4.3, respectively.

Table 4.1. Typical run times for the fault diagnosis program

Example | #P (=N) | #d(=n) h | ¢+ | ! | Runtime
(sec)

Sy 4 4 11311 3.1

S, 8 8 1]1]2}1 6.0

S5 9 9 111410 3.6

S 9 9 215711 118.3

S4 8 24 31210 8.9

#P is the number of processors
#d is the number of data elements

80

CHAPTER 5.

DESIGN OF ABFT SYSTEMS

5.1. Introduction

There are two ways to approach the problem of designing algorithm-based fault-
tolerant systems: (1) given a non-fault-tolerant system, determine an efficient distribu-
tion of checks among the output data elements so that the system has the desired amount
of fault tolerance; (2) given a fault-tolerant algorithm, synthesize an architecture so as to
maximize quantities such as the fault detectability and locatability of the system. Both
the approaches have their advantages and disadvantages. In the first approach, the fault-
tolerant design is constrained by the fixed, non-fault-tolerant architecture. In the second

approach, performance may be sacrificed in the process of achieving high fault tolerance.

Since most of the commercially available multiprocessors are built to maximize
their performance, usually they do not carry any fault tolerance capabilities as such.
According to the requirements of the application, it is up to the fault tolerance designer to
make the system fault-tolerant. Therefore, in practice, the designer is forced to adopt the
first approach. This is the philosophy followed by previous researchers also [50, 51].
Since the first approach is immediately applicable to existing architectures, we also look
at the problem from the first point of view. However, our methodology is different from

the existing ones.

81

The design of fault-tolerant multiprocessors that have processors producing more
than one data element by modifying the non-fault-tolerant architectures was considered
to be an intractable problem [50]. In that study, in order to design a system with the
required fault tolerance capabilities, first the cardinality of the largest error pattern gen-
erated by all possible faults is determined and the system is designed to detect and locate
that number of errors. In this thesis, we propose a direct scheme to design such systems
which eventually results in a smaller number of checks compared to the previous
methods. The design procedure is illustrated with examples. A comparison between the

existing schemes and the new scheme is done with respect to the number of checks

required for each scheme.

5.2. Previous Work

Previous studies done by Banerjee and Abraham [50] and then by Rosenkrantz and
Ravi [51] were geared towards computing the bounds on the number of checks required
to be attached to a given non-fault-tolerant architecture in order to make it fault-tolerant
in the desired amount. In the first study, bounds were derived for the number of checks
required for the desired amount of fault detectability and locatability. The bounds for the

detectability were later enhanced in the second study.

In both cases, bounds were developed through algorithmic procedures to construct
such a system. The design of systems that have processors producing multiple data ele-
ments was considered to be an intractable problem. As a solution, they suggested an
indirect approach. In order to design a system for t—fault detectability, first the size of the

largest error pattern (let it be equal to s) for all fault patterns was determined and the sys-

82

tem was designed for an error detectability of s. As an example, consider a non-fault-
tolerant multiprocessor system consisting of 4 processors. Processor P produces 3 data
elements, P,, 2 data elements and P; and P4 produce one data element each. If the sys-
tem is to be designed to be 2—-faulr detectable, first all the fault patterns of cardinality two
are enumerated and their corresponding error patterns are determined. Then, the size of
the largest error pattern is computed; in the example it is 5. (Note that the size of the
largest error pattern caused by faults of cardinality <t is always less than or equal to the
size of the largest error pattern caused by faults of cardinality s. Therefore, one needs to
consider only fault patterns of cardinality ¢ in order to determine the size of the largest

error pattern.) Now the system is designed to have an error detectability of 5.

The lower and upper bounds for the number of checks required were calculated in
terms of g, A, and 5. In the following subsection we give some sample bounds derived in

[50] and [51].

§.2.1. A few sample bounds

As examples, we provide the bounds derived for 2-error detectability and
3—error detectability. It was shown in [51] that at least 2n/(g+1) checks are necessary to
detect 2 errors. Rozenkrantz and Ravi showed that [2n/(g+1] checks are sufficient for
detecting 2 errors. For 3—error detection also [2n/(g+1) is a trivial lower bound. The
upper bound for this case derived in [50] was gn/q+g—~1 where ¢ =[(3g+1¥3 . This

bound was later improved in [51] to a higher value [(2n ~[n/g| ¥g] +1.

83

5.2.2. Limitations

With the modern VLSI technology, individual nodes of multiprocessor systems are
capable of having high computing powers. Every processor in the system may be com-
puting a large volume of data which in turn means that the size of the error patterns pro-
duced by a faulty processor may be large. Since the designs are done for meeting the

error detectability criterion, this will result in large complexities.

The methodology is efficient only when most of the t—faults are p;roducing error pat-
terns of cardinality s. On the contrary, if only a small number of fault patterns produce
error patterns of cardinality s, the design procedure will be using larger number of checks
unnecessarily. The approach lacks flexibility with respect to varying amount of compu-
tation performed by a processor. For example, if a system were designed for an error
detectability of s and later one of the processors is assigned a bigger load of computing
more data elements, in this method, the whole system has to be redesigned for the new
error detectability (to maintain the original value of the fault detectability). Unfor-
tunately, both these scenarios exist in real life. It was reported in [48] that in the AOSP
architecture, every computing node in the structure can support a wide variety of signal
processing computations and often, the amount of computation performed by various
nodes is not the same. If we incorporate system level diagnosis in this case, inefficient
designs will result as mentioned in the beginning of the paragraph.

In [50] and [51] the problem of minimizing the number of (g, h) checks was
transformed into a problem of constructing a bipartite graph where the number of output

nodes is minimized subject to the constraints of ¢—fault detection. Instead of using (g, h)

84

checks, checks of type (g, 1) were used where g’ =| g/h] . After constructing a graph sub-
ject to the modified constraints, groups of 4 output nodes are merged together. The new
merged graph satisfies the constraints of (g, h) checks. The limitation of this approach is
that even though the merged graph preserves the fault detectability of the original graph,
the locatability may not be preserved. In other words the design cannot handle detecta-

bility and locatability constraints simultaneously.

5.3. A New Approach for the Design of FTMP Systems

-

In this thesis, we propose a straightforward design procedure which needs a smaller
number of checks than the previous techniques especially when the computation is
nonuniformly distributed among the processing nodes. In our approach the system is
designed directly for meeting the fault constraints rather than error constraints. Also the
methodology can handle both detectability and locatability issues simultaneously. The
use of the matrix-based model allows the use of simple vector space techniques to iden-
tify redundant checks. The flexibility involved in handling varying the amounts of com-

putations performed by individual processor nodes is another advantage of our approach.

5.3.1. Problem definition

Using the matrix-based model parameters, we define the design problem as follows:
Given the PD matrix, find a DC matrix so that the corresponding PC matrix has the
required fault diagnosing capabilities.

Since PC = PD*DC, the design involves finding two variables (actually two

matrices) from a single equation. Therefore, the solution is not unique. The selection of

a particular solution should optimize the number of checks required, and the number of

85

errors detectable and correctable by each check (assuming that the cost of each check
increases proportionally to the number of errors it can detect and correct). Our approach

to the problem consists of the following steps.

(1) Design a DC matrix for PD = I, and A = 1, such that the system has
t—fault detectability and I—fault locatability. Here I, is the identity matrix of order m,
where m is the number of processors in the system to be designed. We call this sys-

tem the unit system of the actual fault-tolerant system to be designed.

(2) Modify the DC matrix of the unit system according to the given PD matrix in order

to obtain the DC matrix of the actual system.

In the unit system, since the PD matrix is the unit matrix, every processor is produc-
ing only one data clement. Therefore, the cardinality of the fault patterns will be the
same as the cardinality of the resulting error patterns. As mentioned before, in such a
situation, the techniques proposed in [50,51] are efficient and can be used for the design
of the unit system. Designs are already available for various values of fault detectabili-
ties and locatabilities. These designs of the unit systems can be used as a template. Now
the actual design consists of modifying these template designs to obtain the actual sys-

tem.

DEFINITION 5.1. The Product System of a given non-fault-tolerant system and the
corresponding fault-tolerant unit system is defined as the system obtained by connecting
every data element affected by processor P; in the non-fault-tolerant system to every

check element in the unit system which checks the output of processor 7;. a

86

The construction of the product system is illustrated in the following example.

EXAMPLE 5.1. Let us consider a multiprocessor system with four processors. The
first processor produces 4 data elements, the second one 2, and the third and the fourth
processor produce only one data element each. A unit system is designed for
3—fault detectability and 1-fault locatability. Construction of the product system is given
in Figure 5.1. 0

THEOREM S.1. If the unit system is t—fault detectable and [—fauit locatable, for t and
1 > 0, then the product system is r—fault detectable and | —fault locatable if and only if

h 2 max [num (P;)].
Here 4 is the error detectability of the checks in the product system and num (P;) is the

number of data elements affected by processor P;.

PROOF: Proof for the necessary condition, (by contradiction): Let
h < max [num (P;)], and the product system be t—fawlt detectable and I —fault locatable. Let
processor P; be such that num (P;) = max [num (P;)], where the maximum is computed for
i=1,2,3,...m If P; fails in such a way that all the data elements produced by P;
become erroneous, then all the checks done on P; in the product system will become
invalid. Therefore, such a fault in P; will not be detected and the system is

O—faulr detectable which is a contradiction.

Proof for the sufficiency condition: Since the unit system is designed for 4 = 1, for
any fault pattern of cardinality <, there exists at least one check in the unit system which
checks only one processor in that group of processors which are faulty. (In [31] this is

referred to as 1-neighbor intersection property.) In the product system also, since

87

d2 P1
P1
d3 cl

P2°<d5 P2 c2

o dé P3
) / “
P4 o

P4 o—— d7
(@) ®
Non-fault-tolerant Unit System
System
Pl cl
P2 c2
P3
c3
P4
©
Product System

Figure 5.1. Construction of a product system.

h > max [num (P;)], this check will fail and hence the system has the same detectability
and locatability as the unit system. Locatability of the product system can be argued in a

similar fashion.

88

5.3.2. Construction of the actual system

Construction of the actual fault-tolerant system with given (g, h) checks is done by
splitting each check in the product system into one or more checks such that every check
in the resulting system has at most & data elements from each processor checked by those
checks. Now the new system has the same detectability and locatability as the product
system. This is because, whenever a check in the product system fails, at least one of the
checks formed by splitting that check node will fail in the actual system. Actually, the
detectability and locatability of the new system may be higher than the product system.
However, we are interested only in the fact that the detectability and locatability of the

final system are at least equal to that of the product sysiem.

It should be noted that in the procedure described above, instead of combining 4
checks in the unit system to form a system having checks of error detectability &, we
attach A data elements from every processor to that check. This approach will preserve
the fault detectability and locatability of the unit system even after converting it into the
final system. However, when most of the processors are producing only <h data ele-
ments, the design may not be efficient. In those cases, the unit system itself may be
designed by assuming that the checks have error detectability 4. Correspondingly, while
constructing the final system from the product system, the checks should be split in such
a way that every check receives at most one data element from the processors which are

being checked by that check.

Another point of interest is the assignment of checks to the processors, that is,

which processor performs which check. Once the assignment is decided for the

89

unit system the same assignment should be followed in the product system also. When
checks in the product system (parent checks) are split into component checks, all the
component checks are assigned to the same processor which was hosting the parent check
in the product system.

In the following, we present the design procedure as an algorithm, in terms of the
matrix-based model parameters. The resulting DC matrix (and the corresponding PC
matrix) has the required fault diagnosing capabilities. The DC matrix can be further

simplified by deleting some of the redundant columns as follows.

DEFINITION 5.2. Column C; (i.e., check C;) is said to be covered by one or more
columns if and only if C; can be written as a linear combination (with coefficient of mul-

tiplication equal to 1) of those columns.

DESIGN ALGORITHM

(1) Construct a DC matrix for the unit system (we call it the unit DC matrix), so that the
unit system is ¢—fault detectable and I-fault locatable.

(2) The DC matrix for the product system (called the product DC matrix) is constructed
by expanding the columns of the unit DC matrix vertically. The row corresponding
to processor P; in the unit DC matrix is replicated num (P;) times.

(3) The DC matrix of the product system is partitioned into blocks of rows, such that
the i** block contains data elements produced by processor P;.

(4) Each column in the product DC matrix is split into a minimum numt-=r of columns
so that every column has at most & number of 1's in every block.

90

LEMMA 5.1. If C; is covered by Cj;, Cjz, ... Ci, then C; is a redundant check and
can be deleted.

PROOF: Since C; can be obtained as a linear combination of Cj;, Cj3, ... Cjx, when-
ever C; fails, at least one of the checks among C;,, C;3, ... Cj; will fail. Therefore, if the

system has checks C;y, C;z, ... Cjx, then check C; is redundant and hence can be deleted.
O

COROLLARY 5.1. Every column is covered by another identical column, if such a
column exists.

Once the DC matrix is determined using the design algorithm, the DC matrix is
further simplified by deleting all columns which are covered by some other columns.
The procedure for modifying the product system to obtain the actual system is illustrated

in the following example.

EXAMPLE 5.2. We consider the same multiprocessor system that we introduced in
the previous example. We are supposed to design a fault-tolerant system consisting of all
these processors such that the system will be 3—fault detectable and 1-fault locatable. In
example 5.1, we have already seen how to construct the product system. The rest of the
algorithmic procedure is shown in Figure 5.2. The graphical representations of the sys-
tems are shown along with their matrix representations. It can be observed in Figure 5.2
(b) that the DC matrix has two identical columns corresponding to checks C,, and Co,.
Either one of those checks can be deleted from the system su that the final system has

only 4 checks. a

P1 cl —1 10 T
110 Block 1
110
) c2 100 | piock2
100
P3 | 011 | Block3
c3 | 001 | Block4
P4
(@)

Product system and the corresponding DC matrix

cll [, ' 1
o1 10i1 0 :07
cl2 1 01 0:0
o 1,0 150
IR S . S 4
c21 1 000 0:0
P2 1 000 0,0
oc22 Lo--- e m = e~
P3 001 00
..... (A P
P4
()

Fault-tolerant System for h = 2 and its DC matrix

Figure 5.2. Design of the final system from the product system.

91

92

5.3.3. Comparison with previous schemes

In order to make a comparison between the newly proposed scheme and the existing
ones, we consider the following example. The comparison is done with respect to the

number of checks required in the design.

EXAMPLE 5.3. Suppose a system involving 500 processors has to be designed for
3~fault detectability and 1—fault locatability. The checks available are of type (5,1) (i.e., g
=5, and h = 1). Itis also known that 10 of those 500 processors produce 2 data elements
each.

Number of checks required as per the bounds given in [50] : 408
Number of checks required as per the bounds given in [51] : 363

Number of checks required for our scheme : 200 O

5.4. Conclusions

A systematic and straightforward design methodology is proposed for the design of
FTMS where individual processors may produce multiple data elements. Our approach
is to transform the non-fault-tolerant system directly to satisfy the fault detectability and
locatability constraints to obtain a fault-tolerant system. The new scheme is more
efficient than the prcvioué schemes with respect to the number of checks used in the
overall system. Examples are provided for the illustration of the design methodology and

for the comparison of various schemes.

93

5.4.1. An alternative approach

For completeness of the thesis we briefly describe an alternative approach for
designing a fault-tolerant system by mapping a fault-tolerant 'algorithm on a suitable mul-
tiprocessor architecture which will minimize the overhead [52]. To that end, a depen-

dence graph-based approach has been suggested by Vinnakota and Jha in [52].

In the first stage of the design process, a particular encoding scheme is selected to
meet the fault tolerance specifications. In the second stage, an optimal architecture to

implement the scheme is chosen using dependence graphs.

Dependence graphs are graph-theoretic representations of algorithms [53]. After
the first stage of the design, the encoded algorithm is represented as a dependence graph.
This graph is then projected in several directions to obtain different realizations of archi-
tectures, among which the one with the optimal features is chosen. It was demonstrated
that not all architectures are suitable for a particular ABFT scheme. In this study the
authors claim that their approach is architecture independent. However, most of the
cost-effective fault tolerance algorithms known until now are architecture specific.
Therefore, the selection of a particular algorithm dictates the selection of the architecture

also.

94

CHAPTER 6.

HIERARCHICAL DESIGN AND ANALYSIS

6.1. Introduction

The complexity of the detectability algorithm, based on the matrix model, is linear
in the number of data elements, whereas the complexity of the locatability algorithm is
quadratic in the number of data elements in the system. Even though these complexities
are less than the complexities of previous algorithms [23], the computation may require a
large amount of time and memory when the system has a large number of processors pro-
ducing huge volumes of data. This motivates the development of a hierarchical approach
to analysis which will reduce the complexity of the algorithms to a polynomial in the log-

arithm of the number of processors in the system.

A natural way to build large systems is to first build small units and then to con-
struct bigger units from the small units in a hierarchical fashion. This principle has been
followed in the design of most of the existing large multiprocessor systems. That is, a
small unit is replicated many times with a systematic method of interconnection. For
example, a two-dimensional mesh connected processor array may be considered as multi-
ple replications of a linear array with corresponding elements of the copies connected in
a linear fashion. It has been suggested that in such complex multicomputer structures,

fault tolerance should also be handled in a hierarchical fashion [1]. However, even when

95

the error detection, fault location and recovery are performed in a hierarchical fashion,

analysis of these systems has conventionally been done without exploiting the hierarchy
[23,46,18,51].

In this chapter, we dgvelop tcchhiques to analyze fault-tolerant multiprocessor sys-
tems in a hierarchical fashion. The fault tolerance of the system at different levels of the
hierarchy is determined separately and the overall fault tolerance capabilities are derived
from those values. In order to exemplify such an approach, we first describe a type of
hierarchy one may follow in order to build a large fault-tolerant multiprocessor system.
'I"hen, we develop an analytic technique that is based on a hierarchical description of the

system using the matrix model mentioned carlier.

In the proposed hierarchical design, large fault-tolerant systems are constructed
from smaller units (basic units) of known fault tolerance capabilities. Basic units (proces-
sors as well as checks) are replicated several times at the next level of the hierarchy and
new checks are introduced. This procedure is repeated recursively through various levels
of hierarchy. The ability to analyze different checks at different levels of hierarchy
greatly simplifies the overall analysis of large systems, as we shall see in Section 6.3.
We derive the relationship between the fault detectability (locatability) of the basic unit
and the fault detectability (locatability) of systems hierarchically derived from the basic
unit. In order to make the development of the theory simple, we first assume that the
processors in the fault-tolerant systems under consideration produce only one data ele-
ment each. However, the techniques developed in Chapter 5 may be used to extend the
design to systems where individual processors produce multiple numbers of data ele-

ments.

96

The organization of the chapter is as follows. In Section 6.2 we develop the concept
of independent and orthogonal checks. Section 6.3 deals with the hierarchical design and

analysis of fault-tolerant systems. Our conclusions are stated in Section 6.4.

6.2. Independent and Orthogonal Checks

In this section, we develop certain properties of (g,h) checks which are described in
Chapter 2. These properties are eventually used in the hierarchical analysis of systems.

DEFINITION 6.1. The Domain of a set of check S (denoted as D (S)) is defined as the
set of processors that are checked by these checks.

D(S) = {P; | PC;j#® ,forall c; e S}

where PC represents the PC matrix and @ is the null set. O

DEFINITION 6.2. Sets of checks §; and S, are said to be independent if and only if
D)D) = @. O
In Figure 6.1, A and B are the domains of sets of checks S, and §,, respectively. Since
AB = ®,5; and S, are independent checks.

DEFINITION 6.3. det (A) | 5 is defined as the fault detectability of system A when it is
checked by S. . a

DEFINITION 6.4. loc (A) s is defined as the fault locatability of system A when it is

checked by S. O

LEMMA 6.1. If S, and S, are two independent sets of checks and A; and A, are
their respective domains, then

det (A1 UA2)|s, s, = min [det(A1)ls,, det(A2)ls,].

97

S1

Figure 6.1. Independent checks.

PROOF: Follows from the definition of independence. O

LEMMA 6.2. If S; and S, have the same domain 4, then

det(A)ls, s, 2 max [det(A)]s,, det(A)ls,].

PROOF: Since S; and S are applied on the same set of processors, a fault will be
detected if either S, or S, detects it. Therefore, such an arrangement should be able to
detect as many faults as either S; or Sz, whichever is larger. O

Similar results apply to the locatability of systems too. Now we find an upper limit
for det(A)15,_ss, and loc(A)!5, s, Intuitively, the upper limit is going to be dependent

on the domains of individual checks in S, and S.

DEFINITION 6.5. Sets of checks S; and S are said to be orthogonal to each other if:
(1) any check in §; has at most one processor in common with any check in S;; (2) for
every check in §; there is at least one check in S which shares a processor with the

checkinS;. O

98

EXAMPLE 6.1. The set of the row checksums and the set of the column checksums

applied to a mesh-connected processor array form two orthogonal sets of checks. a

LEMMA 6.3. If S| and S, are two sets of checks having the same domain A, then

det(A)ls, s, 18 maximized when S| and S, are orthogonal to each other.

PROOF: Fault detectability of the system will be a maximum if individual checks
in §; share a minimum number of processors with the checks in §;. However, since it is
necessary that every processor in A is checked by at least one check in Sy and by at least
one check in S5, the minimum number of processors that they can share is one. There-
fore, for the detectability to be a maximum, it is necessary that the checks are orthogonal
to each other. a

THEOREM 6.1. If det(A)ls, =1y, det(A)ls, =13, loc(A)ls, =1, and
loc(A)lg, = I3, where ¢y, t221, then

det(A)ls, s, < (1 +D(e2+1)

loc(A)ls, s, < U1 +1) Uz +1).

PROOF: By the definition of detectability, the minimum size of a fault pattern
which cannot be detected by S, is (¢; +1). Similarly, the minimum size of the fault pat-
tern which cannot be detected by S, is (z; +1). We want to maximize the size of the
smallest fault pattern which cannot be detected by checks in both §; and S,. From the
previous lemma, the detectability is maximized when the checks are orthogonal. In this
configuration one can observe that the maximum of the size of the smallest undetectable
fault is equal to the product of the size of the smallest fault pattern undetectable by S,

and the size of the smallest fault pattern undetectable by §,. That is,

99

det(A)s, s, < ¢ +D @+ 1.

With a similar logic we arrive at the corresponding result for the locatability of the
system. a

In the following section, we show that this is a reachable bound. We describe the
construction of a fault-tolerant system which achieves the maximum fault detectability

and locatability.

6.3. The Hierarchical Approach

Our main objective is to show how checks can be treated at different levels of
hierarchy during the analysis of a system. To that end we first describe a hierarchical
approach for the design of fault-tolerant multiprocessor systems. One may seek various
kinds of hierarchies to design a system. However, the particular hierarchy we suggest is
motivated by two factors: (1) most of the existing multiprocessor systems are built using
this type of hierarchy; for example, in the binary hypercube, an n—dimensional cube is
constructed by connecting the corresponding processors in two n-1 cubes; (2) this will
maximize the fault detectability and locatability of the overall system for a given fault

detectability and locatability of the basic unit [54].

Before going into the details of the type of hierarchy we use in the design and
analysis of systems, we will establish some properties related to the fault
detectability/locatability of fault-tolerant systems and the error detectability of checks
used in those systems. In this section, we assume that every processor produces only one
data element and that the fault in a check-evaluating processor will not invalidate the

checks performed by that processor. The presence of a fault is manifested as a single

100

error. In other words, there is a one-to-one correspondence between faults and errors.

Therefore, in ensuing discussions, we will use the terms fauits and errors interchangeably.

DEFINITION 6.6. A fault-tolerant multiprocessor system is said to be bounded if and
only if r < N where ¢ is the fault detectability of the system and N is the number of proces-

sors in the system. A O

The concept of boundedness is relevant only if the checking operations do not
become invalid even if the corresponding check processors fail. This may be achieved
either by employing an external processor for the checking operation or by building the
checking units inside the check processors to be totally self —checking. If this condition is
not satisfied, trivially, the fault detectability of a system cannot exceed the number of

check evaluating processors in the system and hence the system is always bounded.

EXAMPLE 6.2. Consider a mesh connected processor array in which processors are
checked by column checks and row checks as shown in the Figure 6.2. Let the error
detectability of the column/row checks be h=2. Using the algorithms given in the
preceding section we find that the array in Figure 6.2 (a) has a fault detectability = 4, and
the one in Figure 6.2 (b) has a fault detectability = 8. Therefore, system (a) is

not bounded whereas system (b) is bounded. O

DEFINITION 6.7. A check is said to be bounded if it checks more than 4 data ele-

ments. O

LEMMA 6.4. A sufficient condition for a system to be bounded is that all the checks

performed in the system are bounded.

101

@ ®)

Figure 6.2. Examples for unbounded and bounded systems.

PROOF: Proof by contradiction: Suppose all the checks are bounded and the system
is not bounded, which implies N =¢. However, when all the processors are faulty, every
check will be checking greater than 4 errors, and hence all of them will produce invalid
results. Therefore, we cannot detect the simultaneous presence of N faults which is a
contradiction to the hypothesis. O

It may be noticed that in Example 6.2, the system represented in Figure 6.2 (b) has
all its checks bounded and hence the system is bounded as we had found out by other
means.

LEMMA 6.5. If 5;, for i = 1,2,..., are subsystems of a given system S such that s; = S,
then S is bounded if and only if at least one subsystem s; is bounded; then the fault
detectability/locatability of S is less than or equal to the fault detectability/locatability of
8.

PROOF: The proof for the necessary condition is trivial, since by definition of s; it

could be the system S itself.

102

Proof of the sufficiency condition: Let s; be a bounded subsystem. Then, irrespec-
tive of the rest of the system, the subsystem s; will have a detectability, ¢ < Is;| where
Isj! denotes the number of processors in the subsystem. However, if the rest of the sys-
tem has a detectability strictly less than ¢, then the overall detectability (T) of the system

will be also strictly less than . Therefore, T <t <1S | and hence the proof. O

The motivation for Lemma 6.5 is to point out that if we add more processors to an
already bounded system (note that there are no new checks added to the existing system
during the expansion), the fault detectability of the overall system does not increase. We

make use of this inference in the formulation of Theorem 6.2.

6.3.1. Construction of a hierarchical system

We now outline the procedure to build a hierarchical system from a basic unit. Let
B be the given basic system with a known fault detectability and locatability. First we
replicate copies of B (replication involves replication of the checks also). Let Py, P, ...,
P, be the processors in B which are checked only by bou‘nded checks. As a second step
in the hierarchical expansion of the system, r new checks are introduced such that the
first check performs the evaluation of processor Py in B and all its image processors in
other copies of B, the second check evaluates processor P2 and all its copies, and so on.
The procedure is illustrated in Figure 6.3. We do not have to provide a check at the
higher levels for .those processors which are checked by at least one unbounded check
because an unbounded check will always fail if the processor(s) checked by that check is

(are) faulty regardless of the presence of any other fault.

103

Cl

CI- Intemal check
CH - Check in the higher level

Figure 6.3. Hierarchical expansion of a basic system.

In the figure, By, Bz, ..., Bx-1 are copies of the basic system B. CI represents the set
of checks which are internal to every copy of B and CH represents the set of checks in the
next higher level. In the following discussion, this kind of a construction will be referred
1o as k-fold expansion of B in the next level of hierarchy. Following a similar procedure,

the expanded system may further be extended in the next higher level of the hierarchy.

It may be noted that the checks introducc& at different levels of hierarchy may be of
different types having different values of error detectability. In order to simplify the
development of our theory, we assume that all the checks in the system are similar, and
have the same error detectability. However, the value of g may be different. An impor-
tant restriction we impose while expanding the system is that there is no data migration
allowed between processors in different copies of the basic unit. In other words, faults in

one copy of the basic unit will not affect other copies.

104

Now we derive the relationships between the fault detectability (locatability) of a

basic unit and a system obtained by hierarchically expanding the basic unit.

‘THEOREM 6.2. If ¢ and / are the fault detectability and locatability of a bounded
basic system B, and § is a k-fold (k <g) d-level hierarchical expansion of B, then the fault

detectability (7;) and locatability (L;) of S are

IB | k%! for 1<k<h
Td =
e+ (A+1)4"1 =1 for k> h

Lg=2410+1)-1 fork>1
where | B | represents the number of processors in the basic system.

PROOF: We prove the theorem by induction on the number of levels, 4.

Proof for the detectability part:
Case 1. 1 <ksh

Basis:d =2
Consider the lowest level and the next higher level of hierarchy (i.e., level 2). When
k < h, none of the checks in level 2 will become invalid for any combination of faults in B
and the copies of B, since none of these checks are evaluating more than 4 data elements.
On the other hand, at least one of these checks will fail for any combination of faults in
the system. Therefore, the fault detectability is equal to the number of processors in the
system which is equal to IB | . k.
Inductive Step:
Let the hypothesis be true for the number of levels up tod — 1. Then

105

Ty =I1B1 k42
Now considering S,_; as the basic unit and applying the basis case, we arrive at
T, =184 1 k=(1B 1 k%)k =1B 14"
Note that in this case the resulting system is not bounded.
Case 2. k> h.
Basis: d=2
Here, also, we first consider the basic unit B and its next level of hierarchy. We now
prove that there exists at least one fault pattern of cardinality (1+1)(2+1) which will not be
detected in the 2-level system. Let there be identical fault patterns of cardinality (r+1)
occurring in (h+1) copies of B. These faults will not be detected by checks inside the
copies of B, since the fault detectability of B is equal to r. Every check at the second level
is either checking processors which are not faulty or (h+1) processors which are faulty.
In either case, the checks may produce a "pass” output (since the error detectability of the
checks is equal to A, faults of cardinality (h+1) may invalidate the checks). This means

that the faults will not be detected in this level, also.

Now we prove that every fault pattern of cardinality less than or equal to
(¢+1)(h+1) — 1 will be detected. In order for such a fault pattern not to be detectable in the
lower level, it is necessary that the copies of B having faulty processors should have more
than ¢ faults present in them. The fault is not detectable in the higher level only if the
checks evaluating the faulty processors check more than h errors. If we distribute
(¢+1)(h+1) - 1 faults into (h+1) copies such that every basic unit has at least (z+1) faults,
by the pigeon hole principle [55], at least one of the subunits will have <: faults, and

hence the fault is detectable in that copy. Conversely, if every subunit has 2 (¢+1) faults,

106

at least one check in the next level will be checking <4 faults, and will detect those
faults.
Therefore, the fault detectability of a 2-level expansion of B is (¢+1)(h+1) - 1.

Inductive Step:
Let the hypothesis be true for the number of levels up to d~1. Then

Ty = @+DR+1)42 -1,

Now applying the basis case, we have

Ty =Ty + DA+ =1 = ¢+Dr+D4 1 =1,
Proof for the locatability part:
Basis: d=2
Here, also, we first consider the lowest level of hierarchy and the next level. First, we
prove that there exists a fault pattern of cardinality (2! +2) which will not be correctly
located in a 2-level system. Consider two identical fault patterns of size (I + 1) occurring
on two copies of B. Since the locatability of B is /, these fault patterns will not be located
correctly within the copies of B (that is, the internal checks cannot locate the faults
correctly). Even if all the checks in the next level detect faults, it may not be possible to

locate the faults among the copies of B.

Now we prove that any fault pattern of cardinality <2/ +1 will always be correctly
located in a 2—-level system. Consider a fault pattern of size (2/ + 1). If we distribute the
individual faults in this pattern among various copies of B, by the pigeon hole principle,
at most one copy of B will have 2 (/ + 1) faults. Let us denote such a copy as B;. Now the

total number of individual faults distributed among all the other copies will be <!.

107

Therefore, any of those copies will have a fault pattern of cardinality </ and will be
correctly located by checks within the copy. Now let us consider locating the fault
within B;. The maximum size of a fault which may occur in B; is 2/ +1 in which case
none of the other copies will have any fault in them. Since ¢ (21 +1) [18]), the faultin B;
will be detected by checks within B;. The checks in the next level are checking only one
fault each, and therefore, they can locate the faults within B;. Hence the fault is locat-

able.

Now we consider a more general case in which the number of faults in B; is (! +r)
where r > 1. The rest of the copies of B will have a total of (! —r + 1) faults. Regardless of
the way these faults axc distributed among these copies, there will be at least 2r —1)
number of faults in B; such that there are no faults in any other copy of B in the
corresponding positions (we refer to these faults as unobscured faults). These (2r —1)
faults in B; can be located by checks in the higher level. The remaining (/ ~r +1) faults
can be uniquely located with the help of the syndrome gene;atcd by the internal checks
of B; since (I -r+1)<l Therefore, any fault pattern of cardinality <(2/+ 1) can be

uniquely located in a 2-level system.

Inductive Step:

Let the hypothesis be true for the number of levels up to d—1. Then

Ly =242+ -1
Now applying the basis case, we arrive at

Ly = 2Ly q+1 =29710+1) - 1.

108

It may be noted that the fault detectability of a system increases as the number of
copies (k) in the same level increases, until k£ reaches a value equal to h. For &k > A, the
system is bounded in that level and the fault detectability attains a constant value as
described in the beginning of this section. Locatability, however, is independent of the
value of k. This is because of the generality of the definition of checks where we assume

that an individual check can locate no faults, even though it can detect multiple faults.
In the following, we present two examples to illustrate the hierarchical construction
of fault-tolerant systems.

EXAMPLE 6.3. As a first example, we consider a linear processor array as shown in
Figure 6.4 (a). In the array, all the processors are evaluated by a check with error detec-
tability, A = 1. Fault detectability of such a linear array is equal to 1 (i.e., t=1) and fault
locatability is equal to 0 (1=0). Now we expand the system hierarchically to form a two
dimensional mesh connected processor array as shown in Figure 6.4 (b). The newly
added checks in the new level are shown by dotted lines.

By the previous theorem, the fault detectability of the mesh connected processor

array is
Ty=(@+1)a+D)¥ 1 -1 =2x2-1 =3,
The fault locatability L is

Ly =210+ 1)-1 =2x0+1)-1 =1.
These values conform to the values obtained from the analysis using the nonhierarchical

algorithms presented in Section 6.2.

109

(@ (®)

Figure 6.4. Hierarchical expansion of a linear array.

EXAMPLE 6.4. As a second example, we consider the hierarchical expansion of the
Advanced Onboard Signal Processor (AOSP) architecture [48]. From the analysis of this

system we find that the system is 3—fault detectable and single fault locatable.

Now let us consider a 4—fold 2—level expansion of AOSP (i.c., using AOSP as the
basic system). The expansion scheme is illustrated in Figure 6.5. Every copy of AOSP
is associated with six internal checks. Nine additional checks are added in the next level
as shown in the figure by dotted lines. By Theorem 6.2, the fault detectability and locata-

bility of this system are 7 and 3, respectively. a

6.3.2. The number of checks in the hierarchical system

In this section we compute the number of checks required in the hierarchical con-
struction of a system in terms of the number of checks in the basic unit and the number of

levels in the system. Here we assume that all the checks in the system (including the

110

AOSP

AOSP AOSP AOSP

Figure 6.5. Hierarchical expansion of AOSP architecture.

checks in CI) are bounded.

THEOREM 6.3. The number of checks used in a hierarchical system built by a
k—fold, d—level expansion of a basic unit is

Hy = rk%V+n(d-1)k42.

where 7 is the number of checks in the basic unit and » is the number of processors in the
basic unit.

PROOF: By construction, the number of checks in a hierarchical system satisfies
the recursive equation

Hy = kHy_y +Ny_,

where N,_; is the number of checks in the (d—1)-leve! system. Since N;=n k4!,

Hy = kHyy +nk¥2,

111

Solving the recursive equation with boundary conditions, H; =r and H, =rk +n yields
that

Hy = rk ' +n@d-1k*2 a

However, we observe that it is not necessary to have all the H, checks. The obser-

vation is elaborated in the following lemmas.

LEMMA 6.6. There exists a 2—level system with detectability T, which requires only
H, - T, checks.

PROOF: We shall prove that even if we remove any T; (note that T =¢) checks
from the set of checks in the second level, the detectability of a 2-level system remains
the same as T,. Any detectable fault in the system should be detected either at the lower
level (by CIs) or in the higher level. If the fault is detected in the lower level, removal of
checks from the higher level is not going to affect the detectability of the fault. There-
fore, we need to consider faults which are detectable only in the higher level. If such a
fault occurs, some copies of the basic unit will have 2 (¢ + 1) number of faults whereas the
rest of the copies will not have any faults at all. However, from Theorem 6.2 we know
that there are at most h copies of the basic unit having 2 (¢ + 1) number of faults. In Fig-
ure 6.6, the large ellipses represent copies of the basic~ unit which have 2 (¢ + 1) faults.
The shaded portions represent T processors in every basic unit which are not checked in
the next higher level. The corresponding checks which are removed from the system are
denoted as set U. Since the size of the fault patterns present in the copies is 2 (¢ + 1), at
least one faulty processor in that copy will be checked by a check Cy in the set (CH - U).

Since the number of such faults checked by every check in (CH - U) is at most 4, the

112

fault will be detected. Thus, the detectability is unaffected despite the removal of T,

checks from the original hierarchical system. a

A similar result exists related to the locatability of a system. However, a distinction
has to be made between the problems of detectability and locatability here: in the case of
detectability, we need help from the higher-level checks only when the fault is undetect-
able in all the copies of the basic unit whereas, in the case of locatability we need to use
the higher-level checks whenever at least one copy of the basic unit has a fault pattern
that is unlocatable with the help of the internal checks. Intuitively, we cannot remove as
many checks in the case of locatability as in the case of detectability and still preserve
the overall locatability of the system.

LEMMA 6.7. There exists a 2—level system with locatability L, which requires only
Hj; -1 checks.

PROOF: From Theorem 6.2, we know that there is at most one _copy of the basic
unit which has 2 (! + 1) number of faults, and we know that the purpose of the higher

level checks is to locate correctly the unobscured faults. Therefore, we must ensure that

the unobscured faults should not lie entirely inside the shaded region (that is, the set of
PR\ z%} N\

v —& @
1< Z

N 4 N

<t§9

Figure 6.6. Unnecessary checks in the second level of hierarchy.

113

processors which had been checked by the checks in U). Since the minimum size of the
set of unobscured faults is one, the maximum number of checks we can remove from CH,

without altering the locatability of the system, is one. a

Now we generalize these results for a d—level system. Even though the saving in
terms of the number of checks is small for a 2-level system, it will be shown that the
overall saving may be significant for larger values of d.

THEOREM 6.4. There exists a k—fold, d—level system with detectability Ty using H, -
det

U, number of checks, where

det

(G+D S (k4 =1) (h+ 1) = 5w -1

U
¢ (k = 1) im] i=]

PROOF: From Lemma 6.6, we know that in a 2-level system, T, number of checks
are unnecessary. In the hierarchical expansion, the second level systems will be con-
sidered as the new basic units and are replicated in the third level. Here, the overall sav-
ing will be Ty k +T,. If we recursively calculate the number of checks saved, we arrive

at

dc md-l j=d—i=1

= ¥ Ti(Z k’).

im]
Now substituting the value for T; as (t+1)(h+1)""', we have

det

Us = @+ F @D G -F @ - D)

(k - l) i=l i=]) D

THEOREM 6.5. There exists a k—fold, d—level system with detectability 7, and loca-

tability L, using H, - 1°cUd number of checks, where

i=d-1 j=i-2
ey, = 3 (% %%

i=]

114

PROOF: The proof is very similar to the previous theorem except that in every
level we save only one check during expansion. In the second level we save one check,

in the third level (k + 1), and so on. In general the number of checks saved in level i is

=i-2
equal to ’ Y, /. Summing all those values up to level 4,
j=0
imd-1 j=i-2
ey, = 3 (3 kh.
il jed O

6.3.3. Hierarchical analysis of systems

The hierarchical principles derived in the preceding section can be translated into
the domain of the fundamental matrices which constitute the matrix model. Replication
of the basic unit is equivalent to a repetition of the PC matrix of the basic unit along the
diagonal. The addition of checks in the new dimension is tantamount to adding identity
matrices (one identity matrix per diagonal submatrix) to the expanded PC matrix. The
matrix equivalent of the hierarchical expansion of a system is shown in Figure 6.7. Here

PC represents the PC matrix of the basic unit and / is an identity matrix.

In order to analyze a given system hierarchically, we first arrange the rows and
columns of the PC matrix in such a way that the final matrix is in the form shown in Fig-
ure 6.7. Now, the detectability and locatability of the basic PC matrix can be computed,
from which the detectability and locatability of the entire system can be derived using the
results in Theorem 6.2. Note that, typically, the size of the basic unit is considerably

smaller than the size of the entire system.

However, in certain designs, it may be the case that the diagonal PC matrices will

have the same number of rows, but a different number of columns, that is, during

115

re="=" re—=°9
e | T
beemdmmon pee=d
i O D
R S bo--
[] 3
:ch ! [
0 L
P PCL I
| U S |

L

Figure 6.7. The PC matrix of a hierarchical system.

replication of the basic unit, all the internal checks (CI) were not replicated. In this case
the fault detectability and the locatability of the images of the basic unit may be different.
In such a case we cannot compute the actual values of fault detectability and locatability
of the hierarchical system. However, we can calculate a lower bound on these figures.
COROLLARY 6.1. (Of Theorem 6.2.) If the diagonal PC matrices have different
detectabilities and locatabilities, then the detectability and locatability of the hierarchical

system are bounded by
Ty 2 (tmin + DA+ =15
Ly 2 22 W(mn+D-1;

where ¢, is the minimum value of detectability and /min is the minimum value of locata-

bility among the copies of basic units.

116

6.4. Conclusions

We developed the concept of independent and orthogonal checks depending upon
the set of processors checked by the given sets of checks. Using orthogonal checks,
hierarchical techniques for the design and analysis of large fault-tolerant multiprocessor
systems were developed. We introduced the method to model different levels of checks,
which greatly simplifies the analysis and design of systems. The relationships between

the fault-diagnosing capabilities of basic systems and their hierarchical expansions were

derived.

117

CHAPTER 7.

CONCLUSIONS

7.1. Summary of Results

In many critical applications of VLSI-based computer systems, it is important to
have high performance as well as high reliability. High reliability has been achieved by
the application of fault tolerance techniques. | Since the fault tolerance techniques are
dependent on the redundancy involved in the computations, such systems are either
costly due to the hardware redundancy involved or they are unable to reach high perfor-
mance levels due to the time redundancy. Therefore, the problem in hand is to invest-
gate techniques by which a high degree of fault tolerance can be achieved without
sacrificing too much performance. Algqrithm—based fault tolerance (ABFT) has been
proposed as a cost effective scheme to achieve fault tolerance in multiprocessor systems.
These schemes use functional as well as system-level concurrent error detection for the

fault diagnosis in a system.

This thesis has addressed the problem of modeling fault-tolerant systems using con-
current error detection schemes in general and those using ABFT schemes in particular.

The major results in the thesis are recapitulated in the following.

In Chapter 2, we have given a general description of multiprocessor systems which

have been selected for the application of ABFT systems. In order to exemplify the

118

technique, we illustrated how fault-tolerant matrix multiplication can be performed on a
mesh-connected processor array using checksum encoding techniques. Since most of the
signal processing computations can be represented as matrix operations, it is desirable to
have generalized encoding schemes for fault-tolerant matrix operations. In this chapter,
we developed a general set of real-number codes for these computations. We proved that
for every linear finite-field code, there exists a real-number code having similar error
diagnosing capabilities as the finite-field code. Since most of the codes known until now
fall in the set of finite-field codes, our new result has a far-reaching effect in the area of

coding theory as it forms a bridge between finite-field codes and real-number codes.

A matrix-based model for ABFT systems is presented in Chapter 3. The model
consists of three matrices: the PD (processor-data), the DC (data-check), and the PC
(processor-check) matrix. The model used a broad interpretation of faults, errors, and
checks. The problem of invalidation of a check, performed by a faulty processor, is
efficiently handled by translating it into the problem of error detection at the output of the
faulty processor. Based on the model, various necessary and sufficient conditions for the
fault detectability and locatability of systems are derived. Using these constraints and
sufficient conditions, algorithms were developed for the analysis of ABFT systems.
These algorithms are much less complex than the previously available algorithms. A

detailed discussion of the algorithms is given in Chapter 4.

Chapter 5 dealt with design of ABFT systems. We developed a systematic and
straightforward methodology for the design of ABFT systems. The design requires a
smaller number of checks when compared to the previous bounds, especially when the

individual processors in the system are computing large volumes of data. Other

119

advantages include the flexibility of the algorithm to accommodate varying amounts of
computation performed by the computing nodes and the ability to handle detectability
and locatability of the system simultaneously. The application of the matrix model

helped in identifying the redundant checks using simple matrix operations.

In Chapter 6, we introduced a hierarchical approach for the analysis of fault-tolerant
multiprocessor systems. Even though inclusion of checks at different levels of hierarchy
has been practised in the past, the analysis of such systems was carried out on the basis of
a nonhierarchical ("flat") description of the system. We proposed a hierarchical approach
for the analysis of these systems. We treat the checks at different levels of hierarchy.
The fault tolerance of the system at different levels is estimated separately and the
overall fault tolerance is derived from those values. In order to illustrate the concept, we
introduced a special type of hierarchy for the design of multiprocessor systems. This par-
ticular type was chosen since it is easily applicable to most of the commercially available
multiprocessors. In addition, we observed that this particular type of hierarchy maxim-
izes the fault detectability and locatability of the overall system for a given error-

detecting capability of the individual checks.

7.2. Suggestions for Future Research

Even though ABFT techniques have been applied to most of the signal processing
computations, the applicability of the technique in other computations and data manipu-
lations has to be further investigated. As mentioned in Chapter 2, the ABFT techniques
are application specific. However, it may be possible to identify groups of computations

which can use similar encoding schemes to make the computation fault-tolerant. For

120

instance, we have shown that there exists a general set of real-number codes applicable to
various matrix operations such as multiplication, addition, transposition, and LU-
decomposition. Similar generalization of codes for various other computations is desir-
able.

In the graph model as well as in the matrix model, it is assumed that all the data
values checked by a check processor are available simultaneously at the input of the
check processor. In fact, this is a general assumption made by researchers in coding
theory. However, in system level diagnosis the availability of a particular data element
at the input of a checking processor is dependent on: (1) the computing speed of the par-
ticular node which computes that data element; (2) the speed and band width of the com-
munication channel between the computing node and the evaluation node; (3) the data
traffic in the system. Therefore, it is desirable to include some timing features into the
check evaluaton process. In [56] the researchers use Petri Nets to study the timing
behavior of fault-tolerant systems. The limitation of this approach was that even for sys-
tems having a small number of processors, it takes a large amount of time to verify the
fault tolerance capabilities of the system. It will be interesting to study the possible
extension of the matrix-based model to include time-dependent checks. We believe that

with such a formulation, a faster evaluation of fault-tolerant systems will be possible.

Another suggestion is to extend the field of application of the matrix-based model.
The advantage of the proposed model is that it is independent of the particular computa-
tional algorithm associated with the ABFT system. In order to model a system we need
to know only the relationship between the various entities in the system. It is not difficult

to model a fault-tolerant software system using this model. The difference between

121

hardware and software modeling is that instead of each processor module in the hardware
case, we will have a program module in the software system. In fact, the use of the
model in the analysis and design of fault-tolerant software systems will be even more
effective since the interaction between various nodes in the system is not limited by the

physical interconnection between them.

The hierarchical approach developed in Chapter 6 deals with only one type of
hierarchy. Even though this covers many of the commercially available fault-toleraht
array processors, a generalization of the concept of hierarchy is desirable. In the pro-
posed hierarchy, the checks at different levels are assumed to be orthogonal to each other.
A general case may be derived by assuming less stringent relationships between the
checks.

As mentioned in Chapter 5, there have been two approaches followed by ABFT sys-
tem designers: (1) given a non-fault-tolerant system, determine an efficient distribution
of checks among the output data clements so that the system has the desired amount of
fault tolerance; (2) given a fault-tolerant algorithm, synthesize an architecture so as to
maximize quantities such as the fault detectability and locatability of the system. In the
first approach, the fault-tolerant design is constrained by the fixed, non-fault-tolerant
architecture. Often, this may result in an inefficient design (as far as fault tolerance is
concerned); however, it preserves the high performance of the original architecture. In
the second approach, performance may be sacrificed in the process of achieving high
fault tolerance. Therefore, a more efficient approach would be to synthesize fault-
tolerant architectures directly from the original algorithms so that the architecture is

optimal with respect to performance, diagnosability, and reconfigurability.

(1]
(2]

(3]

4]

(5]

(6]
(7]

(8]

[9]

[10]
[11]
(12]
(13]

[14]

122

REFERENCES

D. A. Rennels, ‘‘Fault-tolerant computing - concepts and examples,”” /EEE
Trans. Comput., vol. C-33, pp. 1116-1129, Dec. 1984.

Ravishankar K. Iyer, Steven E. Butner, and Edward J. McCluskey, ‘‘A statistical
failure/load relationship: Results of a multicomputer study,’”” IEEE Trans.
Comput., vol. C-31, pp. 697-705, July 1982.

T. Anderson and P. A. Lee, Fault Tolerance - Principles and Practice . New,
Jersey: Prentice Hall Inc., 1981.

J. Von Neumann, ‘‘Probabilistic logics and the synthesis of reliable organisms
from unreliable components,”” in Automata Studies. Princeton, NJ: Princeton
University Press, pp. 43-99.

T. B. Lewis, ‘‘Primary processor and data storage equipment for orbiting
astronomical observatory,”” IEEE Trans. Elect. Comput., vol. EC-12, pp. 677-
686, Dec. 1963.

J. G. Tryon, ‘‘Quadded logic,”” in Redundancy Techniques for Computing
Systems. Washington, DC: Spartan Books, 1962.

I. Koren, ‘‘A reconfigurable and fault-tolerant VLSI multiprocessor array,’”’ in
Proc. 8th Int. Symp. on Computer Architecture, Minneapolis, Minnesota, pp.
425-442, May 1981.

S. Y. Kuo and W. K. Fuchs, ‘‘Efficient spare allocation for reconfigurable
arrays,’’ IEEE Design and Test, pp. 24-31, Feb. 1987.

M. Lowrie and W. K. Fuchs, ‘‘Reconfigurable tree architectures using sub-tree
oriented fault tolerance,’’ IEEE Trans. Comput., vol. C-36, pp. 1172-1182, Oct.
1987.

M. Sami and R. Stefanalli, ‘‘Reconfigurable architectures for VLSI processing
arrays,”’ Proc. IEEE, vol. 74, pp. 712-722, May 1986.

P. Velardi and R. K. Iyer, ‘‘A study of software failures and recovery in the MVS
operating system,’’ /EEE Trans. Comput., vol. C-33, June 1984.

J. Wakerly, Error-Detecting Codes, Self-Checking Circuits and Applications.
New York: Elsevier North Holland Inc., 1978.

M. A. Breuer and A. D. Friedman, Diagnosis and Reliable Design of Digital
Systems. Maryland: Comput. Sci. Press, 1976.

K. H. Huang and J. A. Abraham, ‘‘Algorithm-based fault tolerance for matrix
operations,”’ /IEEE Trans. Comput., vol. C-33, pp. 518-528, June 1984.

[15]

[16]

(17]

[18]

(19]

(20]

(21]

(22]

[23]

[24]

[25]
[26]

[27]

[28]

[29]

123

P. Banerjee, J. T. Rahmeh, C. B. Stunkel, V. S. S. Nair, K. Roy, and J. A.
Abraham, ‘‘Algorithm-based fault tolerance on a hypercube multiprocessor,’’
IEEE Trans. Comput., (to appear).

J. Y. Jou and J. A. Abraham, ‘‘Fault-tolerant matrix arithmetic and signal
processing on highly concurrent computing structures,’’ Proc. IEEE, vol. 74,
no.5, pp.732-741, May 1986.
F. P. Preparata, G. Metze, and R. T. Chien, “‘On the connection assignment
problem of diagnosable systems,”’ IEEE Trans. Electron. Comput., vol. EC-16,
pp. 848-854, December 1967.

J. D. Russel and C. R. Kime, *‘System fault diagnosis: Closure and diagnosability
with repair,”” IEEE Trans. Comput., vol. C-24, pp. 1078-1088, 1973.

J. D. Russel and C. R. Kime, ‘System fault diagnosis: Masking, exposure, and
diagnosability without repair,”’ IEEE Trans. Comput., vol. C-24, pp. 1155-1161,
1975.

M. Adham and A. D. Friedman, “Digital system fault diagnosis,’” J. Design Aut.
and FaultTol. Comput., vol. 1, no.2, pp. 115-132, Feb. 1977.

S. N. Maheswari and S. L. Hakimi, “‘On models for diagnosable systems and
probabilistic fault diagnosis,”” /EEE Trans. Comput., vol. C-25, pp. 228-236,
Mar. 1976. :

H. Fujiwara and K. Kinoshita, ‘‘Some existence theorems for probabilistically
diagnosable systems,”’ IEEE Trans. Comput., vol. C-27, no. 4, pp. 379-384, Apr.
1978.

P. Banerjee and J. A. Abraham, ‘‘Concurrent fault diagnosis in multiple processor
systems,”’ in Proc. 16th Int. Symp. Fault-Tolerant Comput., Vienna, Austria, pp.
298-303, 1986.

R. Bisiani, A. Nowatzyk, and M. Ravishankar, ‘‘Coherent shared memory on a
shared memory machine,”’ in Proc. Int. Conf. Parallel Processing, vol. 1,
Chicago, Nlinois, pp. 133-141, 1989.

K. L. Wu and W. K. Fuchs, “‘Recoverable distributed shared virtual memory,”’
IEEE Trans. Comput., vol. 39, pp. 460-469, Apr. 1990.

J. -C. Laprie, ‘‘Dependable computing and fault tolerance: Concepts and
terminology,”’ Proc. Int. Symp. Fault-Tolerant Comput., pp. 2-11, June 1985.

T. E. Mangir, “‘Sources of failures and yield improvement for VLSI and
restructurable interconnects for RVLSI and WSI: Part II,”” Proc. IEEE, vol. 72,
pp. 1687-1694, Dec. 1984.

J. A. Abraham and W. K. Fuchs, ‘‘Fault and error models for VLSI,”” Proc.
IEEE, vol. 74, no. 5, pp. 639-654, May 1986.

M. Pease, R. Shostak, and L. Lamport, ‘‘Reaching agreement in the presence of
faults,”” J. ACM, vol. 27, pp. 228-234, Apr. 1980.

(301
(31]
(32)
[33]
[34]

(35]

[36]

(37]

(38

[39]

[40]
[41]
[42]
[43]
[44]

[45]

[46]

124

K. A. Hua, ‘‘Design of systems with concurrent error detection using software
redundancy,’’ Ph.D. dissertation, Univ. of Illinois, Urbana, Illinois, 1987.

P. Banerjee, ‘‘A Theory for algorithm-based fault tolerance in array processor
systems,”” Ph.D. dissertation, Univ. of Illinois, Urbana, llinois, 1985.

V. S. S. Nair and J. A. Abraham, ‘‘Real number codes for fault-tolerant matrix
operations on processor arrays,”’ IEEE Trans. Comput., pp. 426-435, Apr. 1990.

F. T. Luk and H. Park, ‘‘Fault-tolerant matrix triangulation on systolic arrays,’’
IEEE Trans. Comput., vol. 37, pp. 1434-1438, 1988.

J. Y. Jou and J. A. Abraham, ‘‘Fault-tolerant FFT networks,”” IEEE Trans.
Comput., vol. 37, pp. 548-561, May 1988.

C. Y. Chen and J. A. Abraham, ‘‘Fault-tolerant systems for the computation of
eigenvalues and singular values,”” Proc. SPIE, Advanced Algorithms and
Architectures for Signal Processing, vol. 696, pp. 228-237, Aug. 1986.

A. L. N. Reddy and P. Banerjee, ‘‘Algorithm-based fault detection for signal
processing applications,”’ JEEE Trans. Comput., 1990, (to appear).

C. Aykanat and F. Ozguner, ‘‘A conjugate gradient algorithm on a hypercube
multiprocessor,”” Proc. 17th Int. Symp. Fault-Tolerant Comput., pp. 204-209,
1987.

V. S. S. Nair, ‘‘General linear codes for fault-tolerant matrix operations on
processor arrays,”’ M. S. thesis, Univ. of Illinois, Urbana, Illinois, Aug. 1988.

V. S. S. Nair and J. A. Abraham, ‘‘General linear codes for fault-tolerant matrix
operations on processor arrays,”’ in Proc. I8th Int. Symp. Fault-Tolerant
Comput., Tokyo, Japan, pp. 180-185, June 1988.

R. E. Blahut, Theory and Practice of Error Control Codes. Massachusetts:
Addison Wesley, 1984.

W. W. Peterson and E. J. Weldon, Jr., Error-Correcting Codes. Cambridge: MIT
Press, 1981.

B. Bose and T. R. N. Rao, ‘“Theory of unidirectional error correcting/detecting
codes,’’ IEEE Trans. Comput., vol. C-31, pp. 521-530, June 1982.

C. W. Curts, Linear Algebra. New York: Springer-Verlag, 1984.

T. G. Marshall Jr., ‘*‘Coding of real number sequences for error correction: A
digital signal processing problem,’” IEEE Journal on Selected Areas in
Communication, vol. SAC-2, no. 2, pp. 381-392, Mar. 1984.

A. Costes, C. Landrault, and J. C. Lapnie, ‘‘Availability model 1or maintained
systems featuring hardware failures and design faults,”” JEEE Trans. Compur.,
vol. C-27, pp. 548-560, June 1978.

V. S. S. Nair and J. A. Abraham, ‘‘A model for the analysis of fault-tolerant
signal processing architectures,’’ in Proc. 32nd Int. Tech. Symp. SPIE, San Diego,
pp. 246-257, Aug. 1988.

[47]

[48]

[49]

(50]

(51]

(52]

[53]
[54]
[55]

(561

125

K. H. Huang and J. A. Abraham, ‘‘Low cost schemes for fault tolerance in matrix
operations with processor arrays,”” in Proc. 12th Int. Symp. F ault-Tolerant
Comput., Santa Monica, California, June 21-24, 1982.

J. R. Samson, Jr., and F. A. Horrigan, *‘The advanced onboard signal processor
(AOSP) - A valid concept,”” Proc. DARPA Strategic Space Symposium, pp. 1-24,
1983.

B. Vinnakota and N. K. Jha, ‘‘Diagnosability and diagnosis of algorithm-based
fault-tolerant systems,’’ in Proc. 32nd Midwest Symp. Circuits and Systems,
Urbana, Illinois, Aug. 1989.

P. Banerjee and J. A. Abraham, ‘‘Bounds on algorithm-based fault tolerance in
multiple processor systems,”’ IEEE Trans. Comput., vol. C-35, pp. 296-306, Apr.
1986.

D. J. Rosenkrantz and S. S. Ravi, ‘‘Improved bounds on algorithm-based fault
tolerance,’’ in Proc. 26th Annual Allerton Conf. on Communication, Control, and
Computing, Monticello, Illinois, pp. 388-397, Sept. 1988.

B. Vinnakota and N. K. Jha, ‘‘A dependence graph-based approach to the design
of algorithm-based fault tolerant systems,”” in Proc. 20 th Int. Symp. Fault-
Tolerant Comput., Newcastle, England, 26 - 28th June, (to appear).

S. Y. Kung, VLSI Array Processors. Englewoods Cliffs, NJ: Prentice Hall, 1988.
V. S. S. Nair and J. A. Abraham, ‘‘Hierarchical analysis and design of fault-
tolerant multiprocessor systems,’’ I[EEE Trans. Comput., (under preparation).

E. M. Reingold, J. Nievergelt, and N. Deo, in Combinatorial Algorithms: Theory
and Practice. Englewoods-Cliffs, NJ: Prentice-Hall, 1977.

J. Kljaich, Jr., B. T. Smith, and A. S. Wojcik, ‘‘Formal verificatdon of fault
tolerance using theorem-proving techniques,’’ IEEE Trans. Comput., vol. 38, pp.
366-376, Mar. 1989.

126

VITA

V. S. Sukumaran Nair was bom in - on - He

received his B.Sc. Engg. degree in Electronics and Communication Engineering from the
University of Kerala, India, in 1984. From 1984 to 1985, he was employed with the
Indian Space Research Organization (ISRO) in Trivandrum. In 1986, he enrolled at the
University of Illinois at Urbana-Champaign for his graduate studies. He received the
M.S. degree in Electrical Engineering in 1988. While pursuing his M.S. and Ph.D. stu-
dies at the University of Illinois, he held a research assistantship in the Center for Reli-
able and High-Performance Computing at the Coordinated Science Laboratory from
1986 to 1990. His research interests include fault-tolerant computing, computer architec-

ture, parallel processing, and VLSI. He is a student member of IEEE.

