
Object coding of music using expressive MIDI
Welburn, Stephen J.

The copyright of this thesis rests with the author and no quotation from it or information

derived from it may be published without the prior written consent of the author

For additional information about this publication click this link.

https://qmro.qmul.ac.uk/jspui/handle/123456789/656

Information about this research object was correct at the time of download; we occasionally

make corrections to records, please therefore check the published record when citing. For

more information contact scholarlycommunications@qmul.ac.uk

https://qmro.qmul.ac.uk/jspui/handle/123456789/656

Object Coding of Music
Using Expressive MIDI

Stephen J. Welburn

A thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Centre for Digital Music

School of Electronic Engineering and Computer Science

Queen Mary University of London

January 2011

The material contained within this thesis is my own, and all references are cited

accordingly. The copyright of this dissertation rests with the author. Information

from it may be freely used with acknowledgement.

Stephen J. Welburn

12th January 2011

2

Abstract

Structured audio uses a high level representation of a signal to produce audio out-

put. When it was first introduced in 1998, creating a structured audio representation

from an audio signal was beyond the state-of-the-art. Inspired by object coding and

structured audio, we present a system to reproduce audio using Expressive MIDI,

high-level parameters being used to represent pitch expression from an audio signal.

This allows a low bit-rate MIDI sketch of the original audio to be produced.

We examine optimisation techniques which may be suitable for inferring Expressive

MIDI parameters from estimated pitch trajectories, considering the effect of data

codings on the difficulty of optimisation. We look at some less common Gray codes

and examine their effect on algorithm performance on standard test problems.

We build an expressive MIDI system, estimating parameters from audio and syn-

thesising output from those parameters. When the parameter estimation succeeds,

we find that the system produces note pitch trajectories which match source audio to

within 10 pitch cents. We consider the quality of the system in terms of both param-

eter estimation and the final output, finding that improvements to core components –

audio segmentation and pitch estimation, both active research fields – would produce

a better system.

We examine the current state-of-the-art in pitch estimation, and find that some

estimators produce high precision estimates but are prone to harmonic errors, whilst

other estimators produce fewer harmonic errors but are less precise. Inspired by this,

we produce a novel pitch estimator combining the output of existing estimators.

3

Acknowledgements

This work would not have been possible without the support of my supervisor, Mark

Plumbley. We got there. The inhabitants of the Centre for Digital Music at Queen

Mary also deserve mention, having provided knowledge, companionship and entertain-

ment. Particular thanks go to those involved in “C4DM Presents” for the opportunity

to take part in projects for public consumption. One more QM thankyou must go to

Melissa, for making sure that deadlines were met, courses were attended, and that

the necessary forms were filed.

Of course, thanks go to my parents and my sister. Knowing they were rooting for

me helped in the lows, and their interest in what I’ve been up to kept me on my toes.

Hopefully I’ll be less distracted during phone calls now.

Without Abigail, this could not have happened. Having taken all opportunities to

vent, gripe and grump to her over the past few years her meagre reward is her name

in print. For proof-reading beyond the call of duty, and for just being there at home

I’ll double the reward. Abigail.

And special thanks to two who are no longer with us: Martin Gardner for his

Mathematical Puzzles and Diversions, without which I may never have enjoyed maths;

and Alan Tayler, supervisor for my first degree, without whose inspiration this would

not have happened.

4

Contents

Abstract 3

Acknowledgements 4

Contents 5

List of Figures 11

List of Tables 14

1 Introduction 17

1.1 Thesis Structure . 18

1.2 Previously Published Work . 20

2 Background 21

2.1 Audio Coding . 21

2.2 Lossy and Lossless Codings . 24

2.2.1 Lossy Coding . 24

2.2.2 Lossless Codings . 26

2.3 Parametric Coding . 28

2.3.1 Object Coding . 29

2.4 MPEG-4 Synthetic Audio Coding . 30

5

2.5 MIDI Manufacturers Association Standards 33

2.5.1 Musical Instrument Digital Interface (MIDI) 33

The MIDI Hardware Specification 33

The MIDI Data Format . 34

Standard MIDI Files (SMF) 36

2.5.2 MMA Synthesiser Specifications 36

2.5.3 General MIDI (GM) . 36

2.5.4 Downloadable Sounds (DLS) 39

2.5.5 Combining MIDI and Synthesis: XMF 40

2.6 Extracting MIDI from Audio . 41

2.6.1 Commercial Applications . 42

2.6.2 Conclusions . 42

3 An “Expressive MIDI” model of pitch 44

3.1 Representation of Pitch Trajectories in DLS 45

3.1.1 dAhDSR Envelope Generator 45

3.1.2 DLS Low Frequency Oscillator (LFO) 47

3.1.3 The DLS Pitch Trajectory Model 47

3.1.4 DLS Parameter Formats . 48

3.1.5 The Expressive MIDI Pitch Model 48

3.2 Extracting a Pitch Trajectory from Audio 50

3.2.1 Pitch Estimation Using Autocorrelation 50

3.2.2 Pitch Estimation Using the Fourier Transform 51

3.2.3 YIN . 52

3.3 Segmenting the Pitch Trajectory . 54

3.4 Estimating Pitch Trajectory Parameters 58

4 Optimisation 60

4.1 Hillclimbing/Descent Methods . 61

6

4.1.1 Steepest Descent . 62

4.1.2 Stochastic Hill-Climber (SHC) 63

4.2 Evolutionary Algorithms (EAs) . 65

4.2.1 Simple Genetic Algorithm . 66

Crossover Schemes for Genetic Algorithms 67

4.2.2 CHC . 69

4.3 A Comparison of the Algorithms . 70

4.4 Bit-wise Codings . 72

Standard Binary Code . 72

4.4.1 Hamming Distance and Locality 74

Binary Reflected Gray Code 74

Maximum Distance Code . 75

4.4.2 Transition Counts and Balancedness 76

Balanced Gray Code . 77

4.4.3 Hamming Weight . 77

Monotone Gray Code . 77

4.5 A New Analysis of Binary Codings 78

4.5.1 Sample 4-bit Encodings . 78

4.5.2 Plotting 5-bit Codings . 79

4.5.3 Distribution of 6-bit Property Values 80

4.5.4 Example Individual 6-bit Codings 81

4.5.5 Variation of Properties with Number of Bits 83

4.6 Algorithm and Coding Performance Analysis 84

4.6.1 Method . 85

4.6.2 Results . 85

4.7 Conclusions . 93

5 Parameter Estimation 101

7

5.1 The DLS Pitch Trajectory Parameter Estimation Problem 101

5.1.1 Possible Cost Functions . 102

5.2 Joint Optimisation of EG and LFO Pitch Parameters 103

5.3 Assessing CHC+BRGC for EG+LFO Parameter Estimation 105

5.3.1 Method . 105

5.3.2 Overview of Results . 107

Overall Summary . 107

By Instrument . 108

By File . 108

Example Output . 110

5.3.3 Distributions of Errors . 118

5.4 Conclusions . 121

6 (Re)Synthesis 123

6.1 Synthesiser Selection . 124

6.2 Implementation in Kontakt . 125

6.3 Parameter Encoding . 128

6.4 Input File Format . 130

6.5 Evaluation of Expressive MIDI Resynthesis 132

6.5.1 Method . 132

6.5.2 Results . 132

6.5.3 Kontakt Sample Tuning . 139

6.6 Conclusions . 142

7 (Re)Evaluating YIN 145

7.1 Evaluating Pitch Estimators . 145

7.1.1 Pitch Data . 145

7.1.2 Pitch Databases . 147

Bagshaw . 147

8

Keele . 147

VOQUAL’03 . 147

MIREX QBSH . 148

7.1.3 Metrics for Evaluating Pitch Estimators 148

(i) Gross Error Percentage (GEP) 148

(ii) 10 Cent Threshold (10c) 149

(iii) Period Mismatch Percentage (PMP) 149

(iv) MIDI Mismatch Percentage (MMP) 150

7.2 Appraising YIN . 151

7.2.1 YIN Test Implementation . 151

7.2.2 YIN Pitch Metric Results . 152

7.2.3 YIN Pitch Error Distributions 153

7.2.4 Harmonic Errors and YIN . 154

7.2.5 Harmonic vs. “Other” Errors 154

7.3 Conclusions . 162

8 Alternatives to YIN 165

8.1 Alternative Pitch Estimation Algorithms 166

8.1.1 PRAAT AC-P . 166

8.1.2 SWIPE and SWIPE′ . 169

8.1.3 Previous Evaluations . 172

8.1.4 Comparing YIN with SWIPE′ and AC-P 174

Design . 174

Implementation . 174

Results . 175

8.2 Combining YIN and SWIPE′: The SWIN Estimator 177

8.2.1 The SWIN Estimator . 182

Training SWIN . 183

9

Applying SWIN . 183

8.2.2 Testing SWIN . 183

8.3 Conclusions . 189

9 Conclusions 191

9.1 Contributions . 194

9.2 Future Work . 194

9.3 Closing Remarks . 196

A Scripting Kontakt 197

A.1 Validating Kontakt Parameter Formulae 197

A.1.1 Kontakt LFO Frequency . 198

A.1.2 Kontakt Depths . 198

A.1.3 Kontakt Timings . 198

A.1.4 Kontakt Sustain Level . 199

A.2 Kontakt Instrument Script . 200

Bibliography 204

10

List of Figures

1.1 System Model: Analysis/Synthesis Audio Coding 18

2.1 ISO 226:2003 Equal Loudness Contours 24

2.2 Clarinet sample with looping section 40

3.1 System Model: Proposed System . 44

3.2 Envelope Generator Output . 45

3.3 Low Frequency Oscillator Output . 47

3.4 Combined EG+LFO Trajectory . 48

3.5 Autocorrelation function . 51

3.6 System Model: YIN, the first component of the system 52

3.7 Example output from YIN . 55

3.8 Example local minima in matching trajectory 59

4.1 System Model: Selecting an optimisation algorithm 60

4.2 Hamming Neighbours for 5-bit Codes. Values are dots on the circle,

even values being labelled. 80

4.3 Locality for example 6-bit Random Binary Codes 81

4.4 Balancedness for example 6-bit Random Binary Codes 82

4.5 Relative Balancedness and Locality vs. number of bits 83

4.6 Relative Balancedness vs. number of bits 84

11

5.1 System Model having selected CHC+BRGC 101

5.2 Representing EG output as two subenvelopes 104

5.3 Best CHC result by generation . 108

5.4 Piano (with pedal) pitch estimation. 111

5.5 Pipe Organ pitch estimation. 112

5.6 Violin pitch estimation. 113

5.7 Violin pitch estimation (no vibrato). 114

5.8 Staccato trumpet pitch estimation. 115

5.9 Vibrato trumpet pitch estimation. 116

5.10 Clarinet pitch estimation. 117

5.11 Errors by frequency ratio . 118

5.12 Errors by frequency ratio - detail . 120

6.1 System Model: Encoding and Resynthesis 123

6.2 System Model: Encoding . 124

6.3 Kontakt Modulations. 126

6.4 System Model: SMF/NRPN selected 130

6.5 Clarinet pitch resynthesis . 133

6.6 Staccato Trumpet pitch resynthesis 134

6.7 Staccato Trumpet pitch resynthesis detail – first note 135

6.8 Staccato Trumpet pitch resynthesis detail – third note 136

6.9 Vibrato Trumpet pitch resynthesis 137

6.10 Vibrato Trumpet pitch resynthesis detail – first note 138

6.11 Non-vibrato Violin pitch resynthesis 140

6.12 The Complete System Model . 142

7.1 Example of EGG and audio data . 146

7.2 Distribution of YIN pitch errors vs. log10 |error| 153

7.3 YIN errors vs. relative frequency . 155

12

7.4 Pitch error distributions after harmonic error removal 159

8.1 Difference between AC-P and YIN error distributions 177

8.2 Difference between SWIPE′ and YIN error distributions 178

8.3 Comparison of SWIPE′ and YIN errors on QBSH dataset 179

8.4 Model of MIREX QBSH 2003 data 183

8.5 YIN, SWIPE′ and SWIN error distributions 184

8.6 Difference between YIN, SWIPE′ and SWIN error histograms 185

8.7 Details of YIN, SWIPE′ and SWIN pitch errors 186

8.8 Details of YIN, SWIPE′ and SWIN pitch errors 188

8.9 Combined dataset model for SWIN 189

9.1 System Model indicating the tools used at each stage 191

13

List of Tables

2.1 MPEG-4 Structured Audio object type profiles 31

2.2 MIDI Channel Messages . 34

2.3 Example Pitch Bend Ranges for Standard Yamaha TX816 Voices . . 35

2.4 General MIDI Instrument Families 37

2.5 CCs and RPNs supported in General MIDI 38

3.1 Default DLS Connection Blocks . 49

3.2 DLS 32-bit integer representations of datatypes 49

4.1 Single Point Crossover . 67

4.2 Two Point Crossover . 67

4.3 Half Uniform Crossover . 68

4.4 Example 4-bit encodings . 78

4.5 Hamming weights for Monotone Gray Code 79

4.6 Balancedness and Locality statistics 80

4.7 (un)Balancedness, b, and Locality, dm, for 6-bit encodings 82

4.8 De Jong test functions F1 to F4 . 86

4.9 De Jong test function F5 and the Rastrigin, Schwefel and Griewank

functions . 87

4.10 Summary Statistics for Steepest Descent 88

14

4.11 Summary Statistics for SHC . 89

4.12 Summary Statistics for Simple GA (population 100) 91

4.13 Summary Statistics for Simple GA (population 1000) 91

4.14 Summary Statistics for CHC (population 50) 91

4.15 Effect of Crossover on Simple GA (population 1000) using BRGC . . 92

4.16 Gray Codes with Steepest Descent. 95

4.17 Gray Codes with Stochastic Hill Climber 96

4.18 Gray Codes and Simple GA – Pop 100 97

4.19 Gray Codes and Simple GA – Pop 1000 98

4.20 Gray Codes and Simple GA – HUX 99

4.21 Gray Codes and CHC. 100

5.1 Instrument Summary. 106

5.2 Trajectory cost statistics overall and by instrument 108

5.3 Trajectory cost statistics by file . 109

6.1 Software Samplers . 124

6.2 Kontakt Parameters vs. EG+LFO parameters 127

6.3 General MIDI (GM) Program Numbers for Voices used. 128

6.4 NRPNs used for EG and LFO parameters 129

6.5 Notes played and the SCC1t2 samples used 141

6.6 Samples and their pitch . 141

7.1 Readily Available Pitch Datasets . 147

7.2 Accuracy of pitch dataset ground-truth 150

7.3 Summary pitch metrics for YIN . 152

7.4 Pitch errors after removing harmonic errors 161

7.5 Change in pitch errors after removing harmonic errors 163

7.6 Summary pitch statistics after removing harmonic errors 163

15

8.1 YIN vs. PRAAT AC-P assessment from de Cheveigné 172

8.2 YIN vs. PRAAT AC-P vs. SWIPE assessment from Camacho 172

8.3 YIN vs. PRAAT AC-P assessment from Signol 173

8.4 Summary statistics for YIN, AC-P and SWIPE′ 176

8.5 Pitch statistics for YIN, SWIPE′ and “Best Of” 180

8.6 Performance of SWIN on MIREX QBSH data. 187

8.7 Performance of SWIN on combined data, trained on QBSH 187

8.8 Performance of SWIN on combined data, trained on combined data . 189

A.1 Kontakt parameter settings and display values 197

A.2 Kontakt Sustain Parameters Expressed as Decibels 199

16

Chapter 1
Introduction

Over the past ten years, computer audio has come of age, the internet and MP3

files creating a new model for audio distribution. MP3 itself is almost 20 years old

[ISO/IEC, 1993], raising the question of “what next for audio ?”. MP3 is actually just

one of a series of standards produced by the Motion Pictures Expert Group (MPEG)

– officially, MP3 is “MPEG-1 Layer 3”. Subsequent standards have been adopted for

DVD and digital television but have yet to be adopted by consumers.

One of the more interesting MPEG audio standards is MPEG-4 Structured Au-

dio (SA) [Scheirer, 1998], a format for creating synthesised sounds based on supply-

ing both a synthesiser definition and a high-level “score” with which to control the

synthesiser. Two approaches to structured audio were included in the standard: a

script-based approach; and an approach combining sample-based synthesis and a con-

trol stream of MIDI data. Technologies related to the latter approach are commonly

available, MIDI being ubiquitous in synthesised audio and sample-based synthesis

existing “under the hood” on Windows PCs, Apple Macs and mobile devices. When

MPEG-4 was introduced, however, it was noted that:

“...it is very difficult to generate a MIDI representation automatically from

a given waveform...It is unlikely that robust systems capable of translating

expressive acoustic performances... into high-quality MIDI representations

will be built within the next decade.” [Vercoe et al., 1998]

It is now over a decade later and although some advances have been made, audio

representations using MIDI are still simplistic, combining MIDI Note On and Note

Off messages with low-level control of pitch and expression using the Pitch Bend

and Expression controls. We believe that the time has come to re-examine MPEG-4

17

Structured Audio and that the technologies now exist to produce better quality MIDI

representations from audio.

Extracting MIDI data from audio can be seen as an example of the general problem

of analysis/synthesis audio coding, in which an audio signal is analysed to estimate the

necessary parameters to allow synthesis of a similar signal – MIDI simply providing a

convenient set of protocols to transfer parameters to a synthesiser. As the estimated

parameters are preserved at the expense of losing other signal content, this is a “lossy”

encoding.

Inspired by object coding and structured audio, we sought to produce a system

to reproduce audio using an Expressive MIDI format, in which high-level parameters

would represent features of the audio signal. This would allow a low bit-rate MIDI

“sketch” of the original audio to be produced. Noting that this is a challenging

problem involving the integration of components from distinct research areas, we

focussed on estimating nuances of pitch, and on creating an Expressive MIDI system

to both extract parameters from audio and to synthesise audio from those parameters

to reproduce pitch features from the source material.

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio

Figure 1.1: Model of an Analysis/Synthesis encoding system

In order to create such an Expressive MIDI system we can estimate pitch trajec-

tories from audio, select synthesiser parameters to approximate the pitch trajectories,

store these parameters in a suitable file and use a synthesiser to play back the file

(Figure 1.1) – in Chapters 2 to 6, we build such a system. We then reconsider

the state-of-the-art in pitch estimation looking for ways to improve Expressive MIDI

(Chapters 7 and 8).

1.1 Thesis Structure

In Chapter 2, we introduce audio coding techniques including object coding (an

analysis-synthesis approach to audio coding) and structured audio (in which high-level

audio parameters are used). We identify MPEG-4 Structured Audio (SA) Wavetable

Synthesis as a possible format for object coding audio and examine the relationship

between this standard and standards from the MIDI Manufacturers Association.

18

In Chapter 3 we define the problem upon which we focus – an Expressive MIDI

approach to object coding. Based on MPEG-4 SA Wavetable Synthesis, this encodes

individual note pitch trajectories using Envelope Generators (EGs) and Low Frequency

Oscillators (LFOs). We look to build an Expressive MIDI system for recordings of

monophonic instruments by combining existing technologies and begin to create such

a system, describing an approach to extracting note pitch trajectories from audio

based on the YIN pitch estimator [de Cheveigné and Kawahara, 2002].

In Chapter 4 we continue to develop the Expressive MIDI system, examining

algorithms which may be able to infer Expressive MIDI parameters from note pitch

trajectories. We introduce several bit-wise optimisation algorithms and encodings.

We consider properties of the encodings and introduce a new visualisation, giving

insights into the effects of encodings on optimisation. We extend the work of Mathias

and Whitley [1994] on evaluating combinations of algorithms and codings, finding

that the choice of a suitable encoding can allow simple techniques to solve otherwise

difficult problems. On the basis of this evaluation, we select the CHC 1 algorithm

[Eshelman, 1991] (a non-traditional Genetic Algorithm) with a Binary Reflected Gray

Code (BRGC) [Gray, 1953] encoding to infer Expressive MIDI parameters from the

note pitch trajectories.

In Chapter 5 we infer Expressive MIDI parameters for audio files from the RWC

Musical Instrument Sounds database [Goto et al., 2003], applying the CHC/BRGC

optimisation to note pitch trajectories. We present a summary evaluation of the

results of this parametrisation, and examine extracts from several RWC files in de-

tail. We find that the Expressive MIDI parametrisation closely matches the pitch

trajectories for many notes.

In Chapter 6 we complete our Expressive MIDI system, selecting an existing syn-

thesiser with which to recreate audio from the Expressive MIDI parameters (to resyn-

thesise the audio) and a MIDI encoding to pass those parameters to the synthesiser.

We create MIDI encodings of Expressive MIDI parameters and resynthesise audio

from these files. We examine examples of resynthesised pitch trajectories, identifying

where differences between the resynthesis model and the original Expressive MIDI

model produce differences in the output. Even so, we find that resynthesised tra-

jectories are close to the Expressive MIDI model (within 10 pitch cents) and closely

resemble the original pitch trajectories. We hypothesise that either creating a synthe-

1Eshelman simply presents CHC as the name of the algorithm, However, according to Whit-

ley [1994], CHC stands for “C ross generational elitist selection, H eterogeneous recombination and

C ataclysmic Mutation”

19

siser matching the Expressive MIDI model or modifying the Expressive MIDI model

to match the available synthesiser would allow an even closer match.

In Chapter 7 we take a step back from the Expressive MIDI system. The completed

system showed small pitch differences between the resynthesised pitch trajectories

and the Expressive MIDI parametrisation. In order to identify the source of these

differences, we examine the quality of YIN pitch estimates, introducing several pitch

datasets and pitch metrics. We present a novel analysis of the performance of the

YIN pitch estimator. We identify that YIN produces harmonic errors and present a

theoretical analysis of the effect of removing such errors from the YIN output.

In Chapter 8 we present a comparison between the performance of YIN and

two alternative pitch estimators: the PRAAT autocorrelation based pitch estimator

[Boersma, 1993]; and the recent Sawtooth Wave Inspired Pitch Estimator (SWIPE)

[Camacho, 2007]. Finding that SWIPE and YIN both produce good results, but that

SWIPE achieves fewer harmonic errors, we look to produce a “best of both worlds”

pitch estimator, automatically selecting either the YIN or SWIPE pitch estimate us-

ing a Bayesian classifier. We show that on datasets where YIN was particularly prone

to harmonic errors this can, indeed, produce a better pitch estimator.

In Chapter 9 we represent our main conclusions from this work and consider future

research directions.

1.2 Previously Published Work

This thesis is partly derived from the following previously published work by the

author:

• Parts of Chapter 4 were originally published as a Technical Report by the Centre

for Digital Music, Queen Mary University of London [Welburn and Plumbley,

2009b].

• Parts of Chapter 5 were originally presented at the 2009 conference on Digital

Audio Effects (DAFx ’09) [Welburn and Plumbley, 2009a].

• Parts of Chapter 6 were originally presented at the 127th Convention of the

Audio Engineering Society [Welburn and Plumbley, 2009c].

• Parts of Chapters 7 and 8 were originally presented at the 128th Convention of

the Audio Engineering Society [Welburn and Plumbley, 2010].

20

Chapter 2
Background

We firstly examine the purposes of audio coding and introduce approaches which

have been used to date. We consider various audio related standards produced by the

Motion Pictures Experts Group (MPEG) and the MIDI Manufacturers Association

(MMA). In this manner, we lead up to the MPEG-4 Structured Audio (SA) standards

[ISO/IEC, 2005] for audio synthesis and examine the lack of solutions for encoding

audio as MPEG-4 SA. In subsequent chapters, we look to use features of MPEG-4

SA as a starting point for an audio coding system.

2.1 Audio Coding

Coding is the “accurate representation of one thing by another” [Pierce, 1980]. How-

ever, accuracy is not simply a matter of identically reproducing source material – in

digital audio and images, judgements of accuracy are mediated by human perception

and the use of the data.

All digital audio is encoded: recorded audio is a digital approximation of an analog

signal; and digital audio files only become actual audio when played back – and the

audio produced from a file will depend upon the chain of decoding equipment (e.g.

the audio heard when a CD is played depends upon the CD player, amplifier and

loudspeakers used) and the listening environment. Pulse Code Modulation (PCM)

[Kientzle, 1998] is the most well known form of audio coding. In PCM, an analog

audio signal is sampled, at some sample rate sR Hz, and quantised to be stored using

a number of binary digits (bits) i.e. PCM audio approximates the continuous signal

at discrete times and discrete levels. In order to store high quality audio, the sample

21

rate and the number of bits can be increased – increasing the overall bit-rate of the

data. According to the Nyquist sampling theorem, the highest frequency which can

be accurately represented in audio sampled at sR Hz is sR
2

Hz [Loy, 2007].

The aim in audio coding is to take audio data and present it in a format which

is appropriate for a given purpose. Considerations when selecting an appropriate

encoding include:

• Portability - the need to represent the audio in a format which allows other

platforms to reproduce the original audio;

• Compression - the ability to store or transmit the audio data using fewer bytes

than the raw digital audio data;

• Speed - for an audio recording format, real-time encoding must be possible, for

playback real-time decoding may be required;

• Manipulation - if the audio is to be manipulated during playback then it must

be stored in a suitable format.

Portability can be achieved by including metadata that describes the audio data

within the file. Electronic Arts Interchange Format Files (IFF) [Morrison, 1985] in-

troduced a standard of using four byte ASCII codes to identify types of files and

“chunks” of data within a file (so called “FourCC” formats). Microsoft WAVE files

[IBM and Microsoft, 1991] and Apple’s AIFF [Apple, 1989] are FourCC schemes con-

taining chunks for metadata and sound data. The metadata for PCM data includes

the number of audio channels in the file, the sample rate, and the number of bits per

sample – without this data is not possible to play the audio back correctly. The MMA

Standard MIDI File (SMF) [MMA, 1996] is also an example of a FourCC format.

Compression schemes can be classified as either lossless, where the original data

can be exactly recovered (considered further in Section 2.2.2), or lossy, if the recovered

data is not identical to the source material but provides a “good enough” match for the

intended use of the data [MacKay, 2003, p. 74] (considered further in Section 2.2.1)

e.g. for audio playback a 16-bit 44.1kHz signal (“CD quality”) is usually regarded as

being “good enough”, components above 22.05kHz being outside the range of human

hearing [Loy, 2006]. Lossy schemes discard data irrelevant to the intended use; whilst

lossless compression schemes reduce redundancy in the data (e.g. using a Huffman

coding) (see Section 2.2).

22

Encoding and decoding speed are affected both by the choice of algorithms and

by the target platforms - a coding that works in real-time on a desktop computer

may need too many resources to operate in real-time on a mobile device. In order to

maximise playback performance (e.g. the number of audio files that can be played back

concurrently in a sequencer), it is necessary to consider both the processing overhead

of any decoding algorithms used, and the system overheads involved – e.g. audio

formats with native hardware support will require least processing, but may require

larger amounts of data than formats using more advanced non-native compression

schemes. At the maximum compression level, the reference model MPEG-4 Audio

Lossless Coder [Liebchen, 2004] was capable of encoding 16-bit 48kHz stereo audio

signals at more than 5 times real-time rates on a 1.2GHz Pentium III-M which may be

“good enough” if less than 5 stereo channels of audio are being recorded, but would be

unsuitable for more channels. However, it could decode the compressed audio at more

than 23 times real time which would be suitable for playing back a larger number of

audio channels.

The ability to manipulate an audio signal during playback is a function of the

encoding. Lempel-Ziv LZ78 encoding uses a dictionary of strings previously seen in a

document to encode subsequent sequences [Nelson and Gailly, 1997, Ch. 9]. However,

it is not possible to decode a symbol in the middle of the file without decoding all

preceding data to rebuild the dictionary used to encode that symbol. With audio, it

is a common requirement to be able to skip to a specific position in the file. Adaptive

Differential PCM (ADPCM) audio coding [Kientzle, 1998, Ch. 13] encodes audio as a

series of packets. For each packet, a starting value and quantisation level are specified

and subsequent samples are stored as the quantised difference from the previous value.

Hence, the playback position in ADPCM audio can be set to the start of any packet.

The Motion Pictures Expert Group (MPEG) has defined several standard formats

for audio data, and decoding standards for these formats (e.g. MP3 and AAC).

However, encoding of audio into MPEG standards is left as an implementation issue

[Brandenburg, 1999] i.e. given a digital audio file, it is possible for multiple valid MP3

files to be produced based on the implementation of the standard. We next consider

various approaches to audio coding, and the relevant MPEG standards.

23

2.2 Lossy and Lossless Codings

2.2.1 Lossy Coding

Noisy data includes information other than the required signal. This additional in-

formation does not need to be encoded, as it is irrelevant to the quality of the signal.

Extending this principle beyond noise, it is not necessary to encode parts of the signal

that are judged irrelevant to an application.

10Hz 100Hz 1kHz 10kHz
−20

0

20

40

60

80

100

120

140

0 phon

10 phon

20 phon
30 phon
40 phon
50 phon
60 phon
70 phon
80 phon
90 phon

Frequency

S
ou

n
d
P
re
ss
u
re

L
ev
el

(d
b
S
P
L
)

Figure 2.1: ISO 226:2003 Equal Loudness Contours showing the Sound Pressure Level

required at each frequency to produce a loudness sensation of 0 to 90 phons. Loudness at

the threshold of hearing is defined as 0 phon. The loudness of a 1kHz signal is then defined

as matching the SPL. The loudness for other frequencies is then defined with reference to a

1kHz signal.

Human hearing does not respond equally to all parts of an audio signal:

• there is a frequency-dependent threshold of hearing beneath which a signal is

imperceptible [Robinson and Dadson, 1957, van de Par et al., 2002] (the “0

Phon” level in Figure 2.1);

• frequency response varies, being most responsive to frequencies in the 1–5kHz

range [Fletcher and Munson, 1933, ISO/IEC, 2003] (Figure 2.1);

• frequencies below 16Hz are not perceived as tones, but as pulses [Beament, 2001,

p. 94];

• the upper limit of hearing can be above 16kHz, but lowers with age and can be

under 9kHz [Beament, 2001, p. 94];

• noise in the signal can mask speech or tones [Hawkins, Jr. and Stevens, 1950].

24

Hence, for audio playback, it is not necessary to represent all components of the audio

at the same level of detail. A scheme which allows a detailed representation of the

more perceptible parts of the signal, whilst reducing the detail in less perceptible parts

can be indistinguishable from the source material for most listeners. This irrelevancy

reduction allows lossy compression of the audio data – the data may sound the same to

a human listener (either exactly the same with some compression or “good enough” at

higher compression levels e.g. for listening on mobile devices), but the audio produced

will not match the source material. As these schemes compress less of the original

information, it is possible to achieve high levels of compression.

MPEG-1 layer 3 audio (“MP3”), was originally defined in 1991, subsequently being

ratified as an ISO/IEC standard [ISO/IEC, 1993]. When compressing the signal, the

number of bits allocated to psychoacoustically uninteresting parts of the signal is

reduced, more bits being allocated to the most perceptually important parts. The

resulting data is then compressed using a lossless Huffman coding. In early MP3

encoders, various qualities of coding schemes were observed based on implementation

choices - all of which produced “valid” MP3s, but meant that there were subjectively

“good” and “bad” encoders [Brandenburg, 1999].

The subsequent MPEG-2 standard [ISO/IEC, 1998] was developed for audiovisual

applications, and is used for DVD and digital television. The audio component was

intended simply to extend the MPEG-1 standard to include support for multichannel

audio, and to allow additional lower sampling frequencies (16kHz. 22.05 kHz and

24kHz). During testing of the standard, it became apparent that significant improve-

ments in coding efficiency could be achieved by introducing new coding algorithms,

and a new standard for audio coding was introduced, MPEG-2 “Advanced Audio

Coding” (AAC). AAC can reach similar quality to MP3 at about 70% of the bit-rate

[Brandenburg, 1999].

MPEG-4 standardisation was originally targeted at videophone applications. By

1994, however, predicted improvements in video compression had not arisen, and new

application areas were emerging. Based on trends towards wireless communications,

interactive computer applications and the integration of audio-visual data in applica-

tions, MPEG-4 was realigned to the intersection of telecoms, computers and TV and

film. Two separate MPEG audio groups were created, one to evolve existing stan-

dards for natural audio [Brandenburg et al., 2000], and one to develop new standards

for Synthetic-Natural Hybrid Coding (SNHC) [Puri and Eleftheriadis, 1998, Scheirer

et al., 2000] allowing natural audio to be combined with synthesised sounds.

25

In contrast to the “one size fits all” audio codings of MPEG-1 and MPEG-2 audio

standards, MPEG-4 audio [ISO/IEC, 2005] incorporated several lossy coding schemes

each for a specific type of natural audio:

• MPEG-4 AAC (Advanced Audio Coding) – a follow up to MPEG-2 AAC for

general audio coding (adopted as the standard audio format on Apple iTunes);

• MPEG-4 CELP (Code excited linear prediction) and HVXC (Harmonic Vector

eXcitation Coding) – linear-prediction based methods for natural speech coding;

• MPEG-4 HILN (Harmonic and Individual Lines, plus Noise) – a parametric

audio format in which harmonics components, individual sinusoidal “lines” and

a noise component are modelled for use at very low bit-rates [Purnhagen and

Meine, 2000].

In order to make best use of the MPEG-4 natural audio standards, the most

appropriate codec should be used for the signal content (e.g. CELP, HXVC, AAC or

HILN for natural audio). Beritelli et al. [1998] used fuzzy logic, genetic algorithms

and neural nets to classify audio under four classes: talk, music, noise and tone, with

various subclasses beneath. Eighteen audio features were used in the classification,

and successfully identified the classes under a limited set of tests (e.g. the “music”

tested used trumpet, harpsichord and castanet recording to represent the wind, string

and percussion subclasses). Theoretically, audio could be analysed, classified and then

encoded using the most appropriate codec.

2.2.2 Lossless Codings

A lossless encoding scheme uses complementary encoding and decoding algorithms

to allow the original “raw” data to be recovered perfectly from the encoded version

i.e. a lossless encoding is an invertible transformation from the (digital) audio space

to a subspace of the space of possible files. Lossless compression is possible as the

structure within audio creates redundancy in the data. Without structure to the data,

samples would be uniformly distributed random numbers, i.e. noise. Redundancy

reduction takes advantage of this structure within the signal to represent it in a

more compact manner. Information-theoretic compression algorithms allow data to

be compressed efficiently, using small symbols (e.g. bit strings) to represent common

values and longer symbols for less frequently seen values. To reduce the file size

further, predictive modelling can be used – using a model of the signal to predict

26

samples based on preceding data – only encoding the residual difference between the

predicted value and the actual sample. Reducing redundancy in data relies upon a

suitable model of the data - a model that works for one type of data (e.g. audio) is

unlikely to be appropriate for another type of data (e.g. images).

General purpose “universal” coders such as Lempel-Ziv, as used in gzip can be

applied to a wide range of sources [MacKay, 2003, pp. 119–122]. However, they are

less effective on data of a known type (e.g. speech) than schemes targeted at that

specific type of data – appropriate modelling of the data allows compression to work

more effectively [Nelson and Gailly, 1997]. Any lossless coding can increase the size

of the data if inappropriate data is used - e.g. Lempel-Ziv is effective in the limit as

the quantity of data increases, but may increase file sizes for small amounts of data;

Rice coding (a specific Huffman code [MacKay, 2003, Ch.5 pp. 98–101] for Laplacian

data) will be inappropriate if the data is not distributed in an approximately Laplacian

manner.

An example lossless audio coding from the literature is that used by the SHORTEN

audio encoder [Robinson, 1994]. SHORTEN models each frame in the signal using

either: one of four standard polynomial models; or linear predictive coding (LPC).

The residual differences are then encoded using a Rice code (Robinson observing

residuals to be “approximately” Laplacian). The non-proprietary, fully open Free

Lossless Audio Codec (FLAC) [Coalson, 2000] is based on SHORTEN, adding an

additional polynomial model and allowing model parameters to be adapted across

subframes in the audio. Noting that there was little variation in the performance of

predictive lossless encoders, Hans and Schafer [2001] proposed AudioPaK, in which

only the polynomial predictors were used – compression ratios were achieved which

were comparable to other codecs at the time.

A lossy coding can be made lossless by additionally including the residual differ-

ence between the behaviour expected according to the model and that observed in

the original system [Hans and Schafer, 2001]. If the lossy encoded signal, x̂ is

x̂ = Θ(x) , (2.1)

where Θ is the lossy encoding function and x is the original signal, then the residual

error, e, between the lossy decoding and the source data is given by

e = x− Φ(x̂); (2.2)

where Φ the lossy decoding function. If we store both the lossy coded version of the

27

signal, x̂, and the residual error, e, then we can recover the original signal

x = Φ(x̂) + e (2.3)

allowing files to be recoded as improved encoders and new voice models become avail-

able. If a low bit-rate version of the data is required, the residual can be discarded

or transcoded to a lossy format with a subsequent reduction in file size and audio

quality. MPEG-4 Scalable Lossless Coding (SLS) adds an enhancement layer over

lossy MPEG-4 AAC (pp.26) encoded audio to include the residual difference between

the lossy coding and the original signal. This allows a lossless coding with a 50%

reduction in file size over raw PCM audio data [Geiger et al., 2007].

2.3 Parametric Coding

Expressing audio as parameters for a model of the audio signal can achieve high

compression ratios for audio matching that model. Unless the audio exactly matches

the model and the precise parameters are inferred, this is a lossy encoding of the

audio. It is an “analysis-synthesis” coding technique – the source audio is analysed

to estimate parameters and audio can then be synthesised using those parameters.

Parametric coding based on additive synthesis has a long history. Additive synthe-

sis representations appeared in the late 1980s for both speech [McAulay and Quartieri,

1986] and musical sound [Smith and Serra, 1987]. Subsequent work extended this –

representing a signal as an additive model of sinusoidal components, and a subtractive

model for noise components [Serra, 1989, 1997]. The low bit-rate Analysis/Synthesis

Audio Codec (ASAC) encoded audio as a set of single spectral lines, successively re-

ducing the residual signal as components were added to the model [Edler et al., 1996].

This parametric model was expanded, as an “object-based” analysis/synthesis audio

coder, to include harmonic tones and noise content [Purnhagen et al., 1998]. Bit-rates

up to 16 kbit/s were targeted, and the codec was standardised in MPEG-4 version 2

as Harmonic and Individual Lines plus Noise (HILN) [Purnhagen and Meine, 2000].

Parameter estimation for other synthesis techniques has also been examined:

• Horner et al. [1993] and Wun and Horner [2005] considered wavetable synthesis

– playing back an oscillator table, or combining the output of multiple oscillator

tables, whilst varying the frequency (sample rate) and amplitude;

• Beauchamp [1981] and Mitchell and Creasey [2007] looked at FM synthesis

[Chowning, 1973].

28

However, these have not been adopted in standard audio codecs.

2.3.1 Object Coding

Object coding of audio analyses a piece of audio to estimate parameters for syn-

thesis objects – each object encapsulating a basic behaviour pattern (although this

behaviour may be parameter dependent). Driving the objects with the parameters

allows an approximation of the original audio to be created. It is a form of parametric

encoding. Traditionally, it has been regarded as a technique for low bit-rate encoding

and has been examined in relation to sum-of-sinusoids models [Vincent and Plumb-

ley, 2005] and instrument models [Tolonen, 2000]. We seek to produce a high quality

representation of audio using similar techniques.

Given a set of predictable objects, object coding finds suitable parameters to drive

those models, and to combine their outputs to produce a more complex behaviour.

For an audio signal, we wish to represent the evolution of the signal over time as a

combination of some underlying time-evolving objects and a series of time-dependent

parameters. The modelled objects (alone or in combination) may or may not represent

physical objects present in the system which produced the source audio.

Using machine-learning techniques such as evolutionary algorithms, neural net-

works or Bayesian models, parameters can be estimated for the synthesis objects. For

each object, these parameters can then be used to resynthesise part of the original

scene.

An “ultimate” form of object coding would involve capturing all audio related

details of a performance and the ability to synthesise audio from those parameters

– the synthesised instruments being driven by the performance details to recreate

the audio. However, for coding, it is not necessary to represent the original source

material, only the content of the file e.g. if events always occur simultaneously we

have no need to regard these as individual events but can use a composite event to

produce the combined output.

Various individual voice models have been modelled as “object based”: Glass

and Fukudome [2004] estimated parameters for a physically modelled Karplus-Strong

plucked string model; Peltola et al. [2007] use linear prediction to find parameters for

physics-based models of hand-clapping; Chang and Su [2002] used neural networks

to extract waveguide synthesis parameters from struck-string sounds e.g. piano; and

Melih and Gonzalez [2002] used sinusoidal coding to find speech and piano model

29

parameters. However, these are very specific in their application, and not suited to

general music coding.

More general object coding schemes have been developed combining sinusoidal

tracks, harmonics and noise models for MPEG-4 HILN (“Harmonic and Individual

Lines plus Noise”) [Purnhagen and Meine, 2000] and using Bayesian object parameter

extraction [Vincent and Plumbley, 2007]. However, these schemes are (i) intended

for low bit-rate applications of low-to-medium quality; and (ii) provide parameters

closely related to the synthesis model rather than higher level features which may

be musically meaningful. We now consider existing audio synthesis standards that

allow description of both synthesisers and their parameters – making them possible

candidates for use with object coding.

2.4 MPEG-4 Synthetic Audio Coding

As indicated above (Section 2.2.1) the MPEG-4 standard considered both Natural

audio and “Synthetic Natural Hybrid Coding” (SNHC). Part of the SNHC standard

considers production of synthetic audio. The MPEG-4 audio standard [ISO/IEC,

2005] offered two synthetic audio standards:

• MPEG-4 Text To Speech (TTS) provides a format allowing speech to be syn-

thesised according to provided text and prosody;

• MPEG-4 Structured Audio (SA) to allow “musicians and sound designers” to

produce synthetic audio.

Of these two, MPEG-4 Structured Audio is aimed at music and may be a candidate

solution for use in object coding of musical audio.

Conceptually, structured audio represents sound as a series of parameters for mod-

els of audio, emphasising the possibility of multiple models being appropriate for a

single piece of audio [Vercoe et al., 1998]. Unlike general object codings, structured

audio parameters have a semantic meaning, representing high-level features of the

sound and allowing sound designers to modify the output audio by varying these pa-

rameters (e.g. allowing direct control of vibrato depth and frequency). Synthesising

audio from high-level parameters allows pitch and amplitude modulators to be ap-

plied directly by the synthesis engine – thus allowing structured audio to modulate

the signal at the full audio sample rate. Encoding sound using structured audio is

30

expected to produce a smaller representation than the raw audio as a result of the

high-level “structural redundancy” in the data [Scheirer, 2001].

MPEG-4 Structured Audio (MPEG-4 SA) was developed from the work of Ver-

coe and Scheirer [Vercoe et al., 1998, Scheirer, 1999] as a synthetic audio compo-

nent for “musicians and sound designers” to complement the MPEG-4 natural audio

standards. Target applications would then use “Synthetic-Natural Hybrid Coding”,

combining synthesised sounds (using MPEG-4 SA) with natural audio (e.g. recorded

speech, using MPEG-4 CELP) [Scheirer et al., 2000]. The MPEG-4 standard includes

a set of profiles, specifying subsets of the full standard which can still achieve MPEG

certification. MPEG-4 has four high-level profiles – the “Main” and “Synthetic” pro-

files include MPEG-4 Structured Audio, “Speech” and “Scalable” do not [Koenen,

2000].

Supported Components

Object Type Profile MIDI SASBF SAOL SASL

General MIDI 3 7 7 7

Wavetable Synthesis 3 3 7 7

Algorithmic Synthesis 3 7 3 3

Full 3 3 3 3

Table 2.1: MPEG-4 Structured Audio object type profiles

MPEG-4 SA encapsulates: MIDI data (see Section 2.5.1, below); the Structured

Audio Sample Bank Format (SASBF); and the Structured Audio Orchestra and Score

Languages (SAOL and SASL). 1 Within MPEG-4 SA there are four sub-profiles,

referred to as “object types” by Koenen [2000], which support subsets of these MPEG-

4 SA functions (Table 2.1) [Scheirer, 1998].

Although it has been predicted that structured audio will only be widely used

when sources can be separated [Viste and Evangelista, 2001], there has been little

evidence of work on structured audio even in the monophonic case. Examining the

state of MPEG-4 Structured Audio reveals several reasons for this gap between the

vision and the reality.

As with the other MPEG standards, MPEG-4 Structured Audio defines how sound

should be decoded from the given data – it does not consider how to encode the data –

1An orchestra of instruments can be defined using SAOL scripts, operating at the audio sample

rate (a-rate). These instruments are then driven via SASL score commands, at a separate control

rate (k-rate), – the k-rate usually being lower than the a-rate.

31

and, when MPEG-4 SA was agreed, decoding it was “slightly beyond state-of-the-art”

[Scheirer and Ray, 1998].

Real-time use of SAOL has proven to be elusive. Lazzaro and Wawrzynek [2001]

produced a standard implementation of the MPEG-4 SA decoder, cross-coding SASL

and SAOL into a C program. Profiling the performance of the SAOL language, Zoia

and Alberti [2003] noted that combining an interpreted language with sample-by-

sample a-rate processing was a poor combination for real-time use. Using a stackless

architecture and parallel processing they developed the Structured Audio Interpreter

(SAINT) as a higher performance SAOL solution. Siao et al. [2005] developed JavaOL

(Java Orchestra Language) as an efficient model for real-time streaming of MPEG-

4 Structured Audio over the internet (or other TCP-based networks). Java based,

its performance was increased by relying on a C++ engine for wavetable synthesis.

Created as a SAOL interpreter, it was found that interpreting SAOL produced a per-

formance bottleneck [Su et al., 2004]. JavaOL subsequently evolved into a Java library

implementing core SAOL opcodes within Java classes producing a faster system than

the SAOL-based version [Wang et al., 2006]. In other words, although inspired by

SAOL, JavaOL deprecated SAOL itself from the implementation.

SAOL and SASL were based on CSound, initially developed by Vercoe at MIT

in 1985 [Boulanger, 2000]. According to Vercoe, a proponent of the structured audio

concept, “the SAOL structure is much less efficient than CSound” [Lyon, 2002] – rais-

ing the question of why CSound was not used for MPEG-4. At the time MPEG-4 SA

was being standardised, CSound, although freely available for non-profit and research

use, was published under MIT copyright with “All rights reserved” [Vercoe et al.,

2010, pp. xxix]. SAOL and SASL were therefore designed to allow CSound-like func-

tionality whilst avoiding issues related to the MIT licensing agreement. Additionally,

CSound lacked support for real-time processing 2.

Scheirer [2001] showed that SAOL is a Turing-complete computation system.

SAOL can therefore can be used to produce any synthesis algorithm, and offers a

generalised model for audio coding – it should be possible to implement any other

coder within MPEG-4 SA. Indeed, Vasiloglou et al. [2002] implemented the AudioPak

2The development of CSound 5, a thorough overhaul of the legacy CSound code-base [ffitch,

2006] and the 2003 licensing of CSound under the Lesser Gnu Public License (LGPL version 2.1 and

later), overcame most of the issues which prevented CSound being a possible format for a structured

audio standard at the time MPEG-4 SA was being agreed. For “Orchestra + Score” computer music

production, CSound therefore currently appears to be a better option than the MPEG-4 “SAOL +

SASL” standard.

32

lossless codec [Hans and Schafer, 2001](see Section 2.2.2) in MPEG-4 SA as a demon-

stration of the capabilities of the SAOL language. However, it was noted that the

MPEG-4 SA model was inconvenient for implementing the codec. Gaps were also

found in the MPEG-4 SA specification (e.g. SA defines computation as 32-bit float,

but fails to specify the mantissa / exponent split; the range of output from SA is

given as [-1, 1], but the precision is not given). Additionally, a SAOL+SASL program

can only terminate at a k-rate cycle, making it difficult to implement precise lossless

coding - one work-around being increasing the k-rate to the a-rate with attendant

increase in processing and possible issues for performance.

Although the MPEG-4 SAOL+SASL model for structured audio looked to be a

suitable standard for use in object coding of audio, the above implementation issues

reveal it to be inappropriate. However, the remaining Wavetable Synthesis elements of

MPEG-4 Structured Audio may also be a suitable for use with object coding. Having

identified MPEG-4 Wavetable Synthesis as a possible format for object coding of

audio, we take a step back to consider the various MIDI Manufacturers Association

(MMA) standards, and their relationships to MPEG-4 SA Wavetable Synthesis.

2.5 MIDI Manufacturers Association Standards

2.5.1 Musical Instrument Digital Interface (MIDI)

MIDI is a hardware and software specification, introduced by the MIDI Manufacturers

Association (MMA), which allows musical instruments and related devices (e.g. mix-

ers, sequencers and computers) to exchange information over 16 “channels”[MMA,

2000b]. The standard defines both a hardware interface and a data format for mes-

sages and was originally intended for live performance.

The MIDI Hardware Specification

MIDI was designed to operate over a unidirectional serial interface at 31.25 kb/s,

requiring separate MIDI “in” and “out” connections, often combined with a MIDI

“thru” connector to pass the unmodified input to another device. Subsequent con-

cerns over the available bandwidth for MIDI data have been overcome in recent years

by encapsulating MIDI in higher speed transports: a high speed serial (IEEE-1394

“Firewire” [IEEE, 1996]) adaptation layer has been produced, allowing 8 MIDI data

33

Status Data

Name Byte Byte(s) Data (7-bit values, 00 to 7F)

Note Off 8X NN VV NN : Note Number, VV : Velocity

Note On 9X NN VV NN : Note Number, VV : Velocity

Key Pressure AX NN PP NN : Note Number, PP : Pressure

Control Change BX NN VV NN : Controller Number,

VV : Controller Value

Program Change CX NN NN : Program Number

Channel Pressure DX PP PP : Pressure

Pitch Bend EX HH LL HH : 7 most significant bits,

LL : 7 least significant bits

Table 2.2: MIDI Channel Messages (“X” indicates the MIDI channel number)

streams (i.e. 128 channels of MIDI data) to be multiplexed in a single “MIDI con-

formant data channel” [MMA, 2000a]; and a standard for embedding MIDI in the

internet real-time protocol (RTP) [Schulzrinne et al., 1996] has been set [Lazzaro and

Wawrzynek, 2004].

The MIDI Data Format

The MIDI data format consists of status bytes which set the state of the MIDI system

and indicate the type of data bytes to expect. Status bytes can be identified as the

most significant bit (msb) is set to 1, the msb for data bytes being 0. Status bytes

can indicate either system messages or channel messages.

System messages consist of System Exclusive (sysex), System Common and Sys-

tem RealTime messages. A system exclusive message starts with a status byte of

“F0”, identifies a target system based on a Device ID, includes an arbitrary number

of data bytes and terminates with a “EOX” status byte (“F7”). System Common

messages (status byte F1–F7) and System RealTime messages (status byte F8–FF)

are used to synchronise all MIDI devices within a system.

A single MIDI connection supports 16 channels of MIDI data – the lower four

bits of channel message status bytes identifying the channel the status applies to. If

multiple sets of data use the same status byte then the status byte only needs to be

sent once, followed by each set of data bytes (this is termed running status).

The supported channel messages are:

34

Voice ID Voice Name Pitch Bend Range

1–1 Piano L 1

2–3 Strings Heavy 1 FC 3

2–5 Strings Mellow 1 FC 5

2–8 Solo Violin MW 8

3–1 Closed Pipe MW 7

4–5 Female Vocal 1 MW 4

4–7 Male Bass BC 2

6–1 Elec. Piano Tremolo L MW 2

6–5 Elec. Piano 1 4

11-1 FM Piano 1 7

Table 2.3: Example Pitch Bend Ranges for Standard Yamaha TX816 Voices

• “Note On” and “Note Off” messages including the “note number” (e.g. based

on the key pressed) and “velocity” data’;

• “Program Change” messages to select a program (a “preset”, “patch” or “voice”);

• “Channel Pressure”, “Key Pressure” and “Pitch Bend” control messages;

• “Control Change” messages (CCs) for modifying tones using controllers other

than keys. CCs are not used for parameters of tones [MMA, 2000b, pp. 9,11]

except via RPNs and NRPNS:

– Registered Parameter Numbers (RPNs) for standard MMA defined syn-

thesiser settings;

– Non-Registered Parameter Numbers (NRPNs) for manufacturer provided

settings.

Each channel message uses either 1 or 2 data bytes (the status and data bytes for

these messages are shown in Table 2.2).

The MIDI standard supports 128 notes for each voice. For pitched voices, the

usual convention for MIDI notes is that they occur at semitone intervals with note

number 69 defined as 440Hz based on the standard Western well-tempered diatonic

scale. The fundamental frequency, f , for a given MIDI note number, k, is then:

f = 440× 2
k−69

12 Hz . (2.4)

When discussing small variations in pitch, we will consider pitch cents, 1 pitch cent

being 1
100

th of a semitone.

35

Subtler adjustments of pitch can be achieved by using the Pitch Bend controller.

However, as the MIDI standard was designed for live performance, it does not de-

fine the relationship between Pitch Bend controller values and pitch adjustment (e.g.

whether is it a linear relationship and what range Pitch Bend should cover). The

actual effect of Pitch Bend is regarded as a feature of the synthesiser being used, or

even of the specific voice currently in use e.g. the Yamaha TX816 includes the Pitch

Bend range as a voice parameter, and this parameter varies across the standard voices

(Table 2.3) [Yamaha, 1985]. Independent Pitch Bend control can be applied to each

of the 16 MIDI channels.

Standard MIDI Files (SMF)

In order to allow MIDI song data to be transferred between systems, the Standard

MIDI File format (SMF, “.mid”) was published by the MMA [MMA, 1996]. An SMF

contains a block of header data describing the file format and one or more “tracks”.

Each track is a series of MIDI event messages (e.g. CC, NRPN, sysex, Note On, Note

Off) each with a “delta-time” indicating the timing relative to the previous event

message. Delta times are stored in “ticks”, the resolution of which can be specified

based on the number of ticks per quarter note (TPQN) and the track tempo, both

specified in the file header.

SMF supports three main formats: “0” with a single multi-channel track; “1” with

one or more simultaneous tracks; and “2” for storing triggerable MIDI “patterns” in

tracks.

In addition to standard MIDI data, meta events may be included in the track to

provide additional information (e.g. copyright details, track name, lyrics, tempo).

2.5.2 MMA Synthesiser Specifications

2.5.3 General MIDI (GM)

The MIDI 1.0 standard and SMF define ways to pass messages between controlling

devices and synthesisers. However, the actual sounds produced by the synthesiser

in response to those messages are undefined – e.g. there is no concept of requesting

the synthesiser to play a “trumpet” sound. In order to allow song data written

using the MIDI protocol to be played back on different systems using appropriate

sounds, the MMA created General MIDI (GM) [MMA, 1991a]. GM associates 16

36

Prog. Family Prog. Family

1-8 Piano 9-16 Chromatic Percussion

17-24 Organ 25-32 Guitar

33-40 Bass 41-48 Strings

49-56 Ensemble 57-64 Brass

65-72 Reed 73-80 Pipe

81-88 Synth Lead 89-96 Synth Pad

97-104 Synth Effects 105-112 Ethnic

113-120 Percussive 121-128 Sound Effects

Table 2.4: General MIDI Instrument Families

instrument families (Table 2.4), each containing 8 specific instruments, with MIDI

program numbers 1 to 128 – the appropriate voice (instrument sound) is selected by

specifying a program number in the MIDI data. Similarly, specific percussion sounds

are also available, mapped to individual notes on MIDI channel 10 – each note playing

a specific type of percussive “hit” e.g. a bass drum or snare drum.

GM aims to provide a level of consistency in playback by indicating that devices

support: MIDI note 60 as “Middle C” (the conventional MIDI tuning given in Section

2.5.1); a minimum required level of polyphony (24 voices); the standard voices on all

channels; different voices being active on each of the 16 MIDI channels; velocity

control of all voices; and a default pitch bend range of ±2 semitones.

As a result, MIDI files designed for GM can be played back on compliant hardware

with some consistency. However, implementation details vary, and the precise sound

of a synthesiser produced by one manufacturer is unlikely to match that of another

– no specific synthesis technique is given, and an FM synthesis “Trumpet” voice will

not sound the same as a “Trumpet” sound synthesised from audio sampled from a

real trumpet.

For further control of the synthesiser, the GM specification also includes support

for specific Control Change messages (CCs) (Table 2.5a) and Registered Parameters

(RPNs) (Table 2.5b). General MIDI 2 (GM2) [MMA, 1991b] supports additional Con-

trol Change messages. However, implementation details are not specified – the GM2

standard simply stating “Exact behaviour is left to the manufacturer’s discretion”.

Implementations of the specification may therefore vary, and only those controllers for

which the precise behaviour is specified can be relied upon to give consistent results

across GM2 synthesisers. For audio coding purposes, the output audio needs to be

37

Controller # Summary Description

1 Modulation Changes “the nature of the sound in the most natural (ex-

pected) way” [MMA, 1991a, p. 7]

7 Volume Main channel volume to set overall dynamics and balance of

channels, 0 = minimal (silence), 127 = maximum volume,

default 100 [MMA, 1991a, p. 3]

10 Pan Determines where a single source is in the stereo field, 0 =

“hard left”, 64 = “centre”, 127 = “hard right” [MMA,

2000b, pp.13]

11 Expression Volume accent above the programmed or main volume

[MMA, 2000b, p. 13]

64 Sustain Ignores subsequent Note Off events, held notes ending when

the sustain controller is released

121 Reset All Con-

trollers

Resets all controller values to their initial state [MMA,

2000b, p. 25]

123 All notes off Provides a Note Off for all notes that are currently “on”

[MMA, 2000b, p. 24]

(a) Control Change messages (CCs) supported in General MIDI

Registered

Parameter # Description

0 Pitch Bend Sen-

sitivity

The maximum absolute change in pitch using the pitch

bend controller (MSB is in semitones, LSB in cents – MSB

06 and LSB 00 therefore defines a pitch bend range of ±6

semitones i.e. 1 octave total range)

1 Fine Tuning An offset from A440 tuning:

V = MSB× 128 + LSB

offset = 100V
8192 cents

2 Coarse Tuning An offset from A440 tuning:

offset = MSB− 64 semitones

(b) Registered Parameter Numbers (RPNs) supported in General MIDI

Table 2.5: CCs and RPNs supported in General MIDI

38

predictable – there is a specific sound which we wish to create – and the inability of

GM to support this consistency renders it inappropriate for audio coding.

Roland and Yamaha both extended the General MIDI standard, creating their own

proprietary “standards”, supported by their subsequent GM compatible synthesisers

- Roland GS (1991) and Yamaha “Extended General MIDI” (XG) [Yamaha, 1994, pp.

112–115] e.g. providing additional sets of sounds and audio effects such as chorus.

2.5.4 Downloadable Sounds (DLS)

The introduction of the MMA Downloadable Sounds format (DLS1) moved MIDI

further towards replicable audio [MMA, 1997]. DLS1 defines a standard for wavetable

synthesis (in this case defined as sample playback plus modulators), encapsulating

both: basic waveform content; and how the synthesiser engine should respond to

controller messages. The file format is FourCC based, using four character codes to

identify “chunks” of data within the file (pp.22). This was further standardised in the

DLS2 format [MMA, 2006]. DLS is one of the most prevalent synthesis standards, as

it is integrated in Microsoft Windows, Apple Mac OS X and many mobile devices.

MPEG-4 Structured Audio Sample-Bank Format (SASBF) is an implementation of

DLS23.

DLS2 is a sample-based synthesis engine in which base samples are manipulated

by modifying pitch, amplitude and timbre using envelope generators (EGs), low fre-

quency oscillators (LFOs) and filters. The basic unit of synthesis within a DLS2 file is

the instrument, corresponding to a specific MIDI Program Number. In order to allow

the timbre of an instrument to vary with pitch and loudness, multiple regions can be

defined for the instrument, each responding to a range of MIDI Note On messages

– a specific region being selected based upon the MIDI Note Number and Velocity

received in the Note On message. In turn, each region is associated with a sample of

audio data. In order to play back a sample for various note lengths, it can be labelled

with a loop region, consisting of one or more cycles of the waveform. During synthe-

sis, the loop region will then be repeated to produce the required length (Figure 2.2).

The combination of a set of samples for an instrument and the associated metadata

3The Creative Labs SoundFontTMformat is closely related to DLS [Rossum, 1997]. In 1993

Creative Labs created the SoundFont as a standard format for wavetable synthesis data for use with

their Sound Blaster AWE32 PC sound card. In 1996, SoundFont 2.0 [Labs, 1998] was introduced

and the details of the standard were publicly disclosed. MPEG, the MMA and Creative Labs jointly

created DLS2 to merge features of their independent standards [MMA, 1998].

39

0 20 40 60 80 100 120 140 160

−1

−0.5

0

0.5

1

Sample Number

A
m
p
li
tu
d
e

Figure 2.2: A short clarinet sample with the loop region marked. When a note is played

using this sample, the first 69 samples are played, the section from samples 70–137 is then

repeated to extend the length of the note as required and the final samples (from 138–170)

are played at the end of the note.

regarding when each sample should be used is termed a multisample.

During playback, “Articulators” can be used to modify the pitch, amplitude and

timbre of the sample. The pitch is typically adjusted by varying the size of the

steps taken through the sample data – e.g. in order to lower a sample one octave,

a “half sample” step is taken through the sample data for each output sample gen-

erated, interpolating the sample data appropriately. The amplitude is then adjusted

by applying gain related articulators, and the timbre may be modified by specifying

resonance and cutoff parameters for a filter.

2.5.5 Combining MIDI and Synthesis: XMF

Combining the event triggering protocol of the SMF files, and the sound definitions

from General MIDI and DLS1, the eXtensible Music Format (XMF) [MMA, 2001]

was created to allow consistent audio playback of MIDI pieces across audio players

and platforms. As the MPEG-4 SA Wavetable Synthesis object type (Section 2.4)

supports a MIDI score and an implementation of the MMA DLS standard (SASBF)

for synthesis, both XMF and MPEG-4 offer suitable container formats for MIDI +

DLS audio coding. Recent mobile phones have support for XMF for ringtones and

multimedia audio clips [Copp, 2003].

40

2.6 Extracting MIDI from Audio

Both the MMA XMF and MPEG-4 SA Wavetable Synthesis standards promote the

encapsulation of a MIDI “command” stream with a DLS wavetable synthesiser def-

inition. These are possible formats for “object coded” audio if we can infer MIDI

parameters from an audio stream and use this data to drive a DLS synthesiser.

Several groups have looked at estimating MIDI parameters from audio signals.

This work has concentrated on estimation of the core Note On and Note Off messages,

based on estimations of onset and offset times, pitch and amplitude.

Sieger and Tewfik [1997] analysed a database of instrument sounds, building a

dictionary of audio components from which to resynthesise the signal. Sounds using

piano and drums were considered, and were separated into tonal and residual tracks

based on the harmonic content. Overlapping tracks were combined into segments

which were then modelled using the dictionary and basis pursuit [Chen, 1995]. Audio

segments (i.e. onsets and durations) and pitches were extracted showing that simple

MIDI extraction from audio was possible.

Modegi and Iisaku [1998] used MIDI to encode physiological sounds (e.g. heart

beats and lung sounds) captured by attaching a pair of microphones to stethoscopes.

Real-time algorithms were used for peak detection, audio segmentation and note ex-

pression, and were coded as a sequence of MIDI Note On and Note Off messages,

containing the detected pitch, and encoding the peak level in each sound as the Note

On velocity. The Yamaha XG and GS Roland “heartbeat” sounds were used to resyn-

thesise the signal, and judged to be “similar” to the original sound. Experiments on

encoding singing data were performed offline, and resulted in features resembling those

in the original audio in a low bit-rate format (ca. 6 kb/s, a compression ratio of 1
27

).

Although not rigorously evaluated, audio quality was deemed “a little bit poor”.

Dixon [2000] synthesised audio files from MIDI data using various General MIDI

voices and then produced MIDI files from that audio. The timing and pitch of Note

On events was compared, and a score was calculated based on the number of false

positives and negatives observed. A wide variation in this score was noted, most

sounds having a success rate of 60%-80%, down to ca. 30% when a “Violin” sound

was used.

More recently, Bertin et al. [2007] applied non-negative matrix factorisation al-

gorithms and K-SVD techniques to audio to extract onsets, duration and pitches.

Similar results were observed for recordings of acoustic instruments and synthesised

41

audio suggesting that, currently, estimating MIDI parameters from synthesised audio

is a suitable focus for research - the details that may make the acoustic problem more

difficult (e.g. room effects) did not appear to be a significant factor in their results.

However, it was also noted that the use of algebraic techniques for feature extraction

meant that performance was adversely affected by the length of the piece under con-

sideration - whereas for frame-by-frame algorithms, performance should be, at worst,

linear in the length of the piece.

2.6.1 Commercial Applications

Outside the research community, several commercial applications are available which

offer audio to MIDI capabilities. These include:

• AKoff Music Composer 2.0 which estimates Note On, Note Off, dynamics and

pitch bend [Akoff Sound Labs];

• Intelliscore 8.0 which produces polyphonic note events for multiple instruments

using the expression and pitch bend controllers to adjust amplitude and pitch

of the output signal [Innovative Music Systems, Inc.];

• TS-AudioToMIDI 2.01 which produces polyphonic Note On and Note Off events

[Tallstick Sound Project];

• Melodyne 3.2 which extracts pitch, timing, dynamics, pitch bend and vibrato

from monophonic audio producing Note On and Note Off events and using the

expression and pitch bend controllers to adjust amplitude and pitch [Celemony].

It is clearly possible to produce a MIDI representation from audio. However, as noted

above, MIDI alone done not provide a suitable framework for audio coding – although

it can control a synthesiser, the variety of possible synthesisers mean that there is no

guarantee of consistency in the output audio. However, we believe that by adopting

a specific synthesis model, it should be possible to generate MIDI from source audio

material and provide consistent audio output from that MIDI data.

2.6.2 Conclusions

Systems currently exist which produce a MIDI representation from audio using ex-

pression and pitch bend to modulate output from a synthesiser. However this repre-

sentation does not provide a meaningful representation of the modulations (e.g. there

42

is just a series of pitch bend values, rather than any concept of vibrato on a signal).

Additionally, the quality of the modulation may be limited by the available band-

width – to modulate a signal at the audio sample-rate, pitch bend values would need

to be provided at that rate.

We considered a selection of audio coding techniques and identified that structured

audio would allow the representation of a signal incorporating high-level parameters

which (a) are meaningful to a sound designer (e.g. “vibrato”) and (b) can be applied

by the synthesis engine at the audio sample-rate. Looking to work from existing stan-

dards, we found that MPEG-4 Structured Audio Wavetable Synthesis is a possible

format with which to build an object coding system for musical audio. Examining re-

lated standards from the MIDI Manufacturers Association, we saw that the MPEG-4

SA Structured Audio Sample Bank Format (SASBF) is an implementation of MMA

Downloadable Sounds (DLS) and that the MMA have a complementary standard,

XMF, which also encapsulates a MIDI control stream with a DLS synthesiser speci-

fication. However, no systems currently exist for the production of structured audio

parameters from audio.

We believe that it should be possible to (i) infer suitable MIDI parameters from

source audio material; and (ii) control a DLS synthesiser using those MIDI parameters

to create output audio with features of the source audio material. We therefore looked

to find existing technologies which could be combined to create such a system. In the

coming chapters, we: consider this problem in more detail (Chapter 3); examine

optimisation schemes which may allow us to estimate the parameters (Chapter 4);

estimate DLS parameters from audio (Chapter 5); and resynthesise audio based on

those parameters (Chapter 6).

43

Chapter 3
An “Expressive MIDI” model of

pitch

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio

Figure 3.1: System Model: We are looking to find suitable components to build this system

The existing MMA “eXtensible Music Format” (XMF, Section 2.5.5) and MPEG-

4 Structured Audio Wavetable Synthesis (Section 2.4) standards allow control of a

Downloadable Sounds (DLS) synthesiser (Section 2.5.4) using standard MIDI mes-

sages (Section 2.5.1). We wish to create a system which allows a “MIDI + DLS”

representation to be created directly from source audio material. As a first stage

in this process, we produced an Expressive MIDI representation of audio – a MIDI

“sketch” of the audio, capturing the pitch expression and representing it using MIDI

parameters. In order to do so we needed to be able to: extract pitch information

from the source audio material; represent this pitch information as DLS parameters;

encode these parameter values in a MIDI stream; and resynthesise audio from that

MIDI stream (Figure 3.1).

The core of this system is the representation of the pitch trajectories from the

source audio as a set of pitch parameters. We next consider the facilities provided by

DLS for representing pitch.

44

3.1 Representation of Pitch Trajectories in DLS

Within DLS the base pitch for a note is controlled by:

• the MIDI note number;

• MIDI Pitch Bend (MIDI RPN 0 being used to adjust the pitch bend range);

• MIDI RPN 1 to fine tune pitch output (in pitch cents, i.e. 1
100

ths of a semitone);

• MIDI RPN 2 to transpose output by semitones.

This pitch is then modulated using:

• an Envelope Generator (EG);

• a Low Frequency Oscillator (LFO).

The rate at which the EG and LFO modulators operate is defined by the synthesiser

used, allowing full sample-rate signal modulation based on the EG and LFO settings.

3.1.1 dAhDSR Envelope Generator

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Time (s)

V
a

lu
e

d A h

D

τD

S

Note Off

τR

R

Figure 3.2: Envelope Generator. The MIDI “Note On” event occurs at t = 0, the MIDI

“Note off’ event at the start of the release phase (t = 1.5 in this example).

The DLS pitch EG is triggered by the MIDI Note On event and consists of six

stages (Figure 3.2). The stages are parameterised by:

• Delay time, d seconds, during which time the EG output is zero;

• Attack time, A seconds, the time taken to reach an output level of 1;

45

• Hold time, h seconds, the time the EG stays at the peak level;

• Decay rate, D seconds, the time it would take to decay from the peak level to

a level of zero;

• Sustain level, S (unitless), indicates the proportion of the maximum EG level

(0 to 1) at which the sustain phase is held;

• Release rate, R seconds, the time it would take to decay from 1 to a level of zero

(the actual time spent in the release phase τR depends upon the sustain level).

Hence, such envelope generators are referred to as dAhDSR EGs. An additional

parameter, the envelope depth, dEG in pitch cents, indicates the peak value during

the hold phase. The EG level during the sustain phase is then S × dEG pitch cents.

The attack phase begins after the MIDI “Note On” message is received and the MIDI

“Note Off” event signifies the start of the release phase.

The actual time spent in the decay phase, τD, is the time required to decay from

the “full” EG depth to the sustain level. With a linear EG, this is:

τD = (1− S)×D seconds. (3.1)

Similarly, the time spent in the release phase, τR, is the time to decay from the

sustain level to zero. Again assuming a linear EG, this is:

τR = S ×R seconds. (3.2)

For a linear dAhSDR EG the output for a note of length l seconds is given by

EG(t) =

0 if t ≤ d ,

t−d
A

if d < t ≤ d+ A ,

1 if d+ A < t ≤ d+ A+ h ,

1− t−d+A+h
D

if d+ A+ h < t ≤ d+ A+ h+ τD ,

S if d+ A+ h+ τD < t ≤ l − τR ,

l−t
R

if l − τR < t ≤ l ,

0 if l < t .

(3.3)

where t, d, A, h, τD, τR are in seconds.

46

3.1.2 DLS Low Frequency Oscillator (LFO)

The DLS pitch LFO is also triggered by the MIDI Note On’ event, and has a delay

time (δ seconds) and frequency (f Hz). When the MIDI “Note On” event is received,

the output of the LFO is zero until the specified delay time has passed, after which a

waveform with the specified frequency is generated (Figure 3.3). DLS supports LFOs

based on sine and triangle waveforms – we consider a sine wave based LFO in this

work.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

Time (s)

V
al
u
e δ

ω

Figure 3.3: Low Frequency Oscillator showing the initial delay, δ seconds, and the period

of the LFO, ω = 1
f seconds.

A depth parameter dLFO indicates the range of the LFO in pitch cents. Once

triggered, the LFO continues to the end of the note. DLS supports the use of MIDI

Controller 1 (Modulation) and MIDI Channel Pressure for adjusting the LFO depth.

The output of the LFO is given by:

LFO(t) =

0 t ≤ δ

sin(2π(t− δ)f) δ < t ≤ l
(3.4)

where t is the time and l the length of the note (both in seconds).

3.1.3 The DLS Pitch Trajectory Model

Combining the envelope generator, the LFO and a base value, b pitch cents, with

the relevant depths, an overall DLS pitch trajectory is produced (Figure 3.4) based

on the eleven parameter values (dAhDSR, dEG, δ, f, dLFO, b). We refer to this as the

“EG+LFO” pitch model.

47

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

Time (s)

V
a

lu
e

Figure 3.4: Trajectory generated by combining a base value, EG and LFO

The overall pitch trajectory, in pitch cents, is then:

e(t) = b+ (dEG × EG(t)) + (dLFO × LFO(t)) (3.5)

where b is the base pitch value, dEG the EG depth and dLFO the LFO depth, all in

pitch cents (see figure 3.4).

3.1.4 DLS Parameter Formats

The DLS specification includes datatypes for each of the EG and LFO parameters

(Table 3.1). For each datatype, a 32-bit integer is used to store the value – a mapping

between the native units (time in seconds, pitch in semitones) and the 32-bit integers

being defined for each datatype (Table 3.2).

3.1.5 The Expressive MIDI Pitch Model

We have shown how the DLS pitch model supports modulation of the pitch of a

sample by specifying a base pitch, an Envelope Generator (EG) and a Low Frequency

Oscillator (LFO). The MIDI note number for a note is specified in the Note On and

Note Off messages, and the EG and the LFO are triggered by the Note On and Note

Off events. We therefore applied the DLS pitch model to individual notes from source

audio material – such “per-note” parameters being suitable when the overall pitch

trajectory is known at the start of the note (e.g. for audio coding), but inappropriate

for performance when the modulators need to be varied during the note. This is the

basis of our Expressive MIDI pitch model.

In order to use this model, we can: extract the overall pitch trajectory from the

source audio; segment this trajectory into individual notes; and estimate the appro-

priate pitch parameters for each segment. We believe suitable technologies should

48

Parameter DLS Connection Block Units Min Max

LFO Frequency Vibrato LFO Frequency Absolute Pitch 0.1 Hz 20 Hz

LFO Delay Vibrato LFO Start Delay Absolute Time 10 ms 10 s

LFO Depth Vib LFO to Pitch Relative Pitch -1200 cents 1200 cents

EG Delay Mod EG Delay Time Absolute Time 0 s 40 s

EG Attack Mod EG Attack Time Absolute Time 0 s 40 s

EG Hold Mod EG Hold Time Absolute Time 0 s 40 s

EG Decay Mod EG Decay Time Absolute Time 0 s 40 s

EG Sustain Mod EG Sustain Level Percent 0% 100%

EG Release Mod EG Release Time Absolute Time 0 s 40 s

EG Depth Mod EG to Pitch Relative Pitch -1200 cents 1200 cents

Table 3.1: Default DLS Connection Blocks for Pitch Parameters, their datatypes and the

range of values allowed [MMA, 2006, pp.30–31].

Units Data Format Notes

Absolute Pitch 6553600×
(

12 log2

(
f

440

)
+ 69

)
f frequency in Hz

Absolute Time 1200× log2 (t)× 65536 t time in seconds, the value

80000000h being reserved to repre-

sent a time of exactly 0 seconds

Relative Pitch 65536×∆p ∆p is the change in pitch in cents

Percent Not specified by MMA ∆p is the change in pitch in cents

Table 3.2: DLS 32-bit integer representations of datatypes [MMA, 2006, p.32]

49

exist for this – pitch estimation being a well-established research area – and look to

build a system incorporating existing technologies.

3.2 Extracting a Pitch Trajectory from Audio

Pitch is a perceptual quality of a sound. It is defined with reference to the pitch

sensation created by sine waves – the pitch of a sound having a logarithmic relationship

to the frequency of the sine wave which creates the same “pitch sensation”[Sethares,

1997]. We note that pitch is only defined for certain discrete values, whereas frequency

is continuous. Most sounds are not simple e.g. for harmonic signals, the fundamental

frequency would give the pitch, but this frequency may not be present in the actual

signal and in polyphonic music, several pitched notes will be present in the signal at

the same time.

We are interested in pitch estimation for analysis/resynthesis audio coding. For

accurate and high resolution resynthesis of audio, we need an accurate and high-

resolution pitch estimator. The minimum difference between two pitches that can be

perceived by a listener is termed the just noticeable difference (JND). The JND for

two separate pure tones is ca. 10 cents (i.e. 1
10

semitone), the JND for complex tones

being smaller [Loy, 2006]. In order to synthesise audio with the same perceived pitch,

a pitch error of less than 10 cents is therefore sought. For pitch variation within a

note, the JND for pitch modulation (i.e. the smallest noticeable change in pitch) was

measured as 2-3 cents for trained musicians by Sethares [1997].

Block-based pitch estimators operate on windows of samples taken at certain times

in the signal (often equally spaced time intervals). A pitch detection function is then

applied to the block of data, indicating how well the pitch is represented by a set of

candidate solutions. The best candidate solution is then selected using a peak picking

algorithm. The most fundamental pitch detection functions are autocorrelation and

the Fourier transform. We now introduce the use of these for pitch detection.

3.2.1 Pitch Estimation Using Autocorrelation

The simplest approach to fundamental frequency estimation relies on the correlation

of a signal with itself at various offsets over a window of W samples (the autocorrela-

tion function, ACF), and the selection of a (non-zero) offset which gives the greatest

50

0 200 400 600 800 1000 1200 1400 1600 1800 2000

−10

0

10

20

Lag (samples)

A
C
F

Figure 3.5: Example plot of the autocorrelation function (ACF) for a segment from a vibrato

trumpet note.

correlation.

ω(t) = argmax
τ

(
W−1∑
i=0

xt+ixt+τ+i

)
(3.6)

This gives an estimate of the period of the signal, ω, in samples, and hence, using the

sample rate sR, an estimate of the fundamental frequency, f :

f =
1

ω
Hz. (3.7)

The pitch estimate (in terms of MIDI pitch) is then:

pAC = 12 log2

(
f

440

)
+ 69

= log2

(sR

440

)
+ 69− log2 ω .

(3.8)

Hence, we see that the pitch resolution of an autocorrelation based pitch estimator is

greatest for low pitches (i.e. large periods).

Picking the offset with the greatest correlation is not perfect. Often, the signal is

highly correlated for offsets of a few samples (as in Figure 3.5), and harmonics may

be more prominent than the fundamental frequency itself. It is therefore common to

look for the first peak in the correlation after the first zero crossing rather than simply

the greatest correlation. In particular, “octave errors” occur when the 2nd harmonic

is more prominent than the fundamental frequency.

3.2.2 Pitch Estimation Using the Fourier Transform

Pitch can also be estimated from the power spectrogram of a signal (i.e. the square

amplitude of the discrete-time short-term Fourier transform), by selecting the fre-

51

quency bin with the highest power. This gives a direct estimate of the frequency –

the resolution being limited by the window size used.

The Fourier transform is based around the assumption of a signal repeating with

period N. This assumption generally does not hold, introducing aliasing errors. It is

therefore usual to use a windowing function, w(n) to reduce these errors.

f =
sR

N
argmax

k

∣∣∣∣∣ 1√
N

N−1∑
n=0

w(n)xne
−2πi kn

N

∣∣∣∣∣
2

Hz (3.9)

where k > 0

The Fourier transform pitch estimate is based on a direct estimate of the frequency

bin, k, and the associated MIDI pitch is:

pFT = 12 log2

(
f

440

)
+ 69

= log2

(sR

N

)
+ 69 + log2 k .

(3.10)

The pitch resolution of a Fourier transform based pitch estimator is therefore greatest

for high pitches (i.e. large frequencies).

Various techniques have been proposed for improving the estimation of the position

of the peak within the DFT, using interbin estimates rather than the discrete bin

numbers [Jacobsen and Kootsookos, 2007].

3.2.3 YIN

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN

Figure 3.6: System Model: YIN, the first component of the system

At the start of this work, the YIN algorithm [de Cheveigné and Kawahara, 2002]

was the state-of-the-art in pitch estimation. We therefore elected to use it to estimate

pitch trajectories (Figure 3.6). YIN is inspired by the autocorrelation approaches to

pitch estimation, but applies several adjustments to give a more accurate estimate.

Given a signal and a hop size, h (default 32), YIN gives instantaneous estimates of

pitch, power and aperiodicity each h samples.

52

Rather than using the autocorrelation directly, YIN calculates the square error

difference function at time t

E(x, t, τ) =
W∑
i=1

(xt+i − xt+i+τ)2 (3.11)

where x is the audio signal, W the window size, and τ an offset. This is closely related

to the autocorrelation as
∑

i (xi − xi+τ)2 =
∑

i x
2
i − 2xixi+τ + x2

i+τ and
∑

i xixi+τ is

the autocorrelation function.

YIN has three options for calculating the difference function: holding the earlier

window fixed and shifting the later window; shifting the earlier window with the later

window fixed; and shifting both windows away from a centre point. We used the

third of these options – the default mode for YIN. Using this scheme, the offset of the

earlier window from the sample under consideration is:

δe(τ) =
⌊τmax

2

⌋
−
⌊τ

2

⌋
(3.12)

samples where τmax is the maximum lag under consideration

τmax =
sR

fmin
(3.13)

where sR is the sample rate and fmin the minimum frequency to be considered (default

30Hz). Similarly, the later window is offset by

δl(τ) =
⌊τmax

2

⌋
+
⌈τ

2

⌉
. (3.14)

We note that δl(τ) − δe(τ) =
⌈
τ
2

⌉
+
⌊
τ
2

⌋
= τ as d τ

2
e =

⌊
τ
2

⌋
= τ

2
for τ divisible by 2

with
⌈
τ
2

⌉
= τ

2
+ 1 and

⌊
τ
2

⌋
= τ

2
− 1 otherwise.

Using these timings, YIN finds the ith period estimate by minimising the difference

function

τ ∗(i) = argmin
τ

w−1∑
j=0

(
x(i−1)h+δe(τ)+j − x(i−1)h+δl(τ)+j

)2
. (3.15)

The ith pitch output from YIN, i = 1 . . . n, is then

pYIN = log2

(
sR

440τ ∗((i− 1)h)

)
(3.16)

octaves from 440 Hz and the MIDI pitch is given by pMIDI = 12pYIN + 69.

The precise timing at which the pitch estimate applies within the analysis window

is not known. However, with no further information, the least biased estimate is the

centre of the analysis window – as reversing the order of the samples considered will

53

produce the same values for the difference function. The size of the YIN analysis

window is the specified window size, w, plus the maximum lag considered in the YIN

algorithm, τmax. The estimated timing, ti, in samples for the ith pitch estimate is:

ti = (i− 1)h+

(
w + τmax

2

)
. (3.17)

Noting that the default window size is w =
⌈

sR
minf0

⌉
= τmax samples,

ti = (i− 1)h+
⌈ sR

minf0

⌉
(3.18)

samples if the default window size is used.

Given a period estimate of τ ∗(i) samples, YIN calculates estimates of the power,

P, and aperiodicity, a, of the signal (Figure 3.7):

P(τ ∗(i), i) =
τ−1∑
j=0

x2
(i−1)h+j

a(τ ∗(i), i) =

∑τ−1
j=0 (x(i−1)h+j − x(i−1)h+j+τ)

2

2
∑τ−1

j=0 x
2
(i−1)h+j + x2

(i−1)h+j+τ

(3.19)

We see that YIN calculates the power estimate across the first period in the analysis

window. The timing for the power estimate, in samples, is therefore

tpwr = (i− 1)h+
τ ∗(i)

2
(3.20)

where (i − 1)h is the time at the start of the analysis window and τ ∗(i) the pe-

riod estimate. Similarly, the YIN aperiodicity estimate is calculated across the first

two periods in the window. The timing for the aperiodicity estimate, in samples, is

therefore

tap = (i− 1)h+ τ ∗(i) . (3.21)

Hence, the pitch, power and aperiodicity estimates are not time-aligned. However,

the power and aperiodicity estimates depend upon an accurate pitch estimate and

should therefore be calculated at the same timing as the pitch.

Although we now know that the YIN power and aperiodicity estimates are un-

reliable, our focus is on building the Expressive MIDI system and, as YIN was the

state-of-the-art, we adopted it for our system.

3.3 Segmenting the Pitch Trajectory

The Expressive MIDI pitch model (Section 3.1.5) applies to individual notes within a

musical signal – the EG and LFO being triggered by the MIDI Note On and Note Off

54

225 230 235 240 245 250 255

39.5

40

40.5

41

41.5

42

42.5

Time (s)

M
ID

I
P
it
ch

(a) YIN pitch estimate

225 230 235 240 245 250 255

0

0.01

0.02

0.03

0.04

0.05

Time (s)

P
ow

er

(b) YIN power estimate

225 230 235 240 245 250 255

0

0.2

0.4

0.6

0.8

1

Time (s)

A
p
er
io
d
ic
it
y

(c) YIN aperiodicity. Aperiodicity threshold of 0.1 shown as dashed line.

Figure 3.7: Example output from YIN – Pitch, power and aperiodicity trajectories for three

piano notes.

55

events. We want to estimate parameters to use with this model, and therefore need

to examine individual notes from the musical signal. In order to do this, we need to

segment the audio into individual notes.

The YIN aperiodicity indicates the proportion of the signal power which is from

non-pitched sources – i.e. the output that is not explained by the estimated peri-

odicity. Low aperiodicity values indicate the sections of the YIN output at which

the signal pitched – given a perfectly periodic signal and an accurate estimate of the

period the aperiodicity will be 0.

In order to test our Expressive MIDI system, we will examine samples of audio

from the RWC Musical Instrument Sounds database [Goto et al., 2003]. The database

contains audio for 123 instruments and each instrument has files covering various

articulations (styles of playing) and dynamics (how loudly the instrument is played).

Each file consists of a chromatic sequence of notes covering the complete range of an

instrument (i.e. notes from the lowest to highest pitch produced by the instrument

at 1 semitone intervals) separated by silences. As the individual notes in the files are

separated by silences, we assumed that any contiguous pitched segments within the

files would be individual notes. Our segmentation procedure therefore consisted of

finding contiguous segments of YIN pitch estimates longer than 0.1 seconds with an

aperiodicity level less than 0.1.

Given an aperiodicity threshold, α, the set of indexes, S, where the aperiodicity

fell below this threshold was found:

S = {i : (a(τ ∗(i), i) <= α) ∧ (a(τ ∗(i− 1), i− 1) > α)} (3.22)

giving the start points for regions of low aperiodicity. Similarly, the set of indexes, E,

where the aperiodicity rose above this threshold was found:

E = {i : (a(τ ∗(i), i) <= α) ∧ (a(τ ∗(i+ 1), i+ 1) > α)} (3.23)

giving the end points for regions of low aperiodicity. Contiguous pitched segments

were then found from start points s ∈ S to end points e ∈ E. The lengths of the

segments (in seconds) were then calculated l = (e − s) ∗ h
sR

, where h is the YIN

hop size in samples and sR the sample rate of the original audio in samples per

second. Segments longer than 0.1 seconds were kept and used as the source pitch

trajectories which we aimed to match (Matlab 7.2 source code for the pitch trajectory

segmentation is shown in Listing 3.1).

For the rest of this thesis, we will use the term pitch trajectory to refer to an

individual note pitch trajectory unless otherwise stated.

56

Listing 3.1: Matlab Script for segmenting YIN output r

% Estimate ” b e s t ” e s t imate s o f p i t c h

nonper iod i c = (r . ap0 ’ > r . p l o t t h r e s h o l d) ;

changeval = d i f f (nonper i od i c) ;

changeval = [2 ∗ nonper iod i c (1) − 1 ; changeval ; 1 − 2 ∗ nonper iod i c (end)] ;

t o p e r i o d i c = find (changeval == 1) ;

f r omper i od i c = find (changeval == −1);

i f t o p e r i o d i c (1) < f r omper i od i c (1)

f r omper i od i c = f romper i od i c (2 :end) ;

end

i f t o p e r i o d i c (end) > numel (nonper i od i c)

i f f r omper i od i c (end) == numel (nonper iod i c)

t o p e r i o d i c = t o p e r i o d i c (1 : (end − 1)) ;

f r omper i od i c = f romper i od i c (1 : (end − 1)) ;

else

t o p e r i o d i c (end) = numel (nonper iod i c) ;

end

end

t o p e r i o d i c = t o p e r i o d i c (1 : numel (f r omper i od i c)) ;

b = [f r omper i od i c t o p e r i o d i c] ;

bs = b ∗ r . hop / r . s r ; % times in seconds

bl = bs (: , 2) − bs (: , 1) ;

% Only keep longer segments

bthresho ld = 0 . 1 ; % minimum leng t h in seconds

bc = bl > bthresho ld ;

bs = bs (bc , :) ;

57

3.4 Estimating Pitch Trajectory Parameters

As part of our Expressive MIDI system, we have selected the YIN pitch algorithm

to extract pitch trajectories from audio and have used the YIN aperiodicity to pro-

duce segments from the overall pitch trajectories. To complete the system, we need

to estimate parameters for these pitch trajectories and resynthesise audio from the

parametric representation1.

The DLS standard includes data format definitions specifying 32-bit representa-

tions for units of pitch, time, gain and frequency (Section 3.1). These bit-wise rep-

resentations form the basis of our encoding of EG and LFO parameters and bit-wise

optimisation algorithms are therefore considered. Estimating the trajectory parame-

ters is a difficult problem, the cost function having local minima e.g. when the LFO

(or EG) approximates the function of the EG (or LFO) (Figure 3.8a) and each time

the LFO delay is changed by the period of the LFO (Figure 3.8b). We next examine

several bit-wise optimisation algorithms, and consider the effect of the bit-wise coding

used on algorithm performance.

1We note that although the following work specifically considers the DLS representations of EG

and LFO parameters, pitch trajectory resynthesis could occur using any synthesiser for which the

EG+LFO pitch model was appropriate.

58

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

Time (s)

M
ID

I
P
it
ch

(a) EG Matching LFO, the LFO output being matched for half a cycle by the EG

output

0 0.2 0.4 0.6 0.8 1

18

20

22

24

26

28

30

32

34

Time (s)

M
ID

I
P
it
ch

(b) LFO delayed a number of periods, the trajectories matching from t = 0.55

seconds

Figure 3.8: Example local minima in matching trajectories

59

Chapter 4
Optimisation

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN ??????

Figure 4.1: System Model: Having selected YIN to estimate pitch parameters, we need to

select an optimisation technique to estimate the pitch parameters

In order to estimate pitch parameter values from the YIN pitch trajectories, we

need to choose a suitable optimisation technique (Figure 4.1). The pitch trajectory

estimation problem is presented in terms of the DLS 32-bit representation (Section

3.1.4), which specifies a mapping from integers (encoded using 32-bit Standard Bi-

nary) to the actual parameter values. Hence, we considered optimisation techniques

which operate directly on a bit-wise representation (bit-wise optimisation algorithms).

Alternative 32-bit encodings may be more effective during the optimisation pro-

cess – changing the encoding can change the number of local optima. We therefore

examined both bit-wise optimisation techniques and encodings. Mathias and Whitley

[1994] examined the performance of Steepest Descent, a Stochastic Hill Climber and

Eshelman’s CHC [Eshelman, 1991] using a standard Binary code and the Binary Re-

flected Gray Code (BRGC) [Gray, 1953]. We extended this analysis to include: the

simple Genetic Algorithm; and the less known Monotone and Balanced Gray codes.

After introducing the algorithms (Sections 4.1 and 4.2) and the binary encodings

(Section 4.4), we present the results of our analysis.1

1Parts of this work were originally published as a Technical Report by the Centre for Digital

Music, Queen Mary University of London [Welburn and Plumbley, 2009b].

60

Optimisation techniques aim to find the location of the optimum value of an

objective function over a search space of possible locations. The objective function

may be termed a fitness function for maximisation problems (the aim being to find

the “fittest” solutions) or a cost function for minimisation problems (the aim being

to minimise the “cost”). In order to optimise an objective function, search algorithms

start with one or more candidate solutions and update them, apply some pressure

towards producing “better” solutions e.g. by directly moving to better solutions (see

Steepest Descent and SHC, Section 4.1) or by giving preference to better solutions

as the basis for new candidate solutions (see the Simple GA and CHC, Section 4.2).

Individual solutions are evaluated using the objective function and search continues

until the value of the best solution meets some pre-determined criteria (e.g. a small

difference to a target value or no improvement for a number of iterations) or until a

fixed number of iterations or objective function evaluations have occurred.

In order to find the global optimum value, and to know that it actually is the

global optimum, either an exhaustive search of the entire space of possible solutions

must be carried out, or we must use information from the problem domain to solve the

problem. If neither of these are appropriate (e.g. an exhaustive search would take too

long) then we must trust that the technique being used will provide a good enough

solution for our needs. For the pitch parameter estimation problem we are looking

to find “good enough” pitch parameters rather than the theoretical optimum. As the

space may contain multiple local optima, a search purely using local information (e.g.

gradients) may not find the global optimum – both local and global searches must be

used to find the region in which the best solution occurs, and to search that region

for the best solution. These are termed exploitation of local features and exploration

of the solution space [Holland, 1992].

We considered two hillclimbing/descent methods (Steepest Descent and a Stochas-

tic Hillclimber) and two Evolutionary Algorithms (a Simple Genetic Algorithm and

CHC). We next describe these algorithms.

4.1 Hillclimbing/Descent Methods

Hillclimbing and Descent methods take a single candidate solution and then repeatedly

move to solutions for which the objective function gives a higher (Hillclimbing) or

lower (Descent) value until no new position can be found. As a maximisation problem

can be converted to a minimisation problem by considering the alternative objective

61

function f̃(x) = −f(x), they are fundamentally the same types of techniques but with

different problem domains.

4.1.1 Steepest Descent

Steepest Descent [Burden and Faires, 1997] is based on the principle that a local

minimum of a function can be found by selecting a start point and successively taking

small steps “down” in the direction of the gradient of the function.

xi+1 = xi − ε∇f(xi) (4.1)

For non-differentiable f(·), Steepest Descent is performed by examining the function

value for small changes to each individual dimension of x, the dimension that produces

the largest decrease to f(·) then being updated. For bitwise Steepest Descent the only

possible change to each dimension is to invert the relevant bit (yi ← ȳi).

For bit-wise data, Steepest Descent starts by selecting a, typically random, start

point. All neighbours of the current point are considered, the neighbours being those

candidate solutions that differ by a single bit (so called “Hamming” neighbours). If

any better values are found, then the current point is moved to the neighbour with

the best value. This process is repeated until no better value can be found, at which

point the algorithm terminates and returns the current point.

Algorithm 1 Bit-wise Steepest Descent

set x∗ to a random start position

repeat

x = x∗;

for i = 1 to n

y = x;

yi = 1− xi;
if f(y) < f(x∗) then

x∗ = y;

end if

next i

until (x = x∗)

Where: x = (x1, . . . , xn) and y = (y1, . . . , yn) are n-bit vectors; and f(·) is the function to be

minimised.

62

The equivalent ascent technique for maximisation would use f(y) > f(x∗) as the

test condition. This is equivalent to minimising f̃(x) = −f(x).

After selecting the start point, the algorithm is deterministic and will give the

same results each time – the search landscape (i.e. the neighbours for a given point)

being defined by the encoding. Steepest Descent exploits local features and moves to

a local optimum – no wider exploration is made which could increase the probability

of ending at better optima. Finding the global optimum requires that the start point

is in the same “valley” as the solution – its “basin of attraction”.

There are problems where it is not possible to find a local optimum solution

using Steepest Descent. For ridge problems, updating individual dimensions leads the

candidate solution onto a “ridge” of solutions which are better than the solutions off

the ridge. Consider the function f(x) = (x − y)2 + 1
x+y

, x, y ∈ Z. Steepest Descent

will move the candidate solution onto the ridge at x = y and then changing either

x or y will move the candidate off the ridge to a worse solution, every point on the

ridge appearing to be a local optimum. It is necessary for the candidate solution to

change both x and y to find better solutions and therefore Steepest Descent will fail

[Rowe et al., 2004].

The only parameter required for bit-wise Steepest Descent is the function, f(·), to

be optimised.

4.1.2 Stochastic Hill-Climber (SHC)

Rather than examining all neighbours to find the “best” move, a Stochastic Hill

Climber (SHC) (also known as a Random Mutation Hill Climber (RMHC)) randomly

selects a new point based on the current point and moves if the new point is better than

the current candidate solution. Although this (i) may result in moves to less optimal

neighbours than Steepest Descent and (ii) sometimes remains at the same point, the

concomitant reduction in the number of function evaluations required (only a single

function evaluation being required with each generation) can produce performance

improvements over Steepest Descent.

Two versions of the SHC/RMHC exist in the literature: Forrest and Mitchell

[1993] stating that the new point should be a neighbouring value, selected with a

uniform probability; and Whitley et al. [1996] stating that the new point should be

selected by mutating every bit with a low uniform probability. As for bit-wise Steepest

Descent, only mutating neighbouring values will find a local optimum based on the

63

start position – this local optimum may be a different local optimum to that found by

Steepest Descent as the steepest gradient is not followed. Mutating all bits extends

the search to consider both neighbours and other points in the search space and will

no longer be restricted to finding solutions in the basis of attraction of the start point.

In this work, we use Whitley et al.’s definition of SHC and mutate all bits.

The bit-wise Stochastic Hill-Climber again starts with a single, typically random,

point, but then examines all bits, mutating each with a fixed probability, p. If the

fitness at the new point is better, then we move to that point. SHC continues until

a termination condition is reached (e.g. not being able to move to a better position

after some number of attempts, or a “good enough” fitness being reached).

Algorithm 2 Bit-wise Stochastic Hill Climber

set x to a random start position

repeat

y = x;

for i = 1 to n

choose q at random from uniform over [0, 1]

if q < p then

yi = ȳi;

end if

next i

if f(y) > f(x) then x = y;

until finished

Where: x = (x1, . . . , xn) and y = (y1, . . . , yn) are n-bit vectors; 0 ≤ p ≤ 1 is the probability of a

bit flipping; and f(·) is the function to be minimised.

Using a mutation probability of 1
n
, where n is the length of the bit-string, on

average a single bit will be expected to be mutated each generation. However, unlike

Steepest Descent, which considers all neighbours and finds the “best” neighbour, SHC

will move to the first better solution found. Additionally, there is the possibility of

more than one bit being mutated in each generation, allowing the algorithm to explore

the search space rather than simply searching locally for a solution.

In order to apply SHC to a minimisation problem, the test condition in Algorithm

2 can be changed to f(y) < f(x) – this is equivalent to maximising the complementary

problem f̃(x) = −f(x).

64

Since random mutations are tested, the algorithm can give different results each

time it is run. Additionally, as it is possible to reach any point in the search space

from the current point (albeit with decreasing probabilities depending on the number

of differing bits), all points in the space may be considered i.e. it is possible eventually

to find the solution for any optimisation problem. However, if the set of points that

lead to the global solution – its “basin of attraction” – is small relative to the search

space, it may take many generations to enter the basin and find that optimum.

The parameters required for SHC are: the function to be optimised, f(·); the

mutation probability p; and the termination parameters – e.g. the maximum total

number of iterations or the maximum number of iterations without finding a better

solution.

4.2 Evolutionary Algorithms (EAs)

Inspired by biological evolution, Evolutionary Algorithms (EAs) apply the operators

recombination, mutation and selection to “evolve” a population of candidate solutions

to maximise some fitness function.

Recombination and mutation are based on internally representing phenotypes (the

candidate solutions) as genotypes (or chromosomes) composed of component genes.

Mapping candidate solutions from the problem space (of phenotypes), P , to the search

space (of genotypes), S, is accomplished using an encoding Φ : P → S. The encoding

Φ is not necessarily a function, i.e. a one-to-one mapping between representations and

candidate solutions – a candidate solution could have multiple possible representations

e.g. in the Unary Code, values 0 . . . n are represented by a series of n zeroes and ones,

the represented value being determined by the number of 1s in the representation.

In order to apply the power of recombination and mutation to a problem, a suitable

representation is required.

Candidate solutions are tested using the fitness function, defined on the phe-

notypes. A decoding function Θ, that covers the space P , is therefore required

with which each phenotype is mapped deterministically to the original genotype i.e.

Θ : S → P where x = Θ(Φ(x)).

EAs are regarded as obtaining their power from a combination of exploration

(searching over a large space) and exploitation (finding the best performance locally).

Eiben and Schippers [1998] reviewed the existing literature and concluded that there

was no common understanding of how exploration and exploitation contribute to

65

that power. However, in general terms, exploration increases population diversity

to search new areas whilst exploitation decreases population diversity and examines

local structure.

The only domain knowledge EAs require is the ability to calculate a fitness function

based on the candidate solutions, allowing them to be applied to arbitrary problems.

Domain knowledge may be incorporated into EAs by applying them to part of the

problem space (e.g. a subset of the parameters) and using additional optimisation

techniques within the calculation of the fitness function (e.g. finding the additional

parameters using local searches or algebraic solutions). This is termed “hybridisa-

tion”. EAs which include local search techniques to select the local optimum solution

after recombination and mutation are termed memetic algorithms [Moscato, 1989].

We considered two Evolutionary Algorithms, a Simple Genetic Algorithm and

Eshelman’s CHC, described below.

4.2.1 Simple Genetic Algorithm

The Simple Genetic Algorithm (GA) operates on a population of m bit-wise rep-

resentations of candidate solutions i.e. the genotype is a string of 1s and 0s. This

population is evolved using recombination and mutation. Recombination selects “par-

ent” solutions based on fitness values – candidates with higher fitness values (“better”

candidate solutions) having a higher probability of selection – and then combines these

solutions using crossover (see below) to produce a child solution. The fitness function,

f(·) is used to select the “parent” solutions – only the “fittest” solutions getting to

breed. Mutation randomly changes bits in the updated population, all bits having

the same fixed probability, p, of mutating.

In order to apply a Simple GA to a minimisation problem, the complementary

maximisation problem f̃(x) = −f(x) can be considered – however a suitable selection

scheme then needs to be used, as the standard “roulette wheel” selection scheme for

Simple GAs [Mitchell, 1998, pp. 166–167] is designed to work with positive functions.

A rank-based selection scheme [Mitchell, 1998, p. 169] allows a GA to be directly

applied to the minimisation problem by ranking solutions based on how low their

fitness is rather than how high.

For the Simple GA, the parameters required are: the function to be optimised, f(·);
the population size, m; the mutation probability, p; and the termination parameters

– e.g. the maximum total number of iterations or the maximum number of iterations

66

without finding a better solution.

Crossover Schemes for Genetic Algorithms

The Simple Genetic Algorithm (Simple GA) uses single-point crossover. Single-point

(1-point) crossover selects a position within the bit-string and exchanges all bits be-

yond that point between the two parents. Table 4.1 shows the offspring A∗ and

B∗ produced from 8-bit values A and B using single-point crossover at bit 6. For

high-dimensional data, single-point crossover explores by exchanging entire sets of

dimensions from the start and end of the parents, and uses parts of the dimension

at the crossover position to generate a new value. Values from individual dimensions

will be present in greater numbers for fitter members of the population. Those values

will propagate in turn.

Parents
A a1 a2 a3 a4 a5 a6 a7 a8

B b1 b2 b3 b4 b5 b6 b7 b8

Offspring
A∗ a1 a2 a3 a4 a5 b6 b7 b8

B∗ b1 b2 b3 b4 b5 a6 a7 a8

Table 4.1: Single Point Crossover

Alternative crossovers include:

• Two-point (2-point) crossover, in which bits between two selected positions are

exchanged between the parents. Table 4.2 shows the offspring A∗ and B∗ pro-

duced from 8-bit values A and B using 2-point crossover at bits 3 and 6.

Parents
A a1 a2 a3 a4 a5 a6 a7 a8

B b1 b2 b3 b4 b5 b6 b7 b8

Offspring
A∗ a1 a2 b3 b4 b5 a6 a7 a8

B∗ b1 b2 a3 a4 a5 b6 b7 b8

Table 4.2: Two Point Crossover

• Half Uniform Crossover (HUX), in which the bits that differ between the parents

are found, and half these bits are uniformly randomly selected and flipped. Table

67

4.3 shows the offspring A∗ and B∗ produced from 8-bit values A and B, where

the bold bits indicate bits that have the same value in A and B – of the differing

bits (bits 2, 3, 6 and 8) bits 3 and 6 were randomly selected and changed.

Parents
A x1 a2 a3 x4 x5 a6 x7 a8

B x1 b2 b3 x4 x5 b6 x7 b8

Offspring
A∗ x1 a2 b3 x4 x5 b6 x7 a8

B∗ x1 b2 a3 x4 x5 a6 x7 b8

Table 4.3: Half Uniform Crossover

A 1-point crossover exhibits “positional bias” – interacting bits relatively far apart

are more likely to be disrupted than bits that are close together as an end of the

parents is always exchanged [Caruana and Schaffer, 1988]. HUX and 2-point crossover

do not suffer from this bias – HUX randomly selecting the bits to exchange and 2-

point crossover is able to preserve both ends of each parent. With 2-point crossover,

segments of the candidate solutions are preserved. HUX is the most disruptive of

these crossovers, changing bits throughout the gene. If individual bits in the encoding

provide information regarding the value encoded (e.g. in a standard binary encoding

each bit contributes a specific amount to the value) then preserving segments of the

values may help to find a solution by allowing exploration of a neighbourhood of

similar values.

Under 1- and 2-point crossovers, if a given bit yi is being exchanged then it is

probable that neighbouring bits (yi−1, yi+1) will also be exchanged – as the crossovers

exchange segments of consecutive bits. Changes in bit order will therefore affect 1-

and 2-point crossover (given an 8-bit value, if bits 2 and 7 are exchanged 1/2/3 and

6/7/8 are no longer consecutive but 1/7/3 and 6/2/8 are). It has been proposed that

the combination of partial solutions contributes to the power of EAs. This is termed

the “Building block hypothesis” [Goldberg, 1989, pp. 41–45]. Using HUX, the only

building blocks are bits which are common across parents, other segments of the data

being disrupted.

Additional genes can be inserted in the genotype, separating segments with related

bits. These additional genes are not expressed (i.e. do not affect the phenotype) but

make it more likely that crossover will exchange complete related segments. This is

analogous to the presence of introns in DNA. If x and y are vectors of related bits,

68

rather than using [xy] as the genotype we can extend it by inserting additional genes

a and b (i.e. using [xayb] as the genotype). Then, if a 2-point crossover extends from

any bit in a to any bit in b, the complete vectors related to x and y will be exchanged.

This can allow an EA to perform well on separable problems i.e. problems f(x, y)

that can be solved by separately finding y∗, the best y for any x, and x∗ the best x

for any y, and then combining the solutions. As HUX exchanges randomly selected

individual bits from the parent solutions, inserting additional genes will, on average,

have no effect on performance.

The different crossovers exhibit different degrees of sensitivity to the ordering of

the bits in the encoding:

• For 1-point crossover, reversing the column order will give the same performance

(2 equivalent codes);

• For 2-point crossover, both reversal and a shift of the columns will give the same

performance (2n equivalent codes);

• HUX is insensitive to column-order (n! equivalent codes).

i.e. selecting one of the best codes for 2-point crossover is (n−1)!
2

times more diffi-

cult than selecting a best code for HUX. There is therefore a balance between the

additional features available using position sensitive crossovers and the additional

difficulty in finding a suitable encoding.

4.2.2 CHC

The CHC algorithm [Eshelman, 1991] is related to Genetic Algorithms, but uses

uniform selection, in which all candidate solutions are used as parents, and HUX (as

above) to evolve a population of candidate solutions, excluding parents that are too

similar (incest prevention). CHC is elitist [De Jong, 1975, Chapter 4], keeping the

best members of the combined population of candidate solutions and their children,

and each generation is therefore guaranteed to contain a solution at least as good as

the best in the previous generation.

The CHC algorithm is based on a population of candidate solutions. The candi-

date solutions are randomly paired off (uniform selection) and each pair of possible

solutions is then compared. If the number of differing bits in the parents is large

enough, then half these bits are exchanged to produce a pair of children using Half

69

Uniform Crossover (HUX) otherwise they are judged to be too similar to effectively

explore the search space and produce no children. From the combined population of

parents and children, the solutions that give the best values for the fitness function

are adopted as the new population of candidate solutions. If the entire population

is too similar to produce any children for several generations, then a new population

is generated by mutating the current best candidate solution (referred to by Eshel-

man as Cataclysmic Mutation). We note that the number of children produced each

generation is not fixed.

The CHC algorithm preserves population diversity by only combining suitably

different parents, using the disruptive HUX crossover and applying Cataclysmic Mu-

tation when population diversity is low.

4.3 A Comparison of Steepest Descent, SHC,

the Simple GA and CHC

Reversing or complementing the bits has no effect on any of the algorithms. The

performance of Steepest Descent, SHC, CHC and GAs using HUX are independent

of the order of the bits representing a candidate solution – Steepest Descent selecting

the “best” bit to mutate independent of its position, SHC, CHC and a GA using

HUX randomly selecting the bits to mutate. However, the performance of a GA using

1- or 2-point crossover (e.g. the Simple GA) is affected by the bit order (as these

crossovers preserve sequences of bits, the overall sequence is important). Shifting/ro-

tating bits (e.g. changing the sequence y1, y2, y3, . . . , yn to y3, . . . , yn, y1, y2) will affect

1-point crossover, and hence the Simple GA, as the ends of the sequence determine

the elements that are exchanged.

Whereas Steepest Descent changes a single bit each generation, tracing a path

through neighbouring values, SHC, CHC and the simple GA allow multiple bits to be

changed in a single generation. These algorithms can therefore explore the parameter

space rather than simply exploiting local features.

All four algorithms are computationally simple, the most complex functions in-

volved being random number generation and sorting (for rank based selection). The

CPU required to calculate the objective function is therefore typically much greater

than that required for processing the algorithm itself. The time required to find a

solution is then dominated by the number of times the fitness function needs to be

70

evaluated.

• For Steepest Descent, all neighbours of the current value are tested each genera-

tion. For an n-bit representation, the expected number of function evaluations,

ESD is

ESD = E(gSD)× n (4.2)

where E(gSD) is the expected number of generations required to find a solution

using Steepest Descent.

• For SHC, one value is tested each generation. Hence, the expected number of

function evaluations, ESHC is

ESHC = E(gSHC) (4.3)

where E(gSHC) is the expected number of generations required to find a solution

using SHC.

• For the Simple GA the complete population is replaced each generation and each

member of the new population must be evaluated. Hence, with a population of

mGA solutions, the expected number of function evaluations, EGA is

EGA = E(gGA)×mGA (4.4)

where E(gGA) is the expected number of generations required to find a solution

using the GA.

• For CHC with a population of mCHC candidate solutions, up to mCHC values

can be evaluated each generation, the precise number of evaluations depending

upon the number of children produced. CHC also works on smaller populations

than the Simple GA. With a total population of mCHC solutions, the expected

number of function evaluations, ECHC is bounded such that

ECHC ≤ E(gCHC)×mCHC (4.5)

where E(gCHC) is the expected number of generations required to find a solution

using CHC.

The actual performance of each algorithm on a problem therefore depends upon both

the algorithm parameters (e.g. population size) and the number of generations that

the algorithm will require to find a solution.

71

4.4 Bit-wise Codings

An n-bit bit-wise encoding is a one-to-one mapping from a subrange of the integer

values to vectors of n ones and zeroes (bits) – and can encode 2n values. The problem

space is then P = {0, . . . , 2n − 1}, with these candidate solutions represented in the

search space S = {0, 1}n. Given an integer candidate solution x ∈ P we will denote

its representation in the search space as x = [xn−1, . . . , x0] = Φ(x), x ∈ S.

No Free Lunch theorems [Wolpert and Macready, 1997] establish that improve-

ments in average search performance observed over one set of problems must be offset

by reduced average search performance over some other problems i.e. that across all

functions all algorithms will perform equivalently. The corollary of this being that

there does not exist a single “black box” optimisation algorithm which will be ef-

fective in solving all optimisation problems. We are, however, looking at a specific

piece-wise continuous problem – assuming continuous pitch trajectories within notes,

the piece-wise continuous estimate of this trajectory implies a piece-wise continuous

fitness function across the parameter space. We are therefore interested in algorithms

which may perform well over the piece-wise continuous subclass of problems – at the

expense of poor performance for some problems outside of this class. Considering bit-

wise optimisation techniques, we can modify the overall function, fΘ(·), evaluated by

the algorithm by selecting an alternative coding i.e. choosing a different Θ and Φ.

We previously noted (Section 4.3) that the algorithms described above behave the

same whether they flip bits 0 → 1 or 1 → 0 and that they are unaffected by certain

changes in the bit-order – hence, for any code there is another code with identical

performance (e.g. one in which all the bits are complemented) i.e. there is no single

“best” code for a problem using any of the algorithms. Each code can, however, be

seen as an example of a set of codes which will provide the same performance with

an algorithm.

The Standard Binary Code b = [bn−1, . . . , b0] allocates a power of 2 to each bit

such that:

x =
n−1∑
i=0

bi2
i . (4.6)

Each bit, bi, has an associated value with the left-most bit, bn−1 being largest (the

most significant bit, msb) and contributing either 2n−1 or 0 to x and the right-most

bit, b0, smallest (least significant bit, lsb) contributing 1 or 0. As Standard Binary is

the base-2 representation of the integers, it is a natural choice for arithmetic. The n

bit Standard Binary code consists of the codewords for the n− 1 bit code prepended

72

by 0 followed by the same n− 1 bit codewords prepended by 1.

For multidimensional data, individual values are encoded and combined into a

single bit string. Two simple options are:

• concatenation – separately encoding each dimension and then concatenating the

outputs;

• interleaving – separately encoding each dimension and then interleaving the bits

(e.g. for Standard Binary high bits first, followed by successive bits in order).

Genes that are not expressed may be inserted between elements to increase the chance

of building blocks being preserved (Section 4.2.1). For mutation based search, the

choice between concatenation and interleaving (or a more complex scheme) has no

effect on the output. EAs using crossovers that preserve sequences of bits (e.g. sin-

gle / double point crossover) will be affected, whilst those that randomly select the

updated bits (e.g. HUX) will not be affected. In the current work, we only consider

concatenation of codewords to produce the representation – Steepest Descent, SHC

and CHC being unaffected by either padding or interleaving.

Traditionally, the Standard Binary Code and the Binary Reflected Gray Code

(BRGC) [Gray, 1953] have been used in optimisation problems. There have been

many comparisons of the performance of the Standard Binary Code and the BRGC.

For example, Mathias and Whitley [1994] compared the performance of the Standard

Binary coding and BRGC over a set of standard test problems (Tables 4.8 and 4.9,

below). The BRGC was found to perform better on this standard test set, but it was

noted that there was no reason to assume better performance on an arbitrary function.

Chakraborty and Janikow [2003] performed a theory-based numerical analysis of the

performance of Standard Binary and BRGC using a Markov model to simulate Genetic

Algorithms and a stochastic hillclimber, and found that, for small numbers of bits,

there was only a small difference between the two representations over all possible

functions. Rothlauf [2006, p117–140] compared the performance of Standard Binary

and BRGC in selectorecombinative GAs and found that the overall performance of

Standard Binary across all one-max problems (i.e. using the fitness function f(x) = x)

was better. However, it was also noted that BRGC was the best choice for mutation

based GAs.

Standard Binary and BRGC are, however, only two of the many possible binary

encodings. We next consider some properties of binary encodings which may be

73

desirable in optimisation problems, and introduce specific encodings related to those

properties.

4.4.1 Hamming Distance and Locality

We define the Hamming Distance between two binary encoded vectors x and y to be

the number of bits that differ:

DH(x,y) =
n−1∑
i=0

|xi − yi| . (4.7)

The values y such that DH(Φ(x),Φ(y)) = 1 are termed the Hamming Neighbours of

x under the encoding Φ.

Binary encodings transform the search space, giving each value n Hamming neigh-

bours as opposed to the 2 neighbours of the integer representation. In order to preserve

local search properties from the integer problem it is necessary for small steps in the

integer domain to correspond to small steps in the binary representation – this is

termed locality preservation [Grajdeanu and De Jong, 2004]. Rothlauf [2006, p. 77]

quantifies the locality preservation between two codings as the Locality, dm. For bi-

nary encoding of integers, Locality, dm, is defined in terms of the Hamming distance

and a metric on the integers. A circular metric on the integers is used with the dis-

tance between two integers, x and y, being given by |x− y| mod 2n. For x 6= y this

distance has a minimum value of 1 when y = (x ⊕ 1), ⊕ indicating addition modulo

2n. This metric differentiates between cyclic encodings (in which the values 2n − 1

and 0 are Hamming neighbours) and non-cyclic encodings. The locality, as defined

by Rothlauf [2004] is given by:

dm =
2n−1∑
x=0

|DH(x, (x⊕ 1))− 1| . (4.8)

A small dm indicates more locality preservation. We note that DH(x, (x ⊕ 1)) ≥ 1

and the | · | is unnecessary in the case of Hamming distances. The locality indicates

the number of bits, nb, that need to change in cycling through all 2n integer values,

nb = dm +2n. For an encoding that preserves locality, all neighbouring integers should

have a low distance between them. If each neighbouring pair of integers only differs

in a single bit, the locality will be zero indicating perfect locality preservation – all

neighbouring integers also being neighbours in the binary encoding.

In 1953, Frank Gray introduced the Binary Reflected Gray Code (BRGC) [Gray,

1953] – the term “Gray Code” subsequently being adopted for any code in which all

74

neighbouring integer values are Hamming neighbours. The locality for the BRGC

is therefore zero (dm = 0). As there is only one bit different between the n-bit

representations for 0 and for 2n − 1, the BRGC is a cyclic Gray code. The n bit

BRGC consists of the codewords for the n − 1 bit code prepended by 0 followed by

the same n − 1 bit codewords but in reverse order (hence the “Reflected” part of

Binary Reflected Gray Code) and prepended by 1. There are many other Gray codes

[Savage, 1997], although the BRGC is commonly referred to as “the” Gray code. All

cyclic Gray codes have locality zero (dm = 0) as all pairs of neighbouring integer

values (x and x⊕ 1) have only one bit different.

In order to provide a more direct interpretation of the locality, we introduce the

relative locality dm

2n
. Rather than showing the total number of bits changed across the

set of integer values, this measures the average number of additional bits over 1 bit

that need to be changed to reach a neighbouring integer.

It has been shown [Whitley, 1999] that reflected Gray codes induce more optima

in “worst case” functions (where every other point is a minima) and hence, according

to the No Free Lunch theorem (p.72), fewer optima in the remaining functions – and

with fewer optima, reflected Gray codes are, on average, less likely to result in an

algorithm becoming trapped at a local optimum.

In the Standard Binary code (p.72), neighbouring integer values can differ in more

than one bit – e.g. between each odd value, 2i− 1, and the next even value, 2i, (e.g.

three bits differ between the values 3 [0 1 1] and 4 [1 0 0]), but not between any even

value, 2i, and the next odd value, 2i + 1 (the Hamming distance is 1 as only bit b0

changes). These values in which a small move in the problem space requires a larger

move in the search space are termed “Hamming cliffs”. Although a 2 bit difference

between neighbouring values seems small, it can make a problem much more difficult

to solve – for an m bit Stochastic Hill Climber with a mutation probability of 1
m

for

each bit, the probability of testing a neighbouring value is 1
m

for a 1-bit difference and
1
m2 for a 2-bit difference, and many points away from the neighbouring value are likely

to be tested before the neighbouring value itself. The lack of Hamming cliffs has been

regarded as enhancing the performance of Gray codes in optimisation [Srinivas and

Patnaik, 1994] – this property is equivalent to a locality, dm, of zero.

A Maximum Distance Code [Robinson and Cohn, 1981] has the largest possible

Hamming Distance between neighbouring values – alternately a distance of n and

n− 1 bits. It therefore has minimal locality preservation and maximises the locality,

dm. The locality of an n-bit Maximum Distance Code is dm = 2n−1(2n− 3).

75

The n-bit Maximum Distance Code alternates codewords from the (n − 1)-bit

BRGC, expanded to n bits by prepending a zero, with the same codewords but in-

verted. Denoting the Maximum Distance encoding function as ΦM and the ith bit of

the encoding as ΦM(·)i:

for even x : ΦM(x)n−1 = 0

ΦM(x)i = ΦG

(x
2

)
i

i = 0, . . . , n− 2

for odd x : ΦM(x)i = 1− ΦM(x− 1)i i = 0, . . . , n− 1

(4.9)

where ΦG is BRGC encoding function. If the small distance between codewords, and

the lack of Hamming cliffs, allow Gray codes to perform well, then the Maximum

Distance Code should perform poorly, offering an appropriate counter-example to use

in comparisons.

4.4.2 Transition Counts and Balancedness

If the codewords for the values from 0 to 2n−1 are considered in turn, individual bits

sometimes change and sometimes remain the same. The Transition Count for a bit

is the number of times that that particular bit changes value in traversing the values

of x. The Transition Count for bit i is given by:

ti =
2n−1∑
x=0

|xi − (x⊕ 1)i| (4.10)

including the transition from 2n − 1 to 0 if (2n − 1)i 6= (0)i . The Transition Count

indicates the number of distinct regions in the search space identified by the bit.

For any cyclic Gray code, a single bit changes between each pair of successive

values, giving a Total Transition Count,
∑

i ti, of 2n – including a transition between

2n − 1 and zero. This is the minimum possible Total Transition Count, as at least

one bit must vary between neighbouring values. If the Total Transition Count across

all n bits is greater than 2n then there must be values where integer neighbours differ

in more than one bit i.e. Hamming cliffs.

A balanced binary code has the same transition count for each bit. Neither the

Standard Binary Code nor the BRGC is balanced – in Standard Binary, bit i has

2n−i transitions, for the BRGC bit n − 1 has 2 transitions and subsequent bits have

2n−i−1 transitions as a result of the reflected nature of the code. We can introduce

76

the (un-)Balancedness for a code:

b =
1

n

(
n−1∑
i=0

t2i

)
−
(

1

n

n−1∑
i=0

ti

)2

. (4.11)

This indicates how widely the Transition Counts for the bits are spread, taking a

value of 0 when all bits have the same Transition Count – i.e. when the encoding is

perfectly balanced.

A Balanced Gray Code [Robinson and Cohn, 1981, Bhat and Savage, 1996] gives

each bit as similar a Transition Count as possible whilst satisfying the condition for a

Gray code – i.e. that neighbouring values differing in a single bit. The method given

in Robinson and Cohn [1981] can produce various balanced codes, as there are choices

in how subsequences used to build the code are produced.

4.4.3 Hamming Weight

Under a binary encoding, the Hamming Weight, WH(x), is the number of bits set in

the encoded value:

WH(x) =
n−1∑
i=0

xi . (4.12)

A monotone binary code orders the codewords according to their Hamming weights.

The Monotone Gray Code [Savage and Winkler, 1995] relaxes the constraints typ-

ically imposed on Gray codes by allowing DH(2n− 1, 0) 6= 1 (i.e. it is non-cyclic) and

is built in such a way as to be approximately monotone. It is not strictly monotone,

as neighbouring Gray codes cannot have the same weight as they differ by a single bit,

but is formed from two interleaved monotone subsequences of even and odd weights.

Under a Monotone Gray Code, for even n, WH(2n − 1) = n − 1 and, for odd n,

WH(2n − 1) = n.

We note that if the Hamming weight of a Monotone Gray codeword is known, then

the associated value is within a specific range. The number of items with Hamming

weight w is κw =

(
w

n

)
and the minimum value with that weight is ψ(w),

ψ(w) =

0 for w = 0

1 for w = 1

ψw−2 + 2κw−2 otherwise .

(4.13)

77

4.5 A New Analysis of Binary Codings

The Locality and Balancedness criteria, described above, defined the BRGC, Maxi-

mum Distance and Balanced Gray codes. Additionally, we introduced the Standard

Binary code and Monotone Gray codes. We introduce a new analysis of these codes,

examining their properties to gain insights into their differences and their similarities.

We examine the properties of example codings, showing: full 4-bit codes; a graphi-

cal representation of 5-bit codes; the distribution of the properties for the 6-bit codes;

and the variation of the properties with the number of bits.

4.5.1 Sample 4-bit Encodings

Standard Maximum Balanced Monotone

Value Binary BRGC Distance Gray Gray

0 0

1 0 0 0 1 0 0 0 1 1 1 1 1 1 0 0 0 1 0 0 0

2 0 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 0 0

3 0 0 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 0

4 0 1 0 0 0 1 1 0 0 0 1 1 1 1 1 1 0 1 1 0

5 0 1 0 1 0 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0

6 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 1 1

7 0 1 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0 1

8 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 0 1

9 1 0 0 1 1 1 0 1 1 0 0 1 0 1 0 0 1 1 0 1

10 1 0 1 0 1 1 1 1 0 1 1 1 0 1 0 1 1 0 0 1

11 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1 1 1 0 1 1

12 1 1 0 0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 1 0

13 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0

14 1 1 1 0 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 1

15 1 1 1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1

Table 4.4: Example 4-bit encodings

To visualise the codes we are discussing, Table 4.4 shows small (4-bit) examples.

The Standard Binary and BRGC both have a “tree like” block structure: for

the Standard Binary code, the first bit has two transitions and each subsequent bit

doubles the transition count (the bits have transition counts of 2, 4, 8 and 16 in

the example); for the BRGC the first two bits have 2 transitions, a similar doubling

process to Standard Binary then being observed (the bits having 2, 2, 4, 8 transitions).

This is a product of the algorithms used to generate the codes (p.72 and p.75).

Examining the codes further, neighbouring Gray codewords vary in only one bit,

whereas the other codes exhibit Hamming cliffs. Pairs of consecutive Maximum Dis-

tance codewords have a Hamming distance of 3 or 4. Each bit of the Balanced Gray

Code has a Transition Count of 4 (2 from 0 to 1 and 2 from 1 to 0). The Hamming

weights of the Monotone Gray codewords interleave increasing sequences of odd and

78

Value 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Hamming Weight (even) 0 - 2 - 2 - 2 - 2 - 2 - 2 - 4 -

Hamming Weight (odd) - 1 - 1 - 1 - 1 - 3 - 3 - 3 - 3

Table 4.5: Hamming weights for Monotone Gray Code

even weights (Table 4.5) in agreement with Equation 4.13, reaching a weight of 4 for

value 14.

4.5.2 Plotting 5-bit Codings

We now introduce a new visualisation to help compare the characteristics of the

various codings.

In figure 4.2, 5-bit values are shown on a circle and lines join them to their Ham-

ming neighbours (respectively under the Standard Binary, BRGC, Balanced Gray and

Monotone Gray codings). This provides a partial representation of the codes – the

identification of which bit relates to each pair of neighbours and which end has the bit

set is not indicated. As the connections between values are not labelled as to which

bit they relate to, all permutations of the columns of a bit encoding will have the

same circular representation. Similarly, as the graphs do not indicate which end of

the connection has the bit set, encodings formed by negating any bits will also have

the same representation. As noted in section 4.3 (p.70), negating and permuting the

columns does not affect the performance of Steepest Descent, SHC or CHC – these

plots therefore represent all the information relevant to these optimisation techniques.

If consecutive values are not Hamming neighbours (i.e. they differ in more than

one bit) then they are not directly linked in this representation and the resulting

Hamming cliffs are indicated by gaps between the values on the circle. The Gray

codes (BRGC, Balanced and Monotone) have no Hamming cliffs, apart from between

0 and 2n−1 for the non-cyclic Monotone Gray code (between 0 and 31 in Figure 4.2).

The simple algorithmic nature and the strong structure of the Standard Binary

and BRGC codes can be seen to produce a regular pattern linking values in specific

regions, the Balanced and Monotone codes are generated recursively, extending low-

order codes to generate those of higher orders producing a more “chaotic” map with

no distinct regions of linked values.

79

0

2

4
68

10

12

14

16

18

20
22 24

26

28

30

Binary

0

2

4
68

10

12

14

16

18

20
22 24

26

28

30

BRGC

0

2

4
68

10

12

14

16

18

20
22 24

26

28

30

Balanced

0

2

4
68

10

12

14

16

18

20
22 24

26

28

30

Monotone

Figure 4.2: Hamming Neighbours for 5-bit Codes. Values are dots on the circle, even values

being labelled.

4.5.3 Distribution of 6-bit Property Values

Random binary encodings can be generated by selecting a random permutation of

the set of 2n codewords. We examined the balancedness and locality for a sample of

random binary encodings, in order to gain insights into their range and distribution –

the specific properties of individual encodings can then be considered relative to this

distribution.

Property Min Mean Max

Locality, dm 78.00 131.05 184.00

Balancedness, b 0.00 16.25 152.67

Table 4.6: Summary Balancedness and Locality statistics from the 100,000,000 example

6-bit Random Binary Codes

We generated 100,000,000 6-bit Random Binary Codes using permutations of the

26 codewords and examined the Balancedness and Locality of the codes. On average,

we would expect 3 bits to differ in two randomly selected codewords giving an expected

value for dm of 128. The mean observed locality, dm of 131.05 (Table 4.6) compares well

80

60 80 100 120 140 160 180 200

0

1

2

3

4

5

6

7

8

9

Locality, dm

%
of

co
d
es

w
it
h
gi
ve
n
d
m

va
lu
e

Figure 4.3: Histograms indicating the proportion of 100,000,000 example 6-bit Random

Binary Codes with specified locality, dm

with this – the relative locality (p.75) being 2.0477 indicating an average of 3.0477

bits differing between neighbouring integers. We note that the generated locality

values included no Gray codes (dm = 0) and no Maximum Distance codes (dm =

2n−1(2n − 3) = 288) indicating that these codes are relatively rare – there are 2n!

possible n-bit codes and the Gray codes are a subset of the 2nn sequences in which

one bit changes between values (many of the 2nn sequences being invalid as they

repeat codewords). The locality distribution (Figure 4.3) is symmetrical and shows

that locality takes discrete values as there are spaces in the distribution.

Of the random codes, 12, 000 were perfectly balanced, with the minimum observed

“Balancedness”, b, of 0 (Table 4.6) – although these codes were balanced they were

not Gray codes. The skewed distribution (Figure 4.4) indicates that some encodings

have b much larger than the mean (16.25) – as shown by the maximum observed b of

152.67 (Table 4.6).

4.5.4 Example Individual 6-bit Codings

Comparing these properties with those for the 6-bit versions of the codings under

consideration (Table 4.7), the three Gray codes exhibit low locality, dm, in accordance

with neighbouring integer values being Hamming neighbours under the binary repre-

81

0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

2.5

3

3.5

Balancedness, b

%
of

co
d
es

w
it
h
gi
ve
n
b
va
lu
e

Figure 4.4: Histograms indicating the proportion of 100,000,000 example 6-bit Random

Binary Codes with specified balancedness, b

Code b dm

Standard Binary 469.00 62

BRGC 114.22 0

Maximum Distance 28.89 288

Balanced 0.89 0

Monotone 7.56 4

Table 4.7: (un)Balancedness, b, and Locality, dm, for 6-bit encodings

sentations. As the BRGC and Balanced Gray code are cyclic they both have dm = 0.

The Monotone Gray Code has dm > 0 as it is non-cyclic (dm = n − 2 or dm = n − 1

depending upon whether n is even or odd). The Standard Binary Code is particu-

larly unbalanced as each successive bit has twice the transitions of the previous one –

the balancedness, b, is 469.00 whereas the maximum balancedness in the 100 million

sample codes was 152.67. The BRGC is more balanced as the first two bits have two

transitions each, subsequent bits doubling the previous number of transitions.

82

4.5.5 Variation of Properties with Number of Bits

We examined the variation in the properties of the encodings, as the number of bits

in the coding increases from 1 to 15. The values have been scaled for comparison:

we examined the relative locality (the average number of bits more than one to move

to a neighbouring integer); and the Balancedness is in units squared and is scaled by

22n.

2 4 6 8 10 12 14 16
0

5

10

15

Number of Bits

d
m 2
n

Standard Binary

BRGC

Maximum Distance

Balanced

Monotone

Figure 4.5: Variation of relative locality with number of bits and code (values scaled as

shown)

We examined the relationship between the relative locality and the number of bits

in the code (Figure 4.5). The relative locality measure, dm

2n
, of the Maximum Distance

code increases with the number of bits, showing an increasing Hamming distance

between neighbouring values. This is a feature of the design of the Maximum Distance

Code (each integer is Hamming distances of n and (n− 1) from its neighbours). The

Gray codes had a locality of 0, except for the non-cyclic Monotone Gray code –

however, as only the change from 2n − 1 to 0 changes more than one bit, the relative

locality for the Monotone Gray code is still very low (either n−2
2n

or n−1
2n

depending

upon whether n is even or odd).

A low locality indicates that modifying a single bit in the search space can move

to a neighbouring value in the problem space, and that exploitation of immediate

integer neighbours is possible.

The relationship between the relative balancedness and the number of bits in the

code (Figure 4.6) shows that for all codes, the relative balancedness, b
22n , decreases

as the number of bits increases above 4 bits – i.e. codes become more balanced. The

Standard Binary and BRGC are significantly less balanced than the other codes.

83

2 4 6 8 10 12 14 16
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Bits

b
2
2
n

Standard Binary

BRGC

Maximum Distance

Balanced

Monotone

Figure 4.6: Variation of relative balancedness with number of bits and code (values scaled

as shown)

Low values for balancedness imply that each bit changes a similar number of times

– each bit subdivides the search space into a similar number of segments rather than

some bits being “easy” to set (e.g. in the Standard Binary / BRGC the high-bit

indicates which half of the search space a value is in) and some “difficult” (BRGC

“low” bit is ±1). Each bit contributes similarly to exploration of the problem space.

If the balancedness and locality were sufficient to quantify the ability of the code to

explore/exploit the search space then the Monotone and Balanced Gray codes should

exhibit good performance. If exploitation is important, and quantified by locality,

then the Maximum Distance code will perform poorly and the Gray codes well. If

uniform exploration across bits is important, and quantified by balancedness, then the

Standard Binary code will perform poorly, the Balanced and Monotone Gray codes

well.

4.6 Algorithm and Coding Performance Analysis

We examined the performance of the optimisation algorithms and binary encodings

over a set of test problems, extending the work of Mathias and Whitley [1994]. Math-

ias and Whitley compared the performance of Steepest Descent, a Stochastic Hill-

climber (SHC) and Eshelman’s CHC algorithm [Eshelman, 1991] using the Standard

Binary code and the Binary Reflected Gray code (BRGC) on a set of standard test

functions. We repeated these experiments, extending them to include: a Simple GA;

and Monotone and Balanced Gray codes.

84

The test functions used are the same as used by Mathias and Whitley (Tables 4.8

and 4.9). Test functions F1–F5 are those defined by De Jong [1975, Appendix A],

the remaining as given by Whitley et al. [1995]. Many of these functions have been

used throughout the literature on Genetic Algorithms (e.g. [Hinterding et al., 1995,

Karaboğa and Őkdem, 2004]) and are considered in some detail by Whitley et al.

[1996])

4.6.1 Method

In line with the method used by Mathias and Whitley [1994], for each combination

of coding and optimisation algorithm, 100 tests were run. Each started at a random

position / population and continued until either the optimum solution was found

or until a number of generations had passed without finding the solution. If the

optimisation algorithm stayed at a local optimum for a number of generations, then

the algorithm was restarted at a new random position.

A test harness was created in Matlab 7.2 to run the tests using the Matlab Dis-

tributed Computing Engine on an Apple XServe cluster with 7 worker nodes. The

test harness was set up to save the state after each test to allow resumption if the

batch was interrupted. The codes and algorithms to be used, the test functions to

run and the number of tests to use were passed as parameters, and the parameters

for each individual test function were set at values given in Mathias and Whitley.

Procedures were created for each optimisation algorithm. These called individual

procedures for the test functions passing population values decoded from the bit-wise

representations.

Algorithm/Coding combinations were assessed based on: the number of tests that

were solved for each problem; the number of times the algorithm had to be started

to solve a test; and the average number of generations to find the test solution for

successful starts. The best possible algorithm for this test would solve all the problems

for all 100 tests with a single start – and in a low number of generations.

4.6.2 Results

The specific behaviour of the DeJong F4 noisy function (Table 4.8, p.86) is not defined

– “noise” could either be applied once to the data (cached noisy data) or applied each

time the function is evaluated (“online” noisy data, e.g. trying to match live sensor

readings). In our version of the Dejong F4 function, each time the function was tested,

85

Function Notes

De Jong F1 – “Sphere”

F1(x) =

3∑
i=1

x2
i (4.14)

xi = yi−512
100

, 0 ≤ yi < 210 − 1, y ∈ I
Minimum zero at (0, 0, 0)

3-dimensional

30 bits required to represent a candidate solution.

A parabola and an easy problem.

It is a continuous, convex, unimodal, separable function.

De Jong F2 – Rösenbrock function

F2(x) = 100(x2
1 − x2)2 + (1− x1)2 (4.15)

xi = yi−2048
1000

, 0 ≤ yi < 212, yi ∈ I.
Minimum zero at (1, 1)

2-dimensional

24 bits required to represent a candidate solution.

It is a continuous, non-convex, unimodal, non-linear function, some-

times referred to as the “Banana” function as the global optimum lies

inside a long, parabolic valley. Finding the valley is usually straight-

forward, finding the optimum less so as the valley is narrow and flat.

De Jong F3 – Step Function

F3(x) =

5∑
i=1

bxic (4.16)

xi = yi−512
100

, 0 ≤ yi < 210 − 1, y ∈ I
Minimum -30 at any point s.t ∀i, xi < −5

5-dimensional

50 bits required to represent a candidate solution

A step-function, it a series of flat plateaus from which no information

regarding the direction to the optimum can be derived. All points on

the plateaus are local optima causing local-search methods to fail.

It is discontinuous, non-convex, unimodal, 5-dimensional, step func-

tion, piece-wise constant.

De Jong F4 – Noisy Data

F4(x) =
30∑
i=1

ix4
i + g (4.17)

xi = yi−128
100

, 0 ≤ yi < 28, yi ∈ I.
g is a zero-mean unit variance Gaussian noise

generator.

Ignoring the noise, the minimum is zero at

(0, 0, . . . , 0). Including the noise, the location

of the minimum depends upon the particular

noise values generated. De Jong defines the

minimum to be zero at (0, 0, . . . , 0).

30-dimensional

240 bits required to represent a candidate solution

This would be an easy function, but features a Gaussian noise gener-

ator meaning that the function value returned for a given point varies

each time the function is called.

Table 4.8: De Jong test functions F1 to F4 [De Jong, 1975, Appendix A]

86

Function Notes

De Jong F5 – Shekel “Fox Holes”

1

F5(x)
=

1

500
+

25∑
j=1

1

fj(x)
(4.18)

where

fj(x) = j +

2∑
i=1

(xi − aij)6 (4.19)

xi = yi−65536
1000

, 0 ≤ yi < 217, yi ∈ I.
The overall minimum occurs at (a11, a21) ≡
(−32,−32) with value u 1.

2-dimensional

34 bits required to represent a candidate solution

The function is almost flat but with 25 holes of varying depth, it is

a difficult function as search techniques can get stuck in one of the

holes.

It is continuous, non-convex, non-quadratic and multimodal, with 25

local minima.

Minima occur at (a1j , a2j) with value u j.

A =

(
−32 −16 0 16 32 −32 −16 . . . 0 16 32

−32 −32 −32 −32 −32 −16 −16 . . . 32 32 32

)
i.e. the sequence of values −32 −16 0 16 32 is repeated five times

for the first row of A and each value in the sequence is repeated five

times for the second row of A.

Rastrigin function

F6(x) = 10n+

n∑
i=1

x2
i − 10 cos(2πxi) (4.20)

xi = yi−512
100

, 0 ≤ yi < 210 − 1, y ∈ I
The minimum is zero at (0, 0, . . . , 0).

Used in 20 dimensional form (n = 20)

200 bits required to represent a candidate solution

Continuous, non-convex, non-quadratic, multi-dimensional, multi-

modal

Schwefel function

F7(x) = −
n∑
i=1

xi sin(
√
|xi|) (4.21)

xi = yi−512
100

, 0 ≤ yi < 210 − 1, y ∈ I

Used in 10 and 20 dimensional forms (n = 10 and n = 20).

100 / 200 bits required to represent a candidate solution.

It is a multi-modal function with a second optimum far away from

the global minimum.

Griewank function

F8(x) = 1 +

n∑
i=1

x2
i

4000
−

n∏
i=1

cos

(
xi√
i

)
(4.22)

xi = yi−512
100

, 0 ≤ yi < 210 − 1, y ∈ I
The minimum is zero at (0, 0, . . . , 0).

Again, used in both 10 and 20 dimensional forms (n = 10 and n = 20).

100 / 200 bits required to represent a candidate solution.

The product term makes the function non-separable so it is not pos-

sible for a technique to find the best individual components and then

combine them for the best overall answer.

Table 4.9: De Jong test function F5 [De Jong, 1975, Appendix A] and the Rastrigin, Schwefel

and Griewank functions [Whitley et al., 1995]

87

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Binary 33.7% 162.49 13 504.02

BRGC 55.5% 106.92 37 8159.13

Balanced Gray 71.8% 78.84 73 23017.41

Monotone Gray 57.9% 113.06 61 12947.02

Max. Distance 33.1% 117.34 13 492.82

Table 4.10: Summary Statistics for Steepest Descent. Generations and Evaluations per

Solution apply to start positions from which the solution was successfully found.

the noise was resampled – as for an online sampling rather than batch data. Hence,

no “fixed” best point exists, and we want the algorithm to find the best point in the

underlying noiseless function by sampling the noisy function. Under these conditions,

we failed to find solutions with any of the algorithm/code combinations. For the other

functions, results for SHC and CHC using Standard Binary and BRGC parallel those

from the original paper. Detailed results are presented at the end of this chapter

(pp.95–100), and a summary of the results is presented below.

Steepest Descent (Table 4.10) often found local minima and required restarting to

solve problems. With Steepest Descent, the Balanced Gray code was most successful

both in terms of number of problems solved (71.8%) and, on average, needing fewest

restarts (78.84) to achieve those solutions. Although the mean number of generations

per solution, and hence evaluations, are larger for the Balanced Gray code, these

figures are affected by its success on the Schwefel problems. Excluding the Schwefel

problems the Balanced Gray Code required an average of 56 generations to find the

solution over the remaining problems.

Examining the detailed results (Table 4.16), the Balanced Gray code was the only

code to solve all 200 Schwefel problems (Table 4.9, p.87) (100 for the 10 dimensional

problem and 100 for 20 dimensions). None of the other codings solved any of the 20

dimensional Schwefel problems. The 20 dimensional problems required an average of

154 generations to find a solution, the 10 dimensional problems an average of 77 –

the difficulty of the problem therefore appearing to scale linearly with the number of

dimensions. For both the 10 and 20 dimensional problems, the Balanced Gray code

took an average of approximately 3
4
n generations to find the solution, where n is the

number of bits in the problem (100 or 200). Bits in the start position were set to

0 or 1 according to a uniform random distribution. We would therefore expect half

the bits to be set correctly at the start position. If the global optimum was reached

88

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Binary 17.0% 2.35 50,368 50,368

BRGC 61.5% 1.46 33,868 33,868

Balanced Gray 62.1% 1.45 32,668 32,668

Monotone Gray 46.3% 1.73 59,505 59,505

Table 4.11: Summary Statistics for SHC

by successively setting bits to the correct value, we would therefore expect the mean

number of generations to be 1
2
n – i.e it was actually necessary for the Balanced Gray

to change an additional 1
8
n bits, and then change them back, in order to find the

solution. The Schwefel problem is a multi-modal function with a second optimum

far away from the global minimum. We hypothesise that the balanced nature of the

Balanced Gray code allowed the search to move away from the local optimum to find

the global optimum, whilst the local optimum trapped the other codes preventing the

algorithm from finding the global optimum.

However, the Balanced Gray code showed the worst performance on the De Jong

F3 step function (Table 4.8, p.86), only solving 69% of the problems whilst the other

encodings allowed almost all to be solved. Again, the nature of the codes can explain

this performance difference – the Standard Binary, BRGC and Maximum Distance

codes have bits ranging from most significant to least significant, subdividing the

search space into smaller subsections and would be expected to set these bits sequen-

tially to produce the Steepest Descent (the largest decrease occurring with the largest

possible steps towards the minimum); and the Monotone Gray code can successively

set bits to zero to move down to the minimum.

Although Steepest Descent required few generations to find the solution, a large

number of fitness function evaluations occur, as all Hamming neighbours of the can-

didate solution are tested. In addition to the BRGC, Standard Binary code, and

Balanced and Monotone Gray codes, we examined the performance of the Maximum

Distance Code with Steepest Descent and found that its performance – with Ham-

ming cliffs between neighbouring values – was very similar to that of the standard

Binary code.

Performance of the Stochastic Hillclimber (SHC) (Table 4.11) was very similar

using either the BRGC or the Balanced Gray code, both of which were better than the

Monotone Gray code, whilst the Binary code gave poor performance. The Stochastic

89

Hillclimber solved six of the problems with a single start using BRGC, the Balanced

Gray code solved all the tests for 5 problems, and 96% of tests on a sixth. Whereas the

higher levels of exploration for the Balanced Gray code caused significant performance

variations with Steepest Descent, SHC allowed both exploration and exploitation as

the candidate solution could move anywhere in the whole problem space from the

current candidate solution. A low number of starts were required whenever solutions

were found – a single start can eventually find the solution but may take a large

number of generations to reach the solution e.g. given the problem y(x) = 0 if x = x0

and y(x) = 1 otherwise, we would expect an n-bit random start position to have n
2

bits correctly set and SHC with a mutation rate of 1
n

would take an average of n
n
2

generations to find the solution. As SHC only evaluates a single point each generation,

it runs quickly. However, all codes took more function evaluations than Steepest

Descent, the Standard Binary and Balanced Gray codes solving fewer problems with

SHC than Steepest Descent.

Examining the detailed results (Table 4.17), the BRGC performed well on the

Rastrigin function (Table 4.9, p.87) whilst the Balanced Gray code performed poorly,

and conversely the Balanced Gray performed well on the 20 dimensional Schwefel

function whilst the BRGC performed poorly. Again, the explorative nature of the

Balanced Gray code may be the cause – the Rastrigin function has a series of local

minima as a result of the cosine function and whilst the Balanced Gray code is likely to

switch between these local minima, the more exploitative nature of the BRGC (with

its less significant bits) will allow it to follow valleys to the minimum. Interestingly,

although Steepest Descent with Gray codes could find the solution for the Griewank

problems, SHC failed.

The Standard Binary code performed poorly on the DeJong F1 “Sphere” problem

(Table 4.8, p.86). This is a smooth surface, and the problem can be solved by moving

to neighbouring integer values and the Hamming cliffs in the Standard Binary repre-

sentation degrade performance. The Standard Binary code also performed poorly on

the F5 “Shekel’s Foxholes” problem (Table 4.9, p.87). The solution to this is one of a

set of 25 local minima centred in the search space and the geometry of the Standard

Binary code makes it difficult to explore these local minima.

With a population of 100 candidate solutions, the performance of the Simple GA

(Table 4.12) was similar to SHC for each code but generally required fewer restarts.

Each generation of the Simple GA evaluates the entire new population, therefore

requiring more fitness function evaluations than SHC (Table 4.12 showing approxi-

mately double the number of evaluations of Table 4.11), this increasing again with

90

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Binary 18.6% 2.15 1,270 127,000

BRGC 60.1% 1.33 1,139 113,900

Balanced 61.3% 1.30 1,247 124,700

Monotone Gray 48.8% 1.64 1,585 158,500

Table 4.12: Summary Statistics for Simple GA (population 100)

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Binary 33.2% 1.51 1,078 1,078,000

BRGC 60.3% 1.16 1,082 1,082,000

Balanced 61.4% 1.30 1,175 1,175,000

Monotone Gray 49.7% 1.61 1,419 1,419,000

Table 4.13: Summary Statistics for Simple GA (population 1000)

increasing population size. With the population increased to 1000 (Table 4.13), a

further decrease in the number of restarts required was achieved, especially for the

Binary code with an attendant increase in the number of evaluations from the larger

population.

In general, the ability of CHC (Table 4.14) to solve problems is less affected by the

specific code used – using the HUX crossover bits are randomly selected to change

during recombination. However, the code used affects the number of generations

until a solution is found. Excluding De Jong F4 (Table 4.8, p.86), CHC with both

BRGC and the Balanced Gray code solved all problems in their first attempt giving

confidence that, for suitable problems it can be simply left to find the solution without

considering restarts. Finding the solution using the BRGC took substantially fewer

generations on average than using the Balanced code. As CHC produces a variable

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Binary 84.2% 1.07 49,570 <2,478,500

BRGC 90.0% 1.00 1,842 <92,100

Balanced 90.0% 1.00 6,635 <331,750

Monotone Gray 79.9% 1.00 10,414 <520,700

Table 4.14: Summary Statistics for CHC (population 50)

91

Mean Starts Mean Generations per Mean Evaluations

Solved per Solution per Solution per Solution

Single-point crossover 60.3% 1.16 1,082 1,082,000

HUX 60.5% 1.16 1,136 1,136,000

Table 4.15: Effect of Crossover on Simple GA (population 1000) using BRGC

number of children each generation, a precise number of fitness function evaluations

is not given, however, the number of evaluations per generation must be at most the

population size. With the BRGC, CHC took fewer evaluations than the GA with a

population of 100 and solved more problems.

In the detailed results (Table 4.21), the Dejong F3 (Table 4.8, p.86) and Rastrigin

functions (Table 4.9, p.87) were solved most easily (i.e. in the fewest generations)

under the Monotone coding. However, using this code CHC was unable to solve F5.

The CHC algorithm and the Simple GA use different crossovers (CHC using HUX

(p.67), the Simple GA using a 1-point crossover (p.67)). Running the experiments

using a Simple GA (pop. 100) modified to use HUX crossover and BRGC encodings

produced similar results to the standard Simple GA (Table 4.15). As 1-point crossover

preserves subsequences within the candidate solutions and HUX randomly selects the

bits to change, this consistency is surprising. Given the similar performance of the

Simple GA using HUX and 1-point crossover, the ability of the CHC algorithm to

solve most of the problems from a single start is not simply due to the crossover

operator used.

In the detailed results (pp.95–100), the Monotone Gray code was most effective at

solving DeJong F3 (Table 4.8, p.86) when using SHC, the Simple GA or CHC. F3 is

a “step function” ascending from a minimum at (-5.12, -5.12, -5.12, -5.12, -5.12) and

the number of bits in the Monotone Gray code increases with the value – therefore

candidate solutions that reduce the number of bits set for a dimension will either

remain close to the previous solution or will move closer to the origin.

For separable problems CHC and the GA would be expected to work well as

partial solutions can be combined from different members of the population. Steepest

Descent would need to solve each problem separately. SHC with a low probability of

mutation (e.g. p = 1
l
) would be unable to solve the problems in parallel, and would

be more serial in its approach.

At best, the Simple GA (with single-point crossover) gave similar results to SHC

(Tables 4.12 and 4.11). However, SHC is significantly cheaper to run than the Simple

92

GA – unless the problem domain suggests otherwise, SHC with a suitable coding is a

better choice than a Simple GA.

However, CHC (Table 4.14) consistently found a solution with a single start –

which gives confidence that results found on other problems may be optimal.

4.7 Conclusions

We introduced four optimisation algorithms – two Descent/Hill-Climbing methods

(Steepest Descent and a Stochastic Hill Climber, Section 4.1) which search based

on a single candidate solution, and two Evolutionary Algorithms (a Simple GA and

Eshelman’s CHC, Section 4.2) which “evolve” a population of candidate solutions.

However, the No Free Lunch theorem states that the performance of algorithms across

all functions will be the same. We therefore need to consider the functions being

optimised.

For optimisation based on a bit-wise representation of data, the function on which

the algorithm operates is not simply the objective function f(·), but the combination

of this and the decoding function, Φ, that converts the bit-wise representation into

suitable function parameters i.e. the algorithm operates on fΦ(·). We examined

several properties of bit-wise codings that may be relevant to search – the Locality,

Balancedness, Hamming Weight – and introduced four bit-wise encodings based on

these properties: Standard Binary code, BRGC, and the Monotone and Balanced

Gray codes (Section 4.4). We looked at small example codes and the properties for

each of these codes (Section 4.5) – introducing a new visualisation showing the effect

of the encodings on Steepest Descent, SHC and CHC (Section 4.5.2).

We examined the performance of each combination of algorithm and encoding on

a standard set of piece-wise continuous test functions (Tables 4.8 and 4.9) extending

the work of Mathias and Whitley [1994]. We found that a suitable encoding allows a

simple technique such as Steepest Descent or SHC to solve problems that cannot be

solved using the standard Binary encoding (e.g. for SHC only the Balanced Gray code

allowed the Schwefel 20×10 problem to be solved, whereas the Rastrigin problem was

only solved using the BRGC) – if an optimisation algorithm fails to solve a problem,

then it is worth considering alternative codings as well as alternative algorithms. We

hypothesise that as each bit in the Balanced Gray code has a similar number of

transitions, it gives a more uniform distribution of neighbours across the search space

and is therefore particularly effective at exploring the search space.

93

For the test problems, CHC consistently found the correct solution from a single

start using either BRGC or the Balanced Gray Code. However, the BRGC took fewer

generations to find the solutions. Assuming that the pitch trajectory estimation

problem is more like the test problems than like some arbitrary fitness landscape,

we adopted CHC algorithm and BRGC encoding for solving the pitch trajectory

parameter optimisation problem.

94

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
in

a
ry

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

3
3

1
0
0

0
9
9

0
0

0
5

0

A
v
e
ra

g
e

S
ta

rt
s

8
.1

4
5
0
6
.7

0
9
7
.8

1
-

2
5
6
.6

5
-

-
-

4
0
6
.8

0
-

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
1
0

-3
0

1
.5

5
0
.9

9
8
0
0
4

4
.0

0
-4

0
1
4
.4

5
-7

6
7
5
.4

0
0
.0

6
8
6
3
1

0
.1

4
1
3
0
3

A
v
e
ra

g
e

G
e
n
s

1
3
.8

5
5
.9

7
1
2
.2

1
-

1
2
.0

7
-

-
-

4
3
.8

0
-

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

4
8

9
8

0
1
0
0

0
9

0
1
0
0

1
0
0

A
v
e
ra

g
e

S
ta

rt
s

1
4
7
3
.0

8
2
8
6
.9

4
-

2
.3

6
-

5
2
5
.5

6
-

2
9
.9

5
4
.4

9

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
0
1

-2
9
.9

8
2
.6

0
0
.9

9
8
0
0
4

4
.8

6
-4

0
3
1
.4

1
-7

6
1
7
.4

8
0

0

A
v
e
ra

g
e

G
e
n
s

1
6
.1

0
6
.8

3
1
1
.1

3
-

1
7
.8

0
-

3
9

-
5
1
.9

3
1
0
1
.2

0

B
a
la

n
c
e
d

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

4
9

6
9

0
1
0
0

0
1
0
0

1
0
0

1
0
0

1
0
0

A
v
e
ra

g
e

S
ta

rt
s

1
4
2
4
.7

3
3
9
7
.8

1
-

1
2
.3

6
-

3
.2

5
1
4
.1

2
4
9
.3

1
3
.4

6

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
0
1

-2
9
.6

9
2
.3

8
0
.9

9
8
0
0
4

2
.7

8
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0

0

A
v
e
ra

g
e

G
e
n
s

2
2
.5

4
9
.1

4
1
1
.0

1
-

3
6
.2

1
-

7
7
.4

8
1
5
3
.8

5
7
2
.2

8
1
4
7
.1

4

M
o
n
o
to

n
e

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

3
6

1
0
0

0
1
0
0

0
4
3

0
1
0
0

1
0
0

A
v
e
ra

g
e

S
ta

rt
s

1
4
7
9
.6

9
1
8
2
.3

8
-

2
.2

8
-

4
7
4
.7

4
-

8
2
.7

9
9
.3

3

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
0
2

-3
0

2
.7

8
0
.9

9
8
0
0
4

2
.6

5
-4

1
2
3
.6

0
-7

9
8
2
.2

0
0

0

A
v
e
ra

g
e

G
e
n
s

2
4
.5

2
1
2
.5

3
1
2
.8

2
-

6
0
.3

4
-

5
3
.3

5
-

7
2
.3

3
1
5
2
.8

4

M
a
x
im

u
m

D
is

ta
n
c
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

2
9

1
0
0

0
1
0
0

0
0

0
2

0

A
v
e
ra

g
e

S
ta

rt
s

8
.6

2
4
7
2
.7

2
2
2
7
.2

4
-

7
.9

6
-

-
-

3
7
4
.5

0
-

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
0
5

-3
0

0
.3

7
4
0
0
6

0
.9

9
8
0
0
4

3
.5

6
-4

1
2
2
.5

4
-7

9
0
7
.5

0
0
.1

0
5
7
6
3

0
.1

7
7
3
7
9

A
v
e
ra

g
e

G
e
n
s

1
3
.6

9
5
.7

6
1
0
.7

2
-

1
7
.5

3
-

-
-

3
9

-

T
ab

le
4.

16
:

G
ra

y
C

o
d

es
w

it
h

S
te

ep
es

t
D

es
ce

n
t.

95

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
in

a
ry

N
u
m

b
e
r

S
o
lv

e
d

8
3
7

1
0
0

0
0

0
2
5

0
0

0

A
v
e
ra

g
e

S
ta

rt
s

1
2
.5

0
2
.7

0
1

-
-

-
4

-
-

-

A
v
e
ra

g
e

B
e
st

0
.0

0
0
1
5
8

0
.0

0
0
2
5
6

-3
0

5
.8

3
-

1
.5

2
-4

1
3
1
.6

2
-7

8
1
8
.3

7
0
.1

8
1
2
7
7

0
.3

9
8
6
8
7

A
v
e
ra

g
e

G
e
n
s

1
6
5
.2

5
1
9
6
0
5
.4

1
4
1
3
.5

6
-

-
-

3
1
1
7
8
2
.5

2
-

-
-

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

1
0
0

5
3

7

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
2
0

3
3
.3

3
1
4
.2

9

A
v
e
ra

g
e

B
e
st

0
0

-3
0

6
.2

1
0
.9

9
8
0
0
4

0
-4

1
8
9
.8

3
-8

0
9
9
.7

6
0
.0

9
6
0
1
8

0
.1

0
3
6
3
9

A
v
e
ra

g
e

G
e
n
s

3
1
0
.7

9
2
4
6
2
7
.2

3
6
6
9
.7

7
-

9
2
2
.5

7
2
0
0
9
3
.8

2
1
1
6
9
4
9
.4

4
3
8
1
8
3
3
.2

0
4
2
4
9
0
8
.6

7
1
8
3
9
4
3
.7

1

B
a
la

n
c
e
d

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

9
6

1
0
0

0
1
0
0

1
3

1
0
0

1
0
0

4
8

A
v
e
ra

g
e

S
ta

rt
s

1
1
.0

4
1

-
1

7
.6

9
1

1
2
5

1
2
.5

0

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
0
1

-3
0

5
.8

0
0
.9

9
8
0
0
4

2
.1

2
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0
.1

2
4
7
6
2

0
.0

9
2
8
7
8

A
v
e
ra

g
e

G
e
n
s

4
2
8
.9

0
3
8
5
0
4
.7

1
7
4
3
.6

7
-

4
3
1
3
.3

2
3
6
5
5
4
5
.9

2
1
7
3
5
8
.4

0
7
9
1
6
6
.7

2
2
4
2
9
0
4
.2

5
8
3
1
9
9
.3

8

M
o
n
o
to

n
e

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

7
3

1
0
0

0
9
4

8
1

6
0

8
1

A
v
e
ra

g
e

S
ta

rt
s

1
1
.3

7
1

-
1
.0

6
1
.2

3
1
6
.6

7
-

1
2
.5

0
1
0
0

A
v
e
ra

g
e

B
e
st

0
0
.0

0
0
0
1
3

-3
0

6
.1

6
1
.2

9
0
.2

1
0
1
6
3

-3
8
7
7
.3

2
-7

4
7
9
.4

0
0
.1

0
9
4
8
6

0
.1

4
4
5
4
8

A
v
e
ra

g
e

G
e
n
s

4
6
0
.3

7
5
5
1
1
9
.7

5
3
3
7
.5

0
-

4
0
3
7
.2

4
2
3
9
1
7
8
.0

1
2
2
6
0
4
7

-
2
6
7
4
7
9
.1

2
1
9
8
3
7
3

T
ab

le
4.

17
:

G
ra

y
C

o
d

es
w

it
h

S
to

ch
as

ti
c

H
il

l
C

li
m

b
er

96

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
in

a
ry

N
u
m

b
e
r

S
o
lv

e
d

1
1

6
6

1
0
0

0
0

0
9

0
0

0

A
v
e
ra

g
e

S
ta

rt
s

9
.0

9
1
.5

2
1

-
-

-
1
1
.1

1
-

-
-

A
v
e
ra

g
e

B
e
st

0
.0

0
0
1
5
2

0
.0

0
0
1
1
9

-3
0

1
.0

4
-

1
.6

6
-4

1
4
8
.4

9
-7

7
3
1
.8

6
0
.2

2
3
4
5
6

0
.3

9
6
5
8
2

A
v
e
ra

g
e

G
e
n
s

3
4
9

2
0
4
6
.5

0
2
4
9
.4

9
-

-
-

8
0
3
6
.4

4
-

-
-

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

9
9

0
1
0
0

1
0
0

9
7

0
1

4

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
.0

1
-

1
1

1
.0

3
-

1
0
0

2
5

A
v
e
ra

g
e

B
e
st

0
0

-2
9
.9

9
1
.2

5
0
.9

9
8
0
0
4

0
-4

1
8
6
.2

7
-7

9
7
7
.4

5
0
.1

5
8
2
5
2

0
.1

1
0
3
2
6

A
v
e
ra

g
e

G
e
n
s

1
1
4
.8

7
9
1
2
.9

8
6
4
2
.6

8
-

1
5
8
.1

0
1
7
8
5
.1

0
3
2
1
0
.3

1
-

1
8
1
6

2
7
2
2
.7

5

B
a
la

n
c
e
d

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

9
5

0
1
0
0

1
3

1
0
0

9
9

0
6

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
.0

5
-

1
7
.6

9
1

1
.0

1
-

1
6
.6

7

A
v
e
ra

g
e

B
e
st

0
0

-2
9
.9

5
1
.3

0
0
.9

9
8
0
0
4

2
.1

9
-4

1
8
9
.8

3
-8

3
7
9
.6

5
0
.1

9
2
9
6
5

0
.0

9
8
6
8
9

A
v
e
ra

g
e

G
e
n
s

1
4
1
.1

6
1
3
5
5
.2

0
8
8
9
.2

0
-

2
8
4
.1

3
7
7
0
6
.5

4
1
0
4
4
.5

0
2
8
3
9
.4

1
-

2
6
5
9
.3

3

M
o
n
o
to

n
e

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

7
5

1
1

0
1

1

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1
.3

3
9
.0

9
-

1
0
0

1
0
0

A
v
e
ra

g
e

B
e
st

0
0

-3
0

2
.2

7
0
.9

9
8
0
0
4

0
.2

5
1
7
0
6

-3
9
5
2
.7

9
-7

5
2
6
.4

1
0
.1

6
7
3
0
7

0
.1

4
1
5
8
7

A
v
e
ra

g
e

G
e
n
s

1
4
4
.1

6
2
9
5
5
.3

8
9
9
.8

7
-

4
4
4
.1

8
4
7
1
3
.5

6
3
4
5
6
.9

1
-

9
5
3
6

8
2
6
2

T
ab

le
4.

18
:

G
ra

y
C

o
d

es
an

d
S

im
p

le
G

A
–

P
op

10
0

97

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
in

a
ry

N
u
m

b
e
r

S
o
lv

e
d

2
1

1
0
0

1
0
0

0
1
0
0

0
1
1

0
0

0

A
v
e
ra

g
e

S
ta

rt
s

4
.7

6
1

1
-

1
-

9
.0

9
-

-
-

A
v
e
ra

g
e

B
e
st

0
.0

0
0
1
2
7

0
-3

0
1
.1

2
0
.9

9
8
0
0
4

1
.7

1
-4

1
5
0
.0

5
-7

6
9
0
.2

2
0
.2

2
0
3
6
8

0
.4

0
7
9
4
4

A
v
e
ra

g
e

G
e
n
s

3
5
6
.5

7
1
1
1
6
.3

0
2
1
7
.8

5
-

1
4
3
7
.1

6
-

6
6
6
4
.7

3
-

-
-

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

9
9

0
0

4

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
.0

1
-

-
2
5

A
v
e
ra

g
e

B
e
st

0
0

-3
0

1
.1

9
0
.9

9
8
0
0
4

0
-4

1
8
8
.6

4
-7

9
5
3
.2

3
0
.1

6
6
6
4
4

0
.0

9
1
9
1
9

A
v
e
ra

g
e

G
e
n
s

9
8

6
4
5
.7

5
7
1
4
.3

8
-

1
5
6
.4

8
1
5
7
7
.7

9
3
2
9
0
.4

7
-

-
1
8
2
5
.2

5

B
a
la

n
c
e
d

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

9
3

0
1
0
0

1
1

1
0
0

1
0
0

0
1
0

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
.0

8
-

1
9
.0

9
1

1
-

1
0

A
v
e
ra

g
e

B
e
st

0
0

-2
9
.9

3
1
.2

4
0
.9

9
8
0
0
4

2
.0

2
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0
.1

8
8
2
0
1

0
.0

9
8
7
9
4

A
v
e
ra

g
e

G
e
n
s

1
2
9
.9

0
9
4
2
.7

9
9
4
5
.5

6
-

2
1
2
.2

0
7
8
4
2
.5

5
1
0
8
9
.1

5
2
7
6
1
.9

4
-

3
3
5
1
.2

0

M
o
n
o
to

n
e

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

7
9

1
0

0
2

6

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1
.2

7
1
0

-
5
0

1
6
.6

7

A
v
e
ra

g
e

B
e
st

0
0

-3
0

2
.1

4
0
.9

9
8
0
0
4

0
.2

2
2
9
9
9

-3
9
4
8
.7

0
-7

5
7
8
.2

2
0
.1

7
2
0
8
5

0
.1

4
9
7
4
4

A
v
e
ra

g
e

G
e
n
s

1
2
5
.0

9
1
3
0
3
.5

5
1
1
4
.3

8
-

3
3
0
.8

3
5
3
9
1
.4

8
5
8
6
1
.6

0
-

4
9
9
8

3
8
9
0
.5

0

T
ab

le
4.

19
:

G
ra

y
C

o
d

es
an

d
S

im
p

le
G

A
–

P
op

10
00

98

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

9
9

0
0

6

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
.0

1
-

-
1
6
.6

7

A
v
e
ra

g
e

B
e
st

0
0

-3
0

1
.1

7
0
.9

9
8
0
0
4

0
-4

1
8
8
.6

4
-7

9
5
0
.9

0
0
.1

6
1
4
6
5

0
.1

0
1
3
9
0

A
v
e
ra

g
e

G
e
n
s

1
1
0
.7

2
8
9
9
.2

0
6
8
4
.4

7
-

1
6
3
.3

0
1
7
1
9
.8

2
3
0
7
5
.4

8
-

-
4
1
8
4
.6

7

T
ab

le
4.

20
:

G
ra

y
C

o
d

es
an

d
S

im
p

le
G

A
–

H
U

X

99

T
e
st

F
u
n
c
ti

o
n

F
1

3
x
1
0

F
2

2
x
1
2

F
3

5
x
1
0

F
4

3
0
x
8

F
5

2
x
1
7

R
a
st

ri
g
in

1
0
x
1
0

S
c
h
w

e
fe

l
1
0
x
1
0

S
c
h
w

e
fe

l
2
0
x
1
0

G
ri

e
w

a
n
k

1
0
x
1
0

G
ri

e
w

a
n
k

2
0
x
1
0

B
in

a
ry

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

1
0
0

1
0
0

8
6

5
6

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
1

1
.1

6
1
.7

9

A
v
e
ra

g
e

B
e
st

0
0

-3
0

0
.4

7
6
5
2
5

0
.9

9
8
0
0
4

0
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0
.0

0
3
5
0
6

0
.0

2
2
9
1
5

A
v
e
ra

g
e

G
e
n
s

2
4
6
3
1

5
2
6
4
.6

0
7
8
.5

5
-

5
4
7
.9

3
1
3
2
5
3
2
.4

9
1
2
2
8
.8

6
4
8
3
6
.2

2
8
3
0
9
0
.1

4
3
1
5
7
1
8
.4

3

B
R

G
C

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
1

1
1

A
v
e
ra

g
e

B
e
st

0
0

-3
0

1
.0

0
0
.9

9
8
0
0
4

0
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0

0

A
v
e
ra

g
e

G
e
n
s

1
1
9
.9

0
3
3
5
.2

4
1
0
0

-
1
4
4
.4

2
2
7
5
9
.6

8
9
3
0
.7

4
3
2
3
0
.3

5
3
3
6
1

5
5
9
5
.7

7

B
a
la

n
c
e
d

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

1
0
0

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

1
1

1
1

1
1

A
v
e
ra

g
e

B
e
st

0
0

-3
0

0
.2

6
1
2
5
4

0
.9

9
8
0
0
4

0
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0

0

A
v
e
ra

g
e

G
e
n
s

2
1
5
.9

4
5
5
4
.8

5
1
0
5
.7

6
-

9
7
0
.6

3
3
7
7
2
.6

0
2
9
2
6
.0

9
7
0
0
7
.3

9
9
7
7
1
.8

1
3
4
3
8
5
.7

6

M
o
n
o
to

n
e

G
ra

y
C

o
d
e

N
u
m

b
e
r

S
o
lv

e
d

1
0
0

1
0
0

1
0
0

0
0

1
0
0

1
0
0

1
0
0

1
0
0

9
9

A
v
e
ra

g
e

S
ta

rt
s

1
1

1
-

-
1

1
1

1
1
.0

1

A
v
e
ra

g
e

B
e
st

0
0

-3
0

3
.7

2
-

0
-4

1
8
9
.8

3
-8

3
7
9
.6

6
0

0
.0

0
0
2
4
6

A
v
e
ra

g
e

G
e
n
s

1
6
1
.2

5
1
6
3
9
.7

6
7
1
.9

5
-

-
1
9
5
6
.3

9
1
7
2
3
.8

9
6
5
8
9
.7

2
8
5
5
0
.6

4
6
3
1
4
1
.9

3

T
ab

le
4.

21
:

G
ra

y
C

o
d

es
an

d
C

H
C

.

100

Chapter 5
Parameter Estimation

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN CHC/BRGC

Figure 5.1: System Model: Having selected CHC+BRGC optimisation, we can now estimate

pitch parameters

We have proposed an Expressive MIDI model for object coding of audio based

on the MMA Downloadable Sounds specification (Chapter 3). In order to use this

model to produce an Expressive MIDI encoding of a piece of audio, it is necessary

to estimate the model parameters from the source audio material. We examined

various optimisation techniques and bit-wise codings (Chapter 4) and found that using

Eshelman’s CHC with a Binary Reflected Gray Code (BRGC) gave good results on

a range of piece-wise continuous problems. We now look to apply this technique to

the problem of finding suitable parameter values to represent YIN pitch trajectories

in Expressive MIDI (Figure 5.1). 1

5.1 The DLS Pitch Trajectory Parameter

Estimation Problem

For pitch modulation, the MMA Downloadable Sounds (DLS) standard [MMA, 2006]

provides an Envelope Generator (EG) and a sine- or triangle-wave based Low Fre-

1Parts of this work were originally presented at the 2009 conference on Digital Audio Effects

(DAFx 09) [Welburn and Plumbley, 2009a].

101

quency Oscillator (LFO) using the default modulation routings (as introduced in

Chapter 3). We seek to minimise the difference between YIN note pitch trajectory

estimates and the pitch trajectories produced using EG+LFO. To do so, we specify

a cost function that quantifies this difference and select an appropriate optimisation

algorithm to perform the minimisation.

5.1.1 Possible Cost Functions

Pitch is the perceptual analogue of frequency, the difference in pitch indicating how

different the frequencies in two pieces of audio will sound to a listener (Section 3.2).

The difference between the original pitch trajectory and a trajectory generated from a

set of pitch parameters will therefore provide an indication of how similar the pitches

of the two pieces of audio will sound.

Using the sum of the absolute pitch differences,
∑ |ei − gi|, as a cost function

would reduce pitch differences, however it applies pressure to produce the largest

reduction in the pitch difference. Using a cost function based on the square er-

ror,
∑ |ei − gi|2, will apply pressure to reduce large pitch differences – as the effect

of a large difference δ on the cost will be related to δ2. As we are seeking “good

enough” pitch estimates, and are more concerned with avoiding large pitch errors

than minimising individual pitch errors, the cost function used is based on the root-

sum-square-error between the pitch trajectory and the EG+LFO estimate. However,

to allow comparisons between the errors for trajectories with different depths, we

normalise this error, giving as the cost function:

fest(k) =

√∑
i (ei − gi)2∑

i e
2
i

=
|e− g|
|e| (5.1)

where e = (e1, . . . , en) is the segment pitch trajectory extracted using YIN (Section

3.2.3) and g = (g1, . . . , gn) is the EG+LFO estimate.

Minimising the cost function will select pitch parameters which avoid large pitch

errors and, we believe, should allow an approximation of the pitch trajectories pro-

duced by YIN. In order to test the pitch parameter estimation, we used CHC with

BRGC encodings (introduced in Chapter 4) to jointly optimise the pitch parameters.

Based on the DLS pitch parameter definitions (Chapter 3) we next consider how to

optimise these parameters.

102

5.2 Joint Optimisation of EG and LFO

Pitch Parameters

The DLS pitch parameters include time domain and pitch domain parameters (i.e.

the LFO delay, EG Delay, Attack, Hold and Release times; and the base pitch, the

EG and LFO depths and the sustain level). Rather than attempting to estimate

all parameters directly (e.g. using CHC), we examined the component parts of the

parameter model, and found that best-fit pitch domain parameters could be calculated

given the time domain parameters. This will reduce the size of the space over which we

need to search for optimal parameters whilst guaranteeing optimal pitch parameters

given the time parameters.

The EG output (Section 3.1.1) can be considered as the combination of two over-

lapping sub-envelopes, covering the Attack-hold-Decay and Decay-Sustain-Release

phases (EG1 (dAhD) and EG2 ((d+A+h)DSR)):

EG1(t) =

0 t ≤ d

t−d
A

d < t ≤ d+ A

1 d+ A < t ≤ d+ A+ h

1− t−d+A+h
τD

d+ A+ h < t ≤ d+ A+ h+ τD

0 d+ A+ h+ τD < t

(5.2)

and

EG2(t) =

0 t ≤ d+ A+ h

t−(d+A+h)
τD

d+ A+ h < t ≤ d+ A+ h+ τD

1 d+ A+ h+ τD × (1− S) < t ≤ l − τR

l−t
τR

noff − τR < t ≤ l

0 l < t .

(5.3)

each with its own depth (d1 and d2) parameter, in pitch cents, subject to the condition

that d2 < d1 (see figure 5.2).

This allows the overall pitch trajectory to be represented as a linear combination

of four components:

• a constant contribution of the base pitch value;

• a contribution from the dAhD envelope, p = (p1, . . . , pn) where pi = EG1(ti);

103

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Time (s)
V

a
lu

e

d A h τD

(a) dAhD Envelope

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

Time (s)

V
a

lu
e

d+A+ h τD

Note Off

τR

(b) (d+A+h)DSR Envelope

Figure 5.2: Representing EG output as two subenvelopes

• a contribution from the (d + A + h)DSR envelope, q = (q1, . . . , qn) where

qi = EG1(ti);

• the LFO depth, li.

where ti is the time offset from the start of the envelope to the ith YIN pitch trajectory

estimate.

The overall pitch trajectory estimate, g = (g1, . . . gn), is then given by:

g1

...

gi
...

gn

=

1 p1 q1 l1
...

...
...

...

1 pi qi li
...

...
...

...

1 pn qn ln

b

dEG1

dEG2

dLFO

 . (5.4)

where the base pitch of the segment is b; the EG depth is dEG = dEG1; the sustain

depth is dEG2 < dEG1; the sustain level of the envelope, S = dEG1

dEG2
; and the LFO depth

is dLFO, all in pitch cents.

Minimising the cost function (Equation 5.1) minimises the sum-square-error be-

tween the pitch trajectory estimate, g, and the YIN data, e. We can calculate values

104

for b, dEG1, dEG2 and dLFO that minimise this error from equation 5.4 – given the

time-based parameters for the EG and LFO (i.e. d,A, h, τD, τR, δ,
1
f
).

Noting that dEG1 = dEG and dEG2 = dEG × S and that the expressions for EG1

and EG2 only use the actual decay time (τD) and release time (τR) rather than the

individual parameters, we can: take values for the 7 time domain parameters (dAh,

τD, τR, f , δ); find best-fit values for the pitch domain parameters dEG1 = dEG, dEG2,

dLFO and b; and hence calculate the remaining pitch domain parameter S = dEG2

dEG1
.

We have therefore reduced the problem from finding 11 parameters across the

pitch and time domains to a problem of finding the best 7 time domain parameters –

from which we can calculate the appropriate 4 best-fit pitch domain parameters.

Assuming continuity for the original pitch trajectories, small changes in the time-

based parameters will produce small changes in the best-trajectory depths, and small

changes in the cost function. Local search abilities (exploiting local features) will allow

minima to be found, however the problem includes local optima (Section 3.4) as well as

the global optimum. The local optima will need to be avoided using exploration of the

search space. An optimisation technique that balances exploration and exploitation

will therefore be appropriate – such as CHC with BRGC encoding (as discussed in

Chapter 4).

5.3 Assessing CHC+BRGC for EG+LFO

Parameter Estimation

5.3.1 Method

We found that CHC with BRGC coding was an effective optimisation technique on

test problems (Chapter 4), and have reduced the parameter estimation problem to

finding the best time domain parameters (as we can calculate the best-fit pitch domain

parameters from these, Section 5.2). We now wish to test the performance of CHC

with BRGC to estimate EG+LFO pitch parameters from the YIN pitch trajectories.

To assess the ability of CHC+BRGC to estimate suitable pitch EG and LFO

parameters (Section 5.2), 60 files from the RWC Musical Instrument Sounds database

[Goto et al., 2003] were selected. Each file consists of a chromatic sequence of notes

covering the complete range of an instrument (i.e. notes from the lowest to highest

pitch produced by the instrument at 1 semitone intervals). Each instrument has

105

Number of Number of Number of

Instrument (RWC ID) files articulations Dynamics segments

Piano (011) 12 4 P/M/F 2,079

Organ (061) 8 8 M 382

Violin (151) 2 2 M 134

Trumpet (211) 25 9 P/M/F 844

Clarinet (311) 12 4 P/M/F 526

Total 59 n/a n/a 3,965

Table 5.1: Instrument Summary.

files covering various articulations (styles of playing) and dynamics (how loudly the

instrument is played). The files selected covered various instruments (piano, pipe

organ, violin, trumpet and clarinet) and multiple articulations and dynamics (see

Table 5.1). The selected instruments have a variety of timbres:

• the trumpet is a conical open tube oscillator including all harmonics;

• the clarinet is a cylindrical closed tube with only odd harmonics;

• the violin uses driven strings connected to a resonating body which emphasises

specific frequencies;

• the piano has struck strings of varying stiffness (the increased stiffness of lower

strings introducing inharmonicities in the sounds);

• the pipe organ can include both flue pipes (open and closed tubes) and reed

pipes giving a variety of timbres from the one instrument.

Using YIN (Section 3.2.3), pitch, power and aperiodicity were estimated for each

file. The YIN output was then segmented into individual pitch trajectories based on

the aperiodicity (Section 3.3) – 3,965 individual segments were created from the YIN

data.

Pitch EG and LFO parameters were estimated by running CHC (Section 4.2.2)

with a population of 50 candidate solutions for 10, 000 generations. Each candidate

solution consisted of a string of 224 bits (consisting of a 32 bit codeword for each

of the 7 time-domain EG+LFO parameters). The initial population was random –

224× 50 uniform random numbers were generated and bits were set to 1 for random

numbers > 0.5 and zero otherwise.

106

In order to evaluate the candidate solutions, each codeword was decoded into

a 32-bit integer using BRGC (Section 4.4.1, pp.74) and mapped to the appropriate

EG+LFO value based on the DLS 32-bit data types (Section 3.1.4). The optimal best-

fit pitch parameters (base, EG depth, sustain level, LFO depth) were then calculated

(Section 5.2) and the cost function evaluated based on the full set of time and pitch

parameters. The estimated pitch trajectories, p, were then compared with the YIN

pitch trajectories, e.

As an alternative to using the EG+LFO pitch trajectory estimate, for segment k a

constant pitch estimate pitch ρc can be used. We can then calculate the cost function

using this pitch:

f(ρc, k) =

√∑
i (ei − ρc)2∑

i e
2
i

(5.5)

where e = (e1, . . . , en) is the pitch trajectory given by YIN for segment k.

Considering this constant pitch cost function (Equation 5.5), we can find the

constant pitch that minimises the function:

∂f(ρc, k)

∂ρc
=

∂

∂ρc

√∑
i (ei − ρc)2∑

i e
2
i

=
1

2

(∑
i (ei − ρc)2∑

i e
2
i

)− 1
2 2∑

i e
2
i

((∑
i

ei

)
− nρc

) (5.6)

which is 0 when ρc = 1
n

∑
i ei, i.e. the constant pitch trajectory at the mean YIN pitch

minimises the cost function. We will refer to the fitness calculated using a constant

trajectory positioned at the mean value as the “mean valued trajectory”.

The EG+LFO trajectories found using CHC+BRGC were compared with the

original trajectories, and with the cost function value given using the mean valued

trajectories.

5.3.2 Overview of Results

Overall Summary

Of the 3, 965 segments processed, 2, 824 (71.22%) had a better fit using the EG+LFO

trajectory than by using the mean valued trajectory (Table 5.2). Allowing CHC to

run for more generations should allow it to explore the solution space further and

could increase the likelihood of finding good solutions. Rerunning CHC for 100, 000

generations on a selection of files showed that there were cases when the fitness of the

107

Instrument RWC ID % fEG+LFO <= fmean

Piano 011 74.12%

Pipe Organ 061 84.55%

Violin 151 67.91%

Trumpet 211 61.26%

Clarinet 311 66.92%

Overall 71.22%

Table 5.2: Percentage of segments with lower EG+LFO cost (fEG+LFO) than cost for the

mean valued trajectories (fmean) for each instrument and overall.

best candidate solution for a segment improved after 10, 000 generations had passed

(Figure 5.3).

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

14

Number of Generations

C
o
st

fo
r
b
es
t
ca
n
d
id
a
te

so
lu
ti
o
n

011PFPEF 23

151VNNVM 21

211TRVIP 15

311CLNOP 23

Figure 5.3: Variation of cost of the best candidate solution with the number of generations

that CHC has run. The selected segments show that the cost of the best candidate solution

can improve beyond 10, 000 generations of CHC.

By Instrument

We found that the EG+LFO estimate gave a lower cost function value than the

constant mean valued trajectories for most segments (Table 5.2). Overall, for each

instrument over 60% of pitch estimates had lower costs using the EG+LFO model than

the mean valued trajectories – over 84% being better for the pipe organ segments.

Noting that the mean valued trajectories are the constant valued trajectories that

minimise the cost function, CHC + BRGC has effectively minimised the cost function

for many segments.

By File

Examining the results in detail by file (Table 5.3), we discover a large variation in

our ability to estimate EG+LFO parameters for each file. In general, the parameter

108

Number of

File Segments % fEG+LFO < fmean

011PFNOF 143 83.92%

011PFNOM 125 85.60%

011PFNOP 114 64.91%

011PFPEF 343 81.34%

011PFPEM 156 75.64%

011PFPEP 151 83.44%

011PFREF 28 75.00%

011PFREM 331 66.16%

011PFREP 259 62.55%

011PFSTF 112 80.36%

011PFSTM 134 73.13%

011PFSTP 183 69.40%

151VNNOM 64 78.13%

151VNNVM 70 58.57%

311CLNOF 40 75.00%

311CLNOM 40 67.50%

311CLNOP 40 50.00%

311CLSTF 40 72.50%

311CLSTM 41 65.85%

311CLSTP 40 62.50%

311CLTLF 63 77.78%

311CLTLM 58 72.41%

311CLTLP 44 72.73%

311CLVIF 40 65.00%

311CLVIM 40 55.00%

311CLVIP 40 57.50%

(a) Piano, Violin and Clarinet

Number of

File Segments % fEG+LFO < fmean

061ORNOM 56 91.07%

061ORP1M 30 90.00%

061ORP2M 31 96.77%

061ORR1M 40 77.50%

061ORR2M 59 86.44%

061ORR3M 56 66.07%

061ORR4M 56 83.93%

061ORSTM 54 90.74%

211TRM7F 31 58.06%

211TRM7M 31 48.39%

211TRM7P 31 61.29%

211TRM8F 31 51.61%

211TRM8M 34 55.88%

211TRM8P 32 50.00%

211TRM9F 31 61.29%

211TRM9M 31 64.52%

211TRM9P 31 54.84%

211TRNOF 35 54.29%

211TRNOP 34 55.88%

211TRSTF 45 57.78%

211TRSTM 35 71.43%

211TRSTP 37 59.46%

211TRVIF 31 45.16%

211TRVIM 31 54.84%

211TRVIP 32 28.13%

211TRW1F 34 82.35%

211TRW1M 31 61.29%

211TRW1P 31 80.65%

211TRW2F 30 66.67%

211TRW2M 30 66.67%

211TRW2P 31 74.19%

211TRW3F 33 78.79%

211TRW3M 30 73.33%

211TRW3P 31 77.42%

(b) Pipe Organ and Trumpet

Table 5.3: Percentage of segments with lower EG+LFO cost (fEG+LFO) than cost for the

mean valued trajectories (fmean) by RWC file.

109

estimation was successful for the pipe organ files (061OR*), EG+LFO estimates hav-

ing a lower cost for 96.77% of segments in the 061ORP2M file and only 061ORR3M

improving over the mean valued trajectories for less than 75% of segments. For the

piano files, 5 of the 12 had a lower EG+LFO cost for more than 80% of segments

and at least 62.55% of segments were better with EG+LFO than using the mean.

Of the violin files, parameter estimation was largely effective on the vibrato violin

(151VNNOM at 78.13%) but less so for the non-vibrato file (151VNNVM at 58.57%).

The trumpet files showed a large variation – quiet, vibrato trumpet (211TRVIP) pro-

duced extremely poor results with only 28.13% of segments better and loud, normally

articulated trumpet with a wow-wow mute (211TRW1F) achieved improvements for

82.35% of segments. Clarinet files were neither particulary good nor exceedingly bad

(ranging from 50.00% to 77.78% with EG+LFO better than using the mean).

Example Output

For several segments from each instrument, including both vibrato and non-vibrato

trumpet and violin, the following figures (5.4 to 5.10) plot the YIN pitch trajectories

(paler, background lines) and the EG+LFO pitch trajectories (the bolder smoother

lines) showing the offset of both trajectories from the median pitch for each segment

– the median pitch being unaffected by outliers in the YIN pitch trajectories. For

each figure, we consider the performance of the EG+LFO pitch estimation.

110

200 205 210 215 220 225 230 235 240 245

−30

−20

−10

0

10

20

30

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.4: 011PFPEF: Piano (with pedal) pitch estimation. The YIN piano pitch estimates

(grey lines) show a similar decrease in pitch for each segment and variations during the

segment. The 4 EG+LFO trajectories (black lines) are quite different providing smoothed

approximations of the trajectories that bear little resemblance to the “basic” EG+LFO

trajectory (Section 3.1.3). The first segment uses the EG to approximate the slope and only

applies the LFO to add a small kick at the end of the segment; the second uses the EG to

provide both an initial pitch drop and the slope, using the LFO to provide variation through

the segment; the third uses the EG to provide a final pitch drop and attempts to match

the overall shape using the LFO; and the fourth provides an initial attack and a downward

slope using the EG and closely matches the variations in pitch using the LFO. The YIN

piano pitch variation is mainly in the ±10 cent range.

111

54 56 58 60 62 64 66 68 70

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.5: 061ORNOM: Pipe Organ pitch estimation. Noting the smaller scale of the graph,

the YIN pitch trajectories (grey lines) for the pipe organ segments show less variation than

the hammered-string sounds of the piano (Figure 5.4) – the main variation in the pipe organ

notes being in the range ±2 cents. However, the first three notes have large pitch changes

at the start and/or end. These are artifacts of the segmentation procedure. The EG+LFO

parameters produced similar trajectories for the first and third segments using the EG to

provide the initial pitch drop rise and modelling the shape to the end of the trajectory using

the LFO. The second segment used the EG for the initial pitch rise and applied the LFO to

create peaks and troughs across the segment, matching the alignment (but not the depth) of

the overall YIN pitch trajectory peaks and dips. The fourth trajectory provides a surprising

combination of the EG and LFO, closely matching the shape of the YIN pitch trajectory.

112

94 96 98 100 102 104 106 108 110

−40

−30

−20

−10

0

10

20

30

40

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.6: 151VNNOM: Violin pitch estimation. The standard violin articulation shows

distinct vibrato. For three of the four segments, both the phase and the frequency of the

vibrato has been closely matched, additional characteristics such as the initial shape of

the trajectory, also being matched. For these segments, the “best-fit” constant depth for

the vibrato also appears good. For the second segment, gross features of the YIN pitch

trajectory (the initial increase, the central dip, and the final fall) were reasonably matched

– the LFO being used to provide the second rise in the trajectory. We note that the vibrato

depth for this more is greater than ±10 cents.

113

38 40 42 44 46 48 50 52

−25

−20

−15

−10

−5

0

5

10

15

20

25

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.7: 151VNNVM: Violin pitch estimation (no vibrato). Violin segments were also

processed from samples without vibrato. A range of approximately ±5 cents covers the YIN

pitch variation excluding the starts and ends of the segments. Given the EG+LFO model,

the first two segments and the last segment are well matched – only the first showing the

expected use of the LFO, it being used for the overall trajectory shape for the second and

fourth segments. The third segment starts from a low value and ends with a large pitch drop

and subsequent rise, possibly as result of poor segmentation, and the EG+LFO trajectory

attempts to capture this shape (the square error based cost function applying pressure to

reduce the largest pitch errors). In doing so, the EG is used to provide the final pitch drop

and the LFO provides the shape across the segment.

114

12 13 14 15 16 17 18 19

−100

−50

0

50

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.8: 211TRSTF: Staccato trumpet pitch estimation. Staccato trumpet segments offer

little data from which to estimate parameters. None of the four segments capture the rise

in pitch throughout the segment, although the fourth example successfully matches the two

plateaux in the pitch. The first and third segments, however, almost match the timings of

the peaks at the start of and half-way through the trajectory using the LFO – although the

pitch at the peaks is wrong. CHC was unsuccessful in finding suitable parameters for the

second segment. It is notable that the YIN pitch trajectories for these segments cover a

larger pitch range than other instruments – the pitch rises from ca. 50 cents (0.5 semitones)

below the median pitch to 25 cents above the median with the pitch for the final half of

each segment being relatively constant.

115

60 65 70 75 80

−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.9: 211TRVIP: Vibrato trumpet pitch estimation. For vibrato trumpet segments we

again managed to match frequency and phase in some segments. Additionally, the major

features of the trajectories were also represented (low then higher for the first segment,

increasing for the second, decreasing for the fourth). However, for the second segment the

LFO was not matched – the square error cost function matching the larger pitch variations

within the note (e.g. the pitch drops at each trough in the LFO). For the third segment

CHC completely failed to find a reasonable estimate of the trajectory in 10, 000 generations.

The good performance on some segments is notable as this audio file generally had better

pitch estimates using the mean YIN pitch than using the EG+LFO model (pp.110).

116

86 88 90 92 94 96 98 100

−5

−4

−3

−2

−1

0

1

2

3

4

5

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch

Figure 5.10: 311CLNOP: Clarinet pitch estimation. The final instrument processed was the

clarinet. The pitch variation is less than 4 cents apart from at the segment ends and the

overall shape of the pitch trajectories is reasonably represented. The segments did not have

a vibrato element, and the LFO was used to provide the gross pitch trajectory across each

segment. Although the EG+LFO trajectory for the first segment appears a poor match for

the YIN pitch trajectory, the range of the pitch variation during the segment (excluding the

start and end of the segment) is only ca. ±1 cent.

117

5.3.3 Distributions of Errors

1/50 1/40 1/30 1/20 1/10 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

|fEG+LFO/fYIN|)

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(a) EG+LFO pitch estimate

1/50 1/40 1/30 1/20 1/10 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

|fmean/fYIN|)

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(b) Mean pitch estimate

1/50 1/40 1/30 1/20 1/10 1 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

0

2

4

6

8

|fmedian/fYIN|)

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(c) Median pitch estimate

Figure 5.11: All errors using EG+LFO, mean and median pitch estimates showing the

frequency ratio vs. log10 of the number of pitch estimates.

Although the mean pitch minimises the cost function in Equation 5.5, it is affected

by outliers – large errors caused by poor segmentation can cause the mean to differ

from most of the values in the pitch trajectory. Therefore, as an alternative to using

the mean YIN pitch estimate we looked at the median YIN pitch estimate which is

less affected by the values of outliers. We found that 74.65% of EG+LFO estimates

had a lower cost than the median pitch estimate – however, the cost function is not

118

particularly suitable for the median estimate – we already know that the mean YIN

pitch estimate minimises this function. We therefore considered an alternative cost

function:

f̂ =
n̂∑
i=1

|gi − ei| . (5.7)

For this cost function, although the EG+LFO estimates were designed to minimise f,

for 64.82% of the segments the EG+LFO estimate had a lower cost than the median

YIN pitch estimate.

Examining the ratio of the EG+LFO, mean and median pitch estimates (fEG+LFO,

fmean, fmedian respectively) to the initial YIN output (fYIN), we see (Figure 5.11)

that the EG+LFO estimates produced fewer errors in the range 1
50
fYIN ≤ fest ≤

1
10
fYIN than the mean and median pitch estimates. However, there are occasions when

EG+LFO fails, resulting in estimates fEG+LFO ≈ 90fYIN and fEG+LFO ≈ 154fYIN. We

hypothesise that these errors occur when outliers cause the EG+LFO algorithm to

fail (as for the third vibrato trumpet segment in Figure 5.9).

Both the mean and median valued constant pitch trajectories also show large

differences to the YIN pitch trajectory. As each file in the RWC database consists of

a series of notes at semitone intervals, we expect segments, which are either individual

notes or portions of notes, to not be varying over more than one semitone. In this

case, all pitch estimates in the YIN pitch trajectory should be around the note pitch

±1 semitone – and the mean and the median values should also be in this range.

Given the relationship between pitch and frequency (Section 2.4):

fest
fY IN

= 2
pest−pY IN

12 (5.8)

implying that 2−
2
12 ≤ fest

fY IN
≤ 2

2
12 for a range of ±1 semitone in both the estimated

pitch trajectory and the YIN pitch trajectory. The large variation of the mean and

median pitch relative to the YIN pitch suggests YIN pitch estimates vary by more

than one semitone either as a result of errors in the YIN pitch estimation or as a

result of poor segmentation of the notes.

As most errors occur in the region 1
10
≤ f·

fY IN
≤ 10, we examined the smaller

errors using the EG+LFO, mean and median pitch estimates (Figure 5.12 shows this

region from Figure 5.11 in more detail). We see that the median pitch estimate mainly

results in a frequency ratio (fmedian

fYIN
) either close to 1 or close to a an integer or fraction

– i.e. errors using this estimate are either small or have a harmonic relationship to

the median YIN pitch estimate. The harmonic relationship between the YIN pitch

estimates and the median pitch estimate therefore suggests harmonic errors in the

119

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

fEG+LFO/fYIN

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(a) EG+LFO pitch estimate

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

fmean/fYIN

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(b) Mean pitch estimate

1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10

0

2

4

6

8

fmedian/fYIN

lo
g
1
0
(#

of
p
it
ch

sa
m
p
le
s)

(c) Median pitch estimate

Figure 5.12: Details of smaller errors (in the range fYIN/10 ≤ fest ≤ 10fYIN) using

EG+LFO, mean and median pitch estimates showing the frequency ratio vs. log10 of the

number of pitch estimates, the median pitch estimate showing clearly that YIN is making

octave / harmonic errors (see text).

120

output of the YIN pitch estimation. Such harmonic errors are discontinuities in the

pitch trajectory and will mean that it may not be possible to find suitable parameters

cannot be found for the almost continuous EG+LFO parameter model – the EG+LFO

model allows three discontinuities if the Attack, Decay or Release rates are zero.

The EG+LFO and mean pitch estimates are less closely tied to the original pitch

estimates, outliers in the segment pitch moving the estimates away from the actual

pitch trajectory, this results in a less “spiky” distribution of errors.

5.4 Conclusions

Using the EG+LFO estimate of the pitch trajectory from the Expressive MIDI model,

we produced similar trajectories to those estimated from the audio, using the LFO to

represent both vibrato effects and more complex non-vibrato trajectories. This trajec-

tory can more closely approximate the original audio than simply applying a constant

pitch and represents the trajectory in a small number of parameters per segment. The

EG+LFO estimate provides a smoothed approximation of the pitch trajectory and

often bore little resemblance to the “basic” EG+LFO trajectory (Figure 3.1.3) – the

LFO often being used for the gross trajectory shape (e.g. the no-vibrato violin notes

in Figure 5.7).

With vibrato examples, both frequency and phase can be matched (as in Figures

5.6 and 5.9). However, with more complex pitch variation, the minimum error found

may use the LFO to represent coarser features than the vibrato and omit representing

any vibrato that is present (as seen in the second vibrato violin segment in Figure

5.6). In order to capture the vibrato effect, we propose a two stage process: first

using CHC to estimate gross features of the pitch trajectory with the EG; and then

separately finding the LFO parameters to best represent the residual pitch trajectory

unaccounted for by the EG (e.g. using autocorrelation on the residual pitch trajectory

after the EG estimate is used to estimate the LFO frequency and subsequently esti-

mating the LFO delay using cross-correlation of the residual trajectory and a “test”

LFO based on a zero-padded sine wave).

Segmentation errors and problems estimating the pitch at the ends of segments

result in sudden pitch changes which either: are poorly represented using the EG+

LFO model; or are estimated and disturb the estimation of the remaining pitch tra-

jectory features. Additional work is therefore required to improve the segmentation

of the pitch trajectories. This is unsurprising given the basic segmentation used (Sec-

121

tion 3.3). For the RWC Musical Instrument Sounds database, each individual note

is separated by a period of silence. Better segmentation can therefore be achieved

by: splitting the audio into segments at the silences and then refining those segments

using power and/or aperiodicity thresholds to refine the note boundaries.

The combination of square error cost function and large variations in the YIN

pitch estimates produce pressure on the system to match the large variations in pitch.

Ignoring the outliers or using an absolute difference (L1 norm, | · |) cost function

would reduce the pressure to match these variations and may produce a more accurate

estimate of the smaller variations in pitch across the note.

Comparing a constant valued pitch trajectory at the median YIN pitch with the

YIN pitch trajectory revealed the presence of harmonic errors in the YIN output.

The approximate MIDI pitch for each note in the RWC Musical Instrument Sounds

database can be found based on the instrument range and the notes being at semitone

intervals. The YIN pitch estimates could therefore be post-processed using this data

to remove some of these harmonic errors / outliers.

For most segments, the EG+LFO model produces a lower cost than using a con-

stant trajectory at the mean pitch – the constant trajectory that minimises the cost

function under consideration. We therefore believe that Expressive MIDI using the

EG+LFO model will produce a better pitch trajectory estimate than a simple con-

stant pitch for many notes. Although we have seen problems with the estimated

EG+LFO pitch trajectories, we next examine the final step in an Expressive MIDI

system – resynthesising audio from estimated EG+LFO pitch trajectories – and con-

sider whether, given suitable estimates of the EG+LFO parameters, audio can be

produced which matches a parameterised pitch trajectory.

122

Chapter 6
(Re)Synthesis

Having extracted segments of pitch trajectories from source audio using the YIN

pitch estimator (Chapter 3), we used the CHC optimisation algorithm with a BRGC

encoding (as described in Chapter 4) to estimate pitch trajectory parameters based

on an EG+LFO model for note pitch trajectories (Chapter 5)1.

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio

YIN CHC/BRGC ?????? ??????

Figure 6.1: System Model: With YIN and CHC+BRGC in place, the remaining components

are a suitable encoding and a resynthesis technique

In order to create the Expressive MIDI system for creating audio based on the

source audio pitch trajectories, we need to resynthesise audio using the found param-

eters. The parameters are to be passed to the synthesiser using a Standard MIDI

File (SMF, Section 2.5.1). We therefore require: a suitable synthesiser to resynthesise

the audio using the pitch trajectory parameters; and a definition of the MIDI data

which will be used to pass the parameters (Figure 6.1). The appropriate MIDI data

will allow the estimated parameters to be passed to the chosen resynthesis technique.

In order to define the MIDI data, we must know how we will resynthesise the audio.

Therefore, we next consider selecting a suitable synthesiser for the resynthesis.

1Parts of this work were originally presented at the 127th Convention of the Audio Engineering

Society [Welburn and Plumbley, 2009c].

123

Software SoundFont Envelope

Manufacturer Sampler Import ? Format

Steinberg HALion 3 3 ADSR / Up to 32 points

Native Instruments Kontakt 3 3 AhDSR / DBD / Up to 32-points

TASCAM Gigastudio 4 via converter ADSR

E-mu Emulator X3 via converter “EOS”

FL Studio DirectWave 3 ADSR

SoundFont Player 3 ADSR

Ableton Sampler 3 ADSR

Mark Of The Unicorn MachFive 2 3 AhDSR / Multipoint

Table 6.1: Software Samplers. The E-mu “EOS” envelope model is an ADSR style envelope

with two-part Attack, Decay and Release phases.

6.1 Synthesiser Selection

Having selected the MMA DLS specification as the basis for the parameters, we need

a suitable synthesiser to apply the parameters to produce audio. However, the DLS

standard only supports 6 controllers and there are 9 parameters in our EG+LFO

pitch model. As DLS is a “samples + synthesis” model, we looked for a software

synthesiser that could play back samples in a manner similar to DLS.

Continuing the aim of building a system from existing components, we chose to

use an existing commercial synthesiser rather than developing our own. Software sam-

plers were considered – these allow sample playback to be modulated using envelope

generators, oscillators, filters etc. Of the software samplers considered (Table 6.1),

HALion 3, Kontakt 3, Emulator X3 and MachFive 2 support envelope generators

more complex than “ADSR”. However, only Native Instruments2 Kontakt supports

scripting to allow control of sampler parameters via MIDI messages.

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN CHC/BRGC ?????? Kontakt

Figure 6.2: System Model: Only encoding the audio data is undefined

The Kontakt 3 modulators [Marinic et al., 1994] do not match the DLS specifica-

tion (Chapter 3):

2http://www.native-instruments.com

124

http://www.native-instruments.com

• the envelope generator model is AhDSR rather than dAhDSR (i.e. it doesn’t

support an initial delay segment);

• envelope generator timing parameters are supported up to 10, 15 or 25 seconds

rather than 40 or 50 seconds for DLS;

• the output of the envelope generator is not linear in shape, although the attack

slope can be set to linear;

• and the LFO supports a “fade” parameter (which gradually applies the LFO

over the specified time) and an initial phase rather than an initial delay.

Nevertheless, we believe that the Kontakt specification and the ability to script its

behaviour should allow a close approximation of the pitch of the source audio using

the parameters previously estimated and that any errors resulting from necessary

modifications should be observable in the output. As Kontakt is the commercial

synthesiser with the closest specification to DLS we chose to adopt it as the synthesis

engine (Figure 6.2) and to bear in mind the variations from the original system when

examining the resynthesised audio.

6.2 Implementation in Kontakt

Kontakt can be used as either a stand-alone piece of software or as a sequencer plug-

in. In order to develop a custom synthesiser using Kontakt we can: load samples into

Kontakt voices; attach the required modulators to each voice; and add Kontakt Script

Processor (KSP) scripts [Marinic et al., 1994] to each voice to control the modulators.

Kontakt allows the import of samples from Creative Labs SoundFonts (a similar

technology to DLS, Section 3). The SCC1t2 GM SoundFont is a GM/GS compatible

SoundFont based on samples from the Roland Sound Canvas. The audio content

comprises small 16 bit 44.1 kHz samples, the entire SoundFont being approximately

3.2 megabytes, a small number of cycles of the waveform being used as the loop

region of each sample. These basic samples are appropriately characterless allowing

the Expressive MIDI parameters to add expression during resynthesis. The SoundFont

was imported into Kontakt assigning instruments to Kontakt voices according to the

General MIDI program numbers (Section 2.5.3). Each instrument has several samples

across the pitch range reducing how far individual samples need pitch-shifting to

produce appropriately pitched output (see multisamples, p.40). The SCC1t2 import

125

included data on the base pitch for samples, and the MIDI note numbers each sample

should respond to.

Figure 6.3: Kontakt Modulations.

Pitch modulators were added to the required Kontakt instruments (Violin, Trum-

pet and Clarinet) for: a sine-wave based LFO (“LFO (Sine)”); an AHDSR envelope

generator (“Envelope (AHDSR)”); and for the pitch bend controller (“Pitch Bend”)

(Figure 6.3). A Kontakt script was then attached to each individual instrument to

interpret the MIDI parameters and to provide the appropriate Kontakt modulator

settings (Appendix A.2).

As the Kontakt LFO and EG (Section 6.1) differ from the DLS specification,

parameters either needed to be re-estimated, or we needed to adapt the given values for

the new model. We chose to use the previously estimated parameter values (Chapter

5) and to set the Kontakt to approximate their behaviour:

• the Kontakt AhDSR EG does not have a delay time – if the delay time was less

than half the note length, then the Kontakt EG attack time was set to cover

both the estimated delay and attack times (just EG no delay), otherwise, the

EG depth was set to zero (just delay no EG);

• the Kontakt AhDSR EG only allows attack times up to 15 seconds rather than

the 40 seconds supported by DLS – if the total attack and delay time was more

than 15 seconds (which is greater than the note lengths examined), then the

Kontakt EG attack time was set to 15 seconds and the EG depth was scaled to

reach the same pitch that the longer attack would have reached after 15 seconds;

126

Kontakt Parameter Formula Units for EG+LFO variables

LFO Frequency 2.31800 log10(f) + 4.59800 f frequency in Hz

Sustain depth 1000000
(
s

100

) 1
3 s sustain depth as a % of the total

envelope generator depth

Times 1000000(log2(t+ 2)− 1)/α t time in ms

α = log2(tmax + 2)− 1)

tmax is the maximum time allowed

(10, 15 or 25 seconds)

Pitch 500000
(

1 +
(p

1200

) 1
3

)
p in pitch cents

Table 6.2: Formulae to relate Kontakt parameter values (0–1000000) to EG+LFO parame-

ters in units shown

• the Kontakt AhDSR EG has a maximum hold value of 15 seconds and decay

and release times of 25 seconds rather than the 40 seconds supported by DLS –

times longer than 15 / 25 seconds were set to 15 / 25 seconds;

• the Kontakt LFO does not have a delay time – if the delay time was less than

half the note length, then the Kontakt LFO fade time was set to cover the delay

time, otherwise, the LFO depth was set to zero (just delay, no LFO);

• the Kontakt LFO fade time has a maximum value of 10 seconds rather than

the 40 seconds supported by DLS – times longer than 10 seconds were set to 10

seconds.

We believe that, if Kontakt accurately reproduces the pitch trajectory based on these

modified parameter values, then the results of these approximations should be appar-

ent in the pitch trajectories output from Kontakt. Any differences observed between

the pitch of the output audio and the expected trajectories, which can be explained

by these approximations would then suggest that reestimating parameters specifically

for the Kontakt parameters would be an appropriate step to improve the results.

Kontakt parameters are specified as integers in the range 0 to 1, 000, 000 and

their relationships to modulator values (e.g. times in seconds, frequencies in Hz) are

not given by Native Instruments. However, reverse engineered formulae exist for the

these relationships in the “KSP Math Library Technical Manual” [Villwock, 2009].

We validated these functions against various parameter values (Appendix A.1) and

produced the formulae in Table 6.2 to map EG+LFO parameter estimates to Kontakt

parameter values.

127

Given these mappings between the EG+LFO parameter values and internal Kon-

takt parameters, we next consider how to use a Standard MIDI File (SMF, Section

2.5.1) to pass the parameters into Kontakt.

6.3 Parameter Encoding

Using MIDI, the basic pitch of a note is provided by the Note On and Note Off mes-

sages, conventional MIDI tuning (p.35) specifying the pitch to the nearest semitone

based on a value of 69 representing 440Hz. In order to provide finer control of the

pitch, we used the 14-bit pitch bend controller to provide an offset from the base

pitch to the nearest semitone. The pitch bend range was set to ±0.5 semitones (±50

pitch cents) allowing the full range of pitch bend values to be used to specify the

“fractional” part of the pitch. The base pitch, b, is therefore:

b = n+

(
cpb − 8192

16384

)
(6.1)

where n is the pitch used in the Note On and Note Off messages, and cpb the value

of the pitch bend controller. In line with the usual MIDI convention, the expected

frequency of the output is then f = 440× 2
b−69

12 (Section 2.4).

Note timings are based on the Note On and Note Off messages and the EG release

time. As the MIDI 1.0 specification (Section 2.5.1) is targeted at real-time control,

event timings are not part of the specification – the encoding of timings was therefore

examined when we defined the file format for passing parameters to Kontakt (Section

6.4).

Voice GM Program Number

Piano 1

Pipe Organ 20

Violin 41

Trumpet 57

Clarinet 72

Table 6.3: General MIDI (GM) Program Numbers for Voices used.

In order to select an instrument timbre, we adopted the General MIDI (GM) pro-

gram number assignments for the voices (Section 2.5.3). By supplying the appropriate

“program number”, it is therefore possible to select the required timbre (Table 6.3).

MIDI provides three methods for sending arbitrary data to a synthesiser:

128

• Control Change messages (CCs) – for providing live performance parameters,

but not for providing tone/voice parameters [MMA, 2000b, p. 9];

• System Exclusive message (sysex) – for synthesiser configuration, but not for

sending real-time performance information [MMA, 2000b, p. 34];

• and Non-Registered Parameter Numbers (NRPNs) – to represent sound or per-

formance parameters [MMA, 2000b, p. 17].

Therefore, as we are specifying sound parameters, we used NRPNs to pass the pitch

trajectory parameters to the synthesiser. NRPN values are specified using a sequence

of Control Change messages specifying the most significant byte (MSB) and least

significant byte (LSB) for the NRPN and the MSB and LSB for the required value.

As the first bit of each MIDI data byte is zero (to distinguish between status bytes

and data bytes) NRPNs can be used for 14-bit values.

NRPN Parameter

1001 LFO delay

1002 LFO frequency

1003 LFO depth

(a) LFO Parameters

NRPN Parameter

1004 EG attack

1005 EG hold

1006 EG decay

1007 EG sustain

1008 EG release

1009 EG depth

(b) EG Parameters

Table 6.4: NRPNs used for EG and LFO parameters

The selected NRPN numbers (Table 6.4) allow the same MSB to be used for all

the NRPNs, allowing the NRPNs to be sent by initially specifying the MSB and then

specifying just the LSB before providing the NRPN values. In conjunction with using

MIDI running status (in which data received is assumed to use the same status byte

as preceding messages if a new status is not provided), the messages used to specify

the pitch parameters are therefore:

Bxh 63h NNh NRPN MSB

62h MMih NRPN LSB

38h PPih Data Entry LSB

06h QQih Data Entry MSB

129

The initial 3 bytes are a once-per-note overhead: the status byte Bxh indicates

that Control Change data for channel x will be sent and, using running status, is used

for subsequent messages until a new status is received; the following 2 bytes specifying

the MSB for the NRPNs. The subsequent three 2 byte data messages specify the LSB

for the NRPN and enter the NRPN value as an LSB and an MSB. These are repeated

for each NRPN that needs to be modified (i.e. they set NRPN 128NN+ MMi to NRPN

128QQi + PPi). NRPN values are therefore provided using 6 bytes per parameter plus

a 3 byte overhead.

For each note, 64 bytes of MIDI messages are therefore required consisting of:

3 bytes Pitch Bend

1 byte Initial status byte for NRPN settings

54 bytes Setting 9 NRPNs (one per parameter) using 6 bytes each

3 bytes Note On

3 bytes Pitch Off

As these settings are based on Channel messages and affect all output from the chan-

nel, they must be sent after the previous note has completed i.e. between the previous

Note Off message (if any) and the Note On to which they apply.

6.4 Input File Format

We have now selected both the file format, SMF, and the necessary MIDI messages

for our Expressive MIDI system (Figure 6.4).

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN CHC/BRGC SMF/NRPN

Figure 6.4: System Model: SMF/NRPN selected

We wish to provide a Standard MIDI file (SMF) (Section 2.5.1) which will play

the notes from the original audio with a pitch trajectory approximating that of the

original audio. As the audio considered consisted of monophonic audio (i.e. a single

note played at any one time) the SMF single-track format (format 0) was used. Within

an SMF, header information describes the file format and a series of MIDI messages

are provided, each with a delta time since the preceding message. Delta times are

stored as variable length quantities [MMA, 1996, p. 2]. A precision of 1ms was

130

adopted for MIDI event timings. In order to support this resolution the “tempo” of

the track was set to 1 second per quarter note and the “tick” resolution was set to

1000 TPQN – these values being unrelated to the actual musical tempo of the track

and simply allowing the desired resolution for timings. Hence, delta-times were made

to be the time in milliseconds since the previous MIDI event. At the start of the

track, a program change message was included to select the appropriate instrument

(instruments being assigned to programs according to the General MIDI standard

[MMA, 1991b]).

As NRPN values are provided as 14 bit numbers and, internally, Kontakt param-

eters take integer values from 0 to 1, 000, 000 it was necessary to scale the Kontakt

parameters associated with the parameter estimates to pass them as NRPNs. Kontakt

parameter values, k, were passed as NRPN value n:

n =

[

8192k
500000

]
for k ≤ 500000[

1 + 8191 k
500000

]
for k > 500000 .

(6.2)

Hence, the minimum, maximum and centre values (0, 1000000 and 500000) were

passed through to Kontakt via NRPN values 0, 8192 and 16383. This allowed timings

of 0 seconds, the minimum and maximum sustain levels of 0% and 100%, and a pitch

bend of 0 pitch cents to avoid rounding errors. Within Kontakt, a script was attached

to each instrument to take the MIDI NRPN values and set the internal Kontakt

parameter values appropriately (Listings in Appendix A.2)

For each note, prior to the MIDI Note On event, the required NRPN values and

pitch bend values were given to set the synthesiser parameters appropriately. The

NRPN messages and the pitch bend message were evenly spaced across the time

between the preceding Note Off event and the Note On event that the setting applied

to. As the notes in the RWC database are separated by silences, this was sufficient

to allow parameters to be set. With small intervals between notes, multiple MIDI

channels could be used, with notes being assigned to channels in “round robin” style

(the first segment being assigned to channel 1 and subsequent segments being assigned

to successive channels 2 . . . 16, assigning to channel 1 again after channel 16).

In this way an SMF was produced to play notes with timings from the original

audio and a pitch trajectory intended to approximate that of the original audio.

131

6.5 Evaluation of Expressive MIDI Resynthesis Us-

ing Kontakt

6.5.1 Method

Using the preceding format (Section 6.4) we created Standard MIDI files (SMFs)

(Section 2.5.1) from the estimated parameters (Chapter 5) using Matlab 7.2. The

SMFs were played back using the Kontakt 3 synthesiser and the defined voices, hosted

as a VST plug-in in Max/MSP 53. This allowed the audio produced by Kontakt to

be captured to a file. In order to evaluate the synthesis performance, we used YIN to

calculate pitch trajectories for the output audio and compared these with the expected

pitch trajectories calculated from the estimated parameters. As the precise timing of

start of the recording and the start of the MIDI file differed, the output audio pitch

trajectories were manually aligned with the trajectories based on the pitch parameters

(the timing adjustments varying from 0.04 seconds to 0.5 seconds).

6.5.2 Results

As an initial assessment of the results of the resynthesis system, we examined the

output for: quiet clarinet (311CLNOP); loud staccato trumpet (211TRSTF); quiet

vibrato trumpet (211TRVIP); and non-vibrato violin (151VNNVM).

We found that the clarinet notes closely matched the intended output (Figure 6.5).

The pitch of the notes was, however, slightly flat (ca. 2.5 cents). Similarly, staccato

trumpet notes (Figure 6.6) closely matched the intended pitch trajectories. However,

during the initial attack (approx. first quarter of a second), artifacts are observed

(Figure 6.7) and the some notes were truncated (e.g. the third note, examined in

detail in Figure 6.8).

Vibrato trumpet notes (Figure 6.9) closely modelled the estimated vibrato, pro-

ducing output of the appropriate frequency and amplitude, and similar phase to the

initial estimate. Some EG+LFO estimates used both the delay and attack phases

and the output pitch trajectories for these notes (e.g. the first three notes in Fig-

ure 6.9) differed from the EG+LFO pitch trajectories. These differences agree with

the approximations made (Section 6.2) e.g. the second note has no delay and just

an attack, the third note has just a delay and no attack. Examining the first note

3http://www.cycling74.com

132

http://www.cycling74.com

86 88 90 92 94 96 98 100

−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch

EG+LFO Pitch

Output Pitch

Figure 6.5: Clarinet. The YIN pitch of the original audio is shown as a grey line. The dotted

line shows the estimated pitch trajectory according to the parameters found using CHC.

The solid line shows the pitch trajectory of the audio generated from those parameters in

Kontakt. The output pitch trajectories for all four notes are approximately 2.5 cents flatter

than desired, otherwise they closely match the estimated pitch trajectories. This error is

less than the 10 cents threshold that we hoped to achieve.

133

12 13 14 15 16 17 18 19

−80

−60

−40

−20

0

20

40

60

80

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch
Output Pitch

Figure 6.6: Staccato Trumpet. The YIN pitch of the original audio is shown as a grey

line. The dotted line shows the estimated pitch trajectory according to the parameters

found using CHC. The solid line shows the pitch trajectory of the audio generated from

those parameters in Kontakt. Although the staccato notes have very short durations (< 0.5

seconds), the pitch trajectories are seen to resemble the expected trajectories. Although the

output trajectories look to closely approximate the EG+LFO estimate, the short durations

of the notes and the wide pitch variation make it difficult to asses the actual quality of the

output trajectories. We therefore examined two of the notes in more detail (the first note

is in Figure 6.7, the third note in Figure 6.8)

134

12.15 12.2 12.25 12.3 12.35 12.4 12.45

−60

−50

−40

−30

−20

−10

0

10

20

30

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch

EG+LFO Pitch

Output Pitch

Figure 6.7: Detail of first Staccato Trumpet note from Figure 6.6. The YIN pitch of the

original audio is shown as a grey line. The dotted line shows the estimated pitch trajectory

according to the parameters found using CHC. The solid line shows the pitch trajectory

of the audio generated from those parameters in Kontakt. During the first 0.05 seconds,

pitch artefacts are observed above the desired pitch trajectory, after the first 0.1 seconds

the trajectory closely follows that produced by the parameters. The output pitch trajectory

closely matches the expected trajectory but is not aligned with the source pitch trajectory

– there is a difference of approximately 0.02 seconds between the estimated and output

trajectories and the source pitch trajectory. Again, output pitch trajectories are within 10

cents of the EG+LFO estimate.

135

16.6 16.65 16.7 16.75 16.8 16.85 16.9

−60

−50

−40

−30

−20

−10

0

10

20

30

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch

EG+LFO Pitch

Output Pitch

Figure 6.8: Detail of third Staccato Trumpet note from Figure 6.6. The YIN pitch of the

original audio is shown as a grey line. The dotted line shows the estimated pitch trajectory

according to the parameters found using CHC. The solid line shows the pitch trajectory

of the audio generated from those parameters in Kontakt. The output audio is truncated

at approximately 16.75 seconds. The output pitch trajectory otherwise closely matches the

expected trajectory. Again, the output pitch trajectory and the expected trajectory are not

aligned with the source pitch trajectory – with a difference of approximately 0.04 seconds.

Output pitch trajectories are within 10 cents of the EG+LFO estimate.

136

60 65 70 75 80

−15

−10

−5

0

5

10

15

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch
Output Pitch

Figure 6.9: Vibrato Trumpet. The YIN pitch of the original audio is shown as a grey

line. The dotted line shows the estimated pitch trajectory according to the parameters

found using CHC. The solid line shows the pitch trajectory of the audio generated from

those parameters in Kontakt. The phase, amplitude and frequency of the output vibrato

closely match the EG+LFO trajectory. The second note trajectory increases across the

notes as a result of the Kontakt EG not having a delay phase – the overall shape is simply a

combination of a long EG attack phase and the LFO. Similarly, the long delay on the third

note has led to the EG not being used. Otherwise, all four notes are within 10 cents of the

estimated trajectories. We examine the first of these notes in more detail in Figure 6.10.

137

60.5 61 61.5 62 62.5 63 63.5 64 64.5

−20

−15

−10

−5

0

5

10

15

20

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch
EG+LFO Pitch
Output Pitch

Figure 6.10: Detail of first Vibrato Trumpet note from Figure 6.9. The YIN pitch of the

original audio is shown as a grey line. The dotted line shows the estimated pitch trajectory

according to the parameters found using CHC. The solid line shows the pitch trajectory of

the audio generated from those parameters in Kontakt. The amplitude and frequency of the

vibrato closely match the estimated pitch trajectory. At the start of the note, the lack of a

delay phase in the Kontakt EG can be seen – the output pitch trajectory simply increasing

across the combined times of the delay and attack phases. After the initial attack (from

approx. 61.25 seconds onwards), the output pitch trajectory is 1–2 cents flat relative to the

expected trajectory.

138

in detail (Figure 6.10) we see that the output pitch trajectory steadily increases at

61.25 seconds rather than maintaining a level to 61 seconds and then increasing, again

agreeing with the approximations made. The EG+LFO attack time for the second

note was 19.59 seconds (i.e. longer than 15 seconds) and was therefore reduced to 15

seconds with the EG depth being scaled to reach an appropriate level. Generating

parameters to work with the Kontakt model (i.e. based on an EG with no delay

phase and with the appropriate upper limit on attack time) should allow consistency

between the output audio and the expected pitch.

Non-vibrato violin notes (Figure 6.11) were close to the expected output, the four

notes differing from the expected EG+LFO output by less than 5 cents. The first and

fourth notes were approximately 1 cent different from the EG+LFO estimates and

the third note approximately 3 cents. The second note used a delay phase for the EG

for the constant level over the first two seconds followed by a negative attack for the

final decrease. Approximating this using only the attack phase led to a continuous

decrease across the note.

Small differences in pitch were observed for each instrument but were better than

the target difference of 10 cents. Possible causes of the pitch errors include:

• incorrect playback using Kontakt;

• incorrect pitch assignments for the Kontakt voices;

• incorrect pitch estimation of the output audio.

The variety of errors observed suggest that the system for producing the output

worked – i.e. that Kontakt attempted to play back the specified notes correctly –

and that the errors are either issues with the Kontakt voices or the result of the

pitch estimation. We therefore examined the tuning of the Kontakt voices used to see

whether that could explain the pitch differences.

6.5.3 Kontakt Sample Tuning

In order to play a sample at a specific pitch pout, the pitch adjustment required ∆out

is given by:

∆out = pout − (pbase −∆base) (6.3)

where pbase is the base MIDI pitch associated with the sample and ∆base a tuning

offset indicating how the actual sample pitch differs from that MIDI pitch.

139

68 70 72 74 76 78 80 82

−6

−4

−2

0

2

4

6

8

10

12

14

Time (seconds)

p
−

m
ed

ia
n
(p

Y
IN
)
(p
it
ch

ce
n
ts
)

YIN Pitch

EG+LFO Pitch

Output Pitch

Figure 6.11: Non-Vibrato Violin. The YIN pitch of the original audio is shown as a grey

line. The dotted line shows the estimated pitch trajectory according to the parameters

found using CHC. The solid line shows the pitch trajectory of the audio generated from

those parameters in Kontakt. The first and fourth notes closely matches the expected

trajectory, being correct to less than 1 pitch cent. However, the third note is approximately

3 cents flatter than the estimate. For the second note, the initial increase was approximated

using a slowly increasing LFO, with a negative depth EG “attack” being used to provide

the drop after approximately 2 seconds. Combining the delay and attack phases has led

to a decrease across the entire note. However, the overall difference between the estimated

and output pitch trajectories is still only ca. 2 cents, comfortably less than the hoped for

10 cents.

140

Instrument MIDI Pitch Sample

Clarinet 70 SYNCL64

Clarinet 71–73 SYNCL70

Vibrato Trumpet 63–65 TRMPT65

Vibrato Trumpet 66 TRMPT73

Staccato Trumpet 57 TRMBN55A

Staccato Trumpet 58–60 TRMPT65

Violin 65–68 VIOLN68

Table 6.5: Notes played and the SCC1t2 samples used based on the MIDI pitch

The sample selected for a note depends upon the base pitch being played. For each

note played, we examined the base MIDI pitch and found which samples were used

(Table 6.5). The samples consist of start and release segments and a middle segment,

consisting of a small number of cycles of the waveform (often just one cycle), that is

repeated to extend the duration of the audio to the required length (a loop segment).

For a loop segment containing n cycles, whilst the loop segment is playing, the loop

length, l samples, defines the period of the sample, ω = l
n

samples, and hence the

MIDI pitch, p0, is then:

p0 = 12 log2

(sRn

440l

)
+ 69 (6.4)

where sR the sample rate in Hz.

Base pitch Pitch offset Source pitch Loop Length Pitch

pbase ∆base pbase −∆base Loop Start Loop End l p0

Sample (MIDI Pitch) (MIDI Pitch) (MIDI Pitch) (sample #) (sample #) (samples) (MIDI Pitch)

SYNCL64 64 +0.28 63.72 70 138 68 63.72

SYNCL70 70 -0.11 70.11 48 95 47 70.11

TRMBN55A 55 +0.08 54.92 2251 2364 113 54.92

TRMPT65 53 +0.10 52.90 1275 1402 127 52.90

TRMPT73 61 +0.10 60.90 1210 1290 80 60.90

VIOLN68 56 -0.03 56.03 1341 1447 106 56.03

Table 6.6: Samples used, their base MIDI pitch pbase and tuning offsets ∆base, and the

loop-based pitch of the underlying sample p0 (see equation 6.4).

Table 6.6 lists the individual clarinet, trumpet and violin samples from the SCC1t2

SoundFont that were used to resynthesise the audio. The tuning offsets, ∆base, are

seen to adjust the tuning accurately to agree with the specified base MIDI pitch e.g.

if we required sample TRMBN55A to be played at pitch pout = 54.92 then it would

need no pitch adjustment as, from (6.3), ∆out = 54.92 − (55 − 0.08) = 0. The pitch

offsets are therefore not caused by the tunings of the samples and must, therefore, be

produced either by YIN or by Kontakt itself.

141

6.6 Conclusions

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN CHC/BRGC SMF/NRPN Kontakt

Figure 6.12: The Complete System Model

In Chapters 3 to 6, we have derived an Expressive MIDI system (Figure 6.12) to

transmit a “MIDI sketch” from audio. This divides the audio into a series of notes

and represents the pitch variations within notes using envelope generators (EGs) and

low frequency oscillators (LFOs). Having extracted segments of pitch trajectories

from the audio (Chapter 3) we estimated parameters for EGs and LFOs using a

CHC (Chapter 5), and have shown that it is possible to render audio using those

parameters (this chapter). However, the current output sometimes truncates notes,

as for the staccato trumpet, and exhibits small pitch errors of less than 10 cents.

Improving the segmentation algorithm (Section 3.3) and including constraints on the

nature of the pitch trajectory (e.g. limiting the trajectory to start and end at the same

pitch) may solve truncation errors. Additionally, errors in the YIN pitch trajectories

(e.g. octave errors) need to be solved in order for valid EG+LFO pitch parameters

to be created for resynthesis.

The pitch is modelled as base pitch plus EG plus LFO, and the EG and LFO

parameters and the offset from an exact MIDI pitch are specified using 14 bit NRPN

values – the MMA specifying that NRPNs should be used for sound and performance

parameters (Section 6.3). Additionally, note event timings were restricted to a preci-

sion of 0.001 seconds. These quality constraints apply to all outputs from the MIDI

file. However, the observed output closely matched the expected pitch trajectories

based on the parameter values.

Although Kontakt was the closest match to the DLS model, Kontakt’s synthesis

model is not the same as DLS (e.g. the EG lacks a delay, the maximum EG attack

duration is shorter and the LFO supports a “fade” rather than a delay). The resyn-

thesis model therefore differs from that used in the CHC analysis stage. The analysis

stage can be updated to agree with the actual resynthesis stage i.e. using CHC to pro-

duce AhDSR EG parameters, and to include the fade parameter for the LFO rather

than the delay. Additionally, the parameters are represented as 14-bit NRPN values

and the relationship between those values and the Kontakt settings is known. The

representation of the parameters in CHC can therefore be reduced from 32-bits, and

142

can optimise Kontakt parameter values directly. This reduction in dimensionality will

reduce the size of the search space and should improve CHC performance. Applying

these changes should match analysis results more precisely with the final Kontakt

output.

Complex samples are often used with samplers to create a more realistic sound.

However, repetitive use of these samples reveals an underlying lack of expressiveness

as each note sounds the same. Adding expressive control to samples offers a sound

with more character. In this resynthesis work, small samples were used with little

character of their own rather than using longer “natural” sounding samples for the

notes. More complex samples may produce “better” sounding audio. However, if the

original samples have their own pitch trajectories these will affect the output and the

pitch will not match that of the source material. In order to use samples with more

complex timbral features, the pitch trajectory would need to be removed from them –

this should be possible by pitch shifting the sample to a fixed pitch before importing

it to Kontakt, but this process may introduce additional artefacts.

The close match between the output pitch trajectories produced using Kontakt

and the expected trajectories based on the EG+LFO parameters give confidence that,

by estimating parameters that match the Kontakt model, we can produce audio from

Expressive MIDI which closely matches the parameterised pitch trajectory. Differ-

ences between the EG+LFO model used by Expressive MIDI and the model used in

Kontakt can be overcome by adopting the Kontakt model in Expressive MIDI, and

improved segmentation should remove some timing artifacts from the system. Alter-

natively, a new synthesiser could be created to match the Expressive MIDI model,

however this “bottom up” approach to the problem does not fit with the original

intention of using existing components.

Expressive MIDI produced a low bit-rate representation of the audio data. An

11Mb uncompressed audio file consisting of 31 trumpet notes played over approxi-

mately 2 minutes produced a MIDI file of 2533 bytes4 (which could be further com-

pressed, a ZIP archive of the file being 1458 bytes). Using the readily available

“lame”5 MP3 converter to compress the audio as a 32kbit/s MP3 file produced a file

of 505kB – 190kbit/s MP3 being regarded as approximating CD quality audio. The

SMF size would be expected to be similar for 31 notes over any period of time (the

only difference being the lengths of the delta times which would decrease if the notes

464 bytes of data per note accounting for 1954 bytes, plus the overhead for the MIDI file header

information, plus variable length delta-times for each MIDI message
5http://lame.sourceforge.net

143

http://lame.sourceforge.net

were closer together). This suggests that it would require at least 190 notes to be

played per minute for the 32kbit/s MP3 to result in a smaller file.

Our aim was to use Expressive MIDI to resynthesise audio based on the pitch

trajectory of source audio material. However, resynthesis from Expressive MIDI only

depends on the pitch trajectory – it is therefore possible to use this system for other

purposes:

• As the final sample rate and the precision of the EG and LFO are features of

the resynthesis engine, analysing low sample-rate audio can allow high resolution

audio to be produced during the rendering;

• the pitch trajectory from a recorded performance can be used to control resyn-

thesis using a different instrument timbre (i.e. using samples from an instru-

ment);

• as Expressive MIDI uses high-level parameters with semantic meaning, it is

possible to modify the sound by adjusting the Expressive MIDI parameters

(e.g. to reduce vibrato).

Small pitch differences observed between the output audio and the expected values

could either be: actual differences between the pitch of the Kontakt output and the

expected pitch; or artifacts produced by YIN. In order to test whether the Kontakt

output is producing the expected pitch, we need to estimate the pitch of the output.

Whichever is the actual cause of the pitch difference, Kontakt or YIN, we therefore

need to assess the quality of pitch estimation. In the next chapter, we examine the

performance of the YIN pitch estimation algorithm in detail.

144

Chapter 7
(Re)Evaluating YIN

In chapters 3 to 6, we produced a system for extracting pitch trajectories from au-

dio and resynthesising audio based on those pitch trajectories. However, differences

were observed between the parameterised pitch trajectories and the pitch estimates

extracted from the resynthesised audio. Additionally, we saw evidence of harmonic

errors in the YIN pitch estimates (Chapter 5). The question arises of how many

observed pitch differences are a result of the resynthesis and how many are artifacts

of the pitch estimation process. In order to answer this question, we present a novel

detailed analysis of the performance of the YIN pitch estimation algorithm.

In order to produce an accurate, high resolution pitch track from audio, we need to

be able to extract accurate, high-resolution pitch trajectories from the original audio.

To do this, we require an accurate, high resolution pitch estimator. The JND for two

successive pure tones is ca. 10 cents (Section 3.2). In order to synthesise audio with

the same perceived pitch, a pitch error of less than 10 cents is therefore required –

pitch differences may be noticeable below that threshold, but differences greater than

that will be noticeable.

7.1 Evaluating Pitch Estimators

7.1.1 Pitch Data

In order to evaluate the performance of pitch estimation algorithms, it is necessary to

have a suitable corpus of audio labelled with ground-truth pitch values. For vocal data,

it is possible to simultaneously record both audio and electroglottograph (EGG, also

145

known as a laryngograph) data. Several such databases are readily available online;

some of them including pitch estimates created by their authors (e.g. see Section

7.1.2). When pitch estimates are not provided, pitch estimation can be performed

based on EGG data.

0.85 0.852 0.854 0.856 0.858 0.86
−1

−0.5

0

0.5

1

Time (s)

A
m

p
lit

u
d
e

(a) Audio

0.85 0.852 0.854 0.856 0.858 0.86
−1

−0.5

0

0.5

1

Time (s)

A
m

p
lit

u
d
e

(b) EGG

Figure 7.1: Example of EGG and audio data

An EGG measures the electrical resistance across the larynx, and this is related to

the contact area between the vocal folds. EGG data therefore indicates the frequency

of the opening and closing of the larynx. EGG data is a relatively simple signal com-

pared with the audio as it excludes the resonances associated with the chest, mouth

and nasal cavities. Examining example audio and EGG data for a speech sample

(Figure 7.1), the audio shows a strong third harmonic (periodicity at three times the

frequency, visible as two large peaks and a small peak in each cycle e.g. from 0.85

to 0.854 seconds). However, the EGG signal clearly shows the underlying frequency

at the larynx. Glottal closure instants (GCIs) – the moments when the laryngeal

folds close – provide the highest rate of change of the EGG signal [Henrich et al.,

2004]. Estimating GCIs from the EGG data allows a ground-truth pitch estimate to

be calculated – each consecutive pair of GCIs defining one period of the oscillation of

the larynx. The number of pitch estimates thus calculated is therefore defined by the

number of GCIs in the dataset.

We next introduce a selection of available pitch databases which we will use to

evaluate the performance of YIN.

146

Pitch MIDI

Dataset Content Type Audio data EGG data Supplied? Pitch Range

Bagshaw (FDA) Speech 20kHz 16bits 20kHz 12bits 3 34.58 to 67.35

[Bagshaw et al., 1993]

Keele Speech 20kHz 16bits 20kHz 16bits 3 32.05 to 67.35

[Plante et al., 1995]

VOQUAL’03

Brian (English) Speech 44.1kHz 16bits 44.1kHz 16bits 7 33.63 to 73.93

Singing 1 (English) “Belting” Singing 24kHz 16bits 24kHz 16bits 7 51.94 to 80.54

Singing 2 (French) Speech, Shout and Singing 44.1kHz 16bits 44.1kHz 16bits 7 40.58 to 71.45

[VOQUAL’03, 2003]

MIREX QBSH Singing and Humming 8kHz 8bits 7 3 30.20 to 85.52

[Jang, 2010]

Table 7.1: Readily Available Pitch Datasets

7.1.2 Pitch Databases

Bagshaw

The Bagshaw speech database [Bagshaw et al., 1993] contains 100 audio files, 50

each from one male and one female speaker, totalling 5.5 minutes. Pitch estimates

are included with the database, estimated from laryngograph (EGG) data – giving

24, 246 pitch estimates between pairs of glottal closure instants (GCIs). Ground-truth

pitch estimates are provided in terms of the period of the EGG signal to the nearest

sample.

The Bagshaw database is available from: http://www.cstr.ed.ac.uk/research/

projects/fda/.

Keele

The Keele pitch database [Plante et al., 1995] contains an audio file for each of 10

speakers (5 male, 5 female) with EGG data. Pitch estimates based on applying auto-

correlation to the EGG (with a 10ms hop-size and 25.6ms window size) are included

with the database. In total, 5 minutes of audio are available, and 16, 960 pitch esti-

mates are supplied (one for each voiced frame).

The Keele database is available from: http://www.liv.ac.uk/psychology/hmp/

projects/pitch.html.

VOQUAL’03

For the 2003 ISCA workshop on “Voice Quality: Functions, Analysis and Synthesis”

[VOQUAL’03, 2003]), five databases were created – of American English, Japanese

and French speech, and of English and French singing. The American English speech

147

http://www.cstr.ed.ac.uk/research/projects/fda/
http://www.cstr.ed.ac.uk/research/projects/fda/
http://www.liv.ac.uk/psychology/hmp/projects/pitch.html
http://www.liv.ac.uk/psychology/hmp/projects/pitch.html

database and the singing databases include EGG data but have no pre-calculated

pitch estimates provided. The datasets with EGG data total 4.5 minutes. Using the

method for estimating GCIs given by Henrich et al. [2004] resulted in 20, 533 period

estimates (to the nearest sample) from the EGG data.

The VOQUAL’03 database is available from: http://archives.limsi.fr/VOQUAL/

voicematerial.html.

MIREX QBSH

Query By Singing And Humming (QBSH) systems attempt to identify music based on

a low bit-rate sung or hummed segment. Since 2006, the Music Information Retrieval

Evaluation eXchange (MIREX), has been evaluating the performance of QBSH sys-

tems. As part of this evaluation, a corpus of annotated audio has been created [Jang,

2010]. Using 48 example pieces of music, some 4, 431 recordings have been created by

about 195 subjects, with individual pieces being recorded from 10 to 170 times. The

resulting audio files have all been annotated with manually labelled pitch estimates,

albeit with no guarantee of the quality of these estimates. In total, this database pro-

vides 10 hours of annotated audio, with some 800, 000 pitch annotations. Although

it is the largest corpus in terms of number of files, total file size and duration, as it is

intended for low bit-rate applications, it is only recorded at 8kHz and 8 bits.

The MIREX QBSH corpus is available from: http://neural.cs.nthu.edu.tw/

jang/.

7.1.3 Metrics for Evaluating Pitch Estimators

(i) Gross Error Percentage (GEP)

The Gross Error Percentage (GEP) (sometimes referred to as the Gross Error Rate

(GER)) is used in many pitch estimation papers as the overall measure of the quality

of the algorithm. It is the percentage of test points at which the algorithm gave

a frequency estimate within a specified percentage of the ground-truth value. The

specified percentage is usually 20% [Bagshaw et al., 1993, de Cheveigné and Kawahara,

2002, Camacho and Harris, 2008, Signol et al., 2008].

Denoting the frequency estimate as f ∗, the ground-truth frequency as f0 and the

148

http://archives.limsi.fr/VOQUAL/voicematerial.html
http://archives.limsi.fr/VOQUAL/voicematerial.html
http://neural.cs.nthu.edu.tw/jang/
http://neural.cs.nthu.edu.tw/jang/

associated pitches as p∗ and p0, the relative error is then:

ε =
∆f

f0

(7.1)

where ∆f = f ∗ − f0, and the pitch error is:

p∗ − p0 = 12 log2(1 + ε) . (7.2)

Hence, with a GEP of 20%, the pitch range is then 12 log2 0.8 ≤ p∗−p0 ≤ 12 log2 1.2

i.e. −3.87 < p∗ − p0 < 3.16. The Gross Error Percentage with a 20% threshold

therefore treats pitch errors of 3 semitones as “correct”. Pitch errors of greater than

10 cents (approx. the JND for pure tones) will, however, be noticeable to a listener.

Error thresholds other than the GEP therefore need to be considered.

(ii) 10 Cent Threshold (10c)

The JND for pure tones is less than 10 cents, and the JND for complex tones is less

than that for pure tones. Any pitch estimates which are out by more than 10 cents

will therefore have a noticeably different pitch to the pitch of the original audio (for a

listener with normal hearing). The proportion of pitch errors above a threshold of 10

cents will provide a measure of the noticeable difference between the pitch estimates

and the ground-truth pitch of the source – there will also be noticeable differences in

pitch at less than 10 cents difference, but the 10 cents threshold will provide more

information than the GEP.

(iii) Period Mismatch Percentage (PMP)

The Keele [Plante et al., 1995] and Bagshaw [Bagshaw et al., 1993] pitch databases

include EGG data and period estimates estimated directly from the EGG waveform to

the nearest sample. Similarly, the manual pitch labels for the MIREX QBSH dataset

[Jang, 2010] are provided based on estimates of the period at sample-level accuracy.

From this “ground-truth” data, the best performance we can hope to achieve is to

match the performance of the “ground-truth” estimation – i.e. to estimate the period

to the nearest sample. The proportion of period estimates, rounded to the nearest

sample, that agree with the provided ground-truth periods provides an estimate of

how well a pitch estimation algorithm performs relative to the ground-truth pitch

estimation. We refer to this metric as the Period Mismatch Percentage (PMP)

149

Dataset Sample Rate Frequency Range Pitch Accuracy (cents)

Bagshaw 20kHz 60 Hz to 400 Hz 5.19 to 34.63

Keele 20kHz 52 Hz to 400 Hz 4.50 to 34.63

VOQUAL’03 44.1kHz 57 Hz to 585 Hz 2.24 to 22.97

VOQUAL’03 24kHz 164 Hz to 858 Hz 11.83 to 61.9

MIREX QBSH 8kHz 46 Hz to 1.14 kHz 9.95 to 247.75

Table 7.2: Accuracy of pitch dataset ground-truth based on sample rate and frequency range

The accuracy of this in terms of frequency depends upon the sample rate of the

underlying data and the ground-truth pitch estimate (a one sample change in period

is a small change to a slowly varying signal, a large change at high frequencies).

With a sample rate of sR, the pitch, p, for a given period, τ , is given by:

p = 12 log2

(
sR

440× τ

)
+ 69 . (7.3)

The change in pitch for a change to the period of ±0.5 samples is therefore:

∆p = 12 log2

(
τ + 0.5

τ − 0.5

)
(7.4)

and, as frequency f = sR
τ

,

∆p = 12 log2

(
sR + 0.5f

sR − 0.5f

)
. (7.5)

Considering the range of frequencies in each dataset and the sampling frequencies,

equation (7.5) indicates that the precision of sample resolution period estimation

varies with the sample rate (Table 7.2). Hence, depending upon the dataset being

considered, the 10c metric may be more precise than the precision supported by the

ground-truth pitch estimates. However, a low PMP should be possible given ground-

truth pitch estimates accurate to the nearest sample. Given the low sample rate

and the high maximum pitch estimate, the QBSH dataset has the least precise pitch

estimates.

(iv) MIDI Mismatch Percentage (MMP)

Another application for pitch estimation is transcription of a musical score from audio.

For this purpose, less time resolution is typically required than for our resynthesis as

a single pitch is assigned to each note. For Western music, this is typically based on

150

the 12-tone equal-temperament scale, i.e. to integer MIDI pitch values. Comparing

pitch estimates and ground-truth pitch values rounded to the nearest MIDI pitch gives

an indicator of how well this task can be performed. The proportion of MIDI pitch

estimates that do not match the MIDI ground-truth pitch offers a pitch estimation

performance metric between the coarse GEP and the fine detail of matching the period

to the nearest sample. We refer to this metric as the MIDI Mismatch Percentage

(MMP).

7.2 Appraising YIN

YIN is a pitch estimation algorithm inspired by autocorrelation techniques (introduced

in Chapter 3). YIN estimates the pitch to minimise the square-error difference func-

tion between a window of audio and a window a period later. It is a time-domain pitch

estimation algorithm. Sub-sample pitch estimates are made by quadratic interpola-

tion of the difference function values. YIN provides three outputs: pitch estimates;

power estimates; and aperiodicity values. The aperiodicity is the average square error

across a single period window.

7.2.1 YIN Test Implementation

We have pitch estimates with timings for each dataset (provided by the authors for the

Bagshaw, Keele and QBSH data and estimated from the EGG data using Henrich’s

technique for the VOQUAL’03 data). These were taken as ground-truth estimates of

pitch, and the assumption was made that the pitch estimates provided were associated

with pitched parts of the audio signal. The default range of pitch estimates output

by YIN is from 30 Hz to a quarter of the sample rate. Considering the sample rates

of each database, the ground-truth pitch estimates for all four databases are within

this pitch range.

YIN pitch estimates were linearly interpolated to estimate the pitch at the same

timings as the ground-truth data i.e. pitch estimates were only tested where there was

a ground-truth pitch. We relied upon the ground-truth data for “pitched”/“unpitched”

decisions – where such information was provided it was used, otherwise we assumed

that all pitch estimates provided related to pitched parts of the signal. No attempt

was made to make additional “pitched” / “unpitched” decisions using the aperiodicity

and power outputs from YIN. In order to allow tests to be rerun easily, pitch estimates

151

MIREX

Bagshaw Keele VOQUAL’03 QBSH Notes

10c 75.25% 62.37% 36.82% 53.34% % Pitch errors above 10 cents

– lower is better

GEP 3.37% 4.47% 3.01% 3.68% % frequency errors above 20%

of frequency – lower is better

PMP 77.13% 70.50% 46.33% 17.74% % Period mismatches – lower

is better

MMP 33.74% 26.87 18.81% 16.30% % MIDI pitch mismatches –

lower is better

Table 7.3: Summary pitch metrics (10 cents threshold, Gross Error Percentage, Period

Mismatch Percentage and MIDI Mismatch Percentage) for YIN on the Bagshaw, Keele,

VOQUAL’03 and MIREX QBSH datasets.

were saved to files and were reloaded when appropriate rather than recalculated.

7.2.2 YIN Pitch Metric Results

Examining the summary pitch metrics for YIN on the four datasets (Table 7.3)

we find that the Gross Error Percentage (GEP) for each dataset is similar (3.0-4.5%

in each case) – YIN apparently working best on the VOQUAL’03 dataset with a

GEP of 3.01% and worst on the Keele dataset with a GEP of 4.47%. However,

the alternative metrics present different pictures of the results: the “10 cent” pitch

threshold also suggesting YIN worked best on the VOQUAL’03, but indicating that

the worst performance was on the Bagshaw dataset; the Period and MIDI metrics

indicating that YIN performed best on the QBSH data and worst on the Bagshaw

dataset. From this, we see that a simple fixed metric gives a partial picture of the

performance of a pitch estimator and that pitch estimator performance varies across

thresholds.

In the next section, we therefore consider the distribution of errors produced by

YIN.

152

7.2.3 YIN Pitch Error Distributions

10c, GEP, PMP and MMP give snapshots of the performance of the algorithms at

specific error thresholds. In order to examine the performance across error thresholds,

histograms were created based on the logarithm of the error value, log10(|pest − p0|),
at an arbitrary small interval of 0.05.

−6 −4 −2 0 2 4

0

0.5

1

1.5

log10(|pest − p0|)

%
E
rr
o
rs
,
N

Y
I
N
/N

(a) Bagshaw

−6 −4 −2 0 2 4

0

0.5

1

1.5

log10(|pest − p0|)
%

E
rr
o
rs
,
N

Y
I
N
/N

(b) Keele

−6 −4 −2 0 2 4

0

0.5

1

1.5

log10(|pest − p0|)

%
E
rr
o
rs
,
N

Y
I
N
/N

(c) VOQUAL’03

−6 −4 −2 0 2 4

0

0.5

1

1.5

log10(|pest − p0|)

%
E
rr
o
rs
,
N

Y
I
N
/N

(d) MIREX QBSH

Figure 7.2: Distributions of YIN pitch errors for the Bagshaw, Keele, VOQUAL’03 and

MIREX QBSH datasets. Note x axis is log10 |pest−p0|. Dotted lines indicate the error rates

for the up/down GEP. Dash-dot line indicates octave errors (|pest − p0| = 12)

Using the Bagshaw, Keele and VOQUAL’03 datasets, error histograms were pro-

duced for YIN (Figure 7.2). YIN shows a significant number of octave errors (the spike

at the dash-dot line indicating errors of approximately 12 semitones), on the Keele,

VOQUAL’03 and MIREX QBSH datasets. The dotted lines in the figure show the

two thresholds for the 20% GEP, for errors below and above the ground-truth pitch.

Most of the errors that YIN shows above this threshold are octave errors (fest = 2f0

or fest = 1
2
f0) (the dash-dot line in the figure). Excluding the octave errors, YIN

153

performed well on the Keele and VOQUAL’03 databases, with most errors being less

than 10−1. YIN analysis of the Bagshaw database produced fewest octave errors, but

most errors were between 10−1 and 100. The MIREX QBSH dataset is largest with

the largest number of individual files and the longest overall duration and most YIN

errors were around 10−1. As well as octave errors, additional harmonic errors appear

in the distribution (peaks to the right of the dash-dot line).

7.2.4 Harmonic Errors and YIN

Having examined the magnitude of pitch errors, it is also of interest to know whether

YIN gives frequencies which are too high or too low. We therefore examined the

error distributions against the relative frequency of the data fest
f0

(Figure 7.3). Some

harmonic errors are observed for each database. However, the MIREX QBSH database

produces a wide range of harmonic “down” errors in which the estimated period is

a multiple of the ground-truth – these errors causing the spikes to the right of the

dash-dot line in Figure 7.2.

A significant number of the larger errors are around the harmonics, and the output

of YIN could be improved if these harmonic errors could be removed. We next look

into how much performance could be improved if a technique was found to remove

the harmonic errors.

7.2.5 Harmonic vs. “Other” Errors

We have observed that harmonic errors occur whilst using YIN, both in testing against

the test databases (Figure 7.3) and previously (Chapter 5) against the RWC data

(Figure 5.12). However, if the only errors were harmonic errors then a series of distinct

spikes should be apparent at the harmonic ratios. As we observe errors between the

harmonic ratios other errors must also occur.

For harmonic “up” errors, the estimated frequency, f , is based on a positive integer

multiple, the harmonic factor k ∈ N, of the ground-truth frequency, f ∗, with some

other error factor, ε, accounting for the residual difference between the estimate and

the ground-truth:

f = k × f ∗ × ε (7.6)

and f ≥ f ∗. The best pitch estimation performance that could occur after removing

the harmonic error will minimise the effect of ε on the estimated frequency – this

154

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

Frequency Ratio fest
f0

#
E
rr
or
s,
N

Y
I
N

(a) Bagshaw

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

Frequency Ratio fest
f0

#
E
rr
or
s,
N

Y
I
N

(b) Keele

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

Frequency Ratio fest
f0

#
E
rr
or
s,
N

Y
I
N

(c) VOQUAL’03

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

10
5

Frequency Ratio fest
f0

#
E
rr
or
s,
N

Y
I
N

(d) MIREX QBSH

Figure 7.3: YIN error distribution vs. relative frequency fest
f0

on the Bagshaw, Keele, VO-

QUAL’03 and MIREX QBSH datasets.

155

level of improvement may not be possible, but will provide an upper bound on the

performance that can be achieved by removing harmonic errors from the estimator

output. We therefore require ε, the residual error factor to be as close as possible to

1. From (7.6), ε = f
kf∗

and the candidate values of ε that are closest to 1 (i.e. produce

the smallest variation from the ground-truth) are given when k =
⌊
f
f∗

⌋
and when

k =
⌈
f
f∗

⌉
(as k ∈ N).

156

In order to minimise the error based on a perceptual scale (i.e. to minimise how

audible the errors are), we consider the squared pitch error after removing the effect

of the harmonic error, k:

E(k) = (p̂− p∗)2

=

(
12 log2

(
f

kf ∗

))2 (7.7)

as the underlying pitch p∗ = 12 log2

(
f∗

440

)
+69 and the estimated pitch after harmonic

error removal is p̂ = 12 log2

(
f

440k

)
+ 69.

Theorem 1 If f ≥ f ∗ > 0 then f
f∗
≤
√⌊

f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)

implies that E
(⌊

f
f∗

⌋)
≤

E
(⌈

f
f∗

⌉)
where E(k) =

(
12 log2

(
f
kf∗

))2

Proof 1 In order to choose the value for k that minimises this function, we can

compare E(k) for the two candidate solutions, . Let η = f
f∗

, the candidate values for

k are then bηc and dηe. Then, if η /∈ I,

E (bηc) =

(
12 log2

η

bηc

)2

E (dηe) =

(
12 log2

η

dηe

)2

.

(7.8)

For η /∈ I, 1 < bηc < η < dηe. Hence, as a2 ≤ b2 implies a ≤ b if a, b ≥ 0,

E(bηc) ≤ E(dηe) implies

log2

η

bηc ≤ log2

dηe
η

. (7.9)

As η /∈ I, dηe = bηc+ 1 and, as log(a) ≤ log(b) implies a ≤ b,

η2 ≤ bηc (bηc+ 1) . (7.10)

As f ≥ f ∗ > 0, we have 1 ≤ η ≤
√
bηc (bηc+ 1)

Hence, for harmonic “up” errors, such that f ≥ f ∗ > 0, the harmonic factor, k,

that gives the residual error factor closest to 1 is

k =

⌊
f
f∗

⌋
if f

f∗
≤
√⌊

f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)

⌈
f
f∗

⌉
otherwise.

(7.11)

157

Similarly, for “too low” harmonic errors, the pitch estimate can be considered to

include a harmonic error factor k = 1
k†

, k† ∈ N, and a residual error factor ε such that

f =
1

k†
× f ∗ × ε . (7.12)

As ε = k† f
f∗

, the values of ε that are closest to 1 (i.e. produce the smallest variation

from the ground-truth) are given when k† =
⌈
f∗

f

⌉
and when k† =

⌊
f∗

f

⌋
. As above, we

consider the square pitch error function

E

(
1

k†

)
=

(
12 log2

k†f

f ∗

)2

. (7.13)

Theorem 3 again holds, and hence, for harmonic “down” errors, such that f ∗ ≥ f > 0,

the harmonic error factor, k, that gives the residual error factor closest to 1 is

k =

1/
⌊
f∗

f

⌋
if f∗

f
≤
√⌊

f∗

f

⌋(⌊
f∗

f

⌋
+ 1
)

1/
⌈
f∗

f

⌉
otherwise.

(7.14)

Summarising, given an estimated frequency, f , and the ground-truth frequency,

f ∗, the harmonic error factor, k such that the residual error factor, ε, minimises the

difference with the ground-truth pitch estimate is:

k =

1/
⌈
f∗

f

⌉
if 1 <

√⌊
f∗

f

⌋(⌊
∗f
f

⌋
+ 1
)
≤ f∗

f

1/
⌊
f∗

f

⌋
if 1 ≤ f∗

f
<

√⌊
f∗

f

⌋(⌊
f∗

f

⌋
+ 1
)

⌊
f
f∗

⌋
if 1 < f

f∗
≤
√⌊

f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)

⌈
f
f∗

⌉
if 1 <

√⌊
f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)
< f

f∗
.

(7.15)

and the frequency estimate that minimises the difference with the ground-truth pitch

estimate is:

f̂ =
f

k
. (7.16)

Theorem 2 After removing harmonic errors, the maximum absolute pitch error is 6

semitones.

158

−6 −4 −2 0 2 4 6

10
0

10
1

10
2

10
3

MIDI pitch error after harmonic adjustment

#
E
rr
or
s,
N

Y
I
N

(a) Bagshaw

−6 −4 −2 0 2 4 6

10
0

10
1

10
2

10
3

MIDI pitch error after harmonic adjustment

#
E
rr
or
s,
N

Y
I
N

(b) Keele

−6 −4 −2 0 2 4 6

10
0

10
1

10
2

10
3

MIDI pitch error after harmonic adjustment

#
E
rr
or
s,
N

Y
I
N

(c) VOQUAL’03

−6 −4 −2 0 2 4 6

10
0

10
1

10
2

10
3

10
4

10
5

MIDI pitch error after harmonic adjustment

#
E
rr
or
s,
N

Y
I
N

(d) MIREX QBSH

Figure 7.4: Number of errors vs. minimal possible pitch error after best harmonic error

removal (p̂ − p∗, in semitones) on the Bagshaw, Keele, VOQUAL’03 and MIREX QBSH

datasets.

159

Proof 2 From Equation 7.15, the residual pitch error is:

p̂− p∗ = 12 log2

(
f

kf ∗

)

=

12 log2

(⌈
f∗

f

⌉
f
f∗

)
if 1 <

√⌊
f∗

f

⌋(⌊
∗f
f

⌋
+ 1
)
≤ f∗

f

12 log2

(⌊
f∗

f

⌋
f
f∗

)
if 1 ≤ f∗

f
<

√⌊
f∗

f

⌋(⌊
f∗

f

⌋
+ 1
)

−12 log2

(⌊
f
f∗

⌋
f∗

f

)
if 1 < f

f∗
≤
√⌊

f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)

−12 log2

(⌈
f
f∗

⌉
f∗

f

)
if 1 <

√⌊
f
f∗

⌋(⌊
f
f∗

⌋
+ 1
)
< f

f∗
.

(7.17)

Considering each case in turn, if 1 <

√⌊
f∗

f

⌋(⌊
∗f
f

⌋
+ 1
)
≤ f∗

f
then, as dxe ≥ x,

0 ≤ 12 log2

(⌈
f ∗

f

⌉
f

f ∗

)
(7.18)

and 0 < p̂− p∗. Also,

12 log2

(⌈
f ∗

f

⌉
f

f ∗

)
≤ 12 log2

((⌊
f ∗

f

⌋
+ 1

)
/

⌊
f ∗

f

⌋) 1
2

(7.19)

giving p̂− p∗ ≤ 6.

If 1 ≤ f∗

f
<

√⌊
f∗

f

⌋(⌊
f∗

f

⌋
+ 1
)

then,

−12 log2

((⌊
f ∗

f

⌋
+ 1

)
/

⌊
f ∗

f

⌋) 1
2

< 12 log2

(⌊
f ∗

f

⌋
f

f ∗

)
(7.20)

giving −6 < p̂− p∗ and

12 log2

(⌊
f ∗

f

⌋
/
f ∗

f

)
≤ 0 (7.21)

as bxc ≤ x giving −6 < p̂− p∗ ≤ 0.

Following the same procedure for the remaining two cases, −6 ≤ p̂− p∗ ≤ 6 in all

cases

Applying this to the YIN data for the test datasets, we can calculate the mini-

mal possible pitch errors remaining after post-processing to remove harmonic errors

(Figure 7.4). Results appear across the full range of possible values (±6 semitones)

indicating that, as expected from the previous results, the errors are not simply har-

monic, and that there is a residual error factor ε. Hence, even if harmonic errors could

160

Threshold

(pitch cents) Bagshaw Keele VOQUAL’03 MIREX QBSH

5 81.07% 70.20% 42.97% 63.46%

10 69.41% 54.27% 31.53% 41.84%

15 59.14% 42.58% 25.24% 25.36%

20 50.39% 34.63% 21.23% 15.04%

25 42.82% 28.60% 18.50% 9.07%

30 36.63% 24.32% 16.35% 5.71%

40 27.51% 18.16% 13.34% 2.82%

50 21.62% 13.97% 11.18% 1.94%

75 14.16% 8.60% 7.24% 1.19%

100 10.79% 5.88% 5.21% 0.88%

200 4.49% 2.03% 1.69% 0.40%

300 1.94% 0.92% 0.76% 0.22%

400 0.92% 0.52% 0.36% 0.13%

500 0.41% 0.24% 0.17% 0.06%

600 0% 0% 0% 0%

Table 7.4: Percentage of absolute pitch errors greater than specified threshold (in pitch

cents) after best harmonic error removal. As expected, all pitch errors greater than 6

semitones (600 pitch cents) have been removed.

161

be successfully removed, additional work is required to improve the underlying pitch

estimation – pitch errors due to the residual error factor being greater than the pitch

JND and hence too large for our purposes.

Examining the numbers of errors at various thresholds after applying the above

“best harmonic error removal” procedure (Table 7.4), the Bagshaw, Keele and VO-

QUAL’03 datasets produce significant numbers of residual (non-harmonic) errors

greater than half a semitone, Bagshaw having over 20%. On the MIREX QBSH

dataset, following YIN with harmonic error removal gives much better results, over

98% of pitch estimates having an error less than half a semitone. Higher harmonic

errors give better subsample period estimates if the harmonic errors can be removed

– an nth harmonic error allows the period to be estimated to the nearest 1
n
th of a

sample. As MIREX QBSH data gave more high harmonic errors, this will give better

pitch estimates after the harmonic errors are removed.

We note that the procedure as given requires both pitch estimates and ground-

truth pitch values and is therefore not a technique for removing harmonic errors – it

is a procedure for evaluating the possible improvements if a suitable technique could

be found to remove harmonic errors.

Examining the percentage decrease in the number of errors by applying the har-

monic error removal to the YIN results (Table 7.5), we see that it could be possible

to remove some 60% of MIREX QBSH errors greater than 50 pitch cents if a proce-

dure was found to remove of harmonic errors. However, at the 50 cent level, smaller

improvements are seen for the other datasets (harmonic error removal being most

effective at reducing the number of errors greater than 2–3 semitones). Given the

more harmonic nature of the errors on the MIREX QBSH data (as in Figure 7.3) it

is unsurprising that removing harmonic errors was most effective on this dataset.

Examining the summary statistics after applying this procedure, (Table 7.6) we

see that the GEP is reduced to < 1.5% for all four datasets. The other statistics show

some reduction, but still show a significant number of errors.

7.3 Conclusions

We introduced several pitch database and pitch estimator performance metrics (Sec-

tion 7.1) and presented a novel analysis of the performance of the YIN pitch estimation

algorithm. Using histograms of the magnitude of the pitch errors (Section 7.2.3), we

found that most errors occur at approximately the 10 pitch cent level, the vast ma-

162

Threshold

(pitch cents) Bagshaw Keele VOQUAL’03 MIREX QBSH

5 -7.10% -11.94% -20.55% -16.45%

10 -7.76% -12.99% -14.37% -21.55%

15 -7.79% -12.92% -12.34% -26.55%

20 -7.84% -11.82% -10.99% -30.41%

25 -8.10% -11.82% -11.04% -35.06%

30 -8.34% -11.82% -11.30% -40.70%

40 -8.22% -13.74% -13.33% -52.70%

50 -7.22% -16.48% -15.17% -60.65%

75 -8.06% -23.23% -22.00% -72.04%

100 -9.94% -31.85% -28.63% -78.30%

200 -26.42% -62.51% -57.05% -89.29%

300 -49.63% -79.93% -75.30% -93.97%

400 -69.06% -88.06% -86.96% -96.57%

500 -84.29% -94.34% -93.51% -98.46%

600 -100% -100% -100% -100%

Table 7.5: Percentage change in absolute pitch errors greater than specified threshold (in

semitones) after best harmonic error removal. For the QBSH dataset more than half the

pitch errors greater than 40 cents could be removed if the best harmonic error removal was

achievable. However, it has less effect on the other datasets.

Bagshaw Keele VOQUAL’03 MIREX QBSH

10c 75.18% 61.84% 36.10% 52.14%
GEP 1.41% 0.73% 0.67% 0.18%
PMP 77.10% 70.24% 88.41% 15.70%
MMP 33.28% 25.28% 17.46% 13.80%

Table 7.6: Summary pitch statistics for Bagshaw, Keele, VOQUAL’03 and MIREX QBSH
datasets after removing harmonic errors.

163

jority of errors being in the range 1 cent to 100 cents (1 semitone). However, octave

errors also occurred and the nature of the harmonic errors produced was examined

(Section 7.2.4). Given the presence of harmonic errors, we considered the effect of

harmonic error removal on YIN (Section 7.2.5) and found that even if the harmonic

errors could be removed, YIN would still produce errors that were larger than we

desire.

In order to successfully produce an Expressive MIDI representation of audio, we

require a better pitch estimator than YIN. We next consider alternative pitch estima-

tion algorithms.

164

Chapter 8
Alternatives to the YIN

Pitch Estimator

We examined the performance of the YIN pitch estimation algorithm (Chapter 7) and

found that it made both harmonic errors (pitch estimates at multiples and fractions of

the correct frequency) and smaller residual errors. We therefore examined alternative

pitch estimators which may improve the performance of our Expressive MIDI system.

Many pitch estimation algorithms have been proposed in the literature. For example,

13 algorithms, including YIN, are compared in [Camacho and Harris, 2008]1.

In general terms, most pitch estimation algorithms use a similar procedure: win-

dows of samples are taken at equally spaced time intervals; a pitch detection function

is then applied to each window of data, indicating how likely each pitch estimate is to

be correct; and the “best” pitch candidate for each frame is then selected (e.g. using

a peak picking algorithm).

We noted that YIN makes harmonic errors (Section 7.2.4), we therefore consid-

ered two alternative pitch estimation algorithms which take specific steps to avoid

these errors: the PRAAT2 autocorrelation based pitch estimator (AC-P) [Boersma,

1993] (Section 8.1.1); and SWIPE′, the “prime harmonics” variant of the Sawtooth

Wave Inspired Pitch Estimator (SWIPE) [Camacho, 2007, Camacho and Harris, 2008]

(Section 8.1.2) – a time-frequency domain pitch algorithm.

1Parts of this work were originally presented at the 128th Convention of the Audio Engineering

Society [Welburn and Plumbley, 2010].
2PRAAT[Boersma and Weenink, 2010] is an application for “doing phonetics by computer” and

features both a graphical user-interface and a command-line tool. It includes facilities for: spectral

analysis; pitch analysis; formant analysis; intensity analysis; annotating audio; and the manipulation

of pitch, duration, intensity, and formants.

165

Pitch estimation performance varies with different data, as we saw for YIN (Section

7.2.2). Given a known type of audio data, it may be possible to optimise algorithm

parameters to improve algorithm performance, but for the Expressive MIDI system

we wish to be able to apply a pitch estimator on an arbitrary example of source audio

material. Without ground-truth pitch data, it is not possible to assess the performance

of a pitch estimator to optimise parameter values. Given unlabelled data, parameter

values can only be refined based on known features of the data (e.g. sample rate) and

according to the problem at hand (e.g. the expected pitch range). In line with our

aim of using available tools, we assumed that the default parameters had been tuned

to give “good” results for typical audio data and used these default values in our tests

– we note, however, that the ground-truth pitch estimates for all four databases are

within the default pitch ranges of the pitch estimation algorithms.

We next examine the PRAAT AC-P and SWIPE′ pitch algorithms.

8.1 Alternative Pitch Estimation Algorithms

8.1.1 PRAAT AC-P

The PRAAT tool for phonetics [Boersma and Weenink, 2010] includes an autocorrela-

tion based pitch estimator (AC-P)[Boersma, 1993]. The algorithm initially upsamples

the signal, and frames of 3 times the period of the minimum pitch are then selected.

These frames are set to zero mean and a windowing function is applied. The auto-

correlation function is then calculated using the FFT of the frame. For each frame,

peaks are selected that represent the strongest pitch candidates. Finally, a “best”

pitch path is calculated that minimises jumps in pitch and the number of voiced/un-

voiced switches.

We next give in detail the algorithm used by PRAAT AC-P.

A frame of data centred at time t, of length 2T , is selected, set to zero mean, and

a windowing function, w(·) is applied:

a(t, i) = (x(t+ i− T)− µx)w(i− T) (8.1)

where: i is an index into the window of data; µx is the mean of the data across

the window, µx = 1
2T

∑2T−1
i=0 x(t+ i− T); and w(·) is a Hann windowing function of

length 2T centred at T . The Hanning window function is

w(t, L) =
1

2

(
1− cos

(
2π

(
t

L− 1
+

1

2

)))
(8.2)

166

where L is the window length.

The pitch detection function is based on the normalised autocorrelation of the

windowed data:

ra(t, τ) =

∑2T−1
i=0 a(t, i+ τ)a(t, i+ τ)∑2T−1

i=0 a(t, i)2
(8.3)

In order to approximate the discrete-time autocorrelation of the signal, rx(n, τ),

from the normalised autocorrelation of the windowed signal, ra(t, n, τ), we divide this

by the normalised autocorrelation of windowing function:

rx(t, τ) =
ra(t, τ)

rw(τ)
(8.4)

where the normalised autocorrelation of window is calculated in the continuous do-

main by integration:

rw(τ) =

∫ T
t=−T w(t)w(t+ τ)dt∫ T

t=−T w(t)2dt

=

(
1− |τ |

T

)(
2

3
+ 13 cos

(
2πτ

T

))
+

1

2π
sin

(
2π|τ |
T

)
.

(8.5)

It is possible to produce a bandwidth limited continuous-time version, x̂(t̂), of a

sampled function, x(t), using sinc interpolation:

x̂(t̂) =
∞∑

i=−∞

x(i)
sin
(
πsR(t̂− i)

)
πsR(t̂− i) (8.6)

where ·̂ indicates values in the continuous time domain and sR is the sample rate.

AC-P approximates r̂x, the continuous-time version of the discrete-time normalised

signal autocorrelation (rx, Equation 8.4), by using a finite number of terms, W , either

side of the given time, and using a Hann window to taper the function to zero at ±W :

r̂x(t, τ̂) =
W−1∑
i=−W

rx(t, τ + i)w(i, 2W)
sin (πsR(τ̂ − (τ + i)))

πsR(τ̂ − (τ + i))
(8.7)

where w(·) is, again, a Hann window function this time of width 2W .

Given this function, the places and the heights of the maxima are found using a

suitable algorithm (Boersma [1993] suggests Brent’s algorithm [Brent, 1973, Ch. 4],

but does not specify the algorithm used in the implementation of AC-P).

For each maximum of r̂x(t, τ̂), a local strength value is calculated:

R̂(t, τ̂) = r̂x(t, τ̂)− coct log2(pminτ̂) (8.8)

167

where coct is an “octave cost” which makes the strength selection favour higher fre-

quencies (in order to avoid “too low” errors) and pmin is the minimum pitch to be

accepted.

Some number of Period / Strength pairs (m a parameter for the algorithm) with

the highest local strength are remembered for each frame n:
〈
τ̂n,i, R̂(t(n), τ̂n,i)

〉
(i =

1 . . .m), where t(n) is the centre timing for the window. Dynamic programming

is then used to find a path through these candidate solutions to minimise the cost

function, cpath({in}):

cpath({in}) =
N∑
t=2

ctx(τ̂n−1,in−1 , τ̂n,in)−
N∑
t=1

R̂(t(n), τ̂n,in) (8.9)

where in is index of the selected candidate Period / Strength pair for frame n and

ctx(τ̂n−1,in−1 , τ̂n,in) is the transition cost from the pitch estimate for frame n− 1 to the

pitch estimate at frame n.

ctx(τ̂n−1,in−1 , τ̂n,in) =

0 if both τ̂n−1,in−1 = 0 and τ̂n,in = 0

cvuv if either τ̂n−1,in−1 = 0 or τ̂n,in = 0

coj

∣∣∣log2

(
τ̂n−1,it−1

τ̂n,in

)∣∣∣ if neither τ̂n−1,in−1 = 0 nor τ̂n,in = 0

(8.10)

where cvuv is a cost value for changes between voiced and unvoiced parts of the signal

and coj is a cost value for octave jumps in the signal – used to reduce harmonic errors.

The pitch estimates, τ̂n,i, the pitch estimate timings, t(n), and the period estimate

strengths, R̂(t(n), τ̂n,i) from the lowest cost path are then returned for each window.

Boersma [1993] tested AC-P against sampled sine waves and pulse trains with a

sample rate of 10kHz and reported pitch determination errors, ∆F/F , of < 5× 10−4

and < 5×10−5 respectively i.e. MIDI pitch errors of < 8.65×10−3 and < 8.66×10−4.

The sine wave and pulse train were selected as “maximally spectral different” signals

– the pulse train containing all harmonics at equal strength.

In PRAAT, AC-P is called using the “To Pitch...” command with parameters of

a “Time step” in seconds, a “Pitch floor” in Hz and a “Pitch ceiling” in Hz. AC-P

can also be called using “To Pitch... (ac)” in which case additional parameters can

be set affecting the windowing function and the “best path” estimation (i.e. W , coct,

cvuv and coj).

168

8.1.2 SWIPE and SWIPE′

SWIPE [Camacho and Harris, 2008] is based on the amplitude of the Fourier spec-

trum calculated over individual frames from the audio signal (i.e. it operates in the

time-frequency domain). Considering pitch bins from the spectrogram and their har-

monically related components, it is designed to avoid many of the harmonic errors

that are seen with YIN. Sub-sample pitch estimates are made by cubic spline inter-

polation of the FFT output. SWIPE returns frequency estimates, timings for the

estimates, and the strength of the pitch estimate. Camacho and Harris provide a

Matlab implementation of SWIPE.

The SWIPE pitch estimate at time τ is

fSWIPE(τ) = argmax
f

(S(τ, f)) (8.11)

i.e. SWIPE gives the frequency, f Hz, that maximises the pitch candidate strength

function, S(·). The SWIPE strength output is S(τ, fSWIPE(τ)).

Given a frequency range of fmin to fmax Hz, the pitch candidate frequencies con-

sidered are fα = fmin × 2α∆p, α ∈ N, 0 ≤ α ≤ log2

(
fmax
fmin

)
∆p

i.e. at intervals of 12∆p

semitones from the minimum frequency to the largest value of fmin× 2α∆p that is less

than the maximum frequency.

For a given pitch candidate, f , the pitch candidate strength is estimated for a

window of ρ periods of the waveform i.e. over a window of Ω(f) = ρfS

f
samples where

fS is the sample rate in Hz. The pitch candidate strength estimate for a window

of size Ω(f) is estimated by interpolating pitch candidate strength estimates at the

closest power-of-two window sizes to Ω(f):

S(τ, f) = (1− λ(f,Ω(f)))SL−
Ω(f)

(f)(τ, f) + λ(f,Ω(f))SL+
Ω(f)

(f)(τ, f) (8.12)

where

L−Ω(f) = L : 2L ≤ Ω and 2L+1 > Ω, L ∈ N,

L+
Ω(f) = L : 2L−1 < Ω and 2L ≥ Ω, L ∈ N

λ(f,Ω) = log2(Ω)− L−(f) .

(8.13)

For a window of size 2L, the pitch candidate strength at time τ is given by

SL(τ, f) =

〈
k(f)

|k+(f)| ,
ŝL(τ)

|̂sL(τ)|

〉
(8.14)

169

the inner product between a kernel function based on the frequency candidate, k(f)
|k+(f)| ,

and the normalised spectral strengths, ŝL(τ)
|̂sL(τ)| , over the window of length 2L centred at

time τ . The SWIPE kernel function weights the spectral strengths depending upon

the pitch estimate being considered.

The kernel function and the normalised spectral strengths are calculated at inter-

vals of ∆ε ERBs. Given a frequency of fmin to fmax Hz, the frequencies considered are

η(m∆ε), m = 0, . . . , Nk where Nk =
⌊
ERBs(fmax)

∆ε

⌋
, η(·) is a conversion function from

ERBs to Hz and ERBs(·) is a conversion function from Hz to ERBs.

The SWIPE kernel consists of the core kernel function, k(f) and a normalising

factor, |k+(f)|. The core kernel function, for pitch candidate f , is

k(f) = (k0(f), . . . , kNk
(f))

ki(f) =
1√

η(i∆ε)

∑
h∈H

Kh(f, η(i∆ε)) i = 0, . . . , Nk

Kh(f, f
′) =

cos
(

2π f
′

f

)
if
∣∣∣f ′f − h∣∣∣ < 1

4

1
2

cos
(

2π f
′

f

)
if 1

4
<
∣∣∣f ′f − h∣∣∣ < 3

4

0 otherwise

(8.15)

where H is the set of harmonics, hi ∈ N, to consider. The normalising factor, |k+(f)|,
considers only the positive components of the kernel function

k+(f) = (k+
0 (f), . . . , k+

Nk
(f))

k+
i (f) = max(0, ki(f)) i = 0, . . . , Nk .

(8.16)

The spectral strengths are calculated by interpolating the spectrogram of size 2L

centred at time τ

ŝL(τ) = (sL,0(τ), . . . , sL,Nk
(τ))

sL,m(τ) =
∣∣∣X̂2L(τ, η(m∆ε))

∣∣∣ 1
2

X̂2L(τ, f ′) = I

(
{0, . . . , 2L − 1}, X2L [τ, {0, . . . , 2L − 1}], 2L f

′

fS

)
X2L(τ, φ) =

∞∑
τ ′=−∞

w2L(τ ′ − τ)x(τ ′)e−2πiφτ
′

2L

(8.17)

where N = 2L, I (Φ, F (Φ), φ) is an interpolating function to predict F (φ) from F (Φ)

(the Matlab implementation uses the interp1 function with cubic spline interpola-

170

tion), and wN(τ) is a Hann window of size N centred at 0

wN(τ) =

0.5
(
1− cos

(
2π
(
τ
N

+ 1
2

)))
for − N

2
≤ τ < N

2

0 otherwise
. (8.18)

The actual implementation of SWIPE reduces the time taken by calculating the

required 2l size FFTs with a specified overlap for the Hann windows, wH, giving

spectral strengths at intervals of 2L−1 samples. These spectral strengths are then

linear interpolated to estimate the spectral strengths at the specified time resolution,

∆t (seconds).

As a final step, the maxima of the pitch candidate strength function are found and

parabolic interpolation is used to provide a pitch estimate to the nearest pitch cent.

SWIPE allows parameters to be specified to control:

• Output frequency range, fmin to fmax in Hz (default 30Hz to 5kHz i.e. MIDI

pitch 22 to 111);

• Hop size between output pitch estimates, ∆t in seconds (Default 0.001 seconds);

• Hann window overlap wH as a proportion of the FFT window size (in the range

[0, 1]) (Default 0.5 i.e. 50% overlap);

• Spectrum sample granularity ∆ε (the spectrum is sampled uniformly using the

ERB scale [Moore, 1997]) (default 0.1 ERBs);

• Pitch granularity, ∆p in fraction of an octave (default 48 pitch estimates per

octave, i.e. 0.25 semitones).

Although the pitch estimation occurs at a granularity specified in the parameters,

the pitch is “fine-tuned” using parabolic interpolation to output pitch estimates with

1 pitch cent resolution (i.e. 0.01 semitones).

The standard SWIPE algorithm considers all harmonics, H = {1, . . . }, up to the

highest pitch candidate. Camacho and Harris [2008] noted that SWIPE′ (pronounced

“Swipe Prime”), which only considers the prime harmonics, H = {1, 2, 3, 5, 7, 11, . . . },
up to the highest pitch candidate, further reduces the number of harmonic errors. In

our evaluations, we use SWIPE′.

171

8.1.3 Previous Evaluations

There have been many previous evaluations of pitch estimators. We examine several

of these and compare their methodologies and their results on the datasets under

consideration (Section 7.1.2).

Bagshaw OG Bagshaw YV Keele

PRAAT AC-P [Boersma, 1993] 7.3% 9.2% 5.1%

YIN [de Cheveigné and Kawahara, 2002] 2.2% 1.4% 2.4%

Table 8.1: GEP results from YIN vs. PRAAT AC-P assessment from de Cheveigné and

Kawahara [2002] on Bagshaw and Keele datasets. The Bagshaw dataset results are given

using both the original ground-truth data (OG) and ground-truth data generated using a

YIN variant (YV).

De Cheveigné and Kawahara [2002] evaluated the YIN algorithm against 10 other

algorithms. The databases used included Bagshaw and Keele databases (Section

7.1.2). GEPs were given for YIN on both datasets based on the original ground-

truth data. Additionally, YIN was tested on the Bagshaw dataset using alternative

ground-truth data. The alternative ground-truth estimates were created by: applying

a YIN variant to the EGG data; manually removing obviously incorrect results; and

only keeping remaining results if there was evidence of glottal vibration. In order to

compensate for time-differences between the EGG and audio data and differences in

the time-alignment of the algorithms, pitch results were aligned to minimise the error

rate. YIN gave a lower GEP than AC-P over each dataset (Table 8.1). Using the

original ground-truth data, the GEP for YIN on each dataset is less than the value

we found using default YIN parameter settings and estimated timings for the YIN

pitch estimates (Table 7.3).

Bagshaw Keele

PRAAT AC-P [Boersma, 1993] 0.73% 2.90%

YIN [de Cheveigné and Kawahara, 2002] 0.33% 1.40%

SWIPE [Camacho and Harris, 2008] 0.15% 0.87%

SWIPE′ Camacho and Harris [2008] 0.13% 0.83%

Table 8.2: GEP results from Camacho [2007] on Bagshaw and Keele datasets. The ground-

truth data was restricted to those pitch estimates at times at which all 12 algorithms tested

agreed the signal was pitched.

Camacho [2007] evaluated the SWIPE and SWIPE′ algorithms against 12 other

algorithms (including YIN and PRAAT AC-P) over 4 databases using the GEP. Al-

172

gorithms were set to produce pitch estimates every millisecond and the results were

associated with the time of the centre of the analysis window. Pitch timings were

adjusted to give the best alignment with the ground-truth. Results use only the pitch

estimates for those times at which both the ground-truth and all the algorithms agreed

that the sound was pitched. Again, the Bagshaw and Keele databases were included.

GEPs on the Bagshaw database were less than 1% for 8 of the 12 algorithms tested

(< 0.5% for both YIN and SWIPE/SWIPE′), the mean GEP being 1.70%. For the

Keele database, the mean GEP was 3.00% (< 1.5% for YIN and SWIPE/SWIPE′).

The very low error rates (Table 8.2) suggest that the restriction to clearly pitched

ground-truth estimates has resulted in an easier problem. The YIN GEP reported for

YIN by Camacho is much lower than that published by de Cheveigné. On both the

Keele and Bagshaw databases, SWIPE′ had a lower GEP than SWIPE.

Combined Dataset

PRAAT AC-P [Boersma, 1993] 3.7%

YIN [de Cheveigné and Kawahara, 2002] 5.1%

SWIPE [Camacho and Harris, 2008] 3.0%

Table 8.3: GEP results for YIN vs. PRAAT AC-P assessment from Signol et al. [2008] on

a combined dataset based on the Bagshaw, Keele and VOQUAL’03 datasets. The ground-

truth data was generated from the EGG data.

Signol et al. [2008] presented a methodology for evaluating pitch estimators based

on both the pitch estimates and Voiced-Unvoiced (VuV) hypotheses - in order for a

pitch estimate to be correct, the pitch estimator must judge whether the signal is

voiced and then produce a correct pitch estimate. In order to remove biases caused

by the accuracy of the VuV decision, the VuV decision threshold was adjusted for

each algorithm to produce equal numbers of false positives and false negatives. Pitch

estimates were linearly interpolated to agree with the timings of the ground-truth.

This was tested on YIN, SWIPE and PRAAT AC-P. For PRAAT AC-P, the “pitch

post-processing” was “turned off” by setting parameter values (presumably deacti-

vating the best-path search by setting the costs for changing between voiced and

unvoiced segments. cvuv, and the cost for octave jumps, coj, to zero). Three databases

were used: Bagshaw; Keele; and “Daless”, the French speech examples from the

VOQUAL’03 database (Section 7.1.2). Reference VuV decisions and pitch estimates

were generated from the EGG data3 in order to remove variation in the quality of the

ground-truth data. The GEPs reported (Table 8.3) are larger than the values reported

3See Section 7.1.1 for more information on pitch estimation from EGG

173

by Camacho on any of the datasets. Additionally, the ranking of the three algorithms

differs – although both Camacho and Signol et al. reported that SWIPE produced the

best results, Signol et al. found PRAAT AC-P was better than YIN and Camacho

found YIN to be better than PRAAT AC-P. The performance differences between

the algorithms being less than those in the original publications, Signol suggested the

need for further analysis the strengths and weaknesses of individual algorithms.

We have already seen (Chapter 7) that matching the ground-truth data may be a

different problem for each dataset and from these three evaluations, we again see that

algorithm performance reported using the GEP varies greatly depending upon the

ground-truth data used. We are interested in evaluating the algorithms on both easy

and difficult data and do not wish to simplify the problem by modifying the datasets to

contain only the most strongly pitched parts of the signal (as done by Camacho [2007]).

Similarly, uniform data quality (as produced by Signol et al. [2008] by generating

ground-truth data) is not the same as high data quality. In addition to the Keele,

Bagshaw and VOQUAL’03 databases, we consider the MIREX QBSH dataset which

includes manually entered pitch estimates. We next compare the performance of the

YIN, PRAAT AC-P and SWIPE′ algorithms separately on each dataset with the

provided ground-truth data.

8.1.4 Comparing YIN with SWIPE′ and AC-P

Design

In Chapter 7, we saw that fixed threshold pitch metrics gave a partial picture of pitch

estimator performance. In order to compare the quality of the SWIPE′ and AC-P

pitch estimators with YIN, we looked to examine the fixed threshold error metrics

and pitch error distributions as we did for YIN (Chapter 7). We also considered

comparisons between the distributions.

Implementation

In order to generate the results for SWIPE′ and AC-P, wrapper Matlab functions were

created which allowed parameters and results to be passed using similar Matlab struc-

tures to those used by YIN. The SWIPE′ and AC-P output was then evaluated using

the same Matlab procedures as used for YIN (Section 7.2.1) but calling the wrapper

functions rather than YIN. Therefore, the exact same evaluations were applied – the

only difference being the pitch data under consideration.

174

1 form Process Pitch

2 text i n f i l e

3 text o u t f i l e

4 endform

5 printline Proce s s ing f i l e ’ i n f i l e $ ’

6 Read from f i l e . . . ’ i n f i l e $ ’

7 # Estimate the p i t c h

8 To Pitch . . . 0 .005 20 15000

9 printline Writing f i l e ’ o u t f i l e $ ’

10 Write to text f i l e . . . ’ o u t f i l e $ ’

Listing 8.1: PRAAT script to: accept “infile” and “outfile” parameters (lines 1–4); read in

an audio file (line 6); generate pitch estimates using the AC-P pitch estimator (line 8); and

write the estimates to an output file (line 10).

In order to use AC-P, we created a PRAAT script (Listing 8.1) which was run

from Matlab via a system call to the praatcon Windows PRAAT console. PRAAT

loaded the specified audio file and processed it calling AC-P using the “To Pitch...”.

The AC-P pitch estimates were calculated at 0.005 second intervals and for the pitch

range 20Hz to 15kz. PRAAT then saved the resulting pitch estimates to a text file.

When the PRAAT script completed, the output text file was loaded into Matlab to

give pitch estimates and their timings.

Results

Considering the number of period and MIDI pitch matches and the GEP (Table

8.4), AC-P produced the worst results on all datasets. On the Bagshaw, Keele and

VOQUAL’03 datasets, SWIPE′ was better than YIN (which was, in turn, better than

AC-P). However, on the MIREX QBSH database, YIN and SWIPE′ were equally

effective at matching the MIDI pitch but YIN achieved 5% more period matches

than SWIPE′ whilst SWIPE′ produced fewer gross errors (GEP). Neither YIN nor

SWIPE′ can therefore be considered conclusively “better” for this dataset – the better

algorithm depending upon the specific pitch estimation requirements.

We previously examined the YIN pitch error distributions (Section 7.2.3). Ex-

amining the difference between the AC-P and YIN error distributions (Figure 8.1),

the number of errors produced by AC-P is greater than that for YIN for larger error

values (the “right hand side” of the plot is positive showing that AC-P produced more

errors in that region than YIN) whilst the number of errors produced by AC-P is less

than that for YIN for small error values (the “left hand side” of the plot is negative,

YIN producing more small errors than AC-P). On all four datasets, AC-P produces

175

YIN AC-P SWIPE′

10c 75.25% 78.08% 74.57%

PMP 77.13% 79.45% 76.22%

MMP 33.74% 39.55% 31.89%

GEP 3.37% 11.88% 2.57%

(a) Bagshaw

YIN AC-P SWIPE′

10c 62.37% 66.44% 59.07%

PMP 70.50% 73.46% 66.48%

MMP 26.87% 33.99% 25.15%

GEP 4.47% 12.11% 2.70%

(b) Keele

YIN AC-P SWIPE′

10c 36.82% 46.55% 30.95%

PMP 46.33% 52.44% 42.76%

MMP 18.81% 26.31% 13.49%

GEP 3.01% 10.28% 1.02%

(c) VOQUAL’03

YIN AC-P SWIPE′

10c 53.34% 61.05% 56.04%

PMP 17.74% 30.65% 22.14%

MMP 16.30% 24.98% 16.30%

GEP 3.68% 10.06% 1.51%

(d) MIREX QBSH

Table 8.4: 10 cent, Period Mismatch, MIDI Mismatch and GEP error percentages by dataset

for YIN, AC-P and SWIPE′. Larger values are worse.

more large errors than YIN at the expense of a reduced number of small errors. On

these datasets then, YIN produces better pitch estimates than AC-P and the AC-P

steps for reducing harmonic errors do not give better results than YIN.

The picture is different for SWIPE′ (Figure 8.2), SWIPE′ producing fewer large

errors than YIN on all datasets (negative “right hand side”), however, there are also

fewer small errors on the VOQUAL’03 and MIREX QBSH datasets (negative “left

hand side”) – SWIPE′ making more “mid-range” errors. With these signals SWIPE′

appears to reduce harmonic errors more successfully than YIN.

In Figure 8.3, details of the performance of SWIPE′ and YIN pitch estimation

on the MIREX QBSH dataset across threshold values are compared: Figure 8.3a

emphasising the performance for low error values, YIN providing lower errors than

SWIPE′ i.e. YIN is “better” if low error values are required; Figure 8.3b emphasising

the performance for high error values, YIN producing more high error values than

SWIPE′, introducing a significant number of octave errors, as marked, and a small

number of cases in which it failed to find a reasonable pitch estimate and produced

an error greater than 100 semitones. YIN is therefore “worse” than SWIPE′ in terms

of high error values.

For each dataset, we found that PRAAT AC-P produced worse results than YIN.

However, whilst YIN produces more large (“bad”) errors than SWIPE′, SWIPE′ pro-

duces fewer small (“good”) errors. We would like to have a single pitch estimator

176

−8 −6 −4 −2 0 2

−200

0

200

400

600

800

log10(|pest − p0|)

D
iff
er
en
ce
,
N

A
C
−
P
−

N
Y
I
N

(a) Bagshaw

−8 −6 −4 −2 0 2

−200

0

200

400

600

log10(|pest − p0|)

D
iff
er
en
ce
,
N

A
C
−
P
−

N
Y
I
N

(b) Keele

−6 −4 −2 0 2

−200

−100

0

100

200

log10(|pest − p0|)

D
iff
er
en
ce
,
N

A
C
−
P
−

N
Y
I
N

(c) VOQUAL’03

−10 −5 0 5

−1

−0.5

0

0.5

1

1.5

x 10
4

log10(|pest − p0|)

D
iff
er
en
ce
,
N

A
C
−
P
−

N
Y
I
N

(d) MIREX QBSH

Figure 8.1: Difference between AC-P and YIN error distributions on the Bagshaw, Keele,

VOQUAL’03 and MIREX QBSH datasets.

which combines the reduction in gross errors produced by SWIPE′ with the ability

of YIN to produce small errors. We therefore looked at producing a pitch estimator

combining both the YIN and SWIPE′ algorithms to give a “best of both worlds”

result.

8.2 Combining YIN and SWIPE′:

The SWIN Estimator

Both YIN and SWIPE′ have strengths – YIN producing high-precision pitch estimates

at the cost of increased harmonic errors over SWIPE′. Hence, a combination of the

two methods could offer a better estimator combining the strengths of both whilst

eliminating their weaknesses. If we simply select the better pitch estimate from those

produced by YIN and SWIPE′, we can improve upon the results produced by either

estimator alone (Table 8.5). However, this requires us to know in advance which pitch

estimator is better. We therefore looked at using a classifier to select either the YIN

177

−6 −4 −2 0 2

−100

−50

0

50

100

150

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
P
E

′ −
N

Y
I
N

(a) Bagshaw

−6 −4 −2 0 2

−150

−100

−50

0

50

100

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
P
E

′ −
N

Y
I
N

(b) Keele

−6 −4 −2 0 2

−200

−100

0

100

200

300

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
P
E

′ −
N

Y
I
N

(c) VOQUAL’03

−4 −2 0 2

−10000

−5000

0

5000

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
P
E

′ −
N

Y
I
N

(d) MIREX QBSH

Figure 8.2: Difference between SWIPE′ and YIN error distributions on the Bagshaw, Keele,

VOQUAL’03 and MIREX QBSH datasets.

or SWIPE′ pitch estimate based on the performance on a set of training data.

We have seen that YIN produces more harmonic errors than SWIPE′ (Section

8.1.4). If YIN produces harmonic errors whilst SWIPE′ produces correct estimates

of the pitch then there should be an integer relationship between their periods (ωYIN

and ωSWIPE′ , respectively): if ωYIN > ωSWIPE′ (frequency “too low” errors) the ratio

of the period estimates ωYIN

ω′SWIPE
should be an integer; and if ωYIN < ωSWIPE′ (frequency

“too high” errors) the ratio of the frequency estimates
ω′SWIPE

ωYIN
should be an integer.

We therefore created a new pitch estimator (“SWIN”) that selected either the YIN

or SWIPE′ estimate based on the period ratio.

In order to avoid harmonic errors we wish to choose between the YIN and SWIPE′

pitch estimates based on some function of r = ωYIN

ω′SWIPE
. For each value of r, there is

some probability, P(eYIN > eSWIPE′ |r), that the YIN error, eYIN = |pYIN − p∗|, will be

greater than the SWIPE′ error, eSWIPE′ = |pSWIPE′ − p∗| (where pYIN is the YIN pitch

estimate, pSWIPE′ the SWIPE′ pitch estimate and p∗ the actual pitch). Given this

probability we can select the pitch estimate that is most likely to be correct. We do

178

−8 −7 −6 −5 −4 −3 −2 −1 0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|<

=
|er

rv
a
l|

YIN
SWIPE′

(a) Log. plot of the number errors less than threshold for YIN and SWIPE′ - emphasising behaviour

at small error values. Larger numbers of errors to the left-hand side of the plot are better, therefore

YIN performs better than SWIPE′ at low error thresholds.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10
0

10
1

10
2

10
3

10
4

10
5

10
6

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|>

|er
rv
a
l|

Octave Errors →

YIN
SWIPE′

(b) Log. plot of the number of errors greater than threshold for YIN and SWIPE′ - emphasising

behaviour at large error values. Smaller numbers of errors to the right-hand side of the plot are

better. SWIPE′ is generally better than YIN for thresholds greater than ca. 10−0.5 ≈ 0.32, however

it also makes a small number of errors greater than the largest YIN errors (ca. 101.5 ≈ 32)

Figure 8.3: Comparison of SWIPE′ and YIN pitch error histograms for the MIREX QBSH

dataset at large and small errors.

179

YIN SWIPE′ “Best Of”

> 0.05 semitones 76.40% 77.43% 65.51%

> 0.1 semitones 54.29% 56.04% 42.38%

Period 19.01% 22.14% 11.06%

MIDI 16.74% 16.30% 12.22%

> 0.25 semitones 14.78% 15.93% 8.69%

> .5 semitones 5.24% 4.29% 2.23%

> 2.5 semitones 3.82% 1.59% 1.02%

GEP 3.73% 1.51% 0.96%

> 10 semitones 3.40% 1.36% 0.74%

Table 8.5: Pitch statistics for QBSH – YIN, SWIPE′ and by selecting the better of the YIN

and SWIPE′ estimates.

not know this probability distribution, but we can approximate it based on a suitable

set of training data and a model of the probability distribution. We do not expect

the model to be straightforward – we expect YIN to be better when r ≈ 1 as it can

produce smaller errors and we expect SWIPE′ to be better when r ≈ k(k ∈ Z+) or

r ≈ 1
k
(k ∈ Z+) as YIN produces more harmonic errors than SWIPE′.

We adopted a piecewise constant model in which, for small ranges of values of r,

the probability P(eYIN > eSWIPE′ |r) was taken to be fixed:

P(eYIN > eSWIPE′ |r) = κj for aj ≤ r < aj+1 . (8.19)

Theorem 3 Given a training set of ground-truth pitch values, f0, and the correspond-

ing YIN and SWIPE′ period estimates (ωYIN and ωSWIPE′) the optimal estimates of

the uniform probabilities κj across the series of j ranges of r are:

κj =
nYj
Nj

(8.20)

where: nYj is the number of pitch estimates such that aj ≤ r < aj+1 and the error

using YIN is greater than the error using SWIPE′; and Nj is the total number of pitch

estimates such that aj ≤ r < aj+1.

Proof 3 In order to estimate optimal values for κj, we consider a set of training data,

T . Given T we can calculate the probability of that dataset being generated from our

model

P(T) =
n∏
i=1

P(ti) (8.21)

180

assuming that the individual training data samples are independent and identically

distributed (iid). We adopted a näıve Bayes approach – in which we assume the data

is iid although this assumption does not strictly hold. For SWIPE′ and YIN, this

is reasonable as the pitch estimates are calculated based on single frames of audio.

However, we note that as frames overlap they are not truly iid.

We can separate out the training samples for each range of values

P(T) =
m∏
j=1

∏
i∈Tj

P(ti) (8.22)

where Tj ⊂ T is the set of training points in slice j.

The marginal probability, P(ti), can be calculated by summing across the possible

classes for the training sample P(ti) =
∑

c∈C P(ti, ci = c) =
∑

c∈C P(ti|ci = c)P(c)

from the product (chain) rule. Adopting a uniform prior, P(c) = pj on c within slice

j,

P(T) =
m∏
j=1

pj

∏
i∈Tj

∑
c∈C

P(ti|ci = c) (8.23)

where Tj ⊂ T is the set of training points in slice j.

However, by Bayes theorem,

P(ti|ci = c) =
P(ci = c|ti)P(ti)

P(ci = c)
. (8.24)

Therefore

P(T) =
m∏
j=1

pj

∏
i∈Tj

P(ti)
∑
c∈C

P(ci = c|ti)
P(ci = c)

=
m∏
j=1

pj

∏
i∈Tj

P(ti)

(
P(ci = 1|ti)
P(ci = 1)

+
P(ci = 0|ti)
P(ci = 0)

) (8.25)

where c = 0 indicates that the SWIPE′ pitch estimate is better, c = 1 indicates that

the YIN pitch estimate is better.

Defining T 0
j ⊂ Tj as the subset of training samples in Tj for which the SWIPE′

pitch estimate is better and T 1
j ⊂ Tj as the subset of training samples in Tj for which

the YIN pitch estimate is better, P(ci = 0|ti) = 1 and P(ci = 1|ti) = 0 for ti ∈ T 0
j

and P(ci = 1|ti) = 1 and P(ci = 0|ti) = 0 for ti ∈ T 1
j . Hence,

P(T) =
m∏
j=1

∏
i∈Tj

pjP(ti)
∏
i∈T 0

j

1

P(ci = 0)

∏
i∈T 1

j

1

P(ci = 1)
. (8.26)

181

From our model, P(ci = 0) = κj for i ∈ Tj. Noting that all points must be in

either class c = 0 or class c = 1, P(ci = 1) = 1− κj for i ∈ Tj. Hence

P(T) =
m∏
j=1

pj

∏
i∈Tj

P(ti)
∏
i∈T 0

j

1

κj

∏
i∈T 1

j

1

1− κj

=
m∏
j=1

pjκ
−|T 0

j |0
j (1− κj)−|T

1
j |0
∏
i∈T

P(ti) .

(8.27)

In order to select the model that best explains the training data, we select the values

of κj that maximise this probability:

∂P(T)

∂κj
=
(
−|T 0

j |0κ−1
j + |T 1

j |0(1− κj)−1
)

P(T)

= 0 to maximise P(T) .

(8.28)

Hence

|T 1
j |0κj = |T 0

j |0(1− κj) (8.29)

and

κj =
|T 0
j |0

(|T 1
j |0 + |T 0

j |0)

=
|T 0
j |0
|Tj|0

(8.30)

i.e. κj is the proportion of training points within that segment for which the SWIPE′

pitch estimate is better than the YIN pitch estimate.

Given this model, and YIN and SWIPE′ pitch estimates, we can calculate r =
ωYIN

ω′SWIPE
and look up the relevant P(eYIN > eSWIPE′|r) = κj : aj ≤ r < aj+1. If this

probability is greater than 0.5, then it is likely that the YIN pitch estimate is worse

than the SWIPE′ estimate and hence the SWIPE′ estimate should be chosen. If the

probability is less than 0.5 then the YIN pitch estimate should be used. We refer to

this combined estimator as “SWIN”.

8.2.1 The SWIN Estimator

Applying the SWIN estimator requires an initial training phase, in which the classifier

“learns” how to select between the YIN and SWIPE′ pitch estimates. After learning

the model for the data, SWIN can then be applied to new data samples.

182

Training SWIN

A training dataset was ordered by the period ratio ωYIN

ω′SWIPE
and divided into bins of

100 pitch estimates, the number of pitch estimates per bin being the only parameter

specific to SWIN. The proportion of pitch estimates in each bin for which YIN pro-

vided a greater absolute error than SWIPE′ was then calculated, giving an estimate

of the probability that the YIN error is larger than the SWIPE′ error for frequency

ratios within that bin.

Applying SWIN

Given a test pitch sample, with YIN and SWIPE′ estimates, the appropriate period

ratio bin was found and the YIN estimate selected when probability assigned to the

bin was less than 0.5, the SWIPE′ estimate being selected otherwise.

8.2.2 Testing SWIN

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ωYIN/ωSWIPE′

p
(|p

Y
IN

−
p 0
|>

|p S
W

IP
E

′
−
p 0
|)

Figure 8.4: Model of MIREX QBSH 2003 data

SWIN was trained on the 2003 data from the MIREX QBSH dataset, and then

tested against data from the subsequent years. The distribution produced on the

training data (Figure 8.4) shows that when the YIN period is an integer multiple of

the SWIPE′ period (ωYIN

ωSWIPE′
∈ Z+), SWIPE′ always has a smaller error (p = 1) and

for ratios close to these integer values SWIPE′ usually produces a smaller error (0.5 <

p < 1). Conversely, sometimes when the SWIPE′ period is an integer multiple of the

183

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

10
5

Frequency Ratio fest
f0

#
E
rr
o
rs
,
N

Y
I
N

(a) YIN

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

10
5

Frequency Ratio fest
f0

#
E
rr
or
s,
N

S
W

I
P
E

′

(b) SWIPE′

1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11 12

10
0

10
1

10
2

10
3

10
4

10
5

Frequency Ratio fest
f0

#
E
rr
or
s,
N

S
W

I
N

(c) SWIN

Figure 8.5: YIN, SWIPE′ and SWIN error distributions on the MIREX QBSH datasets.

184

−8 −6 −4 −2 0 2

−300

−200

−100

0

100

200

300

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
N
−

N
S
W

I
P
E

(a) SWIPE′ and SWIN

−8 −6 −4 −2 0 2

−300

−200

−100

0

100

200

log10(|pest − p0|)

D
iff
er
en
ce
,
N

S
W

I
N
−

N
Y
I
N

t

(b) YIN and SWIN

Figure 8.6: Difference between error histograms on the MIREX QBSH dataset from 2004

onwards (SWIN trained on MIREX QBSH 2003 data).

YIN period, YIN has the smaller error (dips to p = 0 ca. ωYIN

ωSWIPE′
≈ 1

2
, 1

3
, 1

5
). Apart

from a region of period ratios close to 1 (i.e. when both estimates are approximately

equal), the classifier will select the algorithm that produces the lower pitch estimate.

This is explained by the nature of the errors by period ratio. For the MIREX QBSH

dataset (Figure 8.5), most YIN and SWIPE′ errors are frequency “too low” errors –

the period estimates being greater than the actual period. Therefore, the estimator

which makes the higher frequency estimate is, on average, likely to be closer to the

correct frequency.

Testing SWIN on the MIREX QBSH data from 2004 onwards, SWIN reduces the

number of errors greater than 0.1 semitones relative to the SWIPE′ results (Figure

8.6a); and removes many of the higher harmonic errors that occur with YIN (Figure

8.6b). SWIN has similar performance to YIN at low error values (Figure 8.7a); and

outperforms both YIN and SWIPE′ regarding high error values (Figure 8.7b). Whilst

YIN is slightly better than SWIN at very low error thresholds (< 0.1 semitones),

SWIN is generally better than YIN. Although the SWIN pitch estimates are better

than using either YIN or SWIPE′, harmonic errors are still apparent (Figure 8.5c) –

these may occur when both YIN and SWIPE′ produce harmonic errors.

SWIN matched YIN performance in terms of matching the period to the nearest

sample (PMP), again being better than SWIPE′ (Table 8.6). At higher thresholds,

SWIN performance was better than YIN. For all four metrics, SWIN performance

was better than SWIPE′. Simply selecting the higher pitched estimate from YIN and

SWIPE′ gave a slightly lower GEP than YIN or SWIPE′ (0.93%), but did not match

the performance of YIN at low error thresholds. The region of the model where YIN

and SWIPE′ produced similar estimates (ωYIN

ωSWIPE′
≈ 1) therefore successfully selected

185

−8 −7 −6 −5 −4 −3 −2 −1 0

10
0

10
1

10
2

10
3

10
4

10
5

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|<

=
|er

rv
a
l|

YIN
SWIPE′

SWIN

(a) Log. plot of the number errors less than threshold (in semitones) for YIN, SWIPE′ and

SWIN - emphasising behaviour at small error values. More errors to the left-hand side of

the plot are better. SWIPE′ is worse than YIN or SWIN, fewer SWIPE′ errors occurring for

thresholds less than 10−1 and the smallest SWIPE′ errors being ca. 10−3.7 ≈ 2× 10−4. YIN

is slightly better than SWIN clearly having more errors in the region around 10−4.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10
0

10
1

10
2

10
3

10
4

10
5

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|>

|er
rv
a
l|

Octave Errors →

YIN
SWIPE′

SWIN

(b) Log. plot of the number errors greater than threshold (in semitones) for YIN, SWIPE′

and SWIN– emphasising behaviour at large error values. Fewer errors to the right-hand side

of the plot are better. SWIN is better than both YIN and SWIPE′ for thresholds greater

than ca. 10−1. For all three algorithms, there is a sharp dropoff in errors at ca. 101.2 ≈ 17

Figure 8.7: Comparison of details of YIN, SWIPE′ and SWIN pitch errors for the MIREX

QBSH dataset (SWIN trained on MIREX QBSH 2003, tested against MIREX QBSH 2004

onwards).

186

Higher of YIN and Better of YIN and

YIN SWIPE′ SWIN SWIPE′ estimates SWIPE′ estimates

PMP 20.11% 23.64% 20.11% 21.77% 12.30%

10c 56.35% 58.62% 55.00% 57.55% 45.34%

MMP 19.49% 17.50% 15.64% 16.71% 13.39%

GEP 5.68% 1.37% 0.91% 0.93% 0.76%

Table 8.6: Summary of performance for YIN, SWIPE′ and SWIN on MIREX QBSH data

2004 onwards (SWIN trained on MIREX QBSH 2003). Additionally, statistics are given

based on selecting the higher of the YIN and SWIPE′ estimates and selecting the better of

the YIN and SWIPE′ estimates.

YIN SWIPE′ SWIN

PMP 65.61% 63.00% 65.61%

10c 59.59% 56.54% 59.34%

MMP 27.12% 24.23% 26.74%

GEP 3.57% 2.12% 2.86%

Table 8.7: Summary of proportion of errors greater than various thresholds (in pitch cents)

on combined data with SWIN using a model trained on MIREX QBSH 2003.

the better of the YIN and SWIPE′ estimates in some cases – for segments where

κj 6= 0 and κj 6= 1 there will be some values for which the worse pitch estimate will

be selected. The best possible performance by combining YIN and SWIPE′ output

can be found by selecting the better of the two estimates. We see that although

output could be improved further, simply using the best estimates still results in 45%

of errors being greater than 10 pitch cents.

In order to assess whether the estimator based on MIREX QBSH data is applicable

across other datasets, a combined dataset was created combining all pitch estimates

from the Bagshaw, Keele and VOQUAL’03 datasets. Applying the model learnt

from the 2003 MIREX QBSH data to the combined dataset produced results between

those of SWIPE′ and YIN (Table 8.7, Figure 8.8). As SWIPE′ performed better on

average for this dataset apart from for small thresholds (< 10−1, Figure 8.8a) it is

not unexpected that choosing between the YIN and SWIPE′ pitch estimates made

performance worse for thresholds of 10 pitch cents and above.

We created a model for SWIN from 10% of the combined dataset (Figure 8.9),

and tested it on the remaining 90% of the data. This version of SWIN matched

the performance of YIN at small error thresholds and performance was close to that

of SWIPE′ at high thresholds (Table 8.8). However, SWIPE′ performance was still

187

−15 −10 −5 0

10
0

10
1

10
2

10
3

10
4

10
5

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|<

=
|er

rv
a
l|

YIN
SWIN
SWIPE′

(a) Log. plot of the number errors less than threshold (in semitones) for YIN, SWIPE′ and

SWIN - emphasising behaviour at small error values. More errors to the left-hand side of

the plot are better.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

10
0

10
1

10
2

10
3

10
4

10
5

log10(|pest − p0|)

#
o
f
sa
m
p
le
s
w
it
h
|p

e
s
t
−
p
0
|>

|er
rv
a
l|

Octave Errors →

YIN
SWIN
SWIPE′

(b) Log. plot of the number errors greater than threshold (in semitones) for YIN, SWIPE′

and SWIN– emphasising behaviour at large error values. Fewer errors to the right-hand side

of the plot are better.

Figure 8.8: Comparison of details of YIN, SWIPE′ and SWIN pitch errors for the com-

bined dataset (SWIN trained on MIREX QBSH 2003, tested against MIREX QBSH 2004

onwards). In both cases, SWIN performance is between that of YIN and SWIPE′.

188

1/14 1/13 1/12 1/11 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9 10 11

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ωYIN/ωSWIPE′

p
(|p

Y
IN

−
p 0
|>

|p S
W

IP
E

′
−
p 0
|)

Figure 8.9: SWIN model of combined Bagshaw, Keele and VOQUAL’03 data

better than SWIN. We hypothesise that this is caused by the three datasets combined

for this having fewer harmonic errors than the QBSH dataset (Figures 7.3 and 8.2)

and therefore not matching our harmonic model.

YIN SWIPE′ SWIN

PMP 65.53% 62.99% 65.53%

10c 59.56% 56.59% 57.06%

MMP 27.16% 24.28% 24.68%

GEP 3.53% 2.12% 2.28%

Table 8.8: Summary of proportion of errors greater than various thresholds (in pitch cents)

on 90% of the combined data with SWIN using a model trained on the remaining 10% .

8.3 Conclusions

We compared the performance of the YIN pitch estimator with PRAAT AC-P and

SWIPE′. In general, SWIPE′ performed better than YIN, which performed better

than PRAAT AC-P. We observed that YIN produced more harmonic errors than

SWIPE′ on the QBSH dataset. However, when YIN produced good pitch estimates

these were generally closer to the ground-truth pitch than those produced by SWIPE′.

Having examined additional pitch estimators, we concluded that none of them

provided accurate, high-resolution pitch estimates. The three pitch estimators con-

sidered (PRAAT AC-P, YIN and SWIPE′) achieved at best 82.26% matches of the

189

period in samples (Table 8.4) and then only on low sample-rate data from the MIREX

QBSH dataset).

Given that both YIN and SWIPE′ showed benefits for pitch estimation and that

YIN produced harmonic errors on the QBSH dataset, we examined whether it was

possible to combine these benefits by using a classifier to select either the YIN or

SWIPE estimate based on the ratios of their frequency outputs.

We created a new pitch estimator (“SWIN”) which treated YIN and SWIPE as

“expert” pitch estimators, and selected the appropriate expert pitch estimate based

on a classifier, the classifier being trained on a set of training data. Training SWIN on

data from one year of the QBSH dataset and testing it on the remaining QBSH data,

SWIN performed better than both YIN and SWIPE for large errors thresholds and

produced results close to YIN at small thresholds. The Gross Error Percentage (GEP)

for SWIN on the QBSH dataset was 0.91%, whereas the GEP for YIN was 5.68% and

the GEP for SWIPE′ was 1.37%. However, on the other datasets fewer harmonic

errors were observed, and SWIN did not improve results over those from SWIPE′.

Including alternative “expert” pitch estimators and examining alternative models of

the relationship between estimator results may allow additional improvements to the

art of pitch estimation.

190

Chapter 9
Conclusions

Parameterisation Encoding Resynthesis
Pitch
Estimation MIDI

File

Pitch
Parameters

Pitch
Trajectory

Resynthesised
Audio

Source
Audio YIN CHC/BRGC SMF/NRPN Kontakt

Figure 9.1: System Model indicating the tools used at each stage

In this work, we have produced a novel Expressive MIDI system (Figure 9.1) for

resynthesising audio based on the pitch trajectory of source audio material.

In Chapter 2 we considered a selection of audio coding techniques and identified

MPEG-4 Structured Audio (SA) Wavetable Synthesis as a possible format with which

to build an object coding system for musical audio. MPEG-4 SA Wavetable Synthe-

sis combines a Structured Audio Sample Bank Format (SASBF) (aka MMA DLS)

synthesiser definition with a MIDI score to produce synthetic audio. We defined an

Expressive MIDI model for object coding based on MPEG-4 SA Wavetable Synthesis

in Chapter 3. This encoded individual note pitch trajectories for use with the Down-

loadable Sounds (DLS) pitch model – combining a base pitch with an EG and an

LFO.

We proceeded to build an Expressive MIDI system based on existing technologies.

As the first stage in the system, we extracted pitch trajectories from audio using

the YIN [de Cheveigné and Kawahara, 2002] pitch estimator and segmented this

data into individual notes. We then examined possible optimisation algorithms for

inferring Expressive MIDI parameters from the note pitch trajectories (Chapter 4),

specifically Steepest Descent, a Stochastic Hill-Climber (SHC), the Simple Genetic

Algorithm and Eshelman’s CHC. We considered several bit-wise encodings for use in

optimisation and their properties, introducing a new visualisation that gave insights

191

into the effects of the encodings on optimisation problems.

Extending the work of Mathias and Whitley [1994] to include Balanced and Mono-

tone Gray codes, we examined the performance of algorithm/encoding combinations

across a set of standard test problems and found that the choice of a suitable encod-

ing allowed simple techniques to solve otherwise difficult problems (e.g. in general,

bit-wise Steepest Descent worked most effectively using the Balanced Gray code).

We hypothesised that as each bit in the Balanced Gray code has a similar number of

transitions, it gave a more uniform distribution of neighbours across the search space

and is therefore particularly effective at exploring the search space.

CHC was by far the most effective optimisation technique for the test problems

– finding solutions for most problems from a single start. CHC performance using

the Balanced Gray Code almost matched that with the Binary Reflected Gray Code

(BRGC). Given that the BRGC is simple to generate and use, we adopted the CHC

algorithm [Eshelman, 1991] with a BRGC encoding as the optimisation algorithm to

infer Expressive MIDI parameters from note pitch trajectories.

In Chapter 5 we estimated Expressive MIDI parameters from audio files from the

RWC Musical Instrument Sounds database using the CHC/BRGC optimisation. We

found that the Expressive MIDI parametrisation closely matched the pitch trajecto-

ries for many notes, more closely approximating the original audio than simply using

a constant pitch. The Expressive MIDI pitch parameters provided a smoothed ap-

proximation of the pitch trajectory and often bore little resemblance to that expected

from a “standard” EG+LFO trajectory – the LFO often being used for the gross

trajectory shape rather than representing vibrato effects. With vibrato examples,

both frequency and phase were often matched. However, segmentation of the audio

was imperfect and harmonic errors were observed in the pitch output, both causing

outliers in the pitch trajectories and producing a more difficult optimisation problem.

We completed our Expressive MIDI system in Chapter 6, selecting to resynthesise

audio using Native Instruments Kontakt, a software sampler, and storing the Ex-

pressive MIDI data in a Standard MIDI File (SMF) using NRPNs. This gave a low

bit-rate representation of less than 100 bytes per note. We created MIDI encodings

of the Expressive MIDI parameters estimated from the RWC data and found that

resynthesised trajectories were often within 10 pitch cents of the Expressive MIDI

model and closely resembled the original pitch trajectories. This in spite of differ-

ences between the Expressive MIDI trajectory model and that used by Kontakt. The

close match between the output pitch trajectories produced using Kontakt and the

192

expected trajectories based on the EG+LFO parameters gave confidence that, by es-

timating parameters that match the Kontakt model, we could produce audio which

closely matched the parameterised pitch trajectory.

Small pitch differences observed between the resynthesised audio and the expected

values could have been caused by either differences between the pitch of the Kontakt

output and the expected pitch or by artifacts produced in the YIN pitch estimation.

Whichever was the actual cause of the pitch difference, Kontakt or YIN, we needed

to assess the quality of pitch estimation.

In Chapter 7 we examined the quality of the YIN pitch estimates in detail. After

introducing several pitch datasets and pitch metrics, we presented a novel analysis

of the performance of the YIN pitch estimator using both traditional metrics and

by examining the pitch error distributions. The error distributions revealed that

most YIN errors occur at approximately the 10 pitch cent level, the vast majority of

errors being in the range 1 cent to 100 cents (1 semitone). Previously, in Chapter

5, comparing the median YIN pitch for each note with the YIN pitch trajectory had

revealed the presence of harmonic errors in the YIN output. We therefore presented a

theoretical analysis of the effect of removing such errors from the YIN output, noting

that even if the harmonic errors could be removed, residual pitch errors larger than

required for Expressive MIDI would still occur.

In order to produce a better Expressive MIDI representation of audio, we there-

fore looked for a better pitch estimator than YIN. In Chapter 8 we compared the

performance of YIN with the PRAAT autocorrelation based pitch estimator (AC-P)

[Boersma, 1993] and the prime harmonic variant SWIPE′ of the Sawtooth Wave In-

spired Pitch Estimator (SWIPE) [Camacho, 2007]. Both SWIPE′ and YIN produced

better results than AC-P, on average producing smaller errors.

Noting that SWIPE′ produced fewer harmonic errors than YIN, whilst YIN pro-

duced a larger number of very small errors than SWIPE′, we created a new “best of

both worlds” pitch estimator, SWIN, which automatically selected the YIN or SWIPE′

pitch estimate after training on a sample of labelled audio data. We showed that on

datasets where YIN was particularly prone to harmonic errors SWIN produced better

results – with a 20% threshold, the Gross Error Percentage (GEP) for SWIN on the

QBSH dataset was 0.91%, whereas the GEP for YIN was 5.68% and for SWIPE′ it

was 1.37%. However, on other datasets fewer harmonic errors were observed, and

SWIN did not improve results over those from SWIPE′. Including alternative “ex-

pert” pitch estimators and examining alternative models of the relationship between

193

estimator results may allow additional improvements to the art of pitch estimation.

9.1 Contributions

We developed a new system for Expressive MIDI coding of audio and, in the process:

• produced an extended analysis of optimisation methods and binary codings

emphasising that appropriate codings can make problems solvable using simple

optimisation techniques such as Steepest Descent or a Stochastic Hill Climber

(Chapter 4);

• developed a process for estimating parameters for the Expressive MIDI pitch

model using CHC with BRGC encoding (Chapter 5);

• showed that it is possible to resynthesise audio from a MIDI representation of

the estimated pitch parameters to within 10 pitch cents of the estimate (Chapter

6);

In a new examination of the performance of pitch estimators (Chapters 7 and 8)

we:

• found that the Gross Error Percentage metric for judging pitch estimators was

insufficient at a 20% threshold for distinguishing the suitability of pitch estima-

tors for high resolution pitch estimation – hence we introduced a new view of

pitch estimator performance based on the distribution of pitch errors;

• showed that even if problems with harmonic errors could be solved, residual

inharmonic errors prevent the current generation of pitch estimators from pro-

viding high resolution pitch estimates;

• created a novel pitch estimator, SWIN, which,after training on a subset of the

data, combined the benefits of the YIN and SWIPE′ pitch estimators on data

prone to harmonic errors.

9.2 Future Work

There is scope for additional work in improving the output of this Expressive MIDI

system.

194

• With complex pitch variation, the Expressive MIDI parameters sometimes used

the LFO to represent trajectory coarse features rather than representing any

vibrato. In order to capture the vibrato effect, we propose a two stage process:

first using CHC to estimate gross features of the pitch trajectory with the EG;

and then separately finding the LFO parameters to best represent the residual

pitch trajectory unaccounted for by the EG (e.g. using autocorrelation on the

residual pitch trajectory after the EG estimate is used to estimate the LFO

frequency and subsequently estimating the LFO delay using cross-correlation of

the residual trajectory and a “test” LFO based on a zero-padded sine wave).

• Segmentation errors resulted in sudden pitch changes which were poorly rep-

resented using our model. Attempting estimation of these features reduced

performance of the pitch trajectory parameter estimation. Additional work is

therefore required to improve the segmentation of the audio. For the RWC

Musical Instrument Sounds database, each individual note is separated by a

period of silence. Better segmentation can therefore be achieved by: splitting

the audio into segments at the silences and then refining those segments using

power and/or aperiodicity thresholds to refine the note boundaries. However,

for arbitrary audio segmentation is much more complex.

• Similarly, when outliers and harmonic errors occurred in the YIN pitch esti-

mates, the square error cost function produced pressure on the system to match

these variations in the pitch trajectories. Improved segmentation will help, but

using an absolute difference (L1 norm, | · |) cost function would reduce the pres-

sure to match these variations and may produce a more accurate estimate of

the smaller variations in pitch across the note.

• Although Kontakt was the closest synthesiser to the Expressive MIDI model,

Kontakt’s synthesis model was not the same as the one selected for Expressive

MIDI i.e. the resynthesis model differed from that used in the CHC analy-

sis stage. Matching the analysis and synthesis models should produce a closer

match between the resynthesised audio the analysis results. The analysis stage

should therefore be updated to agree with the resynthesis stage, optimising

Kontakt parameter values directly. Additionally, this would lead to the repre-

sentation of the parameters in CHC being reduced from 32-bits to agree with

the 14-bit NRPN values. This reduction in dimensionality would reduce the size

of the search space and should improve CHC performance and the output pitch

parameters.

195

Additionally, the system could be extended to incorporate further audio features e.g.

the EG + LFO model is not just available for pitch, but also for gain control. It may

also be possible to estimate suitable samples for use in the resynthesis from the source

audio material.

Pitch estimation did not provide the accuracy we hoped for and prevented us

producing precise judgements of the quality of the output. There is still much room

for improvement in monophonic pitch estimation.

• Existing pitch databases largely include the ground-truth pitch based on esti-

mates of the period to the nearest sample. This limits the level at which pitch

estimators can be tested.

• The SWIN algorithm improved pitch estimation results for a specific class of

data. Examining the content of the signal, it may also be possible to classify

pitch data and select an appropriate model for pitch estimation other than the

harmonic model assumed by SWIN.

• Examining the various techniques used by pitch estimation algorithms for inter-

polating their results, weighting pitch detection function output and peak/best

path picking may provide further insights into combining current pitch estima-

tors – possibly suggesting additional “experts” to add to the SWIN model.

9.3 Closing Remarks

As initially intended, we have produced an Expressive MIDI system which can create

a pitch based MIDI sketch of source audio material. Output pitch trajectories closely

resembled those of the source material, but led us to consider just what the current

state-of-the-art is for pitch estimation.

We found that most of the literature on pitch estimation used the Gross Error

Percentage (GEP) at a 20% difference in frequency. This does not appear to be

suitable for measuring the performance of state-of-the-art algorithms, and is, addi-

tionally, inappropriate for estimating pitch in musical applications as pitch errors of

3 semitones are classified as “correct”. In order to advance pitch estimation for mu-

sic, it is necessary to move away from the GEP and consider alternative performance

measures.

196

Appendix A
Scripting Kontakt

A.1 Validating Kontakt Parameter Formulae

The “KSP Math Library Technical Manual”[Villwock, 2009] gives reverse-engineered

conversion functions to convert Kontakt script parameter values into appropriate

units. We set the internal Kontakt parameters to various values and recorded the

values displayed in the Kontakt interface (in appropriate units) (Table A.1). These

parameter and display values were then compared (below). For the LFO frequency

and sustain level, we derived formulae for the relationships between the parameter

values and the displayed settings.

Kontakt Frequency LFO Fade LFO Depth EG Attack EG Decay

Parameter Value (Hz) (ms) (st) (s) (s)

0 0.01 0 -12 0 0

100000 0.03 2.7 -6.1 0.0029 0.0031

200000 0.08 9 2.6 0.0099 0.0112

300000 0.2 23.7 -0.77 0.0271 0.0319

400000 0.55 58.4 -0.1 0.0689 0.0851

500000 1.5 139.4 0 0.1711 0.2216

600000 4 329.5 0.1 0.4208 0.5724

700000 10.8 775 0.77 1 1.5

800000 29.3 1.8k 2.6 2.5 3.8

900000 78.6 4.3k 6.1 6.1 9.7

1000000 213.1 10.0k 12 15 25

Table A.1: Kontakt parameter settings and the related values as displayed in Kontakt

197

A.1.1 Kontakt LFO Frequency

We noted a logarithmic relationship between the Kontakt LFO frequency parameter

value and the frequency in Hz. The best-fit linear approximation of the relation-

ship between the logarithm of the parameter value, log10(v) and the displayed LFO

frequencies gave the following relationship:

fLFO = 0.2318× log10

(v

1000000

)
+ 0.4598 (A.1)

For low parameter values (< 500000) this gave errors of up to 5% in the frequency

estimates, for higher values the errors were less than 1%.

A.1.2 Kontakt Depths

From Villwock [2009], The depth values, d, are given (in semitones) by

d = 12

(
v − 500000

500000

)3

. (A.2)

This gave errors of less than 0.1% when comparing calculated depths with displayed

depths.

A.1.3 Kontakt Timings

Based on the formulae in Villwock [2009], we found a single formula which relates the

Kontakt timing parameters with their values in milliseconds:

t = 2

(
1 +

tmax

2

) v
1000000

− 2 (A.3)

where tmax is the maximum time value for the parameter in question (10 seconds for

LFO fade, 15 seconds for EG attack and hold, 25 seconds for EG decay and release).

This gave low errors (< 1% of timings) for the tested parameter values except for ca.

700000. However at 700000 Kontakt switches from displaying times in milliseconds

with 1 decimal place to displaying times in seconds with one decimal place. The

precision of the displayed timings of 1 and 1.5 is therefore approximately ±5% and

the calculated errors are less than this value.

198

Kontakt Value Kontakt dB Calculated dB Ratio

v dK dC = 20 log10

(
v

1000000

) dK
dC

100000 -59.8 -20.000000 2.990000

200000 -41.8 -13.979400 2.990114

225001 -38.7 -12.956311 2.986961

330001 -28.8 -9.629695 2.990749

435000 -21.6 -7.230215 2.987463

500000 -18 -6.020600 2.989735

535000 -16.2 -5.432924 2.981820

591605 -13.6 -4.559363 2.982873

665000 -10.6 -3.543567 2.991336

755000 -7.3 -2.441061 2.990503

795000 -6 -1.992657 3.011054

835000 -4.7 -1.566270 3.000759

924999 -2 -0.677175 2.953447

938636 -1.6 -0.550056 2.908795

Table A.2: Kontakt Sustain Parameters Expressed as Decibels

A.1.4 Kontakt Sustain Level

Within Kontakt, sustain levels are displayed in terms of decibels (dB). The formula

for expressing an amplitude ratio r as a decibel value, d, is d = 20 log10(r). We

examined a range of Kontakt parameter values and the decibel values produced and

compared them with the output of this formula (Table A.2). In each case, the ratio of

the Kontakt dB values and the calculated values is approximately 3. The relationship

which we used to relate the Kontakt parameter value, v, to the sustain level, s , was:

s =
(v

1000000

)3

(A.4)

. The differences between the sustain levels calculated using this formula and the

displayed values in Kontakt were less than 0.1dB apart from at sustain levels less

than −18dB (i.e. sustain depths less than ≈ 1
8
). As sustain levels are displayed to

a precision of 0.1dB, we believe this formula to accurately map Kontakt parameter

values to sustain levels.

199

Listing A.1: Sample Kontakt code for controlling LFO delay parameter

1 on i n i t

2 declare $newval

3 end on

4

5 on nrpn

6 $newval := ($RPN VALUE ∗ 61)

7 select ($RPN ADDRESS)

8 case 1001

9 s e t e n g i n e p a r ($ENGINE PAR LFO DELAY, $newval , 0 , 0 , 0)

10 end select

11 end on

A.2 Kontakt Instrument Script

Listing A.1 shows a sample of Kontakt script (KSP) which links NRPN 1001 to

the LFO delay parameter. Lines 1-3 declare numeric variable $newval for handling

NRPNs. Lines 5-11 allow the LFO delay to be controlled using NRPN 1001. 14-bit

NRPN values (i.e. values 0-16383) are scaled by a factor of 61 (line 6) to approximate

the Kontakt parameter range of 0 to 1000000 (actually 0 to 999363). The appropriate

engine parameter is then set to that value (line 9 for NRPN 1001).

Parameter values are set using:

set engine par(<p>, <v>, <g>, <m>, <t>)

where: <p> is the engine parameter; <v> the new value for the parameter; <g>

the modulator group; <m> the modulator within that group; and <t> which target

for that modulator is required (e.g. <t> allows separate levels if a single EG controls

both pitch and amplitude modulation). For this bank of sounds, there is one group

(0), the LFO being modulator 0 within that group, and the EG modulator 1. Both

the EG and LFO only control pitch, so the target is 0.

The KSP script we used within Kontakt to convert NRPN values to internal

Kontakt parameter settings (Section 6) follows in three parts: listing A.2 initialises

the script and sets up user interface controls to display and set parameter values;

listing A.3 links those controls to the internal Kontakt parameters; and listing A.4

sets the controls based on NRPNs received.

200

Listing A.2: Interface Setup and Initialisation

1 {Use onscreen con t r o l s to modify parameters}
2 on i n i t

3 declare $lfomod := 0

4 declare $egmod := 1

5 {LFO con t r o l s }
6 declare ui knob $ l f o d e l a y (0 , 1000000 , 1000000)

7 declare ui knob $ l f o f r e q (0 , 1000000 , 1000000)

8 declare ui knob $ l f odepth (0 , 500000 , 500000)

9 {EG con t r o l s − dAhDSR, but no d a v a i l a b l e }
10 declare ui knob $egatk (0 , 1000000 , 1000000)

11 declare ui knob $eghld (0 , 1000000 , 1000000)

12 declare ui knob $egdec (0 , 1000000 , 1000000)

13 declare ui knob $egsus (0 , 1000000 , 1000000)

14 declare ui knob $ e g r e l (0 , 1000000 , 1000000)

15 declare ui knob $egdepth (0 , 500000 , 500000)

16 { Informatioon panel }
17

18 declare $newval

19 $ l f o d e l a y := g e t e n g i n e p a r ($ENGINE PAR LFO DELAY, 0 , $lfomod , 0)

20 $ l f o f r e q := g e t e n g i n e p a r ($ENGINE PAR INTMOD FREQUENCY, 0 , $lfomod , 0)

21 $ l f odepth := g e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, 0 , $lfomod , 0)

22 $egdepth := g e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, 0 , $egmod , 0)

23 $egatk := g e t e n g i n e p a r ($ENGINE PAR ATTACK, 0 , $egmod , 0)

24 $eghld := g e t e n g i n e p a r ($ENGINE PAR HOLD, 0 , $egmod , 0)

25 $egdec := g e t e n g i n e p a r ($ENGINE PAR DECAY, 0 , $egmod , 0)

26 $egsus := g e t e n g i n e p a r ($ENGINE PAR SUSTAIN, 0 , $egmod , 0)

27 $ e g r e l := g e t e n g i n e p a r ($ENGINE PAR RELEASE, 0 , $egmod , 0)

28 make perfview

29 end on

201

Listing A.3: Linking onscreen controls to parameters

1 on u i c on t r o l ($ l f o d e l a y)

2 s e t e n g i n e p a r ($ENGINE PAR LFO DELAY, $ l f ode l ay , 0 , $lfomod , 0)

3 end on

4 on u i c on t r o l ($ l f o f r e q)

5 s e t e n g i n e p a r ($ENGINE PAR INTMOD FREQUENCY, $ l f o f r e q , 0 , $lfomod , 0)

6 end on

7 on u i c on t r o l ($ l f odepth)

8 s e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, $ l f odepth +500000 ,0 , $lfomod , 0)

9 end on

10 on u i c on t r o l ($egatk)

11 s e t e n g i n e p a r ($ENGINE PAR ATTACK, $egatk , 0 , $egmod , 0)

12 end on

13 on u i c on t r o l ($eghld)

14 s e t e n g i n e p a r ($ENGINE PAR HOLD, $eghld , 0 , $egmod , 0)

15 end on

16 on u i c on t r o l ($egdec)

17 s e t e n g i n e p a r ($ENGINE PAR DECAY, $egdec , 0 , $egmod , 0)

18 end on

19 on u i c on t r o l ($egsus)

20 s e t e n g i n e p a r ($ENGINE PAR SUSTAIN, $egsus , 0 , $egmod , 0)

21 end on

22 on u i c on t r o l ($ e g r e l)

23 s e t e n g i n e p a r ($ENGINE PAR RELEASE, $eg re l , 0 , $egmod , 0)

24 end on

25 on u i c on t r o l ($egdepth)

26 s e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, $egdepth +500000 ,0 ,$egmod , 0)

27 end on

202

Listing A.4: Responding to NRPNs

1 on nrpn

2 {Convert NRPN va lue s r ece i v ed to changes f o r onscreen con t r o l s }
3 {Force 0 => 0 , 8192 => 500000 , 16383 => 1000000}
4 i f ($RPN VALUE < 8192)

5 $newval := ($RPN VALUE ∗ 61)

6 e l s e

7 i f ($RPN VALUE > 8192)

8 $newval := 1000000 − ((16383 − $RPN VALUE) ∗ 61)

9 e l s e

10 $newval := 500000

11 end i f

12 $newval := ($RPN VALUE − 8192) ∗ 61 + 500000

13 end i f

14 select ($RPN ADDRESS)

15 case 1001

16 $ l f o d e l a y := $newval

17 s e t e n g i n e p a r ($ENGINE PAR LFO DELAY, $ l f ode l ay , 0 , $lfomod , 0)

18 case 1002

19 $ l f o f r e q := $newval

20 s e t e n g i n e p a r ($ENGINE PAR INTMOD FREQUENCY, $ l f o f r e q , 0 , $lfomod , 0)

21 case 1003

22 $ l f odepth := $newval / 2

23 s e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, $ l f odepth +500000 ,0 , $lfomod , 0)

24 case 1004

25 $egatk := $newval

26 s e t e n g i n e p a r ($ENGINE PAR ATTACK, $egatk , 0 , $egmod , 0)

27 case 1005

28 $eghld := $newval

29 s e t e n g i n e p a r ($ENGINE PAR HOLD, $eghld , 0 , $egmod , 0)

30 case 1006

31 $egdec := $newval

32 s e t e n g i n e p a r ($ENGINE PAR DECAY, $egdec , 0 , $egmod , 0)

33 case 1007

34 $egsus := $newval

35 s e t e n g i n e p a r ($ENGINE PAR SUSTAIN, $egsus , 0 , $egmod , 0)

36 case 1008

37 $ e g r e l := $newval

38 s e t e n g i n e p a r ($ENGINE PAR RELEASE, $eg re l , 0 , $egmod , 0)

39 case 1009

40 $egdepth := $newval / 2

41 s e t e n g i n e p a r ($ENGINE PAR INTMOD INTENSITY, $egdepth +500000 ,0 ,$egmod , 0)

42 end select

43 end on

203

Bibliography

Innovative Music Systems, Inc. intelliScore 8.0 ensemble Wav to MIDI converter. [Computer

program] Link valid 23rd September 2010. Available from http://www.intelliscore.net.

Akoff Sound Labs. Akoff music composer version 2.0. [Computer program] Link valid 23rd

September 2010. Available from http://www.akoff.com.

Apple. Audio Interchange Format: “AIFF”. Apple Computer Inc., January 1989.

P. C. Bagshaw, S. M. Hiller, and M. A. Jack. Enhanced pitch tracking and the processing

of f0 contours for computer aided intonation teaching. In Proceedings of the 3rd European

Conference on Speech Communication and Technology (EUROSPEECH ’93), pages 1003–

1006, Berlin, Germany, September 1993.

J. Beament. How We Hear Music: The Relationship between Music and the Hearing Mech-

anism. Boydell Press, Woodbridge, UK, 2001.

J. W. Beauchamp. Synthesis by amplitude and “Brightness” matching of analyzed musical

instrument tones. In Proceedings of the 69th Convention of the Audio Engineering Society,

Los Angeles, California, USA, May 1981. AES.

F. Beritelli, S. Casale, and M. Russo. A pattern classification proposal for object-oriented

audio coding in MPEG-4. Telecommunication Systems, 9(3):375–391, 1998.

N. Bertin, R. Badeau, and G. Richard. Blind signal decompositions for automatic tran-

scription of polyphonic music: NMF and K-SVD on the benchmark. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP

2007), volume 1, pages I–65–I–68, Honolulu, Hawai’i, USA, April 2007.

G. S. Bhat and C. D. Savage. Balanced Gray codes. The Electronic Journal of Combina-

torics, 3(R25):2, 1996.

204

P. Boersma. Accurate short-term analysis of the fundamental frequency and the harmonics-

to-noise ratio of a sampled sound. In Proceedings of the Institute of Phonetic Sciences,

volume 17, pages 97–110, Amsterdam, 1993.

P. Boersma and D. Weenink. Praat: doing phonetics by computer (version 5.1.23), 2010.

[Computer Program] Retrieved 2nd January 2010 from http://www.praat.org.

R. Boulanger. The CSound Book: Perspectives in Software Synthesis, Sound Design, Signal

Processing and Programming. The MIT Press, Cambridge, Massachusetts, USA, 2000.

K. Brandenburg. MP3 and AAC explained. In Proceedings of 17th International Conference

of the Audio Engineering Society, Florence, Italy, September 1999. AES.

K. Brandenburg, O. Kunz, and A. Sugiyama. MPEG-4 natural audio coding. Signal Pro-

cessing: Image Communication, 15(4-5):423–444, 2000.

R.P. Brent. Algorithms for Minimization without Derivatives. Prentice-Hall, Englewood

Cliffs, NJ, USA, 1973.

R.L. Burden and J.D. Faires. Numerical Analysis. Brooks/Cole Publishing Company, Pacific

Grove, CA, USA, sixth edition, 1997.

A. Camacho. SWIPE: A Sawtooth Waveform Inspired Pitch Estimator for Speech and

Music. PhD thesis, University of Florida, FL, USA, December 2007.

A. Camacho and J. G. Harris. A sawtooth waveform inspired pitch estimator for speech

and music. The Journal of the Acoustical Society of America, 124(3):1638–1652, 2008.

R. Caruana and J. D. Schaffer. Representation and hidden bias: Gray vs. binary coding

for genetic algorithms. In Proceedings of the 5th International Workshop on Machine

Learning, pages 153–161, Ann Arbor, Michigan, USA, June 1988.

Celemony. Melodyne editor 3.2. [Computer program] Link valid 23rd September 2010.

Available from http://www.celemony.com.

U. K. Chakraborty and C. Z. Janikow. An analysis of Gray versus binary encoding in genetic

search. Information Sciences, 156(3-4):253–269, 2003.

Wei-Chen Chang and A. W. Y. Su. A multi-channel recurrent network for synthesizing

struck coupled-string musical instruments. In Proceedings of the 12th IEEE Workshop on

Neural Networks for Signal Processing, page 677–686, Martigny, Switzerland, September

2002.

S.S. Chen. Basis Pursuit. PhD thesis, Stanford University, CA, USA, November 1995.

J. M. Chowning. The synthesis of complex audio spectra by means of frequency modulation.

Journal of the Audio Engineering Soc, 21(7):526–534, 1973.

205

Josh Coalson. FLAC: Free Lossless Audio Codec, 2000. [Online] Valid 23 September 2010.

Available at http://flac.sourceforge.net.

J. Copp. Audio for a mobile world. Communications Engineer, 1(2):26–29, 2003.

A. de Cheveigné and A. Kawahara. YIN, a fundamental frequency estimator for speech and

music. The Journal of the Acoustical Society of America, 111(4):1917–1930, 2002.

K. A. De Jong. An analysis of the behavior of a class of genetic adaptive systems. PhD

thesis, University of Michigan, Ann Arbor, MI, USA, 1975.

S. Dixon. Extraction of musical performance parameters from audio data. In Proceedings of

the 1st IEEE Pacific Rim Conference on Multimedia (PCM 2000), page 42–45, Sydney,

Australia, December 2000.

B. Edler, H. Purnhagen, and C. Ferekidis. ASAC—Analysis/synthesis audio codec for very

low bit rates. In Proceedings of the 100th Convention of the Audio Engineering Society,

Copenhagen,Denmark, May 1996. AES.

A. E. Eiben and C. A. Schippers. On evolutionary exploration and exploitation. Fundamenta

Informaticae, 35(1-4):35–50, 1998.

L. J. Eshelman. The CHC adaptive search algorithm: How to have safe search when en-

gaging in nontraditional genetic recombination. In G.J.E. Rawlins, editor, Foundations

of Genetic Algorithms. Morgan Kaufmann, San Mateo, CA, USA, 1991.

J. ffitch. CSound5: the design, the outcome, the experience. CSound Journal, 1(2), 2006.

H. Fletcher and W. A. Munson. Loudness of a complex tone, its definition, measurement

and calculation. The Journal of the Acoustical Society of America, V(2):82–108, October

1933.

S. Forrest and M. Mitchell. Relative Building-Block Fitness and the Building-Block Hy-

pothesis. In D. Whitley, editor, Foundations of Genetic Algorithms 2, pages 109–126.

Morgan Kaufmann, San Mateo, CA, USA, 1993.

R. Geiger, Rongshan Yu, J. Herre, S. Rahardja, Sang-Wook Kim, Xiao Lin, and M. Schmidt.

ISO/IEC MPEG-4 High-Definition scalable advanced audio coding. Journal of the Audio

Engineering Society, 55(1/2):27–43, February 2007.

A. Glass and K. Fukudome. Warped linear prediction of physical model excitations with ap-

plications in audio compression and instrument synthesis. EURASIP Journal on Applied

Signal Processing, 2004(7):1036–1044, June 2004. ISSN 1110-8657.

D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.

Addison-Wesley, Reading, Massachusetts, USA, 1989.

206

M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka. RWC music database: Music genre

database and musical instrument sound database. In Proceedings of the 4th International

Conference on Music Information Retrieval (ISMIR 2003), pages 229–230, Washington,

D.C., USA and Baltimore, Maryland, USA, October 2003.

A. Grajdeanu and K. De Jong. Improving the locality properties of binary representations.

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2004),

page 1186–1196, Seattle, Washington, USA, 2004.

F. Gray. Pulse Code Communication. March 1953. US Patent 2,632,058. Bell Telephone

Laboratories, NY, NY. Filing date 13 Nov 1947.

M. Hans and R. W. Schafer. Lossless compression of digital audio. Signal Processing

Magazine, IEEE, 18(4):21–32, 2001.

J.E. Hawkins, Jr. and S. S. Stevens. The masking of pure tones and of speech by white

noise. The Journal of the Acoustical Society of America, 22(1):6–13, January 1950.

N. Henrich, B. Doval, and M. Castellengo. On the use of the derivative of electroglotto-

graphic signals for characterization of nonpathological phonation. The Journal of the

Acoustical Society of America, 115:1321, 2004.

R. Hinterding, H. Gielewski, and T.C. Peachey. The nature of mutation in genetic al-

gorithms. In Proceedings of the Sixth International Conference on Genetic Algorithms,

pages 65–72, Pittsburgh, PA, USA, July 1995. Morgan Kaufmann.

J. H. Holland. Genetic algorithms. Scientific American, 267(1):66–72, 1992.

A. Horner, J. Beauchamp, and L. Haken. Methods for multiple wavetable synthesis of

musical instrument tones. Journal of the Audio Engineering Society, 41(5):336 – 356,

May 1993.

IBM and Microsoft. Multimedia Programming Interface and Data Specifications 1.0, chap-

ter 3, pages pp. 22–31. IBM Corporation and Microsoft Corporation, August 1991.

IEEE. IEEE Standard for a High Performance Serial Bus. IEEE Std 1394-1995. The

Institute of Electrical And Electronics Engineers, Inc., New York, NY, USA, 1996.

ISO/IEC. ISO/IEC 11172-3:1993 Coding of moving pictures and associated audio for digital

storage media at up to about 1.5 Mbit/s, Part 3: Audio. MPEG-1 Audio. International

Organization for Standardization, 1993.

ISO/IEC. 13818-3:1998 : Information technology - generic coding of moving pictures and

associated audio, part 3: Audio. MPEG-2. International Organization for Standardiza-

tion, 1998.

207

ISO/IEC. 226:2003 : Acoustics - Normal equal-loudness-level contours. International Or-

ganization for Standardization, 2003.

ISO/IEC. 14496-3:2005 Coding of audio-visual objects, part 3: Audio. MPEG-4 Audio.

International Organization for Standardization, 2005.

E. Jacobsen and P. Kootsookos. Fast, accurate frequency estimators [DSP tips & tricks].

IEEE Signal Processing Magazine, 24(3):123–125, 2007.

J. S. R. Jang. QBSH: a corpus for designing QBSH (Query by Singing/Humming) systems,

2010. [Online] Link valid 23rd September 2010. Available at http://mirlab.org.

D. Karaboğa and S. Őkdem. A Simple and Global Optimization Algorithm for Engineering

Problems: Differential Evolution Algorithm. Turk J Elec Engin, 12(1), 2004.

T. Kientzle. A Programmer’s Guide To Sound. Addison Wesley, Reading, Massachusetts,

USA, 1998.

R. Koenen. Profiles and levels in MPEG-4: approach and overview. Signal Processing:

Image Communication, 15(4-5):463–478, 2000.

Creative Labs. Soundfont 2.01 Specification, 1998. [Online] Available 23 September 2010.

From http://connect.creativelabs.com/developer/SoundFont.

J. Lazzaro and J. Wawrzynek. Compiling MPEG 4 structured audio into c. In Workshop

and Exhibition on MPEG-4 (WEMP 2001), pages 5–8, San Jose, California, USA, June

2001.

J. Lazzaro and J. Wawrzynek. An RTP payload format for MIDI. In Proceedings of the 117th

Convention of the Audio Engineering Society, San Francisco, California, USA, October

2004. AES.

T. Liebchen. An introduction to MPEG-4 audio lossless coding. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing. (ICASSP ’04),

volume III, pages 1012–1015, may. 2004.

G. Loy. Musimathics, Volume 1. The MIT Press, Cambridge, MA, USA, June 2006.

G. Loy. Musimathics, Volume 2. The MIT Press, Cambridge, MA, USA, June 2007.

E. Lyon. Dartmouth symposium on the future of computer music software: A panel discus-

sion. Computer Music Journal, 26(4):13–30, 2002.

D. MacKay. Information Theory, Inference and Learning Algorithms. Cambridge University

Press, Cambridge, UK, 2003.

208

N. Marinic, J. Natterer, and W. Schneider. Kontakt Script Language Manual. Native

Instruments Software Synthesis GmbH., berlin, Germany, 1994.

K. E. Mathias and L. D. Whitley. Transforming the search space with Gray coding. In

Proceedings of the First IEEE Conference on Evolutionary Computation, volume 1, pages

513—518, Orlando, Florida, USA, June 1994.

R. J. McAulay and Th. F. Quartieri. Speech analysis/synthesis based on a sinusoidal rep-

resentation. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP-34:

744–754, 1986.

K. Melih and R. Gonzalez. Audio object coding for distributed audio data management ap-

plications. In Proceedings of the 8th International Conference on Communication Systems

(ICCS 2002), volume 2, Singapore, November 2002.

M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, Massachusetts,

1998.

T. J. Mitchell and D. P. Creasey. Evolutionary sound matching: A test methodology and

comparative study. In Proceedings of the 6th International Conference on Machine Learn-

ing and Applications (ICMLA 2007), pages 229–234, Cincinnati, Ohio, USA, December

2007.

MMA. General MIDI. MIDI Manufacturers Association, Los Angeles, CA, USA, 1991a.

MMA. General MIDI 2. MIDI Manufacturers Association, Los Angeles, CA, USA, 1991b.

MMA. Standard MIDI Files 1.0. MIDI Manufacturers Association, Los Angeles, CA, USA,

1996.

MMA. DLS Level 1 Specification. MIDI Manufacturers Association, Los Angeles, CA, USA,

1997.

MMA. Sound synthesis standards harmonized, October 1998. [Online Press Release] Link

valid 23rd September 2010. Available at http://www.midi.org/newsviews/sasbf.shtml.

MMA. MIDI Media Adaptation Layer for IEEE-1394. MIDI Manufacturers Association,

Los Angeles, CA, USA, 2000a.

MMA. Complete MIDI 1.0 Detailed Specification. MIDI Manufacturers Association, Los

Angeles, CA, USA, 2000b.

MMA. XMF Meta File Format 1.0 Specification. MIDI Manufacturers Association, Los

Angeles, CA, USA, 2001.

MMA. Downloadable Sounds Level 2.1. MIDI Manufacturers Association, Los Angeles, CA,

USA, April 2006.

209

T. Modegi and S. -I. Iisaku. Proposals of MIDI coding and its application for audio author-

ing. In Proceedings of the IEEE International Conference on Multimedia Computing and

Systems (ICMCS 1998), page 305–314, Austin, Texas, USA, July 1998.

Brian R.; Baer Thomas Moore, Brian C. J.; Glasberg. A model for the prediction of

thresholds, loudness, and partial loudness. Journal of the Audio Engineering Society, 45

(4):224–240, 1997.

Jerry Morrison. “EA IFF 85” Standard for Interchange Format Files. Electronic Arts,

January 1985.

P. Moscato. On evolution, search, optimization, genetic algorithms and martial arts: To-

wards memetic algorithms. Caltech Concurrent Computation Program, C3P Report, 826:

1989, 1989.

M. Nelson and J.-L. Gailly. The Data Compression Book second edition. M & T Books,

New York, NY, USA, 1997.

L. Peltola, C. Erkut, P. R Cook, and V. Valimaki. Synthesis of hand clapping sounds. IEEE

Transactions on Audio, Speech and Language Processing, 15(3):1021–1029, 2007.

J. R. Pierce. An introduction to information theory: symbols, signals and noise. Dover

Publications, New York, NY, USA, 1980.

F. Plante, G. F. Meyer, and W. A. Ainsworth. A pitch extraction reference database. In

Proceedings of the 4th European Conference on Speech Communication and Technology

(EUROSPEECH ’95), pages 837–840, Madrid, Spain, September 1995. ISCA.

A. Puri and A. Eleftheriadis. MPEG-4: an object-based multimedia coding standard sup-

porting mobile applications. Mobile Networks and Applications, 3(1):5–32, 1998.

H. Purnhagen and N. Meine. HILN - the MPEG-4 parametric audio coding tools. In

Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS 2000),

volume 3, Geneva, Switzerland, May 2000.

H. Purnhagen, B. Edler, and C. Ferekidis. Object-based analysis/synthesis audio coder for

very low-bit rates. In Proceedings of 104th Convention of the Audio Engineering Society,

Amsterdam, The Netherlands, May 1998. AES.

D. W. Robinson and R. S. Dadson. Threshold of hearing and Equal-Loudness relations for

pure tones, and the loudness function. The Journal of the Acoustical Society of America,

29(12):1284–1288, December 1957.

J. P. Robinson and M. Cohn. Counting sequences. IEEE Transactions on Computers, 30

(1):17–23, 1981.

210

T. Robinson. SHORTEN: simple lossless and near-lossless waveform compression. Technical

report, Cambridge University Engineering Department, Cambridge, UK, 1994.

D. Rossum. The SoundFont 2.0 File Format: A White Paper. Joint E-mu/Creative

Technology Center, 1997. [Online] Link valid 23 Spetember 2010. Available from

http://connect.creativelabs.com/developer/SoundFont.

F. Rothlauf. Representations for Genetic and Evolutionary Algorithms. Springer, Heidel-

berg, Germany, 2nd edition, 2006.

Franz Rothlauf. Locality, Distance Distortion, and Binary Representations of Integers.

Fakultät für Betriebswirtschaftslehre, Universität Mannheim, Mannheim, Germany, 2004.

J. Rowe, D. Whitley, L. Barbulescu, and Jean-Paul Watson. Properties of Gray and binary

representations. Evolutionary Computation, 12(1):47–76, 2004.

C. Savage. A survey of combinatorial Gray codes. SIAM Review, 39(4):605–629, 1997.

C. D. Savage and P. Winkler. Monotone Gray codes and the middle levels problem. Journal

of Combinatorial Theory, Series A, 70(2):230–248, 1995.

E. D. Scheirer. The MPEG-4 structured audio standard. In Proceedings of the IEEE

International Conference on Acoustics, Speech and Signal Processing, volume 6, page

3801–3804 vol.6, Seattle, Washington, USA, 1998. ISBN 1520-6149.

E. D. Scheirer. Structured audio and effects processing in the MPEG-4 multimedia standard.

Multimedia Systems, 7:11–22, 1999.

E. D. Scheirer. Structured audio, Kolmogorov complexity, and generalized audio coding.

IEEE Transactions on Speech and Audio Processing, 9(8):914–931, November 2001.

E. D. Scheirer and L. Ray. Algorithmic and wavetable synthesis in the MPEG-4 multimedia

standard. In Proceedings of the 105th Convention of the Audio Engineering Society, San

Francisco, California, USA, September 1998. AES.

Eric D. Scheirer, Youngjik Lee, and Jae-Woo Yang. Synthetic and SNHC audio in MPEG-4.

Signal Processing: Image Communication, 15(4-5):445–461, January 2000.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC1889 - RTP: A Transport

Protocol for Real-Time Applications. Internet Engineering Task Force (IETF), September

1996.

X. Serra. A system for sound analysis / transformation based on a deterministic plus

stochastic decomposition. PhD thesis, Stanford University, USA, 1989.

211

X. Serra. Musical sound modelling with sinusoids plus noise. In C. Roads, S. Pope,

A. Picialli, and G. De Poli, editors, Musical Signal Processing, page 91–122. Swets and

Zeitlinger, 1997.

W.A. Sethares. Tuning, Timbre, Spectrum, Scale. Springer-Verlag London Ltd, Heidelberg,

Germany, 1997.

Y. S. Siao, A. W. Y. Su, J. L. Yah, and J. L. Wu. A structured audio system based on

JavaOL. In Proceedings of the International Workshop on Computer Music and Audio

Technology (WOCMAT ’05), Taipei, Taiwan, 2005.

N. J. Sieger and A. H. Tewfik. Audio coding for conversion to MIDI. In Proceedings of

the 1st IEEE Workshop on Multimedia Signal Processing, page 101–106, Princeton, New

Jersey, USA, June 1997.

F. Signol, C. Barras, and J.-S. Liénard. Evaluation of the pitch estimation algorithms in

the monopitch and multipitch cases. In Proceedings of Acoustics ’08, Paris, France, July

2008.

J. O. Smith and X. Serra. PARSHL: an analysis/synthesis program for non-harmonic sounds

based on a sinusoidal representation. In Proceedings of the 1987 International Computer

Music Conference (ICMC 1987), Champaign-Urbana, Illinois, USA, 1987.

M. Srinivas and L. M Patnaik. Genetic algorithms: a survey. Computer, 27(6):17–26, June

1994.

A. W. Y. Su, Yi-Song Xiao, Jia-Lin Yeh, and Jian-Lung Wu. Real-Time internet MPEG-4

SA player and the streaming engine. In Proceedings of the 116th Convention of the Audio

Engineering Society, Berlin, Germany, May 2004. AES.

Tallstick Sound Project. Ts-audiotomidi 2.01. [Computer program] Link valid 23rd Septem-

ber 2010. Available from http://www.tallstick.com.

T. Tolonen. Object-Based sound source modeling for musical signals. In Proceedings of the

109th Convention of the Audio Engineering Society, Los Angeles, USA, September 2000.

AES.

S. van de Par, A. Kohlrausch, G. Charestan, and R. Heusdens. A new psychoacoustical

masking model for audio coding applications. In Proceedings of the IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP ’02), volume 2, Or-

lando, Florida, USA, May 2002.

N. Vasiloglou, R. W. Schafer, and M. C Hans. Lossless audio coding with MPEG-4 struc-

tured audio. In Proceedings of the 2nd International Conference on Web Delivering of

Music, page 184–191, Darmstadt, Germany, December 2002. IEEE Computer Society.

212

B. Vercoe, MIT Media Lab, et al. The Canonical Csound Reference Manual, version 5.12

edition, August 2010. Downloaded 30th August 2010.

B. L. Vercoe, W. G. Gardner, and E. D. Scheirer. Structured audio: creation, transmis-

sion, and rendering of parametric sound representations. Proceedings of the IEEE, 86(5):

922–940, 1998.

R. D. Villwock. KSP math library technical guide v2.15, April

2009. [Online] Link valid 23 September 2010. Available from

http://www.andrewkmusic.com/filearea/SIPS/MathLibraryV215.zip.

E. Vincent and M. D. Plumbley. A prototype system for object coding of musical audio.

In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and

Acoustics (WASPAA 2005), page 239–242, New Paltz, New York, USA, 2005.

E. Vincent and M. D. Plumbley. Low Bit-Rate object coding of musical audio using bayesian

harmonic models. IEEE Transactions on Audio, Speech and Language Processing, 15(4):

1273–1282, 2007.

H. Viste and G. Evangelista. Sound source separation: Preprocessing for hearing aids and

structured audio coding. In Proceedings of the 4th COST G-6 Conference on Digital

Audio Effects (DAFx-01), Limerick, Ireland, December 2001.

VOQUAL’03. Voice quality: Functions, analysis and synthesis (VOQUAL’03). Geneva,

Switzerland, August 2003.

Tien-Ming Wang, Yi-Song Siao, and A. W. Y. Su. JavaOL - a structured audio orchestra

language: Tools, player and streaming engine. In Proceedings of the 120th Convention of

the Audio Engineering Society, Paris, France, May 2006. AES.

S. J. Welburn and M. D. Plumbley. Estimating parameters from audio for an EG+LFO

model of pitch envelopes. In Proceedings of the 12th International Conference on Digital

Audio Effects (DAFx-09), Como, Italy, September 2009a.

S. J. Welburn and M. D. Plumbley. Properties of Gray and binary codes for optimiza-

tion. Technical Report C4DM-TR-09-02, Centre for Digital Music, Queen Mary, Univer-

sity of London, London, UK, 2009b.

S. J. Welburn and M. D. Plumbley. Rendering audio using expressive MIDI. In Proceedings

of the 127th Convention of the Audio Engineering Society, New York NY, USA, October

2009c. AES.

S. J. Welburn and M. D. Plumbley. Improving the performance of pitch estimators. In

Proceedings of the 128th Convention of the Audio Engineering Society, London, UK, May

2010. AES.

213

D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.

D. Whitley. A free lunch proof for Gray versus binary encodings. In Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO 1999), volume 1, page

726–733, Orlando, FL, USA, July 1999.

D. Whitley, K. Mathias, S. Rana, and J. Dzubera. Building better test functions. In

Larry Eshelman, editor, Proceedings of the Sixth International Conference on Genetic

Algorithms, page 239–246, Pittsburgh, PA, USA, July 1995. Morgan Kaufmann.

D. Whitley, Soraya B. Rana, J. Dzubera, and K. E Mathias. Evaluating evolutionary

algorithms. Artificial Intelligence, 85(1–2):245–276, 1996.

D. H. Wolpert and W. G. Macready. No Free Lunch theorems for optimization. IEEE

Transactions on Evolutionary Computation, 1(1):67–82, April 1997.

S. Wun and A. Horner. Evaluation of iterative methods for wavetable matching. Journal of

the Audio Engineering Society, 53(9):826–835, September 2005.

Yamaha. TX816 FM Tone Generator System Performance Notes. Nippon Gakki Co. Ltd.,

Hamamatsu, Japan, 1985.

Yamaha. MU80 Tone Generator Owners Manual. Yamaha Corporation, Japan, 1994.

G. Zoia and C. Alberti. A virtual DSP architecture for audio applications from a complexity

analysis of MPEG-4 structured audio. IEEE Transactions on Multimedia, 5(3):317–328,

2003.

214

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis Structure
	1.2 Previously Published Work

	2 Background
	2.1 Audio Coding
	2.2 Lossy and Lossless Codings
	2.2.1 Lossy Coding
	2.2.2 Lossless Codings

	2.3 Parametric Coding
	2.3.1 Object Coding

	2.4 MPEG-4 Synthetic Audio Coding
	2.5 MIDI Manufacturers Association Standards
	2.5.1 Musical Instrument Digital Interface (MIDI)
	The MIDI Hardware Specification
	The MIDI Data Format
	Standard MIDI Files (SMF)

	2.5.2 MMA Synthesiser Specifications
	2.5.3 General MIDI (GM)
	2.5.4 Downloadable Sounds (DLS)
	2.5.5 Combining MIDI and Synthesis: XMF

	2.6 Extracting MIDI from Audio
	2.6.1 Commercial Applications
	2.6.2 Conclusions

	3 An ``Expressive MIDI'' model of pitch
	3.1 Representation of Pitch Trajectories in DLS
	3.1.1 dAhDSR Envelope Generator
	3.1.2 DLS Low Frequency Oscillator (LFO)
	3.1.3 The DLS Pitch Trajectory Model
	3.1.4 DLS Parameter Formats
	3.1.5 The Expressive MIDI Pitch Model

	3.2 Extracting a Pitch Trajectory from Audio
	3.2.1 Pitch Estimation Using Autocorrelation
	3.2.2 Pitch Estimation Using the Fourier Transform
	3.2.3 YIN

	3.3 Segmenting the Pitch Trajectory
	3.4 Estimating Pitch Trajectory Parameters

	4 Optimisation
	4.1 Hillclimbing/Descent Methods
	4.1.1 Steepest Descent
	4.1.2 Stochastic Hill-Climber (SHC)

	4.2 Evolutionary Algorithms (EAs)
	4.2.1 Simple Genetic Algorithm
	Crossover Schemes for Genetic Algorithms

	4.2.2 CHC

	4.3 A Comparison of the Algorithms
	4.4 Bit-wise Codings
	Standard Binary Code
	4.4.1 Hamming Distance and Locality
	Binary Reflected Gray Code
	Maximum Distance Code

	4.4.2 Transition Counts and Balancedness
	Balanced Gray Code

	4.4.3 Hamming Weight
	Monotone Gray Code

	4.5 A New Analysis of Binary Codings
	4.5.1 Sample 4-bit Encodings
	4.5.2 Plotting 5-bit Codings
	4.5.3 Distribution of 6-bit Property Values
	4.5.4 Example Individual 6-bit Codings
	4.5.5 Variation of Properties with Number of Bits

	4.6 Algorithm and Coding Performance Analysis
	4.6.1 Method
	4.6.2 Results

	4.7 Conclusions

	5 Parameter Estimation
	5.1 The DLS Pitch Trajectory Parameter Estimation Problem
	5.1.1 Possible Cost Functions

	5.2 Joint Optimisation of EG and LFO Pitch Parameters
	5.3 Assessing CHC+BRGC for EG+LFO Parameter Estimation
	5.3.1 Method
	5.3.2 Overview of Results
	Overall Summary
	By Instrument
	By File
	Example Output

	5.3.3 Distributions of Errors

	5.4 Conclusions

	6 (Re)Synthesis
	6.1 Synthesiser Selection
	6.2 Implementation in Kontakt
	6.3 Parameter Encoding
	6.4 Input File Format
	6.5 Evaluation of Expressive MIDI Resynthesis
	6.5.1 Method
	6.5.2 Results
	6.5.3 Kontakt Sample Tuning

	6.6 Conclusions

	7 (Re)Evaluating YIN
	7.1 Evaluating Pitch Estimators
	7.1.1 Pitch Data
	7.1.2 Pitch Databases
	Bagshaw
	Keele
	VOQUAL'03
	MIREX QBSH

	7.1.3 Metrics for Evaluating Pitch Estimators
	(i) Gross Error Percentage (GEP)
	(ii) 10 Cent Threshold (10c)
	(iii) Period Mismatch Percentage (PMP)
	(iv) MIDI Mismatch Percentage (MMP)

	7.2 Appraising YIN
	7.2.1 YIN Test Implementation
	7.2.2 YIN Pitch Metric Results
	7.2.3 YIN Pitch Error Distributions
	7.2.4 Harmonic Errors and YIN
	7.2.5 Harmonic vs. ``Other'' Errors

	7.3 Conclusions

	8 Alternatives to YIN
	8.1 Alternative Pitch Estimation Algorithms
	8.1.1 PRAAT AC-P
	8.1.2 SWIPE and SWIPE
	8.1.3 Previous Evaluations
	8.1.4 Comparing YIN with SWIPE and AC-P
	Design
	Implementation
	Results

	8.2 Combining YIN and SWIPE: The SWIN Estimator
	8.2.1 The SWIN Estimator
	Training SWIN
	Applying SWIN

	8.2.2 Testing SWIN

	8.3 Conclusions

	9 Conclusions
	9.1 Contributions
	9.2 Future Work
	9.3 Closing Remarks

	A Scripting Kontakt
	A.1 Validating Kontakt Parameter Formulae
	A.1.1 Kontakt LFO Frequency
	A.1.2 Kontakt Depths
	A.1.3 Kontakt Timings
	A.1.4 Kontakt Sustain Level

	A.2 Kontakt Instrument Script

	Bibliography

