21 research outputs found

    Development and Evaluation of Tongue Operated Robotic Rehabilitation Paradigm for Stroke Survivors with Upper Limb Paralysis

    Get PDF
    Stroke is a devastating condition that may cause upper limb paralysis. Robotic rehabilitation with self-initiated and assisted movements is a promising technology that could help restore upper limb function. The objective of this research is to develop and evaluate a tongue-operated exoskeleton that will harness the intention of stroke survivors with upper limb paralysis via tongue motion to control robotic exoskeleton during rehabilitation to achieve functional restoration and improve quality of life. Specifically, a tongue operated assistive technology called the Tongue Drive System is used to harness the tongue gesture to generate commands. And, the generated command is used to control rehabilitation robot such as wrist-based exoskeleton Hand Mentor ProTM (HM) and upper limb-based exoskeleton KINARMTM. Through a pilot experiment with 3 healthy participants, we have demonstrated the functionality of an enhanced TDS-HM with pressure-sensing capability. The system can add a programmable load force to increase the exercise intensity in isotonic mode. Through experiments with healthy and stroke subjects, we have demonstrated that the TDS-KINARM system could accurately translate tongue commands to exoskeleton arm movements, quantify function of the upper limb and perform rehabilitation training. Specifically, all healthy subjects and stroke survivors successfully performed target reaching and tracking tasks in all control modes. One of the stroke patients showed clinically significant improvement. We also analyzed the arm reaching kinematics of healthy subjects in 4 modes (active, active viscous, discrete tongue, and proportional tongue) of TDS-KINARM operation. The results indicated that the proportional tongue mode was a better candidate than the discrete tongue mode for the tongue assisted rehabilitation. This study also provided initial insights into possible kinematic similarities between tongue-operated and voluntary arm movements. Furthermore, the results showed that the viscous resistance to arm motion did not affect kinematics of arm reaching movements significantly. Finally, through a 6 healthy subject experiment, we observed a tendency of a facilitatory effect of adding tongue movement to limb movement on event-related desynchronization in EEG, implying enhanced brain excitability. This effect may contribute to enhanced rehabilitation outcome in stroke survivors using TDS with motor rehabilitation.Ph.D

    Differential effects of anodal and dual tDCS on sensorimotor functions in chronic hemiparetic stroke patients

    Get PDF
    Background and purpose Previous tDCS studies in chronic stroke patients reported highly inconsistent effects on sensorimotor functions. Underlying reasons could be the selection of different kinematic parameters across studies and for different tDCS setups. We reasoned that tDCS may not simply induce global changes in a beneficial-adverse dichotomy, but rather that different sensorimotor kinematics are differentially affected. Furthermore, the often-postulated higher efficacy of bilateral-dual (bi-tDCS) over unilateral-anodal (ua-tDCS) could not yet be demonstrated consistently either. We investigated the effects of both setups on a wider range of kinematic parameters from standardized robotic tasks in patients with chronic stroke. Methods Twenty-four patients with arm hemiparesis received tDCS (20min, 1 mA) concurrent to kinematic assessments in a sham-controlled, cross-over and double-blind clinical trial. Performance was measured on four sensorimotor tasks (reaching, proprioception, cooperative and independent bimanual coordination) from which 30 parameters were extracted. On the group-level, the patterns of changes relative to sham were assessed using paired-samples t-tests and classified as (1) performance increases, (2) decreases and (3) non-significant differences. Correlations between parametric change scores were calculated for each task to assess effects on the individual-level. Results Both setups induced complex effect patterns with varying proportions of performance increases and decreases. On the group-level, more increases were induced in the reaching and coordination tasks while proprioception and bimanual cooperation were overall negatively affected. Bi-tDCS induced more performance increases and less decreases compared to ua-tDCS. Changes across parameters occurred more homogeneously under bi-tDCS than ua-tDCS, which induced a larger proportion of performance trade-offs. Conclusions Our data demonstrate profound tDCS effects on sensorimotor functions post-stroke, lending support for more pronounced and favorable effects of bi-tDCS compared to ua-tDCS. However, no uniformly beneficial pattern was identified. Instead, the modulations varied depending on the task and electrode setup, with increases in certain parameters occurring at the expense of decreases in others

    Assessment of movement quality in robot- assisted upper limb rehabilitation after stroke: a review

    Get PDF
    Studies of stroke patients undergoing robot-assisted rehabilitation have revealed various kinematic parameters describing movement quality of the upper limb. However, due to the different level of stroke impairment and different assessment criteria and interventions, the evaluation of the effectiveness of rehabilitation program is undermined. This paper presents a systematic review of kinematic assessments of movement quality of the upper limb and identifies the suitable parameters describing impairments in stroke patients. A total of 41 different clinical and pilot studies on different phases of stroke recovery utilizing kinematic parameters are evaluated. Kinematic parameters describing movement accuracy are mostly reported for chronic patients with statistically significant outcomes and correlate strongly with clinical assessments. Meanwhile, parameters describing feed-forward sensorimotor control are the most frequently reported in studies on sub-acute patients with significant outcomes albeit without correlation to any clinical assessments. However, lack of measures in coordinated movement and proximal component of upper limb enunciate the difficulties to distinguish the exploitation of joint redundancies exhibited by stroke patients in completing the movement. A further study on overall measures of coordinated movement is recommended

    Task and Kinematic Parameters for Upper Limb Stroke Patient: A Review

    Get PDF
    The development of robotics technology has now been used to assist the rehabilitation therapy process of stroke patients.  This far, the progress of therapy patients has been observed qualitatively and quantitatively with several clinical assessments such as Fuegl Meyer, Barthel Index, Motor Function Index, etc. This paper aims to provide a review of stroke patient progress evaluation measurements using kinematic parameters using elbow and shoulder robotic therapy devices and provide an overview of the types of exercises performed on the robotic therapy interface on the motor and cognitive development of stroke patients. Thirty publications that used kinematic parameters as the basis for assessing the development of stroke patients were included, there were 81 kinematic parameters from all the studies reviewed, based on ICF 53 of which were included in the Body Functions and Structures (BFS) classification, and 28 others were included in the Activities and Participation (AP) classification. Several studies showed a good correlation between the measurement of kinematic parameters and clinical assessment (P0.7; P<0.05)

    Enhancement of Robot-Assisted Rehabilitation Outcomes of Post-Stroke Patients Using Movement-Related Cortical Potential

    Get PDF
    Post-stroke rehabilitation is essential for stroke survivors to help them regain independence and to improve their quality of life. Among various rehabilitation strategies, robot-assisted rehabilitation is an efficient method that is utilized more and more in clinical practice for motor recovery of post-stroke patients. However, excessive assistance from robotic devices during rehabilitation sessions can make patients perform motor training passively with minimal outcome. Towards the development of an efficient rehabilitation strategy, it is necessary to ensure the active participation of subjects during training sessions. This thesis uses the Electroencephalography (EEG) signal to extract the Movement-Related Cortical Potential (MRCP) pattern to be used as an indicator of the active engagement of stroke patients during rehabilitation training sessions. The MRCP pattern is also utilized in designing an adaptive rehabilitation training strategy that maximizes patients’ engagement. This project focuses on the hand motor recovery of post-stroke patients using the AMADEO rehabilitation device (Tyromotion GmbH, Austria). AMADEO is specifically developed for patients with fingers and hand motor deficits. The variations in brain activity are analyzed by extracting the MRCP pattern from the acquired EEG data during training sessions. Whereas, physical improvement in hand motor abilities is determined by two methods. One is clinical tests namely Fugl-Meyer Assessment (FMA) and Motor Assessment Scale (MAS) which include FMA-wrist, FMA-hand, MAS-hand movements, and MAS-advanced hand movements’ tests. The other method is the measurement of hand-kinematic parameters using the AMADEO assessment tool which contains hand strength measurements during flexion (force-flexion), and extension (force-extension), and Hand Range of Movement (HROM)

    Robotics-assisted Visual-motor Training Influences Arm Position Sense in Three-dimensional Space

    Get PDF
    Background Performing activities of daily living depends, among other factors, on awareness of the position and movements of limbs. Neural injuries, such as stroke, might negatively affect such an awareness and, consequently, lead to degrading the quality of life and lengthening the motor recovery process. With the goal of improving the sense of hand position in three-dimensional (3D) space, we investigate the effects of integrating a pertinent training component within a robotic reaching task. Methods In the proof-of-concept study presented in this paper, 12 healthy participants, during a single session, used their dominant hand to attempt reaching without vision to two targets in 3D space, which were placed at locations that resembled the functional task of self-feeding. After each attempt, participants received visual and haptic feedback about their hand’s position to accurately locate the target. Performance was evaluated at the beginning and end of each session during an assessment in which participants reached without visual nor haptic feedback to three targets: the same two targets employed during the training phase and an additional one to evaluate the generalization of training. Results Collected data showed a statistically significant [39.81% (p=0.001)] reduction of end-position reaching error when results of reaching to all targets were combined. End-position error to the generalization target, although not statistically significant, was reduced by 15.47%. Conclusions These results provide support for the effectiveness of combining an arm position sense training component with functional motor tasks, which could be implemented in the design of future robot-assisted rehabilitation paradigms to potentially expedite the recovery process of individuals with neurological injuries
    corecore