33 research outputs found

    Robotic Burst Imaging for Light-Constrained 3D Reconstruction

    Get PDF
    This thesis proposes a novel input scheme, robotic burst, to improve vision-based 3D reconstruction for robots operating in low-light conditions, where existing state-of-the-art robotic vision algorithms struggle due to low signal-to-noise ratio in low-light images. We aim to improve the correspondence search stage of feature-based reconstruction using robotic burst imaging, including burst-merged images, a burst feature finder, and an end-to-end learning-based feature extractor. Firstly, we establish the use of robotic burst imaging to compute burst-merged images for feature-based reconstruction. We then develop a burst feature finder that locates features with well-defined scale and apparent motion on a burst to deal with limitations of burst-merged images such as misalignment at strong noise. To improve feature matches in burst-based reconstruction, we also present an end-to-end learning-based feature extractor that finds well-defined scale features directly on light-constrained bursts. We evaluate our methods against state-of-the-art reconstruction methods for conventional imaging that uses both classical and learning-based feature extractors. We validate our novel input scheme using burst imagery captured on a robotic arm and drones. We demonstrate progressive improvements in low-light reconstruction using our burst-based methods against conventional approaches and overall, converging 90% of all scenes captured in millilux conditions that otherwise converge with 10% success rate using conventional methods. This work opens up new avenues for applications, including autonomous driving and drone delivery at night, mining, and behavioral studies on nocturnal animals

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Multimedia Forensics

    Get PDF
    This book is open access. Media forensics has never been more relevant to societal life. Not only media content represents an ever-increasing share of the data traveling on the net and the preferred communications means for most users, it has also become integral part of most innovative applications in the digital information ecosystem that serves various sectors of society, from the entertainment, to journalism, to politics. Undoubtedly, the advances in deep learning and computational imaging contributed significantly to this outcome. The underlying technologies that drive this trend, however, also pose a profound challenge in establishing trust in what we see, hear, and read, and make media content the preferred target of malicious attacks. In this new threat landscape powered by innovative imaging technologies and sophisticated tools, based on autoencoders and generative adversarial networks, this book fills an important gap. It presents a comprehensive review of state-of-the-art forensics capabilities that relate to media attribution, integrity and authenticity verification, and counter forensics. Its content is developed to provide practitioners, researchers, photo and video enthusiasts, and students a holistic view of the field

    Recent Advances in Signal Processing

    Get PDF
    The signal processing task is a very critical issue in the majority of new technological inventions and challenges in a variety of applications in both science and engineering fields. Classical signal processing techniques have largely worked with mathematical models that are linear, local, stationary, and Gaussian. They have always favored closed-form tractability over real-world accuracy. These constraints were imposed by the lack of powerful computing tools. During the last few decades, signal processing theories, developments, and applications have matured rapidly and now include tools from many areas of mathematics, computer science, physics, and engineering. This book is targeted primarily toward both students and researchers who want to be exposed to a wide variety of signal processing techniques and algorithms. It includes 27 chapters that can be categorized into five different areas depending on the application at hand. These five categories are ordered to address image processing, speech processing, communication systems, time-series analysis, and educational packages respectively. The book has the advantage of providing a collection of applications that are completely independent and self-contained; thus, the interested reader can choose any chapter and skip to another without losing continuity

    Selectively De-animating and Stabilizing Videos

    Full text link

    Ocular motion classification for mobile device presentation attack detection

    Get PDF
    Title from PDF of title page viewed February 25, 2021Dissertation advisor: Reza DerakhshanVitaIncludes bibliographical references (page 105-129)Thesis (Ph.D.)--School of Computing and Engineering. University of Missouri--Kansas City, 2020As a practical pursuit of quantified uniqueness, biometrics explores the parameters that make us who we are and provides the tools we need to secure the integrity of that identity. In our culture of constant connectivity, an increasing reliance on biometrically secured mobile devices is transforming them into a target for bad actors. While no system will ever prevent all forms of intrusion, even state of the art biometric methods remain vulnerable to spoof attacks. As these attacks become more sophisticated, ocular motion based presentation attack detection (PAD) methods provide a potential deterrent. This dissertation presents the methods and evaluation of a novel optokinetic nystagmus (OKN) based PAD system for mobile device applications which leverages phase-locked temporal features of a unique reflexive behavioral response. Background is provided for historical and literary context of eye motion and ocular tracking to provide context to the objectives and accomplishments of this work. An evaluation of the improved methods for sample processing and sequential stability is provided with highlights for the presented improvements to the stability of convolutional facial landmark localization, and automated spatiotemporal feature extraction and classification models. Insights gleaned from this work are provided to elucidate some of the major challenges of mobile ocular motion feature extraction, as well as additional future considerations for the refinement and application of OKN motion signatures as a novel mobile device based PAD method.Introduction -- Retrospective, Contextual and Contemporary analysis -- Experimental Design -- Methods and Results -- Discussion -- Conclusion

    Energy-efficient circuits and systems for computational imaging and vision on mobile devices

    Get PDF
    Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2018.Cataloged from PDF version of thesis.Includes bibliographical references (pages 125-127).Eighty five percent of images today are taken by cell phones. These images are not merely projections of light from the scene onto the camera sensor but result from a deep calculation. This calculation involves a number of computational imaging algorithms such as high dynamic range (HDR) imaging, panorama stitching, image deblurring and low-light imaging that compensate for camera limitations, and a number of deep learning based vision algorithms such as face recognition, object recognition and scene understanding that make inference on these images for a variety of emerging applications. However, because of their high computational complexity, mobile CPU or GPU based implementations of these algorithms do not achieve real-time performance. Moreover, offloading these algorithms to the cloud is not a viable solution because wirelessly transmitting large amounts of image data results in long latency and high energy consumption, making them unsuitable for mobile devices. This work solves these problems by designing energy-efficient hardware accelerators targeted at these applications. It presents the architecture of two complete computational imaging systems for energy-constrained mobile environments: (1) an energy-scalable accelerator for blind image deblurring, with an on-chip implementation and (2) a low-power processor for real-time motion magnification in videos, with an FPGA implementation. It also presents a 3D imaging platform and image processing workflow for 3D surface area assessment of dermatologic lesions. It demonstrates that such accelerator-based systems can enable energy-efficient integration of computational imaging and vision algorithms into mobile and wearable devices.by Priyanka Raina.Ph. D
    corecore