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ABSTRACT

As a practical pursuit of quantified uniqueness, biometrics explores the parame-

ters that make us who we are and provides the tools we need to secure the integrity of

that identity. In our culture of constant connectivity, an increasing reliance on biometri-

cally secured mobile devices is transforming them into a target for bad actors. While no

system will ever prevent all forms of intrusion, even state of the art biometric methods

remain vulnerable to spoof attacks. As these attacks become more sophisticated, ocular

motion based presentation attack detection (PAD) methods provide a potential deterrent.

This dissertation presents the methods and evaluation of a novel optokinetic nystagmus

(OKN) based PAD system for mobile device applications which leverages phase-locked

temporal features of a unique reflexive behavioral response. Background is provided for

historical and literary context of eye motion and ocular tracking to provide context to the

objectives and accomplishments of this work. An evaluation of the improved methods
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for sample processing and sequential stability is provided with highlights for the pre-

sented improvements to the stability of convolutional facial landmark localization, and

automated spatiotemporal feature extraction and classification models. Insights gleaned

from this work are provided to elucidate some of the major challenges of mobile ocular

motion feature extraction, as well as additional future considerations for the refinement

and application of OKN motion signatures as a novel mobile device based PAD method.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Data security is inherently dependent on reliable methods of access control [1].

Establishing a secure system requires reliable methods of user authorization and identity

verification [2, 3]. Biometrics are generally considered one of the most secure methods

of identity verification, but these systems can be vulnerable to spoof attacks [1, 4–6].

These vulnerabilities open users to considerable personal and professional risks which

negatively impact user experience [7, 8]. Presentation Attack Detection (PAD) seeks to

mitigate some of the potential risks by incorporating the temporal characteristics of be-

havioral response to enhance the integrity of the sample collection process [8–10].

Spoof detection using PAD is an independent verification process intended to aug-

ment rather than replace traditional morphological biometric methods [8]. While behav-

ior can be considered a type of biometric, PAD methods typically take a generalized

approach to facilitate subject independent operation [11]. Security protocols are only use-

ful when there is sufficient user participation, so it is important for an additional layer

of the process to add as little complexity as possible to maintain the quality of the user

experience [12, 13]. Many existing PAD methods rely on user compliance with instruc-

tional prompts or action sequences that add significant durations to the sample collection.

Optokinetic nystagmus (OKN) is a reflexive behavior which manifests reliably in normal
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healthy populations [14–16]. Ocular reflexive responses are virtually imperceptible to the

user and don’t require compliance or conscious effort [16]. Utilizing OKN as a method of

PAD involves the display of a suitable visual stimulus and sequential response sample col-

lection [17]. Computer Vision (CV) and Machine Learning (ML) analysis of the visible

features of the face and eyes are a critical part of classification of the response characteris-

tics. While recognition and segmentation of facial and ocular features is a well-researched

field, even simple detection is not considered a solved problem [18–22]. Optokinetic re-

sponse classification requires precise localization of ocular features and facial landmarks

for reliable sequential motion estimation [23]. Processing pipelines, libraries, and classi-

fication models used to process the response samples should be suitable for mobile device

operation, which add non-trivial size and complexity constraints. Based on the literature

and preliminary feasibility analysis of the relevant technology, it is hypothesized that the

OKN response can be reliably elicited and detected using the display and imaging sensor

of a mainstream mobile device.

1.2 Overview

Interactions with mobile devices now comprise a considerable amount of most

users secure computing [24]. A broad array of applications and functionality, combined

with high-speed mobile networks, offer remote access to wide array of data including

sensitive business transactions, financial information, and personal communication [6,25].

These highly portable devices enable more fluid and natural interaction with the digital

universe, but also present an enticing target for intrusion and theft [24]. Creating a reliable
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method to secure these devices is an increasing necessity which has garnered a significant

interest in academic and industrial research [1, 5, 26–33].

OKN is a neurological pathway driven response to specific configurations of mov-

ing visual stimulus that presents a promising target for motion sequence behavioral classi-

fication. Highly structured, yet slightly eccentric, the motions generated by the underlying

control system are a prime candidate for subject agnostic behavioral PAD [14,15,34–36].

Recent improvements in visible wavelength (VW) based gaze angle estimation methods

mean the motion features can be extracted from the same sensors already broadly in use

for mobile biometric applications [18, 19, 22, 37, 38]. Due to the fact that OKN is a re-

sponse to specifically structured moving edges and textures, it’s not a behavior commonly

observed in daily interaction, making covert recording of the characteristic response dif-

ficult [15, 16, 36, 39]. Additionally, as the response is sensitive to specific velocity and

acceleration parameters of the visual stimulus, the pattern of animation can be modulated

to create an extreme improbability of a pre-recorded response aligning with anticipated

behavior [14–17, 35, 40].

OKN is controlled by a reflexive neurological pathway that expresses in a char-

acterizable way among the general population [14–16]. Motions generated are virtually

imperceptible to an individual observing the stimulus as integration of visual information

is suspended during the larger eye movements produced as part of the response [16,34,41].

Despite a broad interest in eye motion and gaze approximation applications in the litera-

ture, the collection of the precise sequential motions of the eye necessary to differentiate

subtle characteristics remain an unsolved challenge to the broad implementation of this
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method [23, 42–44].

Most of the successful methods currently utilized to secure mobile devices employ

authentication credentials hashed from user-specific biological features [1, 28, 30, 31].

Some recent device designs have incorporated additional specialized sensors to more

efficiently collect this biometric data [45–47], but even with these advancements mo-

bile devices remain susceptible to subversion via reproductions of likeness or biological

traits [48–50]. Since the traits which are used to generate feature hashes that provide

secure authentication are typically highly visible elements of personal identity, keeping

these features secret is largely impractical [1, 2, 8]. Fortunately, if the methods used to

authenticate the user’s identity are augmented with the capacity of validating that the

features are being presented to the system in real time, it’s not necessary to secure the

identifying features [11,51]. Systems with this capability can differentiate a direct source

from a spoof attack, meaning identifying features compromised by unauthorized collec-

tion or replication would be rejected. This layer of knowledge protects from scenarios

of persons presenting duplicated features or visual representations as authorized creden-

tials. Methods which are designed to accomplish this task are referred to broadly as

liveness detection methods [11, 26, 51]. Liveness methods are based on temporal factors

such as changes in color, texture, or orientation of the input over some period of ob-

served time [9,10,52–54]. These changes are used to verify that the presented credentials

are generated from features of a living human rather than a replicated source. Liveness

authentication is a broad field which includes discrete methods like PAD, but also en-

compasses continuous authentication methods. While some potential applications exist
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for persistent liveness verification via ocular motion analysis, this dissertation will focus

primarily on PAD applications [6, 8, 11, 55].

Biometrics is an applied study of quantified uniqueness which incorporates a

broad spectrum of scientific disciplines [1,5,26,56,57]. Understanding data derived from

a biological source requires investigation of the underlying characteristics and functions

associated with the structures being evaluated [29, 32, 44, 58–61]. Collection of useful

features from those structures relies on engineering to analyze the capabilities, and the

limitations, of imaging and sensing devices used to acquire the data. Once that data has

been collected, the tools and algorithms of computer science are essential to developing

reliable methods for processing and decision making [32]. Behavioral biometric analy-

sis carries on even further into the understanding of the neurological and psychological

processes which underlie the dynamic thoughts, states, and emotions that govern human

actio [23, 44, 62–65].

While not a primary biometric in and of themselves, the main goal of a PAD

system is to improve access control when coupled with a suitable morphological feature

authentication system [8, 11, 55]. Sequential inputs are important to behavioral methods

as single image frames lack descriptive power for complex behavioral traits like pose

variation and ocular motion [17, 44, 66]. These cues can typically be easily detected by a

human observer when collected from video sources of sufficient sampling rate, however,

there are several layers of complexity for computational detection due to appearance vari-

ations and intrasubject response variability [20, 64, 67, 68]. This dissertation presents a

5



review of the relevant literature, an explanation of the collection and processing of par-

ticipant data, and an evaluation of the methods employed in the investigation of an OKN

based spatiotemporal PAD.

1.3 Human Motion and Behavioral Based Classification

Action recognition and human motion processing is a complex but highly promis-

ing area in ML research [43, 62, 69–71]. Motion tracking applications are widely used in

the entertainment industry, sports, fitness, and biomedical research [72, 73]. Head move-

ments, gesture control, and eye motion have also become a critical part of future innova-

tions in virtual and augmented reality devices like headsets, controllers and room scale

tracking systems for immersive interactive simulations [70, 74]. Applications of motion

based behavioral classification are used to improve public safety by monitoring areas with

high traffic or crime rates and identify potential disruptive or dangerous behavior before

it occurs [75–77]. Trainers and coaches commonly utilize motion tracking hardware and

software that can provide insights into the biomechanical efficiency of an athlete’s tech-

nique and provide alternative training strategies to improve sports performance [78, 79].

Motion tracking is a computationally complex combination of feature extraction,

change detection and sequence prediction [41, 80–82]. From the broad capabilities and

adoption of the technology, it is clear that there are many potential applications of hu-

man motion and behavioral recognition. While utilizing this technology can be complex

and computationally intensive, it has the potential to streamline interactions with the now

ubiquitous world of mobile computing devices by augmenting vulnerable biometric safety
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applications [37, 70, 81, 83, 84]. Some of the specific aspects of eye tracking differ from

other human motion tracking scenarios, but the same general methods can be applied

from other areas of the discipline [70]. Eye tracking has a wide array of potential applica-

tions that range from assistive devices [80] and touch less interfaces [70]to adaptive user

interfaces and predictive content delivery [13, 85] .

Most commercially available mobile devices employ powerful multi-core embed-

ded processors, integrated Graphics Processing Units (GPU), and high-resolution imaging

sensors [46]. Edge processing in time critical computational functionality can be accel-

erated by GPU deployment of ML models, providing fast and secure local device sample

processing [86]. Similar hardware configurations for accelerated edge computing are used

in autonomous vehicle to track and extrapolate human gait patterns of nearby pedestrians

and cyclists to avoid accidents [87]. The power and sensing capabilities provided by these

devices, along with their wide user adoption, make them an excellent practical target for

the development of new human interaction based applications [13, 88].

1.4 Summary of Contributions

This dissertation presents a novel method of PAD based on reflexive behavioral

features. Methods presented here are targeted for mobile device applications, but the

techniques are also suitable for other properly equipped platforms. Several key discover-

ies and contributions related to this work are highlighted below.

• Collection and processing of a pilot study of human subject responses to visual

stimulus generated and recorded using a mobile device.

7



Recordings provide the first known large scale high-resolution collection which

captures ocular dynamics of generic device interactions and specific behavioral re-

sponses in the presences of prescribed visual stimulus. Consistent responses were

noted across the participant population providing verification of the stimulus ren-

dered by the mobile device display to suitably evoke the OKN reflex under the

conditions which were used in the study.

• A customized mobile device based data collection application was designed and

tested to automate and standardize the collection process.

Sequences of images cropped from the captured video were used to build response

sequences based on the ROI of the eye center provided by facial landmark model

localization. Measurements and gaze angle estimates were obtained from the video

samples using state-of-the-art libraries and feature extraction methods.

• Generation and adaptation of temporal feature extraction methods based on refined

ocular feature localization libraries.

Proposed improvements to the sequential feature localization which were imple-

mented on a task focused branch of the library used in the pilot study. Samples

processed using this branch provide more precise gaze estimation. Subsequent pro-

cessing work developed a set of key features from sequences of localizataions gen-

erated by the improved library. Multiple types of feature processing and classifica-

tion models where trained and tested. LSTM based ML models trained using these

features demonstrate the potential for gaze approximation based applications, such
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as OKN based PAD, for mobile device biometrics.

• Proposed refinement method for gaze estimation using deep learning based facial

landmark localization and alignment methods.

MTCNN models were deployed in extended testing in an attempt to improved se-

quential stability by use localization, ROI segmentation, and pose variance nor-

malization. Sequential and recurrent processing models were generated to test the

stability of extracted features, and several configurations were tested. Results and

possible avenues of improvement in this method are provided.

• An optical flow based motion detection and context stabilization framework for

gaze feature extraction from selfie video.

Results of initial testing provide validation for a potential context stabilized optical

flow based motion feature extraction method for ocular and biological structures.

Motion of larger groups of pixels in refined regions of interest provided overall

better performance in the detection of changes in structural conformation than other

tested edge and threshold based methods.

• Spatiotemporal automated feature extraction and classification methods for use with

high-resolution biological behavioral data.

Methods developed in this investigation applied spatial transforms to sequential

imaging data obtained from front facing device cameras. These sequences contain

stimulus elicited reflexive ocular response, which were treated as a single 3D vol-

ume containing feature data of both behavior and structure. Models trained using

9



this method contain a set of spatiotemporal kernels which describe the relationships

between common elements of the response dynamics. These models demonstrate

the potential future applications for rich causal relationship analysis in other bio-

logical and ML fields.
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CHAPTER 2

RETROSPECTIVE, CONTEXTUAL AND CONTEMPORARY ANALYSIS

2.1 Liveness and Biometrics

Biometric methods of user authentication are an applied set of fundamental image

and signal processing techniques with some innovative solutions specific to processing

structured data derived from human biology. Feature extraction and template matching

are among the most common areas of refinement among academic and industrial research,

but the tools utilized to accomplish those objectives are highly varied. Techniques like

deep learning based machers are becoming increasingly common, providing methods of

extracting and identifying all sorts of novel biological structures. Biometrically equipped

devices allow for easy and relatively secure device access, and as adoption of the technol-

ogy increases so does the interest in development. Strong global markets for biometric and

biomedical computer vision applications have motivated and funded substantial research

in the field. The popularity of biometric authentication, coupled with investigating solu-

tions to the current limitations, have also generated a variety of published industrial and

academic resources. Many of these studies focus on improving the detection and classifi-

cation of morphological features in image and sensor data, however, subversion detection

and prevention has arisen as a distinct branch of active research. Liveness detection is an

increasingly popular area within the branch, and has received extensive treatment in the

literature.
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2.2 Methodology of Literature Search

At the preliminary stages of the topical investigation a mapping-based approach

was employed to optimize the search for relevant source literature. Publications and re-

sources from multiple disciplines were evaluated to establish an index of relevant search

terms and criteria. Contextual and semantic methods, which provide content matching

suggestions based on frequency and co-occurrence of search terms, were employed to ex-

pand the search criteria across the relevant disciplines. Queries were formulated based on,

but not limited to, keywords such as behavioral biometrics, eye tracking, gaze estimation,

human motion classification, liveness, ocular reflex, mobile biometrics, ocular image seg-

mentation, optokinetic nystagmus, selfie biometrics, sequence classification, and spoof

detection.

Documents sourced by direct query of keywords were leveraged to provide addi-

tional associated documents via reference management tools Mendeley and Zotero. Li-

brary resources and databases such as EBSCOhost, Google Scholar, JSTORE, and PubMed

provided additional direct sources, contextual cross-references, and citation statistics.

2.3 History of Eye Tracking

Eye tracking systems for both academic and industrial applications been the sub-

ject of substantial practical and theoretical research in the fields of engineering, computer

vision and psychology for over a century. Modern methods provide versatility, but many

of the discoveries made in the early research have paved the way for the current state-of-

the-art devices and applications. This section provides a brief overview of the field in its
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historical context to provide a foundation to understanding the tools used and created by

our research.

Developed in the late 1800s, the first practical eye tracking methodologies utilized

mechanical systems to amplify and record ocular motions. These devices were both ar-

chaic and unwieldy, but provided new and interesting observations. While devices like

Edmund Delabarre’s contraption required the use of an anesthetic to numb the subject’s

eye in order to attach the mechanical apparatus to the cornea, it allowed a stylus to record

the subject’s eye motion directly on a rotating cylinder. Despite the limited capabili-

ties, being able to observe the subtle behaviors and properties of the eye led to countless

discoveries and insights into the mechanics of disease and the treatment of visual impair-

ment. Cost and complexity were still limiting factors however, and adoption of even the

crude measurement devices was limited. Most experimental processes of the period were

still conducted via observation with reflective devices or optics. These crude methods

made it difficult to observe and measure some of the small but important motions re-

sponsible for refining foveal alignment, as rapid small scale motions are typically filtered

out by the perceptual systems of the human observer. Despite some limits and setbacks,

promising findings spurred a variety of dialogues and publications which drew consider-

able interest in the field. More laboratories began their own work, and toward the turn of

the century many researchers started noticing several types of uniform behaviors. I would

take several years for observational data to provide the proof, but these findings indicated

a more subconscious origin of fixation control than would have initially been assumed if

the eyes were primarily under voluntary control.

13



Some of the most notable findings of the late 19th century included Dr. Louis

Javal’s observations of the regular high velocity displacements, which he called saccades,

when performing reading related visual search tasks. Realizing these movements were

too rapid and rhythmic to likely be the result of conscious control, which likely would

involve a smooth scanning over the line of text, Javal and his colleges began to theorize

about the possibility of a subcortical pathway which controlled a greater part of ocular

motion. Despite the meaningful content of the visual space containing linearly sequenced

elements, the participants gaze only fixed briefly before rapidly jumped toward some other

element. Each of these jumps resulted in a non-trivial angular shift, causing the traversal

of a variable linear distance. Given that most voluntary muscular actions contain some

degree of gross motion in the initial stages combined with more granular control as the

action nears the target, most theories at the time would have indicated that the behav-

ior he observed was the result of a muscle memory and learned behavior. Javal’s work

in ocular motion focused on pathologies of binocular coordination and alignment which

grew from a familiar issue of strabismus, a developmental issue that causes the eyes to

have difficulty aligning retinal projections. His observations led him to believe that if

some individuals lacked the ability to synchronize their eye motions, the system that con-

trolled this function was one that arose from hereditary physical structures in the brain,

rather than some defect of learned behavior or diminished muscular control. Voluntary

motions of most muscle groups are the result of integrated neurological activations in the

motor cortex which result in modulation of a reflex pathway to suspend the normal force
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balance of agonist and antagonist muscle groups. While eye gaze can be consciously di-

rected, many common ocular motions are generated by involuntary reflexive pathways.

While the technology to objectively measure the virtually imperceptible characteristics

of saccadic behavior didn’t exist until some years later, subsequent research conducted

by Erdmann and Dodge produced remarkably accurate measurements of saccadic latency

with only slight improvements on the original visual observation method. Measurements

of the duration of fixation between saccades indicated that the short stops allowed time for

integration of visual content, with the eyes pausing only long enough to generate recog-

nition of the target content and then move on. Related studies noted that this integration

appeared to be suspended while the eye was in motion during a saccade, but not when

following a moving target.

Current research still builds on the work of pioneers like Delabarre, Javal, and

Erdmann and Dodge, but it was the improvement of measurement and logging devices

built in the early to mid-20th century that ultimately provided the biggest step forward

for ocular motion research. Scientific advances provided several powerful research tools,

most notably those related to photographic equipment, optics, and electrical measurement.

More sensitive films allowed for reduced exposure times while maintaining detail, and

video cameras became a common part of most behavioral laboratory space. Techniques

utilized in imaging studies took advantage of the reflective characteristics of the eye’s

surface by noting the change of apparent glint produced by a fixed light source relative to

the angular characteristics of the subject’s gaze. The process of calculating ocular motion

through this reflective source methodology is somewhat complicated by the elongated
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anatomical characteristics of the eye, however, the ease of implementation combined with

relatively high-quality gaze localization has seen this technique largely persisting into the

modern era of ocular motion research.

Response time has always been a major item of interest relative to the function

and control of the visual system. As materials and electronics improved, researchers be-

gan work in measuring the electrophysiological responses of the eye’s muscular system.

Recording motions with electromyography (EMG) enabled improved understanding of

the temporal characteristics, but the devices are invasive, expensive, and required the sub-

ject to hold completely still to reduce noise from other muscular movements. Of the more

useful developments resulting from the early work were the simplified configurations of

EMG that focused on measuring periocular musculature responsible for movement in the

eye lid to note blink events. Knowing when blink events are present, and implementing

the proper filtering is a major part of stable eye tracking applications.

Improved camera systems played a major part in the advancement of both spatial

and temporal analysis in optokinetic research. Film based collections tended to be limited

in low light conditions, and since many studies were conducted in relatively dark envi-

ronments, traditional cameras produced under exposed images that lacked clarity. Since

the measurement calculations using images are based on changes in position, this became

especially challenging when dealing with the millisecond level events common in motion

research. Low light conditions are often necessary when observing pupillary dynamics or

using distant illumination, so researchers were desperate for new methods.
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Toward the end of the 20th centry digital camera technology would gradually re-

place and supersede most other eye tracking tools. Charge-coupled device (CCD) based

image sensors had limited spatial resolution, but their infrared sensitivity meant they could

capture structural details of the eye without the need for visible light illumination. Im-

provements were made over several decades in the imaging device resolution, photo sen-

sitivity, and noise characteristics, resulting in improved capture rates and image quality.

By the 1990’s, digital imaging devices had become notably smaller, lighter, and cheaper

which improved their utility in research applications. Fully digital ecosystems meant ex-

perimental results could be recorded directly to a computer and processed by computer

vision and pattern recognition systems virtually instantaneously.

In recent decades, studies of ocular motion largely focus on either user interac-

tion or biologically focused analysis of neurophysiological pathways directing reflexive

responses and visual attention. Neuroscientific and psychological studies of the ocular

dynamics often integrate EEG, fNIRS, or fMRI to measure neurological responses that

associate cognitive states and brain regional activations with saccades, pursuits, and fixa-

tions. Low latency visual response mechanisms like the Vestibulo Ocular Reflex (VOR)

and Optokinetic Nystagmus (OKN) have been extensively investigated using these meth-

ods, but new discoveries and insights are still being made. Consumer research enables

improvements in user interface and experience by understanding how the presentation of

elements or products impacts behavior or interest. Many of these studies are done using

wearable head mounted tracking systems or specialized hardware trackers, but as the ac-

curacy of image-based gaze tracking methods improve there is increasing interest in the
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potential of consumer grade webcams and mobile integrated camera devices.

2.4 State of the Art

2.4.1 Infrared

Imaging of the eye is complex for a variety of reasons that relate at least in part

to the special interaction of light sources with the tissues that compose the lens, iris, and

cornea. Translucent properties of these tissues and the mucous membranes that cover

them create specular reflections of incident light which is both an advantage and a disad-

vantage in imaging based tracking. Reflections can be a problem for most photographic

applications, as localized high intensity reflections can obscure important features. Many

hardware based commercial and research grade eye tracking devices have been designed

with the take advantage of these reflective properties by approximating gaze angle using

the interaction of light with the eye’s physical structure. Anterior portions of the eye are

given an ovoid curvature by the slight budge of the aqueous humor that fills the cornea.

Glints are small points of bright light formed by reflections of focused sources on the

corneal surface. Fixed sources at some distance from the surface follow characteristic

patterns of projection relative to the curvature of the anterior surface. These patterns can

be mapped out to determine the change in gaze angle relative to the apparent change in

linear position of the reflected glint pattern Fig. 1. Rather than a single source, trackers

commonly use an array of sources to improve tracking accuracy.

Visual pigments which are used in human photoreceptor cells as part of the process

of converting light into nerve impulses are sensitive only to a narrow band of wavelengths.
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Figure 1: Glint based eye tracking provides an estimation of the gaze angle based on the
movement of the reflection of an IR source.

Using matched infrared (IR) imaging and light sources provides better focal characteris-

tics when designing the lens systems, and allows glints to be tracked relative to the easily

segmented dark pupil center. Modern cameras offer frame rates and imaging resolutions

sufficient to accurately and non-invasively record normal ocular motion. Pupillary dynam-

ics aren’t impacted by the use of IR illumination, which is a key advantage for the study

of ocular response dynamics. Heat generated by high intensity IR sources can potentially

damage the cells of the retina by causing thermal damage to the tissues. Illuminators used

in most studies generally have intensities that fall far below exposure guidelines, and thus

are generally considered safe, but exposure to all radiation sources should be minimised.

Precautions are always merited and protocols should consider all relevant risks in human

studies.
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Figure 2: Images of the eye collected in both Visible (left) and Infrared (right) Wave-
lengths. Iris pigmentation drastically impacts visible imaging of iris features.

Head mounted tracking solutions provide precise measurements of ocular response

dynamics by mounting miniature cameras and illuminators on a secured platform up close

to the eye. Desktop trackers are less invasive, but generally less precise. They are de-

signed to work at considerable distance using reflective glint-based tracking. Facial pose

can influence the apparent angle of gaze, so many desktop trackers have started to include

some facial pose detection and compensation in their software.

Structures of the iris are easily resolved in IR as the pigments that compose the

eye coloring are highly reflective outside the visible spectrum Fig. 2. For this reason,

many studies of identification and behavioral response related to the eyes have focused

on film and sensor data collected in IR. This is ideal in a laboratory situation as opti-

mal parameters can be selected and confounding variables are easily controlled. In the

case of collections in the wild with user devices, key conditions can vary based on use

case and environment. Given that the intensity of IR is typically less than visible light

in most conditions, the exposure characteristics and detail of images captured are more

20



consistent. Most objects and materials emit or reflect some amount of light outside the

visible spectrum so there are still a variety of sources for interference. Most IR imaging

sensors are based on either CCD or complementary metal oxide semiconductor (CMOS)

designs that provide good sensitively and reasonable levels of noise. Even CCD and

CMOS sensors with embedded color pattern filters still convert some amount of the in-

visible spectrum, resulting in washed out images with unappealing color anomalies due

to the additive characteristics of the invisible spectrum. To maintain visual appeal of the

images captured with these cameras, most lens systems are equipped with cutoff filters to

limit IR and ultraviolet wavelengths. Only a few mobile devices come equipped with IR

sensitive sensors, and even in these cases the interface may not allow direct access to the

sensor data.

2.4.2 Visible Wavelengths

Visible Wavelength (VW) cameras generate representations of the color content

of the subject through use of filter arrays for red, green and blue wavelengths. Capturing

color data can be useful for distinguishing some of the unique features of the eye as

well as localizing some features in the periocular space. Miniaturization of the camera

technology ultimately gave way to the inclusion of VW imaging sensors on most mobile

devices. Many of these devices have more than one camera, or at least allow the camera

orientation to be changed to the front of the device. Front facing cameras have been

commonly used for identification based biometric applications, selfies for social media,

and video conferencing, but they are also becoming tools for behavioral analysis and user
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interaction research.

Until quite recent generations of mobile devices the research applications of inte-

grated VW cameras have been limited as the front facing sensors lacked sufficient spatial

or temporal resolution to provide quality features. Improvements in the sensor technol-

ogy include more precise optics, better light sensitivity, and increasingly dense imaging

arrays. User behavior and preference ultimately influence the selection and specifications

of mobile device sensors. Most of the recent changes appear to benefit eye tracking ap-

plications, as trends in application use have begun to dictate the inclusion of sensors with

improved video capture performance.

All gaze analysis methods require the imaging device capture rate to meet a min-

imal event sampling frequency. Capturing temporal values related to saccade velocity

or dwell time can only reliably be accomplished within a proportion of the frame cap-

ture interval. Some short duration ocular events can achieve velocities of nearly 1000

°/s resulting from accelerations up to 100,000°/s2 [67]. Characterizing events like these

requires a sampling frequency well beyond the range of most existing mobile device cam-

eras. Consumer demand for high quality video capture and streaming rates has spurred

integration of sensors that can reach 30-60 frames per second on some models. Front

facing devices tend to lag behind rear cameras, but trends in the adoption of video con-

ferencing and live streaming are driving improvements. Future devices may soon provide

front facing sensors with sampling frequencies matching current commercial hardware-

based trackers.
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2.5 Facial Feature Localization

Understanding the topology of the structures surrounding the eye is an important

part of measuring ocular movement. Ideally, the method best suited to provide the neces-

sary landmarks is one which can operate with standard imaging sensors present on most

devices. Specialized depth imaging sensors have recently been developed that are capa-

ble of mapping the face using structured light or laser scanning, but so far only high-end

devices have begun to integrate them [46]. Libraries like Dlib [89] use pattern recogni-

tion methods to detect and label key parts of the face in an image. Dlib uses a feature

set based on the Histogram of Oriented Gradients (HOG) and classifications derived from

a Support Vector Machine (SVM) to return an array of localisations based on the dis-

tribution of gradient directions. More traditional pattern recognition based systems like

this are typically selected because they tend to be lightweight enough not to compromise

performance in mobile applications, but with the increasing operability of on device ac-

celeration deep learning based localization models are becoming increasingly popular.

The Dlib localization method utilizes Active Shape Models (ASM) to provide a dense

array of estimated morphological markers. ASMs are a class of coordinate deformations

which provide a systematic constraint for facial landmarks to improve the accuracy of de-

tection systems [90]. Mesh models are also being developed which aim to provide better

3D structural matching than ASM systems. The eos library [91] uses morphable mesh

regression to facilitate a better feature fit.
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2.6 Facial Pose Detection

Reliable assessments of facial pose are necessary to fully understand the motion

context when observing visual response of a user in free space. Most facial structures

are composed of soft tissues that deform with motion or changes in expression, making

them a poor choice for assessing relative distance. A fixed frame of reference is necessary

for measuring change in gaze angle relative to facial orientation. Displacement calcula-

tions are based on linear translation of detected landmarks between keyframes. Change

in relative position provides the baseline for deriving velocity using an assumed feature

scale and frame interval. Relative precision of the response kinetics is dependent on the

segmentation quality of ocular features, and the stability of anchor points. Regions where

facial tissues connects closely with the skull, such as the eye corners, brow, and bridge of

the nose are typically selected.

2.6.1 Deep Learning Based Models

MTCNN is a multi-stage Convolutional Neural Network (CNN) based facial bound-

ing box detector and feature localization model which is currently one of the top perform-

ing method of facial detection and pose approximation for VW images [92]. While the

array of markers provided by the refinement stages of this model are far less dense than

some other ASMs, the model performs far better in terms of sequential stability. Like most

state-of-the art facial landmark and feature localization methods MTCCNs are trained

with and therefor perform inference operations on small images. Resolution limitations

of these feature extraction methods are primarily related to the computational complexity

24



and memory constraints of processing high resolution image arrays. Even in cases where

resources might allow the processing of high-definition images, faults tend to increase in

the pattern recognition performance. Losses resulting from large scale inputs are widely

credited to a phenomenon known as the curse of dimensionality, a result of oversaturation

that leads to diminishing capability to derive feature significance.

2.7 Artifact Based Attack Detection

Scale plays a factor in pattern recognition in terms of the resolving power [93] re-

spective to the spatial features, as sufficient detail must be provided to distinguish bound-

ries of adjacent elements. In terms of behavior this is represented by the temporal sam-

pling rate with respect to the period of some sampled event, and the required ¡2N sampling

frequency as detailed by Nyquest [94]. Utility of additional data density therefor must be

balanced when conducting a search for feature patterns, as irrelevant or highly correlated

elements of the sample can hinder performance of a classifier by diluting feature signif-

icance. Native resolution images and videos collected using standard sensor modes on

most mobile devices need to be downsampled to work in these models, meaning some

localization errors are likely to occur due to a loss of input resolution. Errors of this type

are integrated into all feature localizations in the case of single samples and compounded

in the case of sequential analysis.
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2.8 Liveness

No system will ever prevent all forms of intrusion, but support systems such as

liveness detection are commonly used to combat common subversion [11, 26, 51, 52, 95].

Liveness based methods have been proposed as a method to provide protection from some

sophisticated attacks by verifying that samples originate in real time. Leveraging sequen-

tial sources, these methods utilize the temporal features derived from the motion of phys-

iological structures. A wide variety of studies have been successfully demonstrated the

benefits of implementation for liveness detection utilizing estimates of physiological sig-

nals like pulse and respiration from video based sensing [96, 97]. While eye motion has

been studied in some contexts as it relates to liveness and PAD, no known system inte-

grates OKN as a part of the behavioral classification. Comparison to state of the art PAD

methods is difficult as a result of this factor, but comparable methods of ocular behavior

classification will serve as a baseline.

2.8.1 Presentation Attack Detection

OKN response based PAD leverages the a parameterized animated visual sequence

to elicit a designated response within a specific temporal window. A lead or lag in the tem-

poral characteristic response, or incorrect displacement (phase) provide an assessment of

input synchronization. Significant deviation of a presented response provides the classifier

with an indication the sample may not originate from a live source. Extracting ocular mo-

tion features from a static image or screen based attacks will result in large skew toward

a particular gaze angle estimate, whereas a replay-based attack would likey distribute a
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more variable estimate that drifts from the mean of responses for the given stimulus pa-

rameters. In the case of sensitive applications, where more robust detection is required,

randomized adjustments to stimulus parameters, such as velocity, direction or sequence

of onset can be employed to limit the possibility of the correct response parameters being

presented for a more sophisticated simulated or reproduction based attack.

One critical factor to establishing trust in any secure transaction is related to ver-

ifiable presence of the authorized user [3, 98–100]. Presentation attacks occur when an

impostor attempts to mimic an authorized user by means of presenting duplicated or syn-

thesized biometric data [6, 8, 11]. Means and methods of constructing and presenting this

data are ever-evolving, comprising a vast array threats which plague developers and users

alike [101–104]. At the most basic level, there will always be some set of features that

separate samples collected from a live user and even the most advanced spoof [104]. De-

termining what those factors are for some specific collection method, and prescribing a

process for reliable detection, is the primary focus of PAD [6, 8, 11].

PAD systems are designed to serve as an enhancement to pure appearance based

biometric authentication methods [11, 55]. Confirming a sample originates from a live

source adds an additional layer of confidence to the template matching and identity ver-

ification process. Behavioral based liveness detection and PAD methods are meant to

augment rather than replace other identity technologies [11]. Utilizing behavioral infor-

mation gleaned by processing the response of the user to targeted stimuli adds a robust

temporal characteristics which make real samples substantially more difficult to generate
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or replicate [104]. Detection of spoof attacks via this analysis of response based parame-

ters adds a dimension not employed by most traditional methods [65, 103–105].

2.9 Behavioral Classification and Reflexive Motion

Reflexive responses make up a large part of human motor activities [106]. Even

normal voluntary motions such as walking or picking up an object are composed of del-

icately attenuated reflexive responses [107]. For the purposes of behavioral biometrics,

most reflexive responses are impractical to elicit under normal circumstances, but ocular

methods hold promise of utilizing unconscious pathway responses to prescribed stim-

ulus to insure the biometric features being presented are originating at the time of re-

quest [68,74]. Reflexes of the eye’s motor system used in visual stabilization during head

movements are a promising candidate for response based classification, as they manifests

in a highly predictable way to specific patterns of moving visual stimulus [17,39,41]. This

particular response has been observed to be consistent and characterizable, but its appli-

cations for biometric authentication have not yet been fully investigated [14, 101, 108].

One major issue associated with implementation of biometrics with behavioral features is

the complication of user compliance, which can lead to significant reduction in usability

and overall user experience [11, 13, 18, 109]. OKN responses are generated by a distinct

neurological circuit and thus requires no instructions or user training.

Pathways involved in the OKN response are distinct from other conscious pro-

cesses of ocular control, but share some of the same connections used by the VOR.
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Visual integration, the neruological process responsible for perception, is sus-

pended during saccadic displacements as part of maintaining balance. As a result of the

integration suspension the fast phase saccade events, which regularly occur as part of the

OKN cycle, are virtually imperceptible to the user [13, 14, 110].Passive methods of PAD

provide benefits over interactive methods due to their transparency, ease of integration,

and independence from user compliance [74, 111]. As with all behaviorally derived met-

rics, some variation can be observed based on individual factors [14]. Observations made

in our study indicate that the high-level motion signature of stimulus induced OKN can be

used to generate subject independent models capable of discriminating between simulated

video based attacks and genuine response samples. In this paper we explore the poten-

tial applications of a novel PAD method for mobile devices based on the classification of

characteristic time and phase locked OKN response to sequential stimulus, especially for

biometric modalities which use the front facing cameras [26] of mobile devices.

2.10 Usability and Adoption

In our culture of constant connectivity, mobile devices are increasingly becoming

a primary means of online interaction and physical access control. Mobile based bio-

metrics are facilitating a burgeoning array of diverse smart and connected devices such

as remote door locks, electronically secured safes and even user specific smart firearms.

Many applications employ protocols which provide secure remote transactions, but con-

venience driven user practices tend to subvert these additional features due to undesirable

complexit [13, 112]. A recent study of user attitudes and interaction with mobile device
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security indicated users prefer devices security features to be activated out-of-the-box,

and despite expressing concerns about security (68%) most fail to engage with the fea-

tures provided [12]. While user attitudes are subject to change, next generation biometric

tools will need to focus on integration with user behavior by compensating for obstacles

that may limit their implementation and utilization [103, 113].

Usability of a system decreases in proportion to complexity of implementation

[112]. For any security measure to be effective, it must gain acceptance and be consis-

tently utilized [114]. This process works best when the time and effort required to comply

remain low. PAD methods promote adherence by providing added security while main-

taining usability. As such one of the primary goals advantages of reflexive system such as

OKN is ease of adaptation and integration via virtually transparent functionality.

2.11 Optokinetic Nystagmus

Evoked OKN is complex pathway driven cyclic two phase reflexive response. Mo-

tion of the eyes in OKN occur in response to specific stimuli and consist of an initial slow

phase, or smooth pursuit, followed by a fast phase, or saccadic return [110]. Among in-

dividuals with normal neurophysiology, moving fields or arrays of high contrast colors,

values, or textures predictably elicit the response [16,115–117]. Visual integration is sus-

pended during the large scale translations which accompany the return saccade, making

the response virtually imperceptible to the subject, however, the oscillatory motion of the

eye is readily distinguishable to an outside observer [107]
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Figure 3: Motion paths of typical OKN response sequence showing two pursuit (red
arrow) motions and one return saccade(green arrow).

2.12 Saccades and Smooth Pursuit

Saccadic eye movements are a common target for analysis due to their large dis-

placements and high velocity [67]. When viewing static scenes, most visual search activ-

ities consist of a brief dwell time, also referred to as gaze or fixation, followed by a rapid

ballistic motion which orients the central visual field to a new point of interest [107]. Con-

trol systems of the eye adjust position based on visual content presented to the densely

populated high visual acuity region of the retina known as the fovea which occupies the

central 10°of the visual field [66, 115]. New gaze points typically occur several degrees

away from the previous point of fixation. These gaze points are selected by the brain’s

visual attention system, and are based on features such as movement or content which is

predicted to enhance the viewer’s understanding of the scene [107]. Saccades are most

predictable when interacting with highly structured visual information such as text, basic

geometry, or high frequency patterns and textures [39, 118]. Occasionally an overshot or
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underestimate by the visual control system can cause an error in the end position of the

eye relative to the intended target, in these cases a subsequent corrective saccade, typi-

cally of lower magnitude, is initiated to compensate for the initial error [40, 67]. Visual

responses to dynamic environments differ significantly from static scenes.

In the presence of moving visual targets, ocular control systems prioritize tracking

over a detailed structural analysis [34, 40]. Smooth pursuit movements of the OKN re-

sponse typically begin with a ballistic acceleration designed to catch up to moving visual

stimuli as it slips from the central visual field [67, 107]. A sequence of a normal OKN

cycle is shown in Fig. 3. Once the target is back in the central field, the ocular control

system adapts to match the target velocity [115]. Smooth pursuit motions are regulated

by systems which are difficult to modulate by conscious control and as such rarely occur

without the presence of a moving target [115, 117].

2.13 Clinical Practice

Much of the existing scientific work surrounding measurement and evaluation of

stimulus evoked OKN focuses on the application of the associated technology to the study

of motor pathway related diseases and other neurological pathologies [119–123]. In clini-

cal practice, latency based observations of induced optokinetic events are utilized to diag-

nose brain and nervous system disorders such as brain lesions or concussion [34]. Clinical

applications of OKN response measurement rely on large projection surfaces that range

from computer monitors and televisions to room scale devices containing rotating banded

cylinders [67, 110, 117].
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2.14 Applications

Smaller devices such as hand held cylinders are commonly used for eliciting OKN

in diagnostic settings. While full visual field stimulation is more desirable for measur-

ing some clinical metrics, a limited pathway response can be observed for stimulus in

the primary visual field [16, 17]. Limited research has been conducted on the genera-

tion and analysis of ocular motion responses using a mobile device [18, 74, 88, 113], but

no know studies have incorporated an OKN based collection protocol. Over the past

decade, significant innovations in image processing and machine learning have facilitated

a new wave of analysis aimed toward combining behavior with standard models to create

a more robust system. These innovations enable motion signatures to be extracted, with

relatively high accuracy, from non-ideal sources such as front facing cameras on mobile

devices [124, 125]. Combining physiological morphology based ocular biometrics with

behavioral response features facilitates enhanced resistance to emerging attack vectors by

adding response based PAD to the sample collection process [11, 63].

2.15 Secure Computing

In secure computing trusted access is granted by providing the appropriate cre-

dentials at the appropriate time. Potentially fraudulent or deceptive behavior can be de-

tected by discrepancy or irregularities in this process of authentication. While secure data

transmission and strong encryption have been improved by advancements in computing

technology, even increased algorithmic complexity can’t secure data indefinitely. Secure

credentials or other identifying factors are part of establishing trust in secure computing
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methods [3, 98, 100]. Sensitive systems restrict critical functions through the use of cre-

dentialed authentication for privileged users. Passwords controlled systems are relatively

easy to implement and therefor remain popular.

Passwords still serve as a primary method of access control for most commercial

remote accesses and secure storage resources. Identity is often closely related to access

control for restricted areas or systems access, thus biometrically secured systems have

become increasingly popular for high security operations. Biometrics is an applied en-

gineering discipline which focuses on image and signal processing methods to provide

quantification of unique identifying features which can be used as secure access creden-

tials [20,28,44,64,126,127]. While passwords can be changed if lost or stolen, biometrics

are based on structural features that last a lifetime. Facial recognition is perhaps the most

well-known optically-acquired biometric modality, but ocular authentication methods are

becoming increasingly popular [30, 54, 101, 103, 104, 128–130]. Mobile device front fac-

ing selfie imaging sensors have improved significantly over the past decade, and now

provide advanced VW photography capabilities and exceptionally high-quality imagery.

These advancements have enabled the collection of highly detailed features from both

the ocular and periocular regions [30, 32, 59, 125, 131]. As evidence of the power of VW

front facing cameras, studies have demonstrated their capabilities in imaging conjunctival

and episcleral vasculature, as well as peri-ocular features without the need for additional

sensors [29, 32].
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2.16 Mobile Device Security

Mobile computing dominates the digital access ecosystem [12,24,27]. In the ubiq-

uitous and inherently complex world of mobile device security, developers and manufac-

turers are engaged in constant efforts to fight theft, fraud, and address privacy concerns.

Finding a reliable way to secure these platforms from unauthorized access has been a

principal focus of many biometrics related applications over the past decade [28, 30, 56,

63, 99, 109, 126, 132]. With each new generation of devices, developers have introduced

new sensors [46], methods [133], and features that bring with them significant compli-

cations of design and cost. Despite their best efforts, many of these devices suffer from

significant faults that resourceful and determined bad actors can leverage to gain vir-

tually unfettered access to sensitive personal information, communications, media, and

finances. Establishing secure access to all this sensitive information means becoming

increasingly reliant on tools such as biometrics to establish the trust needed for reliable

remote transactions [27,28,47,54,62,84,124,127]. Consequently, reliance on these meth-

ods has transformed them into a target for bad actors in the never ending digital arms

race [6, 12, 24, 26, 63, 132]. Enhanced detection of illicit behavior is an economic imper-

ative, as even with state of the art processes incidents and costs are rising unsustainably.

Predictions of transactional fraud on digital platforms, 60% of which can be attributed to

unauthorized access of mobile computing devices [134], estimate the annual economic

impact to exceed $6 trillion by 2021 [24, 135].
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2.17 Susceptibility of Biometric Systems

Many authentication methods that rely exclusively on morphological features have

flaws that can be exploited by adequately motivated individuals. Even sate of the art

biometric methods struggles to provide secure operation, and are commonly the target

of spoof attacks [27, 30, 54, 57, 103, 104, 128, 136]. Presentation attack detection (PAD)

methods classify samples utilizing features and artifacts specific to low effort screen and

print based attack vectors. These methods serve as a deterrent to most intrusion attempts,

but increasingly sophisticated attacks are now emerging [8, 48–50, 52, 55, 105, 130, 133].

2.18 Challenges of Ocular Kinetics Capture

OKN methods face many of the same challenges as other biometric and biometric

adjacent methodologies for mobile device applications. The following section provides

an overview of some challenges faced in our data collection and evaluation processes, as

well as some measures which were implemented to mitigate their impact.

2.18.1 Resolution and Optical Quality

Compact devices like smartphones and tablets are at the vanguard of miniaturiza-

tion. Due to the highly valued internal real-estate, a device’s front facing camera is likely

to reside in an incredibly small space. While some mobile devices now come equipped

with infrared (IR) sensors designed capture structures and features outside the visible

range, VW sensors are the most common due to factors of cost for consumer grade de-

vices. As users increasingly rely on their mobile devices as part of social media and video
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streaming platforms, high density front facing VW imaging sensors are increasingly com-

mon. Packing tiny cameras in tight spaces generates demand for precision optics which

become increasingly difficult to fabricate at scale without introducing substantial image

aberration. To compensate for the distortion generated by these ultra-compact lens sensor

systems, images are corrected using integrated pre-processing methods. These methods

attempt to improve visual appeal by smoothing and denoising the input without specific

concern for the morphological features. While the visual appeal is typically improved,

the resulting images can be substantially degraded as it applies to machine vision appli-

cations. To facilitate machine vision applications, most mobile operating systems provide

developers with libraries that enable the acquisition of raw images that improve segmen-

tation and retain critical structural details. Images captured from VW devices in raw mode

typically contain a luminance channel which contains the bulk of relevant features stored

as a grayscale array. Using this data allows an image processing pipeline to generate high

quality feature localization while minimizing processing complexity.

2.18.2 Stability and Sampling Rate

Mobile device operating systems utilize an asynchronous command queue frame-

work to maintain a responsive user interface. Execution of application directives is in-

tentionally restricted to contravene blocking sequential operations, and commands are

instead based on a callback process which democratizes system resources. As a result of

this architecture, commands issued to capture data from cameras, sensors, or any other

hardware can have variable execution time. Reliability of the motion data derived from
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these imaging sensors rests on the consistency of the interval between frame captures. In-

consistency can lead to error in the estimated displacement velocity and response kinetics

for time-locked or phase-locked operations.

OKN based liveness methods like rely on stability of temporal responses for the

quality of stimulus onset detection. Critical faults and undesirable outcomes can result

if the processes of display or collection are interrupted. False rejections of live samples,

caused by loss of synchronous screen space visualization and imaging capture can lead to

degraded user experience.

Alternative access methods and third party hardware interface libraries can be

implemented to counteract the issue of frame rate variability in some cases. However,

due to the dependence on stable screen space visualization, these solutions may produce

additional collection instability by altering the stimulus rendering process priority. While

a there are a variety of solutions to this dilemma, our experimental collection application

was modified to provide a frame capture stability estimate based on timestamps provided

by the camera interface. When combined with the display frame rate estimate, the offset

was calculated to determine the nearest frame to the stimulus start event.

2.18.3 Temporal Resolution

Due to physical limits of the sensing device hardware such as read rates, transfer

bandwidth and shutter speed, constraints are introduced by firmware and software control.

Encoding formats used in conjunction with most integrated front facing camera sensors

place an upper limit of 29.97 to 30 frames per second. These limitations on the frame
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Figure 4: A sample sequence of stacked registered images collected from a mobile device
camera. A motion based heat map (right) generated from the changes (arrows) to the iris
border during the OKN response.

rate place a cap on the motion characteristics which can be derived from the video se-

quence data using mobile device hardware.These constraints limit the capture interface

and thereby the total temporal sampling rate which can be reliably achieved by a mobile

sensor systems. While some of the events that make up the OKN cycle are far fast to be

captured at this sampling rate, slower motions that make up the pursuit and small scale

displacements fall within the limits of a front facing system. Motion signatures of gaze

response sequences can be visualized frames extracted from capture videos as seen in

Fig. 4.

2.18.4 Illumination Conditions

Changes in external illumination condition, such as indoor versus outdoor lighting

environments generate substantial complexity for machine vision algorithms designed to

extract and localize biological features. While many methods have been implemented to
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solve these issues relative to ocular and periocular features for biometric applications [33],

[59]-[64], no known methods address the application of these techniques for changes in

optokinetics resulting from variable lighting source positions and intensities.

This issue can be particularly problematic as it relates to the generation of high

contrast stimulus on mobile device displays. Limited screen brightness results in con-

strained relative contrast which can be generated by these devices in outdoor illumination

conditions. To assess the feasibility of real world implementation, our collection protocol

implemented illumination conditions intended to simulate an outdoor environment.

2.19 Feature Localization

Ocular features localization with VW imaging devices presents several unique

challenges. OKN response detection relies on high precision estimates of the iris center

for reliable classification. Mobile device users engage with their devices in a variety of

non-ideal scenarios which introduce significant variability in the parameters of the device

as an imaging platform.

Detection of the small angular changes resulting from smooth pursuit based mo-

tion requires adequate spatial resolution. Constraints are therefore required to maintain

a distance from the user which maintains the ratio of scale required for stable sequential

estimation. Factors required to compute this ratio are dependent on temporal factors like

sampling rate and the spatial resolution of the imaging sensor.

Changes in distance, angle or field of view as a result of movement of the device

or adjustment in user posture increase the complexity of generating precise ocular feature
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localization. One aspect explored in this study as a potential factor to mitigate the impact

of device or user motion is minimization of the required stimulus duration.

41



CHAPTER 3

EXPERIMENTAL DESIGN

3.1 Preliminary Assessment

Preliminary investigations focused on the assessment of mobile device screens

to generate visual stimulus within the required parameters to evoke the OKN response.

Multiple methods were implemented to generate the visualizations. Prototypes were first

constructed using Adobe™After Effects video editing software by plotting the linear mo-

tion of a pre-rendered grid for each sample sequence. Later this process was updated

by generating the frame sequences programaticly by generating a square wave with fixed

50% duty cycle in the length or width of the target frame. The frames were generated

by replicating the output vector, rendered as images by plotting the resulting matrix as an

image, and saving the sequence of images as the offset of the square wave was adjusted

to generate the displacement of the grid. Four planar stimulus motion types were selected

to mimic the rotation of a cylinder spinning clockwise and counter clockwise in both the

horizontal and vertical orientation.

3.2 Hardware

Experimental collection recorded responses to stimulus presented on the screen

of the mobile device. Preliminary testing of stimulus parameters was accomplished via

analysis of motion information collected utilizing the open source Pupil Pro head mounted
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Figure 5: Pupil Pro Head Mounted Eye Tracker. World tracker camera (red) and IR eye
tracking cameras (blue) are used to provide gaze estimates and visual overlay using the
Pupil Capture application.

binocular eye tracking platform Fig. 5 from Pupil Labs [137]. The tracking platform

also provided a ground truth for validation of ocular kinetic estimates derived from the

recordings by software-based methods such as Drishti.

3.3 Software

Mobile device based OKN liveness detection requires precise and reliable fea-

ture segmentation and localization methods that operate with images captured using VW

sensors. For viability assessment, our implementation targeted methods suitable for on

device execution. Libraries and software methods with mobile deployable versions were

assessed relative to their computational complexity, to insure realistic execution times.

As this study was facilitated in part by a grant provided to investigate the potential of

OKN for industrial implementation, the tool chain selected for the prototype was chosen
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to operate alongside applications already in use or development by our primary spon-

sor. Development of our OKN application took advantage of the highly optimized ocular

feature localization methods implemented in the Drishti library [138].

3.4 Ocular Feature Localization

3.4.1 Drishti

The Drishti library combines an Aggregate Channel Feature (ACF) object detec-

tion library based on fast feature pyramid detection [139] using an OpenGL framework

expansion . This part of the library is mainly about finding the main features that compose

the face and generating bounding boxes for future search refinement.

3.4.2 Iris Ellipse Fitting

General refinement of high priority landmarks of the eye region include the el-

lipses created on the upper and lower eyelid. Segmentation of the eye itself is done by

selecting the region enclosed by the intersection of two curves that generate one convex

enclosed space. This process builds on from both Cascade Pose Regression [140] and

XGBoost [141] regression.

3.4.3 Ensemble Regression Trees

Face landmark refinement is executed using Ensemble Regression Trees [142],

which provide a fast methods alignment of the eye model based on a modified implemen-

tation of Dlib [89]. Global alignment is provided via the use of line indexed features,
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normalized pixel differences, and principle component analysis (PCA) dimensionality re-

duction.

3.4.4 Output

Localized features are generated for a single frame, or a sequences of frames de-

pending on the input. Output is formatted as a structured json file which contains location

and motion information for each eye and several other facial landmarks. Angular gaze

estimates in a polar coordinate system are also generated based on normalized pose and

distance as given by the apparent scale and ocular features.

3.4.5 Deep Learning Based Models

Additional testing and performance comparison of the Drishti model, and other

feature extraction tools used, was conducted with cutting edge facial detection, alignment,

and landmark localization tools. MTCNN [92] and Google Mediapipe [143] were applied

to all sequence data, and stored as arrays, images, and video sequences for comparison

and further evaluation. Architecture of these models was unaltered from published states

to facilitate reproducibility.

3.5 Data Collection

While eye tracking based biometrics have been investigated previously [19,23,42,

66, 101, 144], no known studies have investigated the suitability of OKN based response

using stimulus response for mobile devices. To investigate this potential novel application,

we devised and conducted a study [145] which has been outlined in this section with the
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intention of establishing the viability of eliciting and analyzing the OKN response using

the screen and selfie camera of a mainstream mobile device. Volunteers for the study

consisted of 45 healthy adult participants recruited from the student body. Participants

were provided with a brief explanation of the study objectives, but no specific instructions

were given prior to the start of the assessment to prevent behavioral bias. Applicants

were screened for ocular pathology, disorder or neurological disease via a self-assessment

questionnaire to limit risk factors associated with the collection protocol. All applicants

were required to provide written consent to participate.

Response based data in the form of video recordings were collected via the in-

tegrated front facing camera of the mobile device. In the case of ocular biometrics, as

it pertains to liveness assessment, segmentation of small anatomical features relies on

detailed image data. To facilitate an optimal assessment of our method’s feasibility, im-

age sequences were captured at Full High Definition (FHD) resolution in portrait ori-

entation (1080x1920) to maximize the resolution of the ocular region of interest (ROI).

Subject records and identification numbers were randomized at time of collection, and

anonymized to preserve privacy.

3.6 Collection Parameters

Stimulus generated for display on the mobile device utilized simplified patterns

monochromatic high contrast elements of variable spatial frequency and translation ve-

locity. A total of 5 distinct of stimuli were employed including horizontal, vertical, and

oblique gratings. An illustration of the structural and motion based parameters utilized is
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shown in fig. 6. Several methods were investigated to generate the visual stimulus, includ-

ing direct playback of pre-rendered media files stored on the local device. This method

produced inconsistent results due to access times and video player startup routines result-

ing in a lag of up to 150ms, well beyond acceptable tolerance. To maintain timing factors

critical to this method, it was ultimately necessary to construct a custom application which

utilized built-in features of the user interface to render the desired stimulus directly to the

screen space via the integrated graphics processor.

Rates at which the rendered elements moved across the visual space were iterative

refined to evoke a sufficiently strong OKN response. It was observed that the desired

response was produced for stimuli with a displacement velocities greater than 6° per sec-

ond. Including breaks and rests periods, our data collection protocol was designed not to

exceed 30 minutes per session, and high velocity stimulus were avoided to minimize dis-

comfort [115]. Regular monochromatic bands occupying approximately 2° of the visual

space were displayed full screen in portrait orientation Fig. 6. Scale of the stimulus was

selected to optimize visual frequency for the estimated 10° field of view provided by a

mobile device screen at a distance of 20-25cm.

The first full scale collection attempted to elicit a strong onset based kinetic re-

sponse by introducing a blank screen prior to the introduction of the target motion stimu-

lus. Changes in illumination intensity of the screen space may generate some additional

information in the form of pupillary dynamic response commonly seen as a change in

pupil diameter as a response to direct light level stimulus. Distinct changes in pupillary

dynamics have also been demonstrated to occur when the subject is engaged in searching
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Figure 6: Visualization of the 5 types of stimulus used in the collection. Arrows denote
the direction of flow for the continuous pattern.
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Figure 7: Collection sequence timeline showing a typical response for each major stimu-
lus class

behavior for specific items in the visual scene, or when presented with an interesting or

provocative stimulus.

Volunteers were instructed to direct their attention to the mobile device screen

during the active collection phase of each collection set. A sequence sample shown in

Fig. 7. At the conclusion of each collection sequence, a brief rest period was added to

mitigate discomfort and reduce the impact of fatigue.

3.7 Experimental Setup

All collections took place inside a semi-secluded cubicle sized collection booth

constructed to provide privacy to our volunteers and limit distractions and interruptions
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Fig. 8. An enclosure made from opaque materials such as black felt cloth and ply-

wood was constructed around the booth to control illumination conditions. A customized

lighting solution was employed inside the booth based on digitally adjustable Philips

Hue™Smart Bulbs. A total of 4 bulbs were arranged above, and in front of the participant

to provide maximum coverage and adjustable illumination during response recording. A

diffuser was placed in front of the bulb located directly in front of the collection booth,

this helped eliminate discomfort while viewing the mobile device. Using the application

provided by the manufacture, the intensity was set to maximum of approximately 800 lux

and an emission color temperature of 6500 °K was selected to simulate direct sunlight.

The primary purpose of this configuration was to provide optimal imaging quality from

the camera device by insuring adequate illumination for the collection. Use of dedicated

lighting provided consistent illumination conditions, reducing the complexity of feature

extraction and ocular segmentation in the processing stages. Bright, direct conditions

were chosen to minimize the impact of pupillary responses as segmentation of the iris can

suffer in low VW conditions when the pupil is too heavily dilated due to low light. Out-

door color temperatures and intensity also helped evaluate the viability of limited screen

brightness in the creation of adequate stimulus contrast.

3.7.1 Mobile Device Constraints

To provide as reasonable of a simulation of real world conditions under the col-

lection constraints, participants were asked to engage with the device as they would in
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normal use. An adjustable mount was used to secure the mobile device, ensure the ap-

propriate orientation, and minimize occlusion and vibration during the collection. These

constraints were implemented to maximize the viability of the collected response data by

removing the additional degrees of freedom typical in a hand held mobile device collec-

tion. Reducing the complexity in this way provides significant value in the processing

stage, as the stability of capture sequences motion artifacts like blur, smearing and per-

spective distortion. No restraints or chin bar were used, allowing normal head movements

and orientations. Volunteers were requested to sit comfortably, and move normally, but

we asked to attempt to maintain a distance of roughly 20-30cm from the device during

the collection Fig. 8.

3.7.2 Hand Held Collections

Some additional collections of response data were collected for additional appli-

cation testing. These samples were collected by the sponsor of the study, and provided for

evaluation of methods only. While the large scale, fixed device, collections utilized the

generated collection application discussed in the next section the additional collections

relied on an industrial testing application. Parameters of this collection follow on from

the protocols discussed, but conditions were unconstrained. The additional 6 degrees of

freedom Fig. 9 hand held collections introduce have proven to provide substantial ad-

ditional challenge for motion feature extraction. Scale and pose variation require more

precise levels of sequential precision, as the noise from both camera and visual target can

easily be integrated into tracking samples. Many of the key improvements discussed in
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Figure 8: A diagram of the collection cubicle as used in the 45 participant study. Relative
positions of Phillips Hue Lights (A[1-3]), Collection Device and Hands Free Mount (B),
Diffuser (C).
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Figure 9: Six additional degrees of freedom introduced by hand held selfie response col-
lection.

this dissertation focus on understanding and overcoming the challenges observed from

these additional collections. Alternative stimulus parameters were also used in some of

these samples, further confounding the direct comparison. All reported performance data

reflects the use of the full scale data, but some results of the methods will be discussed as

they apply to the hand held collections.

3.7.3 Collection Application

Stimulus presentation and response video recording were accomplished using the

display and front facing camera of a stock Apple™iPhone 7. A customized application

was designed and implemented on the device to automate the collection sequence. Stimu-

lui were rendered to the screen space using programmatically generated animations which
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employed the native layer rendering functions treating the contrasting display elements as

discrete UI regions. Procedural generation allows the potential for parametric variabil-

ity application to bypass limitations related to decompression and storage performance.

splaying the animations on the device allowed for the maximum resolution and rendering

rate provided by the device hardware. Frame capture from the front facing VW imaging

sensor utilized direct device access, but required that a frame buffer be created each time

the collection was initialized. Startup time for that process was variable in our application

testing, so a delay to the display sequence was implemented using a callback the primary

function que when the allocation and startup process was complete. Acquisition of the

frame sequence must occur synchronously with the display of the intended visual stimu-

lus. Achieving consistent and reliable results while running these two processes simulta-

neously requires the camera’s frame is treated a priority. When initialized using a fixed

frame rate mode, built in buffers can help compensate for potential capture delay or frame

drop that might occur when acquiring frames on demand. Device firmware protection

creates access restrictions that mean control of the camera’s frame capture is treated as a

protected process. Dereferencing of the software object generated by the cameras library

resulted in an error which the interpreter couldn’t address, so initiating the capture pro-

cess from the applications main thread required the camera object to be implicitly passed

by reference to the initialization process call. Developing an interlaced rendering and

capture process with milisecond level operational consistency required utilizing thread

control functions to more precisely orchestrate the the asynchronous operation structure

of the iOS command que. Reliability is a critical factor to ensuring the goals of the
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study can be achieved using the resulting data. Risk factors associated with the collection

protocol must be taken into consideration with respect to the quality of the collection ap-

plication as failure of the device to collect usable sequences would result in wasted time,

resources, and potential unnecessary risk to participants. Before the application could be

utilized in the collection of response information from study participants, system reliabil-

ity testing was performed to assure all operations occurred within the selected tolerance

for repeated sample collections in a testing environment. Integrity of the frame capture

intervals were authenticated by external sensors and device logs. Verification of replay

frame rate was carried out utilizing the Pupil Pro eye tracker camera operating at 120Hz.

Synchronization and frame display stability were confirmed by remote activation of the

replay function with the device tethered to the host computer and an event monitor func-

tion of the Pupil capture software. Start time of the remote replay trigger was logged by

the external video collection to determine average latency from the application trigger to

the first full frame displayed on the device. using the timestamps returned by the camera

object process. A fault state was implemented in the collection routine which generated a

diagnostic message for events where frame capture intervals exceeding the explicit maxi-

mum of 35ms were observed. Intervals were measured using timestamps supplied by the

camera device. This fault state was not encountered in the data collection, but could be

triggered by forcing a display overlay. Collection stability, stimulus presentation velocity,

and onset synchronization were tested. Results of stability testing are reported in the next

chapter.

Collection of each participant’s response data was initialized by selecting a marked
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icon in the collection application. The total stimulus response collection process was sub-

divided into 5 rounds for each set of the 5 classes of motion stimuli. Variation in the

sequence of stimulus presentation was accomplished by the use of a shifted sequences

which allowed each of the stimuli to be presented in each of the possible ordered sets.

The method employed for our process utilized the Latin square configuration, a single

shift sequence, to provide each stimulus type before and after each of the other types.

Video collection was initialized by the collection app for each stimulus presentation. A

single video file was saved to the device memory for each of the 25 visual presentations

per collection round. To assure that a sufficient baseline was collected before each re-

sponse, collections began 4.5 seconds before the stimulus display was initialized. Each

stimulus was presented for 4.5 seconds, followed by a post stimulus blank display recov-

ery period of 1 second. A brief 10 second rest period was added between each set of 5

response collections to reduce fatigue.

The data collection process consisted of four sessions conducted for each vol-

unteer. Brief break periods were added between each session to avoid discomfort and

minimize fatigue based artifacts. Each session was constructed of 5 ordered sequences,

with each group order rotated 5 times, resulting in 100 sequences per participant for the

full collection.

3.7.4 Human Subject safety and Biometric Data Security

All data were collected under the supervision of the University of Missouri Kansas

City (UMKC) Institutional Review Board (IRB) protocol ID 17-360. The information
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provided here describes the provisions and steps used for data collection process, ad-

ditional participate selection and safety criteria was established as part of the approved

protocol.

Considerations were given to the possible impact of stimulus sequences used in the

collection replicating a flashing type visual effect. Strobe type flashing is known to induce

seizure activity in some susceptible individuals when the frequency falls inside the range

of 5 to 30Hz. Participants were screened for risk factors or histories of photosensitive

epilepsy, and made aware of the risk factors. Stability of applications and hardware used

in the collection was tested, and fault conditions were implemented to limit unintentional

and erroneous generation of strobe type events.

Head mounted eye trackers like the Pupil Pro device used in the response verifi-

cation portion of the study are equipped with LED based IR illuminators for improved

image quality and glint tracking. Some risk factors are known related to the exposure of

tissues to high intensity light, however, based on information provided by the manufac-

turer of the diodes used in the device the total level of exposure falls far under established

safe levels. Total time of use for the Pupil devices was limited to 1 hour to avoid any

fatigue or discomfort.

3.7.5 Hand Held Collection

Some additional data were collected for use in evaluation of unconstrained mobile

device collections. Allowing the participant to hold and position the mobile device during

the collection adds several additional degrees of freedom relative to the
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Figure 10: Patch Tracking Stabilization

3.8 Data Processing

Videos collected using the collection application were copied to a secure local

storage device. Randomized alpha numerical sequences assigned to each of the collec-

tions for file storage labeling were eventually removed and replaced with simplified des-

ignations to maintain participant anonymity. Video sequences of the recorded participant

responses were processed offline using the Drishti library [138]. Structured json files

output from the library were imported and processed within the Matlab™ environment.

Gaze values and other facial landmark measurements provided by the main li-

brary and the subsequent gaze.improvements branch were compiled into a single ordered

sequential cell database. Displacement values from the base library were calculated using

an apparent scale derived distance which was implemented to normalize pixel level linear
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distance valuesFig. 10. Positions for each sample were measured from the iris center,

point 26 in the index of landmark values, to the mean of three anchor points along the in-

nermost points of the ocular ellipse given as points 7, 8 and 9 of the index. Values from the

improvements branch provided direct normalized changes of iris position relative to the el-

ements of the tracked patches of the face rig. Output from the models were processed and

statistically analyzed to provided an array of values and measurements for the iris center.

An explanation of the formulation and utility of the most significant values calculated,

such as displacement velocity, acceleration, absolute magnitude, displacement,inflection,

skewness, and kurtosis are given below. Feature vectors composed of these values were

used to train some of the early ML models used in PAD classification.

• Velocity

– Sequential change in absolute position derived by translation of the target fea-

ture. In visual localization this value is derived by the relative distance of

the target feature from some other feature or array of features that serve as

anchors.

– Velocity is most useful for classifying slower motion ocular events. This fea-

ture is sometimes used in online classification methods, but there are limits to

the accuracy that can be obtained with a single pass approach.

• Acceleration

– Standard derivation of change in relative velocity. Errors in feature localiza-

tion can highly impact the stability of featured at this level. Adaptive and
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contextual filtering were applied in some experiments, however, they tend to

insert inconsistent delay for onset detection.

– Discontinuity in feature localization can be a factor in calculating acceleration,

as blink events will sometimes register as saccade type events.

– Acceleration is the main method of identifying larger saccadic displacements

as onsets are defined by rapid changes in velocity.

• Magnitude

– Measured relative to the horizontal line generated between each of the pupil

centers and the vertical median line of the detected facial pose.

– Provided as an absolute value of combined binocular motion vector.

– Captures motion of the combined planar displacement, more sensitive to total

motion but less specific than other features.

• Displacement

– Scale normalized moving window aggregate of total travel.

– Variable window scale can be used for onset threshold in noisy samples.

– Integrates significant error when used with sequences collected in low light

conditions or with large camera motions.

• Inflection

– A binary vector indicating the regions of detected saccades in the extracted

feature sample.
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– Samples considered part of a saccade are marked as zero for the duration in-

dicated by the extraction algorithm.

– Intended to serve as a mask for removing saccades when training smooth mo-

tion tracking classification.

• Skewness

[moment] = E

[(
X − µ
σ

)3
]
=
µ3

σ3
=

E[X − µ3]

(E[(X − µ)2])3/2
=

κ3

κ3/2
(3.1)

– Skeweness provides a parametric assessment of the deviation of the distribu-

tion in some sample or set of samples from a centralized mean.

– Samples with slanted distributions indicate a lack of symmetry in some values

with respect to the population making up the represented set.

• Kurtosis

E

[(
X − µ
σ

)4
]
=

E[X − µ4]

(E[(X − µ)2])2
=
µ4

σ2
(3.2)

– Used to characterize some outlier events from the general set of extracted

motion features.

– Indicates the general moment of the sample relative to the mean supplying an

assessment of the likelyhoold of a sample or region of a sample to contain

values with lower relevance due to sampling error.

3.9 Deep Learning

Intelligence, be it natural or artificial, has a proven elusive to define, and is still

a subject of contention for philosophers and researchers alike. One of the more broadly
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endorsed definitions describes intelligence as ”the ability to reason, plan, solve prob-

lems, think abstractly, comprehend complex ideas, learn quickly and learn from expe-

rience” [146]. This definition both confines and highly generalizes intelligence by re-

quiring an intelligent system to simultaneously possess the constrained capacity for con-

textual solutions, and the unconstrained novelty of abstraction. As a result, all modern

computational methods (even the advanced and highly celebrated emerging techniques in

ML), are woefully under equipped to be defined as intelligent. Humans, as a species, are

typically accepted to manifest intelligence in some form. This isn’t as trivial of a state-

ment as it seems, as the processes that underlie consciousness and sentient self-awareness

aren’t fully understood. The statement that humans possess adaptability (manifesting as

a capacity to contextually adjust behavior to a wide variety of stimuli), is perhaps more

precise as it is one of the chief contributing traits of animal survival. In biological sys-

tems, intelligence (or adaptability), is understood to originate from physiological phe-

nomena [106, 146]. Within neurological tissues, the structures which generate high order

adaptive capabilities are sequential layers of processing units which generate responses

to sensory stimuli by varying their sensitivity to intensity and frequency [106]. Mor-

phologically, these adjustments are accomplished by direct modification of the physical

member cell. These networks have a huge numbers of processing elements, organized in

densely packed structures, and possess various modes of connectivity between elements.

One structure might rely on direct connections between several sequential units to pro-

cess and integrate sensory data, while another parallel network transforms that output by

selectively inhibiting elements such that only high priority information is propagated to
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the output. These structure have been shown to possess the ability to process massive

amounts of sensory data, separating the essential from the trivial, with remarkable speed,

accuracy, and reliably [107].

Attempts to computationally model intelligent behavior such as large scale pat-

tern and behavior recognition have resulted in a series of architectural modification to the

standard Artificial Neural Network (ANN) model. One of the major factors that needed to

be addressed was the decay of gradients which occurs in long chains of back propagation

for updates of weights used to define features the networks extracted from sample data.

Any sufficiently complex fully connected ANN will eventually suffer from the impact of

gradient decay, making the rate at which the values are modified so small the impact can’t

be differentiated in subsequent iterations. Given that the power of functional approxi-

mation is linked to the number of sequential layers utilized in the architecture, gradient

decay is a primary limiting factor to the application of ANNs. Complex recognition tasks

like feature extraction systems used in biometrics require especially deep structures to ad-

equately model the feature space seen in morphologically diverse structures like human

facial and ocular features. Ultimately it took several generations of computational hard-

ware advancement, and the re-purposing of graphics acceleration hardware, to overcome

the limitations of traditional ANNs. DL based adaptation utilize greedy module level

optimization that allow updates to be derived from the total output activation [147].
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3.9.1 Convolution

For the most part we as humans interact and interpret the world through vision.

For machines, digital images approximate this sensory capacity and offer a discretized

representation of the physical world. Virtually unsurpassed in information density, pic-

tures now represent the bulk of data in existence. With the proliferation of mobile devices

and other handheld electronics the bulk of computer processing power will soon be spent

processing visual data. While there are a variety of time tested ways to process and

extract significant features from images, the recent innovations in Convolutional Neural

Networks (CNNs) have come to represent the standard. CNNs have a relatively specific

function, but a broad array of applications in DL [148]. The convolution of an input

can take place in arbitrarily dimensions and can be greatly accelerated via GPGPU paral-

lelization where it can be processed as a multiplication by transformation in the Fourier

domain [148–150]. While there are some special cases, most of the widely successful

CNN implementations so far have focused on 2 dimensional data. Higher dimensionality

is easily generalized by comparing additional dimensions as channels of an image, such

as frames of a video stacked to generate a volume as seen in Fig. 11.

CNNs output can be viewed as the region wise dot product of a filter (kernel)

matrix with dimensions [m x n] in the 2D space, or [m x n x k] in the 3D space, evaluated

on a region of the same scale. The filter kernels are symmetrical in most cases [m = n]

but the temporal dimension k, can adjusted independently of the spatial structure. Values

of the filters are initialized as a zero-mean Gaussian distribution at the start of the initial

training to encourage an optimal distribution of kernel values relative to the feature space.
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Figure 11: A visualization of convolution in a 3D space. Kernels such as the one shown
above the 3D array are adapted to extract features in both the spatial and temporal domain.
Stride motion of the kernel is visualized by color coding relative to the partial output array.
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The output of each convolution operation is a single scalar value which is stored in an

output tensor with a size less than or equal to the scale of the input array or tensor. At each

step a new region of the image is then selected and the filter evaluated. The location of

the new region is based on the scale of the stride with which the center of the filter moves

across the input array. Selection of a stride less than the scale of the filter can generate

adjacent evaluations of overlapping spatial or temporal windows, allowing a more robust

search which allow for the more precise detection and localization of target features. As

the filter continues to make its way across the image, each value is passed forward to the

processes which will prepare the output.

Dimensionality reduction between convolutional layers is necessary to maintain

learning rates and maintain issues with gradient optimization (such as vanishing or ex-

ploding gradients). Pooling is one of the most common module elements used to accom-

plish the necessary consolidation of values. The values generated from convolution have

a high spatial correlation, so despite the fact that much of the spatial data is lost, perfor-

mance isn’t highly impacted in terms of feature localization. The value of the input matrix

is divided, evaluated, and aggregated by the function, as prescribed by the user and then

passed through a linear or non-linear activation function on its way to the next module.

The goal of any given output in ML is to provide the most critical data relative to that fac-

tor. Toward that goal, the information accumulated by an individual neuron in an ANN

should discriminate between real, significant information, and diffuse noise. As in biolog-

ical networks, this is accomplished by establishing a threshold of activation [106, 151].

Traditional ANNs use activation functions such as hyperbolic tangent functions, which
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can require large amounts of sequential input to reach saturation. To overcome the issues

inherent in DL, several methods of activation have been developed, or repurposed for the

challenges of deep structures. One of the more commonly utilized methods of insuring

rapid adaptation to the input has been the Rectified Linear Unit (ReLU) [152], which

when properly applied can account for many common issues of poor kernel response in

image and signal processing. As mentioned before the relationship between over-fitting

and training rate is a major issue in DL. It can be difficult to optimize a system when

training a new structure can takes weeks or months, so any algorithmic (as compared with

hardware based) method which allows the system to start learning faster can provide a

huge advantage. ”ReLUs have the desirable property that they do not require input nor-

malization to prevent them from saturating. If at least some training examples produce a

positive input to a ReLU, learning will happen in that neuron [149].”

3.9.2 Recurrent Methods

In early experiments a variety of recurrent configurations were applied to the fea-

tures derived from the library feature extraction pipeline. Some of these results are dis-

cussed in the next chapter. Attempts were made when training these models to keep the

total number of parameters low. This was partially to maintain feasibility for the deploy-

ment of the models on a mobile platform, but also to avoid over fitting. Smaller models

are also forced to learn more robust representations, leading to better performance in the

wild.

Recurrent Convolutional Nerual Network (RCNN) models Given that precision
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plays a large factor in the quality of OKN classification models, the resolution and depth

of the input sequences generated by the collection created a training batch scale limitation

for the commercial grade graphics hardware available for the experiments. Tensors of oc-

ular ROIs were eventually generated using an automated extraction process. This reduced

the scale of the input sequence enough to allow larger batches to be loaded into the GPU

memory, but the

3.9.3 LSTM

Sequential models like the Long Short Term Memory (LSTM) build off earlier

Time Delay Neural Networks (TDNN) and but have several unique additions like non-

saturating activation functions that allow for training with substantially large and diverse

data sets. Structural improvements like regulated side memory states and parallel opera-

tional execution also allow for better acceleration with modern GPGPU hardware.

Sequences of temporal features generated by our processing pipeline were clas-

sified using a recurrent deep learning approach based on the Long Short Term Memory

(LSTM) model. LSTM models were principally designed to overcome limitations of

vanishing and exploding gradients that commonly occur in traditional Recurrent Neu-

ral Networks (RNN) when processing samples with long sequence lengths. Like RNNs,

LSTMs utilize feedback provided from previous time steps as part of the input to subse-

quent states, but improvements in their architecture Fig. 12 allow LSTMs to selectively

retain contextually relevant aspects of past elements in working memory. This selective

memory aids in the detection of patterns that contain some variation in the frequency or
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Figure 12: Structured model of a processing cell as used in recurrent Long Short Term
Memory (LSTM) Networks

duration of key features. LSTM models have been shown in several studies to perform ex-

ceptionally well with the detection and classification of behavioral patterns and anomalies

embedded in sequential sources [69, 153].

Training the model involves supplying both the features of the current time step

and sequential state memory to the recurrent LSTM cell. Processing occurs in four stages

called forget, input, update and output. A diagram of the generalized LSTM architecture

is included in fig. 9. Each of these stages employ some pointwise operation and either

a sigmoidal (σ) or hyperbolic tangent (tanh) activation. The action generated by these
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nonlinear activations vary at each gate.

Sequence processing begins when new sample elements, along with elements re-

tained from a past iteration, are passed to the LSTM cell forget gate. The value of this

sigmoid activation determines to what extent the elements from the past time step are re-

tained based on the data provided by the past state and current time step. Operation of the

forget gate

Ft = σ(Wf · [ht−1, Xt] + bf ) (3.3)

provides an update Ft to the cell’s state Ct−1 by assessing the hidden state ht−1

and the current input Xt . If an activation passed to the cell state at this stage is set to

zero, the element is removed from the network’s memory and effectively forgotten. Since

we’ve decided what to keep, we now want to determine what new information we want

to add based on the hidden state and current value. Cell state value candidates are first

selected from the input and the update is calculated and stored. An index of the input

It = σ(Wf · [ht−1, Xt] + bf )(Wi · [ht−1, Xt] + bi) (3.4)

and the vector containing the values of the update candidate

C̃t = tanh(WC · [ht−1, Xt] + bC) (3.5)

are once again calculated based on the hidden state and current input.

Updated values are then stored as part of the new cell state
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Ct = Ft ∗ Ct−1 + It ∗ C̃t (3.6)

by combining with the output of the previous step of the memory pipeline. At the final

stage of processing, the cell’s state is saved and the output is calculated. A mask

Ot = σ(WO · [ht−1, Xt] + bi) (3.7)

is first calculated and then combined with the activation as

ht = Ot ∗ tanh(Ct) (3.8)

providing a scaled and filtered version of combined data to be used as the sequence output,

or as the hidden state of the next iteration.

Providing an adaptive sequential memory allows the architecture to develop a high

level approximation of the underling function, leading to a model with increased capacity

to generalize sequential events with variable frequency characteristics. By learning what

elements of the past sequential data are most relevant to carry to the next iteration, the

model performs a type of automated temporal filtering and feature extraction. Limiting

the calculations to a memory state and the current input also allows the model to avoid the

pitfalls of long chain derivatives that can occur with other recurrent methods. Learning

features in this way aids in sorting out temporally shifted or jittered elements which occur

due to behavioral variations. As initial assumptions are generated, selected sequential

features are committed to a semi-persistent memory allowing the model to retain and

contextualize longer duration events such as smooth pursuit motions while retaining the
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ability to recognize high amplitude saccades.

Our experiments generated two potentially viable LSTM based models

• Multi-class model designed to identify spoof data as a specific class and differenti-

ate specific response types for the full set of samples.

• A binary output model which differentiates samples of single response from spoof

samples.

Both models were trained using 2 second samples from before and after the onset

of stimulus. Two LSTM layers were utilized in sequential mode with a hidden unit size of

25 and 15 respectively. A dropout layer of 20% was incorporated for the output of each

layer to minimize over fitting. In the multi-class model the output from the second LSTM

layer is provided to a fully connected layer containing one node for each of the 6 output

classes (5 response classes and one negative sample class). A softmax layer provides the

output for a classification based on the activation state of the nodes in the fully connected

layer. A comparison of the results obtained from the trained models and other traditional

pattern classification methods is provided in chapter 4.

3.10 Quality of Approximation

Video data are essentially an array of snapshots that provided some structural or

temporal representation of some discrete set of states. Extracting only the most relevant

features from complex structures moving through space and time requires an understand-

ing of syntax and context. As it relates to OKN, extracting behavioral information relies
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more on detection reliability and continuity of feature localization than on structural ac-

curacy. In the case of biological structures, localization of feature in planar space is ill

posed due at least in part to the variation in pose and lighting conditions. Differences in

individual structural morphology further confound the segmentation of features based on

2D projections of the 3D facial structures. Refinement of representations in ML are usu-

ally achieved by leveraging high entropy of distributions. Large sets of labeled samples

are required for supervised ML techniques which can become problematic for sequen-

tial data due to the effort and cost involved in annotation. Even when labeled data sets

are available, some of the loss integrated into feature updates will be directly related to

annotation inconsistency or human error. Implementing batch normalization, response

pooling, or drop out can help avoid overfitting, but even with fine tuned models signifi-

cant ambiguity is present in the sequential approximations generated from the segmented

features. Ocular behavior classification performance is directly related to the precision

of localization models. Errors resulting from unstable sequences of key points generated

by naive treatment of the frame sequences become embedded in the temporal features

based on the approximations of gaze angle. Obtaining the desired performance means

treating context as a sort of ground truth such that the loss functions that govern landmark

placement will prioritize stabilizing jittered features as part of the error minimization. A

variety of leading cost and loss functions are implemented in adaptation training in an

attempt to achieve this objective.

The flow of structural elements has far more significance than the morphology of

the specific elements. Much of the significant information generated by analyzing optical
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flow can be used to spatiotemporally constrain what must be uniform translation or defor-

mation of the face. While treating each frame as an independent element is much faster

when using optimized feed forward pattern recognition systems, single frame approxi-

mations tend to perform greedy minimizations that produce less than desirable results.

Larger elements, which are less likely to undergo instantaneous change can be used to

keep landmark systems honest, but given that the error can occur at any stage of the sys-

tem, regression is the best approach for reliable fitment of complex structural motion.

Simple landmark mesh deformation constraints can be used, but pose or illumination

variations are difficult to account for using this method.

Recurrent ML models provide the learner with some concept of time and are

structured to encourage more robust understanding of causal structure. Most recurrent

approaches, like RCNN and CNN-LSTM models, still rely on features extracted from the

individual frames of a sequence, independently extracting features from each fame. While

some aspects of localization error can still be learned by propagating error to the feature

extraction layers, vanishing gradients tend to lead to slow or failed convergence. Truly

temporally dependent ML systems have outputs contingent on both all sequential states.

Additional memory is required to store the relevant contextual elements at each processed

time step, meaning a recurrent network will likely require more resources and have greater

computational complexity than an temporally agnostic models. Resource constraints limit

the use of some fully temporal models on mobile devices. Some observations relevant to

the applications of these models is provided in the discussion in chapter 5.
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CHAPTER 4

METHODS AND RESULTS

4.1 Overview

This chapter provides an explanation of some models, methods and designs used

in the classification of the data collected. Quantitative performance is reported for some

models, and qualitative assessments of each method are provided in the next chapter.

Parameters related to the data collection, processing, and feature extraction process are

provided for the purposes of explanation and critical analysis. For clarity, only the most

relevant results from each of the experiments detailed are included in this section. Some

additional considerations and possible future work related to these topics are discussed

chapter 6.

As the processing methods rely on temporal considerations, the results will be

reported with respect to the sequence duration used to produce the features, localization

approximations, and ML model used in the analysis. A variety of metrics have been

applied to results of the models developed in the study. Accuracy of the classification is

among the most commonly reported metric, as the main focus of the work was related to

liveness of the sample provided to the classifier.

Descriptions of the software and processing methods utilized are provided for

comparison where appropriate to the discussion of experimental results. Reporting based

on experimental results is intended to highlight both the strengths and shortcomings of
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the proposed design. Some instances of less than desirable results are given with the in-

tent of encouraging the continued exploration and related work. In some cases, additional

processing steps were required to rescale the image sequences for reasons of both compu-

tational and algorithmic constraints. It is noted that in some cases the reduction in scale

exceeds the required spatial resolution to accurately identify the target response.

Segmentation accuracy is assessed only as it applies to methods of using the full

image resolution or in experiments related to localization refinement. Some enhanced

methods of feature extraction and landmark localization tested to provide a competitive

baseline are reported separately at the end of this chapter.

4.2 Collection Application Performance

Feasibility of this novel OKN based liveness detection for mobile deployment is

demonstrated by eliciting and collecting response data directly on the device. Processing

and training of the experimental models was conducted offline, however, all libraries used

for localization and training have been extensively tested for mobile deployment. Clas-

sification results reported here reflect models trained using evoked OKN features derived

from mobile device video sequences recorded in our collection.

Positive samples extracted for each stimulus class were collected for a duration of

2 seconds (60 frames) from the onset of stimulus. Extending or shifting this collection

window was noted to increase the incidence of blink events in the resulting sequence.

The automated data collection application used in our experiments was designed

to begin each recording 4.5 seconds before the onset of stimulus. Starting the recording
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early allows conformation of frame collection latency and insures the image collection

pipeline is fully engaged before the stimulus begins. As the primary goal of our experi-

ment was to determine the efficacy of temporal feature extraction for identifying specific

motion types, the video sequences collected before the stimulus were selected to act as

negative samples. Since these sequences contain normal eye motion collected in real

time on the same device, they present a distinctly nuanced challenge that mimics a highly

sophisticated attack. Subsamples of these videos were extracted using a random window

approach. In each sample case, an equal number of negative and positive samples were se-

lected from each user. A total of 9000 samples were generated from 4500 video sequences

containing 20 responses per subject to each of the 5 stimulus classes. Samples utilized

in our binary response classification experiments focused on detection of response to the

oblique class of visual stimulus which was designed to elicit a simultaneous vertical and

horizontal OKN response. This dataset was comprised of a total of 1120 samples, 800 of

which were utilized for training and 320 reserved for testing. Multiple experiments were

conducted to determine the efficacy mobile device collections for OKN based PAD using

the library derived and hand crafted features described in this section. Additional exper-

iments were also performed using direct processing of extracted sample sequences using

automated feature extraction and classification methods. and explanation is presented in

the following section of the top performing model and its associated parameters and se-

lection criteria. Experiments conducted in this study were designed to evaluate the visual

stimulus parameters of OKN sequential and response. Estimates of the ocular movements
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generated by the visual stimuli were provided by specialized feature extraction and lo-

calization methods. Several factors which have been noted to impact the quality of those

sequential response estimates are reported.

4.3 Classification

Multiple experiments were conducted using a variety of traditional and cutting

edge techniques. An array of ML methods were trained using library extracted landmarks

and motion estimates which were processed through hand crafted feature reduction and

statistical distributions based methods. Several classes of automated sequential represen-

tation DL classification models were trained using both raw image and model extracted

ROI sequences. Performance evaluations provided in this chapter focuis mainly on mod-

els trained using data derived from gaze sequence estimates provided by specialized ocu-

lar segmentation and localization libraries, but viability estimates are provided based on

the preliminary testing of the more advanced techniques.

The array of motion features extracted from gaze estimates, as described in the

previous chapter, highlight pursuit type motions which have been deemed more reliably

observable at the capture rate of the mobile device. Movements analyzed in the sample

videos sequences were the result of parametrically derived visual stimulus displayed on

the mobile device used to collect the samples, and more natural motions generated by

undirected visual search of the blank display. In some cases, a simple single frame display

attack was simulated for verification of reliable motion extraction, however, sequential

classification used features derived from natural motion as negative samples for detection
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of the specific OKN event onset.

DL based approaches which required limited additional pre-processing, but sub-

stantially more preparation and computing resources. Classification performance for these

models is reported with respect to the optimization parameters employed in their training.

Some factors of computational complexity and memory capacity that limit their imple-

mentation on the target platform in the current stage of development, but insights gained

may help improve future analytical and model based methods.

4.3.1 LSTM Classifiers

Subsets of response samples were selected from the full array of sequences and

used to construct several specific classifiers. Each of the five stimulus types were tested

against a randomly selected, equally sized subset of negative normal response (spoof)

samples. Time shifted samples were used for verification of onset detection. Top per-

forming models of phase-locked OKN onset achieved a detection rate of nearly 98% for

combined data from a single stimulus type, and a rate of nearly 95% when applied to

reserved test data. A confusion matrix of the combined output of this classifier is pro-

vided in Fig. 13. Further results are listed in 1 for the most promising of our experimental

configurations.

Models for multi-class detection, where response samples from each stimulus type

were considered as independent classes, proved slightly more difficult to train due to a

high negative sample ratio and subsequent imbalance based degeneracy. A random sub-

sampling approach was employed to offset the imbalance in several trials, however, the
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Figure 13: Combined results confusion matrix for single class best performing LSTM
model trained using extracted motion features.
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results of the testing applied to the remainder of negative examples indicates more samples

may be required to model the variance observed with undirected ocular motion.

Estimated total processing time for a single sample conducted off-line was 650ms.

Total run time of the deployed pipeline on a mainstream mobile device is estimated be-

tween 2.4 to 2.7 seconds as parallel execution of collection and processing would allow

feature localization and sequential classification to occur alongside of the sample collec-

tion.

4.4 Optical Flow Based Tracking

Selected samples from the full scale collection, and subsequent hand held collec-

tions were processed using Gunnar-Farneback Optical Flow (OF) algorithm. Resulting

arrays of flow vectors were used to generate maps of the resulting segmented regions of

the eye and limbic boundary. Images indicating the general result are indicated in Fig. 14.

Clustering of displacements relative to normalized pixel scale indicate the mean

ocular motion phase for large regular gratings is approximately 5 pixels or 2.5°. This

finding corresponds with tracking data provided from conformation testing from the Pupil

tracking software, and prevailing literature. Segmentation of the flow field vectors using

texture and contrast base edge detection and best fit, scale constrained, circular Hough

transforms resulted in motion vectors related directly to the limbic boundary of the iris.

Limbic only vector based OF field data was used to perform a background agnostic dis-

placement vector sequence, but ROI jitter was found to embed substantial additional mo-

tion features in extended testing. Ultimatly, optical flow fields were used primarialy to
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Figure 14: An example images of a sequence used to compute the optical flow of the iris
from a full cycle of the OKN response. The input image (above) has been superimposed
with a heat map of the flow (below).
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stabilize sequential estimates provided by facial landmark detection systems. Bidirec-

tional flow Kanade-Lucas-Tomasi algorithms were tested to provide optimization for the

regional motion vectors, and compared as an absolute difference in localization for the

detected landmarks relative to the tracked region of pixels in the target sequence. While

results from the testing aren’t definitive, due to lack of ground truth motion features, OF

provided the best results for landmark stabilization for the samples and methods applied

in these experiments when additional sensors or viewpoint data isn’t available.

4.5 Facial Pose Variance

While the mobile device was securely mounted in the large scale collection to

minimize some factors of pose variation, some amount of re-positioning and drift were

noted during most collections. While the angular changes weren’t sizable in the majority

of cases, the apparent pose of the head is a necessary component of gaze angle estima-

tion. Using the patch tracking approach from the gaze improvements branch of the Dr-

ishti library, ocular phase was reported relative to the rig of tracked points. Instantaneous

displacements reported by this method were equivalent to linear iris translation rather

than angular approximations relative to the device screen space. Sequential and recur-

rent methods used features derived from these relative displacements to classify smooth

pursuit events based on windowed sequences with fixed velocities occurring before high

velocity events. Window widths were varied between 3 and 5 samples with a stride of 1

to 3 samples. In the large scale collection a width of 3 frames with a stride of 2 frames

was used to provide faster detection of the higher displacement onset and saccade events.
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All approximations for the sample displacements were normalized with respect to a scale

estimate derived using the average iris diameter of 11mm and interpupillary distance of

62mm. Selected frame sequences were labeled using inference annotations provided by

the pretrained MTCNN described in [92]. Performance of this model was evaluated for

use on both mounted and hand held selfie sequences. Sequences were stabilized using

full frame OF methods as described in the previous section. Landmark localizations used

to compare total accuracy were derived using the 64 point high-quality dlib detector com-

bined with eos, and deformable facial face mesh and pose estimation of Google Medi-

apipeFig. 15 [143]. Visualization of the dense array as detected by Mediapipe can be

compared against the 5 point detector shown in Fig. 17. It should be noted that com-

parison of landmark localization only provides a relative assessment of performance and

not overall accuracy. Generalizing the temporal stability utilizing mean displacement of

sequential arrays of localized landmarks was deemed the best method of evaluation.

4.6 Convolutional Models

The combination of the three major elements above, convolution, pooling, and ac-

tivation compose what is widely called a module or layer in DL. The label layer can be

a bid confusing as it is use by different sources to refer to elements of different scale. In

general, the notion of a module originates from considering the elements normally con-

nected to generate one functional subunit of a DNN. In most cases, a DNN is constructed

using several modules of the same type connected in series such as the toy robot network

shown in Fig. 4 which consists of two convolutional modules connected in sequence.
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Figure 15: Face Mesh Generated by the Google Mediapipe library.
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Additional parameters are often used between modules, such as dropout, and regulariza-

tion functions, these parameters are invaluable for some types of data to avoid the constant

scourge of data memorization. Not every DL software platform offers the ability to imple-

ment these operations at every module or layer type, it is important to choose a platform

which allows the functions best for your application (more on platforms later).

Sequential precision, a measure of the total residue of alignment defects using a

geometric transform based on the mesh model fit parameters, is noted to likely provide a

more realistic assessment of total utility as part of an ocular motion based PAD system.

Precision as measured in the selected subset of 25 sequences is reported in the table 2.

4.7 Spatiotemporal Models

A model consisting of stacked 3DCNN layers was constructed for end to end

image sequence classification. Separate models were used for full frame sequences and a

range of MTCNN derived ocular sequences cropped from each sample. Due to memory

limitations, batches of full frame images were extremely limited, and training stalled

after only a few epocs. Learning rate adjustments and different scheduling methods were

used, but results were mixed. Ultimately an additional GPU was used to augment the

memory allocated. Visually representing the input data and model structure of a 3DCNN

is difficult, but a rough approximation of the model is included inFig. 18.

A volumetric representation of the input data tensor, based on a crop of the eye

band, is included in Fig. 16. The top performing model from this selection had an equal

error rate of 92% for stimulus based PAD from selected oblique responses. Data used to
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Figure 16: A typical input tensor composed of a cropped video sequence.

train these models was extracted based on sequential estimates of the MTCNN model as

part of the pre-processing pipeline.

4.7.1 Model Architecture

General parameters and design for the model used in this study are derived from

experimental modification of designs and ideas proposed in other human motion based

studies as seen in [154, 155]. Input parameters are an important part of design for most

CNN based methods, due to the fact that input structure is directly linked with the total

number of free parameters and the effective receptive field of each feature extraction ker-

nel. Once the input size is selected, only images of equal or lesser size can be processed

using the pipeline and representations derived. Each stack of images used contains some

ocular motion as can be seen in the volume projection displayed in Fig. 16.

While generating a model with variable input scale is possible through the use

of padding operations, a uniform scale is generally desirable for targets structures with

uniform characteristics such as the eye. While the scale of the input images was variable
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Figure 17: MTCNN detection framework applied to a sample image. Green elements
indicate the face detection frame, and 5 point landmarks. The red mid-line is used as the
inner boundary for the ROI as shown in the yellow dotted box.

in the extracted ROI samples, the deviation in total scale was less than 13% or 213 + 28 by

134 + 14. Image sequences were stacked to the nearest relative center pixel of the largest

image in each sequence. The resulting tensors were rescaled to 190x120 pixels. A total

of 3600 sequences were generated using the MTCNN ROI extraction method Fig. 17.

General tensor stacking size is relative to the engine for the layer input. In the

case of 3D Convolutional layers the input tensor has a dimension (batch size, sequence

length, channels, height, width) for torch’s 3DCNN layer input. An additional tensor

dimension is necessary for for sequence number in the tensorflow interface which adds the

normal input direction to indicate which dimension of the input should be processed first.
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This information is given as models of the 3DCNN provided here were built and tested

in both frameworks, with performance differences relative to acceleration parameters in

each layer library.

Batch normalization was employed along with a max pooling approach to mini-

mize the impact of small batches relative to a high free parameter density. Dropout was

assigned to each pooling layer in initial trials, but was removed due to poor learning per-

formance. Rectified Linear Units (ReLU) were chosen as the unit activation function for

each module to offset activation saturation due to high feature density. ADAM was cho-

sen as the primary optimizer for all tested architectures based on adjacent literature and a

search of top performing models on kaggel and modelzoo.

Final model parameters were selected through iterative implementation to achieve

the smallest viable architecture by adding layers only when training of the previous design

stalled for more than 50 epochs. Models were trained for 500 epochs for 0.1, 0.7,and 0.025

selected for the initial learning rate. No fixed scheduler was added for initial viability

testing. The structure of the top performing multi-class model is supplied below.

Visual representations of the true dimensionality of a 3DCNN are difficult even

with advanced animation tools as each kernel generates both a spatial and temporal array

for the convolutional output of the sequence. No known visualization standards have been

proposed, but a volume representation has been observed as most common for publication.

A conceptual rendering of the small feed forward 3DCNN used in this experiment is

included in Fig. 18.

Early stopping criteria of increasing loss on 5 or more validations and long term
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Figure 18: A representation of the 3DCNN model similar to the one used in this study.

snapshots logging the last 50 model states were implemented during training. Due to a

very large number of free parameters, models of this class are prone to quickly overfit,

resulting in diminishing performance for validation and reserve testing samples. Perfor-

mance of the best model was determined by selecting the top snapshot on reserved testing

samples, which provided a multi-class temporal classification of 92.2% when trained on

data derived from the primary large scale collection. Adaptation of the model through

transfer learning on hand held data collected relative to new stimulus parameters suffered

significant overfitting related errors. Removing the parameters by popping all layers but

Conv1 and Conv2, and allowing adaptation resulted in validation loss early in the training.

Further discussion is presented relative to this result in chapter 5.

4.8 Additional Stimulus Parameters

Preliminary investigation of the optokinetic response using mobile device displays

indicated the viability of ocular reflex inducing stimulus on the mobile display of the test-

ing device. While the stimulus used in the testing was generated using best case parame-

ters for the scale and viewing distance, the phase of gaze displacement remains relatively

small for most participants. Additionally, the user experience of these visualizations is
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generally considered poor relative to visual design and integration standards. Several

additional animations related to more intuitive iconography of processing and loading an-

imations were generated and tested with the assistance of the sponsor. All attempts were

made to provide at least 5 °visual field stimulation, or about 70% of the device display

width and moving edges or textures greater than 6 °per second relative to a 25cm viewing

distance. Moving 3D targets proved more difficult to reliably induce motion at smaller

scales and lower rotational velocities. Animations which utilized larger portions of the

screen while introducing arrays of dense edges greater than 0.1 °in width proved to gen-

erate the largest total onset related displacement. Small segment lengths with overlapping

lines and edges which incorporated both translation and rotation appeared to generate the

most reliable large scale rhythmic ocular motion in the samples collected. Additional

studies related to the optimal outcomes for hand held device PAD via ocular motion are

ongoing.

4.9 Occlusions and Segmentation Faults

Occasional occlusions of the user’s face occurred in several samples. In most

cases, these samples were detected due to failure of the Drishti segmentation engine.

Cases included subjects covering their face with their hands, turning away from the de-

vice, and looking too far up or down. Most of these events occurred at later stages of the

collection period, potentially indicating fatigue. In cases where the occlusion or fault took

place during the spoof phase, the data was replaced using another randomly selected spoof

sample. No occlusions were observed among the response samples, but some sample data
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contained signal issues or frame corruption, requiring replacement with a duplicate pre-

sentation from a random collection sequence. In total 37 sequences were replicated to

balance the sample distribution. The complete data of five subjects were removed from

evaluation due to some combination of collection software errors, participation issues,

long eye closures, and high frequency blink events.

Detection failures resulting in non-continuous sequences of frames containing fea-

tures occurred in approximately 8 % of the samples processed using the MTCNN frame-

work. Samples processed by this method were discarded where discontinuities of more

than 3 frames occurred. Some scale and geometry issues were encountered with the facial

landmarking process, with the system detecting non-planar geometries for some samples.

In total 218 samples were removed due to sequential discontinuities, and 188 more sam-

ples were removed due to failed planar geometry.
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Table 1: Results of Model Performance for Tested Architectures
Training Testing Combined

FC ANN 67.0% 58.9% 62.3%
TDNN 73.2% 68.4% 71.1%
SAE 81.1% 75.1% 77.3%
MC LSTM 93.8% 72.7% 87.0%
Binary LSTM (Single Stimulus)
Type 1 (Horizontal Right) 94.4% 91.0% 92.8%
Type 2 (Horizontal Left) 95.7% 95.4% 95.6%
Type 3 (Vertical Up) 85.1% 87.9% 86.4%
Type 4 (Vertical Down) 95.4% 87.3% 92.4%
Type 5 (Oblique) 99.3% 95.4% 98.4%

Table 2: MTCNN Sequential Feature Localization and Segmentation Precision
Left Eye Right Eye Nose Left Mouth Right Mouth

Max Offset 11.4 12.1 10.1 16.7 14.3
Mean Offset 4.4 5.2 5.1 6.2 6.5
Standard Dev. 3.2 3.4 4.1 5 4.8
Library Match 0.87 0.82 0.87 0.79 0.77
Scale Dev. 0.03 .05 0.09 0.07 0.07
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CHAPTER 5

DISCUSSION

A variety of factors impact the application of liveness detection methods for mo-

bile device biometrics in the visible spectrum. Quality issues with images collected from

mobile cameras range from motion blur and smearing to over exposure and random sen-

sor noise. Impacts of motion during capture are among the most problematic due to the

potential for additive velocity when the user moves the camera and their head or eyes in

opposite directions. Appearance based biometric methods require clear visible features

and often utilize averaged values from registered frame sequences to reduce noise. Re-

liable registration of ocular features is dependent on relatively low amplitude motions

while the samples are being collected, so simultaneous collection of OKN with this signal

processing strategy is likely incompatible.

PAD is inherently a process that operates on sequential phenomena, and is there-

fore highly dependent on temporal characteristics and sampling frequency. Unstable or

variable frame rates during the collection process of some additional samples in a hand

held collection were indicated to generate sequences which were unusable without dy-

namic resampling. Compression and extrapolation effects resulting from this processing

were similar to those observed in some early experiments with dynamic warping and

wavelet decomposition and the resulting smoothing had a blurring effect on critical tem-

poral features.
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Multi-modal approaches often require additional sensors, and some models dis-

play issues when processing images from ethnically diverse populations [137]. Ocular

feature localization methods, such as those used in our motion extraction pipeline have

been demonstrated to largely alleviate this concern. Additionally, given the reflexive na-

ture of the OKN response, no known cultural factors influence the expression of the target

behavior. Reporting of experimental results involving the detection of print and screen

based presentation attacks have been omitted from this publication, as discrimination of

ocular motion samples extracted from these sources can be accomplished using frequency

based threshold. Additionally, comparison of most state of the art methods is impractical,

as sequences used as spoof in our experimental process meet the criteria of live samples

in existing metrics.

5.1 User Experience

User experience factors remain a pressing concern for stimulus development. While

no user discomfort was recorded in our collection, some users reported the structure and

motion of the visual elements produced a hypnotic effect over the duration of their visit.

This was substantiated by an increase in blink events in some participants, and an increase

in OKN onset delay for most samples in the latter half of each session. Blink events play

some role in the process of maintaining visual attention, and their presence in the samples

collected was expected. Delay in total onset of the OKN response is a known physiolog-

ical response factor. This delay is thought to act as a feature when the start of stimulus

is properly synchronized with the visual collection. Removal of discontinuities caused
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by blinks requires several additional steps, and can degrade the quality of samples. Blink

events also have an undesirable reset delay effect on OKN onset.

An increase in velocity was generally considered to offset the impact of delay, but

diminishing returns were noted in terms of comfort and visual appeal. Alternative visual-

izations generated in the follow up process provided some insight into the possibility of

smaller and more diverse animations and motion fields, but differentiating the responses

to smaller animations remains an ongoing endeavor with multiple possible avenues of

optimization including distance based dynamic rescaling. While edges and textures are

still a requirement for reliable tracking behavior, large moving arrays with punctuated

motion patterns produced more a phase-locked characteristic response when analyzed

with respect to overall deflection in the initiation and departure time windows. Adding

additional interest points into the acceleration profile of the motion stimulus provides ad-

ditional freedom for parameter randomization, but there are limitations on the frequency

and separation of the acceleration adjustment events due to the requirement of maintain-

ing a maximum total duration.

5.2 Complexity

Complexity of sequential models increases radically when utilizing both CNN and

3DCNN architecture. Training required modification of some built in layer functions, and

the addition of a second GPU with shared memory access. Initially, models were trained

in Matlab™, but limitations in the ability to modify some architecture parameters led to
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development and training using python. Models reported for most of the advanced archi-

tectures discussed in chapter 4 were built using pytorch and tensorflow DL libraries. Mod-

els were mostly implemented using keras based scripting to simplify the process of model

construction due the presence of many ready made layers and transforms. Modeling the

3DCNN was among the most difficult process, and resulted in the most computationally

and run-time intensive network. Multiple memory issues were encountered, despite 64gb

of system memory and two 8gb of GPUs. Batch size was limited to 24 samples when

images were used directly. Processing images at full resolution was known not to be a

feasible mobile deployment option, but even with MTCNN cropped ROIs, the batch was

limited when training on a single GPU.

Ultimately, it appears that a multiple step pipeline as used in early experiments

is likely the only reliable method for mobile deployment at the current development

stage. Attempting to generate sequential models of this depth causes increased delay

when compared to a parallel feature localization strategy. Several emerging methods of

sparse processing may provide a significant reduction in overall model parameters by

pruning, convergence, and ablation, but with large arrays fully connected 3DCNN layers

require substantially more resources than are available on most mobile devices.

5.3 Dimensional Constraints

High-definition sources can potentially contain a wealth of features that can be

difficult to extract at a smaller scale, but devising ways to utilize that information content

can present its own challenges. In the case of the data acquired in this study, collection of
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samples with sufficient target spatial resolution was a requirement which can be directly

correlated with the viability of a visible spectrum tracking application. Implementing

and testing the stimulus parameters required a baseline assumption of localization-based

discrimination, as the protocol necessary to test the primary hypothesis was based not only

on the presence of a distinct behavioral signature, but the ability to reliably distinguish

between those signatures. An upper limit exists for the accuracy and precision of any gaze

approximation method given some inherent sample characteristics. Feature localization

plays a major role in the calculation of behavioral patterns and ocular kinetics, but the

impact of noise can never be disregarded.

Drishti’s gaze approximation pipeline was initially designed to improve segmen-

tation and feature localization for ocular feature extraction in mobile biometric authenti-

cation. Sequential precision wasn’t a primary consideration in the initial design process,

and as such each sample frame is processed using a naive approach. Certain reasonable

assumptions are used in the localization and refinement of key features which reduce the

runtime and preserve device resources. Some of these assumptions can have an undesir-

able impact which can become highly problematic when applied to sequences of images

were consistency of localization is a direct measure of overall performance. Reflections

can contribute to errors in segmentation of pupillary and iris regional boundaries, but this

tends to hold true for nearly all ocular processing pipelines. Additional pre-processing

steps can be implemented to stabilize the performance, but since all these methods should

run reliably on the device computational costs become a mounting factor.

While our models provide some degree of error tolerance, significant jitter in the
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sequence outputs rendered the base library impractical for ocular motion feature extrac-

tion. It was observed in our experiments that ocular motion estimation relies more on

the consistency of sequential localization than the accuracy of feature segmentation. To

address this issue, a branch of the main Drishti code was modified to implement a multi-

frame texture based patch tracking feature. Contextual cues provided by processing small

groups of frames in a single batch provided a substantial improvement in the stability

of sequential ocular feature localization. While this method could likely be improved,

adding some degree of persistence appears to be an essential step in processing motion

based feature estimates. The lower noise threshold of the improved model allowed for a

minimal pre-processing approach, allowing motion features derived from Drishti’s posi-

tional estimates to be sent directly to the classifier. While samples collected in our proto-

col are largely ideal due to our controlled collection environment, future implementations

may benefit from implementing a feature localization confidence threshold to alleviate

tracking errors due to segmentation faults.

Color stimulus was not fully investigated, but some indications exist that color pat-

terns may provide advantages when implemented with the appropriate parameters. Given

the density of color receptors in the primary visual field, colored edges or bands may have

a greater total level of detail than strictly monochrome visualizations. Patterns of color

dots and bands of either blue or red are commonly used in functional medicine, with pat-

terns available on video sharing sites, but the velocities of most of these stimulus patterns

were determined to be far slower than those known to induce OKN. Residual motion il-

lusions appeared more common in some testing of color based visualizations, but this

99



effect required stimulus durations higher than 10 seconds and would likely be infeasible

for mobile devices due to poor user experience.

In additional testing and alternative stimulus design several attempts were made to

utilize the visual compensation response to draw gaze away from blur and warp effects.

With proper textures, some warp effects did generate ocular motion, but the distribu-

tion of angles was inconsistent for the samples collected. Animations employing fovea

and motion blur mostly impacted kinetics by reducing fixation time in search type pat-

terns. Moving a focused disc approximately 2cm in diameter within a Gaussian blurred

screen space did generate several consistent displacements, but it was determined that

pursuits accounted for only a small fraction of the total observed motions. Convergence

and looming illusions used in some testing generated an undesirable user experience when

velocities were sufficient to generate reliable gain. Motion sensations were observed in

several tests, but attempts to induce convergence motions resulted in the greatest degree of

user feedback for hand held collections. Projections of textures and gratings on complex

shapes like curves, cubes and spheres met with poor performance at scale, and generally

taxed the rendering methods used in the mobile device test applications.

Front facing camera lens systems are typically calibrated to generate a wide field

of view while maintaining an optimal depth of field. As a result of their small size, and

compact design, these lenses generate substantial distortion which requires extensive post

processing to correct. At normal viewing distance, the ROI for a single eye occupies

approximately 1/10th of the front facing camera’s field of view, or 200x160 pixels per

eye, limiting the spatial resolution and angular fidelity. While some experiments indicate
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angular fidelity of less than 1°could be possible with spatiotemporal techniques, these

methods remain impractical for mobile edge computing due to memory and model size

constraints. Future hardware, including higher resolution sensors and better lens systems

may facilitate a solution to this dilemma. Temporal super resolution approach might

also increase localization fidelity, but without advancement in the technology, substantial

libraries of high resolution video responses would be needed to train such as system.

Several of the methods used in this study were intended primarily to circumvent

accuracy related issues with gaze approximation by focusing instead on stable sequential

estimation of frame to frame localized features relative to the image target. This approach

generated reliable features for the relative ocular motion patterns, but differentiation be-

tween stimulus classes seems to rely on phase and angle based differences in the induced

pattern of displacement. Implementation of a facial pose estimator was demonstrated to

potentially provide a path to generating more accurate gaze estimates.

More nuanced individual responses when recording motions using high accuracy

gaze systems, potentially indicating the use of OKN or other ocular motion kinetics as a

biometric authentication mechanism. Further study of this application may be warranted.
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CHAPTER 6

CONCLUSIONS

PAD methods are an essential component of reliable mobile device biometric sys-

tems. Results of the experiments conducted in this study indicate that a subject inde-

pendent PAD method based on reflexive behavioral signatures may help protect against

sophisticated emerging attacks like deep fakes, and may even help deter higher effort at-

tack vectors like masks, digital puppets, and 3D printed structure based attacks. While the

library dependency of the feature extraction method used in the early testing is cumber-

some due to several additional steps, the feature localization provided sufficient stability

for reliable OKN onset based PAD classification. Spatiotemporal methods proved more

difficult to train, but required only roughly aligned images to generate stable temporal

features. Transfer learning from larger pretrained models is typically seen as a key ad-

vantage for advanced DL systems, but given the unique constraints of the application few

models were applicable given the disparity in training parameters. Even advanced models

like Google Mediapipe, which integrate optical flow to achieve improved temporal stabi-

lization for face mesh fitting, are still remarkably sensitive to noise. Training with a more

broad data set has advantages over small set testing, and while the data collected in this

study has proven significant, the total number of sequence examples remains relatively

small in comparison to the behavior being analysed.

Top performing models generated in this study indicate the feasibility of OKN
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based PAD when using a mobile device as the collection platform. Samples from each

of the major motion classes where identified reliably for the conditions present in the

collection, with the top performing model providing approximately 98% accuracy when

processing extracted sequential features. DL methods proved more computationally in-

tensive and time consuming to train than the hand crafted feature models. This was ex-

pected, but due to limitations in the memory capacity and processing hardware, only a

limited subset of the data could be processed reliably. Results from those configurations

showed promise by demonstrating a 92% classification accuracy for multi-class response

detection. Based on these results, it appears an automated spatiotemporal feature extrac-

tion method for behavioral classification using ocular response data is possible, but further

refinement is necessary for generating an approach that fits both classification accuracy

and computational complexity constraints.

Some of the most potentially significant discoveries related to the advancement in

ocular reflex based PAD generated by this study are related to the parameters of visual

stimulus and feature localization. General objectives of most face detection and local-

ization models dictate that the relative level of precision required for high accuracy gaze

localization has not been achieved by any currently known model. While high accu-

racy models aren’t needed to generate a reliable PAD model, they are likely necessary to

generate better multi-class discriminate features. High accuracy gaze models also have

substantial practical applications for other user interface applications.

Utilizing the device display and integrated front facing camera to elicit OKN

generates a variety of time-locked and phase-locked response characteristics. While the
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bulk of data processing was implemented off-line, at least some of the feature extraction

pipeline and model architectures were optimized for the target platform. Testing of model

deployment for the more advanced models was infeasible due to memory limitations of

the target platforms, but results of the precision testing for the sequential optimization

methods indicate the goal is likely linked to a viable avenue of investigation. Imple-

mentation of these methods will likely remain limited due to cost factors and complexity,

however, our experiments indicate the feasibility of a spatiotemporal PAD method without

the need for additional sensors.

Results also indicate that with small sample collections, an array of addition stim-

ulus parameters and animation types may be viable for generated general optokinetc re-

sponses. In the preliminary case studies conducted on these stimuli, library and sequential

processing based assessments show the presence of intended motion signatures. Based

on our findings we believe this work represents a potentially significant step for mobile

device liveness assessment and biometric security and a provides a road map for improve-

ment and advancement of other gaze based technologies and mobile applications.
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B. Löhlein, U. Heister, S. Möller, L. Rokach, and Y. Elovici, “Identity theft, com-

puters and behavioral biometrics,” in 2009 IEEE International Conference on Intel-

ligence and Security Informatics, ISI 2009, 2009. doi: 10.1109/ISI.2009.5137288.

ISBN 9781424441730

[3] M. Zloteanu, N. Harvey, D. Tuckett, and G. Livan, “Digital identity: The effect of

trust and reputation information on user judgement in the sharing economy,” PLoS

ONE, 2018. doi: 10.1371/journal.pone.0209071

[4] Z. Akhtar, G. Kumar, S. Bakshi, and H. Proenca, “Experiments with ocu-

lar biometric datasets: A practitioner’s guideline,” IT Professional, 2018. doi:

10.1109/MITP.2018.032501748

[5] L. M. Mayron, “Biometric Authentication on Mobile Devices,” IEEE Security and

Privacy, 2015. doi: 10.1109/MSP.2015.67

105



[6] S. M and P. G, “Mobile Device Security: A Survey on Mobile Device Threats, Vul-

nerabilities and their Defensive Mechanism,” International Journal of Computer

Applications, 2012. doi: 10.5120/8960-3163

[7] S. B. Gould, “Computers at risk: Safe computing in the information age,” Govern-

ment Information Quarterly, 1991. doi: 10.1016/0740-624x(91)90010-6

[8] R. Ramachandra and C. Busch, “Presentation attack detection methods for face

recognition systems: A comprehensive survey,” ACM Computing Surveys, 2017.

doi: 10.1145/3038924

[9] A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, and C. Busch, “Fake

Face Detection Methods: Can They Be Generalized?” in 2018 International

Conference of the Biometrics Special Interest Group, BIOSIG 2018, 2018. doi:

10.23919/BIOSIG.2018.8553251. ISBN 9783885796763

[10] Y. Atoum, Y. Liu, A. Jourabloo, and X. Liu, “Face anti-spoofing using patch and

depth-based CNNs,” in IEEE International Joint Conference on Biometrics, IJCB

2017, 2018. doi: 10.1109/BTAS.2017.8272713. ISBN 9781538611241

[11] A. Husseis, J. Liu-Jimenez, I. Goicoechea-Telleria, and R. Sanchez-Reillo, “A

survey in presentation attack and presentation attack detection,” in Proceed-

ings - International Carnahan Conference on Security Technology, 2019. doi:

10.1109/CCST.2019.8888436. ISBN 9781728115764. ISSN 10716572

106



[12] N. Clarke, J. Symes, H. Saevanee, and S. Furnell, “Awareness of mobile device

security a survey of user’s attitudes,” International Journal of Mobile Computing

and Multimedia Communications, 2016. doi: 10.4018/IJMCMC.2016010102

[13] S. Riihiaho, “Usability Testing,” in The Wiley Handbook of Human Computer In-

teraction Set, 2017. ISBN 9781118976005

[14] C. M. Knapp, F. a. Proudlock, and I. Gottlob, “OKN asymmetry in

human subjects: a literature review.” Strabismus, vol. 21, no. 1, pp. 37–

49, 2013. doi: 10.3109/09273972.2012.762532. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pubmed/23477776

[15] J. Waddington and C. M. Harris, “Human optokinetic nystagmus: A stochastic

analysis,” Journal of Vision, 2012. doi: 10.1167/12.12.5

[16] J. M. Furman, “Optokinetic Nystagmus,” in Encyclopedia of the Neurological Sci-

ences, 2014. ISBN 9780123851574

[17] J. Turuwhenua, T. Y. Yu, Z. Mazharullah, and B. Thompson, “A method for

detecting optokinetic nystagmus based on the optic flow of the limbus,” Vision Re-

search, vol. 103, pp. 75–82, oct 2014. doi: 10.1016/j.visres.2014.07.016. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S0042698914001758

[18] C. Song, A. Wang, K. Ren, and W. Xu, “EyeVeri: A secure and usable approach

for smartphone user authentication,” in Proceedings - IEEE INFOCOM, 2016. doi:

10.1109/INFOCOM.2016.7524367. ISBN 9781467399531. ISSN 0743166X

107



[19] R. Bednarik, T. Kinnunen, A. Mihaila, and P. Franti, “Eye-movements as a biomet-

ric,” Image Analysis, Proceedings, 2005. doi: 10.1007/11499145 79

[20] V. Cantoni, M. Musci, N. Nugrahaningsih, and M. Porta, “Gaze-based biometrics:

An introduction to forensic applications,” Pattern Recognition Letters, 2018. doi:

10.1016/j.patrec.2016.12.006

[21] S. Kaymak, “Real-time appearance-based gaze tracking,” Ph.D. dissertation,

Queen Mary University of London, 2015. [Online]. Available: http://qmro.qmul.

ac.uk/xmlui/handle/123456789/8949

[22] X. Zhang, Y. Sugano, M. Fritz, and A. Bulling, “MPIIGaze: Real-World Dataset

and Deep Appearance-Based Gaze Estimation,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, 2019. doi: 10.1109/TPAMI.2017.2778103

[23] C. Holland and O. V. Komogortsev, “Biometric identification via eye movement

scanpaths in reading,” in 2011 International Joint Conference on Biometrics, IJCB

2011, 2011. doi: 10.1109/IJCB.2011.6117536. ISBN 9781457713583
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