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Abstract

Robotic Burst Imaging for Light-Constrained
3D Reconstruction

This thesis proposes a novel input scheme, robotic burst, to improve vision-based 3D
reconstruction for robots operating in low-light conditions, where existing state-of-
the-art robotic vision algorithms struggle due to low signal-to-noise ratio in low-light
images. We aim to improve the correspondence search stage of feature-based recon-
struction using robotic burst imaging, including burst-merged images, a burst fea-
ture finder, and an end-to-end learning-based feature extractor. Firstly, we establish
the use of robotic burst imaging to compute burst-merged images for feature-based
reconstruction. We then develop a burst feature finder that locates features with
well-defined scale and apparent motion on a burst to deal with limitations of burst-
merged images such as misalignment at strong noise. To improve feature matches
in burst-based reconstruction, we also present an end-to-end learning-based feature
extractor that finds well-defined scale features directly on light-constrained bursts.

We evaluate our methods against state-of-the-art reconstruction methods for conven-
tional imaging that uses both classical and learning-based feature extractors. We
validate our novel input scheme using burst imagery captured on a robotic arm and
drones. We demonstrate progressive improvements in low-light reconstruction using
our burst-based methods against conventional approaches and overall, converging 90%
of all scenes captured in millilux conditions that otherwise converge with 10% success
rate using conventional methods. This work opens up new avenues for applications,
including autonomous driving and drone delivery at night, mining, and behavioral
studies on nocturnal animals.
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Chapter 1

Introduction

"Curiosity is the essence of human existence"
- Gene Cernan

Curiosity and inquisitiveness have always driven humanity to explore, discover and
understand the vastness of the universe. We, as humans, have designed robots to
perceive the world beyond the capabilities of our own kind, traditionally to perform
strenuous and repetitive work, especially in hazardous environments. As civilization
moves toward a new era of technological advancements, robots now, more than ever,
have a role to play in building a creative future by perceiving the world in novel ways.

1.1 Motivation

Robots use vision sensors to perceive the environment and perform a wide range
of tasks, such as simultaneous localisation and mapping (SLAM) [3, 4], navigation
[5, 6], pose estimation [7, 8], depth estimation [9, 10], and 3D reconstruction [11, 12].
A camera, for instance, gives a robot the ability to perceive the world in a similar
way to humans, and when combined with other sensors or computational techniques,
even beyond human capabilities. By enabling visual sensing, a robot can operate in
conditions that are not suitable for humans, such as deep-sea exploration [11, 13],
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(a) (b) (c)
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0.5
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Figure 1.1 – (a) An example of a light-constrained scene captured at night; (b)
Contrast-adjusted captured image for visualisation. Reconstructing the scene using
15 images with low signal-to-noise ratio (SNR) images similar to (b) from different
viewpoints fails to converge. (c) Relaxing the initializing setting, reconstruction
estimates inaccurate camera poses.

mining [14], and space missions [15]. This has significantly accelerated scientific
discoveries in recent years [16, 17, 18], and continues to do so remarkably [19].

State-of-the-art vision-based reconstruction methods [20, 21] succeed in good lighting
conditions, but they struggle to operate in challenging visual conditions like fog,
haze, rain, snow, and low light. We are particularly motivated by the challenge of
reconstructing 3D shapes in low light, as current methods yield inaccurate shape
estimations, camera trajectories, and can even fail to reconstruct entirely. One such
example using COLMAP [20] with scale invariant feature transform (SIFT) feature
extraction [22] is shown in Figure 1.1.

Robots may address the issue of low light by using their own light sources to illuminate
the environment. However, in some applications, such as studying the behavior of
nocturnal animals, it is not possible to use additional light as it can affect their
behavior. Smaller platforms might also have weight or power limitations that prevent
them from carrying extra light sources. Robots that currently use their own light
sources such as an autonomous underwater vehicle (AUV) with strobe lights have an
expensive power budget during deployment. So, the use of additional light sources
for low-light environments is not always feasible or efficient for robots.
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Cameras designed for low-light conditions, such as night vision cameras, use infrared
wavelengths to detect dark scenes. Near-infrared (IR) night vision cameras use wave-
lengths of 700-1000 nm and require their own IR illumination, while those sensitive to
1000-1500 nm use ambient skylight. However, even with ambient skylight, IR illumi-
nation is still needed during deployment. Night vision cameras are also expensive [23]
and not suitable for mass production of emerging robots [24] such as drone delivery
services.

The current approaches in low-light vision for robots mainly focus on improving image
quality through denoising [25, 26, 27] or deblurring techniques [28] applied to con-
ventional images. The effectiveness of these approaches is inherently constrained by
the limited amount of data present in a single image. While there are computational
imaging techniques that can enhance low-light images [29, 30, 31], they often require
hardware modifications. In contrast, we present a method that leverages multiple
images captured under low-light conditions to maximize the information available
for reconstruction and consequently offer a series of guidelines on how to fine-tune
camera settings to achieve this goal.

Burst photography is an established mobile photography technique that uses a series
of consecutive frames captured over a small exposure time to produce a single image
with an improved SNR upon merging [32, 33, 34, 35]. Burst imaging has also been
shown to improve the SNR in images without the need for additional ambient light
sources [33].

Prior works and ongoing developments on burst imaging are steered towards mobile
photography [33, 34, 36, 37], where the primary objective is to produce convinc-
ing content for human visual perception while accounting for camera motion due to
handshake and scene motion within a single burst of images. On the contrary, achiev-
ing satisfactory reconstruction results in low-light conditions necessitates dependable
pixel-level matches [38, 20] across various bursts. Given the typical dynamics of
robotic platforms during burst capture, which often involve significant occlusion and
camera movement between bursts, it becomes crucial to calculate accurate camera
pose estimates for reliable reconstruction.
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Modern 3D reconstruction techniques generally employ 2D features to find pixel-
level correspondences between images [20, 39]. While classical 2D feature extractors
[22, 40, 41] and learning-based feature extractors [42, 43, 44] have shown promising
results in vision-based reconstruction applications [20], their performance reduces sig-
nificantly in low-light scenarios [45, 38], making them unsuitable for light-constrained
reconstruction. Therefore, there is a need for a new input scheme for reconstruction
that can overcome the limitations of classical techniques in low-light environments.

This motivates the development of robotics-driven burst imaging techniques for 3D
reconstruction, which could potentially provide reliable pixel-level correspondences
and robust camera pose estimates, even in challenging lighting conditions. Such an
approach can significantly enhance the accuracy and robustness of the visual per-
ception system for robots and pave the way for new robotic applications in low-light
conditions.

1.2 Problem Statement

This thesis seeks to enhance the ability of robots to perform feature-based 3D recon-
struction in low-light conditions, which is currently constrained by the low SNR in
images captured using conventional monocular cameras. To achieve this, we propose
the use of robotic burst imaging for improved feature extraction, which enables robust
feature-based 3D reconstruction. The main hypothesis of this research is that burst
imaging can provide robots with a better understanding of light-constrained scenes
compared to conventional imaging. However, the primary challenge in adopting burst
imaging for robotics lies in enabling conventional feature detectors and descriptors
to comprehend the information contained within bursts of images to compute reli-
able features and camera pose estimates. The research aims to explore methods for
identifying and utilizing the most useful information within bursts of images, which
may involve developing novel feature extractors for robotic bursts to enable light-
constrained 3D reconstruction.
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1.3 Contributions

The primary focus of this thesis is to bridge the current research gap that exists in
enabling robots to operate in low-light conditions using conventional cameras. We
establish a new imaging scheme for light-constrained reconstruction by adapting burst
imaging for robots to operate at night. We introduce novel feature detectors and
descriptors for robotic burst imagery utilizing both physics principles and learning
methods. These advancements enable feature-based reconstruction even in light-
constrained environments.

The primary contributions of this thesis are:

• We establish the viability of using burst imaging to improve robotic vision in
low light (Chapter 3 - Chapter 5), and provide a set of recommendations for
adopting this approach in reconstruction tasks such as structure-from-motion
(SfM) (Chapter 3),

• We introduce a robotic burst feature finder (BuFF), a 2D + time feature de-
tector and descriptor that finds features with well defined scale and apparent
motion within a burst of images for light-constrained 3D reconstruction (Chap-
ter 4),

• We present a learning framework to find robust light-constrained features from
noise-limited bursts of drone imagery captured in millilux condition at night
(Chapter 5), and

• We demonstrate improved feature performance in noise, reconstruction perfor-
mance including more 3D points, fewer spurious matches and precise camera
pose estimates overall using robotic burst imaging compared to conventional
methods (Chapter 3 - Chapter 5).
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1.4 Significance

This thesis introduces robotic burst imaging, a novel input scheme for correspondence
search for light-constrained 3D reconstruction. By using robotic burst imaging, it is
possible to improve the accuracy of correspondence search for reconstruction in low
light. This work opens the way for a broad range of applications in which low light
commonly complicates vision such as operating autonomous driving and delivery
drones at night, mining, and understanding nocturnal behaviors of animals.

By improving the efficiency, and robustness of correspondence search for reconstruc-
tion with high-quality features, it becomes possible to create more immersive and
realistic virtual environments, as well as to capture and analyze 3D data from re-
mote or inaccessible locations. This also allows more practical and accessible light-
constrained reconstruction for a wider range of applications and devices. Overall, by
improving the quality of features used in light-constrained reconstruction, this work
can help advance the robotics field and enable new applications that were previously
challenging or impossible to achieve in low light.

1.5 Outline

Chapter 2 provides the necessary background knowledge to comprehend the thesis as
a standalone read. This section covers the fundamental concept of 3D reconstruction,
prevalent methods for achieving reconstruction, and various definitions associated
with reconstruction applications, specifically SfM. We also include a detailed discus-
sion of existing approaches to light-constrained reconstruction using complementary
sensors, as well as the drawbacks of utilizing low SNR images. We identify the imag-
ing trade-offs with capturing light-constrained scenes using a conventional camera,
followed by an exploration of how burst photography addresses these trade-offs. We
conclude the section with a discussion on the noise associated with capturing burst
imagery in low light.
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In Chapter 3, we outline our approach to adapting burst imaging, commonly used in
mobile photography for 3D light-constrained reconstruction. We discuss the current
trends in burst photography and how all methods, regardless of their intended appli-
cations, focus on computing a single higher SNR image from a single burst of images.
We then outline our approach towards robotic burst-based SfM by using direct meth-
ods within a burst of images to improve noise in images and finding sparse feature
correspondences between bursts of images to deal with large motions. We evaluate
our method against alternative input scheme for 3D reconstruction using conven-
tional images and all images within a burst of images and demonstrate improved
performance in terms of feature evaluation, camera pose estimation and convergence
rate.

In Chapter 4, we introduce a robotic burst-based feature extractor that leverages
apparent motion within a burst of images to avoid misalignment at strong noise. In
this chapter, we discuss existing 2D and 3D classical feature extraction methods and
identify the need for a robotic burst feature finder. We discuss the typical motion
behavior associated with robotic bursts and introduce a burst feature extractor that
locates features with well-defined scale and apparent motion via joint search in scale-
slope space. We describe these features based on their histograms of edge-orientations.
We highlight the overall improved performance in terms of feature evaluation, camera
pose estimation and convergence rate against state-of-the-art classical and learning-
based feature extraction methods on conventional images and robotic burst-merged
images.

In Chapter 5, we develop a novel learning architecture for robotic burst feature ex-
traction to explore light-constrained reconstruction beyond the limitations of classical
and physics-based algorithms. We discuss the design choices behind state-of-the-art
learning-based feature extraction for reconstruction and identify the research gap in
adapting burst imaging for learning-based feature extraction. We design our archi-
tecture and loss functions to effectively handle strong noise in low-light imagery while
prioritizing the interpretability of burst features, facilitated by confidence maps. Our
evaluation against state-of-the-art feature extraction methods on conventional images
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and burst imagery shows progressive improvement in reconstruction performance and
an ability to operate in lower light conditions than was previously possible.

Chapter 6 concludes the thesis with insights and broader impacts of the research
study and highlights future research directions.



Chapter 2

Background

"If I have seen further, it is by standing on the shoulders of giants"
- Issac Newton

2.1 Overview

In this chapter, we provide an overview of background topics and knowledge that
support technical development in the later chapters. We first discuss the classes of
strategies used in correspondence search in visual reconstruction and analyze exist-
ing light-constrained reconstruction methods. We examine a reconstruction exam-
ple, specifically SfM, and analyze the role of different stages of its pipeline in light-
constrained reconstruction. We discuss the existing imaging trade-offs in low-light
conditions using conventional cameras in detail. We also introduce burst photogra-
phy and review its state-of-the-art usage on mobile phones followed by a discussion
on noise associated with captured low-light burst imagery.
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2.2 3D Reconstruction

During operation, robots equipped with vision sensors, such as cameras, rely on
captured images to perceive their surroundings and determine their location. Even
though the environment in which robots navigate is three-dimensional, image sensors
have a limited design that allows them to capture information in only two dimensions.
To accurately localize themselves, robots use multiple 2D images to create a 3D model
of the environment. This approach has been effectively employed for reconstruction
[20, 39] in well-lit conditions and in various domains, including medical applications
[46] and entertainment [47]. Robots perform 3D reconstruction using two classes of
strategies:

Direct methods. Direct methods are an effective approach to estimate relative
changes in camera poses by utilizing all pixels from input images. Direct methods
have proven to be successful [48, 38] in reconstructing images with relatively small
motion using monocular cameras [38, 49] and RGB-D sensors that capture both color
(RGB) and depth (D) information simultaneously [50, 51, 52].

By considering color, brightness, and intensity gradients, which represent the environ-
ment more closely, direct methods provide rich information for robotics applications
instead of relying only on particular feature properties [45, 38]. However, direct meth-
ods are not suitable for light-constrained reconstruction in scenarios involving large
motion, occlusions, and intensity variations, as they assume brightness constancy
[38, 45, 50]. This makes an end-to-end reconstruction approach using only direct
methods unsuitable [53, 48], particularly for loop closures [54, 38, 45].

Feature-based methods. Feature-based methods are more effective than direct
methods in handling large occlusions and motion between images [54, 38, 45]. This is
because feature-based methods locate pixels with well-defined features, such as blobs
or corners, and describe these features in a way that is invariant to apparent viewpoint
and illumination changes [43, 42, 55, 22, 40, 41]. However, state-of-the-art algorithms
for feature-based methods struggle under challenging imaging conditions, such as
motion blur, low light, and repetitive texture, making it difficult to converge using
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visually challenging images [54, 38]. When operating an end-to-end feature-based
reconstruction using images captured in low-light conditions, spurious features may
be produced during the correspondence search stage, resulting in decreased overall
reconstruction performance [38, 54, 53].

Light-Constrained Reconstruction

When capturing images in low-light conditions, achieving high-quality vision-based
reconstruction can be challenging because of low SNR in images. One approach that
has been utilized to address this challenge involves using complementary sensors in
addition to conventional cameras. Recent examples of this include integrating sparse
depth measurements from light detection and ranging (LiDAR) with thermal infrared
camera for SLAM [56], employing an infrared camera and an inertial measurement
unit (IMU) for SLAM [57], and implementing radar-based SLAM [58]. These meth-
ods have all shown strong performance in practice. However, to keep emerging robots
affordable [59, 60], a low-cost sensing system, e.g., conventional camera, is still the fi-
nancially advantageous choice, limiting the use of additional sensing modalities within
our current scope.

Another approach to dealing with light-constrained images is by leveraging low-light
enhancement studies [61, 62, 63, 64, 65] which can directly be applied iteratively
over every input image for reconstruction. As most of these low-light enhancement
methods are learning-based approaches [61, 62, 63, 65], there is an overhead for col-
lecting datasets that needs to be generalized across different robotic platforms and
environments in which robots operate. This is an expensive training requirement for
light-constrained reconstruction.

The latest work on domain adaptation [66, 67] and style-transfer methods [44, 68] have
shown state-of-the-art performance on day-to-night images, enabling possibilities for
more training data for light-constrained reconstruction. Similarly, studies on image
synthesis with similar properties to low-light images [69, 70] have recently emerged
to design training datasets that will eventually allow robots to operate in low light.
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Some studies have taken a step further by acquiring low-light images with autonomous
cars [71, 72] as part of comprehensive training datasets highlighting the significance
and indispensability of reliable reconstruction in low-light scenarios. While these
studies focus on building training datasets for robust reconstruction to overcome
some limitations of learning-based approaches in light-constrained reconstruction, we
focus on introducing an input scheme that can directly improve correspondence search
and reconstruction.

Input scheme for Correspondence Search

Most of the output representations of reconstruction strategies are unique and
application-driven though the input scheme is similar and transferable across other

3D Model

moving
camera

image i

image i+1

image i+2

Figure 2.1 – A monocular camera is moved in 3D space and images are captured
sequentially. Features are extracted from each of these images, and matched with
corresponding features from other images to reconstruct a 3D model. This approach
is called structure-from-motion (SfM).
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applications. For example, SLAM formulates the goal of problem formulation to
estimate sensor positions, localize the robot, map the environment, and leverage in-
cremental data using multiple 2D images while SfM formulates the outcome as a 3D
environment from multiple 2D images captured at different locations [73] as described
in Figure 2.1.

While most of the above mentioned light-constrained reconstruction methods are
focusing on single-image capture and enhancement, the on-board computation on
a robotic platform provides more flexibility in allowing a robot to capture diverse
imaging scheme [74, 75, 76]. This also aligns with our observation to capture a novel
imaging input scheme to reconstruct a low-light scene.

2.2.1 SfM in Detail

We use COLMAP [20], an end-to-end feature-based state-of-the-art reconstruction
pipeline to evaluate light-constrained 3D reconstruction throughout this work. In this
section, we aim to provide an overview of the definitions and foundational concepts
related to SfM as outlined in the COLMAP pipeline in Figure 2.2. By gaining a
deeper understanding of these concepts, we can better comprehend the specific design
decisions made in subsequent chapters of this thesis. Additionally, we examine the
areas of the feature-based SfM pipeline that are impacted by the presence of noisy
images during the reconstruction process. Through evaluation of SfM, we aim to
represent 3D reconstruction in general.

Correspondence Search

COLMAP identifies SIFT [22] features as keypoints on images and searches for cor-
responding features across other input images. The correspondence stage of the
COLMAP pipeline relies heavily on SIFT feature extraction. We discuss feature
extraction stages, including detection and description, in greater detail for classical
methods in Section 4.2 and learning-based methods in Section 5.2.
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Feature Detection. SIFT locates keypoints, or blob features with well-defined
scales, on 2D images by searching a scale space for local extrema. SIFT is effective at
detecting high-quality features on images with high SNR. However, SIFT performs
poorly for feature detection on images captured in low-light conditions [54, 38].

Feature Matching. To provide pixel-level correspondences between images for scene
reconstruction, features from multiple images must be matched with each other based
on the local appearance of blob features. Compared to other existing classical feature
extractors, SIFT demonstrates stronger matching performance in visually challenging
conditions [77, 78]. However, the local appearance of features deteriorates on noise-
limited images with low SNR, resulting in poor descriptors for feature matching.

Geometric Verification. Once there are matches across images (putative matches),
verifying the matches for geometric consistency (inlier matches) allows robust recon-
struction. This is enforced with the epipolar constraint using random sample consen-
sus (RANSAC) [79]. When using high SNR images, most of the located features and
matches are robust and this stage is used in rejecting outliers based on geometrical
constraints. However, in low SNR images, the verification stage can become com-
putationally expensive due to the overwhelming presence of spurious features and
matches to reject [20, 80]. Consequently, it may fail to identify true correspondences,
resulting in a less robust correspondence search.

Figure 2.2 – COLMAP pipeline performs incremental SfM taking sparse input images
as the input and producing a 3D reconstruction with corresponding camera pose
estimates. The front-end deals with correspondence search including detecting
keypoints (features) on the images, finding similar keypoints (matches) between
images and geometrically verifying the correspondences. The back-end performs
incremental reconstruction with the computed features and matches to register the
images for reconstruction. (Source: Schoenberger et al., (2016) [20])
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Incremental Reconstruction

By improving the correspondence search stage we expect to improve incremental
reconstruction. We evaluate performance metrics associated with this phase of recon-
struction across all our methods. The following describes how low SNR images have
the potential to demonstrate undesirable results at these stages

Initialization. The initial pair serves as the starting model to which SfM regis-
ters new images. SfM continues to register images by using feature correspondences
from new images to triangulate points in already registered images (2D-3D corre-
spondences). In this process, SfM addresses the perspective-n-point (PnP) problem
of estimating camera poses (i.e., the position of a camera relative to the captured
scene or 3D structure) and camera intrinsics (i.e., internal parameters of a camera
such as focal length and radial distortion) [81]. However, low SNR images tend to
produce more spurious features. This can lead to unreliable estimates at this stage,
potentially causing a failure to reconstruct the initial pair and, eventually, a failure
of the overall 3D reconstruction.

Image Registration. Once initialized, the incremental stage involves registering
every input image through triangulation, bundle adjustment, and outlier rejection,
as shown in Figure 2.2. Since incremental SfM has to deal with large occlusions and
camera motion between each image, the estimates heavily depend on the robustness
of the correspondences. This robustness might be compromised when input images
have a low SNR. Consequently, this can hinder the use of input images, leading SfM
to disregard them entirely.

Triangulation. It is possible to determine the locations of a 3D point as seen from
multiple cameras using verified feature locations and known camera positions. This
is the converse problem to camera pose estimation. In SfM, a new scene point is
triangulated and added to the 3D model when at least another image from a different
viewpoint is registered. This increases the stability of the model. However, feature-
based methods are prone to a large number of outliers due to inaccurate two-view
verification of putative matches along the epipolar line. In general, a single mismatch
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can be as costly as merging two or more independent points. Low-light images can
further amplify this error.

Bundle Adjustment. Inaccuracies in either image registration or camera pose
estimation increase triangulation error when computing 3D points. Non-linear refine-
ments of camera parameters [81] and point parameters using Levenberg-Marquardt
[82] minimise reprojection error and improve reconstruction using high SNR images.
However, images captured in low-light conditions have relatively low reliable estimates
for bundle adjustment.

2.3 Imaging Trade-offs

In the previous sections of this chapter, we recap our motivation to allow robots to
operate in light-constrained scenes using a conventional camera and discuss existing
alternative light-constrained reconstruction methods. We also establish the back-
ground knowledge required to understand a reconstruction method, e.g., SfM and
key factors, e.g., inlier matches, pose estimates, number of registered images, and
number of 3D points, to look out for that corresponds to different stages of recon-
struction while designing our approach for SfM. In the following section, we discuss
why it is difficult to capture images at night by exploring the imaging trade-offs of
a camera and how we can leverage the trade-offs to introduce an input scheme for
reconstruction.

For a given viewpoint and lighting condition, a robot considers any image as a point
lying in the 3D space defined by the controls of the camera parameters: exposure time,
aperture settings, and analog gain settings. This is because when a camera captures
a scene it detects the number of photons arriving at each pixel on the sensor, and the
number of photons varies based on exposure time – how long the sensor is exposed to
light, aperture – the opening diameter through which light enters, and analog gain –
the amplification applied on the captured signal before digitalization.
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0.5

0.0

Figure 2.3 – Capturing an image in a well-lit condition (80 lux) with minimum gain
and minimum exposure time with narrow aperture for high SNR sharp all-in-focus
image. (Contrast-adjusted image for visualisation)

Images captured in well-lit conditions have high SNR as in Figure 2.3. Existing
state-of-the-art datasets in day light and gold-standard images for robotic vision ap-
plications are captured with similar setting [83, 84, 85]. Capturing an image with the
same settings at night generates an extremely dark image, which doesn’t represent
the environment with enough visual information as in Figure 2.4. Images captured
at night have low signal and so, a robot that uses such images to reconstruct the
environment it navigates struggle to localise itself.

Aperture. The opening diameter of an aperture determines the amount of light
that enters the sensor. A wider aperture allows more light to enter, resulting in a
high signal up to the saturation limit. However, widening the aperture reduces the
depth of field, as demonstrated in Figure 2.5. Depth of field refers to the range of
distances between the nearest and farthest objects that appear acceptably sharp in an
image. Because we operate feature matching throughout the image, the background
of the image is as important as the foreground of the image. Therefore, the maximum
aperture is limited by its impact on depth of field in feature-based reconstruction.

1.0

0.5

0.0

Figure 2.4 – Capturing an image at night with similar setting as well-lit conditions
results in extremely dark image because there is limited signal. (Contrast-adjusted
image for visualisation)
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Figure 2.5 – Capturing an image at night with wide aperture while keeping the other
camera parameters minimum allows more signal, but results in narrow depth of
field. (Contrast-adjusted image for visualisation)

Exposure. The duration of the shutter being open, known as exposure, determines
the amount of light that enters the sensor. Longer exposure times allow more light
to reach the sensor, producing a higher signal until the saturation limit is reached.
Unlike traditional photography, which involves capturing images from a stationary
point such as by using a tripod, robots usually capture images while in motion. This
can result in motion blur in the captured images, as shown in Figure 2.6.

There are also dynamic objects in the environment that can cause motion blur, re-
sulting in poor reconstruction. However, SfM design ignores such artifact during
reconstruction. Our motivation is to give independence to the robot in terms of nav-
igation which encourages us to capture images by keeping the exposure as long as
possible without causing unacceptable levels of motion blur for robust reconstruction.

Analog gain. When the signal is low either because the environment is light-
constrained, or the aperture is narrow, or the exposure time is short, increasing the
gain of the amplifier is beneficial. Increasing the analog gain amplifies both the signal

1.0

0.5

0.0

Figure 2.6 – Capturing an image at night with long exposure while keeping the
other camera parameters minimum allows more signal, but introduces motion blur.
(Contrast-adjusted image for visualisation)
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Figure 2.7 – Capturing an image at night with high gain while keeping the other
camera parameters minimum amplifies the signal and noise. (Contrast-adjusted
image for visualisation)

and the noise as in Figure 2.7, allowing analog to digital converter (ADC) to operate
above the minimum quantization level.

Saturation. For a captured image to be useful for reconstruction, it is important
to select an overall setting that is not saturated at the higher bound with excessive
light or lower bound with barely any light. This allows us to select a gain that can
be applied before losing information in bright parts of an image. This is unavoidable
while capturing some scenes, e.g., street light captured at extremely low light, and
needs to be treated correctly.

2.4 Burst Imaging

Capturing images that have large overlap among each other over a small exposure
is called a burst photography. Burst photography is a technique traditionally used
in cameras, and eventually on mobile phones to capture sport motions or motion in
general which are unpredictable as shown in Figure 2.8. Burst photography is widely
utilized in sports photography [86, 87], enabling users to choose the best image from

Figure 2.8 – Traditionally, burst photography used to capture unpredictable motion
to select the best frame for visualisation e.g., a bird flying.
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aperture
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Underexposed all-in-focus

multiple images

with small variation

a burst

Figure 2.9 – (left) Burst photography captures all-in-focus images over small exposure
time with high gain to overcome imaging trade-offs. (right) An example of a single
burst of images: multiple images with high overlap and small exposure.

a sequence of consecutive frames, such as capturing a basketball going through the
hoop or a football goal.

Capturing multiple low SNR images from a static camera as shown in Figure 2.9
and temporally merging them improves the signal in an image, according to [73].
However, capturing multiple images from a static platform in robotics requires a high
budget for deployment or accurate image stabilization as small variations in motion
can result in large pixel differences among images.

Google recently introduced burst imaging [33], a computational method that cap-
tures multiple underexposed images with minimal motion variation. This leverages
burst photography techniques to capture multiple images. But, instead of visualiz-
ing motion within a burst to select a single desired scene, burst imaging aligns each
frame within a burst to a common image (i.e., the initial frame of the burst) and
merges them temporally to obtain a higher SNR image, enabling low-light photogra-
phy. Burst imaging yields high-quality images for night photography on Pixel mobile
phones [33, 34, 35]. This technique involves capturing 15-30 frames in a single burst
and subsequently merging them to produce a single image with minimal noise lev-
els and motion inconsistencies, resulting in visually appealing images for the human
visual system.
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2.5 Noise Modeling

Most of the state-of-the-art robotic vision algorithms used in reconstruction [22, 42]
are noise tolerant to a certain degree by performing outlier rejection to identify robust
features and computing inlier matches for reconstruction [39, 20] as discussed in
previous section Section 2.2.1. As we are motivated to improve 3D reconstruction
by improving correspondence search to identify high quality features, we discuss the
noise associated with captured imagery in the following.

A camera captures a scene in the presence of light, or more precisely by detecting the
number of randomly generated events – a discrete number of photons arriving on the
sensor. There is a broad range of noise associated with captured imagery and most
of them originate from camera electronics. One source of noise that purely originates
from the scene is Photon noise.

Poisson noise. Also known as photon noise, the dominant noise on a high SNR
image is Poisson noise [88]. This is independent of camera electronics and occurs
purely based on the captured scene and demonstrates a Poisson distribution of discrete

Figure 2.10 – Considering a simplified model of a camera, the photoelectric effect
converts a set of photons arriving at a single pixel to electrons. Once the capacitor
charges using these electrons, it discharges electrons through a resistor to allow
amplification of the analog signal. The amplified analog signal then goes through
ADC to produce a digital signal. Noise occurs at different stages of the flow -
Poisson noise (orange) depends on the scene, dark current noise (blue) relates
to thermally generated electrons at pixels, read noise (green) occurs before the
amplifier at resistors – the dominant source of noise in our captured imagery.
Quantisation noise (violet) is the noise associated with converting analog signal to
digital number. (Source: adapted from Dansereau (2021))
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events. In this thesis, as we deal with low SNR images, our dominant source of noise
comes from the camera electronics.

Dark-current noise. When a set of photons arrives at the sensor, based on the
quantum efficiency of the sensor, photons are converted to electrons. This conversion
occurs due to the photoelectric effect – release of electrons when light hits the surface.
Dark current noise occurs at this stage corresponding to the thermal activities of the
electrons. Dark current noise is negligible when images are captured with an exposure
less than a second in general. For images captured over longer exposure, this noise is
modeled as a Gaussian distribution.

Read Noise. Read noise is a combination of system noise components. The on-chip
output amplifier sequentially transforms the charge collected at each site into a mea-
surable voltage. The amplifier generates zero mean read noise that is independent of
the number of collected electrons [89]. This is unavoidable during imaging and occurs
mainly in the terminating resistor just before the amplifier. This noise is uniformly
added to all pixels in an image and is also modeled as a Gaussian distribution. Read
noise is the dominant source of noise in low-light imaging.

Quantization Noise. The captured signal is analog and doesn’t use any conver-
sion for film-based cameras. However for digital imaging with charge-coupled de-
vice (CCD) and complementary metal-oxide semiconductor (CMOS) sensors, analog
signals are converted to digital numbers. When an analog signal is digitized, it is di-
vided into a finite number of discrete levels or quantization levels, resulting in a loss
of information. Quantization noise refers to the difference between the actual analog
signal and the quantized digital signal [90]. The level of quantization noise depends
on the number of bits used to represent the analog signal. The more bits used, the
finer the quantization levels and the lower the quantization noise. Conversely, the
fewer bits used, the coarser the quantization levels and the higher the quantization
noise. Images captured in low light have low signal and in such images quantization
noise is strongly noticeable [91].

Fixed pattern noise. Sensor pixels have variations among each other due to the
silicon manufacturing process. These are specific to cameras and vary between cam-
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eras of the same models. This represents fixed locations of darker and brighter pixels
than most of the pixels on the sensor and does not show significant variation over
time [92, 93].

Signal-to-noise ratio. The signal to noise ratio of an image is defined as in

SNR = 10 log(
σ2

signal

σ2
noise

), (2.1)

where σsignal represents the amplitude of the signal, i.e., the standard deviation and
σnoise represents the amplitude of noise in the signal. An image captured in low-light
conditions demonstrates strong noise because it has a low signal and noise dominates
the captured image. Note, all images have noise.



Chapter 3

Light-Constrained Burst SfM

"Wonder is the feeling of a philosopher, and
philosophy begins in wonder"

- Socrates

3.1 Overview

We set up the required background knowledge to understand the following technical
chapters in Chapter 2 and establish an understanding of noise models associated
with captured imagery. In this chapter, we present a robotic burst-based structure-
from-motion, an imaging computation method for 3D reconstruction in low light, by
adapting burst techniques in the photography domain. We define burst imaging for
robots, similar to [33], as capturing multiple frames in rapid succession over a short
exposure time.

To recover images from which features can more reliably be extracted for feature-
based reconstruction, we adapt burst imaging to reconstruct 3D scenes in low light.
We do this by combining feature-based SfM and burst photography, exploiting the
advantages of direct methods for image registration [38] and applying feature-based
SfM [20] to handle large camera motions between robotic bursts.
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Our approach assumes that the level of noise present in images is not so great as
to make information unrecoverable. This occurs in extremely low-light images as
described in Chapter 2 when the underlying signal is suppressed by quantization
noise. We also assume that there exists a sufficient overlap between consecutive
images within robotic bursts for registration, which is commonly available for mobile
platforms moving at moderate speeds relative to their environment. This work opens
the way for a broad range of applications in which low light commonly complicates
vision such as autonomous driving and delivery drones at night.

To validate our method, we mounted a monocular machine vision camera on a
UR5e robotic arm as in Figure 3.1, and captured burst imagery of real scenes in
an illumination-controlled environment over different exposure times to demonstrate
strong and moderate noise on burst imagery. We demonstrate improved feature per-
formance, reconstruction performance and camera pose estimates against alternative
approaches.

This work is a first step toward solving the problem of 3D reconstruction in low light
using burst imagery. Parts of this chapter are published as [1] and the code and
dataset are available at: https://roboticimaging.org/Projects/BurstSfM/.

In summary, our key technical contributions are:

• We establish the viability of using burst imaging to improve robotic vision in
low light and provide a set of recommendations for adopting this approach in
reconstruction tasks such as SfM,

• We evaluate different approaches to burst imaging in robotics applications and
show that burst capture with merge offers significant advantages in both com-
putational requirements and performance; we offer a theoretical explanation
and experimental evidence showing why this is so, and

• We demonstrate the proposed method improving low-light SfM by yielding more
precise 3D points, higher quality features, fewer spurious features, more precise
camera trajectories, and an ability to operate in lower light than was previously
possible.

https://roboticimaging.org/Projects/BurstSfM/
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Camera

Captured imagery as a burst of images

Figure 3.1 – Visualisation of light-constrained scene. (top) Robot arm-mounted ma-
chine vision camera; (middle): red: 43 matching pairs between consecutive conven-
tional noisy images which fail to converge for reconstruction; (bottom) yellow: 110
matching pairs using our proposed merging approach. It is important to note that
36% of input images of this particular scene fail to find any matches in the conven-
tional noisy approach where as all input images are registered using our method
for reconstruction. Our approach provides a more stable set of high-quality true
features and less spurious features for motion-dependent applications such as SfM.

3.2 Related Work

Alternative exposure schemes. When optimizing camera exposure settings for
low SNR images, there exist many trade-offs in the final image quality as discussed
in Section 2.3. Considering alternative exposure schemes, depicted in Figure 3.2,
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Figure 3.2 – Alternative exposure schemes for capturing images for light-constrained
3D reconstruction. Ta is the duration of an N -images robotic burst, t is the duration
of a single frame, and Tb is the delay between robotic bursts.

increasing the exposure duration for each frame gathers more light at the expense
of increased motion blur and loss of information. Capturing images as a sequence
over a long period of time yields a video. However, it is computationally expensive
to process images at full video rates and in low light.

Single-image based approaches. Conventional noisy images can be pre-processed
with denoising approaches [25, 94] to get high SNR. However, these approaches are
fundamentally limited by the amount of information in a conventional single image.
They also have a tendency to produce visually pleasing results and not necessarily
accurate information through learned image priors [37]. This affects the reliability of
estimates for applications such as reconstruction and tracking.

Learning-based methods. Learning-based techniques show promising results for
denoising [95, 96, 97], deblurring [98, 99, 100], dehazing [101, 102, 103] and image
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enhancement [104, 105, 106]. However learning-based approaches make no guarantee
of generalising beyond their training domains [107, 108, 109] and compared with
the proposed non-learning-based approach, these require collection of appropriately
scaled datasets and corresponding training times. Learning-based approaches also
present limitations around interpretability and direct understanding of the structure
by which a model works [110, 111].

Burst photography. Utilizing the advantage of time slices as described in [112],
burst photography has emerged as a promising technique for night photography. This
approach involves capturing multiple images over a short time period and then merg-
ing them to generate a single image with high SNR as discussed in Chapter 2. The
concept has been further developed and implemented in various forms, such as the
night sight mode in Google Pixel phones [33], astrophotography mode [34], and multi-
frame super resolution [35], as well as using learning approaches [113]. Recently, the
concept has been extended to quanta burst photography [114], which uses single-
photon sensors to produce high-quality images.

Previous and state-of-the-art work in burst photography [32, 33, 34, 35] has mainly
focused on generating visually appealing still images from bursts, accounting for hand-
shake motion that is typically different from robotic platform dynamics and low-light
conditions in which robots operate. Our work considers more challenging imagery
than what is typically employed in existing burst photography work [33, 34]. An-
other key difference to photography is that robotics typically covers extended areas
over long trajectories, meaning multiple bursts of images become necessary.

In this work, we adapt burst imaging to reconstruct 3D scenes in low light. We do this
by combining feature-based SfM and burst photography, exploiting the advantages of
each. By capturing a rapid successions of frames, we enable the use of direct methods
for image registration [38], exploiting the small camera motion between images to
yield a strong SNR advantage with moderate computational expense. After extracting
features from the merged burst images, we apply feature-based SfM [20] to handle
large camera motions between bursts. Feature-based methods handle large camera
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motions [39] while benefiting from the improved feature quality associated with the
robotic burst-merged images.

Because our method compresses each robotic burst into a single denoised image,
the total computation during reconstruction is lower compared to an approach that
employs all measured frames as described in Figure 3.2. Skipping the merge step
directly ingests all images in the robotic bursts into the SfM pipeline and we show
this to be less effective than merging in terms of both performance and computational
expense. Furthermore, the higher SNR in our imagery can reduce the numbers of
spurious features, again lowering computational requirements during reconstruction
as there are fewer outliers to detect and reject.

3.3 Robotic Burst-Based Structure-from-Motion

In this section, we consider the salient aspects of burst photography [33], and explain
its integration into an SfM pipeline. As in [33], we capture multiple images, establish
dense correspondence between them, then merge the aligned stack with a temporal
voting scheme as shown in Figure 3.3. Taking this direct approach within the robotic
burst exploits the temporal coherence between frames, manifesting as relatively little
illumination variation and occlusion/disocclusion within a robotic burst. We then ex-
tract features from each robotic burst-merged image to deal with appearance changes
associated with the larger timescale and translation between robotic bursts. In this
work we further introduce and evaluate spatial Wiener and bilateral filtering.

The following outlines image acquisition, alignment, merging, and integration into a
reconstruction pipeline. Further practical considerations are discussed in Sec. 3.5.

3.3.1 Image Acquisition for Reconstruction

As depicted in Figure 3.2, we capture multiple robotic bursts over a trajectory, with
each burst containing N frames and each frame having exposure time t, taking time
Ta per robotic burst with a delay Tb between robotic bursts.
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Burst

Figure 3.3 – We capture multiple robotic bursts as shown in camera trajectory for
reconstruction. As we capture the images on the fly, each robotic burst has multiple
images with high overlap and small motion between them. We employ direct
methods within each robotic burst to handle noise and feature-based methods
between robotic bursts to handle large camera motion. We use temporally merged
images of each robotic burst for sparse 3D reconstruction.

Capturing a greater number of images per robotic burst increases the resulting SNR
in merged images, provided there is a sufficient image overlap. However, more images
are also more computationally expensive for capturing, buffering and processing, so
there is a trade-off in selecting the number of images in a robotic burst between
quality and computation. This is application-dependent: in our experiments, we use
robotic bursts of N=7 frames based on empirical evaluation. – see further discussion
in Section 3.5.

3.3.2 Robotic Burst Alignment

To address non-uniform apparent motion between the frames in a burst, we per-
form hierarchical tile alignment, a coarse-to-fine alignment on multi-level Gaussian
pyramids of single-channel images similar to [33]. We use a patch of pixels as a tile
and using the initial estimates from the coarser scale, we compute pairwise-tile-based
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alignment at each pyramid level by minimizing the distance measure. This is the
absolute residuals between the common tile and the corresponding candidate tile of
each alternate frame within a robotic burst [73]. We perform sub-pixel alignment at
coarse scale to improve initial estimates and pixel level alignment by minimizing L1
residuals [115] at the fine scale of the pyramid.

An example of a common image and an alternative image and the corresponding
motion map between the images at each level of the hierarchical pyramid is shown in
Figure 3.4. Note, while mobile photography uses initial frames of a burst as common
image, we merge images in a burst ideally to the middle frame for robotic applications,
to address for the relative motion between frames, improving the information over an
intermediate time. We empirically tune the parameters of the alignment process to
strike a balance between processing time and tolerance to motion between the frames.
Practical guidance for tuning alignment parameters is provided in Section 3.5. By

Figure 3.4 – Intermediate results on hierarchical tile-based alignment between com-
mon image (top left) and an alternative image (bottom left). Four scales from
coarse (top middle) to fine (bottom right) is shown here which demonstrates vari-
ous apparent motion within a robotic burst. This also shows objects closer moving
with larger apparent motion i.e., red tiles representing the foreground car than
the far away objects in the scene i.e., lighter pixels representing building at the
background. (Source: Hasinoff et al., (2016) [33])
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aligning each image within a robotic burst to the common image of the robotic burst,
we have an aligned stack of images that corresponds to the common image.

3.3.3 Robust Temporal Merge

We merge all the aligned images within the aligned stack following the pairwise
method presented in [33]. To increase robustness to motion, this employs tempo-
ral filtering with a per-image contribution in the frequency domain as in

TR(ω) = 1
N

N∑
z=1

Tz(ω) + Az(ω)[TR(ω) − Tz(ω)], (3.1)

where N is the number of frames within a robotic burst, TR(ω) is common frame,
Tz(ω) is frame to be added to the estimate, and TR(ω) is the updated estimate.

Az is the contribution of each frame, found as in

Az(ω) = |Dz(ω)|2
|Dz(ω)|2 + cσ2 , (3.2)

where Dz(ω) = TR(ω) - Tz(ω), σ2 is the noise variance and c is the degree of contri-
bution that increases noise reduction at the expense of robustness to misalignment.
Robotic burst imaging does not degrade image quality for fast motion but the quality
gain decreases as overlap between images decreases.

Misaligned information is suppressed with the voting scheme as they present a large
difference Dz between the common and alternative frames, placing a higher weight on
the common frame. Ringing artifacts that are commonly associated with frequency-
domain filters [116] are avoided with a raised cosine windowing approach – see [33]
for further detail. We also evaluate addition of a noise shaping Wiener filter and an
edge-preserving bilateral filter for further spatial noise reduction as in Figure 3.5.

Figure 3.6 illustrates typical performance of the align-and-merge approach, compared
with conventional capture which yields noisy imagery, and naïve averaging which
is sensitive to motion. Burst with merge shows improved SNR, ideally improving
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Single burst Merge

Merge + Wiener filtering

Merge + Bilateral filtering

Hierarchical

tile alignment

Figure 3.5 – We improve the noise in the captured images by aligning every image in a
burst with the chosen common image of the burst (i.e., middle frame for a robotic
burst). We merge the aligned images in temporal direction with a voting scheme to
avoid misalignment. We use Wiener and bilateral filtering on temporally merged
images. We give the outputs of this pipeline to COLMAP as three different inputs:
burst with merge, burst with merge and Wiener filtering and burst with merge and
bilateral filtering for reconstruction.

SNR, the ratio between the power of signal and noise by
√

N for N -image robotic
bursts [112].

(a) Conventional (b) Naïve averaging (c) Burst with merge

Figure 3.6 – Application of alternative exposure schemes: (a) Single frame captured
over an exposure time of t ms. (b) Multiple frames captured over Ta ms and merged
naïvely – this is representative of a long exposure scheme with motion blur. (c) The
proposed merging approach yields a clearer image without blur.
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Reconstruction Pipeline

We use COLMAP [20], an end-to-end feature-based state-of-the-art reconstruction
pipeline to extract, match and geometrically verify features between sparse camera
poses. We demonstrate sparse reconstruction by triangulating scene points and re-
fining via bundle adjustment. We evaluate performance following reconstruction and
feature performance metrics laid out in [20, 117]. For background understanding,
please refer to Chapter 2.

3.4 Results

In the following we first evaluate improvements in feature detection and accuracy
afforded by our method in noisy imagery using synthetic image sequences. By em-
ploying synthetic scenes we offer greater control over noise and scene content similar
to prior quantitative feature evaluations [117, 118]. Then we quantitatively evaluate
our method in an SfM pipeline, comparing against conventional image capture and
direct use of all images in the robotic burst. We consider both 3D reconstruction
performance and camera trajectory accuracy.

3.4.1 Feature Performance in Noise

We generate a synthetic set of images with known feature locations to demonstrate
feature performance in different noise levels. We use synthetic noise which correspond
closely to the noise levels of the captured imagery appearing in the following sections.

The synthetic images, shown in Figure 3.7, have 25 disks at varying scales. The disks
have an apparent motion of at most 12 pixels per frame. The contrast between the
disks and background is 51:26 where 255 is white. We normalise the intensity of the
images between 0 and 1 and introduce moderate noise with variance 0.03 (top) and
strong noise with variance 0.1 (bottom).
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σ 
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σ 
=
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3

Original

image

Input Burst with

merge

Burst without

merge

Conventional

noisy

Figure 3.7 – Detected features on synthetic burst of images using SIFT, original com-
mon image (top row, left) - presented at two noise levels σ. At the lower noise
level (top row), our method performs well with no spurious features, while conven-
tional noisy method and burst without merge generates more spurious features. At
strong noise (bottom row), while our method detects all true features, conventional
noisy approach detects more spurious features and fewer true features than ours
and burst without merge registers overwhelming spurious features.

We extract SIFT [22] features at a peak threshold of 0.015 on the synthetic image burst
with known feature locations. It is evident from Figure 3.7 that burst with merge
performs better than burst without merge and conventional noisy on corresponding
common image with no spurious features for the moderate noise case (σ = 0.03).
While our method extracts all true features in strong noise, the conventional method
fails to extract all true features and burst without merge is overwhelmed by spurious
features.

We demonstrate the measurement of true positives (TP) rate - the number of key-
points detected that corresponds to the ground truth feature locations of the synthetic
common image and false positives (FP) count - the number of spurious features de-
tected quantitatively. The top row shows the TP rate and FP count at peak detection
thresholds of 0.006 and 0.01 for a sweeping noise level from 10−7 to 101 in synthetic
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Figure 3.8 – Noise performance: (top row) Sweeping noise level σ for fixed detection
thresholds, our method (blue) shows a higher true positive (TP) rate and lower
false positive (FP) count than conventional imaging (red). (bottom row) Sweeping
detection threshold, our method delivers a much higher TP rate in high noise and
lower FP count for appropriately set threshold than conventional imaging. Overall,
our method matches or outperforms conventional method in feature performance
in noise.

burst imagery and the bottom row shows the TP rate and FP count for moderate
and strong noise levels for a sweeping peak threshold level (varying peak threshold
detection values) from 0 to 0.03 as shown in Figure 3.8.

As noise increases from left to right that correspond to two specific peak thresholds,
we observe an increase in spurious features and decrease in true features. However,
our method consistently outperforms conventional noisy capture. Similarly, with both
moderate and strong noise, our method generates more true features and less spurious
features for varying peak threshold detection values.
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Figure 3.9 – Examples of captured imagery, showing a diversity of objects, textures,
shapes and sizes. The full dataset contains 20 scenes, each with 22 bursts of 7
images.

We qualitatively demonstrate the feature performance of our method with moderate
(top) and strong (bottom) noise levels. Our method outperforms alternative meth-
ods of extracting features on a single conventional noisy image and all burst images
by detecting all the true features with fewer spurious features in both noise levels
compared to alternative methods.

3.4.2 Reconstruction Performance

We demonstrate our method by mounting a monocular machine vision camera FLIR
FL3-U3-120S3C-C with an f/2.1 lens on a UR5e robotic arm as shown in Figure 3.1.
We capture 16 bit raw Bayer images of size 2992 x 2500. We capture 22 robotic
bursts of 7 images each for a single trajectory as shown in Figure 3.3, and repeat the
trajectory for 20 scenes composed of objects with different textures, shapes and sizes
in an environment with controlled lighting as shown in Figure 3.9.

In this experiment, we select a trajectory that replicates the motion of a drone map-
ping the environment at a certain height. However, we demonstrate the performance
of this method in more challenging scenes and low-light conditions in Chapter 5 and
Chapter 6.
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We capture our dataset at 1 ms and 0.1 ms exposure times, adjusting the gain in each
case to maximize contrast while avoiding saturation. Apparent motion within each
robotic burst is typically about 1/8 of the camera’s field of view, with examples of
faster motion up to 1/4 of the field of view. We capture a bias frame with lens caps
on the camera to block all light. We remove the fixed pattern noise on each image
within a robotic burst by subtracting the bias frame from the captured images. This
allows us to model the dominant noise on captured imagery as a random Gaussian
as discussed in Chapter 2.

We run COLMAP to generate sparse reconstructions of 20 different light-constrained
scenes using our methods: burst with merge, burst with merge and Wiener filter-
ing and burst with merge and bilateral filtering. We compare against alternative
approaches: burst without merge where we directly use all images in the burst and
conventional single-image capture, with the single image corresponding to the center
most frame of the burst, as depicted in Figure 3.2.

We build a 4-level coarse to fine hierarchical pyramid with tile size 8 for alignment
and use overlapping tiles of the same size for pairwise temporal merge throughout the
experiments. Further guidelines on selecting appropriate tile size and pyramid levels
for robust merging are discussed in Section 3.5.

We employ COLMAP with default settings, meaning a constant feature peak thresh-
old of 0.0066 is employed for all images. To more fairly compare methods, we also
repeat the experiment with peak thresholds adjusted to suit the different noise levels
yielded by each method. Because unmerged images have more noise, they call for
a more selective peak threshold. We empirically select peak thresholds of 0.001 and
0.005 for the proposed and conventional methods, respectively, as these yield similar
levels of spurious feature detection.

Finally, we repeat the same experiments with COLMAP configured to be more per-
missive of images with few inlier feature matches, allowing as few as 15. This is useful
when dealing with challenging scenes and allows more images to be successfully in-
corporated into the SfM solution.
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Following the feature comparison approach in [20], we evaluate reconstruction per-
formance as shown in Table 3.1 in terms of numbers of keypoints per image, putative
feature matches per image, number of putative matches classified as inliers, match
ratio: the proportion of detected features yielding putative matches, precision: the
proportion of putative matches yielding inlier matches, matching score: the propor-
tion of detected features yielding inlier matches and the mean number of 3D points
per image on captured imagery.

In the table, bold highlights the best results, red shows best and second-best results
from competing approaches, while green shows best and second-best results from the
proposed method. At a moderate noise level, i.e., for images captured over 1 ms,
our method shown in green outperforms alternative approaches across all metrics, by
reconstructing all images passed for all scenes at default settings. Our method re-
constructs hundreds more matches and twice as many 3D points per image compared
with alternative approaches.

At strong noise, i.e., for images captured over 0.1 ms, not all images are reconstructed
with default settings, and thus, we evaluate by tuning peak threshold values. Our
proposed method successfully reconstructs all the scenes with the strongest putative
matches per image, inlier matches per image, match ratio, match score and 3D points
per image.

3.4.3 Camera Trajectory Accuracy

We evaluate the accuracy of our camera trajectory estimation by employing a robotic
arm to collect precise ground truth poses. We align and scale the camera poses
estimated through COLMAP with the ground truth poses as there is an inherent scale
ambiguity in monocular SfM. We employ Sim(3) Umeyama’s alignment method [119],
which effectively accounts for translation, rotation, and scale differences as outlined in
EVO implementation 1, allowing us to calculate a similarity transformation between
ground truth and estimated poses. The arbitrary scale factor is established based on

1https://pypi.org/project/evo/
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Figure 3.10 – Camera trajectory for a particular captured scene (scene 16) in distance
units, a measure between the first pair of registered images in a reconstruction.
Our results reconstruct accurate camera trajectories using all input images; the
alternative approach that uses reconstructed 94.2% of input noisy images without
merge and the conventional noisy approach that uses 95.5% produces less accurate
trajectory estimates.

the distance between the initial pair of registered images. Our method reconstructs
more accurate camera poses than the competing method demonstrating a trajectory
similar to the ground truth as shown in Figure 3.10.

We compute absolute instantaneous error and relative pose error between recon-
structed camera poses and ground truth poses for translation and rotation as shown
in Table 3.2. The color scheme matches that used in Table 3.1. The green bold val-
ues show our method is competitive with moderate noise and outperforms alternative
approaches with strong noise by 1cm to 4cm in translation, across all error metrics.

3.4.4 Speed

On an Intel i7-9700 at 4.70 GHz, our MATLAB burst imaging implementation takes
6.54 seconds to align and merge a monochrome burst of 7 images. We expect this
could be accelerated substantially. Following align and merge, we employ COLMAP
for reconstruction, extracting features using an NVIDIA GTX770. The complete
reconstruction pipeline, including time for align and merge, was fastest using our
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proposed approach. This is because our method finds fewer spurious features com-
pared to alternative methods, and so fewer putative matches need to be evaluated
and rejected. This results in lower overall computational requirements. For a dataset
of 154 images in 22 bursts, align, merge, and SfM reconstruction took 3.25 minutes.
By contrast, operating on 22 conventional images with no align or merge took 6.32
minutes, and operating on all 154 unmerged images took 49.58 minutes.

3.5 Discussion and Future Directions

We have shown that burst imaging can improve the performance of light-constrained
SfM while yielding a net reduction in computational requirements. Although our
approach involves increased computation in merging images within a robotic burst,
this is offset by the decreased rate of false positive feature detection, reducing the
burden of extraneous feature matching and rejection.

The burst approach exhibits multiple trade-offs in acquisition strategy, align and
merge parameters, platform motion, and scene content. In the following we offer
practical advice for tuning burst imaging for specific robotics applications, based on
the experimental findings of this work and on established results from prior works.

• Increase exposure time as high as possible without getting deleterious motion
blur [35]. This yields high-SNR input images and ultimately better reconstruc-
tion performance.

• Fixed pattern noise can easily become the dominant source of noise in capturing
low-light images. This can be addressed by subtracting an average of multiple
dark frames taken with the same gain, sensor temperature, and exposure time
as the intended images within a burst [120].

• Increase gain as high as possible without yielding excessive saturation [121].
This amplifies both signal and noise, but is important in overcoming the quan-
tisation limit of the camera.
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• Maximize the number of images in each burst to maximise SNR in the merged
images. The image count is ultimately limited by availability of compute, and
the rate of apparent motion of the scene [32]. Motion relative to the common
frame should not exceed 1/2 of the total frame. For this reason we also recom-
mend limiting apparent motion relative to the common frame by employing the
centre most pose as the common.

• The image pyramids balance computational effort and quality of alignment via
the search window size at each pyramid level. Increase pyramid level count and
decrease search window size to avoid local minima – this is especially important
for images with strong noise [73]. In our experiments, 3 or more pyramid levels
maintaining an image size of at least 1/16 of the original image yielded robust
alignment.

• For fast motion within the burst, e.g., 1/4 of the total frame or more, increase
the search extent to allow for the larger motion. Reduce the image size at each
pyramid level – we found it best to go not lower than 1/16 of the original image
size. See [33, 35] for more discussion on motion robustness with burst imaging.

In this chapter, we adapted burst photography for robotic vision to enable low-light
reconstruction. We enabled the use of direct methods for image registration within
the robotic robotic burst and used feature-based SfM to handle the sparsity between
robotic bursts for reconstruction. We demonstrated successful reconstruction with
decreased failure cases due to non-convergence compared to alternative imaging ap-
proaches. We also demonstrated as in Figure 3.1 improved performance relative to
conventional imaging in producing high-quality features and feature matches, 3D
points per images and accurate camera pose estimation. Our method showed faster
reconstruction compared to conventional methods. We expect that in more challeng-
ing low-light conditions our method can improve the performance of 3D reconstruction
and expand the range in which feature-based reconstruction can be applied.

This work is only a first step toward solving the problem of 3D reconstruction in low
light. For future work, we anticipate employing adaptive sampling schemes, in which
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the parameters of robotic burst capture and processing are dynamically chosen to suit
the situation. We also expect the fusion of complementary sensors to yield interesting
results. We discuss this in detail in Chapter 6.



Chapter 4

Burst Feature Finder

"The true delight is in the finding out
rather than in the knowing"

- Isaac Asimov

4.1 Overview

We established the viability of adapting burst imaging for light-constrained recon-
struction in Chapter 3. However, the effectiveness of this method is ultimately lim-
ited by the necessity of aligning tiles between multiple pairs of images in the presence
of strong noise. To overcome this limitation, in this chapter, we propose a new ap-
proach that exploits the apparent motion within a burst to identify features in a
robotic burst. By doing so, we get the maximum SNR boost possible compared to
the previous method which improves feature detection. This is particularly relevant
for extremely low-light environments, where the hierarchical tile alignment method
used in the burst with merge approach struggles.

In this chapter, we describe an imaging pipeline that captures multiple bursts along
the trajectory of a robot and finds features directly within a burst. We describe these
features based on their histograms of edge orientations. We validate our method using
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real burst imagery collected by a robotic arm. We show our proposed feature extractor
finds more higher-quality features and fewer spurious features in light-constrained
scenes as shown in Figure 4.1. We evaluate the potential of our method to improve
3D reconstruction in low light and demonstrate our method yielding more complete
3D models, competitive feature performance and more accurate camera pose estimates
compared to state-of-the-art feature extraction methods.

camera

Figure 4.1 – Feature matching in low light: A commercial drone (top-left) captures
imagery that is too noisy for conventional 3D reconstruction in low light (top-
middle). This is because of the high rate of spurious feature detection and low-
quality feature matches offered by conventional features like SIFT (top-right and
bottom, red). The proposed BuFF feature yields fewer spurious features, and
higher-quality feature descriptors resulting in many more correctly matched pairs
(yellow). In this work we show the BuFF feature enables 3D reconstruction in
previously prohibitive low-light conditions.
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This study aims to identify salient burst features in a robotic burst, with the aim
of enhancing light-constrained 3D reconstruction. Parts of this chapter are available
in [2] and the code and dataset are available at: https://roboticimaging.org/

Projects/BuFF/.

In summary, our key technical contributions are:

• We introduce robotic burst feature finder (BuFF), a 2D + time feature detector
and descriptor that finds features with well defined scale and apparent motion
within a burst of frames,

• We propose the approximation of apparent feature motion as either 1D or 2D
linear segments under typical robotic platform dynamics, enabling critical re-
finements relative to prior work on hand-held imagery, and

• We establish variations of BuFF matched to these apparent motion types and
demonstrate that these variants outperform state-of-the-art feature extractors
applied on conventional and burst imagery in low-SNR scenes.

4.2 Related Work

Feature-based methods, as discussed in Chapter 2, rely on establishing accurate and
reliable pixel-level correspondences across multiple images for visual reconstruction.
In robotics, we commonly use SIFT [22] for 2D feature extraction to perform feature-
based 3D reconstruction [20].

Feature detection. SIFT builds a difference of Gaussian (DoG) pyramid by con-
volving a single image with a range of scales of DoG filters. By searching for local
extrema in the DoG pyramid, SIFT finds well-defined scale-invariant blob feature
locations and describes these features based on their histogram of gradients. SIFT
demonstrates higher tolerance to noise and better matching performance comparing
to other 2D feature detectors like speeded up robust features (SURF) [40] and oriented
FAST and rotated BRIEF (ORB) [41] in reconstruction applications [122, 77].

https://roboticimaging.org/Projects/BuFF/
https://roboticimaging.org/Projects/BuFF/
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Drawing inspiration from SIFT and light field feature (LiFF) [117], we find blob
features with well-defined scale and apparent motion by directly searching in a robotic
burst. Our key insight is that while SIFT locates blobs with well-defined scales and
locations in the 2D image plane and LiFF deals with identifying blobs with well-
defined scales and locations in 3D space on light-field images, our approach leverages
the use of multiple 2D images captured rapidly by a monocular camera. By leveraging
the 3D motion of the platform, we are able to locate and describe blobs with well-
defined scale and apparent motion in the 2D image plane.

Feature description. SIFT finds correspondences across other images by measuring
the similarity between descriptors, and computes feature matches for 3D reconstruc-
tion. SIFT descriptors exhibit robust performance and matching score than other
classical feature extractors in the presence of geometric changes for well-lit images
[78]. In our work, we describe each feature similar to [22] based on the histogram of
edge orientations around its local neighborhood. As these descriptors are computed
at the stage where images have higher SNR boost, they have better accuracy and
selectivity advantage over conventional methods.

3D Feature extraction. Leveraging SIFT for video feature extraction, Scovanner
et al. [123] use all the frames in a video for detection and describe the features by
extending the SIFT descriptor to a higher dimension. Another study builds a spatio-
temporal space to locate features by explicitly modeling motion using flow methods
[124]. These 3D methods show poor performance [125] as they rely on individual
pixels of low SNR images in locating local extrema and flow estimates. In contrast,
we leverage the inherent motion information of the robotic platform to design a search
space with higher SNR images.

4.3 Robotic Burst Feature Finder

In this section, we extract blob features with well-defined scale and apparent motion
on light-constrained robotic bursts and explain its integration into an SfM pipeline
as shown in Figure 4.2.
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Burst

Figure 4.2 – Compared to merging-based approach depicted in Figure 3.3, we directly
find blob features with well-defined scale and apparent motion by jointly searching
in scale-slope space. We then import burst features into reconstruction pipeline.

4.3.1 Apparent Motion within a Robotic Burst

Capturing burst images using a camera mounted on a moving robotic platform ex-
hibits fundamentally different motion profiles compared to hand-held burst photog-
raphy. While handshake on handheld cameras contains significant high-frequency
components, robotic platform dynamics are usually dominated by higher inertia and
thus smoother instantaneous motion. This results in smooth and, for sufficiently fast
bursts, locally linear apparent motion.

We identify two main variations in the local motion within a robotic burst as shown
in Figure 4.3. Features in a burst captured by a moving robot generally exhibit 2D
linear apparent motion, especially when the robot is moving towards or away from
the scene. This is because for small motions in a robotic burst, all local motion is well
approximated as being linear. In special cases, when a robot is moving orthogonal to
the principal axis of the camera, features within a burst exhibit 1D linear apparent
motion, i.e., all the features moving in parallel segments in same or opposite directions.
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Figure 4.3 – (left): In 3D scenes under general 6-degree of freedom (DOF) platform
motion, features in a burst exhibit apparent motion that is well approximated
by line segments, even under platform rotation; (right): In the special case of
a platform moving orthogonal to the principal axis of the camera, the apparent
motion follows parallel line segments. We exploit these observations to search
either 2D or 1D spaces of linear apparent motion to detect BuFF features.

We build two variations of the feature finder, BuFF 2D for extracting features in a
burst and BuFF 1D as a subset design. Reasons for the design choices are described
in Section 4.3.5.

4.3.2 Motion Stack

BuFF identifies 2D + time features in a robotic burst, as shown in Figure 4.4. BuFF
2D searches through location, scale, and a 2D apparent motion space to build the 5D
search space and find burst features at unique locations (ϕ), scales (σ), and apparent
motions (λ). We pass all the images in a burst, i.e., N frames, through a shift-sum
motion filter to generate a motion-filtered image HM as in,

HM(ϕ)|λ = 1
N

N∑
n=1

In(u − λu · (n − k), v − λv · (n − k)), (4.1)
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Figure 4.4 – The proposed feature detection architecture: The N -frame input burst
is converted to an Mu × Mv motion-stack by shifting and summing frames across
a range of putative apparent motions (“slopes”). This is reduced to an M -frame
stack for 1D apparent motion. Each frame of the motion-stack passes through
a DoG scale-space filter, and features are detected as extrema in the resulting joint
scale-slope search space. Each feature is described using a SIFT-style histogram of
gradients applied to its corresponding motion-stack image, rather than the input
frames. The resulting features have distinct location, scale and apparent motion,
and exhibit high precision, recall, and matching performance.

where In is the nth image in a burst and k is the index of the middle frame. λ = [λu, λv]
describes the apparent motion of the pixels in the horizontal and vertical directions
and ϕ = [u, v] represents the pixel position in the horizontal and vertical directions,
respectively.

The motion filter shifts and sums each image in the burst according to the slopes
determined by each λ. This process results in a stack of motion-filtered images,
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where each image corresponds to a unique slope value. This technique is similar to
the design of a focal stack [126].

4.3.3 Scale Slope Search Space

We extend the search space of SIFT by jointly searching for extrema across multiple
scales and slopes. To achieve this, we convolve each motion-filtered image, computed
by the motion-stack, with DoG filters FS over multiple scales. This generates a scale-
slope search space. We find extrema in this joint 5D search space, D5D as in

D5D(ϕ, λ, σ) = HM(ϕ)|λ ∗ FS(ϕ)|σ. (4.2)

Finding features on motion-filtered images rejects spurious features from noisy images.
In the special case of BuFF 1D, we consider a linear subspace that corresponds to 1D
apparent motion, and this reduces the search space to 4D.

BuFF employs similar parameters as SIFT, such as octaves, levels, contrast threshold,
and edge threshold. Additionally, BuFF employs a range of slopes that correspond to
apparent motion within a burst. As BuFF finds features within a burst, the number
of images in a burst is also a variable.

4.3.4 Descriptor

Similar to SIFT and LiFF, we compute a histogram of edge orientations for each
feature which corresponds to a 128-element vector. We describe the features on shift-
sum images which have higher SNR compared to the input images in the burst. This
allows robust reconstruction of light-constrained scenes. Because we use the images
computed from the motion-stack to build the search space, we also have inherent
depth information that paves way for other applications including segmentation and
depth selection.
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4.3.5 Computational Complexity

The computation for BuFF is determined by the number of DoG convolutions, as
the cost of computing the motion-stack as in Section 4.3.2 is relatively small and
is not considered in our calculation. For BuFF 1D, building a motion-stack prior to
convolving with DoG filters is efficient when the number of burst images is higher than
the apparent motions. Conversely, for BuFF 2D, convolving burst images with DoG
filters and building a motion-stack is more computationally efficient when the number
of burst images is less than the square of the apparent motions. By considering the
number of burst images as N , slopes as M , and scales as S, the DoG convolution
computation for BuFF 1D and 2D can be expressed as either S × M or S × M2 with
a motion-stack design prior to the DoG stack design, or as S × N for both with a
DoG stack design prior to the motion-stack design.

In BuFF 1D, the motion-stack design followed by the DoG stack design is twice as
cost-effective as the reverse order for a 10-image robotic burst with 12 scales and 5
apparent motions. However, in BuFF 2D, using the motion-stack design prior to the
DoG stack design is 2.5 times more expensive compared to using the DoG stack design
prior to motion-stack design. This is because BuFF 1D convolves 5 motion-filtered
images with 12 scales, while BuFF 2D convolves 25 motion-filtered images with 12
scales in the motion-stack design prior to DoG. The optimal BuFF design depends
on the range of apparent motion between foreground and background and should be
tailored to the specific application.

4.4 Results

In the following, we first evaluate the performance of our feature detector and descrip-
tor on captured light-constrained robotic bursts of a target scene. This is similar to
our previous synthetic experiment to validate the feasibility of adapting burst imaging
for robotics as discussed in Chapter 3. In this chapter, by capturing an image of the
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Test target Gold standard
(SIFT under

bright
illumination)

Conventional
noisy

Burst with
merge

BuFF 2D

TPR 0.9298
FPC 566.7

TPR 0.7128
FPC 2558.8

TPR 0.3464
FPC 3875.2

TPR 0.9298
FPC 469.8

BuFF 1D

Figure 4.5 – Validation with a printed test target: (left to right) Test target with
disks of varying scales to demonstrate feature performance. SIFT finds features
well under bright illumination, but suffers from many false positives and reduced
true positives in low light. Employing conventional burst imaging prior to applying
SIFT improves performance, but BuFF 2D and 1D show much greater performance
due to the joint scale-slope search – see also Figure 4.6.

target scene instead of simulating noise, we accurately model the noise of captured
imagery for reconstruction.

We use a target scene with varying scales to analyse the nature of feature detection.
Then, we quantitatively evaluate the feature performance of BuFF in an SfM pipeline
across various scenes. We compare against state-of-the-art classical and learning-
based feature extractors on conventional images. We also operate state-of-the-art
methods on burst-merged images as discussed in Chapter 3. We evaluate feature
performance, reconstruction performance and camera pose estimation against alter-
native methods and demonstrate overall improved performance for light-constrained
reconstruction.

4.4.1 Feature Performance in Noise

We print a test target of 90 disks at varying scales with known feature locations to
demonstrate feature performance as in Figure 4.5. The color contrast ratio between
the disks and the background is 51:26 where 255 is white.

We use a Basler 1600-60um monocular machine vision camera with an f/11 lens to
capture bursts of images. The images we capture are 12-bit monochrome and have a
resolution of 1600x1200 pixels. To ensure that our images are captured under similar
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Figure 4.6 – ROC curves for (orange) SIFT on conventional imagery, (blue) SIFT
on merged burst imagery, (violet) BuFF with 2D linear local apparent motion,
and (green) BuFF with 1D linear local apparent motion. BuFF 1D admits fewer
spurious features because of the smaller search space, and both variants of BuFF
exhibit higher true positive rates because of the signal boost associated with joint
scale-slope search. We use the ROC curves to select comparable peak thresholds
for each method, such that 10% of detected features are false positives.

conditions to a clear night sky with a full moon in a well-lit room, we select an
appropriate exposure value (EV) to match that of an f/2 camera with an exposure
time of 0.16 ms and an illumination of 81.18 lux. This is the same as capturing an
image with 5 ms exposure with 1.18 lux of illumination.

We capture the test target scene over a 100 ms exposure time, resulting in a high
SNR image, which we use as a gold standard to compare against other images. This
gold standard corresponds to capturing the target scene under bright illumination
and locates all true features. Our methods both BuFF 1D and BuFF 2D computes
the highest overall true features and fewer spurious features on low light robotic burst
compared to operating SIFT on both conventional and burst-merged images.

We extract features using our method from 100 captured bursts of the same target
scene. We examine the average true positive rate and the average false positive count
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Figure 4.7 – Impact of number of frames in a burst: employing more images improves
both spurious feature count and true positive rate. These performance curves
vary with camera, scene, and platform motion characteristics. For this scenario,
performance saturates at around 10 images per burst.

of the captured imagery of the target scene for a varying peak threshold detection
values as shown in Figure 4.6. We compare our methods against the receiver operating
characteristic (ROC) of alternative approaches: SIFT on conventional noisy images
and SIFT on burst-merged images. We select the peak threshold at which each
baseline method performs at its best for the input noise level of the imagery by
selecting a peak threshold value at the highest true positive value with 10% of total
false positive features.

Conventional methods find fewer true positive features and more spurious features
for the captured imagery. Burst-merged images find more true positive features and
fewer spurious features compared to conventional methods. Our methods outperform
both conventional noisy and burst-merged images finding higher overall true positive
features. As the search space is larger for BuFF 2D compared to BuFF 1D, between
our methods, BuFF 1D finds fewer spurious features compared to BuFF 2D.

We additionally compare the variation in feature performance of our methods for
different numbers of images in a burst as shown in Figure 4.7. As we increase the
number of images in a burst, the SNR of the shift-sum images increases by the

√
N on

shift-sum filters. This improves the search in scale-slope space for our feature finder.
This gives an advantage for both the detector and the descriptor to find higher-
quality features and fewer spurious features during the correspondence search stage



4.4 Results 58

of reconstruction. After nine images, there is minimal difference in extracted higher-
quality features and spurious features for the noise level of the captured imagery in
a robotic burst. We discuss ways of leveraging this understanding to design adaptive
robotic burst imaging in Chapter 6.

4.4.2 Reconstruction Performance

We evaluate reconstruction performance by mounting the same camera under the
same lighting conditions as discussed in Section 4.4.1 on a UR5e robotic arm as
shown in Figure 4.8. We capture 20 burst sequences with 10 images in each burst for
five trajectories. We capture these sequences while the robot is moving towards and
away from the scene, resulting in burst sequences having approximately 2D apparent
motion between frames. This is similar to both takeoff and landing scenarios of drones
during flight.

We also capture bursts having 1D apparent motion between frames in a similar fash-
ion, by capturing multiple burst sequences for five trajectories while the robot is
moving orthogonal to the principal axis of the camera. There are a significant num-
ber of similar use cases including drone mapping out an area or a mining robot moving
along the scene during reconstruction.

Our scene is designed similar to a forest environment containing objects with different
textures, shapes and sizes under controlled lighting. We capture our dataset over
5 ms and 100 ms exposure times as noisy and gold standard images respectively to
correspond closely to the noise levels of the earlier printed target experiment depicted
in Figure 4.5.

We observe and compensate for a special kind of pattern noise – dark current non-
uniformity that occurs due to variation from pixels to pixels or columns to columns
with dark current generation rates. We remove this by capturing a bias frame under
identical temperature and camera parameters as the experiment image with lens caps
on the camera to block all light. We remove the fixed pattern noise similar to Chap-
ter 3 on all burst images by subtracting bias frames from the captured images. This
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(a) (c)

(b)

Figure 4.8 – Examples of captured imagery: (a) View of a well-lit scene and arm-
mounted camera; (b) a gold standard image captured over 100 ms exposure time;
and (c) a single noisy image captured over 5 ms at the same camera pose. The full
dataset contains 10 trajectories, each with 20 bursts of 10 images.

allows us to model the dominant noise on captured imagery as a random Gaussian
which corresponds to thermal noise.

We compute features from the variants of BuFF and the VLFeat2 implementation
of SIFT using selected peak threshold as explained in Figure 4.6, edge threshold 10,
and DoG scales covering 6 octaves over 4 levels per octave on both conventional and
burst-merged images. This is similar to the settings used on the gold standard in the
earlier printed test target experiment depicted in Figure 4.5 to generate all the higher-
quality features with no spurious features. For the variants of BuFF, we designed the
motion-stack over 7 slopes in horizontal and vertical directions accordingly. For the
descriptor, we apply L1 root normalization [115] across all methods, similar to [117]
to yield improved matches.

2https://www.vlfeat.org/overview/sift.html
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Following the feature comparison approach in [20], and similar to the evaluation as dis-
cussed in Chapter 3, we evaluate reconstruction performance on the captured imagery
for both variants of BuFF against state-of-the-art methods for light-constrained recon-
struction. Because conventional images outperform alternative imaging approaches
of using all frames within a burst in Chapter 3, we evaluate reconstruction using both
classical and learning-based methods on conventional images. We also evaluate our
method of finding burst features against our previous approach of finding features on
a temporally merged image as discussed in Chapter 3. We use SIFT for classical ap-
proach as it is the most noise tolerant 2D feature extractor as discussed in Chapter 2
and for learning-based approaches, we extract features and matches using SuperPoint
[42] and repeatable and reliable detector and descriptor (R2D2) [44] on our captured
light-constrained scenes.

In Table 4.1, we highlight the best results from the variants of our method in green
and alternative approaches in red similar to Chapter 3. We compare BuFF 2D for
trajectories with 1D motion, and while it uses 92% of all images to reconstruct light-
constrained scenes with competitive putative matches, inlier matches and 3D points
per image, BuFF 1D subset demonstrate more matches and 3D points overall. This is
because of less spurious feature detection in limited search space compared to BuFF
2D.

Similarly, we compare BuFF 1D on 2D trajectories. While it performs competitively
with other methods, the accuracy drops because of the constrained motion imposed
on 1D motion filters.

Conventional reconstruction using single noisy images failed to identify a good initial
image pair and failed to converge during bundle adjustment for both classical and
learning-based feature extractors. Our method reconstructs hundreds more matches
and 3D points per image compared with burst-merged reconstruction using SIFT.

Our method performs competitively with learning methods. While R2D2 outper-
forms our method on finding putative matches and therefore match ratio, our method
computes more inlier matches and thus more precise matches in light-constrained en-
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vironments. Our methods also compute more 3D points with higher convergence rate
compared to other classical and learning methods.

4.4.3 Camera Trajectory Accuracy

We compute average absolute trajectory error and average relative pose error for
translation and rotation from the poses estimated by COLMAP as shown in Table 4.2.
The color scheme matches that used in Table 4.1.

The results show the two BuFF variants outperforming burst with merge in transla-
tion and BuFF 2D showing a slight advantage over BuFF 1D for rotation estimates.
The variants of BuFF outperforms all the other methods, including R2D2, overall for
both cases with apparent motion of 1D and 2D. Because conventional noisy methods
fail to converge throughout, there are no camera pose estimates for that method.

We demonstrate the camera pose estimates qualitatively as in Figure 4.9. We align
and scale the camera poses estimated by COLMAP to the ground truth trajectory
poses collected by the robotic arm by operating Sim(3) Umeyama’s alignment method
[119] similar to Chapter 3 as there is an arbitrary scale factor involved in monocu-
lar SfM. While relaxing inlier rate settings encourages conventional methods to con-
verge, the camera pose estimates are inaccurate. Both SuperPoint and R2D2 fail

Table 4.2 – Mean translation error and mean rotational error in camera poses for re-
construction methods of light-constrained scenes with 1D and 2D apparent motion.
Bold: Overall best results, Green: Best results from our proposed approaches; Red:
Best results from alternative approaches.

Apparent
motion Method Absolute trajectory error Relative pose error

trans.(cm) rot.(deg) trans.(cm) rot.(deg)

1D

Burst with Merge - SIFT 2.84 2.07 4.97 0.73
Burst with Merge - SuperPoint 2.13 2.17 5.12 0.81
Burst with Merge - R2D2 1.71 1.20 3.17 0.04
BuFF 1D 1.23 1.24 2.00 0.05
BuFF 2D 1.27 0.62 2.01 0.02

2D

Burst with Merge - SIFT 1.80 1.11 3.60 0.04
Burst with Merge - SuperPoint 1.56 1.06 3.71 0.04
Burst with Merge - R2D2 1.48 0.55 2.84 0.04
BuFF 1D 1.53 1.17 2.99 0.05
BuFF 2D 1.44 0.58 2.55 0.03
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to converge for this particular scene with relaxed settings. Estimating camera poses
using burst-merged images across all methods show poor estimates in translation.
Both variants of our method compute accurate camera pose estimates compared to
the competing methods using both classical and learning-based feature extractors on
single images and burst-merged images.

4.4.4 Speed

For a dataset of 200 images in 20 bursts captured over 5 ms with strong noise, our
MATLAB implementation for detecting and describing burst features and reconstruc-
tion BuFF 1D took 18.42 minutes and BuFF 2D took 108.5 minutes on an Intel i7-9700
at 4.70 GHz as in Table 4.3. The speed of the implementation depends on the noise
levels of the images, as noisy images produce spurious features and describing each
detected feature requires a considerable amount of time.

The reported time for BuFF 2D and BuFF 1D followed the design of building a
motion-stack prior to the DoG convolution stage, which is the slower of the two
options for BuFF 2D and faster for BuFF 1D as discussed in Section 4.3.5. In com-
parison, operating the SIFT MATLAB implementation on 20 conventional noisy im-
ages took 15.04 minutes, while operating on burst-merged images with align and
merge took 13.86 minutes. Learning methods that used pre-trained models and cor-
responding evaluation showed significantly faster performance. Note, all the learning
methods are accelerated with NVIDIA GeForce RTX 3080 Laptop GPU. We expect

Table 4.3 – Time taken for reconstruction including feature extraction.

Method Time taken
(min)

Conventional Noisy
SIFT 15.04
SuperPoint 0.32
R2D2 2.00

Burst with Merge
SIFT 13.86
SuperPoint 0.27
R2D2 1.56

BuFF 2D (Ours) 108.50
BuFF 1D (Ours) 18.42
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BuFF implementation to be substantially accelerated with an adaptive design and an
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Figure 4.9 – Localisation performance: (top) Conventional imagery using SIFT yields
very poor camera pose estimates (red) and even fails to converge without relaxing
inlier rate settings. (bottom) Employing burst-merged images using SIFT (cyan)
reconstructs 90% of input images but with poor pose estimates (orange). Extract-
ing features and matches using SuperPoint (brown) and R2D2 (blue) reconstructs
10% and 85% of input images respectively but continues to estimate inaccurate
poses. The proposed BuFF variants successfully employs the most images and
yields the most accurate pose estimates, with the 2D variant (violet) showing
slightly lower accuracy than BuFF 1D (green), due to increased spurious features
associated with the larger 2D search space.
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optimized compiled language, with potential for further computation improvement
through parallel architecture of GPUs.

4.4.5 Failure Cases

The performance of the approach is influenced by the level of signal present in the
captured burst. Having more images in the burst (N-frames burst) benefits feature
detection, but as

√
N , where N is the number of images in a burst. Ultimately,

there needs to be enough signal in the images for BuFF to detect features, which is
particularly challenging in low-contrast scenes.

Our methods also struggle to perform on bursts of images that display a wide range of
apparent motion. This causes aliasing features which could potentially be eliminated
by employing faster bursts and enabling smoother parameterization over apparent
motion count. Examples of failed cases with larger apparent motion between frames
and extremely low contrast are shown in Figure 4.10.

(a) (b)

1.0

0.5

0.0

Figure 4.10 – Failure cases: (a, left) A single input frame and (right) an image from
the motion-stack with inaccurate apparent motion values show aliasing effect. Em-
ploying faster bursts and reducing the slope intervals eliminate this kind of aliasing.
(b, left) A low-contrast textured scene in bright illumination, and (right) the same
under low light showing insufficient signal for feature detection. Ultimately, suffi-
cient signal is necessary for BuFF to identify features. (Contrast-adjusted image
for visualisation)
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4.5 Discussion and Future Directions

In this chapter, we introduced a novel robotic burst feature finder to reconstruct low-
light scenes. We captured multiple-bursts sequences along typical motion trajectories
and detected burst features in a scale-slope search space. We employed a descriptor
that provided additional advantage with higher SNR boost compared to conventional
methods.

We demonstrated improved performance compared to conventional imaging and
burst-merged reconstruction using SIFT in terms of higher-quality features, fewer
spurious features, better convergence rate, improved match score, higher match ratio
and precise 3D points per image. We also compared against state-of-the-art learning-
based feature extractors and demonstrated competitive performance across feature
matches. We showed more complete 3D models with the highest 3D points and con-
vergence rate. We also showed overall improved camera pose estimates on conven-
tional images and burst-merged images for low-light scenes. Between our two burst
methods for reconstruction of light-constrained scenes, we demonstrated the benefits
of directly finding burst features compared to 2D feature extraction on temporally
merged robotic bursts.

We expect that this work can improve 3D reconstruction in low light, allowing robots
to perform better in challenging mining missions and drone delivery at night. For
future work, we anticipate learning-based approaches for burst feature extraction and
object tracking and reconstruction of scenes obscured by visually challenging features
like snow. We also expect complementary sensors to aid in improving reconstruction
in low light – see Section 6.2 for more details.



Chapter 5

Learned Burst Feature Finder

"The imagination of nature is far, far
greater than the imagination of man"

- Richard P. Feynman

5.1 Overview

We presented two methods of allowing robotic burst imaging schemes as input for the
correspondence search stage in light-constrained reconstruction. We demonstrated
the viability of adapting burst imaging for reconstruction in Chapter 3 and demon-
strated the ability of burst with merge compared to alternative imaging approaches.
We deployed a robotic burst feature finder, outlined in Chapter 4, to jointly search for
burst features in scale-slope space. However, physics-based approaches face limita-
tions in locating salient features and describing them accurately in extremely low-light
scenes with millilux illumination. This is because of the limited information available
in any noisy signals for feature localization and the further degradation caused by
quantization.

In this chapter, we present a learning-based pipeline for robotic burst imaging that
utilizes joint detection and description to locate sparse features within a burst. By



5.1 Overview 68

leveraging the use of metric learning loss from existing 2D feature extractors [44, 127]
and adapting for robotic burst, we identify robust features for reconstruction in light-
constrained bursts, effectively avoiding regions with low contrast, featureless texture,
and indistinct features that could hinder appearance-based detection and description.
By directly optimizing average-precision (AP) for descriptor computation, we attain
high-quality true features that directly enhance feature matches.

To evaluate, we initially compare our proposed approach with the single-image-based
R2D2 [44]. We employ HPatches dataset [128] with varying illuminations and view-
points to generate synthetic robotic bursts. We demonstrate improved performance
for feature matching and camera pose estimates using the widely available COLMAP
SfM software [20] with our learned burst features. This highlights the performance
improvement in reconstruction achieved by extending learning-based 2D feature ex-
traction to burst imagery under low-light conditions.

We validate our method using BuFF dataset – captured imagery as discussed in Chap-
ter 4 and captured burst imagery collected by DJI Mini Pro 3 and DJI Phantom Pro
4 drones operating in extremely low-light conditions. We compare our proposed ap-
proach against state-of-the-art physics-based and learning-based techniques on con-
ventional images. We also compare against other robotic burst imaging schemes
as described in Chapter 3 and Chapter 4. We demonstrate higher true features
with fewer spurious features, leading to better quality matches for scenes captured in
millilux illumination as shown in Figure 5.1. We show overall improved reconstruction
performance, resulting in more complete 3D models.

This work aims to identify learning-based features in low-light robotic bursts that
enhance low-light reconstruction, benefiting a wide range of drone applications, in-
cluding nighttime drone delivery and understanding nocturnal behaviors of animals.
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In summary, our key technical contributions are:

• We introduce a learning-based robotic burst feature finder, a joint feature de-
tector and descriptor that finds learned features with well-defined scale within
a light-constrained robotic burst,

Figure 5.1 – Feature matching at night: A commercial drone (top-left) captures im-
agery at millilux conditions at night that is too noisy for conventional 3D recon-
struction in low light (top-right). This is because of the high rate of spurious
features offered by conventional features like SIFT (blue) and less reliable matches
offered by learned features like R2D2 (red) on noisy images. The proposed LBurst
yields higher-quality feature matches from reliable regions of the images (yellow)
for reconstruction. In this work we show that our feature finder enables 3D recon-
struction in millilux conditions for existing commercial drones.
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• We enable robots to detect noise-tolerant features in low light by employing con-
sistent motion within bursts and leveraging uncorrelated noise between them,
and

• We demonstrate overall improved 3D reconstruction from drone images in low-
light (millilux) conditions, outperforming conventional and learning-based fea-
ture extraction and robotic burst feature finder in low-SNR scenes.

5.2 Related Work

In this thesis, we discussed feature extraction methods for reconstruction using con-
ventional images in Chapter 2, highlighting the role of physics-based approaches in
state-of-the-art feature extraction techniques in Chapter 3. We extended it to 3D
feature extraction methods and demonstrated a physics-based technique that finds
features in a robotic burst. In this section, we discuss the role of machine learning in
producing pixel-wise correspondences for 3D reconstruction.

The early stages of learning aim at detecting features, imitating hand-crafted features
[129, 130, 131], or involve training a classifier to predict keypoints that may not
be useful when matching them during reconstruction [132]. These methods remain
limited by the poor accuracy of keypoint detection on light-constrained images.

The use of convolution neural network (CNN) [133, 134] allows direct mapping of raw
pixels to locations of features through a series of non-linear processing layers, eliminat-
ing the need for hand-crafted features. While learning-based detectors demonstrated
better performance compared to classical methods such as SIFT, especially in recov-
ering relative orientation [135, 136], hand-crafted descriptors outperformed learned
descriptors in image-based reconstruction [137] up until recent years.

Latest studies formulate matching as a problem of metric learning [138, 127, 44], in
which the model learns a distance metric by optimizing a loss function that encourages
similarity between image patches. The loss function varies as pairwise loss function
to compare between two patches [139, 140], triplet losses for three patches [141, 142]
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and global losses [143, 144] for more than three patches and this patch similarity
reflect Euclidean distances. This substantially improves matching performance for
reconstruction [78] compared to classical methods.

Similar to L2Net [144] and HardNet [142], descriptors optimized for average-precision
(DOAP) [127] adopts a similar framework but aims to train the model to maximize the
mean average-precision (mAP) by directly optimizing the area under the precision-
recall curve. This directly improves feature matching performance. In order to make
the AP calculation differentiable, the study replaces the traditional discrete histogram
with a linear interpolation, resulting in state-of-the-art performance for reconstruction
using learning methods.

Taking an end-to-end approach, learned invariant feature transform (LIFT) [145]
utilizes three separate CNN components that feed into each other. SuperPoint [42]
tackles end-to-end as a supervised task with self-labeling, where an initial keypoint
detector is pre-trained on a large dataset of millions of synthetic geometric shapes and
automatically generates pseudo-ground truth keypoints. The dependency on pseudo-
ground truth keypoints could limit the reliability of the extracted features, presenting
a potential bottleneck within the process. D2-Net [43] locates 2D keypoints through
joint detection and description using a single CNN with shared weights, while R2D2
outperforms D2-Net and other studies [42, 145, 146] in matching performance by
considering reliability as an attribute during detection.

We visualize spurious feature detection associated with strong noise when employing
R2D2 on a toy image with low SNR, as shown in Figure 5.2. In the color scheme
employed for the confidence maps, red denotes the lowest confidence levels while green
shows the highest confidence levels. The color scheme remains consistent across all
figures within this chapter. The low confidence associated with both repeatability and
reliability confidence maps highlight the need for existing state-of-the-art techniques
to deal with strong noise which is common among images captured in extremely
low-light conditions.

Inspired by the success of multi-image strategies [37, 36] in addressing visually chal-
lenging images, we adapt R2D2, a single-image-based feature extractor, for robotic
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(low SNR)

Noisy image

Figure 5.2 – We apply the state-of-the-art R2D2 to a toy image with a high SNR (left)
and demonstrate the corresponding keypoints and reliable regions within the image.
However, when dealing with a toy image of low SNR (right), feature localization
results in spurious feature detection, accompanied by inaccurate confidence maps
that affect repeatability and reliability scores. The confidence maps employ a
color scheme where red denotes the lowest confidence, while green represents the
highest confidence. Keypoints are determined based on the high-scored product of
repeatability and reliability scores associated with each pixel location.

burst imaging. We tailor the input structure to accommodate a burst of images,
enabling the network to utilize temporal information during training. By exposing
the network to the typical noise profile and motion variations commonly encountered
within a robotic burst, our approach aims to detect sparse features that remain robust
regardless of the noise or motion characteristics present within the robotic bursts.

5.3 Learned Robotic Burst Feature Finder

We locate learned features with well-defined scale within low-light robotic bursts
using a self-supervised approach enforcing burst pair similarity as described in Sec-
tion 5.3.1. By employing a flow map with known transformation between common
images (i.e., the middle frames of the bursts) of the ground truth bursts during train-
ing, the network learns to find noise-tolerant features. These features are compact
128-dimensional descriptors, obtained using mAP-based loss similar to R2D2 [44]
and DOAP [127]. We select keypoints based on detection and description scores,
applied across scales to identify multi-scale features. During inference, we compute
multi-scale feature locations and descriptors within a single burst, representing the
sparse pose of the common image. For reconstruction, we extend this over multiple
bursts captured along a trajectory as shown in Figure 5.3. The following outlines the
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Burst

Figure 5.3 – Comparing to the merging-based approach depicted in Figure 3.3, and
locating physics-based burst features as described in Figure 4.2, We pass each
captured burst through our trained network and locate features in multiple scales.
We compute corresponding matches between bursts and perform 3D reconstruction.

joint architecture for detection and description and the burst generation pipeline for
training and inference.

5.3.1 Joint Learning of Detection and Description

We employ a fully-convolutional network with L2-Net [144] as the backbone architec-
ture, similar to R2D2 [44] to directly map raw pixel data from a burst of images to
multiple outputs, including the sparse keypoint location, pixel-wise descriptors, and
their corresponding confidence maps as in Figure 5.4. Because feature-based SfM can
handle large occlusions between the bursts, we focus on finding features of the com-
mon image that represents the burst, i.e., the middle frame in the case of a robotic
burst [1]. The burst has dimensions of H × W × N , where H × W represents the size
of each image, and N denotes the number of images in the burst.

We train our model by leveraging a pair of robotic bursts and a flow map which
leverages the known transformation between the common images of the bursts as
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Cfeature

Figure 5.4 – LBurst architecture employs a pair of robotic bursts and a flow map
with the known ground-truth transformations between the common images (i.e.,
the middle frames) during training. A specialized burst layer handles burst image
processing. The architecture employs a fully convolutional L2-Net, similar to R2D2,
generating a 128D descriptor with L2 normalization and a squared element-wise
operation yielding Cfeature. Following a 1 x 1 convolution for dimension reduction,
a softmax operation computes detection and descriptor maps.

described in Section 5.3.2. We pass the burst of images through an adaptable burst
layer designed to handle multiple input images. The intermediate layers allow for
non-linearities and normalized activations to maintain the input spatial resolution
by enabling dilated convolutions and replacing the last 8 × 8 convolution layer with
three successive 2 × 2 convolution layers, similar to the single-image based approach
in R2D2. In contrast to R2D2, by incorporating the flow map that employ the
known local transformation between the common images, we impose a spatial pose
constraint while integrating temporal information into our architecture. This allows
us to capture and leverage the temporal relationships in burst images.

We compute per-pixel 128-dimensional descriptors with L2-normalization on the re-
sulting tensor from the backbone. This normalization is beneficial for CNN descriptors
for image matching tasks [139, 144]. We also apply an element-wise square opera-
tion to generate an intermediate Cfeature representation from the output tensor of
modified L2-Net. Passing through an additional 1 × 1 convolution layer to reduce
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the number of channels and a softmax operation to generate a probability distribu-
tion over the pixels, we generate confidence maps corresponding to detection and a
description.

We generate the detection confidence map by maximizing the cosine similarity be-
tween pairs of patches from the common images, and thereby identifying the local
maxima on the common image. Because the noise in low SNR images are random in
both spatial and temporal domain, locating features based on similarity avoids spuri-
ous features. We average the cosine similarity loss Lc over each small patch over the
common image and additionally incorporate a local peakiness loss Lp inspired by [44]
to enhance the detection of features in low contrast regions of low SNR images. This
loss computation promotes noise tolerant features within a burst and consistency of
features between the bursts. The overall detection loss L in a robotic burst Ba is
computed as,

L(Ba, Bb, Ui) = Lc(Ba, Bb, Ui) + Lp(Ba) + Lp(Bb)
2 , (5.1)

where Bb represents bursts of images transformed by the flow map Ui, ensuring align-
ment between the common images of Bb and Ba.

We aim to maximize the AP to evaluate the reliability of the patches in the descrip-
tion confidence maps. By doing so, we improve the likelihood of identifying true
features while limiting the presence of spurious features, particularly in low SNR im-
ages. By excluding non-distinctive regions during reconstruction, we further reduce
the presence of unreliable features that have lower matching probabilities in the recon-
struction pipeline. The confidence maps, ranging from 0 to 1, indicate the presence of
local maxima for a specific patch size in the detection confidence map and represent
the highest likelihood for matching in the description map.

5.3.2 Robotic Burst Generation for Training

We generate a pair of robotic bursts using a single image such that each burst shares
the same scene with homographic transformation as if captured from two different
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Figure 5.5 – Overview of the synthetic robotic burst generation for model training.
Cropping and transforming a single image to yield a pair of perspective-altered
scenes, and by applying uniform 2D translations within each burst we generate
a pair of burst images. We introduce random Gaussian noise to each image in a
burst and employ flow maps with known transformation to ensure accurate vector
field between common images (i.e., the middle frame within the generated bursts.

angles as in Figure 5.5. This allows the network to understand the variations in
motion temporal information between bursts. We implement consistent uniform 2D
translations within individual bursts, while introducing random translations between
the bursts. For every image in a robotic burst, we introduce random Gaussian noise
to simulate thermal noise present in low-light conditions. To establish the relation-
ship between the common image of each burst, we generate a flow map Ui based
on the known transformations. This flow map represents the ground truth spatial
correspondence between the common images of burst Ba and Bb and thus learns to
disregard the motion within robotic bursts – see further discussion in Section 5.4.1.

Our architecture learns to handle various challenges encountered on robotic bursts
during inference, such as local occlusions, parallax motion, and warp artifacts even
though the model is not explicitly trained on these specific attributes. This is because
we use local cosine similarity over small patches for feature detection, and average
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them over all the patches and by doing so, we treat apparent motion associated with
the patches locally.

5.3.3 Robotic Burst Generation for Inference

When a drone captures multiple bursts of images using a monocular camera, it usually
exhibits 2D linear motion among burst frames as discussed in Chapter 4. In addition,
the noise levels in the captured images captured in millilux illumination, typically
follow a random Gaussian distribution [112]. We design our burst generation process
for training to closely emulate the motion and noise characteristics of captured drone
burst imagery for reconstruction. We also generate low-light robotic burst for syn-
thetic experiments, closely imitating the attributes of those used for training, aiming
to evaluate the quality of feature matching performance and camera pose estimates
in synthetic noise. In addition, we also test on real-world drone bursts captured in
millilux illumination for 3D reconstruction.

5.4 Results

5.4.1 Implementation Details

We aim to improve feature detection and extraction in robotic bursts, enabling
improved performance in low-light 3D reconstruction. LBurst, our learning-based
robotic burst feature finder, operates on a burst of images at different scales to com-
pute sparse locations that correspond to keypoints with well-defined features and
their corresponding descriptors. During inference, LBurst analyzes the burst at mul-
tiple scales, and the features are then scored based on their detection and description
confidence score. To evaluate the capabilities of LBurst, we conduct synthetic ex-
periments using the generated HPatches burst dataset. We further demonstrate 3D
reconstruction of real-world scenes in millilux conditions along multiple drone trajec-
tories, utilizing actual bursts captured by drones.
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Training Datasets

We train our method using two sources of single image-based datasets. We incorporate
4,479 images from the Aachen dataset [84], which captures scenes resembling those
captured by drones in urban cityscapes and 3,190 random web images [147] as original
images in constructing 5-frames robotic bursts. We exclude captured robotic bursts
during training and demonstrate our model generalizing well towards drone-captured
data.

Training Parameters

We generate a 5-frames robotic burst for each image by incorporating image transla-
tions and noise following a normal distribution. The maximum translation between
frames is limited to 30 pixels and the noise level variance of the images falls within the
range of 0.3 to 0.6 on normalized images. We perform random homographic transfor-
mations between bursts during training to improve feature extraction. For network
optimization, we employ the Adam optimizer [148]. The training process involves 25
epochs with a fixed learning rate of 0.0001. We also apply weight decay of 0.0005 to
regularize the model.

5.4.2 Feature Performance in Noise

We compare our approach of adapting R2D2 for a robotic burst with the original 2D
R2D2 on images that exhibit significant noise to evaluate the feature performance
in synthetic noise. This is because an end-to-end approach for single-image feature
extraction has the potential to learn how to interpret features in noisy images when
provided with sufficient training data, to an extent. Additionally, the impact of
temporal information in enhancing the learning-based feature extraction on low SNR
images remains largely unexplored.

We generate bursts from the HPatches dataset [128], which consists of a sequence
of images with increasing difficulty in terms of viewpoint and illumination. We use
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each image in the dataset as an original image to generate a robotic burst with
uniform translation and random noise as described in Section 5.3.2 and by doing
so, we create bursts that exhibit varying viewpoints and illumination for each scene.
For camera pose estimation, we only use bursts generated with varying viewpoints
between images, i.e., 56 HPatches dataset scenes. We further compare against existing
state-of-the-art classical and learning-based techniques on conventional images, as well
as other robotic burst imaging methods discussed in Section 5.4.4.

Matching Accuracy in Synthetic Noise

Matching accuracy demonstrates the ability of a model to correctly match pixel-level
correspondences between the same scene. High matching accuracy ensures accurate
3D reconstruction allowing improved correspondence search. In contrast, poor match-
ing accuracy leads to incorrect or incomplete reconstructions. We compare the mean
matching accuracy (MMA) for various pixel error thresholds using our method on
light-constrained bursts and state-of-the-art R2D2 method on corresponding com-
mon images for all 108 scenes. We compute ground truth by operating R2D2 on

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

M
M

A

Threshold (px)

Overall ViewpointIllumination
Gold standard
R2D2
LBurst

Figure 5.6 – Feature matches on synthetic burst and corresponding images for the
HPatches dataset. Overall, our burst method outperforms R2D2 learned fea-
ture extraction (left) with improved illumination (middle) and viewpoint (right)
for light-constrained images. This demonstrates the viability of our approach for
feature-based reconstruction using light-constrained scenes.
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original images in the HPatches dataset. Our method shows improved matching per-
formance compared to conventional methods for all threshold values as in Figure 5.6
in challenging conditions for reconstruction performance.

We evaluate mean matching accuracy, as defined in [43], the percentage of true
matches between a pair of bursts with an error threshold of 3 pixels and repeata-
bility score by calculating the number of putative matches computed for detected
keypoints as shown in Table 5.1. Our method shows two times the matching accu-
racy of R2D2 operating on noisy images and demonstrates improved repeatability
score. In the table, green bold highlights the overall best results.

By adjusting the level of noise introduced during inference on the generated HPatches
bursts, we assess the role of noise in matching performance. We compare against
R2D2 on the original common image (black) and our method on the generated robotic
bursts. We demonstrate that our method outperforms R2D2 in both moderate and
strong noise while showing a decline in matching performance with increasing noise
as shown in Figure 5.7.

Figure 5.7 – We operate R2D2 on the original HPatches dataset with high SNR (black).
We introduce noise to mimic light-constrained scenes and demonstrate R2D2 fails
to produce accurate matches for moderate (orange) and strong (red) noise while
our method outperforms state-of-the-art algorithms in producing improved feature
matches in both moderate (cyan) and strong (blue) noise.
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Table 5.1 – Mean matching accuracy and repeatability score for all images in the
generated HPatches dataset: Our learned robotic burst feature finder approach
outperforms R2D2 2D feature extraction on the common image of the correspond-
ing robotic burst. Bold, Green: Overall best results from our proposed approach.

Method MMA@3 Repeatability
Gold Standard 0.68 0.31

R2D2 0.25 0.10
LBurst (Ours) 0.44 0.29

Camera Trajectory Accuracy in Synthetic Noise

We select a subset of the HPatches dataset with varying viewpoints to evaluate camera
poses. We show an example scene (viewpoint - vitro) and the corresponding camera
pose estimates in Figure 5.8. We use R2D2 on original images (black) to collect
gold standard poses using COLMAP. We compare our method, which operates on
generated HPatches bursts (green), against R2D2, which operates on the common
images (red). We align and scale the estimated camera poses to the gold standard
poses using Sim(3) Umeyama’s alignment method [119] similar to Chapter 3 and
Chapter 4 as there is an arbitrary scale factor involved in monocular SfM.

Figure 5.8 – (Right) (top row): A scene from HPatches original dataset (viewpoint -
vitro), which poses a viewpoint challenge for feature detection; (bottom row): A
generated burst of images from each original input; (middle row) common image of
the generated burst used for conventional 2D feature extraction. (Left) Estimated
camera trajectory using COLMAP. Our method (green) reconstructs more accurate
camera poses compared to R2D2 (red) and correspond closely to the gold standard
poses from original high SNR images (black).
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Table 5.2 – Mean translation error and mean rotational error in camera poses for
reconstruction methods of a subset of the generated HPatches dataset. The re-
sults are in distance units. Bold, Green: Overall best results from our proposed
approaches.

Method Absolute trajectory error Relative pose error
trans. rot. trans. rot.

R2D2 3.30 2.18 5.18 0.86
LBurst (Ours) 1.32 1.03 1.90 0.45

We additionally compute average absolute instantaneous and relative pose errors
(translation and rotation) against gold standard poses, as in Table 5.2. Our method
converges for 60% of diverse viewpoint scenes, outperforming R2D2 (12.5%) in low-
light image scenarios with accurate pose estimates on the generated HPatches dataset.
The color scheme matches that used in Table 5.1. The bold green values indicate
that our method outperforms alternative approaches across all metrics. This shows
the feasibility of using learned robotic burst feature finder as an input scheme for
correspondence search in light-constrained reconstruction.

5.4.3 Reconstruction Performance

We evaluate reconstruction performance using our previous dataset captured in light-
constrained conditions as described in Chapter 4 in addition to drone-based validation
in the following section. This is because the drone imagery captures scenes far away
demonstrating a small amount of apparent motion while some other robotic platforms
and trajectories have the tendency to produce more parallax motion.

Table 5.3 shows reconstruction performance using our method compared to state-
of-the-art feature extraction methods for reconstruction. In the table, green high-
lights the best results from the proposed method and red shows the best results from
competing approaches. We show overall improved reconstruction performance with
improved inlier matches, match score and more 3D points compared to other robotic
burst imaging methods resulting in a more complete reconstruction.
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Table 5.4 – Mean translation error and mean rotational error in camera poses for re-
construction methods of light-constrained scenes with 1D and 2D apparent motion,
including learned robotic burst feature finder. Bold: Overall best results, Green:
Best results from our proposed approaches; Red: Best results from alternative ap-
proaches.

Apparent
motion Method Absolute trajectory error Relative pose error

trans.(cm) rot.(deg) trans.(cm) rot.(deg)

1D

Burst with Merge - SIFT 2.84 2.07 4.97 0.73
Burst with Merge - SuperPoint 2.13 2.17 5.12 0.81
Burst with Merge - R2D2 1.71 1.20 3.17 0.04
BuFF 1D 1.23 1.24 2.00 0.05
BuFF 2D 1.27 0.62 2.01 0.02
LBurst 1.64 1.04 2.33 0.05

2D

Burst with Merge - SIFT 1.80 1.11 3.60 0.04
Burst with Merge - SuperPoint 1.56 1.06 3.71 0.04
Burst with Merge - R2D2 1.48 0.55 2.84 0.04
BuFF 1D 1.53 1.17 2.99 0.05
BuFF 2D 1.44 0.58 2.55 0.03
LBurst 1.35 1.03 2.63 0.04

In Table 5.4, we present a comparison of our approach for estimating camera poses
with other methods. Our learned robotic burst feature estimates outperform other
methods in estimating absolute trajectory error in translation while the variants of
robotic burst feature finder perform well for most cases.

5.4.4 Drone-based Validation

We validate learned burst features for low-light 3D reconstruction by deploying drones,
a DJI Mini Pro 3 and a DJI Phantom Pro 4 in millilux illumination as shown in Fig-
ure 5.9. We record multiple trajectories during drone flights, comprising 10 scenes
with 15 bursts each. Each burst consists of 5 images and exhibits approximately
linear 2D motion within each burst.

Experiment Details

During drone flights, we capture multiple trajectories, with each trajectory consisting
of 15 bursts, and each burst containing 5 images. These robotic burst sequences
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1.0

0.5

0.0

(a) (b)

Figure 5.9 – We use two drones to capture light-constrained scenes. (a) (left) DJI
Phantom Pro 4 captures images over the exposure of 0.125 ms at millilux condi-
tions. (right) An example image in a captured burst which demonstrates noise-
limited nature. (b) (left) DJI Mini Pro 3 captures images over the exposure and
millilux conditions. (right) An example image in a captured burst of drone imagery.
The full dataset contains 10 scenes, each with 15 bursts of 5 images. (Contrast-
adjusted image for visualisation)

exhibit approximately linear 2D motion within each burst. We use two different
drones, DJI Mini Pro 3 and DJI Phantom Pro 4, both equipped with monocular
cameras. The DJI Mini Pro 3 camera has an f/1.7 lens, captures 16-bit raw images
of size 4032 x 2268 over a duration of 0.125 seconds, and uses an ISO setting of 6400.
On the other hand, the DJI Phantom Pro 4 camera has an f/2.8 lens, captures 16-bit
images of size 4864 x 3648 over the same duration of 0.125 seconds, and uses an ISO
setting of 12800. During the data collection stage, the lighting conditions varied in
millilux illumination as measured using a light meter. While we set both cameras to
maintain the same EV across platforms, due to reduced natural light in extreme low-
light conditions, the imagery captured using the DJI Phantom Pro 4 drone exhibited
stronger noise compared to that captured using the DJI Mini Pro 3 drone.

Feature Performance on Drone Imagery

We show two light-constrained scenes captured by DJI Phantom Pro 4 (top) and
DJI Mini Pro 3 (bottom) in Figure 5.10. In particular, we demonstrate the features
detected by LBurst, along with an interpretable confidence map for both detection and
descriptor. The majority of the features detected by our method are highly robust,
avoiding unreliable matching regions such as the sky under millilux conditions. This is
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Figure 5.10 – We locate keypoints using LBurst on drone images captured using two
commercial drones. (top row) Light-constrained scenes with strong noise captured
by a DJI Phantom Pro 4 at millilux conditions of 0.02 - 0.08 lux. (bottom row)
Light-constrained scenes with moderate noise captured by a DJI Mini Pro 3 at
millilux conditions of 0.05 - 0.12 lux. For both drones, we present (b) the top
scored keypoints (c) detection confidence map, and (c) descriptor confidence maps.

because we evaluate the repeatability and reliability scores of every detected feature,
selecting the features with high scores for reconstruction.

We compare our method (top) to the state-of-the-art R2D2 (bottom) on a robotic
burst and demonstrate a qualitative improvement in detected keypoints and their
corresponding maps with our method compared 2D feature detection as in Figure 5.11.

( ) (b) ( )

0.2

0.4

0.6

0.8

1.0

0

Figure 5.11 – We compare (top row) our method LBurst against (bottom row) state-
of-the-art R2D2 on a light-constrained scene. (left) LBurst demonstrates high-
quality true features and fewer spurious features compared to R2D2. (middle) Our
detection confidence maps show repeatable regions as local extrema while R2D2
fails to produce repeatable regions. (right). Our descriptor confidence map shows
the reliable region avoiding sky regions for reconstruction in contrast to R2D2
finding all regions as reliable.
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Figure 5.12 – Comparison of feature performance on a captured scene (top, left)
using conventional burst techniques (top row) and single image based techniques
(bottom row), highlighting features associated with background (green) and fore-
ground (blue) regions. Burst methods outperform conventional feature extraction
methods, and learned burst feature finder outperforms other burst methods by
generating more robust features of the scenes.

This demonstrates how our method benefits from the temporal information in a burst
to handle strong noise and small motion variation on captured burst imagery.

Finally, we evaluate the performance of our feature detection method against state-of-
the-art classical and learning-based methods on conventional images and other robotic
burst imaging methods as shown in Figure 5.12. For a captured scene using DJI Mini
Pro 3, we demonstrate burst-based methods locating most of the high-quality true
features corresponding to the vehicle in the foreground (blue) and the buildings in
the background (green) with BuFF showing slightly higher performance in rejecting
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spurious features compared to burst with merged image using SIFT. Our learned
robotic burst feature finder avoids most of the spurious features and low contrast
regions and locates both the vehicle and buildings. It also finds the light source
which has higher pixel intensity, and so local extrema within bursts.

We also compare our method with learning-based methods like SuperPoint and R2D2,
as well as classical methods such as SIFT and ORB at default settings. Although Su-
perPoint exhibits strong performance, our approach generates twice as many features
as SuperPoint, leading to a higher number of inlier matches during reconstruction.
R2D2 performs poorly compared to other learning methods. SIFT struggles to find
high-quality true features and produce more spurious features compared to learning
and burst-based methods. ORB locates overwhelming features failing to represent
this light-constrained scene for reconstruction.

Reconstruction Performance on Drone Imagery

Following the feature comparison approach in [137], we evaluate reconstruction per-
formance for the drone imagery similar to Chapter 3 and Chapter 4. We compute
a maximum of 4000 keypoints with thresholds on detection and descriptor at 0.7 for
both our approach and R2D2. We evaluate against other methods, including the
conventional single-image capture and burst-merged image approaches (Chapter 3),
which utilize classical method such as SIFT and learning method including R2D2
and SuperPoint, as well as the robotic burst feature finder (Chapter 4), as shown in
Table 5.5. The color scheme matches that used in Table 5.3.

Our method outperforms state-of-the-art feature detection methods on both conven-
tional images and burst-merged methods, by reconstructing the majority of scenes
captured by the DJI Mini Pro 3 with a higher number of 3D points. In comparison,
our approach achieves twice as many inlier matches as the physics-based burst fea-
ture finder method. For images captured by the DJI Phantom Pro 4, our method
reconstructs all scenes with the highest number of inlier matches and 3D points, re-
sulting in more complete 3D sparse models. While SuperPoint takes advantage of
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the SNR boost associated with burst-merged images and demonstrates competitive
performance in detecting inlier matches, it struggles to identify 3D points. On the
other hand, R2D2 is designed to optimize AP, similar to our approach, but it tends
to generate an excessive number of spurious putative matches. Overall, our method
benefits from improved feature performance, which leads to a more complete 3D
reconstruction in low light with the highest convergence rate.

We qualitatively analyze light-constrained reconstruction in Figure 5.13. We select
a trajectory captured as multiple bursts by DJI Mini Pro 3 in low light and for
which most methods reconstruct. State-of-the-art feature extractors, both classical
and learning-based methods demonstrate poor performance on conventional images.
This is because the amount of signal in captured imagery is low for feature extractors
to find high-quality features. In addition, they also produce spurious features and
low quality matches for 3D reconstruction. We operate SIFT feature extraction on
temporally-merged images as discussed in Chapter 3 and also operate SuperPoint and
R2D2 with a burst with merge approach. We demonstrate improved reconstruction
performance with the signal boost from the burst-with-merge approach.

We apply a physics-based robotic burst feature finder to find well-defined blob features
directly in a burst as in Chapter 4 and demonstrate improved feature performance
compared to conventional and burst-merged methods. Overall, as highlighted, the
learned robotic burst feature finder reconstructs the scene with all input images,
more 3D points, and a more complete structure compared to alternative approaches.

5.4.5 Speed

We repeatedly run the network by varying scales to compute scale-invariant features
for reconstruction. We keep the largest dimension to 210 pixels and downsample to 28

at the steps of 21/4. We locate features by finding the local maxima at each scale with
a patch size of N = 16. We score the descriptors as a product of repeatability and
reliability and select the best-scored descriptors for matching. In practice, it takes
an average of 2.27 seconds on a NVIDIA GeForce RTX 3080 Laptop GPU to extract
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Learned Robotic
Burst Feature Finder (LBurst)

Robotic Burst with Merge

State-of-the-art feature extractors

Our Contributions

Robotic Burst Feature Finder
(BuFF)

Figure 5.13 – Overall reconstruction performance for a light-constrained scene (bot-
tom right). (Top row): Existing state-of-the-art feature extractors including SIFT,
SuperPoint and R2D2 fail to perform reconstruction using conventional images;
(middle row): We operate SIFT, SuperPoint and R2D2 on burst-merged images
which demonstrate progressive improvement in reconstruction compared to con-
ventional approaches. We employ robotic burst feature finder (bottom, left) and
learned robotic burst feature finder (bottom, right) on drone imagery and demon-
strate more registered images and higher 3D points resulting in more complete
reconstruction compared to conventional methods. Overall, feature finder outper-
forms state-of-the-art feature extraction techniques and alternative robotic burst
imaging methods.

keypoints at all scales on a burst of 5 drone images and 1.34 minutes for a complete
reconstruction using COLMAP.
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5.4.6 Ablation Study

We explore the variables in the learned robotic burst feature finder for visual recon-
struction.

Keypoints. We change the number of keypoints computed by our model as shown
in Figure 5.14. Our results indicate that the top-scoring detection exhibits keypoints
that directly improve reconstruction performance, producing higher-quality matches.
This is useful for applications with varying needs from sparse to dense pixel-level
correspondences. However, beyond a certain point, the inclusion of more keypoints
may introduce spurious features.

Patch size. We change the patch size during training and inference, which affects the
number of features during multi-scale feature detection as shown in Figure 5.15. In-
creasing the patch size corresponds to sparsely located features of an image compared
to a small patch size. This is because the features are detected which correspond to
the local extrema of a patch operating on all image pixels. However, there is a trade-
off between the number of detected points and their confidence score. While a smaller
patch size yields a denser distribution of keypoints and increases the number of de-
tected features, it can introduce grid-like patterns and reduce robustness, especially
in low SNR images. This could become the bottleneck of our approach, which can be
addressed by adaptively selecting the patch size or by explicitly modeling the motion
behaviours within a burst.

maximum keypoints = 100 maximum keypoints = 500 maximum keypoints = 1000

Figure 5.14 – We demonstrate associated keypoints for the same burst of images by
increasing the number of keypoints detected in a burst. This shows the feasibility of
using our method for various applications that require sparse and dense keypoints.
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0.8
1.0

0

Original image Patch size = 4 Patch size = 8

Patch size = 16 Patch size = 32 Patch size = 64

Figure 5.15 – We demonstrate the impact of patch size in our model using a robotic
burst of the high SNR image (top row, left). Models trained on different patch
sizes yield varied detection maps. When the patch size is small, repeatable features
(green) appear densely on the sky in a grid pattern (top-middle, right), detecting
non-salient keypoints. Increasing the patch size (bottom row) allows for sparser
feature detection by searching for local extrema in larger patches.

5.4.7 Failure Cases

Our method is prone to false reliable scores for descriptors in the presence of strong
noise as shown in Figure 5.16. This is because, similar to R2D2 and L2-Net, we
optimize for descriptor loss by maximizing the AP for a robotic burst. As we increase
the noise, the descriptor confidence remains high, while the detection confidence map
demonstrates spurious detected features, such as a grid pattern in the sky region.
When we compute keypoints from high-scored, detection and description confidence
maps, this introduce spurious features in situations where no reliable features are
present in the scene.

An example of a failed case due to strong noise and low contrast is shown in Fig-
ure 5.17. Although feature detection using our method (top) performs better in strong
noise compared to R2D2 (bottom), the reliability information is still limited. Our ap-
proach produces spurious putative matches, like those from river regions, which may
not be beneficial for reconstruction. Additionally, it yields fewer inlier matches in
lower contrast regions for light-constrained reconstruction. We believe capturing a
burst with more images will benefit feature detection and description.



5.4 Results 94

0.2
0.4

0.6
0.8
1.0

0

in
cr

ea
si

n
g
 n

o
is

e

Figure 5.16 – Our method starts detecting spurious features (left) with low repeatable
features (middle) and detecting all regions as reliable (right) as we increase the noise
within the burst images. This demonstrates the limitation of our current model
with strong noise.

0.2
0.4
0.6
0.8
1.0

0

Figure 5.17 – We show a detailed failure case example for our method (top) and
compare it against state-of-the-art R2D2 (bottom). (left) A light-constrained scene
captured at twilight (contrast adjusted for visualisation). We demonstrate four
interesting areas in the image - low contrast region, a river, and two sky regions
with and without a cloud pattern. We demonstrate in three cases (blue) our method
outperforms R2D2 and fails to identify pixels corresponding to the waterfront as
non-reliable regions (yellow).
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5.5 Discussion and Future Directions

We developed a feature finder based on learned robotic bursts for 3D reconstruction
of drone imagery in extremely low-light conditions. Our method detects and describes
features directly from light-constrained robotic bursts, employing unsupervised learn-
ing and metric learning loss to locate well-defined noise-tolerant features. By allowing
our model to map directly from a burst with temporal information, we demonstrated
overall improved reconstruction performance in millilux conditions.

We exhibited improved matching accuracy and camera pose estimations on the gen-
erated HPatches dataset over a conventional learning-based feature detector, R2D2,
on robotic bursts. We validated reconstruction performance using BuFF dataset and
drone imagery captured at millilux illumination. Our method showed overall im-
proved performance compared to other robotic burst imaging approaches including
burst with merge as described in Chapter 3 and robotic burst feature finder Chap-
ter 4. We also compared our method to conventional methods and learning-based
feature extraction on conventional images, and our approach demonstrated complete
models with higher 3D points and convergence rates in light-constrained scenes.

We also showed improved reconstruction performance and camera pose estimation
on the BuFF dataset with larger 1D and 2D apparent motion compared to drone
burst imagery. While the BuFF variants provided strong camera pose estimates for
this dataset against the learned robotic burst feature finder, we believe that fine-
tuning our training model on a compact dataset, which presents significant parallax
movement between frames, could further optimize pose estimation accuracy.

We observed limited reliability of our method at low contrast and strong noise, leading
to more putative matches. We believe training in a multi-scale space, rather than only
computing multi-scale features during inference, might improve feature performance
in low-light conditions. In addition, we anticipate that incorporating complementary
sensors could enhance our burst-based reconstruction approach, allowing robots to
operate even in challenging millilux illumination conditions



Chapter 6

Conclusions and Future Directions

"Somewhere, something incredible is waiting to be known"
- Carl Sagan

6.1 Conclusions

The field of 3D reconstruction has witnessed significant advancements in recent years.
However, state-of-the-art reconstruction techniques [20, 39] had limitations when op-
erating in low-light conditions due to the low SNR of captured images. In this thesis,
we identified an opportunity to advance 3D reconstruction in low light using conven-
tional cameras by adapting burst imaging for robotic vision. Observing the success
of feature-based methods for reconstruction with large viewpoint and intensity varia-
tions, we proposed to employ robotic burst imaging for feature-based reconstruction
to represent sparse images that would otherwise have been captured in a conventional
manner and by doing so, extended the low light in which robots operate.

We adapted burst photography, commonly used in mobile photography [33] for re-
construction in low light by enabling the use of direct methods for image registration
within the burst of images and using feature-based methods to handle the spar-
sity between bursts of images for reconstruction in Chapter 3. In this contribution,
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we demonstrated successful reconstruction of light-constrained scenes with decreased
failure cases due to non-convergence compared to alternative imaging methods of
capturing a single image or an image sequence as an input scheme for correspondence
search. We showed improved feature performance and camera pose estimates and
established robotic burst imaging as a successful candidate for light-constrained re-
construction. To the author’s knowledge, this work is the first step toward solving
the problem of 3D reconstruction in low light using robotic burst imaging.

Taking a step further to deal with misalignment at strong noise when performing
reconstruction in extremely low light, we introduced a novel robotic burst feature
finder to reconstruct low-light scenes in Chapter 4. We directly found blob features
with well-defined scale and apparent motion within bursts of images by searching for
local extrema through scale-slope space and employed a descriptor that provided ad-
ditional advantage with higher SNR boost. By directly finding well-defined features
in a higher dimensional search space we demonstrated high-quality true features and
lower spurious features compared to state-of-the-art feature extractors on conven-
tional images and burst-merged images. We also demonstrated improved reconstruc-
tion performance with 3D detection over conventional 2D detection on burst imagery
as described in our previous contribution Chapter 3.

With the success of directly finding features within a burst of images as described
in Chapter 4 over 2D detection on bursts of images as discussed in Chapter 3, we
extended 2D learning-based feature detection to operate on a robotic burst. By do-
ing so, we improved the accuracy of feature matching and surpassed the limitations
imposed by physics-based approaches. We computed burst features that are noise-
tolerant by employing an unsupervised loss to deal with similarity between bursts
during training and leveraging metric learning loss to compute corresponding de-
scriptors in reliable regions. We evaluated our learned burst feature finder against
state-of-the-art feature extractors on conventional images and burst-merged images.
We also evaluated against physics-based burst features as discussed in Chapter 4 and
demonstrated overall improved feature performance and competitive 3D reconstruc-
tion performance.
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We validated our approach by capturing datasets using a robotic arm in controlled
light settings for Chapter 3 and Chapter 4 changing the low-light conditions and
cameras to progressively introducing challenging image scenes for each contribution.
We also captured outdoor light-constrained scenes at night under millilux illumination
conditions using DJI Phantom Pro 4 and DJI Mini Pro 3 drones as introduced in
Chapter 5. We evaluated state-of-the-art feature extraction techniques and all of our
robotic burst imaging techniques as input methods in searching for correspondences
to reconstruct scenes under low-light conditions of millilux intensity.

In this thesis, we demonstrated an ability to operate robots in lower light than was
previously possible using a robotic burst imaging scheme. We believe that this work
opens the possibilities for a broad range of applications including autonomous driv-
ing and delivery drones at night, mining, and understanding nocturnal behaviors of
animals. We anticipate future directions to extend the lower light in which robots
currently operate and have described few ways of doing so in the following section.

6.2 Future Directions

We allow robots to operate in low light, by advancing light-constrained 3D recon-
struction using robotic burst imaging. In particular, we demonstrate adapting burst
imaging for robotic vision on feature-based SfM. An immediate application-driven
future direction is to use the developed methods for current open research prob-
lems at night such as object detection, feature-tracking and low-light neural radiance
fields (NeRF). In the following, we consider a few long-term research avenues for
robotic burst imaging.

6.2.1 Adaptive Robotic Burst Imaging

There are a few ways of performing adaptive robotic burst imaging for reconstruction.
In the following, we consider two methods of doing so to achieve cheap computation
and improved performance.
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Active vision. Robotic burst imaging benefits from large overlap between images in
an extremely noisy environment as discussed in Section 3.5. A robot with a moderate
speed needs to capture more images in an extremely low-light environment than a
robot at a high speed. By capturing a bias frame – an expected noise output for each
pixel with no light and subtracting it in real-time from each captured image, it is
possible to associate the variance of each pixel of the image to the associated thermal
noise. A real-time speed control algorithm that has the ability to predict the amount
of noise on merged images and by doing so, calculate the motion feasible between
frames will improve alignment issues associated with Chapter 3 and the search space
described in Chapter 4. We partially address this, by evaluating performance of our
methods over different sizes of robotic bursts. While we capture bursts of images
from the stream of frames defined by the frame rate of a camera, this can also be
controlled actively.

Adaptive threshold. All our methods rely on a key global variable – peak threshold
to detect features throughout the images, and across all images for reconstruction.
Because captured images have varying contrast across them and illumination could
vary between bursts of images for reconstruction, an adaptive threshold is an open
research avenue. This can be achieved by either having an optimized lookup table
with a sweeping peak threshold for a product of noise and contrast or a weight score
variable based on contrast or by using an adaptive loss function.

We anticipate additional advantages from dynamic adjustments of analog camera gain
and exposure. However, this raises challenges in terms of motion between frames and
partial saturation. This could also be expensive for smaller platforms as they have
short flight time and power/weight limitations.

6.2.2 Raw Robotic Burst Imaging

Our focus in this thesis was on developing a new input scheme for correspondence
search that can accommodate monochrome or debayered color images. However, using
raw images can improve image quality by reducing noise, as highlighted in [149].
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Averaging the raw image channels could improve the spatial results of temporally
merged images, building on the findings in Chapter 3. Image content from different
color channels can also assist in feature extraction of the robotic burst feature finder,
especially in low-contrast regions.

Recent learning methods have demonstrated the effectiveness of learning architecture
for raw images [150, 151]. These methods could be applied to our final contribution in
Chapter 5 to improve denoising and reconstruction in extremely low-light conditions.
Furthermore, using raw images provides better control over image-processing param-
eters, such as white balance and spatial noise reduction, which can lead to an overall
improvement in image quality and feature extraction for light-constrained scenes.

6.2.3 Sensor Fusion

We use conventional cameras as our prominent sensor over other sensing modalities for
light-constrained reconstruction. While this is efficient and brings more advantages
in terms of power and cost for small robotic platforms such as a drone, employing
multi-sensor modalities for deployment brings complementary information for robots
that have enough power budget.

This opens a range of interesting research problems related to sensor fusion among
different camera domains such as fusion between a conventional camera and a RGB-D
sensor, thermal and/or a night vision camera, and other modalities like sonar, radar,
and IMU. For example, with a calibrated IMU, we can extract the camera position
with respect to the other camera poses in a burst which can increase robustness in
alignment for Chapter 3 and allow improved slope settings for Chapter 4.

Input data from complementary sensors can also be used as a weak supervisory signal
to accelerate the training in extremely low-light conditions and can be leveraged
during testing to improve performance.
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6.2.4 Broader Impact

Robotic burst imaging for light-constrained 3D reconstruction addresses the current
problems in field robotics, but we believe these ideas and developed methods have
broader applications beyond robotics.

Burst feature finders demonstrated in Chapter 4 for example can be used for recon-
struction of old archaeological sites and caves given the images are captured using
similar platform inertia to robots. Similarly, the learning-based approaches can be
extended for augmented reality, virtual reality, and other 3D research domains which
share keypoint-based reconstruction, i.e., object classification and human pose track-
ing.

Considering the methods in which we handle motion within bursts of images across
all our methods – tile based alignment in Chapter 3, leveraging platform dynamics
for 1D and 2D apparent motion in Chapter 4 and generalizing motion in Chapter 5,
there are emerging opportunities in the domain of fluid dynamics and microbiology
to enable tracking over small motion variation and reconstructing deformable scenes
e.g., bursting balloon.

The developed methods enable accurate representation of low-light scenes for recon-
struction which may be leveraged for both positive and negative ends. This approach
has the potential for privacy misuse, similar to other image-based methods. Recent
studies [152, 153] are specifically focusing on addressing privacy concerns associated
with image-based 3D reconstruction.
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