105 research outputs found

    Comparison of Channel State Information Estimation Using SLM and Clipping-based PAPR Reduction Methods

    Get PDF
    AbstractChannel estimation is a crucial issue in orthogonal frequency-division multiplexing (OFDM) as well as in all multicarrier systems. However, OFDM suffers from a major setback, the peak-to-average power ratio (PAPR). PAPR can be solved using a number of available techniques in literature, such as coding, active constellation extension, amplitude clipping, and selected mapping. The coding approach presents a disadvantage, represented by redundant data that significantly reduce the bit rate. The active constellation extension is an effective method; however, it requires higher transmission power. The clipping method is the simplest, but it produces high bit error rate (BER) degradation. Selected mapping (SLM) is the best among the available methods; however, it sends several bits as side information. In this study, we compare the clipping and SLM methods and show how the channel state information (CSI) estimation is affected in both techniques. Simulation results show that the SLM method is more effective than the clipping technique. The BER significantly increases when the clipping method is used because of the inaccurate estimation of CSI when the high peaks are clipped, such as in the case of the inserted pilots

    Comparison of Channel State Information Estimation Using SLM and Clipping-based PAPR Reduction Methods

    Get PDF
    AbstractChannel estimation is a crucial issue in orthogonal frequency-division multiplexing (OFDM) as well as in all multicarrier systems. However, OFDM suffers from a major setback, the peak-to-average power ratio (PAPR). PAPR can be solved using a number of available techniques in literature, such as coding, active constellation extension, amplitude clipping, and selected mapping. The coding approach presents a disadvantage, represented by redundant data that significantly reduce the bit rate. The active constellation extension is an effective method; however, it requires higher transmission power. The clipping method is the simplest, but it produces high bit error rate (BER) degradation. Selected mapping (SLM) is the best among the available methods; however, it sends several bits as side information. In this study, we compare the clipping and SLM methods and show how the channel state information (CSI) estimation is affected in both techniques. Simulation results show that the SLM method is more effective than the clipping technique. The BER significantly increases when the clipping method is used because of the inaccurate estimation of CSI when the high peaks are clipped, such as in the case of the inserted pilots

    High power amplifier pre-distorter based on neural-fuzzy systems for OFDM signals

    Get PDF
    In this paper, a novel High Power Amplifier (HPA) pre-distorter based on Adaptive Networks - Fuzzy Inference Systems (ANFIS) for Orthogonal Frequency Division Multiplexing (OFDM) signals is proposed and analyzed. Models of Traveling Wave Tube Amplifiers (TWTA) and Solid State Power Amplifiers (SSPA), both memoryless and with memory, have been used for evaluation of the proposed technique. After training, the ANFIS linearizes the HPA response and thus, the obtained signal is extremely similar to the original. An average Error Vector Magnitude (EVM) of 10-6 can be easily obtained with our proposal. As a consequence, the Bit Error Rate (BER) degradation is negligible showing a better performance than what can be achieved with other methods available in the literature. Moreover, the complexity of the proposed scheme is reducedThis work was supported in part by projectsMULTIADAPTIVE (TEC2008-06327-C03-02) and AECI Program of Research Cooperation with MoroccoPublicad

    Bit Loading and Peak Average Power Reduction Techniques for Adaptive Orthogonal Frequency Division Multiplexing Systems

    Get PDF
    In a frequency-selective channel a large number of resolvable multipaths are present which lead to the fading of the signal. Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme, in which the bandwidth of the channel is divided into subcarriers and data symbols are modulated and transmitted on each subcarrier simultaneously. By inserting guard time that is longer than the delay spread of the channel, an OFDM system is able to mitigate intersymbol interference (ISI). Significant improvement in performance is achieved by adaptively loading the bits on the subcarriers based on the channel state information from the receiver. Imperfect channel state information (CSI) arises from noise at the receiver and also due to the time delay in providing the information to the transmitter for the next data transmission. This thesis presents an investigation into the different adaptive techniques for loading the data bits on the subcarriers. The choice of the loading technique is application specific. The spectral efficiency and the bit error rate (BER) performance of adaptive OFDM as well as the implementation complexity of the different loading algorithms is studied by varying any one of the parameters, data rate or BER or total transmit power subject to the constraints on the other two. A novel bit loading algorithm based on comparing the SNR with the threshold in order to minimize the BER is proposed and its performance for different data rates is plotted. Finally, this thesis presents a method for reducing the large peak to average power ratio (PAPR) problem with OFDM which arises when the sinusoidal signals of the subcarriers add constructively. The clipping and the probabilistic approaches were studied. The probabilistic technique shows comparatively better BER performance as well as reduced PAPR ratio but is more complex to implement

    A New Subblock Segmentation Scheme in Partial Transmit Sequence for Reducing PAPR Value in OFDM Systems

    Get PDF
    Partial transmit sequence (PTS) is considered an efficient algorithm to alleviate the high peak-to-average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) systems. The PTS technique is depended on the partitioning the input data sequence into the several subblocks, and then weighting these subblocks with a group of the phase factors. There are three common types of partitioning schemes: interleaving scheme (IL-PTS), adjacent scheme (Ad-PTS), and pseudo-random scheme (PR-PTS). The three conventional partitioning schemes have various performances of the PAPR value and the computational complexity pattern which are considered the main problems of the OFDM system. In this paper, the three ordinary partition schemes are analyzed and discussed depending on the capability of reducing the PAPR value and the computational complexity. Furthermore, new partitioning scheme is introduced in order to improve the PAPR reduction performance. The simulation results indicated that the PR-PTS scheme could achieve the superiority in PAPR mitigation compared with the rest of the schemes at the expense of increasing the computational complexity. Furthermore, the new segmentation scheme improved the PAPR reduction performance better than that the Ad-PTS and IL-PTS schemes

    Analysis and Implementation of PAPR reduction algorithms for C-OFDM signals

    Get PDF
    Nowadays multicarrier modulation has become a key technology for communication systems; for example C-OFDM schemes are used in wireless LAN (802.11a/g/n), terrestrial digital television (DVB-T) and audio broadcaster (DAB) in Europe, and discrete multitone (DMT) in x.DSL systems. The principal difficulty with OFDM is the occurrence of the coherent alignment of the time domain parallel signals at the transmitted side which forces system designer to introduce either additional hard computationally device or a suitable power back-off at the high power amplifier in order to cope with the large magnitude signal fluctuation. This leads to a significant increment in computational cost in the former case whereas in a worse allowable power utilization in the latter case with respect to the original system. However since both allowable power and computational cost are subject to a design as well as regulatory limit others solution must be accomplished. Peak reduction techniques reduce maximum-to-mean amplitude fluctuations nominating as a feasible solution. Peak-to-average power ratio is the key metric to measure this amplitude fluctuations at transmitter and to give a clear figure of merit for comparison among different techniques

    Per Sub-band Tone Reservation scheme for Universal Filtered Multi-Carrier signal

    Get PDF
    Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered MultiCarrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(µ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done

    Per Sub-band Tone Reservation scheme for Universal Filtered Multi-Carrier signal

    Get PDF
    Fifth generation (5G) applications like Internet of Things (IoT), Enhanced Mobile Broadband (eMBB), Cognitive Radios (CR), Vehicle to Vehicle (V2V) and Machine to Machine (M2M) communication put new demands on the network in terms of low latency, ultra-reliable communication and efficiency when transmitting very small bursts. One new contender that makes its appearance recently is the Universal Filtered MultiCarrier (UFMC). UFMC is a potential candidate to meet the requirements of 5G upcoming applications. This related waveform encounters the peak-to-average power ratio (PAPR) issue arising from the usage of multi-carrier transmission. In this investigation, two PAPR reduction techniques, called Per Subband Tone Reservation (PSTR) scheme to alleviate PAPR in UFMC systems are suggested. The first one is a pre-filtering PSTR scheme that uses the least squares approximation (LSA) algorithm to calculate the optimization factor(µ) and the second one is a post-filtering method. The concept of this proposal lies on the use of peaks reductions Tone to carry the correctional signal that reduces the high peaks of each sub-band individually. To shed light on UFMC as a potential waveform for 5G upcoming application, a comparison with OFDM modulation is done
    corecore