1,695 research outputs found

    BlockCampus: A Blockchain-Based DApp for enhancing Student Engagement and Reward Mechanisms in an Academic Community for E-JUST University

    Full text link
    In today's digital age, online communities have become an integral part of our lives, fostering collaboration, knowledge sharing, and community engagement. Higher education institutions, in particular, can greatly benefit from dedicated platforms that facilitate academic discussions and provide incentives for active participation. This research paper presents a comprehensive study and implementation of a decentralized application (DApp) leveraging the blockchain technology to address these needs specifically for E-JUST (Egypt-Japan University of Science and Technology) students and academic staff

    An empirical analysis of source code metrics and smart contract resource consumption

    Get PDF
    A smart contract (SC) is a programme stored in the Ethereum blockchain by a contract‐creation transaction. SC developers deploy an instance of the SC and attempt to execute it in exchange for a fee, paid in Ethereum coins (Ether). If the computation needed for their execution turns out to be larger than the effort proposed by the developer (i.e., the gasLimit ), their client instantiation will not be completed successfully. In this paper, we examine SCs from 11 Ethereum blockchain‐oriented software projects hosted on GitHub.com, and we evaluate the resources needed for their deployment (i.e., the gasUsed ). For each of these contracts, we also extract a suite of object‐oriented metrics, to evaluate their structural characteristics. Our results show a statistically significant correlation between some of the object‐oriented (OO) metrics and the resources consumed on the Ethereum blockchain network when deploying SCs. This result has a direct impact on how Ethereum developers engage with a SC: evaluating its structural characteristics, they will be able to produce a better estimate of the resources needed to deploy it. Other results show specific source code metrics to be prioritised based on application domains when the projects are clustered based on common themes

    Revolutionizing Crowdworking Campaigns: Conquering Adverse Selection and Moral Hazard with the Help of Smart Contracts

    Get PDF
    Crowdworking is increasingly being applied by companies to outsource tasks beyond their core competencies flexibly and cost-effectively to an unknown group. However, the anonymous and financially incentivized nature of crowdworkers creates information asymmetries and conflicts of interest, leading to inefficiencies and intensifying the principal-agent problem. Our paper offers a solution to the widespread problem of inefficient Crowdworking campaigns. We first derive the currently applied Crowdworking campaign process based on a qualitative study. Subsequently, we identify the broadest adverse selection and moral hazard problems in the process. We then analyze how the blockchain application of smart contracts can counteract those challenges and develop a process model that maps a Crowdworking campaign using smart contracts. We explain how our developed process significantly reduces adverse selection and moral hazard at each stage. Thus, our research provides approaches to make online labor more attractive and transparent for companies and online workers

    Tackling the Challenges of Information Security Incident Reporting: A Decentralized Approach

    Get PDF
    Information security incident under-reporting is unambiguously a business problem, as identified by a variety of sources, such as ENISA (2012), Symantec (2016), Newman (2018) and more. This research project identified the underlying issues that cause this problem and proposed a solution, in the form of an innovative artefact, which confronts a number of these issues. This research project was conducted according to the requirements of the Design Science Research Methodology (DSRM) by Peffers et al (2007). The research question set at the beginning of this research project, probed the feasible formation of an incident reporting solution, which would increase the motivational level of users towards the reporting of incidents, by utilizing the positive features offered by existing solutions, on one hand, but also by providing added value to the users, on the other. The comprehensive literature review chapter set the stage, and identified the reasons for incident underreporting, while also evaluating the existing solutions and determining their advantages and disadvantages. The objectives of the proposed artefact were then set, and the artefact was designed and developed. The output of this development endeavour is “IRDA”, the first decentralized incident reporting application (DApp), built on “Quorum”, a permissioned blockchain implementation of Ethereum. Its effectiveness was demonstrated, when six organizations accepted to use the developed artefact and performed a series of pre-defined actions, in order to confirm the platform’s intended functionality. The platform was also evaluated using Venable et al’s (2012) evaluation framework for DSR projects. This research project contributes to knowledge in various ways. It investigates blockchain and incident reporting, two domains which have not been extensively examined and the available literature is rather limited. Furthermore, it also identifies, compares, and evaluates the conventional, reporting platforms, available, up to date. In line with previous findings (e.g Humphrey, 2017), it also confirms the lack of standard taxonomies for information security incidents. This work also contributes by creating a functional, practical artefact in the blockchain domain, a domain where, according to Taylor et al (2019), most studies are either experimental proposals, or theoretical concepts, with limited practicality in solving real-world problems. Through the evaluation activity, and by conducting a series of non-parametric significance tests, it also suggests that IRDA can potentially increase the motivational level of users towards the reporting of incidents. This thesis describes an original attempt in utilizing the newly emergent blockchain technology, and its inherent characteristics, for addressing those concerns which actively contribute to the business problem. To the best of the researcher’s knowledge, there is currently no other solution offering similar benefits to users/organizations for incident reporting purposes. Through the accomplishment of this project’s pre-set objectives, the developed artefact provides a positive answer to the research question. The artefact, featuring increased anonymity, availability, immutability and transparency levels, as well as an overall lower cost, has the potential to increase the motivational level of organizations towards the reporting of incidents, thus improving the currently dismaying statistics of incident under-reporting. The structure of this document follows the flow of activities described in the DSRM by Peffers et al (2007), while also borrowing some elements out of the nominal structure of an empirical research process, including the literature review chapter, the description of the selected research methodology, as well as the “discussion and conclusion” chapter

    Decentralizing Trust with Resilient Group Signatures in Blockchains

    Get PDF
    Blockchains have the goal of promoting the decentralization of transactions in a P2Pbased internetworking model that does not depend on centralized trust parties. Along with research on better scalability, performance, consistency control, and security guarantees in their service planes, other challenges aimed at better trust decentralization and fairness models on the research community’s agenda today. Asymmetric cryptography and digital signatures are key components of blockchain systems. As a common flaw in different blockchains, public keys and verification of single-signed transactions are handled under the principle of trust centralization. In this dissertation, we propose a better fairness and trust decentralization model by proposing a service plane for blockchains that provides support for collective digital signatures and allowing transactions to be collaboratively authenticated and verified with groupbased witnessed guarantees. The proposed solution is achieved by using resilient group signatures from randomly and dynamically assigned groups. In our approach we use Threshold-Byzantine Fault Tolerant Digital Signatures to improve the resilience and robustness of blockchain systems while preserving their decentralization nature. We have designed and implemented a modular and portable cryptographic provider that supports operations expressed by smart contracts. Our system is designed to be a service plane agnostic and adaptable to the base service planes of different blockchains. Therefore, we envision our solution as a portable, adaptable and reusable plugin service plane for blockchains, as a way to provide authenticated group-signed transactions with decentralized auditing, fairness, and long-term security guarantees and to leverage a better decentralized trust model. We conducted our experimental evaluations in a cloudbased testbench with at least sixteen blockchain nodes distributed across four different data centers, using two different blockchains and observing the proposed benefits.As blockchains tem principal objetivo de promover a descentralização das transações numa rede P2P, baseada num modelo não dependente de uma autoridade centralizada. Em conjunto com maior escalabilidade, performance, controlos de consistência e garantias de segurança nos planos de serviço, outros desafios como a melhoria do modelo de descentralização e na equidade estão na agenda da comunidade científica. Criptografia assimétrica e as assinaturas digitais são a componente chave dos sistemas de blockchains. Porém, as blockchains, chaves públicas e verificações de transações assinadas estão sobre o princípio de confiança centralizada. Nesta dissertação, vamos propor uma solução que inclui melhores condições de equidade e descentralização de confiança, modelado por um plano de serviços para a blockchain que fornece suporte para assinaturas coletivas e permite que as transações sejam autenticadas colaborativamente e verificadas com garantias das testemunhadas. Isto será conseguido usando assinaturas resilientes para grupos formados de forma aleatória e dinamicamente. A nossa solução para melhorar a resiliência das blockchains e preservar a sua natureza descentralizada, irá ser baseada em assinaturas threshold à prova de falhas Bizantinas. Com esta finalidade, iremos desenhar e implementar um provedor criptográfico modelar e portável para suportar operações criptográficas que podem ser expressas por smart-contracts. O nosso sistema será desenhado de uma forma agnóstica e adaptável a diferentes planos de serviços. Assim, imaginamos a nossa solução como um plugin portável e adaptável para as blockchains, que oferece suporte para auditoria descentralizada, justiça, e garantias de longo termo para criar modelo melhor da descentralização da base de confiança. Iremos efetuar as avaliações experimentais na cloud, correndo o nosso plano de serviço com duas implementações de blockchain e pelo menos dezasseis nós distribuídos em quatro data centres, observando os benefícios da solução proposta

    Bringing Order into Things Decentralized and Scalable Ledgering for the Internet-of-Things

    Get PDF
    The Internet-of-Things (IoT) is simultaneously the largest and the fastest growing distributed system known to date. With the expectation of 50 billion of devices coming online by 2020, far surpassing the size of the human population, problems related to scale, trustability and security are anticipated. Current IoT architectures are inherently flawed as they are centralized on the cloud and explore fragile trust-based relationships over a plethora of loosely integrated devices, leading to IoT platforms being non-robust for every party involved and unable to scale properly in the near future. The need for a new architecture that addresses these concerns is urgent as the IoT is progressively more ubiquitous, pervasive and demanding regarding the integration of devices and processing of data increasingly susceptible to reliability and security issues. In this thesis, we propose a decentralized ledgering solution for the IoT, leveraging a recent concept: blockchains. Rather than replacing the cloud, our solution presents a scalable and fault-tolerant middleware for recording transactions between peers, under verifiable and decentralized trustability assumptions and authentication guarantees for IoT devices, cloud services and users. Following on the emergent trend in modern IoT architectures, we leverage smart hubs as blockchain gateways, aggregating, pre-processing and forwarding small amounts of data and transactions in proximity conditions, that will be verified and processed as transactions in the blockchain. The proposed middleware acts as a secure ledger and establishes private channels between peers, requiring transactions in the blockchain to be signed using threshold signature schemes and grouporiented verification properties. The approach improves the decentralization and robustness characteristics under Byzantine fault-tolerance settings, while preserving the blockchain distributed nature

    A Smart Contract Architecture Framework for Successful Industrial Symbiosis Applications Using Blockchain Technology

    Get PDF
    Funding Information: Author acknowledges Fundação para a Ciência e a Tecnologia (FCT-MCTES) for its financial support via the project UIDB/00667/2020 (UNIDEMI). Publisher Copyright: © 2023 by the authors.Industrial Symbiosis (IS) involves a network of organizations that exchange energy, materials, and by-products to lower production costs, reduce environmental impact, and conserve natural resources. Despite over two decades of extensive research into IS, its benefits are well known, but implementation remains challenging. This paper proposes utilizing blockchain technology (BCT) to digitize IS, making it more secure and transparent. First, drivers and barriers of BCT implementation in IS are identified. A smart contract architecture framework using Hyperledger Fabric is then proposed using the constructed theoretical background and abductive method. Finally, the paper discusses how this framework supports the implementation of BCT in IS by addressing its drivers and attempting to overcome its barriers. It is a resource for those seeking a comprehensive grasp of the foundational elements necessary for constructing a successful IS blockchain design, which is adaptable to all types of IS network configurations.publishersversionpublishe
    corecore