
Jorge Filipe Ferreira Pereira

Master of Science

Decentralizing Trust with Resilient Group
Signatures in Blockchains

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Henrique João Lopes Domingos, Associate
Professor, NOVA University of Lisbon

Examination Committee

Chair: Carla Maria Gonçalves Ferreira, Associate
Professor, FCT-NOVA

Rapporteur: Nuno Miguel Carvalho dos Santos, Associate
Professor, IST

Member: Henrique João Lopes Domingos, Associate
Professor, FCT-NOVA

December, 2021

Copyright © Jorge Filipe Ferreira Pereira, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João
M. Lourenço.

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://docentes.fct.unl.pt/joao-lourenco

To my family.

Acknowledgements

First and foremost, I would like to express my sincere appreciation to my supervisor, Prof.

Henrique João Domingos, for his guidance at every stage of the work and for sparking

my interest in the field. Without him, this work would never have been possible. I would

like to thank the NOVA School of Science and Technology for granting me a research

scholarship that provided me with the financial resources to complete this work. I would

also like to thank every professor who has been part of my five-year journey, during which

I have learned a lot.

I would like to express my endless gratitude to my family: my parents and grand-

parents for their unconditional support and tremendous patience with me, my brother

who, despite being so far away, was always available for the late night video games that

distracted me from work, and my uncle who reminded me that there is no right path.

Last but not least, I would like to thank my friends and colleagues who were always there

when I needed them.

vii

Abstract

Blockchains have the goal of promoting the decentralization of transactions in a P2P-

based internetworking model that does not depend on centralized trust parties. Along

with research on better scalability, performance, consistency control, and security guar-

antees in their service planes, other challenges aimed at better trust decentralization and

fairness models on the research community’s agenda today.

Asymmetric cryptography and digital signatures are key components of blockchain

systems. As a common flaw in different blockchains, public keys and verification of

single-signed transactions are handled under the principle of trust centralization. In this

dissertation, we propose a better fairness and trust decentralization model by proposing

a service plane for blockchains that provides support for collective digital signatures

and allowing transactions to be collaboratively authenticated and verified with group-

based witnessed guarantees. The proposed solution is achieved by using resilient group

signatures from randomly and dynamically assigned groups. In our approach we use

Threshold-Byzantine Fault Tolerant Digital Signatures to improve the resilience and ro-

bustness of blockchain systems while preserving their decentralization nature.

We have designed and implemented a modular and portable cryptographic provider

that supports operations expressed by smart contracts. Our system is designed to be a

service plane agnostic and adaptable to the base service planes of different blockchains.

Therefore, we envision our solution as a portable, adaptable and reusable plugin service

plane for blockchains, as a way to provide authenticated group-signed transactions with

decentralized auditing, fairness, and long-term security guarantees and to leverage a

better decentralized trust model. We conducted our experimental evaluations in a cloud-

based testbench with at least sixteen blockchain nodes distributed across four different

data centers, using two different blockchains and observing the proposed benefits.

Keywords: Blockchains, Decentralized Ledgering, Decentralized Trust, Threshold Signa-

ture Schemes, Group-Based Signatures, Certification Authority, Byzantine fault-tolerance

ix

Resumo

As blockchains tem principal objetivo de promover a descentralização das transações

numa rede P2P, baseada num modelo não dependente de uma autoridade centralizada.

Em conjunto com maior escalabilidade, performance, controlos de consistência e garan-

tias de segurança nos planos de serviço, outros desafios como a melhoria do modelo de

descentralização e na equidade estão na agenda da comunidade científica.

Criptografia assimétrica e as assinaturas digitais são a componente chave dos siste-

mas de blockchains. Porém, as blockchains, chaves públicas e verificações de transações

assinadas estão sobre o princípio de confiança centralizada. Nesta dissertação, vamos

propor uma solução que inclui melhores condições de equidade e descentralização de

confiança, modelado por um plano de serviços para a blockchain que fornece suporte para

assinaturas coletivas e permite que as transações sejam autenticadas colaborativamente

e verificadas com garantias das testemunhadas. Isto será conseguido usando assinaturas

resilientes para grupos formados de forma aleatória e dinamicamente. A nossa solução

para melhorar a resiliência das blockchains e preservar a sua natureza descentralizada,

irá ser baseada em assinaturas threshold à prova de falhas Bizantinas.

Com esta finalidade, iremos desenhar e implementar um provedor criptográfico mo-

delar e portável para suportar operações criptográficas que podem ser expressas por

smart-contracts. O nosso sistema será desenhado de uma forma agnóstica e adaptável

a diferentes planos de serviços. Assim, imaginamos a nossa solução como um plugin

portável e adaptável para as blockchains, que oferece suporte para auditoria descentra-

lizada, justiça, e garantias de longo termo para criar modelo melhor da descentralização

da base de confiança. Iremos efetuar as avaliações experimentais na cloud, correndo o

nosso plano de serviço com duas implementações de blockchain e pelo menos dezasseis

nós distribuídos em quatro data centres, observando os benefícios da solução proposta.

Palavras-chave: Blockchain, ledger distribuído, descentralização da confiança, assinatu-

ras threshold, assinaturas por grupo, Autoridade de Certificação.

xi

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Glossary xxiii

Acronyms xxv

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives and Contributions . 2

1.3 Report Organization . 4

2 Related Work 5

2.1 Group-Based Digital Signatures . 5

2.1.1 Group Signatures . 5

2.1.2 Threshold Based Signatures Schemes 9

2.1.3 Summary . 10

2.2 Blockchains and Group-Based Signatures 12

2.2.1 Blockchains . 12

2.2.2 Permissionless Blockchains with Group Signatures 16

2.2.3 Permissioned Blockchains with Group Signatures 17

2.2.4 Summary . 17

2.3 Smart Contracts . 20

2.3.1 Smart Contracts in Blockchain and Cryptocurrency Domains . . . 20

2.3.2 Smart Contracts and Programming Support 21

2.3.3 Smart Contracts in the different blockchains 21

2.3.4 Summary . 24

2.4 Critical Analysis . 24

3 System Model and Architecture 25

3.1 Application Scenario . 25

xiii

CONTENTS

3.1.1 Strawman I: The Unique Central Database 26

3.1.2 Strawman II: The Apparently Decentralized Blockchain 26

3.1.3 Our Solution to The Application Scenario 27

3.2 System Goals . 27

3.3 System Model . 28

3.3.1 Planes . 29

3.4 Threat Model . 30

3.5 Mapping to our Architecture . 30

3.6 Interactions . 31

3.7 Reference Architecture . 34

3.8 Software Architecture Components . 36

3.8.1 Signer Node API . 36

3.8.2 CryptoProvider . 36

3.8.3 Smart Contract Processor . 40

3.8.4 Signature Manager . 43

3.9 Summary . 50

4 System Implementation 51

4.1 Prototype Overview and Technologies . 51

4.2 Prototype Architecture and Implementation 53

4.2.1 REST API & Interconnect . 54

4.2.2 CryptoProvider . 58

4.2.3 Smart Contract Engine . 59

4.2.4 P2P Network . 63

4.2.5 Signature Manager . 64

4.2.6 Client and Benchmarker . 64

4.2.7 Validator Node . 66

4.3 Summary . 67

5 Experimental Evaluation and Analysis 69

5.1 Test-bench Environment . 70

5.2 Benchmarks and Analysis . 71

5.3 Validator Nodes Baseline Performance Metrics. 72

5.4 Signer Node integration with Validator Nodes 74

5.5 Crypto-provider isolated performance. 76

5.6 Prototype Performance With Different Signature Schemes 77

5.7 Prototype Performance Inducing Faults . 80

5.8 Permissionless Group Formation . 82

5.9 Summary . 84

6 Conclusion and Final Remarks 85

6.1 Conclusion . 85

xiv

CONTENTS

6.2 Future Work . 86

Bibliography 87

xv

List of Figures

2.1 Ring Signature (from [52]) . 6

2.2 CoSi architecture (from [58]) . 7

2.3 Threshold Signature Architecture with a Byzantine member (from [56]) . . . 8

2.4 Blockchain block structure (adapted from [45]) 13

3.1 Application Scenario illustration . 27

3.2 Node Layered Model . 28

3.3 Node Layered Model With Componenets . 29

3.4 Component Division: Signer Node + Blockchain Node 31

3.5 Permissioned interaction model . 31

3.6 Permissionless interaction model . 33

3.7 Extended Architecture . 34

3.8 Cryptoprovider Architecture . 40

3.9 Co-Signature Message Structure . 40

3.10 Smart Contract component communication. 43

4.1 Prototype architecture: the prototype architecture is divided into two main

components: a) Signer Node; b) Validator Node. Subsequently, each compo-

nent is divided into sub-components. Components with blue line around them

represent a Docker containerized component. 55

4.2 Possible Overlays for our Signer Node P2P Network 63

5.1 Latency between benchmark environment data centers. 71

5.2 Baseline Algorand and Sawtooth latency and throughput when varying the

number of concurrent clients. 73

5.3 Baseline Algorand and Sawtooth latency and throughput when varying the

number of signer nodes. 73

5.4 Latency and throughput when integrating the signer node with Algorand. . 75

5.5 Latency and throughput when integrating the signer node with Sawtooth. . . 76

5.6 Latency and throughput when isolating the 4 signer nodes. 78

5.7 Latency and throughput when varying the number of signer nodes 79

5.8 Latency and throughput when varying the number of stop faults. 81

5.9 Latency and throughput when varying the number of byzantine faults. . . . 82

xvii

LIST OF FIGURES

5.10 Shares installation latency, when varying the number of signer nodes. 83

5.11 Latency per sort operation when sorting different set sizes of signer nodes. . 83

xviii

List of Tables

2.1 Benchmark to different schemes. The benchmark Time is in ms/op, Allocated
Bytes is the number of bytes allocated on the heap per operation, Allocation
Operation is the number of allocations on the heap per operations. 11

2.2 Characteristics for different THS schemes . 12

2.3 Comparison Of Permissioned Blockchain Platforms 18

2.4 Comparison Of Permissionless Blockchain Platforms 19

2.5 key characteristics of the different smart contracts 23

4.1 Prototype implementation extension metrics (LoC) 54

5.1 Benchmark environment technical specification. 70

5.2 Time required per Threshold Signature (THS) cryptographic operation. . . . 77

5.3 Time required per THS cryptographic operation when integrated in a remote

cryptoprovider. 77

xix

Listings

2.1 Simple Solidity smart contract [20] that is able to store a unsigned int in

the ledger of Ethereum. 22

2.2 A Bitcoin script that checks for SHA1 hash colisions [61]. 22

3.1 PseudoCode . 41

4.1 Protobuf message used to encode a client sign request. 57

4.2 Protobuf message used to encode a sign response. 57

4.3 Protobuf message used to encode a client verify request. 57

4.4 Protobuf message used to encode a verify response. 57

4.5 Protobuf message used to encode a client key installation request. 57

4.6 Protobuf message used to encode a membership response. 58

4.7 Methods had to be implemented to add a new primitive to our crypto

provider. 59

4.8 Example of how to register a new primitive in a provider layer engine. . . 59

4.9 Excerpt of a Hyperledger Sawtooth Smart Contract written in Golang. . . 60

4.10 Algorand SC excerpt first part. 62

4.11 Algorand SC excerpt second part. 62

4.12 Interface to be implemented by a new protocol and Interconnect interface. 64

4.13 Permissionless protocol functions registration. 64

4.14 A batch with an incorporated group signature. A set of batches commited

together form a block. 66

4.15 A extended Algorand signed transction. 66

xxi

Glossary

Application Specific Validation Term used in this work to describe a business logic validation writ-

ten in the smart contract.

Byzantine Fault A fault that occurs when a node deviates from the defined pro-

tocols. This includes sending arbitrary messages to other nodes,

Crash Faults and Omission Faults.

Crash Fault A fault that occurs when a node stops stops working.

Dealer Entity responsible for generating and distributing the Private Key

Shares in a Threshold Signature protocol to the Witnesses.

Digital Signature Signature created by a Private Key tenant using a mathematical

algorithm. It guarantees integrity, pseudonymity, non-repudiation,

authenticity of signed data.

Fault-Tolerance When a node can continue to work correctly in the presence of

different types of faults.

Off-Chain Smart Contracts Smart contract where the code is stored outside the blockchain

ledger.

Omission Fault A fault that occurs when messages are not delivery to a node on

time or at all.

On-Chain Smart Contracts Smart contract where the code is stored in the blockchain ledger.

Open-Membership Blockchain The same as Permissionless blockchain.

Permissioned A system where the participants need to be authenticated. The

number of participants is fixed.

Permissionless A system that new participants can join without being authenti-

cated. New participants can join at any time.

Private Key A cryptographic key that must be kept secret and used to sign data.

The result of this process is a Digital Signature that can be validated

using the corresponding Public Key.

xxiii

GLOSSARY

Private Key Share A part of a Private Key in a Threshold Signature scheme. Used to

sign data, producing a Signature Share.

Public Key A cryptographic key used to validate a Digital Signature produced

by the corresponding Private Key. Identifies a node unequivocally.

Random Oracle Model Used to prove that the cryptographic protocol is correct without

considering a particular hash function to be used.

Robust Threshold Scheme A threshold scheme that can withstand against Byzantine Faults in

the aggregation phase.

Security Specific Validation Term used in this work to describe a validation that is written in a

smart contract to determine how or whether to sign a transaction.

Share Used to describe a part of something in a threshold signature. See

Signature Share and Private Key Share.

Signature Share A part of a signature in a Threshold Signature scheme. The Dealer

or a player can combine multiple signature Shares to create the

final Digital Signature.

Threshold Signature A signature created by a group of Witnesses, where each group

member is responsible for creating a Signature Share that is then

combined with others to form the final Digital Signature. This type

of signatures withstand Crash Faults and Byzantine Faults.

Witness Participant in the validation of a message/transaction.

xxiv

Acronyms

API Application Programming Interface

BFT Byzantine Fault Tolerance

CA Certification Authority

CPU Central Processing Unit

DHT Distributed Hash Table

DKG Distributed Key Generator

DPoS Delegated Proof-of-Stake

EVM Ethereum Virtual Machine

HLF Hyperledger Framework

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

JCE Java Cryptography Extension

LPoS Leased Proof-of-Stake

P2P Peer-To-Peer

PBFT Practical Byzantine Fault Tolerance

PKI Public Key Infrastructure

PoET Proof-of-Elapsed-Time

PoS Proof-of-Stake

PoW Proof-of-Work

PPoS Pure Proof-of-Stake

RAM Random Access Memory

REST Representational State Transfer

xxv

ACRONYMS

RTT Round-Trip Time

SGX Software Guard Extensions

SMR State Machine Replication

TEE Trust Execution Environment

THS Threshold Signature

TLS Transport Layer Security

TTL Time to Live

UUID Universally Unique Identifier

VM Virtual Machine

VPS Virtual Private Server

ZPoS Anonymous Proof-of-Stake

xxvi

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

In the past decade, blockchains have played an important role in society. It all started in

1991, when Stuart Haber and W. Scott Stornetta [33] introduced the concept of linking

documents cryptographically to create a secure system in which the timestamp could

not be forged. However, it was forgotten. Almost two decades later, in 2008, the term

and concept of the blockchain was indirectly coined by Satashi Nakamoto, for the crypto-

currency Bitcoin, with which Satoshi wanted to disrupt the centralized nature of the

financial institutions [45].

Blockchain’s are a disruptive technology, as can be seen by the architectural design of

having a ledger of transactions distributed across different nodes. One of the major topics

being investigated in this field is property of achieving decentralization. In 1979, Adi

Shamir already understood the danger of having the trust deposited in a single centralized

authority. In his paper [53] he discussed the possibility of breaking a secret into pieces

to prevent nodes from compromising the system when they become Byzantine. His idea

worked so well that it could avoid any loss of information in case of a system failure,

by dividing the data into more pieces that were needed, it would only be necessary a

threshold of pieces to rebuild the information.

Centralized Authorities have been on the eye of attackers, therefore, the high value of

compromise such systems is unavoidable. Take DigiNotar and other certification authori-

ties as an example [6, 7, 32, 60], both have been compromised, causing attackers to issue

certificates from well-known companies such as *.google.com. This resulted in clients to

interact with the wrong server, and after the attack was discovered, every valid certificate

signed by one of these certification authorities was revoked. To prevent this problem,

browser manufacturers began pinning public keys [21], which meant that public keys of

1

CHAPTER 1. INTRODUCTION

certain organizations were built into the browser. However, this solution is impractical

and not scalable because thousands of certificates are issued and revoked daily, which

would result in browsers to deliver hourly updates. Other solutions have been developed

to mitigate the problem, such as attaching the public key when a client first sees the

certificate.

It may seem that these kinds of attacks just happen with certification authorities, but

that is not true. Any centralized authority can suffer similar attacks and any service that

depends on those authorities can also be compromised. Similar to the secret-sharing by

Shamir, one solution to decentralize trust is to introduce group-based signatures where

all or a group of participants would sign the same data.

This type of signature has many applications, thus, let’s take as an example the work

developed by Gennaro [27], the author uses threshold signatures to improve the security

of Bitcoins where several user devices would be used for signing. Another example is what

we propose, which is to use group-based signatures to decentralize trust in a blockchain

[56], although this work lacks dynamism when it comes to giving the user a way to

configure what type of signatures to use.

1.2 Objectives and Contributions

Problem Statement: Current blockchains rely on the certification authority to sign the

intervenients’ public keys and, as a result, some participants nodes are assigned with too

much power, leading to a high value target for attackers. There are proposals to enhance

blockchain decentralization [56] by using threshold-signatures, however this proposals

can only be applied in permissioned blockchains and cannot dynamically configure itself,

so that the user has the possibility to choose for each transaction each type of signature

he wants to use. The ability to configure the signature type is a must in a blockchain.

This flexibility allows us to use the best signature type for a particular purpose, or if a

particular signature type is outdated, the signature can be exchanged during operation.

This leads to the following problem:

How can we use group-based signatures and smart contracts to design a more reliable
and dynamic blockchain, improving trustworthiness and decentralization without com-
promising transaction throughput?

Main objective: In this dissertation, we design, prototype and evaluate a shared sig-

nature plane that can be integrated into different blockchains, such as permissionless and

permissioned, allowing a new level of decentralization and Byzantine fault-tolerance in

signatures. We use group signatures, more precisely threshold signatures in a dynamic

way, which means that we will have a crypto provider with different types of signature

2

1.2. OBJECTIVES AND CONTRIBUTIONS

implementations, allowing the user to dynamically choose which scheme to use to sign

the transaction, including conventional schemes. We also develop this crypto-provider so

that it can be easily extended by someone who wants to integrate new schemes in the fu-

ture. The smart contract in our work plays an important role in creating the configuration

dynamics that we offer.

To address our objectives, we design our solution according to the following system

goals:

• Auditability - Auditable under verifiable immutable group-signatures, recorded in

a tamper-resistant log.

• Resiliency - Resilient byzantine-fault tolerant group witnessed signatures.

• Fairness and Dynamic Reconfigurability - A fair and dynamically reconfigurable

cooperative signing trustee group with self-sovereign identities, reconfigurable via

possible off-chain or sharded-chain membership management.

• Pluggability and Factoring Modularity - Reusable and pluggable modular cryp-

toprovider provisioning, adopting a factory-object oriented design allowing the

dynamic addition of different Byzantine Fault Tolerance (BFT) threshold digital

signatures’ algorithms.

• Portability - Portable and agnostic solution, designed as a reusable service plane

independent from other blockchain-based service planes, allowing to be deployed as

a hybrid-usable solution for permissionless and permissioned decentralized ledgers.

• Decentralization - Compatible with a fully decentralized model, not compromising

the inherent trust-decentralization requirements.

Contributions: In concordance with the main objective, we enumerate the relevant

contributions provided in this dissertation:

• Study a range of blockchain platforms, properties and their smart contract imple-

mentation to select the most relevant permissionless and permissioned blockchain

to support the development of this work;

• An analysis of various resilient group-based signature schemes and their properties,

benchmarking threshold signature implementation to select some implementations

to be included in our crypto-provider;

• Study and analyze which component can take advantage of being decentralized,

finally designing a system model, including the chosen technologies to best accom-

plish the objective of decentralizing the blockchain;

• Design and implement a highly modular crypto-provider capable of supporting

new, different signature schemes given our programming interface;

3

CHAPTER 1. INTRODUCTION

• Create a reliable and fully functional prototype that addresses the system goals

and features defined above leverage by two different platforms: Algorand1 and

Hyperledger Sawtooth2;

• Design and implement a smart contract extension for a permissioned blockchain

and another for a permissionless that allows blockchain settings to be changed

dynamically, such as the signature scheme used;

• Validation of the implemented prototype, performing different experimental eval-

uations (i) to analyse the performance, portability and modularity of the crypto-

graphic provider and group signature service plane, (ii) in-depth analysis of the

performance of different configurations for key sizes, group sizes and cryptographic

constructs, (iii) impact of the solution in the observation of the performance, includ-

ing transaction throughput and latency of operations and scale conditions. Our

validation analysis will be performed by using our prototype through a permis-

sioned ledger solution and through a permissionless ledger system.

1.3 Report Organization

The remaining chapters of this document are organized as follows:

• Chapter 2 introduces fundamentals concepts in a top-down approach. We start the

chapter by studying the different types of group signatures and understanding the

key features that make them useful for decentralizing signatures. We then examine

the different planes of the blockchain and show what has been done to decentralize

signatures. Finally, we study smart contracts and the properties that can help us

provide dynamic configurations.

• Chapter 3 discusses the system model and architecture and the basic components

to build a shared component to be integrated in the different blockchains.

• Chapter 4 describes the implementation and technologies used to build a fully

functional prototype based on the system model from the previous chapter.

• Chapter 5 presents the experimental evaluation and a critical analysis of the results

for the prototype described earlier.

• Chapter 6 concludes the document with a series of final remarks and presents some

open questions and future work.

1Algorand: https://github.com/algorand/go-algorand
2Sawtooth: https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/introduction.html

4

https://github.com/algorand/go-algorand
https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/introduction.html

C
h
a
p
t
e
r

2
Related Work

In this chapter, we present the required related work to our dissertation. We begin by fa-

miliarizing the reader with group signatures and their benefits, introducing the different

types of group signatures schemes, and explaining how we can use threshold signatures

to decentralize trust in a blockchain. We also benchmark threshold signatures to show

that decentralizing trust has a cost. Next, we introduce the concept of the blockchain,

explaining some of the different planes that exist and then we analyze the properties of

some available blockchain platforms. Finally, we introduce the concept of a smart con-

tract and how it appears in the different blockchain platforms. At the end of this chapter,

we conduct a critical analysis of the different topics addressed.

2.1 Group-Based Digital Signatures

In this section we first explain what digital signatures are and why we need group-

based digital signatures, then we show examples of different group schemes leading

to our scheme of choice. We conclude this section by showing some threshold signatures

schemes and some preliminary benchmarks.

2.1.1 Group Signatures

Digital Signature is, as the name suggests, a mathematical scheme that allows participants

to sign messages and verify the authenticity of signatures. This scheme consists of three

primitives, one for generating a key pair (private key, public key), another for signing

messages using the private key and, finally, a primitive for verifying the authenticity

of signatures. However, not every scheme containing the preceding primitives can be

considered a valid digital signature scheme, since signatures must be forgery-proof if

5

CHAPTER 2. RELATED WORK

the private key is not known, must be easily verifiable, and must also have the following

properties: (i) integrity, (ii) pseudonymity, (iii) non-repudiation, (iv) authenticity.

The use cases for this type of signatures are enormous, they are used in PKI’s, Cer-

tification Authority (CA)’s and many other places, although each of these use cases is

considered centralized, which is not good, since the proper functioning and security of

digital signatures is stored in a unique private key. At this point we might wonder what

happens if the private key is disclosed, but unfortunately we already know the result [6,

7, 32, 60].

By now we all agree that one of the shortcomings of digital signatures is the lack of

decentralization, because a single point of failure can easily compromise any system. To

distribute trust among the different peers, David Chaum and Eugene van Heyst in 1991

[10] proposed group signatures. In their proposal, only members of the group would

be able to sign, and the receiver could verify that the message was signed, but could

not verify that a particular member of the group signed. If the group consists of more

than one element, it is easy to verify that the attacker must compromise more than one

participant node to compromise the security of the system, although we cannot determine

the exact number of nodes because it depends on used group signature scheme.

Since then, various group schemes have been proposed, such as ring signature [52],

multisignature [3],and threshold signature [16].

 Ek

 Ek

 Ek

 Ek

z=v

... y 2)
 2

 3

)
1

y 1

 r r
= g (x) y

= g (xy 3

= g (x

= g (x 1

 2

 r

) 3

Figure 2.1: Ring Signature (from [52])

Ring Signature was first formalized in 2001 by Rivet, Shamir and Tauman. In this

signature scheme [52], the signer of the message chooses other nodes to be part of the

signature, although to include other members in the signature, the signer does not need to

ask for approval, as only the node’s public key is required. This type of signature is used

when the nodes do not want to cooperate with each other and the signer of the message

wants to be anonymous. To generate a signature in this scheme, the signer will generate

the entire signature himself using any number of public keys. Figure 2.1 shows the ring

equation that the signer must calculate to create a ys that is used to calculate the signer’s

6

2.1. GROUP-BASED DIGITAL SIGNATURES

xs, the other xi are all randomly calculated and used in the g trapdoor function. The

generated final signature consists of all public keys, a glue value v and all xi including

the signer xs , (P1, P2, . . . , Pr ;v;x1,x2, . . . ,xr).

1 record 2 record 3 record

Authority

Witness

Cosigners

each statement collectively

signed by both authority

and all or most witnesses

Authoritative statements: e.g. log records

Figure 2.2: CoSi architecture (from [58])

CoSi [58] is an optimized multi-signature protocol that scales in the presence of many

signatories. To achieve this scalability, CoSi implements Schnorr multi-signatures [48]

with the combination of multicast tree based dissemination protocol. The CoSi consists of

an authority/leader and witnesses who are committed to validate and co-sign the message,

as shown in figure 2.2. The protocol starts when the leader broadcasts an announcement

to the tree of co-signers, then each node i will select a random secret vi and calculate a

Schnorr commitment. In the same phase nodes from the tree will get the values from

their children and calculate the aggregated commitment. Next, the leader computes a

collective Schnorr challenge with the statement S and sends it down the tree. Finally,

using the collective challenge, the nodes calculate their own response and compute an

aggregated response from the bottom up. The result of this protocol will be a Schnorr

signature of 64 bytes.

THS [16] also called (t,n)-threshold, is a cryptographic scheme that allows the com-

putation of digital signatures within a group. By distributing this task among different

participants, we also distribute trust among the participants. In THS, only t members

of a group of size n need to sign, this means that Byzantine members need t to forge

the signature, therefore t − 1 cannot sign a message. The THS scheme is initialized by

splitting the private key (pk) into n pieces called secret shares (pki), then by distributing

somehow the secret shares among all the members of the group. The protocol starts

when the group decides to sign a message M. First, each participant creates a signature

share (Sigpki (M) = ssi) and, finally, the shares have to be aggregated to build the complete

signature (SigShare = {ss1, ss2, ssn−1, ssn}If #SigShare < t, no signature is produced, else

signature =
∑#SigShare

i=1 ssi). The verification of the signature is transparent to the verifier

because there is only one public key and we do not know that multiple participants have

7

CHAPTER 2. RELATED WORK

signed this message.

Figure 2.3: Threshold Signature Architecture with a Byzantine member (from [56])

Figure 2.3 represents a group of members trying to sign a message, but only 3 out

of 4 members have to sign. In this case a Byzantine member refused to sign, but the

signature is done anyway. From this we can conclude that one of the most important

features of THS is its robustness, because when t Byzantine members try to collude with

each other, they cannot prevent the signature from being created. Another important

property is proactiveness, the members of the group update their private key shares to

prevent an attacker from building up information about the system (e.g., if the key shares

are updated every 24 hours, an attacker must collect more than t shares to control the

group in 24 hours, which makes it difficult).

So far, we have studied various group signatures, but for the purpose of this work,

not all of them have the properties we were looking for. We began this section by stating

that we need a group of signers that covers the flaw of a unique signer, although ring

signatures are not suitable, since only one member of the group will create the signature

using the public keys of other forced members. This type of signature is more likely to

be used when a signer wants to hide the identity but wants to prove that the message

is authentic. A naive solution to our problem would be to use multi-signatures, in this

case the trust is distributed among the various signers. However, this solution is not

scalable, since validation requires a signature and a public key for each new member, and

instead of a single point of failure, we now have a point of failure for each member of

the group; if one of them fails, no signature can be produced. CoSi is a variant of the

multi-signature, but is carried out in rounds that lead to latency due to communication

costs. CoSI does not specify the threshold of signers required for the protocol, and the

authority is considered a single point of failure. With this, the threshold signature will

be used in this work, due to its properties and the choice to distribute trust for our work.

In the remaining of this chapter, we will discuss different schemes for THS.

8

2.1. GROUP-BASED DIGITAL SIGNATURES

2.1.2 Threshold Based Signatures Schemes

There are types of THS schemes that rely on a trusted dealer [54] to distribute key shares,

although not every system is capable of tolerating such a threat model. So there are

THS schemes that rely on a distributed key generation [5, 28, 57]. A Distributed Key

Generator (DKG) is a protocol in which each participant contributes to the generation

of private key shares, and, at the end of the protocol, each participant holds only the

share that belongs to him and a public key for the group share. In a THS scheme that

does not use DKG, only the dealer needs to be compromised in order to compromise the

entire THS signature, but when using DKG, more than a certain threshold number of

participants must be compromised to defeat the system security. A DKG was present by

Pedersen [49], although in the presence of Byzantine participants the resulting private

shares may be biased. To solve this problem, Gennaro [29] presented another DKG, but it

is twice as expensive to generate the secret shares, since Peterson’s DKG is not interactive

in the absence of errors and, for Gennaro DKG, two round trips are required. DKG’s

have some advantages, although they incur communication costs. For some use cases it is

necessary not to have a trusted dealer, but for others, who in their threat model tolerate

not having a trusted dealer, it is more efficient not to have DKG.

The schemes we are looking for must be robust. A robust threshold scheme ensures

that if t members of the group follow the protocol, a signature will be produced even if the

other n− t members do not follow the protocol and contribute with erroneous signatures

shares. On the other hand, a non-robust threshold scheme aborts when a faulty share

is detected. In this work we are not interested in non-robust schemes [14, 26], but if

necessary, we can process the shares with an algorithm to select only valid shares. We

will now focus on RSA [54], BLS [29], DSA [28],and Schnorr [57].

The RSA threshold signature scheme proposed by Victor Shoup [54] is a scheme

that is considered robust and forgery-proof in the random oracle model. One of its major

advantages is that it is not iterative and takes advantage of the RSA modulus problem,

which has already proven to be hard and robust.

The BLS [5] signature scheme was proposed by Bohen, Lynn and Shacham with

the aim of creating a signature of small size that can be typed by humans or to use

low resources in a computer. It is considered forgery-proof in a random oracle model.

BLS has some useful and interesting properties such as being aggregatable, which gives

the possibility to aggregate any primitive (secret keys, public keys, signatures), e.g., to

aggregate n private keys and sign a message, it can be verified with the appropriate

aggregation of n public keys. When BLS threshold signature is applied, no trusted dealer

is required to generate the private key share, since n participants can work together to

generate the shares [29].

The threshold DSA scheme [28] proposed by Gennaro, Jarecki, Krawczyk and Rabin

does not rely on a trusted dealer to distribute the key shares among the participants. The

security of this scheme is not proven by a random oracle. The robustness of this signature

9

CHAPTER 2. RELATED WORK

scheme is also achieved by using an error correction technique developed by the authors

Berlekamp and Welch [42].

The threshold Schnorr scheme [57] proposed by Stinson and Strobl transforms Schnorr

scheme into secure and robust Distributed Schnorr scheme where n players would partic-

ipate to generate the private key shares and the public key.

2.1.3 Summary

Table 2.1 shows the results of a preliminary benchmark performed with some threshold

signatures found in Golang and for signatures without threshold. The benchmark was

performed in a MacBook Pro with MacOS 11.0, Darwin 20.1.0 kernel, 16GB 2400 MHz

DDR4 and 2,6 GHz Intel Core i7 with 6 cores. The table is divided into 4 phases of the

THS: first the phase of the key generation; second the signing phase (for THS the signing

consists only of signing with a share); third and only for THS the phase of aggregation

signature share and finally the phase of verification of the signature. Each of these phases

is divided into 3 benchmark values, one for the time for each operation in milliseconds

, another for the number of bytes allocated in the heap for each operation (B/op) and

finally the number of allocations in the heap (allocs/op). We decided to present these

values to better choose the cryptographic scheme we will use during the implementation

and to show the impact of switching from a conventional signature to an THS. We must

note, however, that these tests have been performed in a single machine with the above

specification, which means that the latency to a dealer distributing shares and, in the case

of DKG, the generation of the shares is ignored.

Analyzing the results, it is obvious that the complexity of any THS scheme depends

primarily on the key share generation, since some parameters are generated on the fly and

it is necessary to generate not only one key, but n keys (e.g., RSA generates a 1024-byte

safe prime pair, which takes a long time to generate). We can also see that when using

THS schemes, we have to pay the cost of decentralized trust and have more points of

failure, e.g., THS RSA 3072 takes 36 ms to sign a message, while a non-THS scheme with

the same key size takes only 3.7 ms. For BLS and Schnorr, the time required for signing is

almost the same, but for key generation the times are larger. It is also easy to see that for

the THS schemes we compared, the non-THS scheme is used to verify the signature of an

THS scheme, this means that after signature aggregation, the verification is transparent,

e.g., we can use an RSA scheme to verify a t-RSA signature.

The impact of THS key shares generation together with the number of generated

shares and distribution of such shares by a group of signers in the context of a Blockchain

Co-signing environment is one of the relevant challenges that must be addressed in our

design model. This will be an important evaluation factor for the validation of our pro-

posed solution.

10

2
.
1
.
G
R
O
U
P
-
B
A
S
E
D

D
I
G
I
T
A
L
S
I
G
N
A
T
U
R
E
S

Key Gen 1 Sign 2 Aggr. Sig. Shares 3 Verify Signature

Signature
Schemes

Time
ms/op

Allocated
Bytes

bytes/op

Allocation
Operations

allocs/op

Time
ms/op

Allocated
Bytes

bytes/op

Allocation
Operations

allocs/op

Time
ms/op

Allocated
Bytes

bytes/op

Allocation
Operations

allocs/op

Time
ms/op

Allocated
Bytes

bytes/op

Allocation
Operations

allocs/op
t-RSA 1024 [46] 3340 216834878 820406 2.4 27510 477 0.25 24677 541 0.02 2633 11

RSA 1024 18 1045203 3990 0.30 16134 103 - - - 0.02 2633 11
t-RSA 2048 [46] 102186 1939336100 5058227 12 58524 866 0.6 48791 935 0.06 5195 11

RSA 2048 147 2695898 7060 1.37 30654 109 - - - 0.06 5195 11
t-RSA 3072 [46] 132014 1197593400 2439053 36 81061 1228 0.9 103102 1292 0.11 11856 12

RSA 3072 564 4815592 9846 3.7 57631 117 - - - 0.1 11856 12
t-BLS 256 [19] 1.21 8654 107 0.19 6427 248 8.5 335964 3610 2.7 108803 1062

BLS 256 0.42 2305 15 0.23 7435 357 - - - 2.81 2814143 1163
t-Schorr 256 [15] 257.3 2019614 25939 0.21 5237 72 37 79825 1142 0.35 1600 16

Schorr 256 0.07 1376 15 0.21 3814 47 - - - 0.33 1664 18
t-ECDSA P-256 [47] 1472 5737157 11745 3388 10240823 15332 4 4 4 0.07 928 16

ECDSA P-256 0.003 608 12 0.005 2639 32 - - - 0.02 825 16
t-ECDSA P-384 [47] 4446 234255153 1876417 9634 54981570 337937 4 4 4 8.5 3476539 28736

ECDSA P-384 1.1 1742716 14389 1.2 1747066 14429 - - - 2.2 3480334 28752
t-ECDSA P-521 [47] 9941 389220026 2456671 22755 86319572 437160 4 4 4 13 5930354 38397

ECDSA P-521 1.8 3021289 19542 1.9 3027865 19589 - - - 3.7 6121331 39618
1 For threshold signature is the generation of the private shares 2 For threshold signature is signing with a share 3 Only applicable to threshold signatures
4 Not applicable. ECDSA is composed of four rounds in which will result an aggregate signature

Table 2.1: Benchmark to different schemes. The benchmark Time is in ms/op, Allocated Bytes is the number of bytes allocated on the heap
per operation, Allocation Operation is the number of allocations on the heap per operations.

11

CHAPTER 2. RELATED WORK

Table 2.2 summarize the properties and time complexity for the different Threshold

Signature Schemes.

Table 2.2: Characteristics for different THS schemes

RSA Schnorr BLS ECDSA

Recommended key size 2048 bits 256 bit 256 bits 256 bits
Non-threshold variant 3 3 7 3

Sig. Size (bytes) 128 64 33 64
Signing Time Complexity High Low Low High
Verifying Time Complexity Low Low High High
Key Generation Trusted Dealer DKG Membership DKG
Setup Time Complexity High High Medium High

We can deduct from the table 2.2 that most of these threshold signatures can be used

in our work to decentralize trust, although two THS schemes stand out. First, despite the

high time complexity of signing and setup, RSA is the fastest one for signature verification

and is not interactive in generating key and signature shares, but the proposed key size is

currently 2048 bits, and for some use cases no trusted dealer can be used. Finally, BLS has

small key sizes (recommended 256 for the same security as RSA) and supports distributed

key generation [29].

2.2 Blockchains and Group-Based Signatures

In this section we first explain the blockchain technology, consensus protocols and rel-

evant concepts, then we show what has been done so far to apply group signatures to

permissionless and permissioned blockchains. We will start with Bitcoin as an example

to illustrate, but in this work we will focus on blockchain technologies.

2.2.1 Blockchains

The concept of the blockchain was first introduced in 1991 by Stuart Haber and W. Scott

Stornetta [33]. Their vision was to use this technology as a way to time-stamp digital doc-

uments so that documents could not be forged. But it was not until 2008 that blockchains

began to become popular, as Satoshi Nakamoto introduced Bitcoin, a revolutionary "elec-

tronic payment system based on cryptographic proof rather than trust..."[45] with which

Satoshi wanted to decentralize the financial institution. Since then, the use cases of

blockchains have spread to a variety of domains [63], such as supply chain management,

digital identity healthcare, notaries and many others. With so many use cases yet to be

discovered, high expectations are placed on blockchains, leading to a race for new use

cases with the development of new blockchain platforms.

Blockchains were invented to create a distributed database in which no central au-

thority was required for the system to function properly. We can describe blockchains

12

2.2. BLOCKCHAINS AND GROUP-BASED SIGNATURES

more scientifically as a distributed database that contains a list of blocks in which the

blocks are cryptographically linked together, meaning that once the blocks are created,

they cannot be changed or forged making blockchain an immutable distributed ledger.

As can be seen in the definition we will have participant nodes executing well established

protocols in order to this Peer-To-Peer (P2P) technology work. Consensus protocol and

validation protocols are some of the protocols the nodes need to run, thus, we will discuss

more about this later.

2.2.1.1 Blockchain Foundation

A blockchain can be divided into different components that must exist. Three of the most

important components are (i) immutable ledger, (ii) consensus algorithm, (iii) transaction

validation algorithms. Although we will not focus on validation algorithms in this sub-

section, since different validations are performed depending on the blockchain platform

and business logic. Smart contracts are discussed later in the section 2.3.

Prev. Hash

Block

Nouce

Merkle Root Tx's

Prev. Hash

Block

Nouce

Merkle Root Tx's

Figure 2.4: Blockchain block structure (adapted from [45])

Blockchains ledger: To explain this component of a blockchain, it is easy to start by

explaining the life cycle of a transaction. When the clients are not directly involved in the

blockchain and want to submit a transaction, they first start by sending the request to a

blockchain node. Then, using a gossip protocol in a P2P network, the node disseminates

the transaction to reach a majority of the participating nodes. There are some blockchains

in which the submitted transactions remain in a transaction pool until they are selected

for integration into a block. Considering that we are in a blockchain with a proof-of-work

consensus, the miners select the transactions with a higher fee to integrate them into a

block, but before they do, the nodes must perform some validation of the transaction. A

block as can be seen in figure 2.4 is built by a set of transactions, the previous block hash,

and by a nonce. The genesis block is the unique block in the chain that does not contain

a previous hash. In Proof-of-Work (PoW) consensus, the nonce is calculated by finding a

number in which leads to the current block hash having a pre-fixed number of leading

zeros. After finding the golden nonce, the block is considered to be part of the chain. If

someone later tries to temper with a particular block, he must temper with the entire

blockchain that follows the block to be tempered. This is a difficult task, because when

using PoW all nonce’s have to be recalculated. There is another inherent complication:

the chain is distributed, so the attacker must corrupt a high percentage of the total peers,

in the case of PoW, 51%.

13

CHAPTER 2. RELATED WORK

Blockchain consensus protocol: Consensus protocols have long been studied and

are a fundamental part of the blockchain, because to achieve State Machine Replication

(SMR), replicas must agree on an order in which operations are performed. The operations

in a blockchain are the transactions. We want to guarantee that a set of transactions

are applied in the same way in all nodes to maintain a consistent transaction ledger.

Consensus protocols must demonstrably adhere to certain properties to be considered

valid [13], these properties are: a) termination - every correct process eventually decides a

value; b) validity - if a process decides v, then v was proposed by some process; c) integrity

- no process decides twice; d) agreement - no two correct processes decide differently.

In presence of a bounded number of faults, consensus protocols must ensure consis-

tency in the ledger, so there are different types of consensus for different types of faults

such as crash-fault, Byzantine faults [41] and message omission. However, the properties

above only work when faults occur in a synchronous system and these types of systems

don’t exist. When applying the consensus in an asynchronous system, the FLP impos-

sibility [24] emerges, FLP states that there is no deterministic protocol that solves the

consensus in an asynchronous system where a single process may fail. To circumvent

FLP consensus protocols, the specifications have been relaxed, e.g., Paxos [40] relaxed the

termination property based on probabilistic calculations and in certain circumstances

consensus may not be reached.

There are thousands of consensus protocols that are ready to be used in blockchains,

although when choosing a consensus algorithm, several considerations must be made,

such as the type of the underlining network, what fault-tolerance assumptions the system

makes, throughput, power consumption, etc. Some of the most used consensus algorithms

in blockchains today are [23]:

• Proof-of-Work (PoW): Proof-of-Work was proposed by Dwork and Naor in 1993

[18] to combat email spam by introducing computational effort on the part of the

sender. To send an email, the sender would have to compute a resource-intensive

puzzle to which the proof would have to be attached. Upon receiving the email, it

would be necessary to verify the solution. The idea behind their proof-of-work later

led to the most used consensus in blockchain, in which two different participants

would be required: the miners, who would solve the puzzle to find the golden nonce,

and the verifiers, who would check that the nonce respected the number of leading

zeros. PoW now comes in two variants, computer-bound PoW, which requires only a

processing unit to solve the puzzle, and memory-bound PoW, which requires access

to memory, which introduces an upper limit due to the latency when accessing

RAM. Usually this type of consensus is used in a permissionless blockchain and the

miners are given an incentive to continue mining and contribute to the creation of

new blocks, e.g., Bitcoin uses a CPU-bound PoW, and for every golden nonce found

by the miners, 6.25 Bitcoins [4] are released to them.

14

2.2. BLOCKCHAINS AND GROUP-BASED SIGNATURES

• Proof-of-Stake (PoS): The PoW consensus has some limitations due to low scala-

bility, high computing power and power requirements. To mitigate some of these

limitations, proof of stake was introduced in a forum in 2011 [50]. PoS is a consen-

sus protocol in which the block creators and validators have to block part of their

wealth (so-called stake). Once they have deposited some of their coins in an escrow

account, they are ready to be considered stakeholders and can be selected to partic-

ipate in the creation of blocks. In case of misconduct, a stakeholder may lose all or

part of the deposited coins. The purpose of this consensus protocol is to prevent

participants from not following the rules. PoS also comes in different variations

like, Delegated Proof-of-Stake (DPoS), Leased Proof-of-Stake (LPoS), Anonymous

Proof-of-Stake (ZPoS) and Pure Proof-of-Stake (PPoS).

• Proof-of-Elapsed-Time (PoET): Another approach to reach a consensus without

consuming too much computing power and energy is to use PoET. This consensus

was invented by Intel to take advantage of its Trust Execution Environment (TEE),

the Software Guard Extensions (SGX). At a high level, this protocol requires a

validator to execute a lottery function within a TEE and wait for the time returned

by that function. PoET is considered secure because everything takes place within

a secure enclave and the lottery function must guarantee fairness and be easy for

any participant to verify that a validator is respecting.

• Practical Byzantine Fault Tolerance (PBFT): In 1999, Miguel Castro and Barbara

Liskov introduced the PBFT [9] consensus protocol which can withstand Byzantine

faults. A client starts the normal use case of the protocol by sending a request to

the primary. Then, the primary multicast requests (pre-prepare) to all participants

in the PBFT, at this moment the replicas will exchange 2 rounds of message (the

prepare and commit) to guarantee that no Byzantine replica exists. Finally, the

protocol terminates when the client receives f + 1 replicas results. This protocol

improves the performance of the blockchains comparing to the PoW although it

contains some scalability problems.

Types of Blockchains: The literature divides blockchains in three groups [8]:

• Permissionless: In a permissionless or public blockchain, anyone who wishes to

participate can take part either as a miner, or a user, or both. Typically, these types

of blockchains attempt to maintain anonymity and use a consensus protocol that

requires a certain amount of a resource such as currency or computing power.

• Permissioned: In a permissioned or private blockchain, only authenticated users

can participate in the creation of the chain, although in some cases not all nodes

in the blockchain are involved because of different roles. One of the consensus

protocols used is PBFT.

15

CHAPTER 2. RELATED WORK

• Federated: A federated blockchain is a combination between permissionless and

permissioned blockchains. The trust in federated blockchains is not deposited in

all nodes, nor in a single organization, instead the trust is divided between multiple

organizations or multiple nodes.

2.2.2 Permissionless Blockchains with Group Signatures

As we saw in section 2.1, group signatures are a powerful tool widely used, even in

blockchain technologies, to completely decentralize the distributed ledger. However, to

achieve this in a blockchain, we must have a balance between security, scalability, and

performance. In permissionless blockchain this is a more difficult task than in permis-

sioned blockchains, because when group signatures are used for transaction validation, a

group of validators must be selected without bias so that no one can take control of the

ledger. ByzCoin [37] and Omniledger [39] solve this problem in the same way.

ByzCoin[37] is an example of a blockchain that brings together three different con-

cepts: Bitcoin- NG Eyal2016, PBFT [9] and CoSi [58]. ByzCoin uses a group signature

scheme called CoSi with the aim of improving the security and performance of Bitcoin.

The confirmation rate of Bitcoin is about 1 hour (6 blocks). By changing the consensus

protocol from PoW to PBFT, ByzCoin achieves less than one minute confirmation time.

However, PBFT does not scale well, so ByzCoin changes the prepare and the commit

phase with some rounds of CoSi group signature.

Another attempt to improve the distributed ledger systems was made by Omniledger

[39]. Omniledger is a distributed ledger architecture that offers all the features provided

by ByzCoin plus "scale-out". Again, both ByzCoin and Omniledger are trying to improve

security, transaction throughput and transaction confirmation time to compete with cen-

tralized payment processing systems such as Visa. Omniledger uses a sliding window

with the latest proof-of-work miners to select the representatives to participate in the

validation of transactions. These validators then use a version of PBFT with group-based

signatures (CoSi) to validate transactions without intensive computations, reducing con-

firmation time and increasing throughput. To achieve scale-out, Omniledger uses shards

of validators that are responsible for their own distributed ledger.

Another approach to the introduction of group signatures for permissionless blockchains,

in this case Bitcoin, was made by Goldfeder et al [30] in their work, which began with the

argument that Bitcoin is subject to attacks that result in the loss of cryptocurrency for busi-

nesses and individuals, demonstrating that this is usually done by infecting a machine

with a virus that contains the credentials for a Bitcoin wallet. They solved this problem by

first introducing a threshold signature scheme compatible with Bitcoin’s ECDSA wallet

and explained that multiple participants are required to conduct Bitcoin transactions in

order to be secure. Bitcoin already supports multi-signature, but the threshold signature

brings some advantages, such as flexibility, confidentiality, anonymity and scalability.

Their latest contribution was a threshold signature based two-factor secure wallet, so

16

2.2. BLOCKCHAINS AND GROUP-BASED SIGNATURES

users do not have to store their private keys in a single device.

Calypso [38] is an example of another project that uses threshold cryptography not for

signatures, but to encrypt data so they can provide secure, verifiable data sharing over any

blockchain. To achieve this, they use threshold cryptography to prevent any node from

reconstructing the secret without having the authorization and without having logged

the intent to open the secret. Calypso develops two ways for data confidentiality: i) Long-

term secrets are used in permissioned blockchain and are composed as follows: the secret

data m is encrypted under a symmetric key k which is then encrypted under a public

threshold key of the secret-management committee; ii) One-time secrets are similar to

long-term secrets but for permissionless blockchain. Here, to send a secret, it is necessary

to select a set of members to be the secret-management committee, then the shares are

generated and delivered to the respective committee member.

2.2.3 Permissioned Blockchains with Group Signatures

In permissioned blockchains, group signatures for the validation of transactions can be

easily applied because a fixed number of validators is preselected and there is little change

in this group of validators.

In a research report published by Stathakopoulou and Cachin [56] they described a

study implementation that manages to use threshold signatures for transaction validation

in the Hyperledger Fabric. The authors chose to use RSA [54] because it is non-interactive,

i.e., no interaction is required to produce a signature requiring only the exchange of sig-

nature shares. THS RSA is also deterministic and equivalent to RSA signatures generated

by a non-threshold. The author also used BLS [5] with some of the features of RSA THS,

although BLS has a smaller key size than RSA, and the authors say that in the future they

may implement DKG for BLS. With these two THS schemes, the authors concluded that

there is no negative impact on performance when the cryptography is changed from a

non-threshold to a threshold, but there is a security gain from the distribution of trust.

In Godinho’s dissertation [25], he also used THS and applied RSA threshold signatures

to Hyperledger Fabric, although he extended the smart contracts so that the consensus

protocol and type of signature could be dynamically changed per transaction.

2.2.4 Summary

As we have seen in this section, we can have different blockchain platforms with different

combinations of consensus planes, network planes, storage planes and view planes. In Ta-

ble 2.3 and Table 2.4, we summarize the key characteristics of some blockchain platforms

that we have been able to find. It is important to note that the different tradeoffs be-

tween consensus mechanisms, decentralization, and throughput. Consensus algorithms

similar to proof-of-work suffer from low throughput but a high degree of decentraliza-

tion, whereas Consortium and PBFT consensus suffer from low decentralization and high

throughput.

17

C
H
A
P
T
E
R

2
.
R
E
L
A
T
E
D

W
O
R
K

Consensus Plane Storage plane View Plane

Descentr.
Mult.
chain

Smart
Contracts

Mechanism Plug. BFT
Throughput
scalability

Ledger replication View computation
Tx.

privacy
Peer

anonym.
Sign. Validation 7

Quorum Partial 7 3 Consortium 3 3f+1 1
Presumably

high
(> 1000 tps)

Partial (private
smart contracts are

only replicated
between authorized

peers)

Strongly consistent,
totally ordered SMR

3 3 Conventional

Hydrachain Partial 7 3 Consortium 7 3f+1
Presumably

high
(> 1000 tps)

Global
Strongly consistent,
totally ordered SMR

7 7 Conventional

Hyperledger
Fabric

Partial 3 3
Off-chain

service2 3 3f+12 High
(> 1000 tps)

Partial (each
channel holds a

ledger between a
subset of nodes)

Strongly consistent,
totally ordered SMR

3 7 Multisignatures

Hyperledger
Fabric with

Group
Signatures6

Partial 3 3
Off-chain

service2 3 3f+12 High
(> 1000 tps)

Partial (each
channel holds a

ledger between a
subset of nodes)

Strongly consistent,
totally ordered SMR

3 7

Multi and
Threshold
Signatures

Hyperledger
Sawtooth

Full3 7 3
PoET / PBFT /

Other’s 2 3 51% 4
Presumably

high
(> 1000 tps)

Global
Eventually

consistent, causally
ordered SMR

7 7 Conventional

Hyperledger
Burrow

Partial 3 3 Consortium 7 3f + 1
High

(> 1000 tps)

Partial (each chain
holds a ledger

between a subset of
nodes)

Strongly consistent,
totally ordered SMR

3 7 Conventional

Hyperledger
Iroha

Partial 7 7 Consortium 7 3f + 1
Presumably

high
(> 1000 tps)

Global
Strongly consistent,
totally ordered SMR

7 7 Multisignatures

Hyperledger
Indy

Full 7 7 RBFT 7 3f + 1
Presumably

high
(> 1000 tps)

Global
Eventually

consistent, causally
ordered SMR

3 7 Multisignatures

Openchain Partial 3 3
Partitioned
Consensus 5 3 n/2 + 1 High Global

Strongly consistent,
totally ordered SMR

7 3 Multisignatures

Multichain Partial 3 3 Consortium 7
Not
BFT

High
(> 1000 tps)

Partial (each chain
holds a ledger

between a subset of
nodes)

Eventually
consistent, causally

ordered SMR
3 3 Multisignatures

1 With Istanbul BFT; 2 With the unofficial BFT-SMaRT ordering service presented in [55];
3 Assuming every node is equipped with Intel’s SGX technology. Otherwise decentralization is partial; 4 If using PoET ;
5 Transactions are validated by different authorities depending on the assets being exchanged. Each organization controls their own instance and each instance has only one authority
validating transactions; 6 Version implemented in [56] 7 All blockchains support the normal traditional signature validation.

Table 2.3: Comparison Of Permissioned Blockchain Platforms

18

2
.
2
.
B
L
O
C
K
C
H
A
I
N
S
A
N
D

G
R
O
U
P
-
B
A
S
E
D

S
I
G
N
A
T
U
R
E
S

Consensus Plane Storage plane View Plane

Descentr.
Mult.
chain

Smart
Contracts

Mechanism Plug. BFT
Throughput
scalability

Ledger replication View computation
Tx.

privacy
Peer

anonym.
Sign. Validation 5

Ethereum Full 7 3 PoS 7 51%
Low

(< 100 tps)
Global

Eventually
consistent, causally

ordered SMR
7 7 Conventional

Bitcoin Full 7 31 PoW 7 51%
Low

(< 10 tps)
Global

Eventually
consistent, causally

ordered SMR
7 7 Conventional

Omniledger Full 3 7 PBFT 2 7 3f + 1 3
Presumably

High
(> 1000 tps) 4

Partial (each chain
holds a ledger

between a subset of
nodes)

Strongly consistent,
totally ordered SMR

7 7 Multisignatures

Tezos Full 7 3 PoS 7 51%
Presumably

Low
(< 80 tps)

Global
Eventually

consistent, causally
ordered SMR

7 7 Multisignatures

Byzcoin Full 7 7 PBFT 2 7 3f + 1
Presumably

High
(> 900 tps)

Global
Strongly consistent,
totally ordered SMR

7 7 Multisignatures

Algorand Full 7 3 PPoS 7 51%
Presumably

High
(>900 tps)

Global
Strongly consistent,
totally ordered SMR

7 7 Multisignature

1 Not Turing-Complete 2 PBFT integrated with CoSi group signatures 3 For each shard 4 With 25 shards can achieve throughput of 13,000 tps
5 All blockchains support the normal traditional signature validation.

Table 2.4: Comparison Of Permissionless Blockchain Platforms

19

CHAPTER 2. RELATED WORK

2.3 Smart Contracts

In 1990, Nick Szabo first proposed the term smart contract to refer to "a set of promises,

specified in digital form, including protocols within which the parties perform on these

promises"[59]. Essentially, a smart contract in a blockchain is a piece of code stored in

the chain allowing different peers to do general-purpose distributed computations. With

this, it’s possible to have different peers interacting with each other, deterministically, by

using the defined smart-contract [11].

For example, one of the most cited examples to illustrate this topic in the blockchain

is that Bob defines a smart contract in the blockchain. This contract contains the code

with three functions (a deposit function, a withdrawal function, and a trade function)

that allows anyone to trade with it. Once Bob has deployed the smart contract, he can

perform a deposit function to increase the inventory of item B available in the smart

contract. The trading function is defined so that for every two items of type A traded by

a peer, the smart contract automatically returns a type B item. Therefore, if Alice tries

to trade only one type A item, she will not receive a type B item, but if Alice trades the

right amount of type A items, the code in the smart contract will automatically return

the earned type B item to Alice. As you can see from this example, some validations

have prevented Alice from committing fraud and enforcing an agreed law (or code law)

between two peers without the need for a trusted intermediary, and we must note that

the deposit function and the withdrawal function are tied to Bob’s private key.

2.3.1 Smart Contracts in Blockchain and Cryptocurrency Domains

Smart contracts to be used in a blockchain need to be digitally signed programs like any

cryptocurrency transaction performed in a blockchain using digital signatures schemes

based on asymmetric cryptography (e.g., DSA [34], RSA [51], ECDSA , etc.).

Different blockchains have different consensus plane services and mechanisms with

different levels of consistency. However, when a blockchain implements a smart contract,

it must allow digital security by decentralizing it into three different phases (deployment,

installation and execution). Once deployed, a smart contract cannot be changed during

the lifecycle of any transactions executed with this smart contract and, since they are

stored in the chain, a unique address is provided where the latter clients can interact by

addressing transactions to it. A smart contract is usually defined so that any arbitrary

state can be stored and any arbitrary computation can be performed. In a permissionless

blockchain in a crypto-currency system, client interaction can lead to changes of state and

the exchange of cryptocoins from one smart contract to another or even from one account

to another. In some cases, these smart contracts can also be used as the first component for

setting up a blockchain. In a permissioned and consortium blockchain, smart contracts

are agreed by all participants before they are executed. This means before a transaction

with this smart contract is executed, all participants are aware of the contract content. In

20

2.3. SMART CONTRACTS

many applications, however, this does not mean that is being stablished legal agreement

recognized by law, but that code agreed upon in advance is executed. For example, a

smart contract can be used to switch from an unpredictable human to algorithms so

that we can automate payment methods, event notifications [44] or even the exchange of

pre-agreed transactions (like our first example of this section) [12, 44].

2.3.2 Smart Contracts and Programming Support

Smart contracts can be defined in many different programming languages, some of these

languages are well known (like Java, Golang, Javascript, etc.), but others like Solidity [20]

were created simply to solve this domain problem, and there are even smart contract

specific languages that are not Turing-Complete like Bitcoin [45] smart contracts. But

what all these smart contract programming languages have in common is that they appear

as a built-in feature of some blockchains to design custom, sophisticated logic. In the

following subsection we will discuss in more detail the types of smart contracts supported

by the different blockchain platforms.

What we need to keep in mind is that smart contracts consist of code that must be

visible to all participating nodes, and most often they contain valuable assets, which can

cause attackers to be tempted to explore existing vulnerabilities such as security holes

that are difficult to fix. For example, in June 2016, a reentrancy attack on smart contracts

was conducted and called DAO attack [17]. This attack had enormous consequences, such

as the draining of 50 million US dollars in ether coins and reduced the trust and value of

ether coins.

2.3.3 Smart Contracts in the different blockchains

Ethereum: Ethereum blockchain supports the execution of smart contracts in a Virtual

Machine (VM). The Ethereum Virtual Machine (EVM) is the virtual machine supported

by Ethereum smart contracts, which is able to execute a Turing-Complete language called

EVM bytecode [62]. A smart contract programmer normally does not program directly in

EVM bytecode. Instead, Solidity is used as a high-level programming language, as shown

in listing 2.1, but it is necessary to compile Solidity to EVM bytecode before execution.

Solidity based smart contracts allow to specify rules for regular expressions, recur-

sions and loops (Turing-Complete). An important concept in the execution of Ethereum

smart contracts is the control of the so-called halting problem [35] - the halting problem

is a problem of trying to determine whether a program ends or runs forever. To solve this

problem, Ethereum smart contracts introduced the concept of gas. For Ethereum, gas is

a way to give computing time to a certain smart contract, the caller of that smart contract

has to buy gas first, a certain amount of gas is consumed during the execution of each

EVM operation, in case of gas shortage the smart contract is stopped, but if there is still

gas left, it is returned to the caller. In this way, denial of service attacks can be prevented,

as the cost of operating a smart contract is not insignificant.

21

CHAPTER 2. RELATED WORK

Listing 2.1: Simple Solidity smart contract [20] that is able to store a unsigned int in the
ledger of Ethereum.

1 pragma solidity >=0.4.0 <0.6.0;

2

3 contract SimpleStorage {

4 uint storedData;

5

6 function set(uint x) public {

7 storedData = x;

8 }

9

10 function get() public view returns (uint) {

11 return storedData;

12 }

13 }

Listing 2.2: A Bitcoin script that checks for SHA1 hash colisions [61].
1 OP_2DUP OP_EQUAL OP_NOT OP_VERIFY OP_SHA1 OP_SWAP OP_SHA1 OP_EQUAL

Bitcoin: Initial Bitcoin infra-structure had no notion of smart contracts, but latter

it was introduced Turing-Incomplete scripting language (the Bitcoin Script Language).

Despite being Turing-Incomplete, it is possible to create different smart contracts with the

Bitcoin scripting language, such as multisignature accounts, lotteries, payment systems,

trading systems, freezing funds and many other smart contracts [2].

The scripting language is a list of instructions composed of operands and operations.

When an operand is declared, it is placed in a stack, after operators will pop out and put

the result in the next stack. A smart contract is considered to be executed successfully

if a non-zero value is at the top of the stack at the end, otherwise it is considered failed

[61]. Listing 2.2 shows a smart contract (script) that verifies SHA1 hash collisions. The

decision not to give the smart contract programmer a Turing-Complete language may

help to overcome security problems that can be seen in the smart contract of Ethereum

[2].

Tezos: The Tezos blockchain platform supports its own set of rules with minimal

network disruption through an on-chain governance model. Tezos smart contracts are

supported by a Turing-Complete stack language similar to Ethereum. As we have seen,

Ethereum uses a fee model to limit the number of steps a smart contract can take. How-

ever, it is possible to perform an attack that exploits the fact that all validators must

validate a transaction. For example, a malicious miner could forge a transaction that

would run in an infinite loop and pays himself to validate it, meaning that other valida-

tors will waste a lot of computer resources trying to validate the transaction [31]. To

mitigate this problem, Tezos, in addition to using fees, set a cap on the number of instruc-

tions that can be executed with a single transaction, but this limit may increase in the

future.

22

2.3. SMART CONTRACTS

Turing
Complete

Solve Halting
Problem

Type Language

Ethereum 3 3 on-chain Solidity
Bitcoin
Script

7 7 on-chain
BitCoin Scripting

Language
Sawtooth

TF 3 7 installed GO, Java,...
seth 3 3 on-chain Solidity

Algorand
ASC1 7 3 on-chain TEAL
ASC2 3 3 off-chain –

Table 2.5: key characteristics of the different smart contracts

Hyperledger Sawtooth: Hyperledger Sawtooth is a blockchain platform that supports

two types of smart contracts: installed and on-chain contracts. The installed (or transac-

tion family) smart contracts were created with the aim of limiting the risks associated

with programming a smart contract using an Turing-Complete language. This is achieved

by limiting the number of operations that a transaction can perform. Hyperledger Saw-

tooth provides developers with several examples, one of which is the IntegerKey trans-

action family, which allows three operations to be performed on integers (increment,

decrement, set), and another is the Settings transaction family, which allows blockchain

settings to be exchanged "on the fly", e.g., the consensus protocol can be swapped when

the blockchain is running. Transaction families can be written in a variety of program-

ming languages such as Golang, Java, Javascript, Python, Rust, and so on.

Hyperledger Sawtooth also supports on-chain smart contracts when using Burrow

Ethereum. This component makes it easy to execute smart contracts written with Solidity.

As we have seen in Ethereum, Solidity is a Turing-Complete language that allows you to

program any business logic.

Algorand: Algorand Smart-Contracts are divided into two parts, the first of which

have already been released: the Layer 1 on-chain smart contracts (ASC1) and in the future

the Layer 2 smart contracts will be developed. An ASC1 can offer security, efficiency, and

atomicity as a single-payment transaction [43]. These smart contracts are known to be

part of the protocol and are able to communicate with Layer 1 features such as atomic

transfers, which provides a way to guarantee that all transactions in the smart contract

are executed or none of them is executed. ASC1 can be written in Transaction Execution

Approval Language (TEAL), which is an assembly like Turing-Incomplete language that

is processed with a stack- machine [1], but is usually written using Python with the PyTeal

library. Layer 1 smart contracts are good for everyday needs, but Algorand has layer 2

off-chain smart contracts when there is a need for more complex contracts.

23

CHAPTER 2. RELATED WORK

2.3.4 Summary

In Table 2.5, we present some of the characteristics of blockchain-enabled smart contracts.

Smart contracts for blockchains have received a lot of attention in the research community.

Many issues have arisen, such as how to prevent smart contracts from running forever,

damage in executions with exacerbated resources, concerns about language support and

expressiveness, among other issues. Different blockchains have developed different smart

contracts with different features to address such concerns in different ways.

2.4 Critical Analysis

We truly believe that blockchains need to be revised to better improve resilience and

decentralization. Currently, blockchains rely on centralized authorities to sign partici-

pants’ public keys. Only then can nodes participate in the various phases of a blockchain

protocol. Relying on a centralized authority can lead to very lucrative attacks, as it is only

necessary to simply compromise a node to gain an advantage over the system. As stated

initially (chapter 1) we will design a cryptographic co-signature service with the following

requirements: a) Auditability; b) Resiliency; c) Fairness and Dynamic Reconfigurability;

d) Pluggability and Factoring Modularity; e) Portability; f) Decentralization.

Blockchains using digital signatures in a single root of trust fail to address a decen-

tralized trust model. The ability to easily apply our portable solution to any blockchain

typology, neutral to other specific service planes, can provide tremendous benefits, for

near-zero cost implementation. Portability and trust decentralization have already been

addressed by other authors [38]. In contrast, the work presented by [37, 39, 56] relies

on heavy changes to the blockchain consensus protocol to use group signatures, which

leads to poor portability as no modular solutions are used. Another interesting property

that we did not find in related work is pluggability and factoring modularity. The ability

to quickly instantiate new cryptographic primitives or plug a new, faster primitive into

a crypto-provider at runtime can provide a great qualitative solution. Solutions such as

[37–39] provide cosigning auditability over a tamper-resistant log. The use of BFT THS

cosigning models are an important feature already addressed in [38, 56]. We will pursue

the mechanisms of such solutions as baseline mechanisms to create more fair and dy-

namically reconfigurable cooperative co-signing groups in a more generic way. We must

mention that the approach in [38] assumes a centralized trust model, even though the

solution can be adopted for permissionless or permissioned models. In [56], the authors

use decentralized BFT THS, but specifically targeting the HLF permissioned blockchain

transaction processing plane. As a novel dimension, our solution is targeted to be agnos-

tic, not depending on the base service planes and mechanisms of specific blockchains -

using two different blockchains (HLF and Algorand as our neutrality proof-of-concept).

Next chapter we will present our elaboration approach for an agnostic, scalable, and

highly configurable co-signing component.

24

C
h
a
p
t
e
r

3
System Model and Architecture

In this chapter, we present our system model and architecture for an agnostic, scalable,

and configurable component that can be integrated with different blockchain typologies.

The solution aims to address the single point of failure problem introduced in blockchains

by conventional signatures, where PKIs and CAs are part of this centralized trust model.

We first describe an application scenario, building the final solution for the applica-

tion scenario step by step. Next, we present our system goals and a layered view of our

system model, then we discuss our reference architecture and each component that is

part of our architecture.

3.1 Application Scenario

To better illustrate our system model, we can imagine a simple application scenario

inspired by [36]. In today’s cities, towns and villages, more and more people are looking

for sustainable energy sources and ways to save money. Currently, solar energy plants and

eolic turbines are the only two viable options of sustainable energy sources that can be

generated on premises to reduce a household’s overall energy consumption from the grid,

thereby reducing electricity bills. Solar and Eolic energy, as we know, are intermittent

energy sources, as the period of time we can generate energy with either of these energy

sources is limited and varies depending on the length of the day and weather conditions.

One way to solve this problem is to store the energy for pos-consumption, however,

compared to simply storing and using fossil fuels from the grid, batteries have a high

green premium that hardly any household is willing to pay. A fictitious company called

GreenTrader knew of this marked gap and decided to create a disruptive innovation

that would allow household energy producers to sell their excess energy production to

their community at a lower price. In order to sell the excess energy produced, one party

25

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

can issue a transfer transaction to another party, who receives the right to consume that

energy during a specific time (e.g., household A sells 20% of the excess energy produced

from 10:00 a.m. to 11:00 a.m.).

To illustrate the challenges for such a solution, we first present two strawman solution

implementations for this application scenario under a Byzantine environment. Based on

the lessons learned, we then summarize the system goals and a representation of this

application scenario, shown in Figure 3.1.

3.1.1 Strawman I: The Unique Central Database

The first strawman assumes that the data involved in selling and buying electricity is

stored in a single trusted entity. The obvious way to store an application’s data is to

use a single server instance with a database engine installed. Here, all operations to sell

electricity to a neighbor would be performed by a user application and sent to the single

database instance.

The strawman I architecture is completely centralized, and in order to implement such

solutions, all participants in the buying and selling of electricity must trust each other

or assign a trusted party to deploy and manage the database instance. This means that if

this database is compromised, the application built on top of it will also be compromised.

3.1.2 Strawman II: The Apparently Decentralized Blockchain

The obvious way to decentralize the strawman I architecture and provide some level of

auditability over data changes is to replicate and provide a tamper-proof log. To replicate

their system, GreenTrader decided to enter the blockchain world. To do this, GreenTrader

deployed a blockchain node in each household and energy provider that adhered to their

service to decentralize their legacy database and to improve auditability of the system.

The strawman II solution seemingly brings full decentralization to the application, as

no two households need to trust each other, nor do they need to trust an energy provider,

however digital signatures are also centralized and a key part to the strawman II . Green-

Trader did not realize that when they deployed the blockchain platform, they also needed

to deploy a PKI to certify the clients and nodes. The PKI, as we already know, is central-

ized and a valuable target for attackers. When a node’s private key is compromised, it is

necessary to revoke the byzantine key. The window of opportunity between discovering

that a private key has been compromised and revoking the key can give attackers an

advantage, and that is not the worst problem. What happens if the PKI’s private key is

compromised? In this case, certificates can be issued on the names of individual nodes to

mask the true identity and attack the system.

26

3.2. SYSTEM GOALS

Blockchain cluster

Energy Suppliers

SignerNode

Blockchain Node

Clients

Service Platform

External Environment

12 1 2

2
1 1

2

1

2

Figure 3.1: Application Scenario illustration

3.1.3 Our Solution to The Application Scenario

To address all the issues in strawman I and II, we propose a modular layer implemented

agnostically of the used blockchain that eliminates the centralization problems and the

single point of failure present in traditional signatures. The application scenario for our

proposal can be seen in figure 3.1.

In this architecture, household clients are represented by a signer node, and a blockchain

node, and energy providers are represented by an electricity pole. To sell and buy electric-

ity, an external application represented by a computer and a mobile phone communicates

with GreenTrader services in two steps. First, before a transaction (e.g., selling energy) is

sent to the blockchain node, each client transaction must be co-signed to ensure that at

least t nodes agree and witness the transaction. To do this, clients contact a signer node

(1) to obtain a co-signature of the transaction, which is created by a group of witnesses.

Signer node’s can represent neighbors who will witness the transaction and endorse it

after validation. Only then can clients submit the transaction (2) along with the co-

signature to the blockchain node to be processed and accepted by all peers after verifying

the correctness of the transaction and group signature.

The actual interaction is somewhat more complex than shown in figure 3.1. What

needs to be retained is that transactions must be co-signed to remove the conventional

PKI, CA, or even the ad hoc certification found in open memberships blockchains.

3.2 System Goals

Our solution sets out to address the following primary system goals.

• Fairness and Dynamic Reconfigurability: Fair and dynamically reconfigurable

cooperative signing trustee groups with self-sovereign identities, reconfigurable via

possible off-chain or sharded-chain membership management.

27

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

• Resiliency: Support to resilient Byzantine fault-tolerant group witnessed signatures

to protect against attacks on the conventional signature. All transactions must be

co-signed by a group of witnesses before being processed by a blockchain node.

• Auditability: Auditable under verifiable immutable group-signatures, recorded in

a tamper-resistant log. All transactions are verifiable and recorded in a tamper-

resistant log with the associated co-signature.

• Decentralization: Compatibility with a fully decentralized model, not compromis-

ing the inherent trust-decentralization requirements.

• Portability: Portable and agnostic solution, designed as a reusable service plane

independent from other Blockchain-based service planes.

• Pluggability and Factoring Modularity: Reusable and pluggable modular crypto-

graphic provisioning, adopting a factory-object oriented design allowing the dy-

namic addition of different BFT threshold digital signatures’ algorithms.

3.3 System Model

Network Plane

Persistent Plane

Consensus Plane

Security Plane

Transaction Plane

Figure 3.2: Node Layered Model

To better understand our System Model, let’s first step back and understand the pri-

mary layers our solution must have. Simply put, our system model consists of a set of

nodes that work together in a P2P network. Each of these nodes implements a software

stack with different layers of services. To represent a node, we first use a simple stacked

model consisting of 5 important layers, as shown in Figure 3.2. As in all blockchains,

we find a transaction layer, a security layer, a consensus layer, a network layer, and a

persistence layer in our system model. If all these components work together, a secure

blockchain can emerge.

In Figure 3.3, we introduce several components in our layered model that help us de-

scribe the critical roles each plane plays to build a fully functional node. In the following

subsection, we briefly describe the purpose of each plane.

28

3.3. SYSTEM MODEL

N
et

w
or

k
Pl

an
e

Pe
rs

is
te

nc
y

 P
la

ne

C
on

se
ns

us
Pl

an
e

Se
cu

rit
y

Pl
an

e
Tr

an
sa

ct
io

n
Pl

an
e

Byzantine
Fault

Tolerance
(PBFT)

P2P

Data
Representation

Proof Of
Elapsed

Time
(PoeT)

Proof
of

Work
(PoW)

Proof
of

 Stake
(PoS)

Proof
Of

Authority
(PoA)

Crypto-providers Cryptographic primitivesCryptographic primitives
Cryptographic primitivesCryptographic primitives

Security Specific ValidationsAccess Control Smart
Contract

Ledger Persistent
Storage

Transaction
Processing

Application
Specific

Validations
Transaction
Dispatcher

Figure 3.3: Node Layered Model With Componenets

3.3.1 Planes

a. The Transaction plane is responsible for transaction processing and transaction

dispatching. When a client submits a transaction to a blockchain node, this is

the first component that will make a preparatory processing, validations, and then

dispatches the transaction to the security plane. The smart contract in this plane

plays an important role of providing some of the validations. For example, in case

of our application scenario, the smart contract may have a condition that limits the

amount of removed inventory items in a single transaction. These validations are

called Application Specific Validations.

b. The Security plane is responsible for the access control and the use of crypto-

providers to sign and validate signatures. The crypto-providers contain different

cryptographic primitives, such as THS and conventional signatures schemes. They

ensures integrity, non-repudiation, and authenticity of any transaction. Some con-

ditions for choosing which primitives to use are also expressed from roles provided

from the extended smart contract expressiveness, to these validations, we call Secu-

rity Specific Validation.

c. The Consensus plane is responsible for ensuring a correct SMR, therefore, protocols

such as PBFT, PoET, PoW, PoS guarantee that each transaction is applied in the

same way to the different participant nodes. by doing so, the ledger is considered

distributed between the nodes. For example, if the order of transactions A, B, C is

being decided, this plane must ensure, using other available service planes, that A,

29

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

B, C are applied to the different nodes in the same order.

d. The Network plane is responsible for exchanging messages between the nodes dur-

ing the different protocol phases, which means that when data arrives at this plane,

it must propagate to reach all nodes in the blockchain using a P2P protocol. For

example, the consensus plane uses this layer to propagate the messages necessary

to reach a consensus between the different participants, and the security layer, if

needed, can also take advantage to propagate signatures related data.

e. The Persistent plane is responsible for storing different types of persistent data and

the respective representation in a node. For example, if a client deploys a smart

contract, it must be stored so that later a client can address transactions to it, and

the transaction ledger must persist in every participant node. Another example is

the signature state persistency while there aren’t enough signature shares to build

the signature.

3.4 Threat Model

We assume that adversary nodes have limited computational power, this means secure

hash functions, Diffie-Hellman, and signature schemes can hold their assumptions even

under attack. We assume that each correct participant verifies the different signatures

present in the transaction and accepts only those that were correctly signed.

The transaction witnesses consist of n signer nodes, t of which may fail or behave ma-

liciously by producing incorrect protocol messages or simply going offline. The number

t is determined by the previously defined smart contract, we require n >= t. We do not

impose any further restriction on t.

We can assume that clients submitting transactions are trustworthy and adhere to the

defined protocol and do not behave maliciously, since it is the client the first principle

who wishes to submit his transaction correctly without any obstacles. We assume that

attacks on the availability of the node’s resources, such as Denial of Service (DoS) and

Smart Contract DoS, and attacks on peer-to-peer communication, are outside the scope

of our system model.

3.5 Mapping to our Architecture

In our system model, we have presented our solution as a single component, but we cannot

develop an agnostic solution to decentralize conventional signatures by utterly changing

a blockchain node to integrate the group signature and verification process. Instead,

our solution is divided into two main components. A signer node, which is responsible

for signing and validating the transaction, and a blockchain node, which is responsible

for processing and validating the transactions, as shown in figure 3.4. This allows us

to achieve our portability system goal with a high degree of agnosticism, enabling the

30

3.6. INTERACTIONS

adaptation of our prototype by any blockchain with any consensus protocol or access

control policy.

Blockchain Node

Signer Node

Client

Figure 3.4: Component Division: Signer Node + Blockchain Node

3.6 Interactions

The interaction in our system occurs between three entities, a client that wants to securely

submit transactions to a blockchain platform, a signer node that helps the client achieve

its goal, and a blockchain node that receives, verifies, and applies the transactions sent

by the client. Our system provides two types of interaction, one for a closed-membership

blockchain and another for an open-membership blockchain.

Permissioned Model We start with a permissioned model because it is the simplest

and contains some common flow fragments with the permissionless model. For our

permissioned model, illustrated in Figure 3.5, we consider blockchain with a closed-

membership, this means that an administrator has previously configured the nodes with

the private key shares and the group public key, and at this point a client can start sending

transactions to the nodes knowing that the keys have been previously agreed upon by

each signer node.

The permissioned model can be seen on Figure 3.5.

1) Deploy(XSC)

Client Signer Node

2) Deploy(XSC)
ok

Blockchain Node

3) Deploy(XSC)
ok

4) SendTransaction(T) 5) Sign(T)

S - Signature

Witnesses
Transaction

Signing

6) SendTransaction(T,S)

ok

Figure 3.5: Permissioned interaction model

31

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Following on Figure 3.5, the interaction flow of the permissioned model is as follows:

1. Before a client starts sending requests to the blockchain, it must first provide a

smart contract, which is responsible for processing transactions and providing the

properties used to sign a transaction. Depending on the blockchain platform, this

smart contract can be accessed in three different ways: a) a client can piggyback the

smart contract along with the transaction and then send it to the signer node; b)

the smart contracts can be provided by an administrator before the blockchain is

launched; c) the REST API provides a special operation to deploy smart contracts in

the blockchain. In Figure 3.5, we have a client that explicitly deploying an extended

smart contract to both the signer node and the blockchain. It is important that the

extended smart contract is deployed in both nodes.

2. The signer node must have access to the smart contract to execute the client

transaction and extract the crypto-provider configurations to dynamically

choose how to sign a transaction.

3. The blockchain node must have access to the smart contract in order to exe-

cute the contract logic and process the transactions as required by the smart

contract code.

4. Once the smart contract is deployed, a client can start sending transactions to the

blockchain.

5. Before a transaction is sent to the blockchain, it must be co-signed by the dif-

ferent signer node witnesses. To do this, a client sends a transaction to a signer

node, which produces a co-signature share using the extended smart contract

and group primitives available in our crypto-provider. Then, if successful,

the signer node asks other witnesses to co-sign the transaction, combining all

co-signature shares into one and returning the final co-signature to the client.

6. Once the transaction is signed, the client can now send the transaction plus

the group co-signature to the blockchain. When the transaction reaches the

blockchain node, some validations are performed, including signature veri-

fication, to guarantee that the transaction was successfully co-signed. After

these validations, the transaction can be applied to the ledger, including the

co-signature envelope, so that the co-signature can then be audited.

Permissionless Model Not every blockchain has a closed-membership and the con-

figurations can be made before execution. To integrate our prototype into a blockchain

platform with open-membership, we introduce the permissionless model. This model

does not care about where a particular (signer or blockchain) node is located, but simply

assumes that configuration can be performed by a client interested in ensuring that its

transaction runs smoothly and securely.

32

3.6. INTERACTIONS

4) Deploy(XSC)

Client Signer Node

5) Deploy(XSC)
ok

Blockchain Node

6) Deploy(XSC)
ok

7) SendTransaction(T) 8) Sign(T)

S - Signature

Witnesses
Transaction

Signing

9) SendTransaction(T,S)

ok

1) InstallGroupKeys(K)

3) InstallGroupKeys(K)
ok

2) GetMembership()
M - Membership

Figure 3.6: Permissionless interaction model

The permissionless model can be seen on Figure 3.6.

Following on Figure 3.6, the interaction flow of the permissionless model is as follows:

1–3. Before a client sends transactions and installs the smart contract, it must first select

a group of signer nodes that will validate its transactions. To do this, the client first

contacts the signer node to obtain a subset of the membership, and then uses this

subset to select some in different ways, such as selecting the most geographically dis-

tant witnesses or the most regionally distant, but importantly, the selection must be

random to reduce the possibility of finding Byzantine signer nodes and to increase

the probability that different nodes will always be selected to sign the transactions

(fairness). The selection and generation of key shares can be done offline without

affecting performance, then the client installs all required keys in each selected

signer node. During this installation process, it can choose how long the keys can

be used or if it is a one-time use to increase security.

4–6. Similar to the permissioned model, a smart contract must be deployed by the client

in both the blockchain and the signer node to subsequently enable transaction

validation and parameterization selection for our crypto provider.

7–9. The difference between the permissioned model and this model is that in this model

the client cannot send the transaction to any node in the membership of the signer

nodes. The client must send its transaction to one of the signer nodes that it has

previously installed the keys. After the signer node receives the signing request, it

33

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

verifies that it has the appropriate key for the transaction and signs it according to

the logic specified in the extended smart contract, and it asks other witnesses that

are in the same witness group to sign the transaction. Then, the client sends the

transaction to the blockchain along with the co-signature produced by the transac-

tion witnesses.

3.7 Reference Architecture

Our proposed solution allows clients to submit co-signed transactions witnessed by a set

of signer nodes to improve decentralization, auditability, and non-repudiation by each of

the involved parties via a generic blockchain. To achieve this, we divided our solution into

two main components: i) a signer node, which is responsible for co-signing and validating

client transactions; ii) and a validator, which is responsible for processing and validating

transactions after they have been co-signed by a set of signer nodes. These two main

components, shown in Figure 3.7, work together with other equivalent components in a

distributed peer-to-peer network to build a Byzantine, fault-tolerant and decentralized

architecture.

Plugable Threshold
Scheme

Signer

Interconnect

P2P Network

Storage

REST API

Signer Node

CryptoProvider
Signature
Manager

Plugable
SmartContract

Processor

Transaction
Processors

Validator

Interconnect

Block
Management

Transaction
Handling

Consensus
Proxy

P2P Network

Storage

Consensus
Engine

REST API

Validator Node

Validator NetworkSigner Network

1 2

Figure 3.7: Extended Architecture

Signer Node: Our signer node is designed as an agnostic and portable component

to be compatible with any blockchain and extensible for future upgrades, such as inte-

grating new cryptographic primitives, modifying the running core protocol, and other

extensibility features. The signer node is principally mapped to three System Model lay-

ers, the security plane, the transaction plane and a network plane to allow signer nodes

to collaboratively build a group co-signature. This main component is subdivided into

other smaller components, such as:

34

3.7. REFERENCE ARCHITECTURE

• Signer Node API: enables communication between the client and the signer node.

For example, request a transaction co-signature, request a signature validation, etc.

• Cryptoprovider: allows the creation of signatures with different signature schemes.

It is designed to primarily address our system goal of Pluggability and Factoring
Modularity and Resiliency.

• Smart Contract Processor: allow us to validate a transaction and dynamically

choose how to sign a particular transaction.

• Signature Manager: is one of the most important components, as it is responsible

for joining all the components we have talked about up to this point and executing a

well-defined protocol. It is designed to primarily respect our Fairness and Dynamic
Reconfigurability System Goal.

• P2P Network: allows different signer nodes to exchange messages to collaborate in

a defined protocol to build a co-signature over a client transaction.

To better understand the role of each component, let us briefly describe a transaction

flow. A client starts by sending a request to the Signer Node API with the transaction

to be signed. Next, the Signer Node API forwards the transaction using the intercon-

nect to the signature manager component, which selects the correct smart contract to

execute that was previously deployed. When the smart contract is executed, the trans-

action is validated, resulting in different properties that help correctly parameterize the

crypto provider to sign that transaction. After the correct parameterization of the crypto

provider, the transaction is processed by one of the protocols which will be discussed

later. There is one protocol for permissionless blockchains and another for permissioned

blockchains. The result of running one of these protocols is a correct co-signature over a

transaction that is sent to the client. Since some cryptographic primitives need to com-

municate with other signer nodes to cooperate in signature generation, it is necessary to

use a P2P network to allow different signer nodes to send their signature shares.

Validator Node: The validator node aims to represent a generic node found in current

blockchain platforms, with different characteristics, for example, we can find a validator

node with PBFT consensus protocol with closed membership setting and other with PoS

consensus protocol with open membership setting. However, for integration with our

signer node, we only need to implement the pluggable smart contract processor to run

an extended smart contract, since our Signer Node is portable and agnostic.

The transaction flow in the validator node depends on the blockchain platform used,

but some general things happen: (i) the client submits a co-signed transaction to the

node; (ii) the node submits a co-signed transaction to the consensus protocol; (iii) the

node executes the smart contract and verifies that the signature built by the signer node is

correct; (iv) the transaction is attached to the ledger along with the co-signature to ensure

a high level of auditability.

35

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

3.8 Software Architecture Components

In this section, we address the architectural components of our signer node that enable

us to achieve our system goals and requirements. We do not address blockchain-specific

components, as our solution is built agnostically, regardless of which blockchain platform

is used.

3.8.1 Signer Node API

A client to invoke operations over our signer node must have access to an API that

promises different operations to achieve the defined protocols. The signer node API

is the entry-point that allows communication with our signer node, in order to execute

well-defined protocols (permissioned, permissionless) and to invoke other functionalities

that help the client make decisions during the different protocols. Let us now define the

methods that can be expected in our API.

• installSmartContract(smartcontract) boolean: In blockchains where it is necessary to

install smart contracts on the fly, this operation installs an extended smart contract

in the signer node, which is then executed when a transaction is signed.

• signTransaction(smartcontracAddress,uuid,data) SignatureSpecs: This operation sends

a request to sign the transaction data. Given the smart contract address, the UUID

of a previously defined group (for a permissionless setting), and the data to be

signed, a signature specification is returned containing the group signature pro-

duced by signer nodes and the scheme used to sign the data.

• getMembership() []Nodes: In a permissionless setting it is necessary to obtain the

membership of signer nodes in order for a client to select a set of signers and deploy

the keys. This operation supports retrieving this membership, and returns a subset

of the membership.

• installKeys(uuid,ttl,isOneTimeKey,keys) boolean: This operation allows the installa-

tion of the public key and private key share to a particular signer node, given the

UUID of the group, TTL to limit the usage time of a certain private key, a boolean

to specify whether the key should be used only once, and the key material. This

operation may need to be performed once for each signer node belonging to the

group specified by the UUID.

3.8.2 CryptoProvider

Our crypto provider is a key component to co-sign transactions and verify that signatures

are formed correctly. With our system goals in mind, we set out to decentralize signatures

and provide a modular crypto provider that can integrate new primitives in any language

at runtime. Threshold signatures can help us achieve decentralization by eliminating the

36

3.8. SOFTWARE ARCHITECTURE COMPONENTS

single point of failure of conventional signatures. Conventional signatures require each

peer to sign a transaction individually, which, if we think of attacks on a CA, a PKI, or

even ad hoc certification, can lead to Byzantine blocks and transactions. To accomplish

this modular crypto provider, we first need to define an API and some algorithms to be

supported by the cryptographic primitives we want to integrate into our crypto provider.

We then show how a cryptographic primitive communicates with the crypto provider

client by exchanging messages.

Let us now define the API that a primitive must respect to be integrated with our

crypto-provider:

• Gen(n,t) (GroupPublicKey,[]PrivateKeyShare): Given the number of participants

n and a minimum number of correct signatures t, generates a group public key

and a set of private key shares. The group public key is used to verify correct

signature formation and the private key share is used for signing. In the method

stub only n and the t can be parameterized, other parameterizations are done when

instantiating the scheme context (e.g., RSA mod size, hash function, etc.).

• Sign(b []byte, k PrivateKey) (s []byte, e error): Specify a message digest (in bytes)

b and a private key share k, and generate a signature share s, over b if it is possible

to sign, or an error e if something went wrong during the signing phase.

• Aggregate(s [][]byte, d []byte, k PublicKey, t int, n int) (sig []byte, err error):

Given a set of signature shares s, digest d, group public key k, minimum number

of correct signatures t, and size of group n, combine each signature share in s into

a group signature sig. If there are not enough correct signature shares, an error is

issued.

• Verify(s []byte, d []byte, k PublicKey) err error: Given a signature s, a digest

d, and a public key k, verify the signature s over d, and generate an error if the

signature is malformed.

Algorithms for non-resilient threshold schemes: In order to provide the robustness

guarantees for the different threshold schemes, we need to build algorithms into our

crypto-provider that are able to select correct signatures shares to build the final signature.

Recall that a robust (t-n)-threshold scheme is one that can generate the final signature in

the presence of Byzantine signature shares if we have at least t correct signature shares.

In other words, we can tolerate n− t incorrect signature shares, that is, n− t signer nodes

can yield invalid signature shares without affecting the liveness properties of our system.

To help us achieve robustness, we will use two algorithms (1, 2) proposed by [56].

Algorithm 1 and 2 are respectively classified into optimistic, meaning that it assumes that

it will be easy to find a set of correct signature shares, and pessimistic, meaning that it

assumes that more incorrect signatures will be obtained than correct signature shares.

37

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Both algorithms use the framework API described earlier, with aggregatePessimistic
and aggregateOptimistic mapped to the Aggregate methods in our API. We also defined

two auxiliary methods: (i) buildSignature/3 is given a valid signature shares, a digest, and

a public key, which it uses to generate a correct aggregate signature from the valid shares

or an error; (ii) generateNextCombination/2 is given a set of signatures greater than or equal

to t, a number with the size of the permutation , and the permutation ID, thus generating

a deterministic static permutation with t signature shares; (iii) verifySignatureShare/1
given a signature share returns error if the signature share is not built properly.

The pessimistic algorithm, as the name implies, assumes that some of the signature

shares will be corrupted. Therefore, it starts by validating each signature share until

it finds t correct signature shares. Then it reconstructs the final group signature. We

see that the complexity is O(t) in the best-case because the algorithm can find t correct

signatures after the t initial validations, and O(n) in the worst case because it is possible

that the final signature share is the t correct one or there are not enough correct signature

shares. It is easy to see that in an environment with many Byzantine signer nodes, this

algorithm behaves with linear complexity and better than the optimistic algorithm we

will see next.

Algorithm 1: Aggregate Pessimistic

// s is the set of signature shares to be aggregated
// d is the digest of the message
// k is the group public key
// t and n are respectively the lower threshold of current shares and group size
function aggregatePessimistic(s,d,k, t,n)

valid←− []
for sig←− s do

if verifySignatureShare(sig) != error then
valid←− valid ∪ sig

if len(valid) ≥ t then
return buildSignature(valid,d,k) //returns error if the signature is not valid

return error

Validating each signature share is very computationally expensive, so the optimistic

algorithm takes a different approach. If we create a subset with t signatures and recon-

struct the group signature with success, we can assume that the shares used are all valid.

In case of unsuccessful reconstruction, we go back and choose a new subset with t signa-

tures. It is easy to see that in the best-case scenario our complexity is linear (O(1)) because

we can obtain all correct signature shares in our first combination, but in the worst case

the complexity is O(n!/(t!(n− k))). For example, if we have a group of 15 signer nodes and

a threshold of 8, in the worst case we need to reconstruct 6435 incorrect group signatures

until we can obtain 1 correct group signature. Compared to the pessimistic algorithm,

the optimistic one behaves poorly in the presence of many Byzantine signer nodes.

38

3.8. SOFTWARE ARCHITECTURE COMPONENTS

Algorithm 2: Aggregate Optimistic

// s is the set of signature shares to be aggregated
// d is the digest of the message
// k is the group public key
// t and n are respectively the lower threshold of current shares and group size
function aggregateOptimistic(s,d,k, t,n)

comb←− generateNextCombination(s,t)
repeat

sig←− buildSignature(comb,d,k)
if sig ! = error then

return sig
comb←− generateNextCombination(s,t)

until len(comb) == 0
return error

Primitive to cryptoprovider communication: To ensure the property of pluggabil-

ity and factory modularity, our cryptoprovider must be structurally divided into two

prominent components that communicate with each other by exchanging messages. The

components are the cryptographic client, which is responsible for invoking the various

primitives, and the handler servers, which contains various primitives bundled together

like a Cryptographic Service Provider in Java Cryptography Extension (JCE).

To achieve such communication, we opt for a communication pattern known as Router-

Dealer, where the router keeps track of a connection list for the various handlers that

have previously connected to the router. This means that a router can send messages to n

dealers but the dealers can only send messages to one router. This pattern is particularly

useful because our cryptographic client can take on the router role to invoke the various

handler servers that take on the dealers’ role.

Figure 3.8 shows a cryptographic client (router) talking to three different handler

servers. A handler server is nothing more than an abstraction layer that contains commu-

nication protocols to enable communication between the router and the dealer, an API

that defines the interface that each primitive must implement in order to integrate with

our cryptoprovider, and the primitive that contains the necessary code to generate our

signatures. To create a new provider (Handler Server), it is only necessary to follow the

framework API that we discussed earlier.

Before we can use our cryptoprovider, each handler server must register each primitive

it manages so that the cryptographic client has knowledge of the primitives that can be

used and where to find them. After registering the primitive and invoking the smart

contract, the client is ready to send a transaction to be signed, along with the specification

for such a signature, so that any parameter used to sign a transaction can subsequently

be seen in the blockchain node.

39

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

t-BLS

C
om

m
un

ic
at

io
n

Pr
ot

oc
ol

s

C
ry

pt
og

ra
ph

ic

AP
I

t-RSA

t-DSA

Handler Server 1 (Dealer)

Provider Layer

Request

Response

C
om

m
un

ic
at

io
n

Pr
ot

oc
ol

s

C
ry

pt
og

ra
ph

ic

AP
I

Cryptographic
Client

Ap
pl

ic
at

io
n

co
de

Method
call

...
Handler Server n

Handler Server 2 (Dealer)

Figure 3.8: Cryptoprovider Architecture

Figure 3.9 illustrates the co-signature of a client transaction. A client transaction is

considered a black box that can only be interpreted by the smartcontract engine. The

co-signature header consists of the protocol version, the group size n, the threshold t, the

type of signature (conventional RSA, threshold RSA, etc.), and the signer’s public key,

which in our case will be the group’s public key.

Co-Signature

Client Transaction Header

Header

 Signer
Public Key

Protocol
Version Type of

Signature

Scheme Settings

T N

Figure 3.9: Co-Signature Message Structure

3.8.3 Smart Contract Processor

Our extended smart contract engine is a key component to dynamically choose some

parameterization used to sign a particular transaction with our crypto provider. In order

to dynamically determine the parameterization and verify the validity of a particular

transaction, a transaction must be executed by an extended smart contract that contains

security and application-specific validations defined by the smart contract owner.

To better illustrate what needs to be implemented in an extended smart contract

to be executed in our signer node, we first need to specify an extended smart contract

in pseudocode that is used as a model to be instantiated by a partial blockchain smart

contract. Succinctly, an extended smart contract can be divided into two distinct sections:

40

3.8. SOFTWARE ARCHITECTURE COMPONENTS

i. a section with properties and functions required to fulfill the requirements of a base

smart contract present in current blockchains. Typically, the base smart contract

contains properties and logic associated with the business requirements;

ii. a section with properties and functions required to extend a smart contract. This

includes ways to perform validations on a transaction, determine if it is valid, and

define how a transaction should be subsequently signed.

Listing 3.1: PseudoCode

1 contract extended_contract {

2 /*Define Structs

3 TYPE SECURITY_PROPERTIES = STRUCT {

4 SignatureType STRING,

5 SignatureScheme STRING,

6 N INTEGER,

7 T INTEGER,

8 PubKeyTTL INTEGER,

9 ValidFrom DATE,

10 ExpiresOn DATE,

11 IsValidTrans BOOLEAN

12 }

13

14 /*Define Application State Struct */

15 TYPE STATE = STRUCT {

16 ...

17 }

18

19 FUNCTION Invoke(msg BYTES, old STATE) STATE{

20 See if the invoker can execute the smartcontract

21 Parse msg and run application specific validations

22 Run application business logic to calculate new State

23

24 return STATE{...}

25 }

26

27 FUNCTION Validate(msg BYTES) SECURITY_PROPERTIES{

28 Run Security specific validations

29 Run Application specific validations

30 Calculate Security Properties

31

32 return SECURITY_PROPERTIES{...}

33 }

34 }

Listing 3.1 shows an extended smart-contract structure in pseudocode with different

required properties and functions. In the listing, the two sections mentioned earlier are

physically separated. Section i) is mapped to the type STATE and the Invoke function.

Section ii) is mapped to type SECURITY _PROPERTIES and the Validate function. If

41

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

a particular blockchain supports smart contracts, then an Invoke function and its cor-

responding properties are found in these smart contracts, allowing application-specific

validations to be performed and business logic code to be executed for a particular appli-

cation, transforming the old STATE of the blockchain into the new STATE. To execute a

smart contract in our signer node solution, it is mandatory to have a function to validate

transactions. This validate function takes a transaction and performs security and ap-

plication specific validations and finally computes SECURITY _PROPERTIES needed to

sign a transaction. The SECURITY _PROPERTIES are nothing but parameterization and

properties that help in signing a transaction. There are several fields in the SECURITY

_PROPERTIES, such as:

• SignatureType - Defines the type of signature used, can take the value of multisig-
nature, threshold signature, conventional signature, etc.

• SignatureScheme - Defines the scheme used to sign a certain transaction, can take

the value of RSA, BLS, DSA, etc.

• N - Defines the size of the group of witnesses to sign a certain transaction in case of

group signature.

• T - Defines the low threshold of signatures needed to form a valid transaction in

case of using a group signature.

• PubKeyTTL - Defines the maximum lifetime a public key can have under the as-

sumptions of this smart contract. After x seconds, a public key should no longer be

used for security reasons.

• ValidFrom - Defines the point in time when it is valid to use a certain private key

to sign a transaction

• ExpiresOn - Defines the point in time when a private key expires.

• IsValidTrans - Determines whether a particular transaction is valid and can be

signed. When the smart contract executes a transaction, it performs application-

specific and security-specific validations that determine whether or not a particular

transaction is valid.

Client to Engine communication: Like all our other components that are blockchain

dependent, the smart contracts will need to be modified and extended to a specific

blockchain implementation to maintain the high level of agnosticism, reconfigurability,

and portability for our solution.

To achieve the system goals, we decided to separate the smart contract processor

into two parts: a client and a smart contract engine. The client interacts with the smart-

contract engine via message passing. For this purpose, we could have simply used a

client-server communication pattern, since all extended smart contracts could run in the

42

3.8. SOFTWARE ARCHITECTURE COMPONENTS

same engine. However, for better flexibility, we choose to use the same communication

pattern that we integrated in the crypto-provider because it allows us to run multiple

smart contract engines simultaneously.

Smart Contract 1

Smart Contract 2

Smart Contract 3

SC Engine 1 (Dealer)

Engine Layer

Invoke Req

Invoke Resp.

Sm
ar

t C
on

tra
ct

AP

I
Smart Contract

Client

Ap
pl

ic
at

io
n

co
de

Method
call

Sm
ar

t C
on

tra
ct

AP

I

Validate Req

Validate Resp.

...
SC Engine n

SC Engine 2 (Dealer)

Figure 3.10: Smart Contract component communication.

Figure 3.10 shows a smart contract client talking to an extended smart contract pro-

cessor engine. An extended smart contract engine contains all the code needed to inter-

pret/compile/execute an extended smart contract in a given language. To create a new

extended smart contract processor engine, it is necessary to implement a protocol that

contains the following messages:

a. Register Message: A register message must be sent from the engine to the client to

inform the client of the existence of the engine.

b. Validate Message: When a client wants to validate a particular transaction, it sends

a validation message and receives the security properties in response.

c. Execute Message: When a client wants to execute the normal flow of a smart con-

tract, it sends an execute message and receives in response whether the smart con-

tract was executed correctly.

3.8.4 Signature Manager

One of the most important components in our prototype is the Signature Manager, be-

cause it is responsible for gluing together all the components we have discussed up to

this point, such as Smart Contract Processor, Cryptoprovider, REST API and the Storage.

The Signature Manager achieves this unification by running one of the implemented pro-

tocols, one for a permissioned blockchain and another for a permissionless blockchain.

These protocols have the ability to talk to the different components.

43

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Permissioned Protocol: The simplest protocol we have in our solution is the permis-

sioned protocol. It is designed for a closed membership blockchain, where the admin-

istrator configures the different peers before starting the blockchain or runs an update

command for the existing nodes. This administrative configuration makes it easy to cre-

ate groups and distribute shares because apart from having everything configured, the

roles for each peer are well defined which makes it easy to create a group that witnesses

incoming transactions, we just need to select n signers from that membership that belong

to the same witness group.

To better explain the permissioned protocol, the Algorithm 3 represents the respective

pseudocode of the protocol based on events.

The permissioned protocol or closed membership signature protocol has defined in

the interface an asynchronous request called Sign that is invoked by a client communi-

cating with the REST API, and an indication that allows the protocol to return the final

aggregated group signature to the client that requested it.

To temporary store the transactions that are being processed we have two map data

structures in the protocol state, the signState and the signRequest. The signState contains

the signature shares already sent by other witnesses, and the signRequest contains im-

portant information about the request to be fulfilled, such as the scheme to be used, the

minimum threshold of signatures required, the size of the witness group, the data to be

signed, and the UUID of this transaction.

Upon a signing request from the client, the signature manager starts executing a spe-

cific smart contract, provided by the client, against the data to be signed. The smart

contract engine executes a smart contract and returns a tuple with useful properties. For

simplicity, we have not specified in the protocol algorithm all the properties returned by

the smart contract engine after the execution of a smart contract. Based on the properties

returned by the engine, the protocol first cheques whether the transaction is valid. If it

is valid, transaction processing can continue and the request is stored in the signRequest.

After that, it is necessary to broadcast the transaction to all other witnesses so that they

can produce a signature share. Then, the protocol selects the correct private key share

previously installed by an administrator and uses it to call a sign function in our crypto-

provider module, which produces a signature share that is stored in the signState along

with other signature shares.

Concurrently, after the RequestToSign is triggered, other witnesses will produce their

signature share, as we explained earlier. The difference is that after producing the share,

the witness broadcast its share to the group as a SignResponse. Upon sign responses, a

witness collects the signature shares, and eventually, if there are at least t non-byzantine

nodes, the signature can be aggregated. To aggregate a signature, a witness searches for

the matching public key and asks the cryptoprovider to aggregate the transaction. After

the signature is aggregated, if it is valid, it is returned to the client that requested it via

the SignDelivery indication. If it is not valid and all shares have been delivered, an error

message is sent to the client.

44

3.8. SOFTWARE ARCHITECTURE COMPONENTS

Algorithm 3: Closed Membership Sign Protocol

Interface:
Requests:

Sign (inf o,data)
Indications:

SignDelivery (signInf o,signature)

State:
signState //map with a list of shares identified by the request id.

signRequest //map with request information identified by the request id.

Upon Init () do:
signState[]←−⊥;
signRequest[]←−⊥;

Upon Sign(inf o,data) do:
(scheme,t,n,valid)←− invokeSmartContract(info.SCAddress,data);
If valid then

signRequest[info.uuid]←− (scheme,t,n,data)
Trigger BroadcastP2P(RequestToSign,inf o,data);
privKey←− getPrivKey(scheme,t,n)
signature←− sign(privKey,scheme,t,n)
signState[info.uuid]←− signState[info.uuid] ∪ {signature}

Upon RequestToSign(inf o,data) do:
(scheme,t,n,valid)←− invokeSmartContract(info.SCAddress,data);
If valid then

signRequest[info.uuid]←− (scheme,t,n,data)
signature←− sign(privKey,scheme,t,n)
Trigger BroadcastP2P(SignResponse,inf o,signature);

Upon SignResponse(inf o, signature) do:
signState[info.uuid]←− signState[info.uuid] ∪ {signature}
r←− signRequest[info.uuid]
If #signState[info.uuid] ≥ r.t then

pubkey←− getPubKey(scheme,t,n)
(aggregateSig,valid)←− aggregate(scheme,r)
If valid then

Trigger SignDelivery((pubkey,scheme),aggregateSig);
Else If r.t = r.n then

Trigger SignDelivery((pubkey,scheme),error);

45

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

Permissionless Protocol: Removing closed membership assumptions from our per-

missioned protocol presents several challenges that conflict with the open nature of a

permissionless blockchain. To this end, we present several solutions to this protocol and

explain why we chose one in favor of the others. To this end, we present several solutions

to this protocol and explain why we chose one in favor of the others. We also build step

by step the protocol present in the Algorithm 4 and 5.

There are a few questions that need to be answered to create a permissionless protocol:

• How can we select a group of peers to be involved in signing transactions?

• How to distribute/generate the shares?

• How to receive signature shares and aggregate them?

How can we select a group of peers to be involved in signing transactions?
A naïve way to solve this problem would be to select the entire network of peers as

a group. However, this solution introduces some scalability issues, as there is an upper

bound where the latency to wait for the signature is unacceptable.

A second approach and more realistic for group election would be similar to Byzcoin

[37]. With PoW, nodes with computational power can participate by mining participation

shares, allowing them to cooperate in the transaction witness in a proof-of-membership

mechanism. To revoke shares or accept new participants, this mechanism builds on a

sliding window. Shares outside the window expire and become obsolete, and shares

inside the window give a signer the opportunity to participate in the signer’s group to

witness transactions. This solution has the advantage of being fully decentralized and

following the nature of the blockchain, however, it is a bit too complex for our problem

and introduces too much latency, since in addition to election a group, we also need to

elect a leader to coordinate the signing session, and this protocol for choosing a leader

must have the property of being provably fair and fully decentralized.

The second approach removes fairness from the solution, as groups would become

biased since only peers with higher computational power would be chosen as witnesses.

To mitigate this problem, we decided to create a third approach.

The third approach would allow the client that sends the transaction to choose which

signer nodes to sign the transaction, since clients want to select the correct nodes to

witness their transactions. A client can obtain a subset of the signer nodes from the

blockchain at any time. After obtaining a subset, the client can perform group generation

in a random manner offline and autonomously without consuming bandwidth. We must

note at this point that the client is the interested party in obtaining a correct signer node

group, and not doing so in a random manner would harm its transactions due to the

possibility of selecting a biased group containing Byzantine nodes.

How to distribute/generate the shares?
Having defined the witness group, we then need to decide how to divide the shares be-

tween the different members of the group. This problem does not arise in a permissioned

46

3.8. SOFTWARE ARCHITECTURE COMPONENTS

blockchain, since we can simply set up the shares when we first start the system up. In

a permissionless blockchain, we cannot set up the shares in the same way because of the

large combinations. For example, take a permissionless blockchain with 10000 signer

nodes available, if we want to set up a BLS threshold signature with n out of 5 nodes, we

would get 8,325 ∗ 1017 possible combinations. Of course, there are a lot of other issues,

such as churning and who is responsible for setting up everything. For all these reasons,

we need to find another way to distribute the shares:

1. The first solution to this problem can be mapped to the possibility of generating

groups with PoW by choosing a leader with a provably fair algorithm that would

be responsible for generating the shares and distributing them. This solution, as

described, ends up centralizing trust in the leader. In this way, we would have to

introduce a notion of epochs in which the leader would be elected and would be

responsible for that epoch. This solution is slow because we would have to generate

different key shares for each transaction and elect new leaders for different epochs.

2. We chose a second approach and let the client distribute the shares, since the clients

themselves are the ones most interested in the protocol. As we discussed earlier,

a client can generate a group offline and autonomously without consuming any

blockchain resources. To do so, the client would only need to obtain a subset of

signer nodes, and then it could generate the group. To distribute the shares, the

client could take advantage of this group generation to allocate a private key share

for each member of the witness group. Later, the client could use a special operation

to inform each participant about the groups it has integrated and the corresponding

private key shares for signing transactions from that client. We must note here,

the more careful the client is, the more groups it can generate for the different

transactions to be processed, however, the signer would have knowledge of the

(Time To Live) TTL, so the signer can discard stale groups and private key shares.

How to receive signature shares and aggregate them?

In a permissioned blockchain, our signer node can easily broadcast the signature

shares generated for each node because the membership will be small, but the same does

not happen in a permissionless blockchain. Thus, we intend to solve this problem in one

of the following ways:

1. The easiest way to disseminate the signature shares to the interested party is to

organize the witnesses into a list. When the first member of the group finishes

co-signing a transaction, he will pass the signature share to the next witness. The

other witnesses will do the same but with all those previously produced. When the

required threshold of signature shares is reached, the signature is produced by that

witness. This solution is not fault-tolerant, as a single error in the list can cause the

protocol to stop.

47

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

2. To improve the robustness of the aggregation, we can organize it in a tree instead

of a list. Like this, a failure of a branch does not mean that the protocol stops.

3. Finally, we could set up a smaller broadcast domain containing only the peers that

belong to a particular witness group. Here, the peers could broadcast the signature

shares and the first one to collect the minimum number of shares would generate

the signature. We will pursue this last option since it allows all peers to get all

shares, and in case of failure of a leader it is easy to contact other peers to obtain

the aggregated signature. However, we take a small performance hit to broadcast

the shares to all group members.

We can summarize the chosen approaches as follows: a) the client selects a subset of

the membership and generates groups offline; b) the client generates shares offline for the

groups and then installs them in each signer node belonging to the same group; c) the

signer nodes broadcast the shares between the group, aggregating into the final signature.

Algorithm 4: Open Membership Sign Protocol Part 1

Interface:
Requests:

Sign (inf o,data)
InstallShare (inf o,priv,pub)

Indications:
SignDelivery (signInf o,signature)

State:
signState //map with a list of shares identified by the request id.

signRequest //map with request information identified by the request id.

keyShares //map with key shares identified by an unique id

Upon Init () do:
signState[]←−⊥;
signRequest[]←−⊥;
keyShares[]←−⊥;
Setup Periodic Timer Clean (T) //T is the clean period in seconds

Upon InstallShare(inf o,pub,priv) do:
keyShares[hash(pubKey)]←− (info,pub,priv)
Trigger JoinBroadcastGroup(hash(pub))

48

3.8. SOFTWARE ARCHITECTURE COMPONENTS

Algorithm 5: Open Membership Sign Protocol Part 2

Upon Sign(inf o,data) do:
scResult←− invokeSmartContract(info.SCAddress,data);
(valid,shareKey)←− checkValidityAndGetShareKey(info,scResult);
If valid then

(scheme,t,n)←− (cResult.scheme,scResult.t,scResult.n)
signRequest[info.uuid]←− (scheme,t,n,data,info)
Trigger BroadcastToGroup(RequestToSign,hash(shareKey.pub),inf o,data);
signature←− sign(shareKey.priv,scheme,t,n)
signState[info.uuid]←− signState[info.uuid] ∪ {signature}

Upon RequestToSign(inf o,data) do:
(scheme,t,n,valid)←− invokeSmartContract(info.SCAddress,data);
(valid,shareKey)←− checkValidityAndGetShareKey(info,scResult);
If valid then

(scheme,t,n)←− (cResult.scheme,scResult.t,scResult.n)
signRequest[info.uuid]←− (scheme,t,n,data)
signature←− sign(shareKey.priv,scheme,t,n)
Trigger BroadcastToGroup(SignResponse,hash(shareKey.pub),inf o,signature);

Upon SignResponse(inf o, signature) do:
signState[info.uuid]←− signState[info.uuid] ∪ {signature}
r←− signRequest[info.uuid]
If #signState[info.uuid] ≥ r.t then

shareKey←− keyShare[r.groupId]
(aggregateSig,valid)←− aggregate(shareKey.pub,scheme,r)
If valid then

Trigger SignDelivery((pubkey,scheme),aggregateSig);
Else If r.t = r.n then

Trigger SignDelivery((pubkey,scheme),error);

Upon Clean() do:
Foreach shareEntry ∈ KeyShares do

toDelete←− checkKeyValidity(shareEntry)
If toDelete then

delete(KeyShares,hash(shareEntry.pub))

49

CHAPTER 3. SYSTEM MODEL AND ARCHITECTURE

3.9 Summary

In this chapter, we have presented our system model and architecture for an agnostic, scal-

able, and customizable component that can integrate with different blockchain typologies

and enable co-signing of client transactions.

As we have seen in this chapter, we could not fully modify a blockchain node to

integrate group cosignatures without compromising the portability and adaptability of

our solution to different blockchain platforms with a variety of configurations, so we split

into two main components: (i) a signer node, responsible for cosignatures and transaction

validations; (ii) and a validator node, whose goal is to store transactions along with the

cosignature in a distributed immutable ledger to enable auditability and decentralization.

To support different types of membership, we defined two protocols, one for permissioned

blockchains, which assumes that an administrator has previously set up the signer nodes,

and one for permissionless blockchains, which places the responsibility of installing the

group key shares on the most interested party, the client.

We also introduced two novelty components: i) a crypto-provider capable of including

primitives in any language and hot swap cryptographic primitives at runtime; ii) and an

extended smart contract that allows to dynamically change the various parameters of the

crypto-provider and accept or reject a transaction, at the co-signing phase.

In the next chapter, we will discuss the implementation of our prototype using the

system model and software architecture presented in this chapter.

50

C
h
a
p
t
e
r

4
System Implementation

In this chapter, we present our prototype implementation considering the system model

and software architecture shown in the chapter 3. We start with the prototype overview

to describe at a high level the components that were implemented and the technologies

used for each of them. Then we go deeper and present a possible implementation that

follows our system model and architecture.

4.1 Prototype Overview and Technologies

Prototype Overview: To give an overview of our prototype, we describe the main services

and the structure of the components below:

• Signer Node1 is the component responsible for producing threshold and group

signatures and contains subcomponents such as, the crypto provider2, REST API,

P2P network, smart contract engines 3 4, signature manager and some shared utils
5. We implemented the signer node from scratch.

• Blockchain Validator Node represents any node of a blockchain platform. To prove

that our solution is portable and agnostic against any implementation, we selected

two different blockchain6 7 nodes that we adapted and integrated into our solution

with minimal code changes by providing support for threshold and group signatures

to increase the degree of resilience in these blockchain platforms.

1Signer Node: https://github.com/jffp113/SignerNode_Thesis
2Crypto-Provider: https://github.com/jffp113/CryptoProviderSDK
3Algorand Smart Contract Engine: https://developer.algorand.org/docs/features/asc1/
4Hyperledger Smart Contract Engine: https://github.com/jffp113/sawtooth-smartcontract
5Shared Utils: https://github.com/jffp113/go-util
6Adapted Algorand: https://github.com/jffp113/go-algorand
7Adapted Sawtooth: https://github.com/jffp113/sawtooth-core

51

https://github.com/jffp113/SignerNode_Thesis
https://github.com/jffp113/CryptoProviderSDK
https://developer.algorand.org/docs/features/asc1/
https://github.com/jffp113/sawtooth-smartcontract
https://github.com/jffp113/go-util
https://github.com/jffp113/go-algorand
https://github.com/jffp113/sawtooth-core

CHAPTER 4. SYSTEM IMPLEMENTATION

• The benchmark tool8 represents a client we developed to test, evaluate and validate

our implemented prototype.

Technologies: As we mentioned earlier, we changed two blockchain platforms to

prove the agnosticism and portability of our solution. For a permissioned blockchain

platform, we choose Hyperledger Sawtooth9, and for a permissionless blockchain, we

choose Algorand10, as they are two distinct blockchain platforms with different proper-

ties.

Hyperledger Sawtooth version 1.2.611 is written in both Python 312 and Rust 1.50.013

languages and can be supported by a variety of consensus protocols (e.g., PBFT, RAFT

and PoET), but to provide byzantine fault tolerance we have chosen the PBFT consensus

protocol.

To communicate with a Sawtooth node, it is necessary to do an HTTP REST call with

the payload marshaled in the Google Protobuf14 serialization technology. To support

group signatures, we only had to modify the Python 3 code to add group signature

verifications, and add new fields to the transaction and ledger block representation so

that we can persistently store the group signature in the ledger. Sawtooth supports smart

contracts written in many languages. To extend the smart contracts, we decided to modify

the SDK15 provided by Sawtooth, which is written in Golang 1.15, incorporating a way

to validate the transactions and parameterize the crypto provider in the validator node.

Algorand version 2.5.* is written in Golang 1.1516 and is supported by a PPoS con-

sensus protocol. Unlike Sawtooth, which uses a well-known marshall protocol, Algorand

defines its own data marshalling protocol called MSGP17 (Message Pack), with client-to-

node communication using REST with MSGP or JSON payload. As with the Sawtooth

node, we supported group signature verification in Algorand, but in this case we added

verifications written in Golang instead of Python. We also added new fields to transac-

tions and blocks written in MSGP to make the group signature persistent and auditable

under a distributed ledger. Algorand’s smart contracts are written in TEAL, a stack ma-

chine language similar to Assembly. To extend these smart contracts, we created a TEAL

interpreter in Golang using a subset of the operations available in TEAL18

We built the signer node from scratch using Golang 1.15. Different signer nodes

8Benchmark tools: https://github.com/jffp113/Thesis_Client
9Hyperledger Sawtooth: https://github.com/hyperledger/sawtooth-core

10Algorand: https://github.com/algorand/go-algorand
11Sawtooth: https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/introduction.html
12Python: https://www.python.org/
13Rust: https://www.rust-lang.org
14Protobuf: https://github.com/protocolbuffers/protobuf
15Sawtooth Smart Contract SDK: https://github.com/hyperledger/sawtooth-core
16Golang: https://golang.org
17MSGP: https://github.com/algorand/msgp
18TEAL: https://developer.algorand.org/docs/reference/teal/specification/

52

https://github.com/jffp113/Thesis_Client
https://github.com/hyperledger/sawtooth-core
https://github.com/algorand/go-algorand
https://sawtooth.hyperledger.org/docs/core/releases/1.2.6/introduction.html
https://www.python.org/
https://www.rust-lang.org
 https://github.com/protocolbuffers/protobuf
https://github.com/hyperledger/sawtooth-core
https://golang.org
https://github.com/algorand/msgp
https://developer.algorand.org/docs/reference/teal/specification/

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

communicate with each other using a library called LibP2P19 version 0.13.0, which al-

lows to easily build a publish-subscribe architecture on top of a Peer-To-Peer network.

Protobuf is used to serialize any communication that takes place with the signer node.

Our crypto-provider is also written in Golang, but uses a Router-Dealer communication

pattern implemented by the ZeroMQ20 messaging library, which allows primitives to be

integrated in any language. We have integrated threshold BLS21 and threshold RSA22,

both written in Golang, as our prototype cryptographic primitives. The same commu-

nication pattern Router-Dealer is used in the smart contract engine to support different

implementations of smart contract engines that can be attached to our signer node. In

our case, we have two different smart contract engines, one for Algorand and one for

Sawtooth.

The deployment of the blockchain validator nodes, signer node, crypto-provider prim-

itives, and smart contract engines was done using containerization technology, more

specifically Docker 20.10.523 and Docker Compose 2 24. During development, it was

used for fast deployment time and local virtualization of a network, during experimental

evaluation and analysis, it was used to minimize deployment time on our distributed

environment.

4.2 Prototype Architecture and Implementation

As mentioned earlier, our prototype implementation consists of three main components:

i) signer node, which contains the implementation of subcomponents that we will discuss

later in this chapter; ii) validator node, which can be a Algorand Node or a Sawtooth

node; iii) and a client, which is responsible for generating the workload to simulate a real

world client. The architecture of the implemented prototype can be seen in Figure 4.1.

In terms of implementation effort, the entire source code of the prototype, includ-

ing the code base for the signer node components, and the two distinct nodes of the

blockchain platform, are mapped to approximately 8315 lines of code, as shown in Table

4.1. The Validator node and its components, built from scratch, resulted in approximately

7285 lines of code. The changes to the Hyperledger Sawtooth and Algorand nodes are

approximately 150 and 130, respectively.

Regarding the complexity of our implementation, we had to work with different tech-

nologies, for example, our prototype includes four different programming languages

(Golang, Python, Rust, TEAL), four different communication libraries and protocols

(LibP2P, REST HTTP, ZeroMQ, UNIX sockets), two different blockchain implementa-

tions (Algorand, Sawtooth), and three different marshaling protocols (JSON, Protobuf,

19LibP2P: https://github.com/libp2p/go-libp2p
20ZeroMQ: https://github.com/pebbe/zmq4
21tBLS: https://github.com/dedis/kyber
22tRSA: https://github.com/niclabs/tcrsa
23Docker: https://docs.docker.com/install/
24Docker Compose: https://docs.docker.com/compose/

53

https://github.com/libp2p/go-libp2p
https://github.com/pebbe/zmq4
https://github.com/dedis/kyber
https://github.com/niclabs/tcrsa
https://docs.docker.com/install/
https://docs.docker.com/compose/

CHAPTER 4. SYSTEM IMPLEMENTATION

Table 4.1: Prototype implementation extension metrics (LoC)

Components Estimated LoC
Signer Node (Total) 7285
Hyperledger Extended Smart Contract Engine (Changes) 130

Sawtooth Smart Contract Specification 200
Algorand Extended Smart Contracts Engine 700∗

Algorand Smart Contract Specification 130
Algorand Smart Contract Specification 130

Smart Contract Engine Proxy 380
Rest API 100

Protocol Manager 1435
Crypto-provider engine proxy 200

Crypto-Provider Engine 700
Crypto-Provider Handler TBLS and TRSA 1310

Communication Protocols (P2P,Engine-Proxy) 700∗
Util 950

Signer Node Client 350∗
Benchmarker 750∗
Sawtooth Changes 150
Algorand Changes 130

Total 8315

MSGP). The complexity of the implementation is also increased by the fact that we respect

our System Goals to create an agnostic, portable, and extensively configurable prototype.

In addition, the lack of documentation and the number of cross-component changes for

Sawtooth and other frameworks also increase the effort of the implementation.

In our prototype, we tried to achieve the maximum code quality and code coverage.

When it was not possible to write unit tests, we performed integration tests and bench-

marks to prove that our prototype works correctly.

The following subsections show how to different components and subcomponents

were implemented using the architecture presented in Chapter 3, and how they commu-

nicate with each other to create a fully functional prototype that can be integrated into

any blockchain or distributed system.

4.2.1 REST API & Interconnect

As shown in Figure 4.1, the REST API enables communication between a client and a

signer node through various defined endpoints. The API is written in Golang and takes

advantage of the HTTP mux package available in the Golang standard library. A client

can initiate an interaction with one of the signer nodes by sending a request using HTTP

over Transport Layer Security (TLS) to one of the available endpoints in the API. The

request must be marshalled using Google’s Protobuf protocol. When the request reaches

the REST API, it is verified to see if it was created correctly, and only then is it submitted

to our Interconnect component, which returns a Golang channel so that our Rest API can

54

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

HTTP

C
lient / Benchm

ark C
lient

Signer Node Network

Validator Network

HTTP

REST API
Custom Golang code

Multi-threaded comm.
module

Protobuf Payload

Interconnect

Event
Base

Dispatcher

Custom
Golang
code

Smart Contract Engine
Custom Golang code

Router-Dealer Pattern

ZeroMQ

Threshold BLS

Threshold RSA

Smart Contract Engine
Extended Sawtooth
SmartContract API
Extended Algorand

SmartContract (TEAL)

P2P Communication

PublishSubscriber Pattern

Custom Golang code

LibP2P

CryptoProvider
Custom Golang code

Router-Dealer Pattern

ZeroMQ

Signature Manager
Custom Golang code

Permissioned Protocol

Permissionless Protocol

Algorand Validator Node
Golang code

Extended Transaction
Validations

Consensus Service

...

P2P Communication

Signer Node

Validator Node

OR

Sawtooth Validator Node
Python/Rust code

Extended Transaction
Validations

Consensus Service

...

P2P Communication

Figure 4.1: Prototype architecture: the prototype architecture is divided into two main
components: a) Signer Node; b) Validator Node. Subsequently, each component is di-
vided into sub-components. Components with blue line around them represent a Docker
containerized component.

asynchronously wait for a response from a particular registered protocol.

The interconnect component is also written in Golang and serves as an intermediate

dispatcher between the REST API and a registered protocol handler. New protocols can

register handlers in the Interconnect component to respond to specific incoming messages

from the REST API (similar to an event base or a publish-subscriber architecture). If there

is no registered handler for a particular message, the interconnect discards the message.

If there is more than one registered handler, the message is processed by each handler in

the order in which they were registered.

Our REST API exports a subset of the endpoints defined in chapter 3, which are

described in detail below:

55

CHAPTER 4. SYSTEM IMPLEMENTATION

URL: https://<address>:<port>/sign

Method: POST

Request format: application/protobuf (Listing 4.1)

Response format: application/protobuf (Listing 4.2)

Allows a client to request a group of witnesses to co-sign a particular transaction, pro-

ducing a group signature signed by a set of signer nodes. If a smart contract with the

requested <SmartContractAddress> is available, the request is co-signed with the spec-

ification resulting from the execution of the smart contract. After the co-signature is

generated, the signature is returned to the client with all necessary meta-information.

URL: https://<address>:<port>/verify

Method: POST

Request format: application/protobuf (Listing 4.3)

Response format: application/protobuf (Listing 4.4)

Allows a client to verify a group signature produced by a group of witnesses. This end-

point will return whether the signature is valid or not.

URL: https://<address>:<port>/install

Method: POST

Request format: application/protobuf (Listing 4.5)

Allows a client to install key shares in a signer node to be used during a co-signing session.

The client must invoke this endpoint in all selected signed nodes that participate in the

same witness group. A request to this endpoint is always successful.

URL: https://<address>:<port>/membership

Method: GET

Response format: application/protobuf (Listing 4.6)

Allows retrieval of a subset of the membership known to the signer node that the client

contacts. A request to this endpoint always succeeds, but the response may have an empty

set of members.

To marshall the data in our REST API and all Signer Node components, we choose

to use Protobuf technology. Our choice to use Protobuf was not random. Protobuf is

an efficient way to encode data in an extensible binary format that allows you to easily

change the protobuf structure while maintaining integrity and backwards compatibility

with the old message structures. In our REST API, we have defined 8 different message

structures, two for each endpoint.

Listing 4.1 shows the structure of a sign request message. A Sign Request can be

unequivocally identified by a UUID and contains a SmartContractAddress that is used

by the signature manager to correctly select which smart contract to use to process a

particular transaction, it also contains a field with the content to be signed, usually this

56

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

content contains a encoded transaction understood by the smart contract logic. If this

sign message is used in a permissionless environment, the client may also specify a keyId
to select a key previously deploy by a client.

Listing 4.2 shows the structure of a sign response message. A Sign Response message

contains the scheme, represented as a string used to sign the transaction, and the group

cosignature, represented in bytes.

Listing 4.1: Protobuf message used to

encode a client sign request.

1 message ClientSignMessage{

2 string UUID = 1;

3 string SmartContractAddress = 2;

4 bytes Content = 6;

5 string KeyId = 7;

6 }

Listing 4.2: Protobuf message used to

encode a sign response.

1 message ClientSignResponse{

2 string scheme = 1;

3 bytes signature = 2;

4 }

Listing 4.3 shows a structure of a verify message. A client who wishes to verify a

signature must specify the scheme used to sign the message, the public_key of the witness

group, the disgest of the transaction, and the group signature to be verified. A response

to a verify message, shown in listing 4.4, contains only a status informing whether the

signature is invalid or ok.

Listing 4.3: Protobuf message used to

encode a client verify request.

1 message ClientVerifyRequest{

2 string Scheme = 1;

3 bytes public_key = 2;

4 bytes digest = 3;

5 bytes signature = 4;

6 }

Listing 4.4: Protobuf message used to

encode a verify response.

1 message ClientVerifyResponse{

2 enum Status {

3 STATUS_UNSET = 0;

4 OK = 1;

5 INVALID = 2;

6 }

7 Status status = 1;

8 }

Listing 4.5 shows a message structure sent by a client to perform a key installation in

one of the signer nodes. A client must provide in this message a group public_key encoded

in bytes to allow a signer node to aggregate group signatures, a private_key share encoded

in bytes to allow the signer node to sign a particular transaction, a validUntil indicating

the time at which a key expires as Unix time (the number of seconds elapsed since January

1,1970 UTC), and a isOneTimeKey encoded in a bool to represent whether a key can only

be used once.

Listing 4.5: Protobuf message used to encode a client key installation request.

1 message ClientInstallShareRequest{

2 bytes public_key = 1;

3 bytes private_key = 2;

57

CHAPTER 4. SYSTEM IMPLEMENTATION

4 int64 validUntil = 3;

5 bool isOneTimeKey = 4;

6 }

Listing 4.6 shows a message structure sent in response to a client get membership

request. A response consists of a status indicating whether the request succeeded, and a

set of peers, each consisting of a set of distinct addresses (addr) to represent the possibility

of a signer node listening on more than one network interface, and a id to unequivocally

identify a signer node.

Listing 4.6: Protobuf message used to encode a membership response.

1 message MembershipResponse{

2 enum Status { STATUS_UNSET = 0; OK = 1; INVALID = 2; }

3 message peer{

4 string id = 1;

5 repeated string addr = 2;

6 }

7 Status status = 1;

8 repeated peer peers = 2;

9 }

4.2.2 CryptoProvider

We designed and implemented our crypto-provider as described in chapter 3 to build a

pluggable and factory modular crypto-provider. The crypto-provider is divided into two

components: i) a provider layer, where new primitives are registered; ii) and a crypto-

graphic client. The communication between these two components is done using TCP or

Unix sockets. Since we used the ZeroMQ communication library for the communication

between the client and the engine and employed a Router-Dealer pattern, our client can

support multiple provider layers in arbitrary languages, such as Java, Python, Ruby, C,

etc. To create a proof-of-concept, we implemented a provider layer engine written in

Golang and included various signature schemes such as RSA and BLS and their respec-

tive threshold versions. This is only possible because our crypto-provider is designed to

support conventional signatures and group signatures.

In order to smoothly deploy the engine with the respective primitives, we container-

ized the engine using Docker containers, which allows easy integration of new primitives

by simply plugging in a new engine with other primitives. If a bug is found in a primitive

in one of the engines, it is possible to hot-swap with a new primitive without stopping

the system. To do this, we first plug in the new engine, which informs the cryptographic

client that each primitive is available at a new address, and only then do we stop the old

engine.

To include new primitives in our crypto-provider, it is necessary to implement the

methods present in the listing 4.7. There is one method for each cryptographic signature

operation, one for signing, one for verifying, and another for aggregating the various

58

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

signature shares produced by the signer nodes. There is also a method for generating a

public key and a list of private key shares. Since the primitives may have different formats

of public and private keys, they must implement methods to unmarshal and marshal the

keys to and from binary format. To identify the primitive and allow a cryptographic

client to invoke it, it is necessary to implement the SchemeName.

Listing 4.7: Methods had to be implemented to add a new primitive to our crypto

provider.
1 func (t *tbls) Sign(digest []byte, key crypto.PrivateKey) ([]byte, error) {...}

2

3 func (t *tbls) Verify(signature, msg []byte, key crypto.PublicKey) error {...}

4

5 func (t *tbls) Aggregate(shares [][]byte, digest []byte, key crypto.PublicKey, t, n int) ([]byte,

↪→ error) {...}

6

7 func (t *tbls) Gen(n int, t int) (crypto.PublicKey, crypto.PrivateKeyList) {...}

8

9 func (tbls *tbls) SchemeName() string {...}

10

11 func (tbls tblsHandler) UnmarshalPublic(data []byte) crypto.PublicKey {...}

12 func (tbls tblsHandler) UnmarshalPrivate(data []byte) crypto.PrivateKey {...}

After implementing a primitive, it is necessary to create the engine (processor) and

point it to the URL of the signer node, as shown in the listing 4.8. Here it is possible

to choose a variety of protocols, from inproc to TCP. Now we are ready to register the

primitives we want to make publicly available in the signer node. To do this, we call

AddHandler in the engine on all the primitives we want to register.

Listing 4.8: Example of how to register a new primitive in a provider layer engine.
1 processor := crypto.NewSignerProcessor(opts.SignerNodeURL)

2 processor.AddHandler(tbls.NewTBLS256CryptoHandler())

3 processor.AddHandler(trsa.NewTRSACryptoHandler())

4.2.3 Smart Contract Engine

For this prototype, we implemented two different smart contract extensions, one for

Hyperledger Sawtooth smart contracts and the other for Algorand smart contracts, fol-

lowing the specification shown in the previous chapter. Since the smart contracts have

completely different natures, similar to the crypto-provider, it had to be split into three

components so that our blockchain is agnostic to the smart contract language used. The

three components are: a) an engine to execute/interpret extended smart contracts of a

given blockchain; b) a client to invoke smart contracts in the engine; c) and the smart

contract itself. Similar to the crypto-provider, the engine and client communicate via

the ZeroMQ communication library with a Router-Dealer pattern that allows multiple

engines to be connected to a single client. Again, we decided to containerize the smart

contract engine in a Docker container to deploy the engines faster and be able to switch

them around during execution.

59

CHAPTER 4. SYSTEM IMPLEMENTATION

To keep it simple, the main logic of a smart contract is capable of receiving three types

of operations that manipulate the storage of a smart contract, such operations are, an inc

operation that increments a value in a given key, a dec operation that decrements a value

in a given key, and a set operation that sets a value in a given key. Both smart contracts

that we have extended to validate transactions can also perform these three operations.

Hyperledger Sawtooth supports smart contracts across a range of languages. We chose

to extend the smart contract SDK written in Golang because almost all the components

we develop are written in Golang. Listing 4.9 shows an excerpt of an extended Hyper-

ledger Sawtooth smart contract that follows the specification available in chapter 3. We

have extended the base smart contract with a new function called Validate (in line 16,)

that receives a smart contract validation request, validates the transaction, and generates

the correct parameterization for our crypto provider. In the case of our excerpt, we have

simplified the Validate function so that it always generates the same parameterization for

each transaction. However, we can add roles in this function to choose the parameteriza-

tion depending on the transaction we want to process.

Listing 4.9: Excerpt of a Hyperledger Sawtooth Smart Contract written in Golang.
1 type IntkeyPayload struct {

2 Verb,Name string

3 Value int

4 }

5 type IntkeyHandler struct {

6 namespace,scheme string

7 t,n int

8 }

9 func NewIntkeyHandler(namespace string,t,n int, scheme string) *IntkeyHandler {

10 return &IntkeyHandler{namespace,t,n,scheme}

11 }

12 //...

13 func (self *IntkeyHandler) FamilyName() string { return FAMILY_NAME }

14 func (self *IntkeyHandler) FamilyVersions() []string { return []string{"1.0"} }

15 func (self *IntkeyHandler) Namespaces() []string { return []string{self.namespace} }

16 func (self *IntkeyHandler) Validate(request *smartcontract_pb2.SmartContractValidationRequest) (

↪→ processor.ValidateResponse, error) {

17 //can have very complicated logic over here to determine the parameters to sign a transaction

18 return processor.ValidateResponse{

19 //Type: THS/normal/multisignature

20 SignatureScheme: self.scheme,

21 N: self.n,

22 T: self.t,

23 }, nil

24 }

25 func (self *IntkeyHandler) Apply(request *processor_pb2.TpProcessRequest, context *processor.Context

↪→) error {

26 //... Transaction decoding and validations

27 var newValue int

28 storedValue, exists := collisionMap[name]

29 if verb == "inc" verb == "dec" {

30 if !exists {

31 return &processor.InvalidTransactionError{Msg: "Need�existing�value�for�inc/dec"}

60

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

32 }

33 switch verb {

34 case "inc":

35 newValue = storedValue + value

36 case "dec":

37 newValue = storedValue - value

38 }//... more validations

39 }

40 if verb == "set" {

41 if exists {

42 return &processor.InvalidTransactionError{Msg: "Cannot�set�existing�value"}
43 }

44 newValue = value

45 }

46 collisionMap[name] = newValue

47 data, err = EncodeCBOR(collisionMap)

48 if err != nil {

49 return &processor.InternalError{

50 Msg: fmt.Sprint("Failed�to�encode�new�map:", err),

51 }

52 }

53 addresses, err := context.SetState(map[string][]byte{

54 address: data,

55 })

56 if err != nil {

57 return err

58 }

59 if len(addresses) == 0 {

60 return &processor.InternalError{Msg: "No�addresses�in�set�response"}
61 }

62 return nil

63 }

Algorand supports smart contracts via TEAL, a non- Turing-Complete stack machine

language. Listing 4.10 and 4.11 shows an excerpt from an extended Algorand smart

contract. Since a stack machine language does not have a function abstraction, we had

to take a different approach to extend TEAL smart contracts. We decided that the best

approach was to add a new transaction type called ValidateTransaction. Teal smart con-

tracts have the ability to use a branch operator (b,bz,bnz) to jump ahead to a specific

label. In our case, if a transaction is of type ValidateTransaction, we jump to the label

validate_transaction (,line 14). Below the label, many verifications can be performed on

the transaction, but for simplicity we have not defined transaction validation. Normally,

a correct execution in an Algorand smart contract ends with a value of one on the stack.

However, in our implementation, the execution of a transaction over a Teal smart contract

must leave three values on the stack to tell the signer node how to sign a transaction: i)

the signature scheme to use; ii) the number of signer nodes to sign; iii) and the lower

bound on the correct signature shares required to create the group signature.

61

CHAPTER 4. SYSTEM IMPLEMENTATION

Listing 4.10: Algorand SC excerpt first

part.

1 txn OnCompletion

2 int ValidateTransaction

3 ==

4 bnz validate_transaction

5

6 txn OnCompletion

7 int NoOp

8 ==

9 bnz handle_noop

10 //... Other transactions

11 // Unexpected OnCompletion value.

12 err //Should be unreachable.

13

14 validate_transaction:

15 byte "TBLS256Optimistic"

16 int 5

17 int 3

18 return

19 handle_noop:

20 //Verify if the transaction does not

↪→ contain any

21 //argument

22 txn NumAppArgs

23 int 0

24 ==

25 bnz return_succ

26 //Verify if the number of arguments

↪→ equals to 2

27 //Otherwise give error

28 txn NumAppArgs

29 int 3

30 !=

31 bnz error

32 //Check what is the smartcontract

↪→ operation

33 //First check if is a inc op

34 txna ApplicationArgs 0

35 byte "inc"

36 ==

37 bnz inc_op

38

39 //Next check if is a dec op

40 txna ApplicationArgs 0

41 byte "dec"

42 ==

Listing 4.11: Algorand SC excerpt sec-

ond part.

43 bnz dec_op

44

45 //Finally check if is a set op

46 txna ApplicationArgs 0

47 byte "set"

48 ==

49 bnz set_op

50

51 //Inc Operation starts here

52 inc_op:

53 txna ApplicationArgs 1

54 dup

55 app_global_get

56 txna ApplicationArgs 2

57 btoi

58 +

59 app_global_put

60 b return_succ //Return Successfuly

61

62 //Dec Operation starts here

63 dec_op:

64 txna ApplicationArgs 1

65 dup

66 app_global_get

67 txna ApplicationArgs 2

68 btoi

69 -

70 app_global_put

71

72 b return_succ //Return Successfuly

73

74 //Set Operation starts here

75 set_op:

76 txna ApplicationArgs 1

77 txna ApplicationArgs 2

78 btoi

79 app_global_put

80 b return_succ //Return Successfuly

81

82 return_succ:

83 int 1 //Return Successfuly

84 return

85 //... Other transaction types

86 error:

87 err

62

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

4.2.4 P2P Network

M
sg

 fl
ow

(a) LinkedList Overlay. Mes-
sages flow from down to up.
When minimum threshold
is reached propagation can
stop.

1

2

(b) Tree Overlay. It
is necessary to have
two messages propaga-
tion: 1) to propagate
down the message to
sign; 2) and to col-
lect the signature shares
when ascending.

Witness

Group 1

Witness

Group 2

(c) PubSub Overlay.
Peers in the same
group have a high
level of connectivity.
Peers between different
groups have low level of
connectivity.

Figure 4.2: Possible Overlays for our Signer Node P2P Network

In building our signer node prototype, if we did not include a specialized P2P network

for the signer nodes, the responsibility for aggregating the signature shares would be

transferred to a client, which must contact each signer node individually to ask it to

produce a signature share. This approach makes group signatures cumbersome for our

clients, which have to contact each signer node for its signature share in order to aggregate

them, plus the client would now require more resources and energy, which eliminates the

possibility of mobile devices being candidate clients.

Our approach to this problem is based on a specialized P2P network in which signer

nodes communicate with each other to collaboratively create a final group signature.

Here, we could have used a simple linked-list communication pattern (Fig. 4.2a), where

signer nodes would produce their signature shares and pass all previous signatures plus

their own to the next signer node in the list, producing 2n messages, or t messages if a

signer node with enough shares can reply directly to the client. This approach would not

be reliable, since any node crash before a signer node could collect a minimum number

of threshold signatures, could bring the system to a halt. Another approach might be

to create a tree-like overlay (Fig. 4.2b), which would produce 2log2(n) messages. This

approach is more reliable than a list, but crashes near the tree root can halt the signature

process.

Since normally threshold signature groups are small, we decided to allow each signer

node to be connected with all members of the same witness group, as shown in Figure 4.2c.

To help us with this problem, we chose a framework called LibP2P, which allows us to

create a publish/subscribe system over a P2P network. This way, only members of a

given witness group need to receive each share and can create the final signature. An

obvious problem with this approach is the large number of messages produced, however

the groups are small and each signer node can reply to the client with the final signature.

63

CHAPTER 4. SYSTEM IMPLEMENTATION

Nonetheless, we implemented a static configuration that, in low-byzantine environments,

allows the signature to be sent only to the requester signer node, reducing the number of

messages produced from n2 to 2n. This approach can significantly improve the transac-

tion throughput of our prototype.

4.2.5 Signature Manager

The signature manager is an essential component that hosts the various protocols (per-

missioned and permissionless) defined in the previous chapter. We designed it in such a

way that in the future it will be easy to integrate new protocols into our prototype with

zero lines of code changes. When the signature manager is created, a protocol is injected

in a kind of factory pattern, which allows the protocol to register each handler in the

interconnect component, then proxies to the smart contract engine and crypto provider

are created.

For example, to create a new protocol, we just need to define a method that accepts a

interconnect component with a registration function, as shown in Listing 4.12.

Listing 4.12: Interface to be implemented by a new protocol and Interconnect interface.
1 type Interconnect interface {

2 RegisterHandler(t HandlerType, handler Handler)

3 EmitEvent(t HandlerType, content ICMessage) HandlerResponse

4 }

5 type Protocol interface {

6 Register(ic ic.Interconnect) error

7 }

Then a protocol simply registers the handlers using the RegisterHandler function, as

shown in Listing 4.13.

Listing 4.13: Permissionless protocol functions registration.
1 func (p *permissionlessProtocol) Register(interconnect ic.Interconnect) error {

2 interconnect.RegisterHandler(ic.SignClientRequest, p.sign)

3 interconnect.RegisterHandler(ic.InstallClientRequest, p.installShares)

4 interconnect.RegisterHandler(ic.NetworkMessage, p.processMessage)

5 p.interconnect = interconnect

6 return nil

7 }

4.2.6 Client and Benchmarker

This work uses a whole set of heterogeneous distributed systems to achieve the goal. To

this end, we decided to implement a simple benchmark tool that allows us to guarantee

the same testing conditions between the different systems. Our benchmarker is written

in go and in an extensible way to support our test handlers and other handlers that can be

integrated later. The benchmarker can be parameterized with the number of concurrent

clients sending requests, the handler to be used to send requests to a given system, and

the duration of the tests.

64

4.2. PROTOTYPE ARCHITECTURE AND IMPLEMENTATION

This benchmarker supports different handlers such as:

• Sawtooth: This handler allows to benchmark the Hyperledger Sawtooth without

integrating with the signer node to produce the threshold signature and store it in

the immutable ledger.

• Algorand: Like Sawtooth, this handler allows benchmarking the Algorand without

the integration with the signer node.

• Signer Node: This handler allows benchmarking of the signer node, which means

we can get metrics without integrating with a blockchain to get realistic results

about the cost of producing a group signature in different environments without

the mechanics of different blockchain platforms getting in the way.

• SignerNode + Blockchain: Our benchmarker also includes an integration between

our signer node and a extended blockchain platform (Algorand and Sawtooth).

The client can behave in two modes, permissioned or permissionless. If we recall the

permissioned mode, the key share setup has already been done in the signer node and

our client only needs to send a request with the smart contract to be executed and the

transaction to be signed. After the request is received, if everything goes right, the client

will receive back the group signature associated with that transaction and can send it to

the corresponding blockchain node. Permissionless mode is a bit more complex, as it puts

the burden on the client to install the key shares, which can be a bit heavy if we want a

lot of security in our transactions. To this end, we have implemented two permissionless

modes, one where we simply provision new key shares from time to time, and another

where each key can only be used once, which means that if we send a lot of transactions,

we need to generate a key before sending the transaction, or already have a pool of keys

generated in advance. As can be seen, the first method is less secure because we can reuse

the key for many transactions, and the second method is very resource intensive. The

decision to use one or the other method depends on the sensitivity of the operation we

are performing on the blockchain.

Another thing that our client implements is group selection. We have implemented

two methods. One method simply randomly selects a subset of nodes from the member-

ship, and the other method selects nodes according to their proximity. We implemented

the second approach using the ICMP protocol, where our client probes (pings) each

signer node and computes the average RTT between the client and the signer node, then

selects the n nearest neighbors. Of course, this implementation has a flaw when packets

are dropped by the server that is hosting the signer node. To circumvent this problem,

we could have implemented an endpoint in the signer node, simply for pinging.

65

CHAPTER 4. SYSTEM IMPLEMENTATION

4.2.7 Validator Node

To prove that our signer node is independent of the blockchain used, we integrated it

with two different blockchain platforms: i) Hyperledger Sawtooth for a permissioned

blockchain; ii) and, Algorand for a permissionless blockchain. When prototyping and

designing our signer node, our goal was to create something that required few code

changes to be integrated with the signer node.

In both Algorand and Hyperledger Sawtooth, we had to change the way data is stored

in a block to incorporate the notion of group witnessed transactions, and we also intro-

duced new verifications that are performed when these transactions arrive.

Hyperledger is a bit special and has a higher level of abstraction called a batch. A

batch is nothing but a set of transactions that need to be committed atomically together.

Since a transaction must always be encapsulated within a batch, we decided to include

the group signature in a batch, which means that the signature is performed over a set of

transactions, as shown in Listing 4.14.

Listing 4.14: A batch with an incorporated group signature. A set of batches commited

together form a block.

1 message GroupEnvelop {
2 // Group public key for the signer node witnesses that sign the Batch
3 bytes public_key = 1;
4 //Group signature over the transactions
5 bytes signature = 2;
6 //Scheme used to sign the batch with the signature shares.
7 string scheme = 3;
8 }
9 message BatchHeader {

10 // Public key for the client that signed the BatchHeader
11 string signer_public_key = 1;
12 // List of transaction.header_signatures that match the order of transactions required for the batch
13 repeated string transaction_ids = 2;
14 // Group Envelop
15 bytes group_envelop = 3;
16 }
17 message Batch {
18 // The serialized version of the BatchHeader
19 bytes header = 1;
20 // The signature derived from signing the header
21 string header_signature = 2;
22 // A list of the transactions that match the list of transaction_ids listed in the batch header
23 repeated Transaction transactions = 3;
24 }

Algorand is a little bit different, but the concept is similar, it has a signed transac-

tion with all kinds of signatures, like, multi-signature, conventional signatures and now

we have introduced in this structure a group signature. In addition to the group signa-

ture, since we’re in a permissionless environment, we’ve also included a way to visualize

which witnesses are participating in the signing of that transaction to find nodes that are

colluding and ensure maximum fairness in that process, as shown in Listing 4.15.

Listing 4.15: A extended Algorand signed transction.
1 // SignedTxn wraps a transaction and a signature.

66

4.3. SUMMARY

2 type SignedTxn struct {
3 ...
4 Sig crypto.Signature ‘codec:"sig"‘

5 Msig crypto.MultisigSig ‘codec:"msig"‘

6 Lsig LogicSig ‘codec:"lsig"‘

7 Txn Transaction ‘codec:"txn"‘

8 AuthAddr basics.Address ‘codec:"sgnr"‘
9 GroupSignature GroupEnvelop ‘codec:"gsig"‘

10 }
11

12 //GroupEnvelop represents a signature from signer node witnesses

13 type GroupEnvelop struct {
14 ...
15 //public key for the signer node witnesses that signed the Transaction

16 PublicKey []byte ‘codec:"pubkey"‘
17 //Group signature over the transactions

18 Signature []byte ‘codec:"sig"‘
19 //Scheme used to sign the batch with the signature shares

20 Scheme string ‘codec:"scheme"‘

21 //Witnesses IDs

22 IDs []string ’codec:"ids"’
23 }

4.3 Summary

In this chapter, we have presented some details about the prototype and the effort in-

volved in creating such a prototype based on the system model and our system goals.

First, we provided a high-level overview of our prototype and described the technology

used for each component. Then, we described each component in detail (e.g., the REST

API, the interconnect, the cryptoprovider, and P2P network) and explained some imple-

mentation decisions we had to make. We also explained some decisions that led us to

change Algorand and Sawtooth in some ways.

Our prototype has about 8315 lines of code and was designed to be highly extensible

to allow for future proof upgrades, including integration with new protocols, crypto-

graphic schemes, and blockchain platforms. The code is fully open source and available

in multiple repositories 25.

In the next section, we present the experimental evaluation and analysis of our proto-

type.

25Prototype source-code: https://github.com/jffp113/Thesis_Finder

67

https://github.com/jffp113/Thesis_Finder

C
h
a
p
t
e
r

5
Experimental Evaluation and Analysis

In this chapter, we discuss the evaluation of our prototype over the development de-

scribed in Chapter 4. In Section 5.1 we describe our benchmark environment, then in

Section 5.2 and below we present our experimental evaluation results, which we then

analyze and explain.

Succinctly, we hope to answer the following questions during our evaluation process:

• What is the transaction throughput and finality latency in a baseline permissioned1

and permissionless blockchain2 platform, and how is it affected by the integration

of our co-signing service plane?

• How is latency and throughput affected when the number of witnesses and the size

of the keys are varied?

• How does the performance of threshold signatures compare in two different envi-

ronments: Non-integration and integration with our modular crypto provider?

• What is the performance impact of receiving invalid signature shares compared to

receiving all valid signature shares, and what is the impact of committee members

refusing to sign?

• How does the performance compare between a single datacenter deployment of

our prototype and a geo-distributed deployment between datacenters on different

continents?

• How long does it take to form committees under different temporal conditions, and

how does it impact in a possible aggressive settings for a one-time committee.

1Hyperledger Sawtooth
2Algorand

69

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

5.1 Test-bench Environment

Our test-bench environment to evaluate our implementation, follows the specification

below:

• To support our testing, we selected 10 Virtual Private Server (VPS) instances for our

prototype and 1 node to serve as support to our benchmark clients, each of which

has a technical specification that can be found in the table 5.1.

• Our prototype is fully dockerized so that it can be easily deployed on any of the

above machines.

• External components belonging to a signer node (crypto-provider and smart con-

tract engine) are also dockerized, but run in a private network together with the

respective signer node.

• Due to the heterogeneity of our prototype, we will use a simple tool3 we created

to benchmark the signer node and the validator node (Algorand, Hyperledger Saw-

tooth), but we will benchmark isolated signer node components using Golang tools.

VPS Single Instance Benchmark Client
CPU 2 vCore 6 Cores (12 CPU threads)
RAM 4 GB 16 GB

Storage 80 GB NVMe SSD 250 GB SSD
OS Ubuntu 20.10 MacOs 11.2.3

Model OVH VPS Essential MacBook Pro 2019

Table 5.1: Benchmark environment technical specification.

Our VPS’s are evenly distributed across three data centers:

• 3 instances in Germany (Frankfurt);

• 3 instances in France (Gravelines);

• 2 instances in Canada (Beauharnois);

• 2 instances in Australia (Sydney);

Our clients are located in Portugal, more specifically in Lisbon. Figure 5.1, shows the

RTT latency between the data centers where the signer nodes and clients are deployed,

measured with the ICMP protocol, more precisely with the tool ping.

The client that is situated in Portugal has latency of 45 ms to Frankfurt, 40 ms to

Gravelines, 329 ms to Sydney and 126 ms to Beauharnois

3https://github.com/jffp113/Thesis_Client

70

5.2. BENCHMARKS AND ANALYSIS

0,44 ms

0,43 ms

290 ms

11 ms

0,41 ms
0,45 ms

81 ms

95 ms

297 ms247 ms

A) Frankfurt

B) Gravelines

C) Beauharnois

D) Sydney

A)

B)
C)

D)

Figure 5.1: Latency between benchmark environment data centers.

5.2 Benchmarks and Analysis

In the following sections, we will perform different experimental evaluations. We will

start with a blockchain validator node (Sawtooth and Algorand) as a baseline test, which

means that we have not integrated our signer node and the blockchain node has no

code changes. Next, we will proceed with a microbenchmark of our crypto-provider

to determine the cost of building a language-independent crypto-provider for our signer

node. We then conduct an experimental evaluation under the same conditions as in the

baseline, but with our signer node (and all subcomponents) integrated. To better analyze

the performance of our signer node, we perform an experimental evaluation in which

we isolate the signer node. In a more advanced test, we will also evaluate our signer

node under different fault assumptions (, such as byzantine and crash faults). Finally, we

evaluate the cost of group formation in a permissionless environment.

In all the described experimental evaluations where our signer node and crypto-

provider are integrated, we assume a Byzantine fault tolerance of n = 3f + 1, where f

is the maximum number of faults that can occur simultaneously at a given time. In terms

of cryptography, we will perform tests with different schemes, such as threshold BLS

(tBLS) with an elliptic curve public key of 256 bits and threshold RSA (tRSA) with dif-

ferent modulus values of N (1024,2048,3072). For the aggregation of signature shares,

we will use two different algorithms: i) Optimistic; ii) and Pessimistic. If nothing is men-

tioned, you can assume that the Optimistic Algorithm is used to combine signature shares

into the final signature.

It is also worth mentioning that when using Sawtooth to better approximate Algo-

rand, we will not use any optimization such as batching transactions. Algorand does not

support transaction batching, and could give Hyperledger Sawtooth a huge increase in

71

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

transaction throughput. However, our signer node supports batch signing and this can

be used to increase Sawtooth’s performance outside of our experimental evaluation.

5.3 Validator Nodes Baseline Performance Metrics.

Before we start the experimental evaluation of our prototype, we first want to obtain

some baseline results to understand the behavior of the two chosen blockchain plat-

forms (Algorand and Sawtooth). To measure the baseline behavior, we decided to launch

our blockchain platforms in two different settings: I) A local configuration where four

Blockchain nodes are distributed across different machines in the same data center; II)

and a distributed setting where four Blockchain nodes are geo-distributed across the

aforementioned data centers (Gravelines, Frankfurt, Sydney, and Singapore). During

testing, we increased the number of concurrent clients that would send transactions to

the different blockchain nodes.

Before we run the baseline tests, we can try to predict some outcomes. Sawtooth

uses the PBFT consensus protocol, which in the default configuration tries to publish a

block every 1,000 ms and supports 1,024 batches in each block. This means that if we

have enough clients and infinite computational power, we could theoretically achieve a

maximum of 1,024 transactions per second and a latency of 1,000 ms per operation. For

Algorand, we could not obtain the configurations for the time between block proposals

and the number of transactions per block, as well as the block size, to calculate the

maximum achievable throughput. However, we know that PPoS is designed to be used

in a permissionless environment with thousands of nodes, so with enough clients and

enough Algorand nodes, we can achieve better transaction throughput than Sawtooth.

Our results in this section have a relative standard deviation of 2–6% for the Hyper-

ledger Sawtooth and 0–3% for Algorand. From the baseline results shown in Figure 5.2,

we can see a linear increase in transaction throughput in Algorand as the number of

clients increases, and a nearly constant latency of about 8 seconds for Algorand. The

results of Hyperledger Sawtooth are somewhat different from those of Algorand. Initially,

there is a huge increase in transaction throughput, but when we reach 64 concurrent

clients, the transaction throughput stops increasing and becomes constant, and the la-

tency increases from 1 second to almost 4 seconds. We can also see that geo-replication

has more impact in Sawtooth than in Algorand nodes.

Although Sawtooth has better transaction throughput in this scenario, we can easily

see that the PBFT consensus protocol cannot handle a heavy workload due to the high

number of messages required to commit a block, more precisely O(n2) messages. Had

we increased the number of clients or the number of nodes, Algorand would have shown

less performance degradation compared to Sawtooth, and at one point even better perfor-

mance metrics, since the Algorand consensus protocol selects a node for block creation

depending on the stack it holds, meaning that the number of messages to propagate is

much lower than in PBFT.

72

5.3. VALIDATOR NODES BASELINE PERFORMANCE METRICS.

124 8 16 32 64 128
Concurrent clients

0

10

20

30

40

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

124 8 16 32 64 128
Concurrent clients

1

2

3

4

5

6

7

8

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Local Algorand
Geo-distributed Algorand
Local Sawtooth
Geo-distributed Sawtooth

Figure 5.2: Baseline Algorand and Sawtooth latency and throughput when varying the
number of concurrent clients.

To analyze whether our statement is true, we decided to run an additional baseline

test where we gradually increase the number of blockchain nodes from 4 to 19, evenly geo-

distributed across the data centers, to see if Sawtooth suffers more performance penalty

due to the time complexity of the PBFT protocol. We set the number of clients to 128, so

we expect Algorand to maintain the transaction throughput and latency we saw earlier.

4 7 10 13 16 19
Nº Validator Nodes

15

20

25

30

35

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

4 7 10 13 16 19
Nº Validator Nodes

4

5

6

7

8

9

10

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Geo-distributed Algorand
Geo-distributed Sawtooth

Figure 5.3: Baseline Algorand and Sawtooth latency and throughput when varying the
number of signer nodes.

73

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

Our additional results are shown in Figure 5.3. As expected, Algorand maintained its

performance while increasing the number of nodes. In fact, it even improved transaction

throughput and reduced latency from 4 to 7 clients. The explanation for this might be

related to the fact that the clients are distributed over more Algorand nodes. On the other

hand, Sawtooth abruptly decreased the transaction throughput and increased the average

latency per operation, as we would expect. The results also show that Algorand performs

better than Sawtooth when the number of nodes increases above 16.

5.4 Signer Node integration with Validator Nodes

In this experimental evaluation, our goal was to evaluate the impact of integrating our

signer node with a validator node on the throughput and latency. Similar to the base-

line, the test conditions are run with 4 validator nodes, with a signer node attached to

each validator node. The nodes are run in two settings, evenly geo-distributed across the

different data centers and locally in only one data center. We will also vary the number

of concurrent clients to see the performance impact, and use different threshold signa-

ture schemes in our signer node, specifically threshold BLS256 and threshold RSA with

different modulus sizes (1024, 2048, and 3072). In both signer node protocols (permis-

sioned and permissionless), the key shares are already deployed, to eliminate the cost of

deploying the keys, which will be discussed later.

As we add a new security layer on top of a blockchain, we expect a performance loss in

both blockchain platforms. This happens because a group signature must now be created,

which takes time, and each validator node must validate this new signature and all others

that are already supported by the corresponding validator node.

Figure 5.4 and 5.5 show the results for our experimental evaluation with a relative

standard deviation of 0–3% and 2–6%, respectively. The first information we can take

from the Algorand result is that if we incorporating our signer node with TBLS256 and

TRSA1024, the cost is relatively inexpensive, even if we increase the number of concurrent

clients sending transactions to the blockchain, however, the threshold RSA with modules

2048 and 3072 have more impact on the latency and transaction throughput. When we

incorporating Sawtooth with the Signer node, we immediately see a drop in transaction

throughput to more than half and a doubling of latency per operation when we reach 32

concurrent clients.

One explanation for why this is not the case with Algorand could be related to the

latency for block finality and the time it takes to create a group signature. As we saw in

the baseline tests, Algorand takes about 7–8 seconds to close a block, and this is true even

when there are no transactions to include in the block. Sawtooths, on the other hand,

takes about 1 second when the load on the system is light, and increases up to 3 seconds

when 128 clients send requests to the node at the same time. Algorand suffers less impact,

if we do not consider group formation, because if the signer node can create a signature

and submit it before the block is closed, the transaction can be included in that block.

74

5.4. SIGNER NODE INTEGRATION WITH VALIDATOR NODES

124 8 16 32 64 128
Concurrent clients

0

2

4

6

8

10

12

14

16

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Local Algorand + Signer Node (Transaction Throughput)

124 8 16 32 64 128
Concurrent clients

8

10

12

14

16

18

20

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Local Algorand + Signer Node (Latency)

124 8 16 32 64 128
Concurrent clients

0

2

4

6

8

10

12

14

16

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Geo-distributed Algorand + Signer Node (Transaction Throughput)

124 8 16 32 64 128
Concurrent clients

8

10

12

14

16

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Geo-distributed Algorand + Signer Node (Latency)

Baseline
Signer Node + TBLS256
Signer Node + TRSA1024
Signer Node + TRSA2048
Signer Node + TRSA3072

Figure 5.4: Latency and throughput when integrating the signer node with Algorand.

This is not the case with Sawtooth, since the transactions to be included in the block must

be known to all validators beforehand in order for the signature to be validated.

In both cases, we observe an increase in latency and a decrease in transaction through-

put when we increase the size of the threshold RSA key from 1024 to 2048 and to 3072.

It can also be seen in both Figure 5.4 and Figure 5.5 that the latency tends to be

smaller when the nodes are distributed. This can be explained by the phenomenon of

head-of-line blocking: The closer the nodes are to each other, the more messages need

to be processed per unit time, causing some transactions to take longer and increasing

latency for queued requests. We will see this better in further experimental evaluations.

75

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

124 8 16 32 64 128
Concurrent clients

0

10

20

30

40

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Local Sawtooth + Signer Node (Transaction Throughput)

124 8 16 32 64 128
Concurrent clients

2

4

6

8

10

12

14

16

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Local Sawtooth + Signer Node (Latency)

124 8 16 32 64 128
Concurrent clients

0

5

10

15

20

25

30

35

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Geo-distributed Sawtooth + Signer Node (Transaction Throughput)

124 8 16 32 64 128
Concurrent clients

2

4

6

8

10

12

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(s
)

Geo-distributed Sawtooth + Signer Node (Latency)

Baseline
Signer Node + TBLS256
Signer Node + TRSA1024
Signer Node + TRSA2048
Signer Node + TRSA3072

Figure 5.5: Latency and throughput when integrating the signer node with Sawtooth.

5.5 Crypto-provider isolated performance.

In this experimental evaluation, our goal was to evaluate the impact of integrating a

threshold primitive scheme into our crypto-provider and compare it to the same primitive

outside our crypto-provider. To test each primitive in the different environments, we used

the go benchmark tools that repeatedly run the benchmark until it finds that the time per

operation converges to a certain value.

Table 5.2 and Table 5.3 show the time required per operation when the primitive is

raw and when the primitive is integrated into our cryptoprovider, respectively.

76

5.6. PROTOTYPE PERFORMANCE WITH DIFFERENT SIGNATURE SCHEMES

Scheme Sign (ms) Aggregate (ms) Verify (ms)

TBLS256 0,19 8,5 2,7
TRSA1024 2,40 0,25 0,02
TRSA2048 12,00 0,60 0,06
TRSA3072 36,00 0,90 0,11

Table 5.2: Time required per THS cryptographic operation.

Scheme Sign (ms) Aggregate (ms) Verify (ms)

TBLS256 Crypto-Provider Remote 1,13 9,41 9,13
TRSA1024 Crypto-Provider Remote 7,97 1,60 0,55
TRSA2048 Crypto-Provider Remote 40,45 2,40 0,71
TRSA3072 Crypto-Provider Remote 103,32 3,61 0,94

Table 5.3: Time required per THS cryptographic operation when integrated in a remote
cryptoprovider.

Comparing both results, we can see that when we run the primitive inside our crypto-

provider, it takes slightly longer to sign transactions, aggregate shares and verify signa-

tures, this is due to the serialization of the private key shares, the serialization of the

public keys and the latency between the components when communicating (over TCP).

Serialization is an obvious bottleneck when we look at the time it takes to sign a transac-

tion with different TRSA private key sizes.

By creating a crypto-provider decoupled component that allows easy extension and

hot-swapping of primitives, we expected some performance degradation, but not as pro-

nounced as the results show. In chapter 6 we present some options to improve perfor-

mance in future work.

5.6 Prototype Performance With Different Signature Schemes

In this experimental evaluation, our goal is to see how our signer node behaves in isolation

under different conditions. For this purpose, we will evaluate the transaction throughput

and latency. First, we set the number of signer nodes to 4, with the Byzantine Fault

Tolerance of 3f + 1, and we place these 4 nodes in a geo-distributed environment and in a

local environment, increasing the number of concurrent clients sending transactions, as

can be seen in Figure 5.6. We then increased the number of distributed signer nodes with

a fixed number of 64 concurrent clients to see how more nodes with the same Byzantine

Fault Tolerance can affect performance, as shown in Figure 5.7. In both scenarios we

will use different threshold schemes, TBLS256 and TRSA 1024, 2048 and 3072 with 2

different aggregation algorithms, the pessimistic and the optimistic. The results in this

section have a relative standard deviation of 1–5%.

The first thing we can get from both scenarios represented by Figure 5.6 and Figure 5.7

is that under a no-fault environment, the optimistic algorithm has better performance

77

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

124 8 16 32 64 128
Concurrent clients

0

20

40

60

80

100

120

140

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Local Signer Node (Transaction Throughput)

124 8 16 32 64 128
Concurrent clients

0

1000

2000

3000

4000

5000

6000

7000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

Local Signer Node (Lantency)

124 8 16 32 64 128
Concurrent clients

0

25

50

75

100

125

150

175

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Geo-distributed Signer Node (Transaction Throughput)

124 8 16 32 64 128
Transactions per second (tps)

0

2000

4000

6000

8000

10000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

Geo-distributed Signer Node (Latency)

TBLS256 Optimistic
TBLS256 Pessimistic
TRSA1024 Optimistic
TRSA1024 Pessimistic
TRSA2048 Optimistic
TRSA2048 Pessimistic
TRSA3072 Optimistic
TRSA3072 Pessimistic

Figure 5.6: Latency and throughput when isolating the 4 signer nodes.

than the pessimistic algorithm. If we recall, a pessimistic algorithm has to check whether

all signature shares are correct, and only these are combined to form the final signature.

In contrast, the optimistic algorithm simply randomly selects t shares from the n max-

imum available signature shares, aggregates them first, and only then checks whether

they have been aggregated correctly. With this explanation, it is easy to understand why

the pessimistic algorithm behaves worse than the optimistic algorithm in a no-fault envi-

ronment; it has the additional cost of verifying each signature (which will be correct in

that environment).

78

5.6. PROTOTYPE PERFORMANCE WITH DIFFERENT SIGNATURE SCHEMES

4 7 10 13 16
Nº Signer Nodes

0

20

40

60

80

100

120

140

160

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

Geo-distributed Signer Node (Transaction Throughput)

4 7 10 13 16
Nº Signer Nodes

0

2000

4000

6000

8000

10000

12000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

Geo-distributed Signer Node (Latency)

TBLS256 Optimistic
TBLS256 Pessimistic
TRSA1024 Optimistic
TRSA1024 Pessimistic
TRSA2048 Optimistic
TRSA2048 Pessimistic
TRSA3072 Optimistic
TRSA3072 Pessimistic

Figure 5.7: Latency and throughput when varying the number of signer nodes

From the first scenario (Figure 5.6), we can also obtain an interesting comparison

between a geo-distributed environment and a local environment. In a local environment,

the throughput increases rapidly but peaks at 32 concurrent clients in almost all schemes

with a maximum of 140 transactions per second for Optimistic TBLS256. In a distributed

environment, on the other hand, the transaction throughput increases slowly and peaks

at 64 concurrent clients in almost all schemes except Optimistic TBL256 which peaks

at 128 concurrent clients with a maximum of 175 transactions per second. This result

can again be explained by the pressure of other transactions, in a local environment the

nodes have low latency between each other, resulting in more messages being processed

per unit time at that moment. In a distributed environment, the system has more time

to process all these messages as the latency between nodes is higher, which explains why

the transaction throughput is also higher in this case. However, in a geo-distributed

environment, more clients are initially needed to achieve the transaction throughput of a

local environment.

In the second scenario (,Figure 5.7,) we can see that as we increase the number of

signer nodes, the transaction throughput decreases and the average latency per operation

increases. This happens because in order to obtain the 3f + 1 Byzantine Fault Tolerance

we need to increase the number of collected signatures until we can start aggregation,

e.g., with 16 nodes we need to collect at least 11 correct signature shares, while with 4

nodes we need to collect only 3 correct signature shares. In the same scenario, we can

also see that the Optimistic TBLS256 transaction throughput increases when the number

79

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

of signer nodes increases from 4 to 7. We initially thought at first this was an outlier,

but after repeating the experimental evaluation, we concluded that having more signer

nodes to distribute the 64 concurrent clients and wait for an additional 2 signature shares

compensates in this case.

5.7 Prototype Performance Inducing Faults

In this experimental evaluation, we want to evaluate how our signer node behaves under

an environment where stop and byzantine faults can occur. Both these tests are run in

a setup with 16 geo-distributed nodes with Byzantine Fault Tolerance of 3f + 1, which

means that at most 5 nodes can fail. For this test, we set the number of concurrent

clients to 32 and we will evaluate the performance for TBLS256 and TRSA2048 under

two different aggregation algorithms (optimistic and pessimistic). The results in this

section have a relative standard deviation of 1–5%.

Figure 5.8 shows the results under a stop fault environment. First, we see an increase

in transactions per second and a decrease in latency until we reach 3 stop faults, and

then a stabilization. One explanation for this could be related to the number of messages

being transmitted. When nodes crash, fewer messages are generated per sign operation,

which means that signer nodes have to handle with fewer messages, explaining why the

performance increases until we reach 3 node crashes. After 3 crashes, the performance

stops improving, and for some cryptographic schemes it even decreases until we reach 5

failures. It is true that the number of messages needed continuously decreases, but then

we had more nodes creating shares, and we only need 11 valid shares. Now, when more

nodes fail, we have to wait for the slowest nodes to start aggregating shares for being able

to create the final signature.

In the previous results shown in Figure 5.8, the optimistic protocols had better per-

formance than the pessimistic ones under the different number of crash faults. However,

when we introduce our prototype under Byzantine faults, it is easy to see that the choice

between an optimistic and a pessimistic protocol can be relevant for the different envi-

ronments, depending on the number of Byzantine faults that occur at a given time. This

is evident from the analysis of the plot in the Figure 5.9. For sporadic Byzantine faults

(0 to 2), we can see that a scheme with optimistic aggregation behaves better than the

pessimistic one. However, for a higher number of Byzantine faults (3 to 5), we can see

that the pessimistic algorithm behaves better than the optimistic one.

This result can be explained by the fact that the optimistic protocol assumes that

every combination of t shares is a correct combination, aggregates them, and only verifies

whether the final signature is indeed well constructed. To compute the number of possible

combinations, we use the formula Cn
t = n!

t!(n−t)! . Instantiating this for our test scenario,

we have t = 5 and n = n, resulting in C16
5 = 4368 possible combinations, where as the

number of invalid shares increases, the number of valid combinations in the set of size

80

5.7. PROTOTYPE PERFORMANCE INDUCING FAULTS

0 1 2 3 4 5
Nº Crash Faults

20

40

60

80

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

16 geo-distributed signer nodes (Transaction Throughput)

0 1 2 3 4 5
Nº Crash Faults

1000

2000

3000

4000

5000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

16 geo-distributed signer nodes (Latency)

TBLS256 Optimistic
TBLS256 Pessimistic
TRSA2048 Optimistic
TRSA2048 Pessimistic

Figure 5.8: Latency and throughput when varying the number of stop faults.

4368 decreases. On the other hand, the pessimistic protocol needs to verify at most 16

signatures.

These results show that a combination of optimistic and pessimistic algorithms is pos-

sible, for example we could run both aggregation algorithms at the same time and only use

the first response from our cryptoprovider, this approach would have other performance

penalties, but if resources are not an issue this could be a solution. Another possible

solution could be to create a dynamic algorithm that detects how many Byzantine faults

occur and selects the appropriate aggregation algorithm according to the system metrics,

e.g., we do not expect many Byzantine signature shares in a permissioned environment,

while we might get more in a permissionless environment.

When we designed and implemented our cryptoprovider to be decoupled from the

signer node (language independent), we knew that we would incur additional costs when

it came to Byzantine environments. Both protocols, the pessimistic and the optimistic, are

designed in a synchronous way, which means that every time the cryptoprovider receives

new shares (for shares > t), it runs the aggregation protocol from the beginning, which

means that the algorithms in the cryptoprovider have no state and do not know which

combinations or which shares they have already validated. This was an implementation

option to ensure a high degree of decoupling between the cryptoprovider and the signer

node.

81

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

0 1 2 3 4 5
Nº Byzantine Faults

0

10

20

30

40

50

60

70

Tr
an

sa
ct

io
ns

 p
er

 se
co

nd
 (t

ps
)

16 geo-distributed signer nodes (Transaction Throughput)

0 1 2 3 4 5
Nº Byzantine Faults

0

10000

20000

30000

40000

50000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

16 geo-distributed signer nodes (Latency)

TBLS256 Optimistic
TBLS256 Pessimistic
TRSA2048 Optimistic
TRSA2048 Pessimistic

Figure 5.9: Latency and throughput when varying the number of byzantine faults.

5.8 Permissionless Group Formation

In this experimental evaluation, our goal is to analyze the cost of deploying shares in

a permissionless environment. For this experimental evaluation, we deployed 16 geo-

distributed nodes in the 4 different datacenters, where in the first test we randomly select

signer nodes and deploy a share in each one. This test is performed with a single client,

choosing group sizes of 4, 7, 10, 13, and 16 signer nodes to deploy the shares in two

modes: concurrent or sequential. Next, we evaluate the cost of arranging these 16 nodes

by distance to determine the cost of selecting the closest nodes instead of randomly. To

do this, we sort different set sizes of signer nodes (e.g., 4,7,10,13,16) by distance using the

ICMP protocol present in our benchmark client.

From the figure 5.10, it can be seen that sequentially installing shares in each signer

node is very costly compared to installing the key shares concurrently. This is true for

any scheme used (TBLS and TRSA) with any key size. We expected that installing shares

for a tRSA 3072 would be more expensive than installing shares for TBLS 256 due to

the key size, however the latency between the client and each distributed signer node is

the key factor in the key installation latency time. We must note that the latency in the

figure 5.10 excludes key generation time.

From the figure 5.11, it is easy to see that parallel sorting of the group can be per-

formed in constant time for the number of signer nodes we evaluated. Sequential sorting

leads to a constant increase in the time required. As the previous results show, the key

factor in sorting nodes by distance is the latency between the client and all the nodes to

be sorted. Note that this process must be performed once for each new subset of signer

82

5.8. PERMISSIONLESS GROUP FORMATION

4 7 10 13 16
Nº of signer nodes

500

1000

1500

2000

Av
g

La
te

nc
y

pe
r o

pe
ra

tio
n

(m
s)

Random group formation with key installation (Latency)

TBLS256 Concurrent
TBLS256 No Concurrent
TRSA1024 Concurrent
TRSA1024 No Concurrent
TRSA2048 Concurrent
TRSA2048 No Concurrent
TRSA3072 Concurrent
TRSA3072 No Concurrent

Figure 5.10: Shares installation latency, when varying the number of signer nodes.

4 7 10 13 16
Nº of signer nodes to sort

0

5

10

15

20

25

30

35

Av
g

La
te

nc
y

pe
r s

or
t o

pe
ra

tio
n

(s
)

Non-Concurrent Sorting
Concurrent Sorting

Figure 5.11: Latency per sort operation when sorting different set sizes of signer nodes.

nodes, since signer nodes do not change their location. However, if the client does not

care at all where the nodes are located, we do not need to sort the nodes by distance,

which imposes an additional cost on the client later when creating the group signature.

From all the results of this experimental evaluation, we can conclude that for some

workloads it makes sense to install the shares when it is necessary to submit the transac-

tion. However, for more intensive workloads, it is recommended to generate the shares

offline and deploy them in advance.

83

CHAPTER 5. EXPERIMENTAL EVALUATION AND ANALYSIS

5.9 Summary

In this chapter we presented different experimental evaluations over our prototype. We

conducted tests in both blockchain platforms (Algorand and Sawtooth), to the integration

between our prototype and the blockchain platform, we have also performed isolated

experimental evaluations to determine the cost of each sub-component. All of this tests

where intended to answer the questions formed in the beginning of the chapter. We also

analysed the experimental evaluations summarized bellow:

• A baseline performance (, average latency and transaction throughput,) when run-

ning Hyperledger Sawtooth and Algorand distributed across data centers and in the

same data center, comparing both consensus protocols (PBFT and PPoS).

• Cost of threshold signature schemes in raw mode, with our crypto provider and a

comparison of the two cases.

• The average latency and transaction throughput when integrating our prototype

with Algorand and Sawtooth in a geo-distributed environment with different signa-

ture schemes: threshold bls and threshold RSA with different key sizes.

• The average latency and transaction throughput when isolating our prototype from

the blockchain, georeplicating across data centers and in the same data center.

• The impact and ability of our prototype to withstand crash and Byzantine faults,

comparing the performance of different THS scheme, varying key sizes.

• The cost of forming groups of different sizes and installing the shares in member.

• The cost of sorting signer nodes by distance from the client.

Given our results, we can conclude that our prototype of the signer node is capable

of scaling and can be deployed agnostically on any blockchain platform or other type of

distributed system that wishes to decentralize digital signatures. We believe that thresh-

old signatures can achieve high throughput when formed by small groups of participants.

Looking at our results, we saw that in the case of Algorand, the limiting factor was not our

prototype, but the blockchain platform itself. In the case of Sawtooth and our prototype,

both support batch transactions. Although we did not show the results, we believe this is

a viable option to improve transaction throughput in this scenario.

Our prototype even supports key installation for a permissionless protocol. This key

installation incurs some overhead, but we can do it in parallel, which reduces latency and

increases the security of the threshold signature since we keep re-keying, minimizing the

key exposer and reducing the time an attacker has to compromise t signer nodes.

As a final remark, we recommend the use of witness groups with sizes from 4 to 16

nodes, with threshold BLS256. Using threshold RSA with 1024 bits can be insecure, and

keys with sizes larger than 1024 can cause huge overheads in group signature formation.

84

C
h
a
p
t
e
r

6
Conclusion and Final Remarks

This chapter draws some conclusions about the research topic addressed in this disserta-

tion and finally makes some suggestions to point out some open issues and limitations of

the system model and the prototype itself that should be addressed in future work.

6.1 Conclusion

The research for this dissertation has allowed us to understand more about how to remove

the single point of failure through the decentralization of digital signatures present in cur-

rent blockchain implementations. We explored different types of group signatures, their

properties, and costs to better understand how to harness their potential to decentralize

blockchains. We also studied how distributed ledger technology and smart contracts work

and how they are implemented in different blockchain platforms. We made a comparison

between them to better illustrate their limitations and the impact of each decision made

to building such a platform. We have also explored different approaches by different

authors to decentralize the single point of failure in current blockchain platforms.

Our proposed system model aims to eliminate the single point of failure of traditional

signatures and create a new Byzantine-Fault tolerance layer that can be applied to any

blockchain. Our intention with this model was to create a new level of decentralization

for blockchain platforms by implementing in the design some system goals, such as,

platform agnostic, auditable, resilient, fair, dynamic and reconfigurable.

Based on our system model, we built a fully functional prototype that is platform

agnostic and can be deployed against different blockchain platforms, with a modular

and portable cryptographic provider that supports cryptographic operations that can be

expressed and executed by smart contracts. As a proof-of-concept, we decided to apply

our prototype to two different blockchain nodes that we analysed in the related work: i)

85

CHAPTER 6. CONCLUSION AND FINAL REMARKS

Algorand, because it is permissionless and uses the PPoS; ii) and Hyperledger Sawtooth,

because it is permissioned and uses the PBFT. Our implementation takes into account

the heterogeneity of platforms and smart contract languages, so we also implemented the

possibility to integrate a different smart contract engine into our prototype.

We have performed experimental evaluations to assess the performance of our pro-

totype in different scenarios, such as transaction throughput and latency when varying

the number of clients and group signature scheme and key sizes, georeplication of our

solution in different data centers, inducing crash and Byzantine faults, and the cost of

forming groups of different sizes. From the results, we can conclude that our prototype

is scalable and can be agnostically deployed on any blockchain platform or other types of

distributed systems that wishes to decentralize digital signatures.

In summary, we have achieved the objectives and contributions we set for this dis-

sertation by conceiving a system model and a fully functional prototype capable of de-

centralizing the single point of failure (digital signatures) by providing a new layer of

resilience and integrating with any blockchain platform.

6.2 Future Work

We have addressed our proposed goals and contributions that we originally laid to this

dissertation, furthermore we were able to develop a fully functional prototype in relation

to our system model and goals, however there is still room for some improvements in the

future:

• Regarding our crypto provider, there is too much latency introduced by our plug-

gable and factory-based architecture. This aspect could be improved by revising

the way the different cryptographic materials (private key share, public key and

signatures) are marshalled and unmarshalled and, if the crypto-provider is on the

same machine as the signer node, using Linux sockets instead of TCP to remove

the overhead caused by TCP handshake and IP routing. Our prototype supports

the latter, but no experimental evaluations were performed to prove whether Linux

sockets would reduce latency.

• Regarding our signer node, we could develop a smarter algorithm that detects if

a peer is constantly behaving Byzantine, and provide ways to ban him from the

trusted peers to improve performance by not validating and accepting signature

shares coming from that node. In the same way, the smarter algorithm could de-

tect the degree of Byzantine members and automatically choose which aggregation

algorithm to use at a given time to reduce the time required to generate a group

signature. We could also dynamically choose whether the signature shares pro-

duced by the witnesses should be broadcasted to all witnesses or directly forwarded

to the signer node responsible for aggregating the signature shares into the group

signature.

86

Bibliography

[1] Algorand Dev. url: https://developer.algorand.org/docs/features/asc1/

(visited on 11/18/2020).

[2] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. “SoK: Unraveling

bitcoin smart contracts.” In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 10804

LNCS (2018), pp. 217–242. issn: 16113349. doi: 10.1007/978-3-319-89722-

6_9.

[3] M. Bellare and G. Neven. “Identity-Based Multi-signatures from RSA.” In: Topics
in Cryptology – CT-RSA 2007. Ed. by M. Abe. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2006, pp. 145–162. isbn: 978-3-540-69328-4.

[4] Bitaps. url: https://bitaps.com (visited on 09/20/2020).

[5] D. Boneh, B. Lynn, and H. Shacham. “Short signatures from the weil pairing.”

In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics). 2001. isbn: 3540429875. doi:

10.1007/3-540-45682-1_30.

[6] P. Bright. Another fraudulent certificate raises the same old questions about certificate
authorities. 2011. url: https://arstechnica.com/information-technology/

2011/08/earlier-this-year-an-iranian/ (visited on 09/06/2020).

[7] P. Bright. Independent Iranian Hacker Claims Responsibility for Comodo Hack. 2017.

url: https://www.wired.com/2011/03/comodo-hack/ (visited on 09/06/2020).

[8] F. Casino, T. K. Dasaklis, and C. Patsakis. “A systematic literature review of

blockchain-based applications: Current status, classification and open issues.” In:

Telematics and Informatics 36 (2019), pp. 55–81. issn: 0736-5853. doi: https:

//doi.org/10.1016/j.tele.2018.11.006. url: http://www.sciencedirect.

com/science/article/pii/S0736585318306324.

[9] M. Castro and B. Liskov. “Practical Byzantine Fault Tolerance.” In: Proceedings
of the Symposium on Operating System Design and Implementation (1999). issn:

07342071. doi: 10.1145/571637.571640. arXiv: arXiv:1203.6049v1.

87

https://developer.algorand.org/docs/features/asc1/
https://doi.org/10.1007/978-3-319-89722-6_9
https://doi.org/10.1007/978-3-319-89722-6_9
https://bitaps.com
https://doi.org/10.1007/3-540-45682-1_30
https://arstechnica.com/information-technology/2011/08/earlier-this-year-an-iranian/
https://arstechnica.com/information-technology/2011/08/earlier-this-year-an-iranian/
https://www.wired.com/2011/03/comodo-hack/
https://doi.org/https://doi.org/10.1016/j.tele.2018.11.006
https://doi.org/https://doi.org/10.1016/j.tele.2018.11.006
http://www.sciencedirect.com/science/article/pii/S0736585318306324
http://www.sciencedirect.com/science/article/pii/S0736585318306324
https://doi.org/10.1145/571637.571640
https://arxiv.org/abs/arXiv:1203.6049v1

BIBLIOGRAPHY

[10] D. Chaum and E. Van Heyst. “Group signatures.” In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 547 LNCS.iii (1991), pp. 257–265. issn: 16113349. doi: 10.1007/

3-540-46416-6_22.

[11] K. Christidis and M. Devetsikiotis. Blockchains and Smart Contracts for the Internet
of Things. 2016. doi: 10.1109/ACCESS.2016.2566339.

[12] J. Cieplak and S. Leefatt. “Smart Contracts: A Smart Way To Automate Perfor-

mance.” In: Georgetown Law and Technology Review 1.2 (2017), pp. 417–427. url:

http://www.treasurer.ca.gov/cdiac/reports/rateswap04-12.pdf.

[13] G Coulouris, J Dollimore, and T Kindberg. “Distributed Systems: Concepts and

Design.” In: 3rd. Addison-Wesley, 2001, pp. 451–462. isbn: 9780201619188.

[14] I. Damgård, T. P. Jakobsen, J. B. Nielsen, J. I. Pagter, and M. B. Østergaard. “Fast

threshold ecdsa with honest majority.” In: Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
2020. isbn: 9783030579890. doi: 10.1007/978-3-030-57990-6_19.

[15] Dedis. DEDIS Advanced Crypto Library for Go. url: https://github.com/dedis/

kyber (visited on 10/07/2020).

[16] Y. Desmedt and Y. Frankel. “Threshold cryptosystems.” In: Advances in Cryptology
— CRYPTO’ 89 Proceedings. Ed. by G. Brassard. New York, NY: Springer New York,

1990, pp. 307–315. isbn: 978-0-387-34805-6.

[17] Q. DuPont. “Experiments in algorithmic governance: A history and ethnography of

"The DAO,"a failed decentralized autonomous organization.” In: Bitcoin and Beyond:
Cryptocurrencies, Blockchains, and Global Governance January (2017), pp. 157–177.

doi: 10.4324/9781315211909.

[18] C. Dwork and M. Naor. “Pricing via Processing or Combatting Junk Mail.” In:

Advances in Cryptology — CRYPTO’ 92. Ed. by E. F. Brickell. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1993, pp. 139–147. isbn: 978-3-540-48071-6.

[19] Enzoh. Boneh–Lynn–Shacham Signature Scheme. url: https : / / github . com /

enzoh/go-bls (visited on 10/06/2020).

[20] Ethereum. Solidity v0.7.4 Documentation. url: https://solidity.readthedocs.

io/en/v0.7.4/ (visited on 11/06/2020).

[21] C. Evans, C. Palmer, and R. Sleevi. Public Key Pinning Extension for HTTP. Tech.

rep. 2015. doi: 10.17487/RFC7469. url: https://www.rfc-editor.org/info/

rfc7469.

[23] M. S. Ferdous, M. J. M. Chowdhury, M. A. Hoque, and A. Colman. Blockchain
Consensus Algorithms: A Survey. 2020. arXiv: 2001.07091 [cs.DC].

88

https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1007/3-540-46416-6_22
https://doi.org/10.1109/ACCESS.2016.2566339
http://www.treasurer.ca.gov/cdiac/reports/rateswap04-12.pdf
https://doi.org/10.1007/978-3-030-57990-6_19
https://github.com/dedis/kyber
https://github.com/dedis/kyber
https://doi.org/10.4324/9781315211909
https://github.com/enzoh/go-bls
https://github.com/enzoh/go-bls
https://solidity.readthedocs.io/en/v0.7.4/
https://solidity.readthedocs.io/en/v0.7.4/
https://doi.org/10.17487/RFC7469
https://www.rfc-editor.org/info/rfc7469
https://www.rfc-editor.org/info/rfc7469
https://arxiv.org/abs/2001.07091

BIBLIOGRAPHY

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson. “Impossibility of Distributed Con-

sensus with One Faulty Process.” In: J. ACM 32.2 (1985), pp. 374–382. issn: 0004-

5411. doi: 10.1145/3149.214121. url: https://doi.org/10.1145/3149.

214121.

[25] G. Francisco. “Bringing Order into Things.” Master of Science. FCT-UNL, 2018.

[26] R. Gennaro and S. Goldfeder. “Fast multiparty threshold ECDSA with fast trustless

setup.” In: Proceedings of the ACM Conference on Computer and Communications
Security. 2018. isbn: 9781450356930. doi: 10.1145/3243734.3243859.

[27] R. Gennaro, S. Goldfeder, and A. Narayanan. “Threshold-optimal DSA/ECDSA

signatures and an application to Bitcoin wallet security.” In: Applied Cryptogra-
phy and Network Security - 14th International Conference, ACNS 2016, Proceedings.
Ed. by M. Manulis, S. Schneider, and A.-R. Sadeghi. Lecture Notes in Computer

Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics). Germany: Springer Verlag, 2016, pp. 156–174. isbn:

9783319395548. doi: 10.1007/978-3-319-39555-5_9.

[28] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Robust threshold DSS signa-

tures.” In: Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). 1996. isbn: 354061186X.

doi: 10.1007/3-540-68339-9_31.

[29] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. “Secure Distributed Key Gener-

ation for Discrete-Log Based Cryptosystems.” In: Journal of Cryptology 20.1 (2007),

pp. 51–83. issn: 1432-1378. doi: 10.1007/s00145-006-0347-3. url: https:

//doi.org/10.1007/s00145-006-0347-3.

[30] S. Goldfeder, J. Bonneau, J. A. Kroll, H. Kalodner, E. W. Felten, R. Gennaro, and A.

Narayanan. “Securing Bitcoin wallets via a new DSA / ECDSA threshold signature

scheme.” In: International Conference on Applied Cryptography and Network Security.
Springer, Cham. (2016), pp. 156–174.

[31] L. Goodman. “Tezos Position Paper.” In: (2014), pp. 1–33.

[32] H-online.com. Trustwave issued a man-in-the-middle certificate. 2012. url: http:

//www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-

middle-certificate-1429982.html (visited on 09/06/2020).

[33] S. Haber and W. S. Stornetta. “How to Time-Stamp a Digital Document.” In: J.
Cryptol. 3.2 (1991), pp. 99–111. issn: 0933-2790. doi: 10.1007/BF00196791. url:

https://doi.org/10.1007/BF00196791.

[34] F. Information and P. Standards. “Digital Signature Standard.” In: Safeguarding
Critical E-Documents July (2015), pp. 221–221. doi: 10.1002/9781119204909.

app1.

89

https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3149.214121
https://doi.org/10.1145/3243734.3243859
https://doi.org/10.1007/978-3-319-39555-5_9
https://doi.org/10.1007/3-540-68339-9_31
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
https://doi.org/10.1007/s00145-006-0347-3
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
http://www.h-online.com/security/news/item/Trustwave-issued-a-man-in-the-middle-certificate-1429982.html
https://doi.org/10.1007/BF00196791
https://doi.org/10.1007/BF00196791
https://doi.org/10.1002/9781119204909.app1
https://doi.org/10.1002/9781119204909.app1

BIBLIOGRAPHY

[35] M. Jansen, F. Hdhili, R. Gouiaa, and Z. Qasem. “Do smart contract languages

need to be turing complete?” In: Advances in Intelligent Systems and Computing
1010.March (2020), pp. 19–26. issn: 21945365. doi: 10.1007/978-3-030-23813-

1_3.

[36] F. Knirsch, A. Unterweger, and D. Engel. “Implementing a blockchain from scratch:

why, how, and what we learned.” In: Eurasip Journal on Information Security 2019.1

(2019). issn: 2510523X. doi: 10.1186/s13635-019-0085-3.

[37] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, B. Ford, E. Kokoris-

Kogias, and B. F. Epfl. “This paper is included in the Proceedings of the 25th

USENIX Security Symposium Enhancing Bitcoin Security and Performance with

Strong Consistency via Collective Signing Enhancing Bitcoin Security and Perfor-

mance with Strong Consistency via Collective Sig.” In: (2016). arXiv: 1602.06997.

url: https://www.usenix.org/conference/usenixsecurity16/technical-

sessions/presentation/kogias.

[38] E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford. “Calypso:

Private data management for decentralized ledgers.” In: Proceedings of the VLDB
Endowment 14.4 (2020), pp. 586–599. issn: 21508097. doi: 10.14778/3436905.

3436917.

[39] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, and B. Ford. “OmniLedger:

A Secure, Scale-Out, Decentralized Ledger.” In: IACR Cryptology ePrint Archive
(2017), p. 406. url: https://eprint.iacr.org/2017/406.

[40] L. Lamport. “Paxos Made Simple.” In: ACM SIGACT News (2001). issn: 01635700.

[41] L. Lamport, R. Shostak, and M. Pease. “The Byzantine Generals Problem.” In:

ACM Transactions on Programming Languages and Systems (1982), pp. 382–401. url:

https://www.microsoft.com/en- us/research/publication/byzantine-

generals-problem/.

[42] W. Lloyd and E. Berlekamp. Error Correction for Algebraic Block Codes. US Patent
4,633,470. 1986.

[43] S. Micali. Algorand’s Smart Contract Architecture. url: https://www.algorand.

com/resources/blog/algorand- smart- contract- architecture (visited on

11/18/2020).

[44] E. Mik. “Smart Contracts: A Requiem.” In: SSRN Electronic Journal December

(2019), pp. 1–22. issn: 1556-5068. doi: 10.2139/ssrn.3499998.

[45] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2009. url: http://www.

bitcoin.org/bitcoin.pdf.

[46] Niclabs. Golang Threshold Cryptography Library - RSA implementation. url: https:

//github.com/niclabs/tcrsa (visited on 10/05/2020).

90

https://doi.org/10.1007/978-3-030-23813-1_3
https://doi.org/10.1007/978-3-030-23813-1_3
https://doi.org/10.1186/s13635-019-0085-3
https://arxiv.org/abs/1602.06997
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://doi.org/10.14778/3436905.3436917
https://doi.org/10.14778/3436905.3436917
https://eprint.iacr.org/2017/406
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.algorand.com/resources/blog/algorand-smart-contract-architecture
https://www.algorand.com/resources/blog/algorand-smart-contract-architecture
https://doi.org/10.2139/ssrn.3499998
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
https://github.com/niclabs/tcrsa
https://github.com/niclabs/tcrsa

BIBLIOGRAPHY

[47] Niclabs. TCECDSA - Threshold Cryptography Eliptic Curve Digital Signature Algo-
rithm. (Visited on 11/10/2020).

[48] K Ohta and T Okamoto. “Multi-Signature Schemes Secure against Active Insider

Attacks (Special Section on Cryptography and Information Security).” In: IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sciences
82 (1999), pp. 21–31.

[49] T. P. Pedersen. “A threshold cryptosystem without a trusted party.” In: Lecture
Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics) 547 LNCS (1991), pp. 522–526. issn: 16113349.

doi: 10.1007/3-540-46416-6_47.

[50] QuantumMechanic. Proof of stake instead of proof of work. 2011. url: https://

bitcointalk.org/index.php?topic=27787.0 (visited on 09/19/2020).

[51] R. L. Rivest, A Shamir, and L Adleman. “A Method for Obtaining Digital Signatures

and Public-Key Cryptosystems.” In: Commun. ACM 21.2 (1978), pp. 120–126. issn:

0001-0782. doi: 10.1145/359340.359342. url: https://doi.org/10.1145/

359340.359342.

[52] R. L. Rivest, A. Shamir, and Y. Tauman. “How to leak a secret.” In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). 2001. isbn: 3540429875. doi: 10.1007/3-540-

45682-1_32.

[53] A. Shamir. “How to Share a Secret.” In: Commun. ACM 22.11 (1979), pp. 612–613.

issn: 0001-0782. doi: 10.1145/359168.359176. url: https://doi.org/10.

1145/359168.359176.

[54] V. Shoup. “Practical threshold signatures.” In: Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics). 2000. isbn: 9783540675174. doi: 10.1007/3-540-45539-6_15.

[55] J. Sousa, A. Bessani, and M. Vukolic. “A byzantine Fault-Tolerant ordering ser-

vice for the hyperledger fabric blockchain platform.” In: Proceedings - 48th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2018.

2018. isbn: 9781538655955. doi: 10.1109/DSN.2018.00018. arXiv: 1709.06921.

[56] C. Stathakopoulou and C. Cachin. “Research Report: Threshold Signatures for

Blockchain Systems.” In: (2017).

[57] D. R. Stinson and R. Strobl. “Provably secure distributed schnorr signatures and

a (T, n) threshold scheme for implicit certificates.” In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics) 2119 (2001), pp. 417–434. issn: 16113349. doi: 10.1007/3-540-

47719-5_33.

91

https://doi.org/10.1007/3-540-46416-6_47
https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1109/DSN.2018.00018
https://arxiv.org/abs/1709.06921
https://doi.org/10.1007/3-540-47719-5_33
https://doi.org/10.1007/3-540-47719-5_33

BIBLIOGRAPHY

[58] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser, N. Gailly,

I. Khoffi, and B. Ford. “Keeping Authorities "honest or Bust"with Decentralized

Witness Cosigning.” In: Proceedings - 2016 IEEE Symposium on Security and Privacy,
SP 2016 (2016), pp. 526–545. doi: 10.1109/SP.2016.38. arXiv: 1503.08768.

[59] N. Szabo. “Smart Contracts: Building Blocks for Digital Free Markets.” In: Extropy
Journal of Transhuman Thought (1996). issn: 1527-7755.

[60] E. Vanderburg. The Threat of Rogue Certificate Authorities: A Certified Lack of Confi-
dence. 2018. url: https://www.tcdi.com/the-threat-of-rogue-certificate-

authorities/ (visited on 09/06/2020).

[61] B. Wiki. Bitcoin Wiki. url: https://en.bitcoin.it/wiki/ (visited on 11/07/2020).

[62] G. Wood. “Ethereum: a secure decentralised generalised transaction ledger.” In:

Ethereum Project Yellow Paper (2014), pp. 1–32. issn: 1098-6596. arXiv: arXiv:

1011.1669v3.

[63] K. Zı̄le and R. Strazdin, a. “Blockchain Use Cases and Their Feasibility.” In: Applied
Computer Systems 23.1 (2018), pp. 12–20. issn: 2255-8691. doi: 10.2478/acss-

2018-0002.

92

https://doi.org/10.1109/SP.2016.38
https://arxiv.org/abs/1503.08768
https://www.tcdi.com/the-threat-of-rogue-certificate-authorities/
https://www.tcdi.com/the-threat-of-rogue-certificate-authorities/
https://en.bitcoin.it/wiki/
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://doi.org/10.2478/acss-2018-0002
https://doi.org/10.2478/acss-2018-0002

	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Introduction
	Context and Motivation
	Objectives and Contributions
	Report Organization

	Related Work
	Group-Based Digital Signatures
	Group Signatures
	Threshold Based Signatures Schemes
	Summary

	Blockchains and Group-Based Signatures
	Blockchains
	Permissionless Blockchains with Group Signatures
	Permissioned Blockchains with Group Signatures
	Summary

	Smart Contracts
	Smart Contracts in Blockchain and Cryptocurrency Domains
	Smart Contracts and Programming Support
	Smart Contracts in the different blockchains
	Summary

	Critical Analysis

	System Model and Architecture
	Application Scenario
	Strawman I: The Unique Central Database
	Strawman II: The Apparently Decentralized Blockchain
	Our Solution to The Application Scenario

	System Goals
	System Model
	Planes

	Threat Model
	Mapping to our Architecture
	Interactions
	Reference Architecture
	Software Architecture Components
	Signer Node API
	CryptoProvider
	Smart Contract Processor
	Signature Manager

	Summary

	System Implementation
	Prototype Overview and Technologies
	Prototype Architecture and Implementation
	REST API & Interconnect
	CryptoProvider
	Smart Contract Engine
	P2P Network
	Signature Manager
	Client and Benchmarker
	Validator Node

	Summary

	Experimental Evaluation and Analysis
	Test-bench Environment
	Benchmarks and Analysis
	Validator Nodes Baseline Performance Metrics.
	Signer Node integration with Validator Nodes
	Crypto-provider isolated performance.
	Prototype Performance With Different Signature Schemes
	Prototype Performance Inducing Faults
	Permissionless Group Formation
	Summary

	Conclusion and Final Remarks
	Conclusion
	Future Work

	Bibliography

