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Abstract

The Internet-of-Things (IoT) is simultaneously the largest and the fastest growing

distributed system known to date. With the expectation of 50 billion of devices coming

online by 2020, far surpassing the size of the human population, problems related to

scale, trustability and security are anticipated. Current IoT architectures are inherently

flawed as they are centralized on the cloud and explore fragile trust-based relationships

over a plethora of loosely integrated devices, leading to IoT platforms being non-robust

for every party involved and unable to scale properly in the near future. The need for a

new architecture that addresses these concerns is urgent as the IoT is progressively more

ubiquitous, pervasive and demanding regarding the integration of devices and processing

of data increasingly susceptible to reliability and security issues.

In this thesis, we propose a decentralized ledgering solution for the IoT, leveraging

a recent concept: blockchains. Rather than replacing the cloud, our solution presents a

scalable and fault-tolerant middleware for recording transactions between peers, under

verifiable and decentralized trustability assumptions and authentication guarantees for

IoT devices, cloud services and users. Following on the emergent trend in modern IoT ar-

chitectures, we leverage smart hubs as blockchain gateways, aggregating, pre-processing

and forwarding small amounts of data and transactions in proximity conditions, that

will be verified and processed as transactions in the blockchain. The proposed middle-

ware acts as a secure ledger and establishes private channels between peers, requiring

transactions in the blockchain to be signed using threshold signature schemes and group-

oriented verification properties. The approach improves the decentralization and ro-

bustness characteristics under Byzantine fault-tolerance settings, while preserving the

blockchain distributed nature.

Keywords: Blockchains, Internet-of-Things (IoT), Decentralized Ledgering, Decentral-

ized Trust, Threshold Signature Schemes, Scalable Fault-Tolerant Ledgering Middleware
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Resumo

A Internet-das-Coisas (IoT) é o sistema distribuído maior e de mais rápido cresci-

mento conhecido à data de hoje. Espera-se que 50 mil milhões de dispositivos se ativem

e interliguem até 2020, o que ultrapassará largamente o tamanho da população humana

e colocará problemas complexos de escala, confiabilidade e segurança. Verifica-se que

as atuais arquiteturas de IoT têm limitações inerentes, devido à centralização na cloud
e à integração pouco regulada de uma panóplia de dispositivos com base em relações

de confiança frágeis para os participantes envolvidos, resultando na incapacidade das

plataformas de IoT de escalar eficientemente no futuro próximo. A necessidade de novas

arquiteturas que abordem estas questões é urgente, à medida que a IoT se torna cada vez

mais ubíqua, disseminada e passe a exigir a integração de dispositivos e processamento

de informação cada vez mais sensíveis do ponto de vista da fiabilidade e segurança.

Nesta tese, propomos uma solução de registo de transações descentralizado para a

IoT, beneficiando de um conceito recente: blockchains. Em vez de substituir a cloud, a

nossa solução apresenta-se como um middleware escalável e tolerante a falhas, capaz de

registar transações entre participantes com garantias de autenticação entre dispositivos

de IoT, serviços de cloud e os próprios utilizadores, de forma mutuamente auditável e

sem dependência de bases de confiança externas. Seguindo ainda a orientação recente

nas novas arquiteturas para a IoT, a nossa abordagem utiliza smart hubs como portais de

comunicação com a blockchain que permitem a agregação de tráfego e o processamento

de pequenos conjuntos de dados em condições de proximidade, que serão verificados e

processados como transações na blockchain. O middleware perspectivado age como um

registo de transações seguro e confiável e estabelece canais privados entre participan-

tes, providenciando assinaturas de transações com base em esquemas de assinatura de

limiar, com verificação e auditabilidade orientada a grupos de participantes, para um

aumento de descentralização e robustez em conjugação com requisitos de tolerância a

falhas bizantinas, preservando a natureza distribuída da tecnologia blockchain.

Palavras-chave: Blockchains, Internet-das-Coisas (IoT), Registo de Transações Descen-

tralizado, Esquemas Criptográficos de Assinaturas de Limiar, Middleware de Registo de

Transações Escalável e Tolerante a Falhas
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1
Introduction

1.1 Context and Motivation

Blockchain technology first emerged in 2008 as a proposition for a cryptocurrency widely

known as Bitcoin, allowing for secure peer-to-peer transactions without relying on third-

party entities, such as financial institutions and banks [54]. Considered by many as a

disruptive force on both the industry and the academia, and viewed by others as some-

what hyped and yet to mature, blockchains are a novel concept that’s growing beyond

digital currencies, steadily becoming a foundational technology adopted in other areas

due to its immense potential for transforming the traditional industry by providing de-

centralization, security, persistency and auditability properties [45, 62, 79].

One of the areas where blockchain’s properties seem most beneficial in its potential

is the approach of a new generation of architectures for the Internet-of-Things (IoT). The

IoT is a new paradigm shift that promises to seriously impact our everyday lives with

the presence of intelligent and ubiquitous systems that will interact between themselves

and directly with us humans, whether or not we are aware of it. Expected to grow at

an extraordinary pace, reaching around 50 billion devices by 2020 [39], the IoT already

needs an urgent reboot [55], mainly because of high infrastructure costs due to the usage

of centralized platforms, proprietary server farms and cloud services, the reliance on

trust-based models, and the overall lack of privacy and security concerns. As the IoT

market keeps growing, the explosion of data to be transmitted to the cloud in current cen-

tralized models will lead to cloud providers struggling with their capacity and resources.

The impetus for this reboot is further strengthened by today’s IoT platforms offering no

possibility for scrutiny or control by end users in terms of privacy, security or trustability

conditions. No two devices can interact directly without communication passing through

service providers, while commercially available IoT platforms and services maintain their

1



CHAPTER 1. INTRODUCTION

own data silos for personalized service and profiling, without users being able to control

how their data is used and logged and with the possibility of that same data being sold to

third-parties or mishandled by providers.

In fact, it seems that the blockchain, an invention once fueled by the need of replac-

ing the increasingly prevalent trust-based model in electronic payment systems with a

more secure and robust model tolerant to fraud attempts and to third-party manipula-

tion could extend its use-case into the IoT and solve some of its growing entropy. For

such synergy to occur, however, some challenging obstacles that arise from both worlds

need to be studied and tackled first. Blockchains currently suffer from two considerable

problems: scalability and privacy, with repercussions of such concerns in achieving the

best balance in performance (transaction throughput and latency conditions), as well as

in membership management of the participants involved and in the reliability guarantees

under Byzantine-fault tolerance assumptions. Scalability has been a continuous source

of debate on how to improve transaction processing throughput and latency without

compromising system security and decentralization [20, 74]. Privacy has seen ongoing

efforts on how to deal with data privacy and traceability concerns, since transactions are

globally published across peers [5, 78]. On the other hand, the IoT is also facing major

challenges [60], such as the heterogeneity of devices properties and the proliferation of

proprietary solutions as specific IoT ecosystems, the lack of standards for interoperability

and for communicating parties, regulated protocols and technologies, and the diversity

of support for different cryptographic primitives and algorithms.

Recent edge computing models have also emerged to mitigate the privacy issues in

the growing market of the IoT by providing local processing and storage capabilities to

the edge, leveraging smart hubs that aggregate, filter, process and control data-flows, in-

termediate different protocols by protocol translation, and orchestrate sets of IoT devices

in local-controlled environments, avoiding the need of direct communication with cloud-

provider services and applications [10]. These hubs allow for better privacy controls by

selective filtering and obfuscating user data while aggregating and pre-processing data

on the edge, also avoiding huge amounts of sensitive data to be sent up to the cloud. A

vision of merging these new architectural models for the IoT with blockchain-enabled

data repositories and logging, regarded as blockchained IoT platforms, seems to be an

interesting direction to solve some of the scalability, security, privacy and trustability

issues of current IoT platforms and applications.

1.2 Objective and Expected Contributions

Problem Statement. Current security models for the IoT are centralized by nature or

cloud-based intermediated under no control by end users, relying on a central authority

for each specific service provider to orchestrate device communication, data storage and

logging of operations between several nodes. While this approach is acceptable assuming

an honest central authority and a modest number of devices, a preferable solution would

2



1.2. OBJECTIVE AND EXPECTED CONTRIBUTIONS

be one that does not rely on centralized models of trust in service providers or in third-

party interventions of entities assumed as trusted services. The decentralization of such

functions under independent auditing guarantees is crucial, given the exponential growth

of the number of IoT devices and the need for a model that is able to scale accordingly

and provide reliability without a single point-of-failure or being too costly to maintain.

Therefore, the question that the dissertation addressed is e following:

How can we address the foundations, services and mechanisms, to design new and more re-
liable IoT platform architectures, as to improve trustability, scrutiny and scalability guarantees,
taking advantage of blockchain-enabled logging and decentralized ledgering properties?

Objective. Our hypothesis for the research question in the problem statement is that it

is possible to improve the trustability properties of IoT platforms by introducing mech-

anisms to perform information flow control via local smart hubs, providing gateway

facilities supported by blockchain-enabled decentralized data management conditions.

We believe that the approach can address better conditions to scale and to control the

trustability assumptions of the IoT operation. For this purpose, we must research on how

to efficiently reshape the common centralized security model of the current cloud-enabled

IoT platforms, into a decentralized approach, reducing the need for centralized trust au-

thorities, and simultaneously considering the possible integration of the diversity of IoT

devices, that can range from objects as mundane as toasters and doorknobs to highly

complex technology as rentable cars and industrial equipment, each with their own differ-

ent computational capabilities and resource limitations. Figure 1.1 reflects a high-level

illustration of our intent and on how we wish to harness these concepts to transition

from traditionally centralized IoT architectures to a new generation of decentralized and

independently auditable architectures.
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Figure 1.1: High-level system model proposal
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CHAPTER 1. INTRODUCTION

To support our thesis statement, we must introduce improved mechanisms in the

blockchain for a better management of decentralized trust in scalability conditions. We

can see this approach as a clean slate approach for a new generation of open IoT platforms,

in which the users have full control over their devices, autonomy to audit trustability con-

ditions and a better control of the sensor data collected in the edge of the IoT. In this

approach, we will add to the notion of the smart hub edge-based architectures and pro-

vide middleware services with the ability for decentralized ledgering and group-oriented

verifiable signatures and verifiable transaction logging, allowing for a global autonomous

validation of transactions involving data sharing between devices, in a fully decentralized

data management model enabled by a base blockchain platform.

Research Contributions. In concordance with the objective defined above, we emphasize

the following contributions as a set of relevant outcomes from the thesis elaboration:

• An analysis on effectiveness, properties and support provided by different blockchain

platforms, surveying their provided services and mechanisms, in order to be ad-

dressed as candidates for leveraging extensibility requirements in enhancing decen-

tralized ledgering and reliability foundations for blockchain-enabled IoT platforms;

• In the previous contribution we include a detailed analysis of different blockchain

platforms, studying each platform in terms of different characteristics, including:

system architecture, software engineering approaches, reliability and scalability

conditions, as well as, programming support, which in turn, includes the analysis

of support for smart-contracts regulating supported transactions, regarding expres-

siveness conditions, openness and extensibility possibilities;

• A system model capable of acting as a decentralized ledger for the IoT that is able to

deviate the blockchain scalability concerns away from the IoT and provide a robust

cryptographically-verifiable middleware layer and an autonomous verification of

trustability conditions that protects every party involved;

• An innovative transaction and smart contract verification protocol that resorts to

threshold signatures to further decentralize blockchain architecture, capable of

outperforming multi-signature schemes under Byzantine fault-tolerance guarantees

and requiring smaller ledger block sizes;

• A powerful extension for smart contract specification that allows contracts not only

to specify the properties of an application running on a blockchain system but also

the properties of the system itself and on how transaction flows should occur;

• A fully functional prototype implementation based on our system model and its

respective experimental assessment, where smart hubs can be leveraged to pro-

vide scalable gateways to blockchain-enabled IoT platforms with increasing stress

conditions and resort to lightweight communication protocols acceptable for IoT

resource-constricted devices.

4



1.3. DOCUMENT ORGANIZATION

1.3 Document Organization

Following this first chapter, the remainder of this document is organized as follows:

• Chapter 2 focuses on a series of relevant related works in a top-down fashion, start-

ing from an understanding of current IoT cloud-based platforms and the inherent

centralization problems related to these architectures, to how blockchains work

and an analysis of existing blockchain platforms, all the way down to threshold

cryptography and its applicability to the blockchain transaction verification flows;

• Chapter 3 describes our system model and architecture for a decentralized and

scalable ledgering platform for the IoT, inspired by the related work;

• Chapter 4 outlines our prototype implementation effort for a system inspired by

the system model in the previous chapter;

• Chapter 5 presents the results of our experimental assessment over the imple-

mented prototype and our critical analysis of each benchmark;

• Chapter 6 wraps up this document with a set of concluding remarks on the con-

ducted work, stating left open issues and future work.

5
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2
Related Work

In this chapter we address the existent related work of our thesis. We first present a back-

ground of the study to familiarize the reader with each topic we describe ahead. We start

the related work by addressing the Internet-of-Things (IoT), cloud-first IoT architectures

and their handicaps. We then introduce blockchains and their properties, proceeding

to evaluate the state-of-the art of blockchain platforms. Finally, we present threshold

cryptography and theorize on the possibility of leveraging threshold signature schemes

for blockchain transactions to increase decentralized trustability properties of typical

blockchain architectures. We finish the chapter with a critical analysis of these subjects.

2.1 Background

The inability of current cloud-first IoT architectures to provide independent auditability

properties to every party involved with decentralized trustability assumptions is increas-

ingly critical with each new IoT device present in our lives. Current systems, which are

heavily dependent upon centralized cloud infrastructures, lack in robustness and privacy

concerns, and are significantly susceptible to faults and fraudulent behaviour from ser-

vice providers. Concerns that cloud providers will not scale in the foreseeable future

as the IoT grows at an astounding rhythm and that the fierce competition between IoT

platform manufacturers will drive to the increase of closed IoT environments and vendor

lock-in practices are also paramount. Thus, an alternative architecture that specifically

addresses the issues of robustness, centralization and scalability is needed.

The fact that this new architecture may be given by a technology that we popularly

acknowledge as being the backbone of cryptocurrencies as Bitcoin and Ethereum may be

unexpected at first. However, blockchains have clear practical beneficial properties that

can be applied to various scenarios, as they provide a truly decentralized approach to
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modern distributed systems and data-repository services, that has yet to be replicated by

other systems. Foremost, they allow for cryptographically secure and verifiable ledgering.

As such, various platforms that harness blockchain technology have emerged over the

years [5, 12, 28, 33, 40, 56], enabling for innovative decentralized applications that are

better prepared to answer the scalability and dependability requirements imposed by

modern systems.

For the sake of simplicity, a blockchain can be viewed as a public ledger in which

multiple peers register and verify transactions between themselves. These transactions

are recorded in the form of blocks, which are then chained together forming the ac-

tual blockchain, acting as a permanent database for the transaction records [54]. The

blockchain is not bound to a central authority and is instead distributed across the multi-

ple peers that compose the network, hence the property of decentralization. To add new

blocks to the chain, nodes have to mine the most recent block, which requires solving

a computational puzzle based on cryptographic hash functions, and present a proof-of-

work [54] to other peers so that they can continue on producing the next block.

We will approach some of the state-of-the-art of existent blockchain platforms in

bigger detail in the following sections and study different points-of-view on how to im-

plement the blockchain model and relevant extensions. Perhaps the most powerful evo-

lution to date to be implemented on the blockchain is the concept of smart contracts [70]

– special scripts that reside on the blockchain providing it the ability of enforcing and

cryptographically verifying distributed workflows – which is a source of immense interest

for the IoT domain since it enables the automation of complex multi-step processes [16].

Before the blockchain is successfully merged into the IoT ecosystem, a larger compre-

hension of what cryptographic primitives and multiparty computing protocols to use is

needed in comparison with traditional environments that are not as diverse and resource-

limited in nature. Promising advances have already been made, with lightweight encryp-

tion standards and ECC (Elliptic Curve Cryptography) being pushed forward as a possible

future for resource-constrained devices [60], as well as the rise of new architectures that

are able to reduce some of the overhead of the blockchain protocol by outsourcing the

protocol to a back-end network more capable of handling its overhead [24].

2.2 The Internet-of-Things (IoT)

The Internet-of-Things (IoT for short) can be defined as the collection of everyday de-

vices and objects that are embedded with electronics allowing them to compute and

communicate via some type of network. This definition covers a lot of physical objects we

know today that are already interconnecting with each other through virtual components

practically everywhere by leveraging micro-controllers, network adapters, sensors and

actuators. Such devices are progressively more aware of their surroundings and more

capable of capturing, producing and reacting to information for various purposes (e.g.

motion detection, speech recognition, surveillance and intrusion detection) [60]. This
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ubiquity has lead the IoT far away from being a concept, and it has been growing and

evolving at a stunning speed, expecting to hit the 50 billion device mark by 2020 accord-

ing to current estimates [39]. Its sheer potential opens up innovative and increasingly

complex concepts such as smart homes, domotic-oriented office automation, smart energy

grids, and smart cities by establishing networks where several specialized devices can

collaborate to provide a number of pervasive services [4, 24].

2.2.1 IoT Platforms and Architectures

Today’s most well known use-case of IoT systems are at the smart home setting. The need

and usefulness for automating and remotely controlling several devices in the common

household by connecting them over the Internet inspired the idea of integrating micro-

controllers into almost everything. However, as manufacturers produced more and more

smart devices over time, using cost-effective hardware components for specialized func-

tions, the IoT got increasingly heterogeneous, composed by multiple devices with very

distinct capabilities, most of which considerably resource-constrained.

To address this, current IoT platforms generally apply a cloud-first architecture, mean-

ing they offload resource-intensive tasks to cloud services, since it is infeasible to perform

complex application logic on the severely constrained hardware of most devices. As such,

IoT platforms usually come in the form of proprietary cloud gateways which the user can

control via some sort of desktop or smartphone application. The cloud services, in turn,

orchestrate the IoT devices connected to it according to the user’s commands and to de-

ployed internal application logic. Data generically flows back and forth between the cloud

and the edge, with the latter collecting environment information and actuating upon it

and upon the cloud service’s commands. In most cases, users have no direct control of

what information is sent/received to/from the cloud besides what the service provider

intends to give them control of. Still, the motivation behind cloud-based approaches

is clear: they allow for an unique centralized point of management, orchestration and

monitoring of IoT environments, which have the potential for reaching overwhelming

sizes of thousands, millions and perhaps even billions of devices that are impossible to

address simultaneously otherwise. At the same time, they deviate resource-intensive

tasks from the IoT. And even though newer IoT devices may be less constrained in the

future, older devices or extremely specialized types of devices (e.g. door locks, light bulbs,

thermometers) that already compose a big part of the IoT are unlikely to be updated [17].

In recent years, smart home architectures started introducing a new intermediary

device at the edge level, called a smart hub, in an attempt to unify the plethora of different

devices, independently of manufacturer or proprietary software, under a single unified

control interface and a standardized set of communication protocols (e.g. Apple HomeKit,

Amazon Echo, Samsung SmartThings [2, 3, 61]). These architectures closely resemble

the depiction on Figure 2.1. These centralized hubs have the benefits of performing data

aggregation, storage and processing on the edge and communicate with cloud services
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Edge device
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Cloud service

Figure 2.1: Depiction of cloud-based IoT architectures

on behalf of the smart devices only when needed, improving overall user experience and

minimizing latency for tasks that do not necessarily need the raw power of the cloud.

2.2.2 IoT Centralization Concerns: Privacy, Scalability and Robustness

Cloud-based platforms have the ability of rearranging the entropy of IoT networks into

simple vertical topologies with a centralized point of control, data storage and processing.

While practical benefits are evident, these vertical architectures raise some concerns with

potentially negative and harmful consequences, particularly regarding to the privacy of

user’s personal data, the scalability of modern cloud systems and the robustness of IoT

architectures. These three problems all originate from the centralization of the whole sys-

tem to a single point-of-failure and trust: the cloud. Our thesis is particularly concerned

in finding solutions for the latter two issues.

Privacy. As mentioned before, users have little control over what information do their

devices send to the cloud. During the normal lifecycle of edge devices, cloud systems

are used to store and process all needed data for posterior use by the whole system.

Simultaneously, cloud providers collect information for analytic and statistical purposes

in order to provide a better quality of service. This continuous process of collecting

data in the cloud requires the user to trust the service that his personal and sensitive

information is kept confidential and secured, and that the service is not going to attempt

to use it in a fraudulent manner. This is a specially strong assumption, as seen from

recent real cases of theft and unauthorized disclosure of personal information [26, 31, 38,

52], proving that this trust relationship has been broken a worrisome number of times,

with data being used for illegitimate purposes.

Scalability. As the number of connected IoT devices grows at an exponential rate,

so does the amount of data they generate, directly increasing the workloads that cloud

services (and consequentially data centers) need to handle. Current predictions estimate

that these workloads will increase massively, as far as 750% up until 2019 [76]. Given
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that current IoT architectures rely on the cloud extensively these estimates serve as a

dire warning that the consumption of resources by the IoT will far exceed the capability

of the cloud to provide them. Current systems will not be able to scale to the needs

of the IoT, and a redesign of existing architectures is therefore urgently needed. Some

authors have proposed to address the scalability problem at the edge with the integration

of edge computing models such as the one in [10] as part of the architecture of IoT

platforms. These models rely on the deployment of edge nodes with reasonable hardware

and capable of storing and processing moderate amounts of data close to the resource-

constrained IoT devices to perform local data aggregation, storage and computing tasks,

minimizing the volume of data and traffic sent to the cloud, resorting to it only when

further processing is needed. This model seems to be in line with the emergent smart

hub technology described previously and allows for a better privacy control, since data

can be processed locally and the hub may filter subsets of that same data to be sent to the

cloud for analytics or backup.

Robustness. Current IoT models do not offer satisfactory security measures for all of

the parties involved, depending too much on centralized entities that are susceptible to

fraudulent behaviour. A network where every device is subjugated to a central authority

is a network that is ultimately controlled by a single point-of-failure. More importantly,

there is no direct form for users and devices to verify and audit if certain workflows are

valid or authorized without depending on the central authority to do so [4, 16]. The

problem with centralization is even more evident in critical systems like financial and

banking operations, healthcare systems and military networks, in which people’s assets

and lives may be compromised by faulty systems [4]. A security-through-transparency

democratic decentralized and trustless ledgering solution, capable of securely distribut-

ing information in cryptographically verifiable workflows across IoT devices is therefore

needed, and can be leveraged through the use of emergent blockchain technology ac-

cording to several authors [4, 16, 55, 64]. For instance, in [24] the authors propose a

decentralized overlay network using blockchains that uses the cloud merely for storing

data, although it assumes the cloud as part of its trust computing base. In this model,

smart hubs connect to representative nodes in the overlay network which is responsible

for providing robustness and auditability while deviating the blockchain protocol from

edge devices. In [64], despite the absence of smart hubs in their architecture, the authors

propose the use of a blockchain layer to mediate access control and disrupt the need of

trust in cloud systems in a similar way to [24].

2.3 Blockchains

In this section we present blockchain technology and relevant concepts. For the context of

this thesis our focus is on blockchain technology itself and not on Bitcoin or any other type

of cryptocurrency, even though we might resort to such systems for illustrative purposes.
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2.3.1 Relevant Concepts in Blockchain Technology

A fundamental problem of distributed systems is consensus, which requires different

processes, or participants in the same network, to decide and agree on a given data

value in order for the system to maintain overall consistency. The consensus problem

has been around since the birth of distributed systems and has been formally described

in the literature [18]. Consensus mechanisms have to be properly designed if they are

to be used in real world applications. An ordinary aspect of any system is that it can

fail, either by crashes, message omissions or Byzantine behaviour [50] (faults caused by

software/hardware errors or malicious attacks on nodes). Consensus algorithms have to

take this fact into account and provide a way to maintain consistency in the presence

of a given number of faults. However, in asynchronous networks, this concept collides

with a problem known as the FLP impossibility [27], which states that it is impossible

to deterministically establish consensus in an asynchronous system where at least one

process is able to fail. Nevertheless, various algorithms, such as Paxos and Google’s

Chubby, are used today in asynchronous settings and a small probability of not reaching

consensus is tolerated.

The blockchain, as the name suggests, is a chain, or a list of records, comprised of a

continuously growing number of data blocks, linked together in a way that allows partic-

ipating nodes in a peer-to-peer network to establish a sequential history of transactions1

and agree on the order that they occurred on the system. To achieve this, blockchains

resort to their own consensus mechanism based on cryptographic proof. Blockchains can

be thought of as decentralized databases, providing persistency of data, a high level of

fault-tolerance, and security, all without the need of trust in a third-party. Decentraliza-

tion is a key property, since there is no single point of failure in the system, making truly

decentralized blockchains resilient to even Denial of Service (DoS) attacks.

2.3.2 Blockchain Operation

Nodes that wish to start a new transaction in the blockchain broadcast it over the net-

work, letting other nodes collect this transaction into a data block – the main unit of the

blockchain which is able to hold several different transactions [54]. Every data block in

the blockchain contains an hash of the previous block, a nounce and relevant transaction

data, as illustrated by Figure 2.2.

Block

Prev Hash Nonce

Tx Tx ...

Block

Prev Hash Nonce

Tx Tx ...

Figure 2.2: Blockchain block structure (from [54])

1We use the term transaction since that’s the terminology used in the literature, but it should be consid-
ered in the sense of a generic exchange of information between processes rather than its economic denotation.
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The hash of the previous block is generated by applying a secure hash function to the

content of the block. At the start of the chain lies the genesis block, whose purpose is to

act as the beginning of the chain and authenticate the entire chain (backtracking on any

block should always yield the same genesis block). The nounce is an arbitrary number

whose value is determined in a way that ensures that the secure hash function output of

the block starts with a sequence of leading zeros. To compute the value of the nounce,

nodes go through a process known as mining, looping through different values for the

nounce and submitting them to the secure hash function until a result with leading zeros

is found, expending CPU power and resources. The number of leading zeros determines

the difficulty involved in finding the correct hash, with a lesser number of zeroes requiring

less computational effort than a bigger number, and is decided by the participants of the

network if blocks are being produced at a faster than normal rate. This cryptographic

puzzle solving process lies at the heart of blockchain’s consensus mechanism, since nodes

are required to present the block and the correct nounce as a proof-of-work to other

participants in the network to be granted the right to add the new block to the existing

chain. Upon receival of the proof-of-work, other nodes can quickly verify that it is in fact

the correct solution by submitting it to the same secure hash function, and checking if

the contained transactions are valid. If both verifications succeed, nodes accept the proof-

of-work and begin working on the next block, thus expanding the chain. When two or

more nodes solve the mining problem concurrently or a misbehaving node intentionally

duplicates blocks of transactions (an attack known as double-spending), a fork occurs,

splitting the blockchain into different branches. When this happens, miners can work on

any of the branches. Eventually, one of them will have more work invested into it and

grow in length, so nodes will redirect their effort to it since it will be the longest chain.

Due to the possibility of such race conditions, transactions are only confirmed after the

block they are contained hits a certain threshold of successors – the bigger number of

appended blocks, the slimmer is the probability of existing a concurrent branch.

Mining also gives the blockchain its inherent resistance to tampering and data modifi-

cation, since to change an existing block an attacker would have to regenerate all the other

blocks that come after it, recomputing the proof-of-work for each one. If the network is

dominated by an honest majority (≥ 51%), it is impossible that an attacker is able to forge

a fraudulent fork that surpasses the length of the honest chain even if spawning multiple

nodes, since honest nodes will always mine on the longest chain. Therefore, transactions

stored in the blockchain are considered to be irreversible, since attackers would need to

subvert the network to be able to forge a chain that reverts them.

The last component of the block is the actual data, which is stored in a Merkle tree

structure [53]. The purpose of this structure is that it serves as cryptographic proof of the

transactions stored in a block by hashing upward to the tree’s root: if transaction data (a

leaf node) is tampered with or any node in the tree is rearranged, the resulting root hash

value of the tree won’t match the original one, and can be detected as invalid. Pruning
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can be employed to save disk space without damaging the tree’s intended function. Trans-

actions themselves are stored in the form of coins, a term originating from cryptocurrency,

which are structured objects generally containing the address of the recipient, the data of

the transaction and the sender’s digital signature proving the authenticity of the coin.

2.3.3 Smart Contracts

While not part of the original architecture of the blockchain, the concept of smart con-

tracts [70] emerged as a way of enabling content-agnostic blockchain systems capable of

running arbitrary rules and policies. In essence, smart contracts are nothing more than

user-defined code that can be triggered by peers to allow the distributed execution of ar-

bitrary state transition functions between network nodes, enabling mutually distrustful

peers to interact with each other in a transparent and deterministic way, since everyone

has access to the same code [16].

For example, one can implement a smart contract that is able to support the lifecycle of

a passenger’s flight insurance. The passenger can register a transaction in the blockchain

representing the payment of the insurance and the smart contract code can process the

business logic that handles gathering information about that flight from external services.

Depending on that same information, if the flight is on time or delayed, the contract can

deterministically decide if the passenger will pay or get paid the insurance.

The first successful implementation of smart contracts was made by Ethereum [12],

with other systems following soon after, as we will see on the next section (Section 2.4).

In Ethereum, smart contracts execute in a sandboxed runtime environment called the

Ethereum Virtual Machine (EVM), which is replicated across every network node. The

contract code is persisted on the blockchain and deployed within a block, similarly to a

set of transactions, and can be triggered by sending transactions towards its address [16],

updating each node’s state through a State Machine Replication (SMR) process. Contracts

are regulated by special fees (gas units) that ensure code termination and play a big part

in transaction verification, since every node locally verifies contract code conformance

with gas limits.

2.3.4 Blockchain Design Issues

Blockchains are certainly fascinating in their own design and properties, but not without

its caveats, namely, low scalability and lack of privacy.

Low scalability. The blockchain’s low scalability manifests itself in limited through-

put and high confirmation latency of transactions, high bootstrap time for new nodes,

and significantly elevated costs regarding storage requirements, network bandwidth and

CPU usage [20]. This severely impacts the adoption rate of blockchain technology and its

application to other use cases beyond cryptocurrency. For a better understanding of the

problem, we will follow the vision of Croman et al. [20] and unfold the blockchain into
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different planes, each with notable inefficiencies: Network, Consensus, Storage and View.

Given the scope of this thesis, we won’t consider the Side plane defined by the authors.

The Network plane refers to the message exchange between peers during the several

phases of the protocol. The inefficiency related to this plane lies with the local validation

of transactions by each node, which delays transaction propagation, and with duplicate

transmission, since each transaction is propagated twice: first when a node proposes a

transaction for the first time and once again when a block is mined and relayed.

The Consensus plane concerns itself with improving the speed of the consensus algo-

rithm of the blockchain and reducing block latency. Network-wide proof-of-work con-

sensus, while completely decentralized, is a computationally costly and time-consuming

algorithm, standing as the major bottleneck to throughput [74]. There are several possible

approaches for this plane, from sharding peers into groups and reconciling consensus

by means of some Byzantine Fault-Tolerant (BFT) SMR protocol, such as PBFT [15], to

semi-decentralizing the blockchain in a hierarchical fashion with a top-level blockchain

coordinating several smaller instance blockchains (sidechains), resorting to consortium

consensus protocols, thereby delegating some level of trust in small sets of trustable enti-

ties running a PBFT-based consensus, or even proof-of-stake, a protocol in which nodes

vote with whatever digital tokens they own on the system (a stake), instead of CPU power.

The Storage plane describes on how the ledger and state data are persisted across nodes.

In its original specification, every node of the blockchain holds a full copy of the ledger.

While this allows for a truly decentralized way of verifying transactions and blocks, it

brings a heavy storage cost given the growth potential of the blockchain2. A possible

approach is to shard the ledger across nodes and use a distributed hash table, or a similar

structure, to identify which nodes hold which part of the ledger.

Lastly, the View plane addresses how peers view the current state of the system. Conse-

quently, this plane is also related with bootstrapping, the process by which newly joining

nodes get up-to-date on the system’s state. The bootstrapping protocol is a cumbersome

SMR process that requires new nodes to download all of the blockchain down to the

genesis block and process the entire transaction history before being able participate in

the system. Most systems approach this problem with the introduction of partial nodes

– nodes that do not possess the ledger and are able to broadcast and receive transactions

but cannot verify them for themselves, relying on other nodes they trust for that matter

[33, 54]. More efficient approaches can be applied by relaxing the trust model restrictions

of the blockchain and outsourcing views in a cryptographically-secure and authenticated

manner from a subset of nodes [20, 69].

Lack of privacy. The privacy problem surfaces as the trade-off with blockchain’s trans-

parency and auditability. At the price of permanently recording every transaction pub-

licly, sensitive information can be disclosed to unwanted parties, breaking confidentiality,

and public-keys can be traced to identify traffic patterns, breaking anonymity.

2Bitcoin’s blockchain size over time: https://blockchain.info/charts/blocks-size
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Addressing transaction confidentiality is usually done by encrypting information, iso-

lating it in private channels between authorized parties or a mix of both. The Hawk frame-

work [49], for example, allows for the development of private smart contracts through the

use of public-key cryptography and non-interactive zero-knowledge proofs (zk-SNARKs)

– cryptographic schemes in which a message can be proven valid without any further in-

formation other than the fact that it is valid being conveyed and without peer interaction.

Zerocash [5] does a similar approach, obfuscating transaction data that can only be ac-

cessed by the parties involved in a transaction by harnessing zk-SNARKs as well. Another

solution is to split blockchain traffic into different isolated chains so that information is

revealed only to authorized nodes within the context of a single chain [28].

Regarding peer anonymity, plausible approaches such as allowing nodes to transact

under different public-keys [33] or splitting blockchain traffic into different subnets can

frustrate attempts to associate a node with a single public-key. More elaborate proposals,

such as the ones by Xu et al. [78] and Heilman et al. [35], consist of systems in which

virtual intermediaries, available to participating nodes in a transaction, execute smart

contracts between them, concealing the true identity of the participants. Other notewor-

thy advances, such as Zerocash [5], resort again to zk-SNARKs to prove the validity of

transactions without the need of peers knowing the identity the node that proposed them.

2.4 Blockchain Platforms

In the previous chapter, we have mentioned a concept called a blockchain platform. A

blockchain platform is a system fundamentally based on blockchain technology that

eases the process of building decentralized applications by providing a foundational layer

to build upon. Despite the infancy of blockchain technology, an increasing number of

platforms is emerging quickly, with several examples of decentralized applications built

upon these platforms in healthcare, supply chains, uncensorable social media, automated

locks, and many others use-cases [1, 25, 46, 77].

In this section, we will iterate over a representative set of platforms that can be lever-

aged for our objective. Unintentionally, this set is composed only by open-source plat-

forms. In the end, we will be able to discuss on the benefits and drawbacks of each system

by pondering on the following sets of characteristics:

• Software Engineering: Relates to the software development and construction charac-

teristics of the system:

– Quality of the resources documenting each system component;

– Size and activeness of the community behind the system. For a consistent

evaluation of each community, we will resort to Github metrics: stars – which

we interpret as a form of user appreciation – and forks – which are the result

of users reusing the platform’s source-code to build new systems.
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• System Architecture: Describes the architecture of the system having into account

the scalability and privacy design issues of the blockchain described in Subsection

2.3.4:

– Whether the system is permissioned or permissionless. Permissioned block-

chains impose restrictions on the actions peers are allowed to execute (par-

ticipating in consensus, validating transactions and blocks, executing smart

contracts, etc.), while permissionless blockchains do not;

– Degree of decentralization of the system taking into account dependencies on

third-parties, external services or federated groups of nodes. Decentralization

defines to what extent may a dependency influence the system into behaving

erratically and present a single point of failure for the entire system;

– Support for orchestrating multiple blockchains under a single platform;

– Transaction privacy and peer anonymity guarantees, in order to avoid tracing

and disclosure of sensitive information and traffic patterns;

– Transaction flow, in comparison with the original blockchain specification;

– Support for Byzantine fault-tolerance (BFT) and how many nodes are needed

to tolerate f faulty replicas;

– Consensus mechanism being employed by the system. Whether it is pluggable

(i.e. changeable between BFT/crash-only) and what’s the system’s throughput

scalability with respect to transactions per second (tps);

– How is state and ledger data replicated across network nodes: globally across

the network or partially across subsets of nodes;

– How do nodes update their system’s state view, with regards to the consistency

model being used as well as on the ordering of messages;

• Expressiveness and Programming Support: Relates to the programming model that the

system provides for the implementation of custom logic. We will also address smart

contract extensibility, since some platforms implement only a partial notion of

smart contracts and do not support extensible content-agnostic code to be executed

in the blockchain.

2.4.1 Ethereum

Ethereum [12] is the best known permissionless blockchain system after Bitcoin, with a

rather active and large community (around 10000 stars and 3000 forks on Github). It is

also an open-source platform with a very complete and descriptive documentation. Its

creation was largely motivated by the idea of improving upon Bitcoin’s original archi-

tecture by retrofitting the blockchain with a Turing-complete scripting mechanism that

would allow custom code execution, i.e. extensible smart contracts.
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At the time of writing, Ethereum implements proof-of-work consensus mechanism,

ensuring a BFT decentralized agreement between all network nodes assuming 51% of

them are honest. It is planned to transition to a hybrid proof-of-work/proof-of-stake

model in the near future. Albeit consensus is optimized to be memory-hard instead of

CPU-hard, Ethereum suffers from the same low throughput capacity as Bitcoin does,

reaching an average maximum of 15 tps. Likewise, as in Bitcoin, every node keeps an

entire copy of the ledger and updates its system state view by executing a causally ordered

and eventually consistent SMR process. The transaction flow of Ethereum is roughly the

same as Bitcoin. Additionally, since the platform is intended at a public setting, Ethereum

does not provide any transaction privacy or peer anonymity guarantees.

Being an open-source platform, Ethereum gave birth to multiple other platforms.

We will address two well-known examples in the blockchain community, both of them

open-source, that were forked from the Ethereum codebase: Quorum and Hydrachain.

2.4.2 Quorum

JPMorgan’s Quorum [56] was built on the premise of creating a enterprise-oriented block-

chain, with Ethereum chosen as the groundwork for such platform to grow upon. Accord-

ingly, Quorum inherits the EVM and smart contract extensibility from its precursor.

Essentially, Quorum is a permissioned blockchain divided into a public and a private

network. As with regular blockchain systems, participants process all public transactions

received from the public network. However, the transactions in the private network

rely on proxy agents similar to [78], and asymmetrical encryption of data to ensure that

only the parties involved in a private transaction can process it. Private smart contracts

are also made possible by segmenting contract storage across nodes. Quorum further

introduces a degree of anonymity into the system by leveraging zk-SNARKs [5] to shield

private smart contract information between peers.

Quorum’s consensus mechanism is consortium-based [20] and has two distinct im-

plementations: Istanbul BFT (able to tolerate f faults with a population of 3f + 1 nodes)

and Raft (does not support BFT in exchange for higher throughput). There are no official

performance metrics available, but throughput is presumably highly scalable in any of

the implementations (with an average maximum throughput of over 1000 tps on standard

conditions) if we extrapolate the results of other platforms that also execute consensus in

a consortium PBFT-like manner. Regarding view computation, this consensus approach

ensures a strongly consistent, totally ordered SMR across the network.

Overall, Quorum is a very privacy-focused platform. JPMorgan itself and contributors

from the open-source community seem to be actively supporting the platform (which has

around 1500 stars and 300 forks on Github). The documentation provided is very rich

and thorough on most aspects of its architecture. However, Quorum is heavily dependent

on JPMorgan’s Constellation network and on a federated group of nodes for consensus,

making it only partially decentralized.
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2.4.3 Hydrachain

Hydrachain [40], an open-source community-driven fork, introduces permissioned ledger-

ing into Ethereum, similarly to JPMorgan’s Quorum. Hydrachain’s consensus mechanism

is inspired by a consensus engine known as Tendermint [71] and is a BFT SMR algorithm,

executed in a consortium-like fashion, tolerant up to the order of 3f + 1 with f faulty

processes. As with Quorum, there are no proper performance metrics available, but since

consensus is executed in a small subset of nodes and presumably approximates Tender-

mint’s algorithm, its throughput scalability is presumably high as well, with over 1000

tps. View computation is a strongly consistent, totally ordered SMR process.

Perhaps one important feature of Hydrachain is its ability to bypass the EVM, allow-

ing the development of native smart contracts (written in Python) with faster execution

times. However, this allows for undeterministic code to be written by naive developers,

deadlocking the entire network. The platform was also designed with the architectural

idea of supporting multiple chains running in parallel, in which each node could par-

ticipate concurrently in two or more chains at once, allowing both context and privacy

concerns to be isolated. However, this feature never got past being future work and Hy-

drachain’s small community (with around 250 stars and 100 forks on Github) seems to

have gone cold, with no new features added into the platform’s source-code over a year

and with a very poor documentation which provides little insight into its architecture.

Other than the described features, Hydrachain is currently very similar to Ethereum

and even maintains an EVM for compatibility purposes with its predecessor.

2.4.4 The Hyperledger Project

The Hyperledger project consists of a plethora of different open-source blockchain plat-

forms and tools created by several contributors, aiming to provide standard cross-industry

collaborative tools for building rich decentralized applications [28]. For the purpose of

this thesis, we will be focusing on its main platforms: Fabric, Sawtooth, Burrow and

Iroha.

Fabric (also known as HLF) [42] was the kickstarter for Hyperledger, being developed

by IBM. We will only address the V1 version of the platform, since it is the most recent

one. Its community is rather large, with around 2500 stars and 2000 forks on Github, and

contributors seem to be actively engaged into improving the platform. Its documentation

is also very detailed and goes into depth of almost every aspect of its architecture.

Fabric supports the notion of multiple permissioned and interoperable chains, split-

ting sets of nodes across channels, in which nodes can participate concurrently. This

allows partitioning smart contracts and transactions accordingly, isolating data confiden-

tiality concerns. Ledger replication is partial, since each ledger is maintained and shared

only between authorized nodes on a per-channel basis. At the present moment, Fabric

does not leverage any anonymity mechanisms. Regarding consensus, Fabric resorts to an

external off-chain ordering service that establishes total order on the transactions of all
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its chains. This service is pluggable, but its official implementation is crash fault-tolerant

only. While this approach allows a unified consensus between chains and effectively en-

hances throughput, yielding over 1000 tps, it centralizes consensus by delegating trust to

the ordering service. It can be made BFT using the work by Sousa et al. [6].

The transaction flow within Fabric differs radically from the original blockchain spec-

ification, as illustrated in Figure 2.3. In Fabric, within the context of a channel, clients

propose transactions to a subset of nodes called endorsers. In turn, these nodes are re-

sponsible for verifying the validity of transactions and the sender’s signature, signing

(endorsing) the transaction and returning it to the client, which is responsible for sending

the now endorsed transaction to the consensus service. After consensus is reached, the

transaction is then propagated within a block to the channel where the nodes are partic-

ipating, and their ledgers and view of system’s state updated, in a strongly consistent,

totally ordered SMR process.

user request

submitting 
   client

Figure 2.3: Hyperledger Fabric transaction flow (adapted from [69])

One last important thing to note about Fabric is Chaincode, its implementation of

smart contracts. Chaincode follows closely the architecture of the EVM, providing a

sandboxed runtime environment for each node which interprets contracts written in Go,

but does not have a built-in gas limit that limits execution of contract code. Despite

the implementation being different, Chaincode allows for generic and extensible smart

contracts, identically to the EVM.

Sawtooth [44] was developed by Intel, with a strong focus on increasing the blockchain’s

consensus efficiency and minimizing resource consumption. Its community is small yet

active (around 500 stars and 250 forks on Github), and it has a rich documentation

describing its architecture. To implement a permissioned system, Sawtooth borrows a

modified EVM from Burrow, which we will describe ahead. Its consensus mechanism is
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pluggable, allowing for a crash fault-tolerant random leader election protocol, but it de-

faults to a novel approach dubbed proof-of-elapsed-time, which relies on nodes requesting

wait times from Intel’s SGX CPU enclaves – trusted execution environments that allow

code to be run in tamper-resistant private areas of the CPU – to elect a leader. The node

with the shortest wait time gets to add its block to the blockchain without expending

CPU cycles mining. Its support for BFT is the same as proof-of-work, requiring a majority

of honest nodes (51%) in order to tolerate faulty nodes, and its throughput scalability is

presumably high (over 1000 tps).

Regarding transaction flow, ledger replication and view computation, Sawtooth be-

haves identically to Ethereum or Bitcoin. Similarly, it does not address privacy and

anonymity as of yet. The degree of decentralization of the system merely depends on its

nodes possessing Intel SGX technology, since every other protocol action is decentralized.

Burrow [41] was previously known in the community as Eris:db, a blockchain plat-

form forked from Ethereum. As with Sawtooth, its community is small but growing

(currently around 200 stars and 100 forks on Github) and actively contributing to the

platform’s development. Its documentation is mediocre: it gives an overall understanding

of the features of the system but lacks in detailing them. Being an Ethereum fork, Burrow

makes use of a modified EVM featuring an access control layer implemented directly on

top of it as to provide a permissioned runtime environment for extensible smart contracts.

Burrow’s consensus mechanism is consortium-based and implemented by the Tender-

mint engine [71], allowing for a highly scalable throughput (reaching over of 1000 tps)

and BFT with 3f + 1 nodes in the presence of f faults. Nodes update their view of the

system through SMR, ensuring strong consistency and total order. Like Fabric, Burrow’s

architecture also allows for multiple chains, but at the moment consensus is established

at chain level and interoperability is limited, with plans of supporting this functionality

in the near future. This architecture somewhat allows for a weak transaction privacy

guarantee in the sense that data is confined within each chain. However, unlike Fabric,

where nodes can participate in multiple channels and establish private ledgers with other

peers, here nodes cannot participate concurrently in several chains. Anonymity is also

not addressed by this platform.

Iroha [43] is a permissioned blockchain that emphasizes on mobile device support

with simplicity in mind, providing a bare-bones platform to build upon with mobile

development libraries included. At the heart of its consensus mechanism lies a BFT

consortium-based consensus algorithm, dubbed Sumeragi, that establishes consensus at

transaction level and takes into account a peer reputation protocol to choose the order

of nodes that get to process transactions, able to tolerate f faults with over 3f + 1 nodes.

Its throughput is presumably high (estimated over 1000 tps), ledger replication is done

globally (network-wide) and it ensures a strongly consistent, totally ordered SMR view

computation. It does not provide privacy or anonymity guarantees in its current version.

As with other Hyperledger platforms, with the exception of Fabric, Iroha has a small

yet active community (around 500 stars and 150 forks on Github). Its documentation is,
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however, rather poor. Iroha also implements its own version of smart contracts – chaincode
– written in Java and executed against the Java Virtual Machine (JVM) on sandboxed

environments present in each node. As with EVM contracts, these are also extensible.

2.4.5 Counterparty and Bitcoin

Bitcoin, despite not being intended as a platform, has long gained community interest for

being the original proponent of blockchain technology and its most successful use-case.

Purposefully implemented limitations of Bitcoin due to security implications made it a

poor candidate for anything other than cryptocurrency, but interest to extend it prevailed.

Enter Counterparty [19], an open-source platform built upon Bitcoin, enabling smart

contracts to be run on Bitcoin’s blockchain by borrowing the EVM. In broad terms,

Counterparty shares exactly the same blockchain as Bitcoin, even piggy-backing on its

proof-of-work consensus, but smart contracts can only be interpreted by Counterparty.

Despite this added functionality, this platform’s architecture is the original architec-

ture of Bitcoin, and it can almost be seen as a smart contract layer. Therefore it is a

permissionless and completely decentralized blockchain platform that suffers from the

same scalability and privacy issues as its predecessor. Its documentation is actually very

complete and it has a small but active community working on the project, with around

200 stars and 150 forks on Github.

2.4.6 Multichain

The Multichain platform [33], as the name suggests, was built to support multiple per-

missioned chains running in parallel. Like Burrow, consensus is run at blockchain level

and not in a unified service for all chains. However, Multichain supports chain interoper-

ability, and transactions in one chain can be used to trigger transactions in the other.

Multichain’s consensus is consortium-based, restricted to a subset of nodes that ex-

ecute a custom crash fault-tolerant algorithm in which a single leader is selected on a

round-robin policy for each block being added to a chain. This ensures fairness and a

high throughput scalability, achieving over 1000 tps on standard conditions, but does

not provide BFT and partially centralizes consensus. Nodes update their system view

in an eventually consistent, totally ordered SMR process. Transaction confidentiality is

retained by encrypting data exchanged between peers through public-key cryptography

and by isolating different private contexts into different chains. Regarding anonymity,

Multichain employs a mechanism that allows each peer to transact using different public-

keys in an attempt to frustrate an attacker into tracing a known key.

The community behind Multichain is relatively small (around 300 stars and 100 forks

on Hithub) but active. The project is open-source and its documentation is of mediocre

quality, providing high level insight of the system. The downside of this platform is the

inability of providing the developer a programming model to develop custom policies and

rules. Multichain does not support smart contracts, making its native code inextensible.
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2.4.7 Summary

Tables 2.1 and 2.2 summarize the properties of each platform according to the character-

istics highlighted in the beginning of this section.

Software Engineering Expressiveness and Programming Support

Open
source

Documentation
quality

Impact/Community
(appr. Github metrics) Active Programming model Extensible

smart contracts

Ethereum 3 Rich Large
(10000 stars, 3000 forks) 3 EVM smart contracts 3

Quorum 3 Rich Medium
(1500 stars, 300 forks) 3 EVM smart contracts 3

Hydrachain 3 Poor Small
(250 stars, 100 forks) 7

EVM smart contracts
or native Python 3

Hyperledger
Fabric V1 3 Rich Large

(2500 stars, 2000 forks) 3
Go chaincode over

Docker 3

Hyperledger
Sawtooth 3 Rich Small

(500 stars, 250 forks) 3 EVM smart contracts 3

Hyperledger
Burrow 3 Mediocre Small

(200 stars, 100 forks) 3 EVM smart contracts 3

Hyperledger
Iroha 3 Poor Small

(500 stars, 150 forks) 3 JVM chaincode 3

Counterparty 3 Rich Small
(200 stars, 150 forks) 3 EVM smart contracts 3

Multichain 3 Mediocre Small
(300 stars, 100 forks) 3 Not supported 7

Table 2.1: Comparison of blockchain platforms: Software Engineering and Expressiveness
and Programming Support

From Table 2.1, we can infer that most of these platforms, despite documentation

issues, can be successfully used to build decentralized applications. Two platforms stand

out for their flaws, namely, Hydrachain and Multichain. Hydrachain seems to have lost

momentum from its contributors and community, and Multichain does not accept a

generic programming model useful enough for implementing custom business logic, los-

ing interest for anything other than financial use-cases.

From Table 2.2, we can clearly see a correlation between consensus mechanisms,

decentralization and throughput scalability: platforms using proof-of-work, while bene-

fiting from a fully decentralized consensus, suffer from low throughput (Ethereum and

Counterparty). Other platforms override the original proof-of-work mechanism with a

federated group of nodes or an off-chain service, resulting in partial decentralization but

better throughput. In terms of privacy and anonymity, most platforms do not provide

any guarantees, while HLF and Burrow provide transaction privacy (although Burrow’s

approach is simply separating data in different non-interoperable chains and therefore

inferior to Fabric’s), and Quorum and Multichain provide both transaction privacy and

anonymity. Pluggable consensus is supported only by HLF, Quorum and Sawtooth. Over-

all, the most complete platforms that can be used to build dependable privacy-concerned

decentralized applications able to yield a high throughput are Quorum and Fabric.
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Table 2.2: Comparison of blockchain platforms: System Architecture
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2.5 Threshold Signatures for Blockchain Transactions

In this section, we enter into detail on a group-oriented cryptographic construction that

can be leveraged for our objective – threshold signatures – with the intent of providing

cooperative and decentralized transaction signing and verification processes into what

we understand to be the traditional blockchain architecture. First, we discuss threshold

signatures definitions and current applications. Then, we discuss on the possible use,

advantages and eventual obstacles of their use in a blockchain.

2.5.1 Threshold Signatures

Threshold signatures (or (t,n)-Threshold Cryptographic Digital Signatures) [11, 21, 22]

are cryptographic constructions that enable the distribution of secret information (i.e.

secret keys or secret key shares) and digital signature computation (generation and de-

cryption for verification) between a number of parties n, in order to remove a single point

of failure or the dependency of a single point of trust within a system. The goal is to

allow any subset of more than t parties to jointly reconstruct a secret or perform the re-

quired computation while preserving security, even in the presence of an active adversary,

which can corrupt up to t (threshold) parties. The security notion for threshold signa-

tures requires that no polynomial-time adversary that corrupts any t parties can learn

any information about the secret key or forge a valid signature on a new message of its

choice.

In order to be able to build a threshold signature, a secret key is broken apart into

secret shares and distributed among n parties, with the help of a trusted dealer or by

running an interactive protocol among all involved parties. To sign a message M, any

subset of more than t parties can use their shares of the secret and execute an interactive

signature generation protocol. The output of such protocol is a signature of M that can be

verified by any peer, using an unique fixed public-key corresponding to the above shares.

An important property of any threshold signature scheme is robustness. Robustness

requires that even t malicious parties that deviate from the protocol cannot prevent it

from generating a recognizable valid signature, as shown in Figure 2.4. Another useful

property of threshold signature schemes is proactiveness. Proactiveness relates to the

possibility of periodic refreshment of secret shares, to protect a system from an adversary

that builds-up knowledge of a secret by several attempted progressive break-ins to several

locations. In general, the main goals of threshold signature constructions are to provably

achieve the following properties: i) to support as high a threshold t as possible; ii) to

decentralize digital signature generation and verification; iii) to be robust and useful;

iv) to allow the use as a proactive scheme; and v) to be efficient enough in terms of

computation, interaction and length of the shares.

In the related work of proposals for threshold signature schemes, we can find several

25



CHAPTER 2. RELATED WORK

Figure 2.4: Message signing via a threshold signature sheme (from [69])

relevant contributions [22, 23, 29, 30, 34, 57, 65]. Despite the fact that some of these con-

tributions are more particularly concerned with theoretical foundations, the proposals of

[21, 34] lack security proofs, and the schemes of [22, 23] are considered as non-robust,

while those of [29, 57] are considered until today as robust and proactive schemes. How-

ever, it is well known that such schemes are always sources of a high amount of interaction,

and must be addressed carefully for scalability purposes. For a more practical approach

in the domain of our thesis, we focus on threshold Digital Signature Standard (DSS) signa-

tures, proposed in [30], and on robust threshold RSA signatures, proposed in [65], since

both are recognizably robust and have well-known practical implementations.

The threshold DSS signature in [30] is theoretically considered robust and does not

require a trusted dealer. It consists of a proof of security without the random oracle

assumption. The proposal deals with technical difficulties such as combining shares of

two secrets into shares of the product of these secrets and producing shares of a reciprocal

of a secret given shares of this secret. To achieve robustness, this type of threshold

signature uses the error-correction techniques of Berlekamp and Welch [75]. As a result,

the threshold DSS can only tolerate t < n/4 malicious parties, requires a lot of interaction

and the complexity increases considerably related to the base signature scheme. The

scheme can be made proactive following the methods of [36, 37].

The robust threshold RSA signature scheme proposal [65] is proven secure in the

random oracle model. It can tolerate t < n/2 malicious parties and the signature gener-

ation algorithm is non-interactive. This scheme requires a trusted dealer to run the key

generation protocol. The public-key uses an RSA modulus that is a product of two safe

primes and the protocol utilizes zero-knowledge proofs in the random oracle model in

order to achieve robustness. Proactiveness is not considered in [65], even that it can be

addressed, orthogonally.
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2.5.2 Applications of Threshold Signatures

Distributed trust has been a key motivation for threshold signatures. Shamir [65] argued

early in 1979 about the relevance of threshold cryptography for key management and

distribution protocols. Storing a key in a single location is not robust, but keeping multi-

ple copies of the same key opens the possibility for security breaches. Overall, no single

entity should be trusted to keep the secret key for a particular signature.

For instance, in [58, 80], the introduction of threshold cryptography is motivated

by the replication of distributed services in a way that preserves the availability and

correctness properties of the system and maintains causality of requests, even if several

replicas are corrupted. In the specific context of [58], threshold cryptography allows a

client to maintain one public-key for the replicated service, instead of one public-key

for each replica. The client does not need more storage and does not undergo a higher

computational cost than in the case of a non-replicated service, regarding authenticated

messages from a transparent trustable peer-group membership of distributed processes.

Following the same idea of [58], the motivation in [13] is to define an architecture

for distributing trusted services in a fully asynchronous environment supported over

the Internet. This architecture includes fully decentralized certification authorities (CA),

distributed secure directories, or, in more concrete examples, fully decentralized and

trustable DNS services. The advantages of threshold signatures for DNS are also further

addressed in [14]. DNS Security Extensions (DNSSEC) use a technique called zone signing

to provide authentication for replies from the DNS name resolution service, with the

private key for signing the zone stored locally in some entity in the network. This single

entity introduces reliability and security issues as it is a single point of failure. To tackle

this issue, the proposal of [14] is to use a threshold RSA signature scheme to securely

replicate the authoritative servers in the context of zone signing replies.

2.5.3 Decentralized Blockchain Transactions and Verification

In summary, threshold cryptography is a powerful tool that has been widely explored

as a more secure approach for service replication. We believe that the use of this tool in

blockchain platforms will be a relevant step in achieving fully decentralized ledgering

and reducing trustability assumptions. In fact, Goldfeder et al. [32] already discussed

the possible advantages of leveraging threshold signatures for Bitcoin wallets.

The design and implementation of threshold signatures in a blockchain ecosystem

must be carefully addressed to provide the required balance for scalability, performance

and improved decentralization guarantees. However, this must be designed and imple-

mented without sacrificing throughput or latency conditions. To do so, on one hand,

we can restrict membership control conditions in order that only a subgroup of nodes

will be involved in signing and validation processes, also considering that we can have

different subgroups involved. On the other hand, we can use implementation schemes for

threshold signatures using lightweight cryptographic primitives, such as ECDSA-based
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threshold signatures or possible hardware implementations at least in certain nodes of

the blockchain.

Another option is to follow the ongoing research on the optimization and efficiency

of threshold schemes for multiparty computations [8]. Finally, another relevant design

option is to explore synchronized forms of aggregated signatures (or aggregated multi-

signatures – ASM), minimizing the number of rounds for verification processes, as pro-

posed for the optimization of BLS multi-signatures [9]. These constructions support both

signature compression and public-key aggregation, allowing to verify that a number of

parties signed a common message m. The verifier only needs a short multi-signature, a

short aggregation of their public keys, and the message m. In [9], the authors present

constructions that are derived from Schnorr signatures and from BLS signatures, and the

possible adoption in a blockchain. With such ASM schemes any subset S of a set of n

parties can sign a message m so that a valid signature discloses which subset generated

the signature (hence the subset S is accountable for signing m). ASM schemes can achieve

signature sizes of only O(k) bits over the description of S, where k is the security parame-

ter. Similarly, the aggregated public-key is only O(k) bits, and is completely independent

of n.

For the context of our thesis, the lack of availability of those recent schemes in tangi-

ble implementations is an issue. Thus, an interesting practical would be to use generic

models for threshold signatures schemes while bearing modularity and extensibility de-

sign assumptions in mind. This would allow the possible use of cryptographic providers

implementing such schemes (e.g. through libraries libraries) in a pluggable and possible

object-factory implementation in the future, without compromising other system model

assumptions. Such approach must tackle the way how group signatures can be mapped

together with Byzantine fault-tolerance properties and the used mechanisms at the con-

sensus plane level of the blockchain platform at use. This is one relevant direction in our

proposed solution and implementation.

In [69], the authors present a study of the practical use of threshold signatures, namely

threshold RSA [65] and threshold BLS, for the HLF [42]. Both are non-interactive and

deterministic schemes. The authors concluded that leveraging one of such schemes for

Fabric does not cause any relevant negative impact on the system, therefore being equiva-

lent to the non-threshold version of the scheme and allowing for a seamless integration.

The authors also expressed some concerns, performance-wise, in anticipating the use of

RSA threshold signatures, which are more efficient than BLS according to the authors,

alternatively to ECDSA multi-signatures, since the use of ECDSA multi-signatures can

scale better for an increasing number of nodes. A final relevant point is that in threshold

signature schemes a validator needs to validate only one signature, whereas for multi-

signatures the number of the signatures that must be validated increases linearly with the

number of participants. Identically, threshold signatures always have a fixed size, while

multi-signatures vary with the number of signers.
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2.6 Critical Analysis

We believe that current IoT architectures need to be revisited and that blockchains can

provide truly resilient systems with no single point of failure. However, we find it un-

likely that blockchain technology will integrally replace the role of clouds as part of IoT

architectures but will rather work as an add-in for decentralized ledgering that can be

used to ensure privacy, robustness and security for every endpoint. The architecture

methodologies presented by [24, 64] are a relevant point for our goals, since they present

blockchains as an intermediary layer between IoT devices and the cloud and remove the

weight of the blockchain protocol away from the IoT, as well as the edge computing mod-

els proposed in [10] to provide better scalability and privacy for IoT systems and give

back some control to the users while reducing stress on cloud services.

We intend to stand our research upon an existing platform that emphasizes on high

throughput scalability, possibility for BFT, confidentiality and decentralization; yet, we

wish to retain the ability of our system model to be agnostic to a permissioned blockchain

platform implementation. Our justification for these characteristics is that an ideal de-

centralized IoT system is supposed to behave in near real-time, while still being robust

against potential adversaries and preserving privacy. We require consensus pluggability

for benchmarking performance with BFT and non-BFT consensus in combination with

threshold signature schemes for transaction verification and accept on compromising

with a partially decentralized platform by prioritizing throughput scalability in detri-

ment of full decentralization. Moreover, the use of open-source blockchains, addressing

a modular permissioned model designed to support pluggable implementations of dif-

ferent components, such as the consensus and membership services as two separated

concerns, is an important consideration for building an extensible decentralized ledger-

ing platform. These requirements are what guides our system model as to allow any

generic base blockchain platform that assures them to be used for a blockchain-enabled

IoT architecture.

However, for our implementation we need a concrete blockchain platform that imple-

ments such requirements. From our summary in Section 2.4, our best candidates would

be Quorum or HLF. Both improve over the original transaction flow and ledger replica-

tion of the blockchain, whilst providing strong consistency with a totally ordered message

delivery. However, our decision was HLF for a few reasons: i) it provides the notion of

channels and multiple chains, which can be used to isolate transactions between several

peers in a straightforward way. Quorum is only able to split traffic between a private and

a public network; ii) it has a larger community than Quorum and finds more academic

and scientific usage than other platforms [69]; and iii) despite not providing anonymity

as Quorum does, we find that this property is more relevant in scenarios where public

transactions exist. Since Fabric is permissioned and allows for private channels to be

set up, this property becomes irrelevant for our case. We also find that it is possible to
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execute the HLF’s off-chain consensus mechanism without depending on a single third-

party and risk centralizing the network, as a consortium of entities responsible for the

decentralized management of the ordering service can be established.

Our idea is to follow on the discussion of [69] and add a fully decentralized group-

oriented signature verification process of transactions and smart contracts, integrating

threshold signatures as a base component of a given blockchain platform and its sup-

ported services, providing participant nodes with the functionality to generate and verify,

in a distributed manner, a single fault-tolerant signature. Nevertheless, we believe that

the definition of which signature scheme to use for a given set of transactions should

be dynamic and decided by the participating entities interacting between themselves

and that multiple schemes can be harnessed by a single platform as to adapt to multi-

ple use-cases and scenarios of the IoT paradigm. The ability of specifying and allowing

participants: users, service providers, IoT devices and even edge-based smart hubs [10],

to scrutinize such system properties – which signature schemes will be used and which

nodes will endorse a given transaction – is a powerful and interesting concept, and one

that can be leveraged through the use of a smart contract specification. There is also the

need to to assess the throughput of a blockchain platform assuring both decentralized

trustability assumptions and Byzantine fault-tolerant consensus guarantees. Further, it

is vital to compare the performance of threshold signature schemes with existing multi-

signature ones, taking into account scalability concerns related to peer interaction and

signature size, which can be done through the use of a smart contract specification for

signature verification that implements both schemes.
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3
System Model and Architecture

In this chapter we present our system model proposal for a decentralized and scalable

ledgering system that can be built upon an existing blockchain platform with exten-

sible smart contracts support. The idea is to address a model and foundations for a

blockchain-enabled IoT platform. We start by providing an application scenario for an

easier comprehension on the applications of our system model, then we will go into its

details, architecture and corresponding software components, and finally present some

considerations regarding the threat model of the system and expected runtime behaviour.

3.1 Application Scenario

We can imagine a scenario to better clarify the addressed system model presented next. In

our scenario, a user requests a vacation rental through a provider that offers such service,

like Airbnb. Likewise, imagine that every apartment in this fictitious rental service

is equipped with smart things – smart door locks, smart lighting, smart appliances –

connected to a smart hub that requires a confirmation from the service stating that the

user which intends to access the apartment has payed the price of the rental (and in the

correct amount) in order to comply with his commands.

To rent an apartment, a user uses a smartphone linked to his credit card or his bank

account and executes a transaction between him and the service. The service verifies

the transaction and returns an identifier for the user to present to the apartment’s smart

hub, which can communicate directly with the user’s smartphone and with the rental

service. The user then presents its identifier to the hub, which in turn contacts the service

to confirm the identifier’s validity. If it checks out, the user’s identity is proven and he’s

given permission to use the apartment and interact with the hub.

The problem with this architecture is that a fraudulent service could try to maximize
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its profits by accepting a payment from a user but not returning a proof of payment to him

or notifying the smart hub of the reservation. Or it could accept two transactions from

different users for the same dates, and purposefully reject confirmation requests from

the hub for one of them. The problem could even be that the service itself is actually not

fraudulent, but a malicious system administrator is behind the attack and is manipulating

the system. Either way, the affected user would have difficulty proving he payed for the

apartment if records were logged only on the providers side – the Byzantine party in this

situation. And even though our example is based on a scenario where the most likely

party to behave fraudulently or erroneously would be the provider, in other scenarios any

other entity could be the Byzantine one, including the user or the smart hub.

Hence, what we propose is a ledger between these parties to provably ensure which

transactions took place and when, by using a blockchain to represent these parties and

broker transactions for them, as illustrated in Figure 3.1.

User's smartphone U

Blockchain cluster

Smart hub H

Edge device A

Edge device B

Edge device C

Application server S

Service platform

Edge environment
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U's broker
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Figure 3.1: Application scenario of the intermediary ledger

In this new architecture, a user, represented here by its smartphone U , communicates

with a rental service application server S (1) to obtain information, price, and terms and

conditions of the rental. S returns this information along with an identifier for a contract

deployed on the blockchain, which U has to comply and interact with. This contract shall

specify terms and conditions of the rental process and of the transactions to be executed

within the context of the rental. In this scenario, the contract was previously deployed on

the blockchain by the provider. U emits a transaction to the blockchain with the intent

to rent the apartment, represented by the smart hub H . The transaction is encrypted and

signed by U , and sent to a set of nodes (2) specified on the contract which validate the

transaction according to the contracts properties, and if successful, sign the transaction
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as a way of endorsing it. Then, the signed transaction is propagated throughout network

nodes (3), registered to the blockchain and the contract it is associated to regulates the

succeeding workflow steps. The transaction result eventually reaches S (4), which can

query the its known broker nodes and decrypt the transaction (for now, assume broker

nodes to be simply blockchain nodes in direct communication with a given party). If

the transaction checks out on S’s off-chain validations, S can then reply to U that it has

successfully received the transaction via the blockchain cluster (5), in a similar process

to the first transaction, which U would then be able to query. When the user reaches the

apartment, he communicates with H for it to open the door (6). H will then verify if a

previous transaction from U exists within the blockchain representing the user’s payment

of the rental (7), and validates its information according to the contract specifications. In

the end, H commands A (the door) to open (8), and the user gets access to the apartment

he payed for.

The potential behind this ledger is that any of the participating parties can consult its

brokers and audit any transaction that has happened in the past, preventing fraudulent

behaviour and ensuring non-repudiation as transactions are witnessed and endorsed by

several peers in the blockchain. It presents itself as an intermediary system and can be

integrated with today’s popular cloud-first applications for added robustness.

3.2 System Model

Before we burrow into detailing our system model, let us focus on formalizing the par-

ticipating parties of our system and defining an entity model capable of mapping their

relationships accordingly. Afterwards, we will describe the foreseen interactions between

these entities in our system model, define base and extended models for such interactions,

define system model requirements according to the needs of these entities and the needs

of the interaction flow, and finally detail our devised architecture and its components.

3.2.1 Entities

A Thing. A device or equipment, equipped with computing and network connectivity

hardware, capable of executing simple processing tasks and communicate with other

devices and computers via some network. Also referred to as a smart thing, a smart

device or an IoT device (e.g. a sensor capable of receiving commands and sending alerts

through the Internet or some other kind of network).

The Service Provider. The party responsible for supplying the means and resources

for a given service (e.g. apartment or bike rentals, toll services, digital identity services,

etc.). The service provider, or simply provider, is responsible for implementing and

deploying a smart contract to the blockchain expressing any applicational rules necessary

for providing its service to costumers, and is usually instantiated by an application server

(or similar) sited on a cloud-centric infrastructure.
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The User. The actual user interacting with the system, generally through a smart-

phone or a similar device. As such, in our system model we may sometimes represent the

actual user as its representative medium – the smartphone. The user is the consumer of

a service provided by the service provider and information transacted between the user

and the provider is recorded on the blockchain.

The Smart Hub. A piece of hardware deployed on the edge capable of executing some

resource-intensive tasks that are not suitable to be executed on edge devices with lesser

computing capacity, such as smart things. Smart hubs can aggregate data on the edge

and perform some sort of computation and even cryptographic services before sending

information to cloud services. Smart hubs may be either hardware owned by users (e.g.

a smart home hub interconnecting TV, lights, loudspeakers, etc.) or owned by service

providers for the purpose of providing specialized services (e.g. a smart hub controlling

a bicycle rack platform on a street for magnetically unlocking bikes upon user payment

via their smartphone). In the first case, it is possible that users may be able to install

several applications and custom software into their smart hubs. Either way, the smart

hub presents itself as an intermediary between the user and the provider and any edge

devices the hub may need to control and receive information from. It acts as a proxy

agent for storing and reading information from a persistency layer. In our system model,

this persistency layer is the blockchain.

We must notice that in a generic perspective, the Smart Hub is seen as an intelligent

gateway that can be designed to be a pluggable computing software/hardware appli-

ance, where different modules can be installed for running on top of an hardened OS. A

possible idea is to look at such modules as virtualized and isolated pluggable software

containers, dedicated to their specific functions (e.g. data aggregation and traffic filtering

functions using, for instance, tainted-data analysis mechanisms to avoid undesirable data

exfiltration/infiltration, inter-networking firewall functions, cryptographic processing

functions or other application-specific modules for particular IoT devices).

Another kind of modules would be related with the provision of multiple protocols,

suitable for serving specific and distinct IoT environments. This would allow address-

ing different subsets of IoT standards, from wired or wireless network infrastructure

identification and addressing levels, transport-level, discovery and data-dissemination

protocols, to request/response under remote-calling operation environments, and data-

semantic and representation protocols, including possible protocol-conversion features

[48]. In a complete design and implementation of such smart hubs, those protocols can

be addressed in the context of multi-layer frameworks, targeted for different IoT markets,

devices, and applications. However, we are more interested in regarding smart hubs, for

implementation purposes, as possible low-cost software/hardware appliances capable

of acting as gateway services to the blockchain supporting local-operation REST-based

proxy-service provisioning for natively TCP/IP-supported IoT devices, and CoAP-based

REST-style invocations [66].
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The Blockchain. The composition of all services, hardware and software which com-

pose a blockchain. Generally, a blockchain is a cluster of server nodes communicating

between themselves through a peer-to-peer network holding local copies of a ledger data

structure where transactions are recorded. The blockchain presents itself as the backbone

of our system model and is the main storage layer of the system where all participating

entities read/write from, either directly or indirectly.

3.2.2 Interactions

Base Model. We start with a base model for what we foresee as the most adequate scenario

for establishing a blockchain and contract-based service in an IoT-based environment.

For our base model, illustrated in Figure 3.2, we consider that users, through their smart-

phones or another type of mediums, contact the blockchain intermediated by a smart

hub. This type of model better fits the IoT environment of smart homes, where there is

typically a hub device responsible for controlling and obtaining information from user-

owned assets (e.g. an ISP box controlling TV, telephone and acting as a Internet switch,

or a smarter hub controlling lighting, stereo, heaters, etc.). We also consider that the ser-

vice providers only job is to deploy and manage smart contracts operating directly with

the blockchain. Note that we consider the blockchain not to be an asset of the service

provider, albeit this could be a possible situation in a real scenario (imagine it as being a

consortium between several providers with shared cloud server farms).

Smart HubUser Blockchain Service Provider IoT Device

1) deploy(contract)

2) get(contract)

3) ret(contract, sig)

6) exec(transaction)

ok/not ok

ok/not ok

7) exec(query||transaction)

response

... ...

Figure 3.2: Base interaction model

Following on Figure 3.2, the interaction flow of the base model is as follows:
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1. The Service Provider deploys a smart contract for a given service, stating terms and

conditions of the service, of the transactions to be executed over the contract and

how they are digitally signed and verified by nodes in the service;

2. The User, after outside communication with the provider which allowed him to

obtain an identifier for a given contract, requests the contract to the Smart Hub.

The Smart Hub then either has the contract in cache (from a previous interaction)

or requests it from the Blockchain. In the end, the smart contract is returned to the

user, which allows him to view and agree with terms and conditions.

3. The User agrees with the contract, digitally signs it, and forwards it to the Smart

Hub, which in turn may verify the signature and forward it to the Blockchain. The

Blockchain can then either confirm the operation or not (it could fail if the contract

was already signed or if there was some application error triggering an invalid state).

This process of registering the contract to the Blockchain means that the User has

accepted the contract and this action is irrevocable and non-repudiable.

4. The User then executes transactions over the contract. Transaction requests are for-

warded to the Smart Hub, which in turn, redirects them to the Blockchain (possibly

in a format understandable to the Blockchain), and returns results back to the User.

5. IoT Devices (or Things) linked with the Smart Hub can perform transaction requests

to the Smart Hub as well (e.g. a temperature sensor recording Celsius to the ledger,

thereby sending a transaction for each temperature reading) or execute queries

over data on the ledger (e.g. a lightbulb checking if it should turn on/off). In

this illustration, we consider that IoT devices would obtain information from the

Blockchain by polling the Smart Hub, but a Smart Hub could also easily implement

an event-based approach that would send information to trigger IoT devices.

Extended Model. Now, let us describe a more complex scenario where users also

can directly contact the blockchain independently of using a Smart Hub. In this model,

the user’s medium, the smartphone or other device, has all the needed information and

applications to contact the blockchain directly. Note that this feature is not mutually

exclusive of the previous model. At home, a user could still use his smart hub to contact

the blockchain for a contract regulating smart home services. Outside, he could rent

a bicycle via an automated bicycle rack that would require him to contact a smart hub

belonging to the service provider of bicycle rents. The advantage of this feature is for

situations such as the one in our application scenario – an apartment renting service. It

would be illogical that for renting an apartment the user would have to contact a hub to

do so. It seems impractical that he would contact his home hub, the rental apartment’s

hub, or even some kind of open community hub just to perform the actual rent when

he could do it himself directly, as modern applications allow you to do today. Thus, the

ability to interact with the blockchain directly is vital to achieve a pervasive system.
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Another important feature of this extended model, omitted from the base model

above, is the ability of service providers remotely configuring smart hubs to some degree,

something which can be expected in real case scenarios, especially in cases of hubs that are

placed at users homes but are actually owned by the provider for which the user rents the

equipment for a fee, or in cases where the service provider has to update and administrate

hubs in public areas, such as the hubs on bicycle racks example. These configurations

fall under the scope of updating firmware, configuring the interaction procedures with

the blockchain, adding new functionalities or deploying contracts directly to the hub.

The extended model can visualized on Figure 3.3.

Smart HubUser Blockchain Service Provider IoT Device

1) deploy(contract)

2) get(contract)

3) ret(contract, sig)

4) exec(transaction)

ok/not ok

5) exec(query||transaction)

response

... ... ......

1) deploy(contract) & configure

...

Figure 3.3: Extended interaction model

In this case, the interaction flow is as follows:

1. The Service Provider deploys a smart contract on the Blockchain in a fashion similar

to the previous model. However, it can also remotely deploy the contract directly to

a Smart Hub and perform some miscellaneous configurations. Imagine the Smart

Hub is owned by the provider and is situated inside a apartment up for rental. Ad-

ditionally, imagine that hub was configured to only use the most recently deployed

contract and that all IoT Devices queries/transactions to the Smart Hub shall be

routed to that contract’s rules and functions.

2-4. The User, which could be on foot and outside, directly obtains a contract from

the Blockchain to a service he previously got information from a Service Provider.

Agreeing with the terms of the contract, he signs and returns it to the blockchain,

and then performs some transactions as he sees fit, all without depending on a
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Smart Hub. Let us imagine he accepted a contract stating rental conditions and

afterwards executed the payment for the rent.

5. An IoT Device that most likely has no idea of what is a smart contract, contacts a

nearby Smart Hub, which has been updated and configured by the Service Provider.

Imagine it to be a heater intended at heating the apartment 15 minutes before a

guest arrives that is trying to get the current time from the hub and know when

does a guest arrive. The Smart Hub can then check its contained smart contract

used to regulate rentals, query the blockchain for signed contracts to identify future

guests and their expected time of arrival, and reply to the IoT Device. Overall,

the User was independent of communication with the Smart Hub for this process,

and the Hub was able to respond directly to the needs of IoT Devices through the

configuration made by the Service Provider.

3.2.3 Requirements

While the scenario described in Section 3.1 is merely illustrative, the previous sections

exemplify the ability of such a system to apply to different application-specific business

needs. However, in order to present a generic system model, useful for any kind of IoT

application, we need to derive some requirements on what we intend to achieve of our

system model. As such, our system model should1:

R0 Allow for replicated tamper-resistant and cryptographically-secured persistent stor-

age of data and information.

R1 Be scalable in terms of the number of applications concurrently deployed on the

system, without major performance or functionality degradation with an increased

number of service provider applications.

R2 Be scalable in terms of the number of users concurrently reading and writing infor-

mation on the system, without major performance or functionality degradation with

an increased number of users, independently of the number of existing applications.

R3 Support BFT on consensus, data persistency, read/write operations, transaction au-

thentication, signing and verification processes, enabling for trustable and resilient

ledgering, where erroneous behaviour or deliberate attacks targeting the system as

a whole, the operation of IoT environments, or users, does not succeed in compro-

mising the system and endangering its users.

R4 Be decentralized in terms of trust, allowing data to be cryptographically signed and

verified by multiple entities in a fault-tolerant fashion, and allow the system to be

deployed in an environment that does not promote vendor lock-in and infrastruc-

tural or organization centralization and control.

1We will refer to each requirement by its respective identifier (R0, R1, ..., Rn) on the following sections.
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R5 Ensure clear identification of the participating entities in the network and ensure

non-repudiation of operations to its persistency mechanism by any involved party.

R6 Allow for the auditability of any operation executed in the past by any participating

party independently and allow the traceability of that operation to a transaction, to

a contract and to an entity.

R7 Be able to present itself as a generic platform for several customizable application

contexts, each with different business needs.

R8 Allow service providers to express a form of extended smart contracts that state a

set of terms and conditions to be accepted by users, and be capable of interpreting

such contract at both application-level (business-specific functions, such as price of

a rental) and system-level (signing policies to use, smart contract identifier on the

blockchain, consensus mechanism to use, and other properties), acting accordingly.

R9 Allow complete execution of the protocol without degrading IoT devices perfor-

mance or overall experience, despite of resource limitations, and without degrading

the protocol’s efficiency and performance by the presence of resource-limited de-

vices in the system.

R10 Enable the scalability of cloud providers (given the exponential ever-growing num-

bers of the IoT) by providing a model capable of aggregating IoT devices and data

on the edge and being deployed heterogeneously across providers, thereby also

avoiding centralization by vendor lock-in.

3.3 Reference Architecture

Our proposed system poses as a robust mediator between several participating devices

enabling cryptographically-secured auditability and non-repudiation of transactions by

any of the involved parties. To achieve this in terms of architecture, we devised a mid-

dleware set of services over a generic layer of base blockchain services we refer to as

extended blockchain services. Then, we devised a higher-level applicational interface

– an API – composed by several sub-components intended at being deployed within a

smart hub for it to be able to perform the expected interactions of our system model.

Together, these three layers, illustrated on Figure 3.4, make up a fully fledged system

capable of responding to the needs of external parties: users, their devices, things, and

service providers. As our system model is essentially a distributed system over a peer-to-

peer network, this architecture is to be viewed from the perspective of a single smart hub

and a single node present on a blockchain network in communication with the hub, with

each sibling blockchain node and sharing the same set of components.
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Figure 3.4: Architectural view of the system

Base Blockchain Services. Our system model intends to be independent of a single

blockchain platform. Yet, we have to consider the generic functionalities given by vir-

tually every blockchain platform to clearly identify which blockchain components we

may need to extend, add or use as-is, according to the requirements in Subsection 3.2.3.

This system model is oriented to blockchain platforms harnessing consortium-like con-

sensus, rather than proof-of-work. In general, such platforms expose a low-level API

on each node for executing read or write operations over a ledger. This API interprets

requests, processes them, and passes them on to a core orchestration component we call a

transaction manager. The transaction manager has access to a wide array of components

to execute the operation required by the incoming request, including components for

system administration and smart contract deployment by service providers. Standard

blockchain transaction flow for a write operation usually requires that the incoming re-

quest is transformed into a blockchain transaction and is verified and executed against

a smart contract engine/execution logic, without necessarily persisting the result of the

execution of the contract on the ledger. These execution and verification processes can be

done by multiple nodes, requiring the transaction manager to propagate the transaction

to the peer-to-peer network, or by a single node, depending on the platform at hand. The

transaction is then, generally, signed by the nodes that are verifying it and a consensus al-

gorithm is executed. Upon reaching consensus, signed transactions are propagated across

the network, executed against the smart contract engine and persisted to the replicated

ledger after successful verification of its signatures by peer nodes. This layer is respon-

sible for ensuring requirements R0, R6 and R7, and most blockchain platforms already

provide some form of node identification through public-key cryptography, ensuring R5.
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Extended Blockchain Services. At the next level of our architecture sits the extended

blockchain services layer. This layer is responsible for enriching the base blockchain ser-

vices layer with mechanisms for further decentralizing trust in transaction endorsement

and signing processes, for providing a consensus service capable of tolerating Byzantine

behaviour, for implementing, together with the base blockchain services layer, the broker

mechanism, and finally, for providing an engine with enriched smart contract execution

logic to execute what we define as extended smart contracts – contracts specifying not

only the business logic of different applications, but also system properties that nodes

should be able interpret and execute accordingly to conclude the required operation (e.g.

imagine a transaction that has to be signed using decentralized trustability assumptions

from five trusted and known nodes listed on the contract). The concept of a broker mech-

anism is fairly simple and was introduced in the application scenario in Section 3.1. The

idea behind it is to use a set of blockchain server nodes to represent entities external to

the blockchain, which are, in essence, clients of the service. Thus, a broker is a blockchain

node that is known to an entity to which it requests blockchain operations to be per-

formed (queries, transaction proposals, etc.). A node that is not acting upon an entity’s

request is not a broker node and is simply supporting the peer-to-peer network. This ap-

proach ensures R9 as all resource-intensive tasks related to operating the blockchain are

offloaded from the actual edge devices to resource-wise capable server nodes that broker

operations for them. It allows an aggregation of smart hubs and edge devices (the latter

only on the extended model) to a single broker, enabling for a more scalable approach to

the system that doesn’t require an exceptionally high number of nodes to manage within

the ledgering system, therefore aiding in complying with R1 and R2. However, ensur-

ing these two requirements is dependant on the base blockchain platform to be used, as

the inner operation of the blockchain protocol heavily impacts scalability. As such, the

comparison of blockchain platforms in Section 2.4 is a significant factor to be taken into

account. This layer is also the basis for compliance with requirements R3, R4, R8.

Smart Hub Interface. At the final level of the architecture the smart hub interface

can be found. The purpose of this layer is to provide a high-level interface for edge

devices to attach to in order to make use of the decentralized ledgering system. This layer

is what allows the aggregation of data, devices and users and computation on the edge,

ensuring R10, as it allows a far more scalable alternative to cloud-first architectures in

which all devices communicate directly with a cloud service. This layer is responsible

for holding and partially interpreting the properties of extended smart contracts built by

service providers (partially because the remaining part of the smart contract logic is to be

executed in the lower layers). Upon successful interpretation of a contract, the smart hub

interface makes use of a dispatcher component that orchestrates communication with

the blockchain’s nodes for the remainder of the protocol. An important distinction to

make in our system model is how would this layer operate for the extended interaction

model versus the base interaction model. In the base model we restrict communication
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between edge devices and the blockchain to be routed through this API, however, for the

extended model, it would be necessary that for edge devices to be able to communicate

with the blockchain they would have to implement a similar layer of components (contract

interpreter, dispatcher module, extended signing policies verifier) as to ensure the same

capabilities of a smart hub. Naturally, this would only apply to devices that have a

reasonable amount of hardware resources (e.g. smartphones) and not by cheap resource-

constricted IoT devices such as temperature sensors and the like that would not be capable

of communicating directly with the blockchain. The other feature of the extended model

is that the service provider would be able, through some sort of backdoor, to configure

smart hubs, as illustrated on the architecture diagram.

Computing environment. It is our intention with the definition of this architecture

to achieve a modular system, in which nodes can be heterogeneous in components. This

allows the presence of auxiliary nodes on the network, i.e. nodes that may not need to

sign transactions and act as witnesses of a transaction probably do not need to have an

extended signing policies provider installed on them, or nodes that are passive to their

environment and only record information to their local ledger probably do not need a

smart contract execution logic deployed within them. As for the environment of the

system, we intend for it to be deployed throughout different cloud service providers, as

to prevent vendor lock-in and conform with R4 regarding decentralization of trust. Thus,

this approach complies with R10.

Final remark. With this model we take into account the concerns that most IoT

devices aren’t able to cope with the weight of the blockchain protocol resource-wise. We

also believe that network-wide consensus and global ledger replication are properties

that weigh in on the protocol’s scalability. In partial detriment of decentralization, a new

protocol can be built to be secure, partially-decentralized and performant simultaneously.

In addition, some blockchain platforms bring confidentiality mechanisms to transaction

processing, which can be an essential property within the scope of IoT applications. One

could imagine a network supporting a wide array of different yet related services which

remain private while still interacting with each other (booking an hotel room, requesting

room service, paying for the hotel’s restaurant, etc.), opening the potential for a wide array

of applications. Our model is inherently tied to the notions of a permissioned blockchain

setup, in which nodes could be managed between a consortium of organizations. Thus,

these criteria, along with those in Section 2.6, influence the blockchain platform we use

for our base blockchain services layer, presented in Chapter 4.

3.4 Software Architecture Components

In this section, we address the architectural components of the two uppermost layers of

our model and specify the blockchain middleware that enables Byzantine fault-tolerance

together with decentralized trustability assumptions in blockchain consensus and signa-

ture verification processes for our system model. We do not approach components of the
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base blockchain platform here as these depend on the blockchain platform being used

and on their internal specification.

3.4.1 Smart Hub Interface

Smart Hub API. This is the component that serves as an entry-point for smart hub

communication and to the decentralized ledgering system, providing a high-level API for

the entities described previously (devices on the edge). Let us define the method stubs of

the methods the API is expected to support:

• Contract getContract(contractId): Obtains a contract definition from the block-

chain stating all needed information about the contract represented by contractId;

• boolean signContract(contractId, signature): Requests to sign a given con-

tract, represented by contractId, with a user-provided signature as a form of in-

dicating acceptance of the conditions and definitions of the contract. Returns a

confirmation if the signature was committed to the ledger;

• LedgerData[] query(contractId, operationId [, queryParams]): Performs a

query operation on the ledger over a specified contract, represented by contractId,

with the possibility of stating query parameters (e.g. find by ID = 2, return all

entries previous to a timestamp, etc.). The query operation to execute is identified

by the supplied operationId (e.g. queryApartments, queryRentals);

• boolean invoke(contractId, operationId, transaction): Invokes an opera-

tion, identified by operationId (e.g. rentApartment), over a contract, represented

by contractId, and proposes a transaction to the ledger. Any arguments/param-

eters needed for the operation to execute are included within the transaction.

Returns a confirmation if the transaction was committed to the ledger.

The methods getContract and signContract are to be invoked by system users for

obtaining and accepting (signing) contracts deployed to the system by a service provider.

On the other hand, query and invoke are to be used by all edge devices: devices rep-

resenting consumers of the service, i.e. the actual users, and IoT appliances and things.

These methods objective is to allow querying the ledger state and modifying it by propos-

ing new transactions. Access control policies can apply to these methods, and in finer

granularity to the smart contract operations they invoke. However, we defer these access

control policies to be specified on the smart contract and not on the smart hub or any of

its components.

We foresee that this component may be implemented using different protocols such

as HTTP, MQTT (Message Queuing Telemetry Transport) [47] or CoAP (Constrained

Application Protocol) [66], giving preference to the latter two protocols for interactions

with resource-constricted devices as they are far more lightweight than standard HTTP
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and a multitude of sensors and other equipment in the market have started adopting them.

Communication could be secured with lightweight security protocols such as DTLS [59],

far more friendly for the IoT than standard TLS in terms of resource consumption. A

smart hub API could even be made to support more than one protocol and could segment

users and IoT things into each protocol (e.g. HTTP for users on their smartphones and

personal computers, CoAP and MQTT for remote sensors and actuators).

Extended Smart Contracts. The structure of what we define as an extended smart

contract is visible in Listing 3.1. Here we can see that a contract holds three essential

sections: i) a section for the properties of the base blockchain platform; ii) a section for

the extended system functionalities we intend to add to the base platform; and iii) a

section for business logic and application-specific properties. The contract also keeps

track of data related to it – the transaction log, which provides a collection of the history

of transactions executed over this contract, and the records of data stored within the

ledger related to the contract and its transactions.

Listing 3.1: Structure of an Extended Smart Contract (ASN.1 notation)

1 ExtendedSmartContractProperties DEFINITIONS : : = BEGIN

2

3 Transact ion : : = SEQUENCE {

4 Id OBJECT IDENTIFIER ,

5 Payload BIT STRING

6 }

7 LedgerData : : = SEQUENCE {

8 Key OBJECT IDENTIFIER ,

9 Value BIT STRING

10 }

11 BasePlatformSystemPropert ies : : = SEQUENCE {

12 ContractId OBJECT IDENTIFIER ,

13 TransactionLog SEQUENCE( SIZE ( 0 . . 9 9 9 ) ) OF Transaction ,

14 LedgerRecords SEQUENCE( SIZE ( 0 . . 9 9 9 ) ) OF LedgerData ,

15 . . .

16 }

17 ExtendedSystemProperties : : = SEQUENCE {

18 SignatureType INTEGER ( 0 . . 3 ) ,

19 WitnessNodes SEQUENCE( SIZE ( 0 . . 1 0 ) ) OF IA5String ,

20 . . .

21 }

22 Appl ica t ionProper t i e s : : = SEQUENCE {

23 . . .

24 }

25 END

Of course, a smart contract is not only a set of properties and data, it also provides

the functions and logic needed for it to be executed. Overall, a smart contract is a set of

stored properties together with triggerable procedures and functions. Again, the internal

logic of such functions is divided into three types: i) base platform execution logic, which
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is the boilerplate code for running the contract over a smart contract engine; ii) extended

execution logic, which is logic meant to be used for executing protocol operations ac-

cording to the extended system properties section, such as the number of nodes to sign

a transaction and what cryptographic signature types to use; iii) and finally application-

specific functions, which are to be implemented and defined by service providers before

deployment of the contract.

Our intent with this extended smart contract notion is also that there can more than

one implementation of smart contracts within the system. The whole specification of a

contract with its procedural logic and functions will always lie at the base blockchain ser-

vices layer, but at the application-level interface and extended blockchain services layers,

another view of the contract, or a subset of its information, can be used. Congruently,

the relevance of the information present in each section of the smart contract depends at

which layer it is read, as some properties will influence business data while others will

alter the overall execution of the blockchain protocol. For example, a property that indi-

cates a given set of nodes to verify and sign some transaction will influence an application

to dispatch requests only to those nodes, while a property indicating to increase a counter

variable in the contract will presumably only alter the application data.

The power of these contracts is their ability to present themselves a generic boilerplate

for mapping complex applications to smart contract logic. One can imagine a contract for

regulating transactions for electronic payments, in either a peer-to-peer fashion where no

centralized entity exists (e.g. the Bitcoin protocol) or a more structured scenario where

transactions are made between a specific set of entities, where each recipient can audit the

contents of the transaction independently without needing to know the whole contents

of the transaction, i.e. the recipient may be able to verify only a section of the transaction

relevant to its operation with every other section obfuscated to him, thus retaining privacy

control over the contents of the transaction. Advanced control flows of this transaction

can be implemented in the contract, such as requiring signatures from specific entities

in order for it to succeed. This is an example application of the SET (Secure Electronic

Transactions) protocol [68] implemented in debit/credit card payment schemes.

Applicational Contract Interpreter. This is the component responsible for partially

interpreting extended smart contracts at the smart hub interface layer. This interpretation

is executed over a view of a given smart contract which can be loaded directly from the

blockchain by its identifier. The view of a contract is simply a variation of the format of

the original smart contract, the latter being kept at the blockchain service layers, in which

only certain properties relevant for the Smart Hub Interface layer are retained (e.g. smart

contract functions are not interpreted or executed at this layer, and thus, there is no need

to pull them here). As such, this component implements a local persistent storage for the

retaining views of contracts. The need for this interpreter lies in the next component – the

dispatcher – which needs to know a certain set of properties before forwarding requests

to the appropriate nodes in the network, such as which nodes to contact, which signature
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policy should they use, which consensus service (BFT or fail-stop), and so on.

Dispatcher. The dispatcher component can be seen as the component that orches-

trates all communication with blockchain nodes, via their low-level API, in order to

achieve read or write operations over the ledger. To do so, it requires information to

be passed on to it by the applicational contract interpreter, so it can proceed to emit

requests in conformance with a given contract’s rules. Thus, the dispatcher has to be able

to request nodes to verify, sign, and commit transactions to the ledger.

3.4.2 Extended Blockchain Services

Extended Contract Execution Logic. As stated previously, our notion of extended smart

contracts requires contract’s actions to be executed at different stages of system architec-

ture. Thus, this component is meant for extending the base contract execution logic of

the base blockchain platform with the capability of executing actions that depend on the

extended blockchain services or smart hub interface layers and cannot be directly han-

dled at a lower level. This execution logic will be embedded in the blockchain platform as

to call procedures from the extended signing policies provider for signing and verifying

transactions whose contract requires some decentralized and fault-tolerant transaction

endorsement scheme, to require a transaction to be executed over the BFT consensus

service, or to contact some sort of external service that does not readily exist within the

decentralized ledgering system.

Broker Mechanism. When a new entity joins the system, a user, a smart hub or

another device, it is assigned to a predetermined set of brokers (in the base model this

will only occur with the smart hub). These nodes can be seen as bootstrap nodes on

the blockchain network, as they are the nodes that will initially respond to the external

entities requests and act on their behalf. Note that this does not restrict the joining entity

to communicating only to these nodes. Service providers can also have their own brokers,

which are likely to be their own servers, to represent themselves within the system, from

which they manage their presence on the service and their contracts. We assume, for a

simplified approach, that the entity joining the service has a set of pre-exchanged public-

keys and any other cryptographic material with the brokers (e.g. by configuration) in

order to be able to communicate with them in a secure fashion. A more complex scenario

could be implemented through a dynamic discovery mechanism where an entity polls

its known brokers for additional brokers to communicate with. While this mechanism is

conceptually located at the extended blockchain services layer, in practice it is expected

to be implemented in part by the base blockchain services, for accepting external entities

communications in a client-server architecture and for maintaining a record of which

entities do they represent, and in other part by the entities themselves, which will have to

perform requests to blockchain server nodes and interact with bootstrap broker nodes and

use them to find any other needed peer nodes in the blockchain network. One thing to
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note is that if the base blockchain platform does not execute global ledger replication, each

broker will need to be identified as a representative proxy for a given external entity as to

replicate any needed data to that external entity on its brokers. This broker mechanism,

which links an entity to a set of nodes, together with the internal identification of nodes

already supported by the base blockchain platform, ensures R5.

Byzantine Fault-Tolerant Consensus. As described in Section 2.4, some blockchain

platforms using consortium-based consensus operate under the premise of supporting

crash fault-tolerant behaviour only. While there is in fact a certain number of platforms

that provide Byzantine fault-tolerance, this is not always the case. We intend for our

platform to endure any malicious or faulty behaviour to its consensus mechanism that

may corrupt how nodes view the replicated information on the ledger.

The component described here is essentially an extension of existing consensus mech-

anisms in the base blockchain services layer that may provide only crash fault-tolerance

guarantees. It will be based on a PBFT state machine replication algorithm [15] and

will be responsible for receiving proposed transactions from blockchain nodes, grouping

them into a single unique block to inserted into the blockchain, and distributing this set

of ordered information back to the nodes for them to append to their local ledger. Our

intended architecture for this consensus service is further described in the next section.

Extended Signing Policies Provider. Every node and broker on the blockchain net-

work will leverage some type of signature scheme for the purpose of endorsing trans-

actions. In general, transaction signing and validation flows within blockchain systems

employ some variation of multi-signature schemes. We intend to override this basic pol-

icy for enabling other schemes that further enable decentralized trust and fault-tolerance

over standard blockchain transaction flows. By doing so, we increase robustness by al-

lowing transactions to be signed by multiple entities in a fault-tolerant fashion, while

retaining the ability to compare several signature schemes regarding performance and

robustness. Accordingly, this component’s objective is to supply the blockchain platform

with a set of primitives and software libraries for using multiple transaction signing and

verification schemes (or policies).

Our system model shall harness the following policies, while allowing for the extensi-

bility of adding new ones:

• Multi-signatures: Standard signing and verification policy we assume to be present

in the base blockchain services layer, where a multitude of nodes sign a single trans-

action and a transaction is committed along with a given set of signatures, each one

uniquely representing a single node and verifiable by the public-key correspond-

ing to that node. Generally, blockchain platforms resort either to RSA or ECDSA

signature schemes.

• Threshold signatures: Signing policy added by our extended signing policies provider

component, based on the threshold signature schemes described in Section 2.5,
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where nodes share a group public-key and sign using shares of a private key. The

result is a single signature and a single public-key to verify that same signature. We

intend to focus on RSA threshold signature schemes.

3.4.3 BFT Middleware for Decentralized Transaction Flows

BFT Consensus for Blockchains. We propose a model for harnessing a consortium off-

chain consensus service that is tolerant to Byzantine behaviour and can be applied to

permissioned blockchain transaction flows. We deviate from fully decentralized consen-

sus algorithms that rely on proof-of-work, as these are computationally costly and exert

strong latency conditions upon transaction confirmation, and upgrade upon fail-stop

consortium models that assume no faults shall occur that do not fall within the spectrum

of system crashes.

PBFT [15] and Tendermint [71] are two examples that have been harnessed for block-

chain systems requiring BFT consensus for converging on ledger state.
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Figure 3.5: BFT consensus service and ledger block publishing

To achieve such a model, we impose a few requirements on the BFT consensus service.

First, the underlying SMR protocol has to ensure atomic broadcast and hold the consen-

sus properties of safety and liveness in an asynchronous environment, requiring 3f + 1

replicas to be able to tolerate f faults. Secondly, after reaching agreement on the total

order of received transactions, the service shall maintain a reference to the last verified

published block of the ledger, collect all received transactions up to a given limit of maxi-

mum block size or maximum transactions to aggregate in a single block, and produce a

new block with the transactions and an hash of the previously published block, digitally

signing it before relaying it across blockchain peers. Peers receiving the new block will

then verify that the signature belongs to a trusted consensus service, check that it is in fact

the next block in the ledger sequence, and verify transactions one-by-one: i) by checking
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the appended peer signatures of each transaction; and then ii) by executing the transac-

tion payload against a smart contract engine. If every validation succeeds, the block is

appended to ledger. If a validation fails, either a single transaction or the whole block

may be discarded and peers await for the next block. Figure 3.5 outlines this process.

Threshold Cryptography for Decentralizing Blockchain Transactions. As men-

tioned before, we intend to complement transaction signature and verification processes

with threshold cryptography. Such a scheme can prove itself quite useful for remov-

ing single points of failure in standard signature processes, in which a single signature

belongs to a single peer, and in which a failure to sign a transaction by a single peer,

independently of how many signatures may have already been collected, may result in

forfeiting the transaction. To accomplish this, we have to define a framework on which

a blockchain architecture can base itself to benefit from a threshold signature scheme.

We will describe this framework in a manner similar to Stathakopoulou and Cachin [69],

as their approach to explaining this is quite clear, but some of these concepts have been

defined and scrutinized in the past and are commonly known in the field. Let us first

define the method stub of what we expect from such library:

• <GroupKey, KeyShare[]> deal(n, k, mod): Takes the number of participants n,

the minimum quorum size k and the RSA key modulus size mod as input in order

to generate all needed cryptographic material to be used for an RSA threshold

signature scheme, namely: the public group key to verify a threshold signature

against, and an array of key shares, each private to a single peer;

• SignatureShare sign(m, ks): Given a private key share ks and a message m, pro-

duces a signature share over m;

• boolean verify(m, sigs, gk, k): Given a message m, a set of signature shares

sigs and a group key gk, verifies the validity of the signature over m against the

respective public group key. Internally, it assembles a composite signature from the

given signature shares and the minimum quorum size k. Depending on the imple-

mentation it may also internally verify the validity of signature shares individually.

The verify method fails if the threshold of valid signature shares is not met or if the

composite signature itself is not valid.

Given this method stub, it is clear that nodes on the blockchain will resort to the

methods sign and verify for the transaction flows within the blockchain through the

extended signing policies provider. As method deal outputs the complete set of private

key shares to be used by participants in the blockchain network, it is also clear that this

scheme requires a trusted dealer to execute this method and securely distribute key shares

between peers. For a network that is inherently dynamic, where existing nodes can leave

and new nodes can join, such a method would be successively invoked and cryptographic

material continuously distributed by a dealer, in order to keep peers updated with their
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respective key shares and group key. As discussed in our related work, an interactive

key generation scheme could also be achieved, but it would require a higher overhead

for blockchain nodes whenever the network topology changed. We do not discard this

approach, but we leave it for future work if one wishes to study such a scheme.

The signature verification algorithm, triggered by invoking verify is perhaps the

most important method we have to address here in terms of computational cost. Thresh-

old signatures are costly to verify, and any robust threshold signature must tolerate the

presence of f corrupted signature shares as long as the total set of signature shares n

is superior in number to the threshold k. In other words, a signature has to validate if

f ≤ n − k. Accordingly, threshold signature verification algorithms can be classified ac-

cording to the expectancy of corrupted signature shares fed to them and to their expected

computational cost, in pessimistic and optimistic variants of the algorithm, Algorithms 1

and 2, respectively. The notion of the algorithm being pessimistic or optimistic refers to

the task of assembling signature shares into a single signature to be verified against the

public group key.

Assume that to support these algorithms, four internal auxiliary methods exist: build-

Signature whose purpose is to create a composite signature when fed a set of signature

shares, nextCombination that is able generate a combination of signature shares of size

k given a set of size n ≥ k, verifySignatureShare which may be used to verify an indi-

vidual signature share, and verifyCompositeSignature which verifies a signature over

a given message similarly to the traditional RSA verification algorithm. Further assume

that nextCombination behaves in a static way and that each call to this function will

always generate a single combination in a correct sequence.

Algorithm 1 Pessimistic Threshold Signature Verification

1: function verifyPessimistic(m, sigs, gk, k)
2: valid← []
3: i← 0
4: for s← sigs do
5: if verifySignatureShare(s) then
6: valid[i]← s
7: i← i + 1
8: if len(valid) ≥ k then
9: compositeSig← buildSignature(valid)

10: return verifyCompositeSignature(compositeSig,m,gk)

11: return f alse

The pessimistic approach assumes that in a given set of signature shares, some of them

are corrupted, and thus verifies each and every one of them until it reaches k signature

shares needed to verify a composite signature, discarding corrupted ones. Naturally, this

has a heavy cost in the execution time of the verification function.

The optimistic approach, on the other hand, assumes that the first combination of k
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Algorithm 2 Optimistic Threshold Signature Verification

1: function verifyOptimistic(m, sigs, gk, k)
2: c← []
3: repeat
4: c← nextCombination(k,sigs)
5: if len(c) > 0 then
6: compositeSig← buildSignature(c)
7: return verifyCompositeSignature(compositeSig,m,gk)

8: until len(c) = 0
9: return f alse

signature shares it retrieves are valid and proceeds to verify them immediately. If verifi-

cation fails, the algorithm will then retrace its steps back to generate a new combination

and repeat the process, until a valid signature is found or all combinations are exhausted,

failing the verification.

These threshold signature verification algorithms are in the category of synchronous

algorithms, but they can be made asynchronous with the introduction of a communication

channel into their execution. We expect that any of these schemes may be leveraged in a

implementation basing itself on our system model.

3.5 Threat Model Considerations

The design of our solution takes some considerations for the definition of a subjacent

threat model that we point out here.

External intrusion. Our threat model is focused in the design of the blockchain-based

support and middleware provided services in our platform. The external client-side usage

of the platform is considered as a trustable environment. Our platform must operate un-

der the assumption that malicious adversaries may want to corrupt the history or logging

of verifiable transactions, revert or compromise the process of transaction validation or

even compromise data sharing and related logging operations. The back-end blockchain

support must be able to avoid this by applying the necessary security guarantees and

countermeasures, defending from intrusions that will try to induce such corruptions

and incorrect operation. The counter-measures will be imposed by the Byzantine fault-

tolerance guarantees of the inherently provided consensus protocol primitives.

Internal attacks. In fact, most blockchains operate under the premise that they will

be attacked not only by outside adversaries but also by authorized users executing oper-

ations under possible malicious or incorrect behaviours. The expected threats and the

degree of trust that the network has in the participating nodes in the global blockchain de-

termine the type of the required consensus algorithms that they use to settle their ledger.

As in other existent blockchain platforms, we take as reference a threat model considering
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a very high degree of possible threats, that leads to the need of strong consensus mech-

anisms based on BFT assumptions and leveraged by intrusion-tolerant state-machine

replicated processing. However we assume that the adversary never compromises the

minimum number of correct nodes required to support the safety and liveness conditions

of the required BFT consensus protocol. In this we include the provisioning of the base

properties of strong consensus guarantees at each node level running and endpoint of

the consensus protocol in our blockchain-based platform, namely; validity, agreement,

integrity and termination [18].

Exploit of communication channels. We consider that the network (supporting the

interactions between users and nodes) can be controlled by potential adversaries, start-

ing by defining in the adversary model all the identified threats against user-to-node or

node-to-node communications, as stated in the attack typology and reference of the OSI

X.800 Security Framework 2. Thus, our interactions have to be supported by a trustable

establishment of user-to-node and node-to-node secure channels, guaranteed by mutually

authenticated handshakes and TLS 1.3 support, enhanced by the possible complemen-

tary verification of resilient threshold digital signatures of all operations related to the

verification of smart-contract rules and blockchain transactions.

Trust computing base. Considering the system model and architecture, we consider

that processing capabilities installed on the edge and intermediated by local smart-hubs

are in the trust computing base. Thus, we consider in our design principles that the in-

termediary smart hubs are trusted (including by local hardware, firmware and software),

and the specific applications running in user-controlled computing devices are also con-

sidered in the trust computing base. We do not consider attacks against the availability

of computational and communicational resources, namely those frameworked as DoS

or DDoS attacks typology. We also do not consider in our primary assumptions rout-

ing attacks in the peer-to-peer intercommunication environment, namely attacks such

as: blackholes, sinkholes, wormholes or sybil attacks causing the loss or exhaustion of

processing and communication capabilities.

3.6 Runtime Behaviour

We will now proceed to describe the planned runtime behaviour of our system and its

components in two types of operations: i) a write operation that always involves propos-

ing a transaction to the blockchain; and ii) a read operation, that simply reads whatever

is on the ledger, depending on what was specified on a smart contract for its execution.

These two operations are the basis for every other operation over the blockchain (even

operations for obtaining a contract from the blockchain or for signing it). We will re-

strict ourselves to the base model of interaction, as the extended model can be inferred

2OSI X.800 Security Framework specification: https://www.itu.int/rec/dologin_pub.asp?lang=e&
id=T-REC-X.1145-201705-I!!PDF-E&type=items
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from this one (as it would simply require for edge devices to implement a similar set of

components to that of a smart hub in order to communicate with blockchain nodes).

Proposing a transaction. Figure 3.6 illustrates a flow diagram of the execution of the

write protocol. Consider this execution to be done after a user has already accepted a

given service provider contract.

1. The user, using his smartphone, initiates a transaction with a nearby smart hub for

a given service, referring to a smart contract existing in the blockchain by its ID;

2. The hub receives the transaction via its API and forwards it to the application

contract interpreter which will validate the specified contract’s properties to be used

for the remainder of the execution of the transaction. In this case, the interpreter

has the contract cached in local persistency. If that was not the case, it would have

to fetch it from the blockchain by means of a read operation to its broker nodes;

3. After the contract properties are read, the transaction is passed on to the dispatcher,

which will orchestrate the transaction execution over the blockchain peer nodes;

4. The dispatcher invokes the low-level API of the blockchain platform, proposing the

transaction and requesting blockchain nodes to verify it and sign it. The nodes to

propose to, which are the signing (or witness) nodes, are specified on the contract;

5-8. The nodes validate the transaction by executing it on the specified contract over the

extended smart contract engine. This engine is designed to execute dynamically

according to the contract properties;

9-11. After successful validation of the contract, nodes proceed to sign it, using the policy

described on the contract. If the contract specified a different type of transaction

signing policy than the supported default policy by the base blockchain platform,

peer nodes request a special provider component to sign the transaction for them;

12-13. If nodes correctly verify the transaction, they reply to the hub, which collects the

signatures at the dispatcher component. Receiving the set of signatures from reply-

ing peers, the hub proceeds to verify them according to the signing policy specified

on the contract;

14. After enough signatures are collected and validated, the hub sends the transaction

to the consensus service;

15. Consensus is reached and the consensus service propagates the transaction to every

peer, including passive peers who did not witness the transaction proposal;

16-19. The transaction signatures are verified by the receiving peers and if everything

checks out, the result of executing the transaction on the contract, using the smart

contract engine and any needed extended logic, is committed to the ledger;
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Figure 3.6: Flow diagram of a transaction proposal (write operation)
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20-21. The result returned to the hub is forwarded to the user via API. In this context, an

IoT device could read the result of the transaction executed by the user by either

polling the hub or by receiving an event from the API.

Reading from the ledger. Figure 3.7 illustrates a flow diagram of the execution of the

read protocol. The same conditions from the write operation apply here, i.e. assume the

contract over which the read operation is to be executed was accepted beforehand by the

user owning the IoT device in the illustration.

Smart 
door lock

Node 0
(Broker) Node 1

1
Smart Hub

API

Applicational 
Contract 
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Extended 
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Policies Verifier
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Blockchain 

Operation API
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Figure 3.7: Flow diagram of a query over the ledger (read operation)

1. An IoT device queries the nearby hub it is linked to for some data, supplying a

contract ID;

2. The smart hub, upon receiving the request, calls the applicational contract inter-

preter to verify any needed conditions to be ensured in order to successfully execute

the read operation;

3. The contract interpreter reads the contract and checks whether it has any cached

response for this request. If it does, it responds directly to the IoT device, else it

passes any needed information about the contract to the dispatcher;

4. The dispatcher requests a read operation to the blockchain through the low-level

API of a hub’s broker node. In special cases, depending on the conditions of the

contract, it may perform the same request to other nodes, whether they were a

broker/bootstrap node for this device or not. For simplicity, let us assume the

general scenario is just to query the broker;
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5-7. The transaction manager receives the request and executes the read operation spec-

ified on the contract, which may invoke any needed extended execution logic to be

concluded;

8-9. The contract reads data from the ledger and returns it to the transaction manager;

10-12. The read data is forwarded to the hub, and finally, returned to the IoT device.

3.7 Summary

In this chapter we presented our system model definition and architecture for a decen-

tralized ledgering platform, regarded as a blockchain-enabled IoT platform, that is both

reliable, scalable and independently auditable by any of the participating entities present

at present at typical IoT environments: the users of a given service, the service provider,

things and smart hubs. We present a model in which communication between these

entities, in the form of transactions to a ledger, is mediated by a network built upon

blockchain principles enriched with strong cryptographic controls for digital signatures

that allow for robust decentralized trust and with a dynamically executing transaction

flow regulated by extended smart contracts. This notion of extended smart contracts is a

powerful one that allows regular blockchain contracts to be enhanced with the capability

of changing how system-level properties of the blockchain are executed and allows them

to be interpreted not only at blockchain-level, but also at application-level of software

running on the participating entities.

We also define how smart hubs, either user-owned or service provider-owned, can be

harnessed in conjunction with this ledgering platform to provide a scalable architecture

capable of performing computations, aggregating things and users on the edge, inter-

preting and caching extended smart contracts and acting as representative proxies for

resource-limited IoT devices. Thus, we believe this model follows the motto of this thesis

– to bring order into things – in the sense that IoT environments can be structured into a

more hierarchical topology, with a ledgering platform allowing for decentralized trust

and regulating communication between all participating entities, rather than in peer-flat

chaotic local networks where every device can talk to the next, while also mitigating

the future scalability issues of today’s cloud-first applications by employing aggregation

on the edge with smart hubs and dispersing the blockchain network heterogeneously

throughout cloud providers.

Considering the contents of this chapter, we then go through the discussion of the

implementation of the discussed system model and software architecture, in addressing

an prototype used for validation and experimental assessment.
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4
System Implementation

In this chapter we present the implementation details related to the prototyping effort of

the system model discussed in Chapter 3. We start from the implementation overview,

describing the technologies used, and then we present the software components and

implementation options taken to build the software architecture of the prototype. An im-

portant consideration to bear in mind is that the prototype implements the base model of

interaction of our system model, to conduct the experimental validation and assessment

to be presented in the next chapter.

4.1 Prototype Overview and Technologies

Prototype Overview. As to provide a general overview of the implemented prototype, we

can describe its composition by the following different software services and components:

• Blockchain-enabled services, leveraged and extended from the base Hyperledger

Fabric (or HLF) components and modules, where the support for threshold and

group multi-signatures, integrated with extended consensus plane services for Byzan-

tine fault-tolerant properties are a relevant touchstone;

• The materialization of the smart hub component, focusing on its base assumptions

for the intermediation of interactions from users and IoT devices (regarded as clients

of the provided services in the blockchain-enabled architecture), and forwarding

those operations as transactions with data-management functions enabled by the

backed blockchain services;

• The implementation of a set of test and benchmarking tools, and demonstrative

client implementations, for system validation, assessment and experimental obser-

vations.
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Technologies. As stated before, for the base blockchain services layer of our prototype we

chose to use the HLF blockchain platform, following the arguments discussed in Chapter

2. The HLF platform and its transaction flow mechanisms meet our system model, albeit

some minor variations, offering an extensible leverageable base for our developments.

The prototype’s blockchain services were built using version 1.1 of Hyperledger Fabric.

The source-code of the platform itself is written in Golang 1.10, as are smart contracts

definitions within the platform. As such, to implement our own custom smart contracts

to be used within the platform and to modify the platform to our needs, we resorted to

Golang as well. On some components of the platform, such as its consensus mechanism

and digital signature components, the technology shifted to JAVA 9, with local communi-

cation between Golang processes and JAVA processes assured by UNIX domain sockets.

Communications and messages exchanged with and within the HLF are done via gRPC1

with Google’s protobuf serialization2. Thus, when needed, we had to configure these and

modify properties of the exchanged messages through parameterized Protocol Buffers.

The deployment of the blockchain platform was done by running a set of Docker

containers, using Docker CE 18.03 and Docker Compose 2. Using Docker technology, we

virtualize the blockchain network on a single machine, with each Docker container hold-

ing a blockchain peer process, allowing different containers to have different roles within

the network. This platform can be deployed on a physically distributed environment,

but for minimizing deployment overhead and quickly manage changes to the blockchain

infrastructure, we preferred to follow a virtualized approach.

For the smart hub interface layer the technology used was JAVA 9, mostly due to the

capability of writing a smart hub application that could run agnostically to the underlying

hub’s architecture and due to our familiarity with the language. To interact with the HLF

we used the Hyperledger Fabric JAVA SDK 1.13, which we later modified for the needs

of our system model. For local persistency on smart hubs, MongoDB 4.04 was used, as

it is a lightweight key-value store. For exposing the hub in two distinct endpoints, one

for constrained IoT devices and another for more capable devices leveraged by the end

user, we resorted to a CoAP JAVA implementation provided by mbed5, and Spark JAVA

2.7.26, a micro-framework for implementing RESTful applications harnessing a Jetty 9.4

HTTP web server7, respectively. Communication between the hub and devices can be

executed by exchanging messages in JSON format. Users can also interact with the hub in

a web browser and obtain an HTML response. A fork of this layer intended at running a

lightweight SSL library and DTLS [59] was also implemented using WolfSSL8 (written in

1gRPC framework: https://grpc.io/
2Google Protocol Buffers (or protobuf ): https://github.com/protocolbuffers/protobuf
3Hyperledger Fabric JAVA SDK: https://github.com/hyperledger/fabric-sdk-java
4MongoDB cross-platform document-oriented database: https://www.mongodb.com/mongodb-4.0
5CoAP JAVA implementation by mbed: https://github.com/ARMmbed/java-coap
6Spark JAVA framework: http://sparkjava.com/
7Jetty servlet engine: https://www.eclipse.org/jetty/
8WolfSSL embedded SSL library: https://github.com/wolfSSL/wolfssl
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C) and the JAVA Native Interface (JNI)9. This fork, however, uses a custom binary format

of structured byte arrays instead of JSON for exchanging messages.

Lastly, we also implemented an Android application in JAVA to provide a more realis-

tic setting when interacting with the smart hub and to validate final end-user interactions

via a smartphone. The targeted Android SDK of this application was version 28 and the

minimum SDK was version 15, with the application able to run in Android 4.0.3 (Ice

Cream Sandwich) as minimum requirement.

4.2 Prototype Architecture and Implementation

Mirroring our system model, our prototype implementation can be seen in layers: i) a

Base Blockchain Services layer which we consider to be the HLF and the base services it

provides; ii) an Extended Blockchain Services layer which extends the first layer. This

layer is rather discussed as a conceptual layer, but we will refer to the two blockchain

service layers as the whole extension of blokchain-enabled services, according to our

development and as a new HLF-enhanced substrate; and iii) a Smart Hub Interface layer

which has a direct mapping of the components in our system model. On top of that,

we have got all of the entities required by our base model of interaction: users who

will through some kind of medium (smartphones apps, browsers, or other client-side

applications) interacting with smart hubs, IoT devices (or things), and service providers

managing smart contracts on the blockchain and any nodes that may belong to them via

an administration console or a back-office application. The architecture of the prototype

is illustrated in Figure 4.1, which will accompany the remainder of this chapter.

In terms of implementation effort, the whole codebase of the prototype was imple-

mented in around 5900 lines of code, as Table 4.1 shows. The Smart Hub Interface and the

Android application, which were built from scratch and by integration of the aforemen-

tioned software libraries, resulted in around 2150 and 750 lines of code, respectively. The

addition of components to the HLF and changes to its original codebase totaled around

3000 lines of code.

Component Estimated LoC
Smart Hub Interface 2150

Overall implementation 2100
Changes to the HLF JAVA SDK 50

Blockchain Services 3000
Changes to the HLF platform 1200

Impl. of extended smart contracts 500
Rectifications to HLF BFT-SMaRt impl. 50

Impl. of the extended signing policies provider 1250
Android Application 750

Total 5900

Table 4.1: Prototype implementation extension metrics (LoC)

9JNI bridge for WolfSSL: https://github.com/wolfSSL/wolfssljni
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Figure 4.1: Prototype architecture

Regarding implementation complexity, developing and testing the prototype required

the use of varied and distinct technologies, programming languages and language para-

digms. Some of the technologies we used are in their infancy and yet to fully stabilize

(e.g. the HLF SDK and APIs), and thus had higher than initially expected learning curves

and unclear documentation. We harnessed multiple communication protocols (HTTP,

gRPC and protobuf, CoAP, UNIX sockets) and were able to integrate such a wide array

of technologies into a functional prototype composed by multiple artifacts. Moreover,

we implemented the smart hub and extended blockchain service components as to be

extensively configurable. The prototype was designed as a tiered architecture between

clients, smart hubs and the blockchain, and fully implements the designed architecture

from end-to-end. To do so, it required knowledge of different concepts: from blockchain

architecture, server-side services, and network communication, to the intermediation of

concurrent client communication through multi-threaded hub middleware, client-server
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models with some level of data caching, and mobile development.

We emphasize two final issues as relevant implementation concerns in addressing

the developed prototype. The first issue is the implementation strategy for reusing the

base HLF system model components to leverage a pluggable model for a BFT consensus

layer that includes the new types of group-oriented validation signatures; the second

issue is the mapping strategy for smart contracts in the implemented prototype, using

HLF Chaincode10. A Chaincode is triggered when a transaction is proposed and decides

the state changes to be applied to the ledger. Thus, we must deal with initialization and

management of ledger states by the received transactions, according to the new verifica-

tion conditions, when group oriented multi-signatures or reliable threshold signatures

are used, while maintaining the base assumptions of HLF, where Chaincodes can run in

different containers from the peer and the state that is generated by a Chaincode is not

accessible by another Chaincode, this way being able to maintain isolation guarantees.

4.2.1 Blockchain Services

To start explaining our implementation for the blockchain services layer we first have

to give a brief description of the chosen platform: Hyperledger Fabric. We have already

introduced the platform generically in Subsection 2.4.4, but for an easier comprehension

we will provide a short summarized description of the platform relevant for explaining

our implementation.

Base Blockchain Platform. The HLF is a platform which comes along with a few

specific abstractions and concepts. Fabric is in essence, a permissioned consortium-based

platform, whose consensus service relies on an off-chain model with fail-stop guarantees

at most, i.e. it does not tolerate Byzantine behaviour. It is organization-oriented, which

means that every node on the blockchain has a membership relationship with a single

organization. Access control on the network is done by means of trust between organiza-

tions (through their respective certificates). Also, it uses the notion of channels, which

can be viewed as partitions in a partial blockchain ledger replication scheme, i.e. trans-

actions and contracts are only visible to an entity in the scope of a channel, if they have

access rights to it. Within a single channel and a contract deployed on that channel, the

HLF defines what is known as an endorsement policy, which is a set of rules composed

by logical and-gates and or-gates where an administrator can specify the organizations

that should sign transactions for that specific contract. Entities in HLF can be categorized

into the following roles:

• Peers: Nodes responsible for maintaining a valid ledger of transactions and execut-

ing Chaincode logic. They are further divided into Endorser and Committer roles.

As Endorsers, nodes endorse a given transaction by signing it after successfully

executing it over a given chaincode without committing its results to the ledger

10HLF denotes its implementation of smart contracts as Chaincode, as referred in Subsection 2.4.4.
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(imagine it as a simulation), while as Committers, nodes verify the integrity of the

transaction and its appended signatures, and if successful, commit it to the ledger;

• Orderers: Nodes responsible for publishing blocks of transactions to Peers for them

to be appended to the blockchain. To do so, these nodes resort to an Ordering Ser-

vice to establish consensus on the order of transactions they receive from incoming

messages.

• Ordering Service nodes: Nodes responsible for establishing consensus on the total

history of transactions that occurred within the system. The only officially sup-

ported implementation for the HLF is an Apache Kafka and Zookeeper ensemble, a

model which only provides crash fault-tolerant guarantees.

• Clients: Applications external to the blockchain which communicate with Peers and

Orderers via the HLF SDK (e.g. our smart hub implementation).

Transaction flow for write operations, or invocations, within the HLF usually starts

with a client application proposing a transaction to a set of Peers assuming the Endorser

role. These nodes simulate the transaction proposal, endorse it if no invalid state occurs

and return the signed proposal back to the client. The client can verify the signatures and

the consistency of the responses and send the set of signed transactions to Orderer nodes.

The Orderer delegates consensus to an Ordering Service and on its callback, compiles a

result of ordered transactions into a single block. This block is then broadcasted across

the network, where nodes, now acting as Commiters, verify the signatures of Endorsers,

Orderers and the client, as well as the integrity of the payload. If successful, the block

is then appended/committed to the ledger of each Peer. For read operations, or queries,

what happens is that a client requests a query over the ledger to its known Peers, which

then sign the response and return it to the client.

BFT Consensus Service. For this component, which is a part of our Extended Block-

chain Services layer, we used the implementation by Sousa et al. [6, 7], which was, at

the time of writing this document, a yet unofficial consensus service for the HLF. The

service itself is implemented using BFT-SMaRt, a PBFT-like consensus mechanism, and

is modeled so that HLF’s orderer nodes possess a secondary process which allows them

to proxy communication to a known set of BFT-SMaRt replicas. The communication

between these two processes, the main orderer process and the proxy process, is assured

in local memory by UNIX domain sockets.

The scope of the authors of the BFT-SMaRt implementation for the HLF was to create

a consensus module that was functionally correct, robust and efficient. However, for the

purpose of our implementation, we had to rectify and make some adaptations to the ex-

isting codebase as to allow multiple organization memberships to submit transactions to

the consensus replicas as we need multiple organizations to have more than one signature

per transaction. We also had to dockerize the two orderer processes within a single Docker

image and create a set of bash scripts to allow configurability.
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Extended Smart Contract. For the purpose of our prototype we implemented a con-

tract which follows the Extended Smart Contract specification of our system model. We

refer to this contract as XCC. The XCC was designed to be a generic smart contract with

no specific business need in mind. As such, it only stores records in the form of a key-

value store within the blockchain ledger. However, the more important part of the XCC

is its ability to influence blockchain transaction flow and to be interpreted, albeit in a

distinct representation and format, outside the blockchain.

Listing 4.1 is an excerpt of our XCC implementation that shows how properties of

different sections of the contract – extended contract properties and application-specific

properties – are structured and stored within the contract.

Listing 4.1: Excerpt of the XCC chaincode properties and functions

1 . . .

2 / / Contrac t ex t ended p r o p e r t i e s
3 type ExtendedContractPropert ies s t r u c t {

4 ContractId s t r i n g ‘ j son : " contract − id " ‘

5 ContractVersion int ‘ j son : " contract −vers ion " ‘

6 Avai lableFunct ions [ ] [ ] s t r i n g ‘ j son : " a v a i l a b l e − funct ions " ‘

7 InstalledOnNodes [ ] s t r i n g ‘ j son : " i n s t a l l e d −on−nodes " ‘

8 SignatureType s t r i n g ‘ j son : " s ignature −type " ‘ / / m u l t i s i g , t h r e s h s i g
9 SigningNodes [ ] Node ‘ j son : " signing −nodes " ‘

10 ConsensusType s t r i n g ‘ j son : " consensus−type " ‘ / / b f t , f a i l s t o p
11 ConsensusNodes [ ] Node ‘ j son : " consensus−nodes " ‘

12 ExpiresOn s t r i n g ‘ j son : " expires −on " ‘

13 ValidFrom s t r i n g ‘ j son : " val id −from " ‘

14 ProviderSignature s t r i n g ‘ j son : " provider −s ignature " ‘

15 DeployedOn s t r i n g ‘ j son : " deployed−on " ‘

16 }

17

18 / / Contrac t a p p l i c a t i o n a l p r o p e r t i e s
19 type A p p l i c a t i o n S p e c i f i c P r o p e r t i e s s t r u c t {

20 MaxRecords int ‘ j son : " max−records " ‘

21 TotalRecords int ‘ j son : " t o t a l −records " ‘

22 / / . . . f o r example p u r p o s e s only
23 }

24

25 / / Records h e l d on t h e l e d g e r , i . e . a c t u a l data
26 type Record s t r u c t {

27 Data s t r i n g ‘ j son : " data " ‘

28 }

29

30 func ( s * SmartContract ) I n i t ( APIstub shim . ChaincodeStubInterface ) sc . Response {

31 args := APIstub . GetStringArgs ( )

32 . . .

33 / / Unmarshall a r g s
34 var extProps ExtendedContractPropert ies

35 var appProps A p p l i c a t i o n S p e c i f i c P r o p e r t i e s

36 e r r := j son . Unmarshal ( [ ] byte ( args [ 0 ] ) , &extProps )
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37 i f e r r != n i l {

38 return shim . Error ( e r r . Error ( ) )

39 }

40 e r r = json . Unmarshal ( [ ] byte ( args [ 1 ] ) , &appProps )

41 . . .

42

43 / / Save c o n t r a c t p r o p e r t i e s on t h e b l o c k c h a i n
44 extPropsCompositeKey , _ := APIstub . CreateCompositeKey ( " props " ,

45 [ ] s t r i n g { "EXTENDED_CONTRACT_PROPERTIES" } )

46 extPropsAsBytes , _ := j son . Marshal ( extProps )

47 APIstub . PutState ( extPropsCompositeKey , extPropsAsBytes )

48 appPropsCompositeKey , _ := APIstub . CreateCompositeKey ( " props " ,

49 [ ] s t r i n g { "APPLICATION_SPECIFIC_PROPERTIES" } )

50 appPropsAsBytes , _ := j son . Marshal ( appProps )

51 APIstub . PutState ( appPropsCompositeKey , appPropsAsBytes )

52

53 return shim . Success ( n i l )

54 }

55

56 func ( s * SmartContract ) Invoke ( APIstub shim . ChaincodeStubInterface ) sc . Response

57 {

58 / / R e t r i e v e t h e r e q u e s t e d Smart Contrac t f u n c t i o n and arguments
59 function , args := APIstub . GetFunctionAndParameters ( )

60 / / Route t o t h e a p p r o p r i a t e hand l e r f u n c t i o n t o i n t e r a c t with t h e l e d g e r
61 / / a p p r o p r i a t e l y
62 i f funct ion == " ge tContrac tDef in i t ion " {

63 return s . ge tContrac tDef in i t ion ( APIstub )

64 } e l s e i f funct ion == " s ignContract " {

65 return s . s ignContract ( APIstub , args )

66 } e l s e i f funct ion == " getContractS ignature " {

67 return s . getContractS ignature ( APIstub , args )

68 } e l s e i f funct ion == " getEndorsementMethod " {

69 return s . getEndorsementMethod ( APIstub )

70 } e l s e {

71 . . .

72 }

73 . . .

System-level properties, the ones used by the blockchain platform, are not specified

here as those are internal meta-data of the HLF. The properties stored directly on the

contract are exportable in a JSON representation to the outside world (e.g. to the smart

hub) and are populated when the contract is deployed to the blockchain by a service

provider. In our prototype this is done via console commands by an HLF user with

administration rights. The deployment of the contract consists of its installation on peers

and then its instantiation, which results in a a call to the Init function seen below –

the function that registers the contracts properties. The Invoke function, on the other

hand, is the function executed when a query or an invoke operation is triggered over the

contract. This function identifies the sub-routine it has to execute in order to fulfill the
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call, reading or writing on the ledger.

Transaction Signing and Verification. We overrode two system chaincodes, the ESCC

(Endorsement System Chaincode) and the VSCC (Verification System Chaincode). Sys-

tem chaincodes are a special type of contracts within the HLF that execute in their own

dedicated environments (or containers) designed for executing system-level operations.

Imagine them as a kernel functions of the blockchain. In this case, the ESCC is the

chaincode responsible for endorsing transactions, i.e. signing them with a cryptographic

algorithm, and the VSCC is responsible for verifying the integrity of the transaction and

any signatures created by the ESCC.

Our changes to the ESCC and the VSCC were done in the scope of allowing the HLF

to dynamically decide on what signature method to use to sign transactions over a given

contract by querying the properties of that same contract. Logically, there is a property in

the contract that defines the signature method to use. In our prototype, possible methods

are: i) multi-signatures (the default HLF implementation); ii) and threshold signatures.

The latter is provided by a module we developed called the Extended Signing Policies

Provider (XSPP), which is an optional multi-threaded secondary process (in JAVA) run-

ning in the containers of Peer nodes, together with their main process (in Golang). We

say optional, because this approach allows a modular implementation; nodes that do not

need to endorse transactions will probably not need to boot the XSPP. Communication

between these two processes is done via UNIX domain sockets, similarly to the aforemen-

tioned BFT-SMaRt service, in TCP streams. Each new connection to the XSPP will be

attended by a thread from a fixed but configurable thread-pool in the XSPP. The reason

for the existence of this module as a separated component from the HLF main process

is, first, because it allows for further extensibility, i.e. in the future, new policies and

signature schemes other than threshold signatures can be added to this module without

having to disrupt the codebase of the HLF Peer node, and second, because Golang has

a lack of cryptographic primitives support for threshold signatures (possibly due to the

recency of the language), namely for Shoup’s threshold signature scheme [67], which is

the one we intended to implement.

The implemented signing and verification processes of the prototype can visualized in

Figure 4.2. The original signing processes consisted of the signing node simply executing

a given operation over a specific chaincode and then signing it with its organization

signature. If the client sent transactions to multiple Endorsers, the result would be a

multi-signature scheme. Regarding verification, the process was similar, verification of

signatures was done using the multi-signature scheme by default before an integrity

validation of the transaction against the contract. In our implementation, a different

protocol occurs.

For signing transactions (top diagram), the implemented process is as follows:

1-2. After an Endorser receives a transaction proposal from a client, it verifies the trans-

action against the contract, which runs in an isolated chaincode environment (or
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Figure 4.2: Signing (top) and verification (bottom) of transactions
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container);

3. After a successful contract validation, the node requests the ESCC to sign the trans-

action;

4-5. The ESCC queries the properties of the contract in a chaincode-to-chaincode invo-

cation;

Note: Querying the signature method and properties from the contract is slow, requiring
a heavy number of internal validations and calls, and is done only for the first trans-
action over the contract. The ESCC keeps record of the signature method for posterior
transactions;

6. If multi-signature is the method specified on the contract, the ESCC uses the default

signing mechanism. If not, it requests the XSPP to sign the transaction instead.

7. The signed transaction is returned to the node, which registers the signing method

on the transaction payload, and is sent back to the client.

For verifying transactions and consequently committing data to the ledger (bottom

diagram), the implemented process is as follows:

1. After a Committer receives a transactions block from an Orderer, it requests the

VSCC to verify the appended signatures, which it does by reading the signature

method property on the payload of the transactions to understand which method

of signature verification it should use;

1. If the VSCC identifies that the method used to sign the transactions was a multi-

signatures scheme, it uses the default signature verification scheme. Otherwise, it

requests the XSPP to verify the signatures instead;

3-4. After successful signature validation, the transactions are verified against a given

contract;

5-6. Upon a successful contract validation, the Commiter records the transaction block

and its signatures to its local ledger;

XSPP Implementation Details. The XSPP implemented on our prototype, albeit its

extensibility, harnesses only a threshold signature library at its latest version. The library

integrated into the solution was the one in [73]. Outputs and inputs of the library were

originally defined in a numeric format, i.e. group keys, private key shares and signature

shares were all defined by the mathematical notations of RSA cryptographic materials (e.g.

64-bit integers for exponents). We defined a custom serialization format for these objects

where we build a byte array structured into different fields, each one for each parameter of

the object, and then converting the whole array into a base-64 representation which could
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be used for communication purposes with peer nodes. For the purpose of our prototype,

we inject key shares and respective group key into peer nodes as environment variables.

The library also had a limitation in which it would require exactly K signature shares

to be fed into its verification function or it would always result in a failure, K being the

minimum quorum size of a threshold signature scheme. We believe that for any L ≥ K ,

the verification function should always be able to validate the transaction assured the

threshold of valid signatures is met, so we implemented an iterative permutation algo-

rithm within the verification function. Essentially, given an L ≥ K to the verification

function, the algorithm generates a permutation of K signature shares and then proceeds

to verify the function. If it fails, it repeats the process for a new permutation. If all

permutation-verification pairs fail, then the threshold signature verification fails perma-

nently. Theoretically, in the best-case and most likely scenario, the complexity of this

approach is just of generating a single permutation and verifying it immediately. In the

case that there are enough Byzantine parties to corrupt the signature, the verification pro-

cess will run through all possible permutations until it actually concludes the signature

was corrupt, resulting in a possible performance degradation in transaction verification.

Thus, going back to our system model, in Subsection 3.4.3, we can classify our threshold

signature verification scheme as optimistic and synchronous, since we verify immediately

the first given k signatures and expect in the best case scenario that there is no corrupted

signature present. It is synchronous as the algorithm itself makes the requester block

while waiting for verification to complete.

4.2.2 Smart Hub

As can be seen in Figure 4.1, our smart hub implementation consists of three major compo-

nents: the API, the Contract Interpreter and the Dispatcher. In effect, these components

were originally outlined and specified for the Smart Hub Interface in our system model,

but all other components of that same layer are present here, even though they might

be represented as a minor part of the smart hub architecture. These three components

can be seen as a sequence of states for requests sent to the hub: requests enter through

the API, where they are routed, verified in terms of correctness of the request (if the

action the request is trying to trigger exists, if all mandatory parameters are supplied,

if a client certificate is supplied when TLS mutual authentication is required, and any

other needed validations), unmarshalled (if any payload exists), and passed on to the

Contract Interpreter. The Contract Interpreter verifies the contents of the request against

a given contract specified by the request and then passes the results of interpreting the

contract’s properties and the contents of the request to the Dispatcher, which orchestrates

all communication with the blockchain services according to the supplied information.

Furthermore, given that current devices close to the notion of a smart hub [2, 3, 61]

are very heterogeneous at both hardware and operating system levels and that the rising

trend of the IoT is only expected to increase, we intended with this implementation
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to provide a smart hub interface which would be able to be executed on most devices

independently of their hardware or OS specifications. However, as this heterogeneity may

lead to different resource capabilities, we intended to develop the hub with as lightweight

components and libraries as reasonably possible. Thus, our choices for the technologies

of the smart hub implementation were heavily influenced by these premises.

URL: https://<address>:<port>/api/<channel>/contract/<contract-id>
Method: GET
Response format: application/json or text/html, depending on an Accept header.

Returns a representation of the contract with identifier equal to <contract-id>, if it exists
within the blockchain and within channel <channel>. It also returns a SHA256 hash of the
contract for users to sign and accept the terms of the contract.

URL: https://<address>:<port>/api/<channel>/contract/<contract-id>/sign
Method: POST
Response format: application/json or text/html, depending on an Accept header.
Requires: A payload with a client signature of the contract.

Allows the user to accept the contract with identifier equal to <contract-id>, if it exists
within the blockchain and within channel <channel>. Returns a confirmation or an error
back to the caller.

URL: https://<address>:<port>/api/<channel>/contract/<contract-id>/query
coap://<address>:<port>/contract

Method: POST*
Response format: For HTTP, application/json or text/html, depending on an Accept
header. For CoAP, only application/json is supported.
Requires: A payload with the function name to query and optional arguments. For CoAP,
<channel> and <contract-id> have to be prepended to the payload.

Allows a query to the service to be executed over the contract with identifier equal to
<contract-id>, if it exists within the blockchain and within channel <channel>, and if the
supplied function name exists. Returns the query results or an error back to the caller.

URL: https://<address>:<port>/api/<channel>/contract/<contract-id>/invoke
coap://<address>:<port>/contract

Method: POST*
Response format: For HTTP, application/json or text/html, depending on an Accept
header. For CoAP, only application/json is supported.
Requires: A payload with the function name to invoke and optional arguments. For CoAP,
<channel> and <contract-id> have to be prepended to the payload.

Allows an invocation to the service to be executed over the contract with identifier equal to
<contract-id>, if it exists within the blockchain and within channel <channel>, and if the
supplied function name exists. This invoke operation writes over the ledger by sending a
transaction to the blockchain. Returns a confirmation or an error back to the caller.

* The operation can be called with GET on browsers to get an HTML form for executing the POST method.

Table 4.2: Smart Hub API operations
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API. Our implementation of the smart hub API exports a set of HTTP/CoAP opera-

tions which all map to the stub defined in our system model in Section 3.4. We segment

traffic between these two protocols and expect users, through their smartphones or other

medium, to contact the hub via HTTP, and IoT resource-constricted devices to contact the

hub via CoAP. As such, operations related to obtaining and accepting a smart contract

are only supported via HTTP since these are only relevant for users of the service. Both

HTTP and CoAP servers are multi-threaded while attending requests. All supported oper-

ations are described in detail in Table 4.2, where the fields <address>, <port>, <channel>

and <chaincode> represent the Internet address and port of the smart hub, and the HLF

communication channel where a given smart contract is deployed, respectively.

Contract Interpreter. A local MongoDB instance runs within the smart hub for the

purpose of providing a local smart contract persistency mechanism. This instance keeps

contracts cached on the hub and retrieves them from persistency by their identifier. When

an operation over a specific contract is requested to the Interpreter, there is a first at-

tempt to locate in cache. If unsuccessful, the Interpreter retrieves the contract from the

blockchain and stores it in the local store for future operations, only then proceeding to

extract and validate the contract’s properties. No operation is executed without verifying

the respective contract’s properties at least once.

The Contract Interpreter validates a set of properties on the contract in a fashion that

resembles the validation of X509 certificates. It first identifies if the contract has a given

standardized structure (specified in Subsection 3.4.1), and then proceeds to verify fields

such as the expiry date on the contract, the beginning date, if the contract has clearly

defined the signature method and consensus service endpoints to be used, and so on.

After successful validation, properties such as the nodes that will sign the transaction,

which signature method to use to verify signatures obtained from blockchain nodes are

passed on to the Dispatcher component. This validation is only executed for each contract

per run of the smart hub, for performance reasons.

Dispatcher. The implemented Dispatcher component as a whole has a few functions:

i) it contacts a set of boostrap nodes upon booting up the smart hub in order to get any

requested contracts from a user from them; ii) it initializes and maintains a set of Fabric

channels which the hub is authorized to communicate with; iii) and it triggers query

and invoke requests to peer nodes; the operations of the API, while having additional

complexity added to them, all delegate to these two last functions. This last component of

the smart hub depends heavily on the HLF SDK library, which is responsible for sending

and receiving requests from the HLF network using the gRPCS protocol with protobuf

serialization of messages. The SDK is essentially a multi-threaded client capable of doing

some client-side operation processing, and together with the gRPC interface on each

blockchain node, it implements the brokering mechanism.

As the HLF verifies transaction signatures in two points, one in the blockchain net-

work before committing transactions to the ledger, and another one on client applications
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using the HLF SDK when transaction responses are received from Endorsers, the SDK was

modified by us to support dynamic switching of signature verification schemes according

to the properties of a contract. We implemented a mechanism that verifies a property

on transaction proposal responses set by Endorsers stating the signature method used to

sign that response, so that the SDK can decide which signature verification scheme to use.

For the multi-signature signature scheme, the SDK resorts to the default implementation.

For threshold signatures it resorts to the library in [73] that we integrated for that pur-

pose. After successful verification and checking peer responses for coherence, the SDK

produces an envelope where it also registers the signature method used and sends it to

orderer nodes.

4.2.3 Other Implementation Aspects

Android Client Application. As mentioned before, we implemented a small Android

application for an increased degree of realism while interacting with a smart hub, either

emulated on a computer or running in a dedicated physical device. The application

implementation is quite simple and consists of three screens (or activities in Android

slang): i) a configuration activity for users to input needed parameters to communicate

with the hub (hub address and port, channel, contract name); ii) an activity for visualizing

contract specifications and accepting them; iii) and an activity for executing query and

invoke operations over the hub. All communications with the smart hub, protected with

TLS 1.3 and mutual authentication, result in the application calling the operations in

Table 4.2. For accepting a contract, something which just requires a press of a button

from a user, the Android application employs an automated signing mechanism, using

its private key to sign the hash of the contract, returning it to the hub.

DTLS Smart Hub API. We implemented an alternative API version, which uses a

lightweight WolfSSL library for DTLS [59] communication with external entities, both

users and IoT devices. It exports the same functions as the original implementation, albeit

in a different format. A structured byte array is used to send messages back and forth

between users and things in communication with the hub, where the first section of the

byte array is an integer representing the operation being executed and the second section

is a set of arguments needed for correctly executing the function. This version, however,

was not explored as much as the dual protocol HTTP/CoAP version.

4.3 Summary

In this chapter we described the implementation effort related to building a prototype

based on the system model of the previous chapter. We highlighted and went into detail

where needed of the main features of the prototype, namely: the usage of Hyperledger

Fabric as the base blockchain platform, the integration of the BFT-SMaRt consensus ser-

vice into the platform, our implementation of extended smart contracts which can be
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dynamically interpreted at different levels of our model, how that same interpretation

influences transaction and verification processes within our system and how do we in-

tegrate threshold signatures into these processes, our implementation and architecture

for smart hubs and all respective components and other relevant implementation aspects,

such as an Android application used for a more realistic end-to-end testing in a client–

smart-hub–blockchain topology.

The prototype was built upon the base model of interaction where smart hubs inter-

mediate communication of users and things with the blockchain services, it is extensively

configurable, both the smart hub and the blockchain platform, and was written in around

5900 lines of code. Its source-code shall be available in the open-source community11.

A final consideration to bear in mind is that our current prototype implements the

relevant base assumptions in the model of interaction referred in Chapter 3, offering a

pluggable base for other future developments. Given time restrictions, implementing a

more extended model of interaction, namely supporting other IoT edge-based ecosystems

and their protocols, enhanced smart hub functions, and integration of other cryptographic

methods for threshold-based signatures, with expressive definitions for the execution of

smart contracts, would prove itself complex and require a higher amount of work. This

would be difficult to fit within the scope of this thesis. However, we believe that the

modular approach of the implemented prototype offers the possibility to capitalize this

effort, as interesting future work research directions.

11Prototype source-code at: https://github.com/fmiguelgodinho/dsliot-prototype-difctunl
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5
Experimental Evaluation and Analysis

In this chapter we describe our experimental assessment effort over the developed pro-

totype described in Chapter 4. First we describe our test-bench environment conditions,

and then we proceed to present our obtained results from evaluating each prototype com-

ponent. We analyze results in detail, relate them to our expectations according to our

system model and related work, and identify open issues where applicable.

In summary, our evaluation criteria, i.e. the questions we answer with the analysis of

the experimental results in this chapter are the following:

• Can we build a blockchain-supported system with Byzantine fault-tolerance guar-

antees and decentralized trustability assumptions with a viable throughput1 and

with a security level on pair with modern security standards?

• Can we further decentralize and increase the robustness of blockchain architectures

by modifying transaction signing and verification processes to be group-oriented

and fault-tolerant while maintaining an acceptable throughput?

• Can different signature schemes for blockchain transactions work better under dif-

ferent parametrization conditions?

• Can we provide a scalable edge-based smart hub architecture for the IoT capable of

reasonable throughput under increasing stress conditions?

• Can we provide a system model where protocol and communication weight on IoT

things, sensors and actuators is minimal?

1By viable throughput in BFT guarantees with decentralized trustability assumptions, what we mean is
that we wish to assess how adding BFT consensus and threshold signatures to Hyperledger Fabric can affect
the practicability of the solution and of the theoretical throughput referred in Section 2.4.
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5.1 Test-bench Environment

The test-bench environment for evaluating our implementation, and consequently our

system model, was set up in the below topology. In terms of technical specifications for

each machine, their characteristics are summarized in Table 5.1.

• A dedicated cloud server for hosting the blockchain services environment, in which

blockchain nodes ran in virtualized Docker networks;

• A single-board Raspberry Pi computer for running the smart hub API and closely

emulating a real-world scenario of a physical smart hub deployment in which it

would be expected to have as less complex hardware as possible;

• A laptop used for emulating the smart hub API as an alternative to the Raspberry

Pi above, in order to assess the smart hub API in optimal resource conditions;

• An HTTP and CoAP client built by us and executing from the laptop above for

benchmarking an end-to-end scenario between clients and the blockchain interme-

diated by smart hubs. In effect, benchmarks from this tool were measured directly

against a single smart hub, either deployed in the same machine (emulated deploy-

ment) as the benchmarking client or on a Raspberry Pi on the LAN;

• A gRPC client – Hyperledger Caliper2 – for benchmarking the blockchain services

network with asynchronous workloads, running on the same laptop as the above

client. This client used a variation of the HLF SDK 1.1.0 to communicate with the

HLF network, a version implemented in node.js;

Dedicated cloud server Benchmark client / Smart hub Smart hub
CPU Intel Xeon D1520 @ 2.2-2.7GHz Intel Core i5-5200U @ 2.2GHz Cortex-A53 @ 1.4GHz
RAM 128Gb DDR4 2133MHz 16Gb DDR3 1600Mhz 1Gb LPDDR2 SDRAM
OS Debian Stretch 9.4 Windows 10 Pro Raspbian Stretch lite 4.14
Model OVH HOST-128L HP EliteBook 840G2 Raspberry Pi 3B+

Table 5.1: Technical specifications of the test-bench environment

We measured memory consumption and CPU usage for the smart hub API by per-

forming real-time monitoring of the application using JConsole, and produced runtime

heap dumps that were then analyzed using Eclipse MAT3.

The hardware components in this topology at the edge, i.e. our testing local laptop

and the Raspberry Pi, were linked by a single switch in a dedicated network environ-

ment as to reduce interference between network traffic of communications related to our

system with traffic produced by other applications, which could negatively impact the

benchmarks. The switch was connected to the Internet by acting as a DHCP client for

2Hyperledger Caliper: https://www.hyperledger.org/projects/caliper
3Eclipse MAT: https://www.eclipse.org/mat/
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an ISP-provided switch via Ethernet with a measured connection of 100 Mbps. WLAN

was measured at around 10 Mbps. HTTP and CoAP requests between the smart hub

benchmarking client and the Raspberry Pi were executed over WLAN, while communi-

cation between the Pi and the dedicated cloud server were executed over Ethernet links,

as the Pi was directly connected via Ethernet to the dedicated switch. The HTTP con-

nection between the benchmarking client and the smart hub API was protected by TLS

with mutual authentication. Benchmarking the blockchain platform with Hyperledger

Caliper was performed via Ethernet. At a virtual network level of the dedicated cloud

server, the Docker network supporting the blockchain platform was segmented into two

distinct virtual subnets: one for consensus nodes (BFT-SMaRt replicas, Apache Kafka and

Zookeeper instances), and another one for regular blockchain nodes (peers and orderers).

In terms of network latency between the test hardware, the measured ICMP ping RTT

latency from the benchmarking client running on our test laptop and the Raspberry Pi to

the dedicated cloud server was of 47ms, and the latency of < 1ms was measured between

the client and the Raspberry Pi.

5.2 Benchmarks and Analysis

For the following benchmarks, we start with the observation of the baseline capabilities

of our testing cloud-based infrastructure for hosting the Hyperledger Fabric. We then

evaluate the base platform and our incrementation of functionality over it, i.e. our pro-

totype blockchain platform. Afterwards, we proceed to the evaluation of our developed

smart hub API prototype.

In all benchmarks ahead, we either directly evaluate the developed prototype block-

chain platform or depend on it as a supporting asset of smart hubs. Thus, it is worth to

note that for our blockchain network, we assume a total of l nodes, out of which n are

endorser nodes. Out of these n endorsers, there may be a number of f faulty nodes within

the network. Excluded from l are nodes related to consensus: HLF orderer nodes, BFT-

SMaRt replicas, and Apache Kafka and Zookeper instances. These were generally locked

at 4 orderer nodes, 4 BFT-SMaRt replicas, 4 Kafka instances and 3 Zookeeper nodes. The

presence of BFT-SMaRt replicas and Kafka and Zookeeper nodes was mutually exclusive

to whether BFT was required for consensus. Except for benchmarks where we explicitly

varied the size of ledger block sizes, we set block size to a maximum of 10 transactions.

Block interval is set at 2s to prevent flooding peers with transaction blocks. All our tests

are executed over a single HLF channel. For experimental assessments where threshold

signatures are leveraged, we assume n = 3f +1, f being the maximum tolerable faults, and

set k = f + 1, k being the minimum viable number for threshold signature reconstruction

quorum size. We request an odd number of signatures in order to obtain a majority in

signature verification quorums.

Regarding signature algorithm parametrization, we perform tests on RSA threshold

signature schemes with varying modulus values N = {1024,2048,3072} and on ECDSA
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multi-signature schemes with a modulus size of N = 256, which are harnessed by the

original HLF implementation. Our rationale behind the variation of RSA modulus values

follows on NIST guidelines4. In summary, key lengths of 2048 bits are reasonable for

today’s standards up until 2030; from that moment on 3072 modulus sizes should be

used for RSA schemes. Keys with a length of 1024 bits are considered to be insecure

and should only be used by legacy systems where it is infeasible to upgrade. In terms of

security level, we establish equivalence between the RSA and ECDSA signature schemes

to be roughly at the 2048 to 3072 bits in RSA versus 256 bits in ECDSA.

It is also worth to note that tests against the HLF blockchain platform, either the

original or our prototype, benchmark the full lifecycle of a transaction: i) from when

they are proposed by a client to a set of endorser nodes; ii) to the moment they are

verified against a smart contract, signed (endorsed) and returned to the client; iii) to the

client receiving all needed endorsements and sending the transaction to the HLF ordering

service; iv) to the ordering service establishing consensus via some off-chain consensus

cluster and publishing a transaction block to the network; and finally v) to the moment

peer nodes verify, commit the transaction to the ledger and confirm it to the client. For

tests against smart hubs, this cost is also included in our benchmarks.

5.2.1 Baseline Observation

Before we assess Fabric in a distributed setting, let us first infer the practical maximum

throughput of our testing machine. Table 5.2 summarizes the results of two micro-

benchmarks we executed initially for this purpose. The first baseline measure is a minimal

run of the HLF as a centralized system where there is a single peer for endorsing transac-

tions and a single orderer for publishing transaction blocks. This test was executed with

a payload of 100 asynchronous invocations of write operations over a single chaincode.

The second baseline is a set of measures obtained from benchmarking the HLF ordering

service only, without any peer nodes involved. This benchmark solely assesses the ability

of a BFT HLF ordering service to close transactions (with a size of 1Kb and 4Kb), i.e. to re-

ceive them, establish consensus, put them into a block and start propagating them across

the network. The benchmarking client produced a workload of 10000 signed transactions

with a random payload for each run. It is important to notice that this measure does not

benchmark the full lifecycle of transactions within the HLF and is the only exception to

this rule in our benchmarks.

This assessment is important so that we can understand the difference in through-

put metrics for the HLF, which for its ordering service can reach orders of magnitude of

hundreds or thousands of transactions and for the full lifecycle of transactions may be

far less, especially taking into account we are running Fabric in a single machine and

not in a physically distributed environment. It is also an important observation of the

4See NIST’s guidelines for cryptographic key lengths here: https://www.keylength.com/en/4/
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Baseline measure Replicas (r) Throughput (tps)
Original HLF with 1 orderer and 1 peer node (no
off-chain consensus)

- 15

BFT HLF ordering service [6] with 1 orderer node 4 1082 (1Kb) - 871 (4Kb)
BFT HLF ordering service with 1 orderer node 7 623 (1Kb) - 483 (4Kb)
BFT HLF ordering service with 1 orderer node 10 332 (1Kb) - 268 (4Kb)

Table 5.2: Baseline of the Hyperledger Fabric and impact of the BFT ordering service

decay in performance of the BFT ordering service, which uses the BFT-SMaRt implemen-

tation, with an increasing number of consensus replicas r and when transaction payload

increases. We benchmarked the BFT version of the ordering service and not the original

ordering service because a benchmarking client we could use for this purpose was readily

available5. For the official ordering service, as we will see in the tests ahead, we can

extrapolate throughput to be greater.

5.2.2 Base Platform Throughput

In this first benchmark, our intention was measure the average latency and throughput

of the original HLF 1.1 blockchain platform with a varying network size and a varying

number of endorser nodes. This test allowed us to obtain a criteria comparison of expected

performance that can be used for all posterior benchmarks that involved our prototype.

In terms of test conditions, we initialized a single Hyperledger Caliper client and

submitted Fabric to a workload of 100 asynchronous transactions by invoking write oper-

ations over the same chaincode while varying the total number of peer nodes present in

the network to l = 10,20,30,40,50. The number of endorsers was also increased accord-

ingly to n = 5,7,11,13,15. The write operation being invoked was equivalent to a simple

insertion in a key-value store and its payload was randomly generated.
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Figure 5.1: Base blockchain platform latency (left) and throughput (right) assessment
with a varying number of endorsers and total nodes.

5BFT-SMaRt ordering service and client: https://github.com/bft-smart/fabric-orderingservice
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Our obtained results are illustrated in Figure 5.1. From these results we can see a

very high increase in latency per operation and a steep fall of throughput from when

the network is composed of just 10 nodes with 5 endorsers to when the network size

is doubled and 2 more endorser nodes are leveraged. Curiously, this performance hit

seems to have a increasingly lesser impact when we keep expanding the network and the

number of endorsers.

Looking back to our baseline assessment in the previous section, we had a measure

of 15 tps with a single peer and single orderer. The two initial measurements of this

benchmark, output around 8.8 and 4.4 tps. For these three initial conditions, performance

degradation seems to be exponential. Given this loss of throughput was essentially caused

by increasing network topology, the number of endorsers, and that the ordering service

of the HLF may reach orders of magnitude of hundreds or thousands of transactions per

second, this leads to our belief that the root cause for this behaviour may be the HLF’s

gossip algorithm, leveraged by endorsers to converge on ledger state. We suspect the

temporal complexity for exchanging messages with this protocol may reach O(n2). This

hypothesis is corroborated by the author in [63], where similar results are obtained.

Overall, the results we obtained for l ≥ 30 and n ≥ 11 were unexpected as we were

expecting a higher performance hit for networks of these sizes. We identify this assess-

ment to be an open issue, as we were not able to evaluate the root cause behind this

behaviour. We suspect on the gossip between endorser nodes to be the issue behind

the initial decrease of performance, which should continue to exponentially decrease

throughput for the aforementioned network sizes. A dedicated evaluation to address this

issue is suggested to be performed in future work.

We also find that our HLF throughput results may seem low at first (almost reaching

2 tps in some cases), especially when compared with benchmarks such as the ones in

[72]. However, we remind the reader that our setup is a virtualized Docker network on

a single machine, while, for instance, in [72], the authors are evaluating the HLF in a

physically distributed setting in a high-end datacenter with 1 orderer node, an Apache

Kafka and Zookeeper ensemble of unknown size, and 8 peer nodes, of which only 2 are

endorsers, each instance running isolated in its own physical host and without sharing

server resources. Given a powerful enough production infrastructure, the performance

of HLF can theoretically reach over 1000 tps as mentioned in the related work.

5.2.3 Prototype Throughput and Comparison of Signature Schemes

For this benchmark, our objective was to evaluate the throughput of our prototype

blockchain platform with Byzantine fault-tolerance consensus guarantees and distinct

transaction signature schemes: multi-signatures and threshold signatures. Moreover, as

aforementioned, we conducted our tests with varying RSA modulus values for threshold

signatures in order to assess the impact related to increasing key sizes on the overall

throughput of the platform.
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Regarding test conditions, similarly to previous benchmark, this test was performed

using a single Hyperledger Caliper client issuing 100 asynchronous transactions to block-

chain nodes invoking write operations over an extended smart contract which defined

the signature process to use. We launched a pre-emptive set of requests to all nodes

before starting the evaluation. This ensures three things: i) that chaincode containers

start running before the test (the HLF lazy loads chaincode containers; thus, there is a

performance impact on our tests if we let containers boot mid-experimentation); ii) that

blockchain nodes are ready to execute operations and that no invalid state exists; iii) to

allow the ESCC to identify the signature method to be used for the contract in testing,

minimizing time.

Before we analyze the impact of different transaction signature schemes, let us first

highlight the impact of replacing the HLF original ordering service, which is tolerant

to faults in a fail-stop model, with the prototype BFT ordering service from Sousa et al.

[6] in the same network topology conditions and with the same n endorsers for signing

transactions: l = 20,n = 7. Table 5.3 summarizes this aspect.

Ordering service Consensus model Throughput (tps)
Apache Kafka and Zookeeper (4 + 3 instances) Fail-stop 4.4
BFT-SMaRt (4 replicas) BFT 3

Table 5.3: Throughput comparison between the default and BFT ordering service

The performance decrease in throughput seen here from using a consensus mecha-

nism that provides Byzantine fault-tolerance guarantees versus one that only supports

crash faults is somewhat expected. The underlying BFT-SMaRt ordering service imple-

mentation, which runs a BFT SMR consensus algorithm, has to wait for a quorum of

3f + 1 responses for each consensus round. This may result in an increment in overhead

related to providing resilience in the possibility of Byzantine faults, in comparison with

Zookeeper’s algorithm, Zab, which establishes quorums at 2f + 1 correct responses. With

this information in mind let us proceed with the introduction of signature schemes.

Illustrated in Figure 5.2 are the results for this benchmark. The first information

we can withdraw from these results is that the original HLF ECDSA multi-signatures

are relatively inexpensive in throughput and latency when compared to RSA threshold

signature schemes. When subjected to scalability conditions in the number of endorsers,

the impact on threshold signatures and the throughput difference between both schemes

becomes increasingly accentuated. When compared with RSA threshold signatures of

a similar security level – 2048 to 3072 bits – ECDSA multi-signatures of 256 bits out-

perform such schemes by a considerable magnitude. The increase in latency between

different RSA modulus values N can justified by the exponentiation operations to N in

signature verification which weighs in on the protocol. However, bear in mind that the

performance hit of threshold signatures seen here is a trade-off for decentralization, ro-

bustness and smaller transaction payloads, as we will see in further benchmarks. Given

that our implementation is based on the optimistic version of the threshold signature
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Figure 5.2: Prototype blockchain platform latency (left) and throughput (right) assess-
ment with a varying number of endorsers, switching of signature schemes and varying
RSA modulus for threshold signatures.

verification algorithm, the algorithm was able to verify transactions on the first generated

combination of k shares. Most of the performance impact in threshold signatures seen

here is believed to be related to the signature reconstruction process from the obtained

signature shares during the signature verification algorithm, as the algorithm has to com-

pute a polynomial interpolation of the k signature shares [67, 69] to generate a composite

RSA signature before actually verifying it.

The results we obtained from this test were expected, and similar results were de-

scribed by Stathakopoulou et al. [69]. While the authors obtained a higher throughput

from signature generation and verification processes, their test-bench environment seems

to hint that their experimental evaluation was conducted directly over the signature recon-

struction and verification algorithms themselves as micro-benchmarks, in order to assess

the feasibility of integrating them into HLF, rather than on a complete HLF deployment.

5.2.4 Impact of Transaction Block Sizes

In this benchmark we intended to evaluate the performance of our prototype blockchain

platform with varying transaction block sizes. The size of transaction blocks in a blockchain

system is an extensively discussed topic in the literature [20], especially for public block-

chains such as Bitcoin, and is part of the blockchain scalability problem. Our interest

in this topic is heightened by one of the advantages of threshold signatures over stan-

dard multi-signatures – signature size, a property that can influence the number of total

transactions to be pushed into a single block.

So far, all tests have been done with block sizes of a maximum of 10 transactions.

Block sizes in HLF are configured by three parameters: i) the number of maximum
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transactions to enqueue into the block; ii) the maximum size of the block in Mb, which

takes precedence over the former criteria; and iii) the preferred block size in Kb, which

will be respected by the HLF when possible. Taking into account that we are sending

transactions with very small applicational payloads, the block will reach the maximum

number of transactions while retaining a size inferior or equal to the preferred block size.

The majority of payload size in our tests are essentially the signatures appended to each

transaction. We submitted the prototype blockchain platform in similar conditions to

previous tests but for this benchmark we evaluated only ECDSA multi-signatures and RSA

threshold signatures under comparable security levels (256 bits to 2048, respectively).

We set the number of endorsers n = 7 and network size l = 20.
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Figure 5.3: Prototype blockchain platform latency (top) and throughput (bottom) assess-
ment with varying transaction block sizes.

Figure 5.3 illustrates our benchmark results in both latency and throughput. Let us

focus on the throughput graph as more significant differences seem to exist between the

curves of the two signature schemes. First of all, we notice that ECDSA multi-signatures
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find their optimal throughput when block sizes are considerably large and near a maxi-

mum of 50 transactions, while for RSA threshold signatures, their optimal performance

seems to be somewhere between the smaller 10 and 20 maximum transactions block sizes.

This evidence is especially interesting for the context of using threshold signature ver-

sus multi-signature schemes. While a single ECDSA 256 signature is smaller in length

than an RSA 2048 signature produced over the same message, the use of ECDSA multi-

signatures results in a payload larger than a single threshold signature. In binary format,

a single ECDSA 256 signature is 64 bytes in length, while for an RSA 2048 signature, the

expected size is 256 bytes. A single transaction endorsed by a multi-signature ECDSA

scheme, s being the ECDSA signature size, would have a maximum signature payload

of n × s. So, in this case 7 × 64 = 448 bytes when compared to the 256 bytes of an RSA

threshold signature. The final size of the signature payload heavily influences the or-

dering service into deciding whether transactions all fit into a single block and can be

readily dispatched or whether some transactions have to wait for the next block in order

to be published due to block size restrictions. This influences the overall throughput of

the HLF. Another observation we can make is that the slope in throughput in ECDSA

multi-signatures from blocks with 50 transactions to blocks with 100 seems to be very ac-

centuated in comparison with RSA threshold signatures. This leads us to think that there

is a point in which the block size may grow to a number so elevated that the throughput

of threshold signatures surpasses multi-signatures.

The results we see here were expected. One of the advantages of threshold signa-

tures schemes is their fixed bounded size, while for multi-signatures the total size of the

signature set varies with the number of signers. This is an important key factor of our

dissertation, and shows that block sizes can be optimized for higher throughput while

maintaining group-oriented decentralized trustability assumptions.

5.2.5 Fault-tolerance in Transaction Signature Schemes

The present benchmark assesses the fault-tolerance of different signature schemes har-

nessed by our prototype blockchain platform. In regular situations, a signature scheme

that requires multi-signatures from a strict set of entities where a single party fails to

sign a given message fails to verify. However, while Fabric implements a strict notion

of which entities should sign a given transaction for a given contract, it also allows the

configuration of what is called an endorsement policy, a user-defined logical expression

that specifies the conditions in which a multi-signature set may be accepted or refused

(e.g. party A may fail to sign message M as long as party B signs it instead). While this

mechanism is an important component of HLF that leaves fault-tolerance conditions in

signature verification up to organizations, we are more interested in the ability of using a

signature scheme that may be able to represent the entities of a given endorsement policy

as a group even if an individual did not sign it due to some kind of fault, hence threshold

signatures.
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So far, we have been using a dummy endorsement policy for Fabric accepting endorse-

ments from any peer node and where the absence of peer signatures is allowed as long

as at least one endorsement is produced, independently of the peer’s organization. For

this test, we stray away from this lax policy and define a policy that requires all n nodes

to sign transaction proposals. For multi-signature schemes, this means that a peer fails

to sign the transaction, the transaction itself fails to execute. We set the number of en-

dorsers n = 7 and network size l = 10, and injected a payload of 100 transactions using

Hyperledger Caliper, as in previous benchmarks. The reason why we set l = 10 in com-

parison with previous benchmarks is that a more significant output can be read in terms

of throughput (e.g. in l = 20, we could have situations in which throughput would reach

about zero transactions per second and it would be difficult for us to observe a tendency).

Transaction block size was reset to a maximum of 10 transactions. As mentioned in the

beginning of this section, the minimum quorum size for our threshold signature scheme

is set at k = f + 1 where n = 3f + 1 are the number of endorsers needed to tolerate f

faults. We execute this test in the presence of both crash and Byzantine faults by force-

fully killing the container processes of peer nodes or by using tampered versions of the

peer nodes image to output corrupted signatures, respectively. We increase the number

of faults to f = 1,2,3 and trigger faults at time t = 0 (bear in mind that no node recovery

mechanism exists).
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Figure 5.4: Prototype blockchain platform latency (left) and throughput (right) assess-
ment in the presence of crash and Byzantine faults in endorser nodes with different
signature schemes.

Figure 5.4 illustrates our results. First of all, notice that we were only able to eval-

uate ECDSA multi-signatures in conditions where no faults occur. After a single faulty

endorsers, the endorsement policy triggered a failure in client and committer validations.

Thus, no measurement was able to be made in f = 1,2,3. For threshold signatures, there
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is an almost negligible throughput gain when crash faults start occurring. We believe

this simply to be the fact that the client has to wait for less signatures before sending a

transaction to the orderer nodes. Remember that all communication between the client

and peer nodes is protected by gRPCS, so when a peer crashes, Caliper acknowledges the

failure in a short span of time (since the TLS server-side socket closed) and no longer waits

for responses from it. After a transaction block is published, less signature shares are

combined for threshold signature verification by the committing peers, and confirming

the transaction to the client should therefore be faster. For Byzantine failure conditions,

an interesting spike in latency and loss of throughput is visible for threshold signatures.

This occurs due to the optimistic signature verification algorithm we have implemented.

When no faults occur, the algorithm is able to verify a threshold signature on the first

attempt to reconstruct it from a single combination of k signature shares. By inducing

faults, we can observe that the algorithm was unable to do so at a first try, and had to

recompute a new combination for k out of the n received shares, reconstruct the com-

posite signature and re-verify it. Each successive fault added the need to execute further

combinations.

These results were expected and show the capability of threshold signatures to endure

Byzantine participants or crashes in signature verification processes to a given threshold.

We did not increase f further than 3 as this would naturally result in a failure to meet

the threshold k. One thing to note is that our results in throughput seem to show linear

decay of performance. However, our benchmark assesses a very small population of faulty

nodes and a small number of endorsers. We believe this curve may reach exponential

values when there is a very large number f of Byzantine parties, as stated in [69], since at

the worst case scenario the algorithm may have to compute all combinations of signature

shares
(n
k

)
=

n!
k!(n− k)!

to either find out no combination of k will result in a valid signature

or that the last combination is the only valid one.

5.2.6 Smart Hub Scalability and Throughput

For this benchmark and the following, we deviate our focus of the prototype blockchain

platform to the outermost layer of our system and look to the edge environment. Specifi-

cally for this benchmark, the target of our evaluation was our prototype smart hub API.

Here, we evaluate the smart hub API from an HTTP/CoAP client in an truly E2E (end-to-

end) scenario, as we used our prototype blockchain platform as supporting asset to the

smart hub. Thus, latency values presented here are influenced by the blockchain platform

conditions we assessed in previous benchmarks.

For this test we used our HTTP/CoAP client implementation, which is capable of

launching multiple client threads simultaneously, each producing a workload of 10 op-

erations (60% read operations and 40% write operations). For simplicity, we assess this

benchmark in latency per operation requested to the hub only. We varied the number

of clients c to c = 1,10,25,75 to assess the capability of our smart hub implementation
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to scale in an emulated yet ever increasing environment of IoT devices and users. We

ran the smart hub in its emulated version, i.e. executing it locally from our test laptop.

The smart hub CoAP and HTTP thread pools for attending requests were both limited

to 12 threads. Regarding the signature schemes of the supporting blockchain platform,

we set it to use only ECDSA multi-signatures of 256 bits and RSA threshold signatures of

2048 bits. HTTP communication channels between the client and the hub were protected

with TLS 1.2, while for CoAP no security protocol was leveraged for in transit traffic6. It

is worth to mention that the CoAP protocol could be implemented using TCP and even

configured to use TLS, but our version communicates solely through UDP.
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Figure 5.5: Prototype smart hub scalability assessment with CoAP and HTTP communi-
cation protocols and different supporting blockchain transactions signature schemes.

Figure 5.5 illustrates our benchmark results. First, let us notice that when using

the ECDSA multi-signature scheme, the observed latency is lower than when using RSA

threshold signatures, a tendency we had already identified in previous assessments. The

second observation we can make is that under small to medium concurrent client con-

ditions (1 ≤ c ≤ 25) our implementation scales reasonably well. We foresee that our

implementation would be adequate for small IoT enviroments that do not require imme-

diate real-time response rates, such as a smart home or a smart bicycle rack where it is

also unlikely to have an extreme amount of IoT devices connected to a single hub. Again,

bear in mind that the supporting blockchain platform is not running on what we would

call a production environment; it is running on single virtualized machine and much

lower latency values could possibly be obtained from the smart hub if a more powerful

supporting blockchain infrastructure was available. When c = 75, the latency per opera-

tion increases considerably, as the smart hub has to enqueue multiple requests in parallel

while waiting on previous transactions to the blockchain to complete. As there are limits

6As of the writing of this document, the mbed CoAP library did not support DTLS, although we did
implement DTLS in an alternative version of the smart hub.
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on the CoAP and HTTP server-side thread pools attending requests, as not to consume

too much resources on the host machine, there is a bottleneck at the smart hub commu-

nication entry point. The third and final observation is the difference in latency between

the CoAP and HTTP protocols. CoAP communication seems to be able to achieve lower

latency values by marginal differences.

While a higher difference in latency between the CoAP and the HTTP protocols could

be expected, taking into account that we use TLS for HTTP and that CoAP is UDP

datagram-oriented (and thus, there should be a speed advantage of UDP over TCP as

the sender does not have to establish a TCP connection and wait for an acknowledge

packet before sending the actual message), we must take into account that CoAP requires

an acknowledge packet for every datagram it sends, while TCP, after its slow-start phase,

is able to acknowledge multiple packets with a single ACK message [51]. The CoAP spec-

ification [66] explicitly states that the protocol provides reliability in messages marked

as confirmable through acknowledge, reset and non-confirmable return messages. How-

ever, the biggest benefit of CoAP is related to resource consumption, especially for client

devices, rather than speed. This is something that will be evident in the next section.

However, before we proceed to the next section, let us first evaluate the performance

of the smart hub API on a physical device with less resources than our local laptop: a

Raspberry Pi, an equipment which would feasibly be seen in an IoT environment and

that could possibly assume the role of a lightweight smart hub deployment. For this test

we benchmarked the physical smart hub against the emulated one on similar conditions.

The number of clients was set to c = 10 and the same workload and testing conditions

aforementioned were replicated except for signature schemes, which we restricted to RSA

threshold signatures of 2048 bits only.
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Figure 5.6: Performance comparison between an emulated version of the smart hub
prototype and a physical version deployed on the Raspberry Pi.
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The results of this test are shown in Figure 5.6. Latency per operation on the physical

smart hub was quite higher than our laptop, which was expected given the specifications

of our laptop versus the specifications of a Raspberry Pi. In terms of CoAP versus HTTP

performance, CoAP was again marginally better in latency. This test lets us partially

assess our host machine requirements for the smart hub API having the Raspberry Pi as

a minimum baseline. For small IoT environments where waiting a considerable amount

of seconds for an operation to execute, a Raspberry Pi would be an acceptable host. We

foresee more complex smart hubs to be somewhere in between our emulated deployment

and the physical one.

5.2.7 Smart Hub and Client Resource Consumption

For this benchmark, our intention was to assess the consumption of hardware resources

at the edge when IoT devices and other client applications exchange data with the smart

hub. Our metrics are in allocated memory (in Mb) and CPU usage (%) by the respective

applications.

To conduct this test, we set the supporting prototype blockchain platform to only use

RSA threshold signatures with 2048 bits. We then subjected the smart hub to a varying

number of concurrent clients, each producing a workload of 10 operations (60% read

operations and 40% write operations), similarly to the conditions of the previous bench-

mark, and ran the smart hub in its emulated form. During the test we simultaneously

monitored both the smart hub and the client issuing HTTP/CoAP requests and analyzed

their runtime heap dumps using the tools described in the beginning of this chapter.

Heap using CoAP
Non-heap using CoAP

1 10 25 75
0

100

200

300

400

500

Concurrent clients (c)

M
em

or
y

co
ns

u
m

p
ti

on
(M

b)

Heap using CoAP
Non-heap using CoAP

Heap using HTTP
Non-heap using HTTP

Figure 5.7: Peak memory consumption of the smart hub prototype with CoAP and HTTP
communication protocols.

Figure 5.7 shows our results in terms of peak allocated memory on the smart hub. We

divide results in heap memory and non-heap memory (stack, data and code segments,
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etc.) and show the peak memory usage before JAVA garbage collection occurred. Non-

heap memory is relevant for us to understand the memory footprint of the execution of

the smart hub threads. Heap memory, on the other hand, is what truly allows us to assess

the dynamic allocation of data that may result from requesting operations to the hub. In

our results, we again compare both protocols: CoAP and HTTP. However, it is critical to

note that the memory results seen here correspond to the whole smart hub application as

a unit. Thus, while difference in memory footprints for CoAP and HTTP may be visible,

a big percentage of memory is consumed by the smart hub to execute other inherent

functions, such as orchestrating communication with blockchain broker nodes, storing

smart contract cache, maintaining a database connection, and so on. Looking at our result

set, we can see some small differences in memory consumption. In general, we can see that

CoAP and HTTP increase their overall memory footprint significantly when the number

of c clients increase to a concurrency scenario. However, in comparison with one another,

their non-heap memory consumption was nearly identical. The big difference between

both lies in the consumption of heap memory, where we can see a discernible contrast.

When c = 10 we can see that the gap in heap memory reaches the order of magnitudes

of nearly 50Mb between CoAP and HTTP. Afterwards, when c = 75, the heap footprint

between both protocols seems to converge. Overall, the average consumption of the smart

hub when using both protocols is around m1 ≈ 311Mb for CoAP and m2 ≈ 341Mb for

HTTP. Difference in heap memory consumption between both is ∆m = 30Mb ≈ 9%. Bear

this value in mind, as we proceed to evaluate the CPU usage of the smart hub and the

resource footprint of the client application.
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Figure 5.8: Peak CPU usage of the smart hub prototype with CoAP and HTTP communi-
cation protocols.

Figure 5.8 shows the peak CPU usage of the smart hub during our assessment. For

a single client (c = 1), the smart hub consumes more CPU amid CoAP communication
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that in does for HTTP. Then, when the number of concurrent clients reaches values of

c = 10,25,75, we can then observe that HTTP CPU usage surpasses CoAP. In average,

CoAP reaches a CPU usage percentage on the smart hub of c1 = 21% and HTTP reaches

around c2 = 25%, with a mere difference of ∆c = 4% between both. Let us now assess the

results of the client evaluation and discuss upon both results.
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Figure 5.9: Peak memory consumption (left) and CPU usage (right) evaluation of the
benchmarking client implementation using CoAP and HTTP communication protocols.

Figure 5.9 illustrates the results for CoAP and HTTP communication of monitoring

our client implementation in the previous benchmark when a single thread is in execution.

This benchmark is especially important as it assesses the impact of communication with

our prototype for what could be an resource-constricted IoT device. Looking at our results,

we can observe that, as in previous benchmarks and as expected, non-heap memory is

roughly the same between HTTP and CoAP. However, we see a completely different order

of magnitude related to the consumption of heap memory between both protocols, from

just m1 = 5Mb in CoAP to m2 = 42Mb in HTTP. Remember that in the smart hub we were

looking at an 9% decrease, while here we are reaching around 88%. In an IoT device

where memory hardware is optimized to the minimum as viably possible in relation with

the cost of production of the device, a small memory footprint is essential. This is exactly

what our test shows: CoAP is much more capable of saving memory for client applications

than HTTP is.

The contrast in memory consumption for both the smart hub and the client is ex-

pected. When comparing CoAP and HTTP, CoAP sends messages in what it defines as

a compressed format [66]. A UDP packet has a minimum header of 8 bytes and a CoAP

header is merely 4 bytes long. In comparison, a HTTP header completely overshadows

CoAP, as a TCP header alone has a limit of 20 bytes while HTTP can be quite complex and

thus has no limit over the header size [51]. Curiously, the CPU load for the client when

issuing CoAP requests is higher than when using HTTP (the same situation occurs on the

smart hub when a single client communicates with the hub). This can be a drawback for

IoT devices which are limited in battery resources. A higher CPU load can lead to a faster
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consumption of battery and reduce the reliability of the device. While we did not explore

the root cause for this increase, we suspect it may be an implementation characteristic of

the mbed CoAP library due to a possible lack of resource optimization.

5.3 Summary

In this chapter we described our experimental assessment results over our implemented

prototype. We conducted an experimental evaluation on both the blockchain platform

component of the prototype as well as the smart hub API in an attempt to obtain the a

set of criteria that could answer the questions mentioned in the beginning of this chap-

ter. A rigorous analysis was executed for each benchmark section, which are succinctly

summarized below:

• The baseline expected performance of running the Hyperledger Fabric on a single

cloud server in a virtualized Docker environment;

• The baseline expected performance of the BFT consensus ordering service in the

same conditions and its elasticity when the number of replicas increases;

• The average latency and throughput of the original blockchain platform with an

increasing network topology and a higher number of transaction endorsing nodes;

• The average latency and throughput of our prototype blockchain platform with a

varying number of endorsers and with the usage of different transaction signature

verification schemes: ECDSA multi-signatures and RSA threshold signatures (with

different RSA modulus values);

• The impact and possible performance optimizations that can be performed with

changing ledger block sizes to fit more or less transactions into a single block, taking

into account the aforementioned signature schemes;

• The capability for withstanding Byzantine and crash faults in endorsing processes

for both signature schemes;

• The scalability and throughput of our smart hub implementation in the presence

of an ever increasing number of clients that can be seen as an approximation to IoT

things in a real IoT environment, alongside a technical assessment of the possible

advantages of harnessing the CoAP protocol over HTTP for such devices;

• The resource consumption, in terms of memory and CPU usage, for both smart hub

and benchmarking client implementations when using CoAP or HTTP;

Answering our own questions, our conclusion is the following. Overall, given our

results, we believe that on a physically distributed cloud infrastructure (preferably het-

erogeneous in cloud providers), our prototype blockchain platform can be deployed to
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achieve high throughput with low latency values, even when using RSA threshold sig-

nature schemes. As seen in our assessments, our scheme outperforms multi-signature

schemes in conditions where there is a strict endorsement policy for transactions and

some of endorsing entities may be faulty, thus providing a truly decentralized approach

for transaction endorsement and verification. Additionally, we were able to achieve opti-

mal throughput for threshold signatures in smaller block sizes when compared to multi-

signatures, an evidence that proves our system is capable of producing signature payloads

with much smaller lengths. As RSA threshold signatures of 3072 bits cause some over-

head on the system, our recommendation to keep the prototype on pair with current

security practices is to use keys of 2048 bits.

At the edge, we were able to provide an implementation that scales relatively well for

small to medium IoT environments. In large IoT environments where large numbers of

IoT devices communicate simultaneously, our proposition would be to leverage further

hubs to hierarchically aggregate communication. We were also able to leverage a protocol

whose memory footprint is more adequate for the IoT device range when compared to

popular network protocols such as HTTP. Regarding CPU usage, we obtained some results

that were unexpected but we assume this may be due to some lack of optimization in the

library we leveraged.

As a final remark, we believe that our blockchain-supported prototype is a valid proof-

of-work for a scalable and more decentralized cloud-enabled blockchain IoT architecture,

which can be an alternative to traditional IoT architectures.ro
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6
Conclusion and Final Remarks

In this chapter we conclude the present document with some conclusions regarding the

research that was conducted, our system model and its prototype implementation, what

was done and some of the limitations that exist. We will also present some suggestions

that would allow someone to potentially address these limitations in the future.

6.1 Conclusions

The research conducted during this thesis allowed us to grasp the current neglected state

of the Internet-of-Things (IoT), security and privacy-wise, and explore on the cloud-first

architectures on which this paradigm currently sits upon. We studied on the inner work-

ings of blockchain technology and existing blockchain platforms, whose properties seem

to meet with the IoT’s needs regarding robustness, auditability and security. To under-

stand the limitations and advantages of existing blockchain platforms, an analysis on

software engineering, system architecture and programming support was done for a rep-

resentative group of platforms, which we provide as a contribution to consolidating the

current state-of-the-art of blockchain technology. We also reviewed existing decentral-

ized ledgering solutions for the IoT and scrutinize the use of threshold cryptography for

blockchain systems as an approach for integrating group-oriented trustability assump-

tions into blockchain architecture.

The system model we propose for IoT environments presents itself as a tiered blockchain-

based Byzantine fault-tolerant model ensuring decentralization of trust and non-repudiation

capabilities while enabling independent auditability of data for every involved party, that

can be heterogeneously deployed across cloud providers to achieve scalability and prevent

vendor lock-in. Our intention with this model is to improve on current IoT architectures

as a first step to taking back control from service providers and making sure every party
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is protected from fraudulent behaviours, while abstracting the weight of the blockchain

protocol from IoT devices, of which most are heavily resource-constrained.

Based on our model, we built a fully functional end-to-end prototype, and thus im-

plemented and extended a system on top of a known blockchain platform we evaluated

thoroughly in our related work – the Hyperledger Fabric – adding the services imposed

by our system model. Smart hub and client implementations were also built and used to

mediate communication with the blockchain back-end and to issue new transactions and

queries to the hub, respectively. Our implementation was done having into account the re-

source restrictions of most IoT devices, harnessing both CoAP and HTTP communication

protocols.

The executed experimental evaluation allowed us to assess how our prototype per-

formed in terms of throughput and latency with a BFT consensus mechanism, varying

signature schemes (multi-signatures and threshold signatures), algorithms and key sizes,

in the presence of crash faults and Byzantine behaviour, with a varying size for transac-

tion blocks, and with an increased number of clients and traffic pressure on smart hubs,

as to infer its scalability. From the results we conclude that our prototype is valid proof-

of-work for a scalable and more decentralized cloud-enabled blockchain IoT architecture

that is capable to address the drawbacks of today’s cloud-first IoT architectures.

Overall, we addressed the problems proposed to us in this thesis and devised a model

and proof-of-work of that same model, capable of providing itself as an alternative to

traditional IoT architectures, in which the nature of the service is still cloud-centric while

allowing independent scrutiny by end users and better control of their own data, devices

and transactions, with the added resiliency properties of a blockchain together with

decentralized and robust signature verification processes, thereby preventing tampering

and corruption of data by a malicious party.

6.2 Future Work

We were able to develop a functional prototype of our system model, although there are

still some issues that could be improved upon in the future.

Regarding our blockchain services implementation, our solution for leveraging thresh-

old signatures for transaction signing and verification may present a few performance

drawbacks related to having to delegate signature construction and verification from

blockchain nodes main execution process to an external dedicated component. Albeit

its modularity, this implementation requires the integration of server-side code for es-

tablishing connections, accepting requests and maintaining thread pools for attending

tasks. As stated earlier, this was mostly due to lack of cryptographic primitives for sup-

porting threshold signatures in Golang, the language in which Hyperledger Fabric is

implemented. A direction for future work would be further investigation of a solution

implementing threshold signatures directly in Golang and remeasuring the performance

of using RSA threshold signature schemes with various key sizes versus standard ECDSA
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multi-signatures, in order to assess if considerable performance gain is achievable in

return for the modularity of this component.

Again in our implementation of threshold signing and verification processes, we inject

key material directly into blockchain peers. Our solution, however, is compatible with

the notion of a trusted dealer. A direction for future work could be implementing such a

notion in a way that does not bring about centralization of the generation key material to

a single entity, since this presents a single point of failure (e.g. the private keys could be

exposed, corrupted keys could be distributed, etc.). A solution could be to either make

use of a consortium consensus service to generate cryptographic material and thus act as

a trusted dealer. Another direction could be studying and implementing the generation

of threshold signature keys in an interactive algorithm between participating blockchain

peers rather than depending on a trusted dealer.

Related to our smart hub component, other relevant research directions are the sup-

port of other interoperability protocols that are designed for implementation in IoT de-

vices. This effort must be seen as a natural evolution and extension of smart hub modules,

in convergence with the broader view expressed in the discussion of the functionality of

smart hubs for IoT edge-based environments. A possible initial approach for this could

consist in leveraging the MQTT protocol for the smart hub API in order to communicate

with resource-limited IoT devices, alongside CoAP. While both are recognized open stan-

dards for IoT communication, MQTT is more oriented to publish-subscribe architectures

with many-to-many communication flows in which there can be a single broker publish-

ing information to a set of subscribers, while CoAP works in a traditional client-server

one-to-one communication flow. While CoAP may be sufficient for simpler IoT environ-

ment scenarios, we find that MQTT may better adapt to the nature of smart hubs that

require sharing data between several aggregated devices.

There is a space to research on better expressiveness conditions of smart contracts to

support IoT operations enabled by blockchain transactions and expressed smart contracts.

Smart contracts can be used to define parameters, rules and invariants for different levels

of execution requirements. These requirements range from specific IoT application-level

validation guarantees, to parameters and conditions dynamically regulating the inter-

nal services of blockchain service planes (including storage, aggregation of transactions,

management of stored blocks, ordering semantics, or endorsement criteria), in a more

re-configurable or possibly dynamic re-configurable runtime environment. In terms of

smart contract verification and persistency at the Contract Interpreter component of our

prototype, improvements can be made as future work so that the smart hub may be able

to update locally cached contracts upon new versions being deployed to the blockchain.

Storing some sort of meta-data and version numbers for each contract, alongside a mech-

anism to ensure consistency between the blockchain services and the smart hub could be

a direction for addressing this improvement.

Going back on our system model, our extended interaction model was not addressed

in our prototype. Due to time restrictions, we only implemented the base interaction
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model. A direction for future work would be following on the extended interaction

model to implement a similar set of services to those installed on the smart hub imple-

mentation in user devices capable of enough computation and with enough resources

(e.g. smartphones) to communicate directly with blockchain broker nodes. A suggestion

to address this as future work could be in extending our work for the developed Android

application so that it does not rely solely on a smart hub.

Our testing environment also had some limitations in terms of computation and re-

source capabilities that prevented us from running tests with blockchain networks having

a high number of nodes. As stated earlier, we ran a virtualized Docker network over a

single server. However, we were unable to produce high levels of throughput without

resource limitations of the machine severely impacting our tests. Thus, we were unable

to explore the total throughput potential of the Hyperledger Fabric and of our prototype.

Thus, we believe that the approach for properly testing a highly dense blockchain net-

work, and something that could be assessed in future work, would be to run our solution

in a physically distributed environment.

In some specific benchmarks, such as measuring the throughput of the original Hyper-

ledger Fabric platform and in measuring the resource consumption of the CoAP protocol

versus HTTP, we obtained some peculiar results. For the former, we believe that Fabric’s

performance decays exponentially due to the gossip protocol, which we suspect to have a

O(n2) temporal complexity in the number of peers of the blockchain network. However,

we believe further testing has to be executed in future work to confirm this hypothesis,

as our results seem to show a stabilizing tendency in throughput when network density

increases. For the latter, while we obtained expected results in terms of memory consump-

tion between both protocols, we also observed that CPU load of CoAP was higher than

HTTP for client implementations, something which we assume to be a lack of resource

optimization in the CoAP library we use for our prototype. Further analysis can be done

in future work to identify the root cause of this issue.

Another issue that was not dealt with in this thesis, is the future comparison of the

obtained results with the officially supported BFT algorithm that will be launched for the

HLF consensus plane in the near future, using more extensive benchmarks.

Finally, there is another research direction in other aspects with relevant impact for

scalability purposes. We summarize some of these research directions in two different

groups of concerns: scale-in and scale-out concerns. For scale-in concerns we must

observe the on-going research proposals in addressing better performance figures for

HLF (and other permissioned blockchains in the ongoing research agenda), as well in

the approach of separation concerns decoupling membership services, consensus planes

for consistency control and decentralized hierarchies of blockchains, for example in a

tree-based architectural model or by using sharding models interconnecting different

blockchain domains. For scale-out purposes, we can extend the current system model in

the dissertation by interconnecting smart hubs in edged-based blockchains, or possibly

composed by other smart hubs in upper-level hierarchies.
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