1,419 research outputs found

    A Capacitive Humidity Sensor Based on Multi-Wall Carbon Nanotubes (MWCNTs)

    Get PDF
    A new type of capacitive humidity sensor is introduced in this paper. The sensor consists of two plate electrodes coated with MWCNT films and four pieces of isolating medium at the four corners of the sensor. According to capillary condensation, the capacitance signal of the sensor is sensitive to relative humidity (RH), which could be transformed to voltage signal by a capacitance to voltage converter circuit. The sensor is tested using different saturated saline solutions at the ambient temperature of 25 °C, which yielded approximately 11% to 97% RH, respectively. The function of the MWCNT films, the effect of electrode distance, the temperature character and the repeatability of the sensor are discussed in this paper

    Porous Alumina Based Capacitive MEMS RH Sensor

    Get PDF
    The aim of a joint research and development project at the BME and HWU is to produce a cheap, reliable, low-power and CMOS-MEMS process compatible capacitive type relative humidity (RH) sensor that can be incorporated into a state-of-the-art, wireless sensor network. In this paper we discuss the preparation of our new capacitive structure based on post-CMOS MEMS processes and the methods which were used to characterize the thin film porous alumina sensing layer. The average sensitivity is approx. 15 pF/RH% which is more than a magnitude higher than the values found in the literature. The sensor is equipped with integrated resistive heating, which can be used for maintenance to reduce drift, or for keeping the sensing layer at elevated temperature, as an alternative method for temperature-dependence cancellation.Comment: Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838

    Design and Implementation of a Smart Sensor for Respiratory Rate Monitoring

    Get PDF
    This work presents the design, development and implementation of a smart sensor to monitor the respiratory rate. This sensor is aimed at overcoming the drawbacks of other systems currently available in market, namely, devices that are costly, uncomfortable, difficult-to-install, provide low detection sensitivity, and little-to-null patient-to-patient calibration. The device is based on capacitive sensing by means of an LC oscillator. Experimental results show that the sensor meets the necessary requirements, making feasible the proposed monitoring system with the technology usedMinisterio de Ciencia e Innovación y Unión Europea FPA2010-22131-C02-02Consejo Andaluz de Innovación, Ciencia y Empresa P08-TIC-04069 y P10-TIC- 631

    An auto-balancing capacitance-to-pulse-width converter for capacitive sensors

    Get PDF
    A novel auto-balancing capacitance-to-pulse- width converter (CPC) that uses sinusoidal excitation, and operates in a closed-loop configuration, is presented in this paper. Unlike most of the existing CPCs, the proposed interface circuit is compatible with both single-element and differential capacitive sensors. In addition, it provides a pulse-width modulated (PWM) signal which can easily be digitized using a counter. From this PWM signal, a ratio output is derived when a single-element sensor is interfaced, and a ratiometric output is obtained for a differential sensor.The authors would like to thank the Department of Science and Technology (DST), Govt. of India, for its financial assistance (Grant Number SERB/F/4573/2016-17) in carrying out the research activities presented in this paper.Postprint (published version

    An integrated silicon capacitive microphone with frequency-modulated digital output

    Get PDF
    In this paper a new integrated capacitive silicon microphone with frequency-modulated digital output is described. The FM output can be processed directly by a digital system without the need of analog-to-digital conversion, which is normally required with capacitive microphones in digital systems. The integrated microphone comprises a polyimide structure fabricated directly on a silicon substrate, on which the oscillator has already been completed using a standard CMOS process. This is possible since the polyimide microphone process is fully IC-compatible. The capacitance of the microphone modulates the output frequency of the oscillator, and from experiments a sensitivity of 234 Hz/Pa is measured at a carrier frequency of 263 kHz. The frequency response is flat (±1 dB) within the measured range of 100 Hz to 15 kHz. The A-weighted noise is 4.5 Hz for a bandwidth of 15 kHz, yielding an equivalent noise level of the microphone of 60 dB(A) re. 20 μPa. The measurements have shown to be in good agreement with the theoretical models

    Contribution to time domain readout circuits design for multi-standard sensing system for low voltage supply and high-resolution applications

    Get PDF
    Mención Internacional en el título de doctorThis research activity has the purpose of open new possibilities in the design of capacitance-to-digital converters (CDCs) by developing a solution based on time domain conversion. This can be applied to applications related with the Internet-of-Things (IoT). These applications are present in any electronic devices where sensing is needed. To be able to reduce the area of the whole system with the required performance, micro-electromechanical systems (MEMS) sensors are used in these applications. We propose a new family of sensor readout electronics to be integrated with MEMS sensors. Within the time domain converters, Dual Slope (DS) topology is very interesting to explore a new compromise between performances, area and power consumption. DS topology has been extensively used in instrumentation. The simplicity and robustness of the blocks inside classical DS converters it is the main advantage. However, they are not efficient for applications where higher bandwidth is required. To extend the bandwidth, DS converters have been introduced into ΔΣ loops. This topology has been named as integrating converters. They increase the bandwidth compare to classical DS architecture but at the expense of higher complexity. In this work we propose the use of a new family of DS converters that keep the advantages of the classical architecture and introduce noise shaping. This way the bandwidth is increased without extra blocks. The Self-Compensated noise-shaped DS converter (the name given to the new topology) keeps the signal transfer function (STF) and the noise transfer function (NTF) of Integrating converters. However, we introduce a new arrangement in the core of the converter to do noise shaping without extra circuitry. This way the simplicity of the architecture is preserved. We propose to use the Self-Compensated DS converter as a CDC for MEMS sensors. This work makes a study of the best possible integration of the two blocks to keep the signal integrity considering the electromechanical behavior of the sensor. The purpose of this front-end is to be connected to any kind of capacitive MEMS sensor. However, to prove the concepts developed in this thesis the architecture has been connected to a pressure MEMS sensor. An experimental prototype was implemented in 130-nm CMOS process using the architecture mentioned before. A peak SNR of 103.9 dB (equivalent to 1Pa) has been achieved within a time measurement of 20 ms. The final prototype has a power consumption of 220 μW with an effective area of 0.317 mm2. The designed architecture shows good performance having competitive numbers against high resolution topologies in amplitude domain.Esta actividad de investigación tiene el propósito de explorar nuevas posibilidades en el diseño de convertidores de capacitancia a digital (CDC) mediante el desarrollo de una solución basada en la conversión en el dominio del tiempo. Estos convertidores se pueden utilizar en aplicaciones relacionadas con el mercado del Internet-de-las-cosas (IoT). Hoy en día, estas aplicaciones están presentes en cualquier dispositivo electrónico donde se necesite sensar una magnitud. Para poder reducir el área de todo el sistema con el rendimiento requerido, se utilizan sensores de sistemas micro-electromecánicos (MEMS) en estas aplicaciones. Proponemos una nueva familia de electrónica de acondicionamiento para integrar con sensores MEMS. Dentro de los convertidores de dominio de tiempo, la topología del doble-rampa (DS) es muy interesante para explorar un nuevo compromiso entre rendimiento, área y consumo de energía. La topología de DS se ha usado ampliamente en instrumentación. La simplicidad y la solidez de los bloques dentro de los convertidores DS clásicos es la principal ventaja. Sin embargo, no son eficientes para aplicaciones donde se requiere mayor ancho de banda. Para ampliar el ancho de banda, los convertidores DS se han introducido en bucles ΔΣ. Esta topología ha sido nombrada como Integrating converters. Esta topología aumenta el ancho de banda en comparación con la arquitectura clásica de DS, pero a expensas de una mayor complejidad. En este trabajo, proponemos el uso de una nueva familia de convertidores DS que mantienen las ventajas de la arquitectura clásica e introducen la configuración del ruido. De esta forma, el ancho de banda aumenta sin bloques adicionales. El convertidor Self-Compensated noise-shaped DS (el nombre dado a la nueva topología) mantiene la función de transferencia de señal (STF) y la función de transferencia de ruido (NTF) de los Integrating converters. Sin embargo, presentamos una nueva topología en el núcleo del convertidor para conformar el ruido sin circuitos adicionales. De esta manera, se preserva la simplicidad de la arquitectura. Proponemos utilizar el Self-Compensated noise-shaped DS como un CDC para sensores MEMS. Este trabajo hace un estudio de la mejor integración posible de los dos bloques para mantener la integridad de la señal considerando el comportamiento electromecánico del sensor. El propósito de este circuito de acondicionamiento es conectarse a cualquier tipo de sensor MEMS capacitivo. Sin embargo, para demostrar los conceptos desarrollados en esta tesis, la arquitectura se ha conectado a un sensor MEMS de presión. Se ha implementado dos prototipos experimentales en un proceso CMOS de 130-nm utilizando la arquitectura mencionada anteriormente. Se ha logrado una relación señal-ruido máxima de 103.9 dB (equivalente a 1 Pa) con un tiempo de medida de 20 ms. El prototipo final tiene un consumo de energía de 220 μW con un área efectiva de 0.317 mm2. La arquitectura diseñada muestra un buen rendimiento comparable con las arquitecturas en el dominio de la amplitud que muestran resoluciones equivalentes.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Pieter Rombouts.- Secretario: Alberto Rodríguez Pérez.- Vocal: Dietmar Strãußnig

    A Low-Power Interface for Capacitive Sensors With PWM Output and Intrinsic Low Pass Characteristic

    Get PDF
    A compact, low power interface for capacitive sensors, is described. The output signal is a pulse width modulated (PWM) signal, where the pulse duration is linearly proportional to the sensor differential capacitance. The original conversion approach consists in stimulating the sensor capacitor with a triangular-like voltage waveform in order to obtain a square-like current waveform, which is subsequently demodulated and integrated over a clock period. The charge obtained in this way is then converted into the output pulse duration by an approach that includes an intrinsic tunable low pass function. The main non idealities are thoroughly investigated in order to provide useful design indications and evaluate the actual potentialities of the proposed circuit. The theoretical predictions are compared with experimental results obtained with a prototype, designed and fabricated using 0.32 mu M CMOS devices from the BCD6s process of STMicroelectroncs. The prototype occupies a total area of 1025 x 515 mm(2) and is marked by a power consuption of 84 mu W. The input capacitance range is 0-256 fF, with a resolution of 0.8 fF and a temperature sensitivity of 300 ppm/degrees C

    Multisensor MEMS for temperature, relative humidity, and high-g shock monitoring

    Get PDF
    The use of MEMS (micro-electro-mechanical system) sensors in multiple applications of environmental monitoring help to fill the need of a small scale, low power monitoring and sensing applications. In this design, the use of single-die multiple MEMS sensors to monitor ambient temperature, relative humidity, and accelerative high-g shock were developed and tested. In addition to the sensors, signal conditioning circuits were developed for outputting the sensor data into a microcontroller to analyze and process the signals into useful information for human operators to analyze. The three sensors were fabricated using a bulk micro-machined process on 100mm silicon wafers developed in the RIT SMFL. This work extends previous work on a multisensor from a year earlier. Ion implantation is now used to tune doping levels. To help reduce cross-talk between sensors, p-wells were introduced to aid in substrate isolation. A parallel plate humidity sensor was developed, bringing the need to develop in-line processing of polyimide. Lastly, the one-axis shock sensor is upgraded into a three-axis shock sensor. The temperature sensor is made using a PN diode, utilizing the temperature dependence of the forward bias voltage drop from the Shockley diode equation, corresponding to -2.2mV/°C response over a range of -50°C to 150°C for the application operation range. Signal conditioning is a constant current mode operation, measuring the change in voltage drop across the diode. The relative humidity sensor is formed from one of two designs; an interdigitated comb-finger capacitor or a parallel plate capacitor. Polyimide was used as the dielectric material due to linear diffusion properties of water vapor to relative humidity. While the comb-finger sensor was coated with polyimide post-processing, a new thin film processing and integration technique was developed for the first time here at RIT for the parallel plate sensor. Due to the small levels of capacitive change in the range of 5% to 95% relative humidity, the sensor\u27s capacitive measurement is run through an RC astable multivibrator circuit to produce an RC square wave. From the frequency of this wave, the capacitance, and thus the relative humidity can be computed by the microcontroller
    corecore