2,829 research outputs found

    Explanation in constraint satisfaction: A survey

    Get PDF
    Much of the focus on explanation in the field of artificial intelligence has focused on machine learning methods and, in particular, concepts produced by advanced methods such as neural networks and deep learning. However, there has been a long history of explanation generation in the general field of constraint satisfaction, one of the AI's most ubiquitous subfields. In this paper we survey the major seminal papers on the explanation and constraints, as well as some more recent works. The survey sets out to unify many disparate lines of work in areas such as model-based diagnosis, constraint programming, Boolean satisfiability, truth maintenance systems, quantified logics, and related areas

    Computing explanations for interactive constraint-based systems

    Get PDF
    Constraint programming has emerged as a successful paradigm for modelling combinatorial problems arising from practical situations. In many of those situations, we are not provided with an immutable set of constraints. Instead, a user will modify his requirements, in an interactive fashion, until he is satisfied with a solution. Examples of such applications include, amongst others, model-based diagnosis, expert systems, product configurators. The system he interacts with must be able to assist him by showing the consequences of his requirements. Explanations are the ideal tool for providing this assistance. However, existing notions of explanations fail to provide sufficient information. We define new forms of explanations that aim to be more informative. Even if explanation generation is a very hard task, in the applications we consider, we must manage to provide a satisfactory level of interactivity and, therefore, we cannot afford long computational times. We introduce the concept of representative sets of relaxations, a compact set of relaxations that shows the user at least one way to satisfy each of his requirements and at least one way to relax them, and present an algorithm that efficiently computes such sets. We introduce the concept of most soluble relaxations, maximising the number of products they allow. We present algorithms to compute such relaxations in times compatible with interactivity, achieving this by indifferently making use of different types of compiled representations. We propose to generalise the concept of prime implicates to constraint problems with the concept of domain consequences, and suggest to generate them as a compilation strategy. This sets a new approach in compilation, and allows to address explanation-related queries in an efficient way. We define ordered automata to compactly represent large sets of domain consequences, in an orthogonal way from existing compilation techniques that represent large sets of solutions

    On Formal Methods for Large-Scale Product Configuration

    Get PDF
    <p>In product development companies mass customization is widely used to achieve better customer satisfaction while keeping costs down. To efficiently implement mass customization, product platforms are often used. A product platform allows building a wide range of products from a set of predefined components. The process of matching these components to customers' needs is called product configuration. Not all components can be combined with each other due to restrictions of various kinds, for example, geometrical, marketing and legal reasons. Product design engineers develop configuration constraints to describe such restrictions. The number of constraints and the complexity of the relations between them are immense for complex product like a vehicle. Thus, it is both error-prone and time consuming to analyze, author and verify the constraints manually. Software tools based on formal methods can help engineers to avoid making errors when working with configuration constraints, thus design a correct product faster.</p> <p>This thesis introduces a number of formal methods to help engineers maintain, verify and analyze product configuration constraints. These methods provide automatic verification of constraints and computational support for analyzing and refactoring constraints. The methods also allow verifying the correctness of one specific type of constraints, item usage rules, for sets of mutually-exclusive required items, and automatic verification of equivalence of different formulations of the constraints. The thesis also introduces three methods for efficient enumeration of valid partial configurations, with benchmarking of the methods on an industrial dataset.</p> <p>Handling large-scale industrial product configuration problems demands high efficiency from the software methods. This thesis investigates a number of search-based and knowledge-compilation-based methods for working with large product configuration instances, including Boolean satisfiability solvers, binary decision diagrams and decomposable negation normal form. This thesis also proposes a novel method based on supervisory control theory for efficient reasoning about product configuration data. The methods were implemented in a tool, to investigate the applicability of the methods for handling large product configuration problems. It was found that search-based Boolean satisfiability solvers with incremental capabilities are well suited for industrial configuration problems.</p> <p>The methods proposed in this thesis exhibit good performance on practical configuration problems, and have a potential to be implemented in industry to support product design engineers in creating and maintaining configuration constraints, and speed up the development of product platforms and new products.</p

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    A review of European applications of artificial intelligence to space

    Get PDF
    The purpose is to describe the applications of Artificial Intelligence (AI) to the European Space program that are being developed or have been developed. The results of a study sponsored by the Artificial Intelligence Research and Development program of NASA's Office of Advanced Concepts and Technology (OACT) are described. The report is divided into two sections. The first consists of site reports, which are descriptions of the AI applications seen at each place visited. The second section consists of two summaries which synthesize the information in the site reports by organizing this information in two different ways. The first organizes the material in terms of the type of application, e.g., data analysis, planning and scheduling, and procedure management. The second organizes the material in terms of the component technologies of Artificial Intelligence which the applications used, e.g., knowledge based systems, model based reasoning, procedural reasoning, etc

    Applying Genetic Algorithms for Software Design and Project Planning

    Get PDF
    Today's software systems are growing in size and complexity. This means not only increased complexity in developing software systems, but also increase in the budget and completion time. This trend will lead to a situation where traditional manual software engineering practices are not sufficient to develop and evolve software systems in an economic and timely manner. Automated support can aid software engineers in reducing the time-to-market and improving the quality of the software. This thesis work explores the application of genetic algorithms for automated software architecture design and project planning.Software architecture design and project planning are non-trivial and challenging tasks. This thesis applies genetic algorithms to introduce automation into these tasks. The proposed genetic algorithm exploits reusable solutions, such as design patterns, architecture styles and application specific solutions for transforming a given initial rudimentary model into detailed design. The architectures are evaluated using multiple quality attributes, such as modifiability, efficiency and complexity. The fitness function encompasses the knowledge required for evaluating the architectures according to multiple quality attributes. The output from the genetic algorithm is an architecture proposal optimized with respect to multiple quality attributes.A genetic algorithm has also been devised for assigning work across teams located in distributed sites. The genetic algorithm takes information about the target system and the development organization as input and produces a set of work distribution and schedule plans optimized with respect to cost and duration objectives. The fitness function considers the differences in teams and barriers created by global dispersion into account in evaluating the work assignment. In addition, the genetic algorithm also takes solutions that ease or hamper distributed development into account in allocating the work. The genetic algorithm has been further extended with Pareto optimality to find a set of suitable work distribution proposals in a tradeoff between project cost and duration. In the experiments, an electronic home control system was developed by a set of different organizations structures. The results demonstrate that the proposed genetic algorithm can create reasonable work distribution proposals that conform to the general assumptions about the nature of cost and project completion time, i.e., cost of the project can be reduced at the expense of project completion time and vice-versa.In addition, variations have been made to the genetic algorithm approach to software architecture design. To accelerate the genetic algorithm towards multi-objective solutions, a quality farms approach has been developed. The approach uses the idea of cross breeding, where different individuals that are good with respect to one quality objective are combined for producing software architecture proposals that are good in multiple objectives. Also, to explore the suitability of other methods for software architecture synthesis, a constraint satisfaction approach has been developed. The approach models the software architecture design problem as a constraint satisfaction and optimization problem and solves it using constraint satisfaction techniques. This approach can provide rationale about why certain decisions are chosen in the proposed architecture proposals.Tool support for genetic algorithm-based architecture design and work planning approaches has been proposed. It facilitates an end user to give input, view and analyze the results of the developed genetic algorithm based approaches. The tool also provides support for semi-automated architecture design, where a human architect can guide the genetic algorithm towards optimal solutions. An empirical study has also been performed. It suggests that the quality of the proposals produced through semiautomated architecture design is roughly at the level of senior software engineering students. Furthermore, the project manager can interact with the tool and perform whatif analysis for choosing the suitable work distribution for the project at hand

    The 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies

    Get PDF
    This publication comprises the papers presented at the 1995 Goddard Conference on Space Applications of Artificial Intelligence and Emerging Information Technologies held at the NASA/Goddard Space Flight Center, Greenbelt, Maryland, on May 9-11, 1995. The purpose of this annual conference is to provide a forum in which current research and development directed at space applications of artificial intelligence can be presented and discussed

    Model Based Teleoperation to Eliminate Feedback Delay NSF Grant BCS89-01352 Second Report

    Get PDF
    We are conducting research in the area of teleoperation with feedback delay. Delay occurs with earth-based teleoperation in space and with surface-based teleoperation with untethered submersibles when acoustic communication links are involved. The delay in obtaining position and force feedback from remote slave arms makes teleoperation extremely difficult leading to very low productivity. We have combined computer graphics with manipulator programming to provide a solution to the problem. A teleoperator master arm is interfaced to a graphics based simulator of the remote environment. The system is then coupled with a robot manipulator at the remote, delayed site. The operator\u27s actions are monitored to provide both kinesthetic and visual feedback and to generate symbolic motion commands to the remote slave. The slave robot then executes these symbolic commands delayed in time. While much of a task proceeds error free, when an error does occur, the slave system transmits data back to the master environment which is then reset to the error state from which the operator continues the task

    A methodology for evaluating intelligent tutoring systems

    Get PDF
    DissertationThis dissertation proposes a generic methodology for evaluating intelligent tutoring systems (ITSs), and applies it to the evaluation of the SQL-Tutor, an ITS for the database language SQL. An examination of the historical development, theory and architecture of intelligent tutoring systems, as well as the theory, architecture and behaviour of the SQL-Tutor sets the context for this study. The characteristics and criteria for evaluating computer-aided instruction (CAl) systems are considered as a background to an in-depth investigation of the characteristics and criteria appropriate for evaluating ITSs. These criteria are categorised along internal and external dimensions with the internal dimension focusing on the intrinsic features and behavioural aspects of ITSs, and the external dimension focusing on its educational impact. Several issues surrounding the evaluation of ITSs namely, approaches, methods, techniques and principles are examined, and integrated within a framework for assessing the added value of ITS technology for instructional purposes.Educational StudiesM. Sc. (Information Systems

    SAT-based Analysis, (Re-)Configuration & Optimization in the Context of Automotive Product documentation

    Get PDF
    Es gibt einen steigenden Trend hin zu kundenindividueller Massenproduktion (mass customization), insbesondere im Bereich der Automobilkonfiguration. Kundenindividuelle Massenproduktion führt zu einem enormen Anstieg der Komplexität. Es gibt Hunderte von Ausstattungsoptionen aus denen ein Kunde wählen kann um sich sein persönliches Auto zusammenzustellen. Die Anzahl der unterschiedlichen konfigurierbaren Autos eines deutschen Premium-Herstellers liegt für ein Fahrzeugmodell bei bis zu 10^80. SAT-basierte Methoden haben sich zur Verifikation der Stückliste (bill of materials) von Automobilkonfigurationen etabliert. Carsten Sinz hat Mitte der 90er im Bereich der SAT-basierten Verifikationsmethoden für die Daimler AG Pionierarbeit geleistet. Darauf aufbauend wurde nach 2005 ein produktives Software System bei der Daimler AG installiert. Später folgten weitere deutsche Automobilhersteller und installierten ebenfalls SAT-basierte Systeme zur Verifikation ihrer Stücklisten. Die vorliegende Arbeit besteht aus zwei Hauptteilen. Der erste Teil beschäftigt sich mit der Entwicklung weiterer SAT-basierter Methoden für Automobilkonfigurationen. Wir zeigen, dass sich SAT-basierte Methoden für interaktive Automobilkonfiguration eignen. Wir behandeln unterschiedliche Aspekte der interaktiven Konfiguration. Darunter Konsistenzprüfung, Generierung von Beispielen, Erklärungen und die Vermeidung von Fehlkonfigurationen. Außerdem entwickeln wir SAT-basierte Methoden zur Verifikation von dynamischen Zusammenbauten. Ein dynamischer Zusammenbau repräsentiert die chronologische Zusammenbau-Reihenfolge komplexer Teile. Der zweite Teil beschäftigt sich mit der Optimierung von Automobilkonfigurationen. Wir erläutern und vergleichen unterschiedliche Optimierungsprobleme der Aussagenlogik sowie deren algorithmische Lösungsansätze. Wir beschreiben Anwendungsfälle aus der Automobilkonfiguration und zeigen wie diese als aussagenlogisches Optimierungsproblem formalisiert werden können. Beispielsweise möchte man zu einer Menge an Ausstattungswünschen ein Test-Fahrzeug mit minimaler Ergänzung weiterer Ausstattungen berechnen um Kosten zu sparen. DesWeiteren beschäftigen wir uns mit der Problemstellung eine kleinste Menge an Fahrzeugen zu berechnen um eine Testmenge abzudecken. Im Rahmen dieser Arbeit haben wir einen Prototypen eines (Re-)Konfigurators, genannt AutoConfig, entwickelt. Unser (Re-)Konfigurator verwendet im Kern SAT-basierte Methoden und besitzt eine grafische Benutzeroberfläche, welche interaktive Konfiguration erlaubt. AutoConfig kann mit Instanzen von drei großen deutschen Automobilherstellern umgehen, aber ist nicht alleine darauf beschränkt. Mit Hilfe dieses Prototyps wollen wir die Anwendbarkeit unserer Methoden demonstrieren
    corecore