21,698 research outputs found

    Temporal flexibility options in electricity market simulation models: Deliverable D4.1

    Get PDF
    Project TradeRES - New Markets Design & Models for 100% Renewable Power Systems: https://traderes.eu/about/ABSTRACT: This report covers the implementation of temporal flexibility options in TradeRES’ agent-based electricity market simulations models. Within this project, the term “temporal flexibility option” was defined as an asset or measure supporting the power system to balance electric demand and supply and compensate for their stochastic fluctuations stemming from, e.g., weather or consumer behaviour by adjusting demand and/or supply as a function over time or by reducing their forecast uncertainty. Other reports from the same work package of TradeRES are published almost simultaneously, each focussing on another aspect of market model enhancements. These accompanying reports address sectoral flexibility, spatial flexibility, actor types, and modelling requirements for market designs. Flexibility options covered in this report were selected with regard to a predominantly temporal characteristic, a contribution to TradeRES’ assessment of market designs, and the feasibility to be implemented in at least one of the agent based models (ABM) during the project’s lifetime. The technical aspects of “Load shedding”, “Load shifting”, “Electricity storage”, and “Real-time pricing” were selected for implementation. In addition, the following new electricity market products were selected for implementation: “Rolling market clearing”, “Trading with shorter time units”, and “Variable market closure lead times”.N/

    A Self-adaptive Agent-based System for Cloud Platforms

    Full text link
    Cloud computing is a model for enabling on-demand network access to a shared pool of computing resources, that can be dynamically allocated and released with minimal effort. However, this task can be complex in highly dynamic environments with various resources to allocate for an increasing number of different users requirements. In this work, we propose a Cloud architecture based on a multi-agent system exhibiting a self-adaptive behavior to address the dynamic resource allocation. This self-adaptive system follows a MAPE-K approach to reason and act, according to QoS, Cloud service information, and propagated run-time information, to detect QoS degradation and make better resource allocation decisions. We validate our proposed Cloud architecture by simulation. Results show that it can properly allocate resources to reduce energy consumption, while satisfying the users demanded QoS

    Agent-based homeostatic control for green energy in the smart grid

    No full text
    With dwindling non-renewable energy reserves and the adverse effects of climate change, the development of the smart electricity grid is seen as key to solving global energy security issues and to reducing carbon emissions. In this respect, there is a growing need to integrate renewable (or green) energy sources in the grid. However, the intermittency of these energy sources requires that demand must also be made more responsive to changes in supply, and a number of smart grid technologies are being developed, such as high-capacity batteries and smart meters for the home, to enable consumers to be more responsive to conditions on the grid in real-time. Traditional solutions based on these technologies, however, tend to ignore the fact that individual consumers will behave in such a way that best satisfies their own preferences to use or store energy (as opposed to that of the supplier or the grid operator). Hence, in practice, it is unclear how these solutions will cope with large numbers of consumers using their devices in this way. Against this background, in this paper, we develop novel control mechanisms based on the use of autonomous agents to better incorporate consumer preferences in managing demand. These agents, residing on consumers' smart meters, can both communicate with the grid and optimise their owner's energy consumption to satisfy their preferences. More specifically, we provide a novel control mechanism that models and controls a system comprising of a green energy supplier operating within the grid and a number of individual homes (each possibly owning a storage device). This control mechanism is based on the concept of homeostasis whereby control signals are sent to individual components of a system, based on their continuous feedback, in order to change their state so that the system may reach a stable equilibrium. Thus, we define a new carbon-based pricing mechanism for this green energy supplier that takes advantage of carbon-intensity signals available on the internet in order to provide real-time pricing. The pricing scheme is designed in such a way that it can be readily implemented using existing communication technologies and is easily understandable by consumers. Building upon this, we develop new control signals that the supplier can use to incentivise agents to shift demand (using their storage device) to times when green energy is available. Moreover, we show how these signals can be adapted according to changes in supply and to various degrees of penetration of storage in the system. We empirically evaluate our system and show that, when all homes are equipped with storage devices, the supplier can significantly reduce its reliance on other carbon-emitting power sources to cater for its own shortfalls. By so doing, the supplier reduces the carbon emission of the system by up to 25% while the consumer reduces its costs by up to 14.5%. Finally, we demonstrate that our homeostatic control mechanism is not sensitive to small prediction errors and the supplier is incentivised to accurately predict its green production to minimise costs

    InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling of Application Services

    Full text link
    Cloud computing providers have setup several data centers at different geographical locations over the Internet in order to optimally serve needs of their customers around the world. However, existing systems do not support mechanisms and policies for dynamically coordinating load distribution among different Cloud-based data centers in order to determine optimal location for hosting application services to achieve reasonable QoS levels. Further, the Cloud computing providers are unable to predict geographic distribution of users consuming their services, hence the load coordination must happen automatically, and distribution of services must change in response to changes in the load. To counter this problem, we advocate creation of federated Cloud computing environment (InterCloud) that facilitates just-in-time, opportunistic, and scalable provisioning of application services, consistently achieving QoS targets under variable workload, resource and network conditions. The overall goal is to create a computing environment that supports dynamic expansion or contraction of capabilities (VMs, services, storage, and database) for handling sudden variations in service demands. This paper presents vision, challenges, and architectural elements of InterCloud for utility-oriented federation of Cloud computing environments. The proposed InterCloud environment supports scaling of applications across multiple vendor clouds. We have validated our approach by conducting a set of rigorous performance evaluation study using the CloudSim toolkit. The results demonstrate that federated Cloud computing model has immense potential as it offers significant performance gains as regards to response time and cost saving under dynamic workload scenarios.Comment: 20 pages, 4 figures, 3 tables, conference pape

    Gestion flexible des ressources dans les réseaux de nouvelle génération avec SDN

    Get PDF
    Abstract : 5G and beyond-5G/6G are expected to shape the future economic growth of multiple vertical industries by providing the network infrastructure required to enable innovation and new business models. They have the potential to offer a wide spectrum of services, namely higher data rates, ultra-low latency, and high reliability. To achieve their promises, 5G and beyond-5G/6G rely on software-defined networking (SDN), edge computing, and radio access network (RAN) slicing technologies. In this thesis, we aim to use SDN as a key enabler to enhance resource management in next-generation networks. SDN allows programmable management of edge computing resources and dynamic orchestration of RAN slicing. However, achieving efficient performance based on SDN capabilities is a challenging task due to the permanent fluctuations of traffic in next-generation networks and the diversified quality of service requirements of emerging applications. Toward our objective, we address the load balancing problem in distributed SDN architectures, and we optimize the RAN slicing of communication and computation resources in the edge of the network. In the first part of this thesis, we present a proactive approach to balance the load in a distributed SDN control plane using the data plane component migration mechanism. First, we propose prediction models that forecast the load of SDN controllers in the long term. By using these models, we can preemptively detect whether the load will be unbalanced in the control plane and, thus, schedule migration operations in advance. Second, we improve the migration operation performance by optimizing the tradeoff between a load balancing factor and the cost of migration operations. This proactive load balancing approach not only avoids SDN controllers from being overloaded, but also allows a judicious selection of which data plane component should be migrated and where the migration should happen. In the second part of this thesis, we propose two RAN slicing schemes that efficiently allocate the communication and the computation resources in the edge of the network. The first RAN slicing scheme performs the allocation of radio resource blocks (RBs) to end-users in two time-scales, namely in a large time-scale and in a small time-scale. In the large time-scale, an SDN controller allocates to each base station a number of RBs from a shared radio RBs pool, according to its requirements in terms of delay and data rate. In the short time-scale, each base station assigns its available resources to its end-users and requests, if needed, additional resources from adjacent base stations. The second RAN slicing scheme jointly allocates the RBs and computation resources available in edge computing servers based on an open RAN architecture. We develop, for the proposed RAN slicing schemes, reinforcement learning and deep reinforcement learning algorithms to dynamically allocate RAN resources.La 5G et au-delà de la 5G/6G sont censées dessiner la future croissance économique de multiples industries verticales en fournissant l'infrastructure réseau nécessaire pour permettre l'innovation et la création de nouveaux modèles économiques. Elles permettent d'offrir un large spectre de services, à savoir des débits de données plus élevés, une latence ultra-faible et une fiabilité élevée. Pour tenir leurs promesses, la 5G et au-delà de la-5G/6G s'appuient sur le réseau défini par logiciel (SDN), l’informatique en périphérie et le découpage du réseau d'accès (RAN). Dans cette thèse, nous visons à utiliser le SDN en tant qu'outil clé pour améliorer la gestion des ressources dans les réseaux de nouvelle génération. Le SDN permet une gestion programmable des ressources informatiques en périphérie et une orchestration dynamique de découpage du RAN. Cependant, atteindre une performance efficace en se basant sur le SDN est une tâche difficile due aux fluctuations permanentes du trafic dans les réseaux de nouvelle génération et aux exigences de qualité de service diversifiées des applications émergentes. Pour atteindre notre objectif, nous abordons le problème de l'équilibrage de charge dans les architectures SDN distribuées, et nous optimisons le découpage du RAN des ressources de communication et de calcul à la périphérie du réseau. Dans la première partie de cette thèse, nous présentons une approche proactive pour équilibrer la charge dans un plan de contrôle SDN distribué en utilisant le mécanisme de migration des composants du plan de données. Tout d'abord, nous proposons des modèles pour prédire la charge des contrôleurs SDN à long terme. En utilisant ces modèles, nous pouvons détecter de manière préemptive si la charge sera déséquilibrée dans le plan de contrôle et, ainsi, programmer des opérations de migration à l'avance. Ensuite, nous améliorons les performances des opérations de migration en optimisant le compromis entre un facteur d'équilibrage de charge et le coût des opérations de migration. Cette approche proactive d'équilibrage de charge permet non seulement d'éviter la surcharge des contrôleurs SDN, mais aussi de choisir judicieusement le composant du plan de données à migrer et l'endroit où la migration devrait avoir lieu. Dans la deuxième partie de cette thèse, nous proposons deux mécanismes de découpage du RAN qui allouent efficacement les ressources de communication et de calcul à la périphérie des réseaux. Le premier mécanisme de découpage du RAN effectue l'allocation des blocs de ressources radio (RBs) aux utilisateurs finaux en deux échelles de temps, à savoir dans une échelle de temps large et dans une échelle de temps courte. Dans l’échelle de temps large, un contrôleur SDN attribue à chaque station de base un certain nombre de RB à partir d'un pool de RB radio partagé, en fonction de ses besoins en termes de délai et de débit. Dans l’échelle de temps courte, chaque station de base attribue ses ressources disponibles à ses utilisateurs finaux et demande, si nécessaire, des ressources supplémentaires aux stations de base adjacentes. Le deuxième mécanisme de découpage du RAN alloue conjointement les RB et les ressources de calcul disponibles dans les serveurs de l’informatique en périphérie en se basant sur une architecture RAN ouverte. Nous développons, pour les mécanismes de découpage du RAN proposés, des algorithmes d'apprentissage par renforcement et d'apprentissage par renforcement profond pour allouer dynamiquement les ressources du RAN

    Multi-controller Based Software-Defined Networking: A Survey

    Get PDF
    Software-Defined Networking (SDN) is a novel network paradigm that enables flexible management for networks. As the network size increases, the single centralized controller cannot meet the increasing demand for flow processing. Thus, the promising solution for SDN with large-scale networks is the multi-controller. In this paper, we present a compressive survey for multi-controller research in SDN. First, we introduce the overview of multi-controller, including the origin of multi-controller and its challenges. Then, we classify multi-controller research into four aspects (scalability, consistency, reliability, load balancing) depending on the process of implementing the multi-controller. Finally, we propose some relevant research issues to deal with in the future and conclude the multi-controller research
    corecore