

Digital Object Identifier 10.1109/ACCESS. 2017.Doi Number

Multi-controller Based Software-Defined
Networking: A Survey
Tao Hu1, Zehua Guo2, Thar Baker3, Julong Lan1
1National Digital Switching System Engineering R&D Center, Zhengzhou 450002, China
2Didi Chuxing, Beijing 100193, China
3Liverpool John Moores University, Liverpool 25175, UK

Corresponding author: Zehua Guo (e-mail: guolizihao@hotmail.com).

This work is supported by the Project of National Network Cyberspace Security (Grant No. 2017YFB0803204), the National High-
Tech Research and Development Program of China (863 Program) (Grant No. 2015AA016102), Foundation for Innovative Research
Group of the National Natural Science Foundation of China (Grant No.61521003).

ABSTRACT Software-Defined Networking (SDN) is a novel network paradigm that enables flexible
management for networks. As the network size increases, the single centralized controller cannot meet the
increasing demand for flow processing. Thus, the promising solution for SDN with large-scale networks is
the multi-controller. In this paper, we present a compressive survey for multi-controller research in SDN.
First, we introduce the overview of multi-controller, including the origin of multi-controller and its
challenges. Then, we classify multi-controller research into four aspects (scalability, consistency, reliability,
load balancing) depending on the process of implementing the multi-controller. Finally, we propose some
relevant research issues to deal with in the future and conclude the multi-controller research.

INDEX TERMS Software-Defined Networking, multi-controller, scalability, consistency, reliability, load
balancing.

I.� INTRODUCTION
The Internet has been identified as an essential
infrastructure that supports social development and
technological progress in the past 30 years, and it has
profoundly changed the people’s working, studying and
living styles [1] [2]. However, traditional network
technology has inherent defects of rigid structure and
complex configuration and cannot meet the requirement of
network innovation [3]. Thus, it is deemed urgent to design
and develop a new network architecture that can
dynamically and flexibly manage the network [4].

Software-Defined Networking (SDN) [5-7] is proposed
to overcome the aforementioned weaknesses of the
traditional network. As a new network paradigm, the SDN
revolutionizes network technology by breaking the
fundamental idea of traditional networks. An SDN
comprises three layers: data plane, control plane, and
application plane. Data plane comprises of network devices
(e.g., a router, and switch) and forwards packets according
to a decision made by the control plane. Control plane acts
as a mediator for the data plane and the application plane
and handles the traffic flow in the network. Application
plane is on the top of the control plane and achieves

customized application logic (e.g., intrusion detection
systems [8], big data analyses [6]).

The preliminary design of the control plane only uses one
controller for a network. Though the advantages of
centralized control in SDN network, SDN faces some
problems challenging its nature (i.e., centralized control)
due to day-to-day increasing network demands. Further,
network operators try their best to strengthen the
performance of the network controller, but it is still hard to
meet the high demands (e.g., flow request sent by switches
and network statistics) due to the limited capacity of the
single controller. For instance, Ryu [9], as the early
controller, can server only 6000 Packet-in requests per
second with an average latency less than (6ms).
Particularly, this deficiency presents more obviously in the
large-scale network. Moreover, the single point of failure is
also the crucial factor in the one controller SDN network.
The controller failure will cause disconnections between the
controller and the switches. Since the controller software
runs on a server and it may suffer from the hardware or
software failure, characterization of a server failure in a
production network or cluster gives us the description of the
controller failure [10]. Therefore, the controller failure is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LJMU Research Online

https://core.ac.uk/display/153531731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

common in the network because of hardware or software
breakdown [11]. In a word, the above problems triggered
by the single controller will hinder the deployment of SDN
in actual production networks. To overcome those issues,
several works propose using multi-controller working
together to achieve the function of the logically centralized
controller [12-14]. There are some surveys of SDN, but
they have different concentrations. For example, [15] and
[16] introduce a comprehensive literature survey on SDN,
including the motivation, architecture and an overview of
three layers; [17-19] survey SDN network update, testbeds,
and security architecture, respectively. The authors in [17]
focus on the control plane scalability of multi-controller;
and the work is deemed closer to our work.

In this paper, we focus on the survey of multi-controller
research in SDN. We discuss the multi-controller overview in
SDN and present the SDN issues of multi-controller:
scalability, consistency, reliability, and load balancing.
Following the design logic, we first present the scalability
research of multi-controller to cope with single controller
problem (single point of failure, limited control resources,
etc.). Moreover, we present consistency, reliability, and load
balancing research caused by multi-controller. Further, we
propose some promising research directions as future work.
Finally, we summarize this paper in the conclusion. To the
best of our knowledge, our work is the first comprehensive
survey for multi-controller research in SDN from the
perspective of design logic. The main contributions of this
paper are summarized below:
� We present the controller evolution that discusses the

origin of multi-controller; and we introduce the two basic
multi-controller architectures.

� We summarize the four challenges (i.e., scalability,
consistency, reliability and load balancing) in the multi-
controller research, and present existing solutions.

� We introduce major research problems that need to be
considered to implement multi-controller in real scenarios.
The rest of this paper is organized as follows. Section 2

presents the overview of multi-controller. From Section 3 to
Section 6, we discuss the research challenges of multi-
controller scalability, consistency, reliability and load
balancing, respectively. In Section 7, we discuss the
promising research directions and issues to deal with in the
future. In Section 8, we conclude this survey.

II.� MULTI-CONTROLLER OVERVIEW

A.� CONTROLLER EVOLUTION
In this subsection, we will firstly introduce the origin of
multi-controller by using two examples, then illustrate the
two basic multi-controller architectures that are flat design
and hierarchical design.

1) FROM SINGLE CONTROLLER TO MULTI-
CONTROLLER

In the initial stage of SDN design, a single controller
manages the entire network. In Fig. 1, the controller (c1)
manages four switches in the network. When the source host
sends a new packet to switch (s1), the switch cannot achieve
the forwarding function due to the lack of routing
information of the new packet. Then, the switch (s1) sends
(Packet-in) messages to the controller (c1) to get the routing
for the new packet. After getting the response message from
the controller, the switch forwards the packet to the next
device. Finally, the packet reaches the destination host
successfully. The controller plays a major role in the process
of traffic transmission. Unfortunately, as the network traffic
increases fast, one single controller cannot deal with a great
number of flow requests send from switches because of the
limited controller capacity. Meanwhile, once the single
controller fails, the switches cannot plan the routing for the
newly arrived packet, which affects the communication and
applications of the network. Consequently, it is necessary to
propose a modern controller design.

Benefiting from the development of OpenFlow (e.g.,
OpenFlow 1.2 [20] has proposed the concept of the master,
slave, and equal controller, and one switch could connect one
master controller and several slaves or equal controllers),
multi-controller becomes a new SDN design scheme, which
could solve the problem caused by the single controller. In
Fig. 2, there are two controllers in the network topology, and
each of them manages the part of the network. In this
scenario, (c1) and (c2) are sharing the same logic in a
logically centralized manner such that when new packets
arrive at (s1), both (c1) and (c2) can directly install
forwarding paths in all corresponding switches. By this
means, it can effectively alleviate the flow processing
pressure of a single controller. Meanwhile, these two
controllers are backup each other, which could resolve the
single point of failure for the controller.

Based on the above analysis, we can discover that
compared with a single controller, a multi-controller design
can effectively improve the performance of SDN network.
Therefore, multi-controller gradually becomes a popular
research in the recent years.

2) TWO BASIC MULTI-CONTROLLER ARCHITECTURES
When placing multi-controller, the key point is how to design
the multi-controller architecture. After surveying the
literature, we conclude that the basic multi-controller
architecture can be divided into flat design and hierarchical
design. In flat design, a network is structured into several
domains, where each domain is controlled by a controller
situated within its own local network view. Controllers
communicate with others through their east-westbound
interfaces to get the global view of the network. Fig. 3 shows
the flat design of multi-controller. Typical examples are
HyperFlow [21] and Onix [22].

s1 s2 s3 s4
source host destination host

Control link

Data link

c1

FIGURE 1. An example of single controller works in routing packets

s1 s2 s3 s4
source host destination host

Control link

Data link

c1 c2

Synchronized state

FIGURE 2. An example of multi-controller works in routing packets

HyperFlow is designed on Network Operating System

(NOX) for the distributed file system WheelFs [23]. In
HyperFlow, each controller only processes flow requests sent
from the switches in its local domain. Network events (e.g.,
flow information, routing information) are transmitted based
on specific “publish/subscribe” mode [24] among controllers.

Onix adopts the distributed architecture to offer the
programmatic interface for the upper control logic and uses
Network Information Base (NIB) to maintain the global
network state. Onix gets network status from physical
infrastructure and conducts operation from the control logic
via the connectivity infrastructure.

Controller Switch SDN Domain

FIGURE 3. Flat design of multi-controller

The flat design extends the capability of the control plane,
but it also requires complicated controller management and
extra control overheads. For example, the controllers must
frequently communicate with each other to guarantee the

consistent network view. The hierarchical design is proposed
to solve the problems.

Hierarchical design usually uses two-layer controllers:
domain controller, which manages switches in its local
domains and runs local control applications, and root
controller, which manages domain controllers and maintains
a global network view. Kandoo [25] is a typical hierarchical
controller structure. In the Kandoo, the root controller
communicates with domain controllers to get the domain
information, but the domain controllers do not contact with
each other. Fig. 4 shows the basic architecture of hierarchical
design.

Domain
Controller

OpenFlow
Switch

SDN
Domain

Root
Controller

FIGURE 4. Hierarchical design of multi-controller

B.� RESEARCH CHALLENGES
The design of the multi-controller has solved the problems
encountered by a single controller, but it also presents a set of
overlooked challenges. Fig. 5 summarizes the research

roadmap of multi-controller challenges. One of the most
critical challenges in multi-controller is the way to cope with
its scalability problem. Therefore, the researchers introduce
to place multi-controller in the SDN network. However, how
to place those controllers to solve scalability is still an
outstanding challenge, which includes two layers of
meaning: one refers to finding controller locations, the other
allocates the switches for different controllers. Further, once
there is a multi-controller in the network, the consequent
results bring about the challenges of consistency, reliability
and load balancing. Though different controllers manage the
respective SDN domains, they must maintain consistent
network views. It is necessary to guarantee the consistency of
the multi-controller. Meanwhile, different types and locations
of controllers may suffer from the indeterminate failure and
indeterminate attack, which influence the reliability of the
control plane. Besides, unbalanced distribution of controller
loads will degrade the network performance, and how to
balance multi-controllers’ loads is also a key point of multi-
controller research.

Multi-controller
load balancing

Multi-controller
scalability

Multi-controller
reliability

Multi-controller
consistency

FIGURE 5. The research of multi-controller challenges

III.� MULTI-CONTROLLER SCALABILITY
Based on the two basic multi-controller architectures, the
proposed for multi-controller is to overcome the shortages of
the single controller, such as single controller failure and
limited controller capacity. However, multi-controller also
raises the challenges of scalability: how to select the
controller locations and how to allocate the switches for
multi-controller in the network. In fact, the multi-controller’s
scalability depends on the number of controllers and the
deployment mode. If controllers are irrationally deployed, it
could assign unbalanced processing load on controllers and
lower the control plane’s capacity. The coarse-grained
domain partition could also make it difficult to guarantee the
agreeable effect of scalability. After analysis, we categorize
existing solutions in two aspects: (1) controller placement;
(2) domain partition, as shown in Fig. 6. Controller
placement focuses on selecting appropriate locations to
improve the scalability while domain partition emphasizes on
partitioning the entire network into several SDN domains.

A.�CONTROLLER PLACEMENT
Placing multi-controller is an effective method to cope with
the challenge of scalability, and existing multi-controller
placements in [26-30] consider some network parameters
(e.g., delay, traffic, distance) to identify the number and
locations of controllers in the network.

Controller Placement Problem (CPP): Heller et al [26]
firstly improves the scalability of multi-controller for solving
CPP. The CPP focuses on two questions: how many
controllers are required, and where should they go? The
authors conduct experiments on the Internet 2 [31]
production deployments and 100 publicly available WAN
topologies to examine control plane propagation latency. The
results indicate the latency is topology dependent and one
controller location is often sufficient to meet existing
reaction-time requirements (though certainly not fault
tolerance requirements). Unfortunately, the authors have no
algorithm design and theoretical demonstration.

Optimal Controller Placement: In [27], the authors
present a non-zero-sum game [32] based distributed
technique to optimally deploy the multi-controller. With the
non-zero-sum game, each controller has an optimization
engine, which computes a payoff function and compares its
own payoff value to save costs and improve Quality of
Service (QoS) through optimizing the locations of
controllers.

Bargaining Game: Similarly, in [28], the authors also
introduce a game model to study the placement of multi-
controller. This model considers multiple metrics: the
communication delay between controllers and switches, the
communication overhead among controllers, processing
loads on controllers. Based on the metrics, the paper
formulates an optimization problem with two contradictory
objectives: minimizing communication delay and minimizing
communication overhead. The authors use a bargaining game
to find the optimal placement of controllers to achieve a
trade-off between the two objectives.

Mathematical Model: In [29], the authors propose a
mathematical model, which simultaneously determines the
optimal number, location, and type of controllers in SDN.
The model seeks to minimize the controller placement cost of
the network while considering different constraints (e.g.,
controller capacity, path latency). The simulation results
demonstrate that the model can be used to plan small-scale
SDN. Meanwhile, this model can also be applied to various
enterprises and cloud-based networks to start integrating
SDN or plan a new SDN. However, this model needs a long-
time computation time and huge memory when used in large
topologies of the controller placement.

Hybrid Hierarchical Control Plane: For large-scale
SDN networks, in [30], the authors introduce a hierarchical
hybrid control plane, named Orion to effectively reduce the
computational complexity of an SDN control plane by
several orders of magnitude. Orion uses two control layers:
(1) area controller layer is responsible for handling the
physical switches and collecting link information; (2) domain
controller layer includes several controllers that supervise the
area controllers as devices. Differing from Kandoo [25], the
authors design an abstracted hierarchical routing method
between area controller layer and domain controller layer to

solve the path stretch problem and achieve fast rerouting in the hierarchical hybrid control plane.

Multi-controller scalability

Optimal Controller Placement [27]

Bargaining Game [28]

Mathematical Model [29]

Hybrid Hierarchical Control Plane [30]

Controller Placement Problem (CPP) [26]

Distributed Multi-domain SDN Controller
(DISCO) [33]

Approximate Algorithm [34]

K Self-adaptive [36]

Software-Defined Networking Partitioning
(SDNP) [37]

Controller placement

Domain Partition

FIGURE 6. The multi-controller scalability solutions

We investigate and analyze the controller placement

techniques for multi-controller scalability in Table 1. We
compare different techniques from the aspects of authors,
mode, objective, complexity, real time, simulation/evaluation
and application scenarios including enterprise, Data Centers
(DC), Cloud and Wide Area Network (WAN). The √
represents feasible and × represents not feasible. The rest
tables in the paper follow the same notation.

B.�DOMAIN PARTITION
Deploying multi-controller in one domain restricts the large-
scale implementation and scalability of SDN. Therefore, the
literature proposes to divide a network into multiple domains
to improve the scalability of multi-controller [33] [34] [36]
[37].

Distributed Multi-domain SDN Controller (DISCO):
DISCO [33], implemented on top of Floodlight, is introduced
to partition wide area network (WAN) with constrained
overlay networks. A DISCO controller manages its own
domain and communicates with other controllers via a
lightweight and manageable control channel to provide end-
to-end network services. In particular, DISCO adopts the
innovative technology (e.g., link discovery agent, path
computation agent) to well discriminate heterogeneous inter-
domain links (e.g., high-capacity MPLS tunnels) and
improve the utilization of link bandwidth.

Approximate Algorithm: In [34], the authors efficiently
configure controllers in a multi-domain SDN to find the least
number of controllers for the network. They formulate the
multi-domain partition as a NP-hard problem and transfer the
problem to the Greedy Sub-Graph Cover Problem (GSGCP)
by abstracting domain as nodes. The authors then solve the
GSGCP with a modified approximate optimal solution, and
the simulation results demonstrate the solution achieves the

equivalent multi-domain partition and has an acceptable
computation complexity for any given network topology.

K Self-adaptive: Based on the spectral clustering [35], the
authors introduce a self-adaptive partition and placement
algorithm for controllers in wide area networks [36]. This
algorithm uses matrix perturbation theory to determine the
topology of domains and the optimal number of domains
automatically. The authors also present a Beacon-based test
framework and verify the algorithm’s validity in Internet2
OS3E topology.

SDN Partitioning (SDNP): In [37], the authors propose
new SDN-IP hybrid network architecture, named SDNP, for
multi-domain partition in large-scale SDN network. The
SDNP builds centralized control over a distributed routing
protocol by dividing the network into sub-domains with
SDN-enabled border nodes. SDNP can evenly partition the
topology and dynamically modify the size of domains.
Therefore, SDNP achieves high network control capabilities
with a few SDN-enabled routers.

We investigate and analyze the domain partition
techniques for multi-controller scalability. The results are
presented in Table 2.

IV.� MULTI-CONTROLLER CONSISTENCY
Multi-controller design can divide the entire network into
several domains, and each controller manages its own SDN
domain. To make sure that packets are transmitted correctly
in the network, the controllers must interact the domain
information with each other to keep the consistent view.
Therefore, controller consistency also becomes an important
issue for the multi-controller SDN.

The multi-controller must make a decision based on the
consistent and coherent network information. However,
during the data transmission, the out-sync between

controllers and concurrent strategic conflicts of controllers may lead to the inconsistency of the controller state.

Multi-controller consistency

Publish/Subscribe Mode [21]

Network Information Base (NIB) [22]

Fast Consensus Algorithm [40]

Consistence for Cross-Domain [41]

Controller state consistency

Control strategy consistency

Load Variance-based Synchronization
(LVS) [42]

Advanced Message Queuing Protocol
(AMQP) [33]

Customizable Consistency Generator
(CCG) [43]

Flow Configuration Scheme [44]

FIGURE 7. The multi-controller consistency solutions

Meanwhile, due to propagation delay and flow table order,
control strategies of multi-controller are easy to be
inconsistent, which would produce the packet loss and
service interruption. Both DIFANE [38] and DevoFlow [39]
improve the consistency of controller through adding the
partial control functions into SDN switch. However, this
action is contrary to the original design of SDN.

Based on the aforementioned analysis, in Fig. 7, we
classify the existing research results of multi-controller
consistency into two aspects: (1) consistency of controller
state; (2) consistency of control strategy. The controller state
consistency emphasizes on keeping the consistent local
domain view once the network state changes. The control
strategy consistency devotes to avoid the conflict of flow
tables pushed by controllers. Both two ways can effectively
guarantee the consistency of multi-controller.

A.�CONTROLLER STATE CONSISTECNY
When the network state changes, the controllers must have
the consistent view for the global network to make the
correct decision for networks, which require the controllers
with the consistent state [21] [22] [40-42].

Publish/Subscribe Mode: Based on the “publish/
subscribe” mode, HyperFlow [21] achieves consistent state
among controller via WheelFs distributed file system. This is
obviously due to WheelFs facilitates rapid prototyping and is
resilient against network partitioning. The “publish/
subscribe” mode has a network-wide scope and three channel
types (control channel: controllers advertise themselves
there; data channel: events of general interest published here;
individual controllers’ channels: send commands and replies
to a specific controller). If an event (e.g., OpenFlow
messages) that changes the network happens, the controller
that identifies the event will publish the event to switches.
Other controllers receive the published event and update their
network state to achieve status synchronization.

Network Information Base (NIB): Onix [22] stores the
network information in the NIB and writes and reads the

contents of NIB to synchronize the state of each controller.
As the control platform, Onix is responsible for giving the
control logic programmatic access to the network (reading
and writing network state). In order to scale to very large
networks (millions of ports) and to provide the requisite
resilience for production deployments, Onix instance is also
responsible for disseminating network state to other instances
within the cluster. When one controller node has been
changed in Onix, this information will be distributed among
NIBs.

Fast Consensus Algorithm: As a new fast consensus
algorithm, Fast Paxos-based Consensus (FPC) is proposed
based on a strong consistency model [40]. FPC creatively
defines three roles for controllers: listener, proposer, and
chairman. Through applying the voting mechanism, the
proposer can handle the request from the switch if receiving
acceptance votes from a majority of the controllers.
Moreover, each controller has a definite priority, and an
aging mechanism is applied to avoid the starvation for the
low priority. These settings could promise that FPC has
stable consensus control logic.

Consistency for Cross-Domain: In [41], the authors
consider the consistency of controller states in WAN. They
propose a consistent layer that actively and passively
snapshots the cross-domain control states to reduce the
complexities of service realization. The consistent layer is
applied and evaluated in the PlanetLab testbed by putting
OpenFlow switch implementation on the overlay networks
for evaluating performance in an enlarged WAN
environment. The results show this method has four
properties: (1) the scalability of the snapshot on large-scale
domains, (2) the reliability for dealing with the physical
network instabilities, (3) the responsiveness for reacting on a
few state changes of domains, (4) the security of cross-
domain control.

Load Variance-based Synchronization (LVS): In [42],
the authors propose a new type of controller state
synchronization scheme, Load Variance-based

Synchronization (LVS), to improve the load-balancing
performance in the multi-controller multi-domain SDN
network. Compared with PS (Periodic Synchronization)-
based schemes, LVS-based schemes conduct effective state
synchronizations among controllers only when the load of a
specific server or domain exceeds a certain threshold, which
significantly reduces the synchronization overhead of
controllers. The results of simulation show that LVS achieves
loop-free forwarding and good load-balancing performance
with much less synchronization overhead, as compared with
existing schemes.

We investigate and analyze the controller state consistency
techniques for multi-controller consistency in Table 3.

B.�CONTROL STRATEGY CONSISTECNY
The concurrent control strategy will bring about
inconsistency issue, which can be resolved by strategy rules
formed in the control layer. In order to avoid the involvement
of physical devices, the controller could combine the
strategies and use the fine-grained locking to ensure there are
no conflicts between different control strategies [33] [43]
[44].

Advanced Message Queuing Protocol (AMQP): in [33],
the authors propose DISCO, an extensible DIstributed SDN
COntrol plane able to deal with the distributed and
heterogeneous nature of modern overlay networks. DISCO
sets a messenger module and four agents, including
monitoring, reachability, connectivity, and reservation. The
messenger module is based on the AMQP [86] and its
function is to identify neighboring controllers and establish a
distributed publish/subscribe channel. Different agents use
this channel to share network information with other
controllers. Each agent publishes messages according to
controller status and publishes the synchronous messages.
Finally, the results demonstrate that DISCO can adapt to
heterogeneous network topologies while being resilient
enough to maintain the consistency of control strategy.

Customizable Consistency Generator (CCG): In [43],
the authors propose CCG, a fast and generic framework to
support customizable consistent policies during network
updates. CCG adopts the hierarchical strategy, which divides
the concurrent strategies into an organized tree. In this tree,
each node can achieve the independent forwarding principle.
They put in place the self-defined conflict processing for
each node, so the entire processing will be turned into a
reverse search tree. Mininet and physical testbed evaluations
prove strategy’s capability to achieve various types of
consistency, such as path and bandwidth properties, with
zero switch memory overheads.

Flow Configuration Scheme: similarly, in [44], the
authors research control strategy from the perspective of flow
configuration, and they combine the flow allocation cost to
minimize the number of control strategies.

We investigate and analyze the control strategy
consistency techniques for multi-controller consistency in
Table 4.

V.� MULTI-CONTROLLER RELIABILITY
Using multi-controller resolves the single point of failure
problem for the controller, but it cannot guarantee the high
reliability of the control plane. The connection links among
switches and controllers have limited capacity. If these links
experience congestion, interruption or failure, controllers and
switches cannot normally communicate with each other,
leading to the isolation among controllers and switches.
Additionally, controllers could be failed or overwhelmed by
malicious attacks (e.g., excessive packet-in requests). Thus,
the multi-controller reliability is also important for actual
deployment of multi-controller. In Fig. 8, we classify the
existing research results of multi-controller reliability into
two aspects: (1) control path reliability; (2) controller node
reliability. Control path reliability considers multi-controller
design from the perspective of reliable network links. On the
contrary, the controller node reliability faces on the multi-
controller design from the perspective of reliable and
dependable network nodes.

A.�CONTROL PATH RELIABILITY
Control actions (e.g., Packet-in sending, flow entry
distribution) must be transmitted through the control paths.
Therefore, optimizing control path is an efficient method to
achieve the reliability of controllers [45-48].

Reliability-Optimized Scheme: In [45], the authors
define a new metric, named “expected percentage of control
path loss”, to characterize the reliability of SDN. First, they
analyze the reliability framework of the control plane and the
control path. Then, the reliability-aware control placement is
proved as an NP-hard problem. Moreover, several placement
algorithms and their advantages are examined based on the
actual topology. The authors demonstrate that reliability-
aware controller can effectively improve the reliability of the
control plane without introducing unacceptable latencies.

Fast Failover Design: In [46], the authors achieve fast
failover for control traffic when controllers fail. The authors
propose a protection metric for the connections between
controllers and switches, and take into account both distance
and resiliency factors: the algorithm builds a routing tree that
results in a short distance and high resiliency in the
connection between the switches and the controller. The
solution suggests pre-configuring some backup outgoing
links for switches and re-connecting switches to controllers if
a link failure is detected. Therefore, this optimization scheme
can be used to select the best controller location for
maximizing the number of protected switches.

Survivor: Survivor is an enhanced controller placement
strategy that reduces connectivity loss and enables smart
recovery to improve the SDN survivability [47]. It enhances
connectivity by employing path diversity, adds the capacity

awareness for controllers and builds the failover mechanism
through the methodology for composing the backups.

Survivor also has the strong topological adaptability and can
be run on any given network topology.

Multi-controller reliability

Reliability-Optimized Scheme [45]

Fast Failover Design [46]

Survivor [47]

Control Path Management [48]

Control path reliability

Robust Control [49]

Optimal Controller Selection [50]

Capacitated Controller [51]

Controller node reliability

FIGURE 8. The multi-controller reliability solutions

Control Path Management: Control Path Management

framework [48] addresses the problem of reliability from the
perspective of the control path. The framework designs two
strategies: (1) Reliable Controller Placement-Disjoint Control
Path (RCP-DCP), which protects the control plane against
single link and node failures by connecting switches to a
controller over two disjoint control paths, and (2) Reliable
Controller Placement-Different Controller Replicas (RCP-
DCR), which provides seamless failover by connecting each
switch to two different controller replicas over two disjoint
paths. By combining the controller placement problem with
resilient routing principle, both two strategies minimize the
latency of the control plane and simplify the management of
the control path.

We investigate and analyze the control path reliability
techniques for multi-controller reliability in Table 5.

B.�CONTROLLER NODE RELIABILITY
If a node fails, it can be quickly mapped or migrated to
another node, or flows are rerouted on new paths disjoint
with the node. However, different from traditional network
nodes, a controller is responsible for traffic management in a
network or domain and cannot be migrated and remapped. If
a controller fails or crashes, the operation of the network
controlled by the controller would be severely interrupted.
Therefore, researching the controller node reliability has an
important effect on multi-controller reliability [49-51].

Robust Control: in [49], the authors design an algorithm
called K-Critical that places controllers to achieve a robust
control. K-Critical discovers the minimum number of
controllers and their locations to create a robust control
topology that deals robustly with failure and balances the
load among the selected controllers. This solution finds the
best controller location as the network scale dynamically
increases or decreases. However, it neglects several network

performance metrics (e.g., controller throughput, link
bandwidth, processing delay).

Optimal Controller Selection: in [50], the authors
combine Greedy method and simulated annealing to optimize
the selection of controller nodes to achieve the high
reliability of the control plane. In the proposed optimization
problem, the aim is to minimize the transmission paths
between switches and controllers, and the constraints involve
linking distance and latency. The results show that proposed
solution Greedy-SA improves the reliability of the control
plane and manages more switches with few controllers.
However, this heuristic algorithm is only practically feasible
for small and medium-size networks and cannot satisfy the
time and resource demand for large-scale networks.

Capacitated Controller: in [51], the authors formulate a
mathematical model for the capacitated controller placement
that aims to reduce the worst-case latency between switches
and controllers to deploy a limited number of controllers.
Meanwhile, the authors also introduce a variant of the
proposed model that minimizes the worst-case latencies with
and without failure together. The results show that this
controller placement that plans ahead for the failure result in
much lower latency compared with the placement without
planning ahead. However, they do not provide detailed
algorithm design for implementing the strategy.

We investigate and analyze the controller node reliability
techniques for multi-controller reliability in Table 6.

VI.� MULITI-CONTROLLER LOAD BALANCING
The introduction of multi-controller partitions the network
into several SDN domains, while the controllers monitor the
local switches in the domain, respectively. However, due to
the network traffic variation and the static mapping between
switches and controllers, it is likely to produce overloaded
controller and underloaded controller in the network. Further,

imbalanced load distribution among controllers will seriously
degrade the network performance (e.g., high packet loss rate,

high response time of controller and low controller
throughput). Therefore, for a given multi-controller SDN

Multi-controller load balancing

BalanceFlow [52]

Cooperative Load Balancing [53]

Cluster Vector(CV) [54]

Dormant Mechanism Model [55]

Controller clustering

Elastic Control (ElatiCon) [56]

Game-Theoretic Approach [57]

Distributed Decisions Scheme [58]Switch migration

Load Informing Strategy [59]

 Balanced Controller (BalCon) [60]
FIGURE 9. The multi-controller load balancing solutions

network, it is essential to ensure the nice load balancing
performance of multi-controller. By investigating the
literature, we conclude that the existing research solves the
problem in two ways: (1) controller clustering; (2) switch
migration, as is illustrated in Fig. 9. As a comparison,
controller clustering pays greater attention to architecture
design by constructing the dynamic controller resource pool,
while the switch migration concentrates on adjusting the
distribution of controller loads to keep load balancing.

A.�CONTROLLER CLUSTERING
The state-of-the-art works propose controller clustering [52-
55] to achieve load balancing. Generally, a network contains
one super controller and multiple regular controllers, which
construct the controller resources pool. The super controller
is exclusively used in managing all controller loads and
periodically collects the number of flows in each domain
from the regular controllers. A regular controller manages its
domain and uploading load information with a cross-
controller interaction system periodically. When the traffic
load surges, the super controller executes the load balancing
algorithm and maps each switch to a specific controller. By
controller clustering, the load information can be centralized
collected, and the super controller makes the balanced load
management without producing the other superfluous
overheads between regular controllers.

BalanceFlow: BalanceFlow [52] is a typical controller
clustering solution based on hierarchical deployment. The
main advantage of this method is flexible tuning the flow
requests handled by each controller without introducing extra
propagation latencies. It follows the multi-controller feature
in the OpenFlow 1.2. All controllers in the BalanceFlow
maintain their own load information and publish this
information periodically to each other through a cross-
controller communication system. Upon traffic condition

changes, one of the BalanceFlow controllers is selected as the
super controller, which partitions the traffic and reallocates
different flow setups to appropriate controllers. BalanceFlow
also proposes a reasonable extension action for switches:
CONTROLLER X action. By using this extension action, the
overloaded controller will reduce the process of flow request,
and those requests will be allocated to the controller with
light load dynamically.

Cooperative Load Balancing: similar to BalanceFlow,
[53] and [54] also define a super controller to manage
controllers’ loads. Differently, [53] introduces Cooperative
Load Balancing Scheme for hierarchical controller
deployment (COLBAS) relying on controller cooperation via
cross-controller communication. The main thought of this
scheme is similar to BalanceFlow, but the authors adopt a
Greedy algorithm to reassign the controllers’ loads. In
particular, COLBAS can keep the system performance high
and the load reassigning cost low.

Cluster Vector (CV): in [54], the authors simplify the
load balancing operation with a self-defined label CV, which
is a vector that contains addresses of the controllers in the
same cluster. Meanwhile, it also breaks the dependency
between the super controller and regular controllers. The
proposed design consists of two levels: high-level operations
in a super controller and low-level operations in a regular
controller. Each controller has its own CV, and a regular
controller finds the address of other regular controllers from
its CV and uses the address to query other regular controllers
about their load.

Dormant Mechanism Model: in [55], the authors design
a dormant mechanism model based on flat deployment for
multi-controller to save network resource, reduce energy
consumption and improve the utilization of controller. The
key idea is to let some idle controllers enter the dormant state
to be inactive or power off when the network’s load is light.

The authors propose a genetic algorithm to locate the optimal
values of various parameters (e.g., latency, traffic, distance)

to minimize system cost for the deployment decision-making
and use queuing model to analyze the scheme’s performance.

Switch X

Initial Master
Controller Node A

Final Master
Controller Node B

Phase 1 Phase 2 Phase 3 Phase 4

Controller A owns Switch X Controller B owns Switch X

FIGURE 10. Switch migration process

We investigate and analyze the controller clustering

techniques for multi-controller load balancing in Table 7.

B.�SWITCH MIGRATION
Benefit from three roles of controllers (OpenFlow 1.2),
researchers propose balancing multi-controller loads through
switch migration [56-60] based on dynamic multi-controller
architecture. In a domain, when the controller overloads or
the flow requests of switches increase sharply, some switches
would be reassigned to the controller of the other domain
with a light load. The core idea of switch migration is to
dynamically change the relationships between switches and
controllers by migrating switches from the overloaded
controller to the underloaded controller.

Fig. 10 shows a complete description of the switch
migration procedure, which consists of four phases. In phase
1, it achieves changing the role of the target to equal. The
initial master (A) sends a start migration message to B
through controller-to-controller channel. Then, (B) sends
Role-quests to the switch that needs to be migrated. After (B)
receives Role-Reply from the switch, it notifies (A) that the
role changing has accomplished. After (B) changes its role to
equal, it receives asynchronous messages from the switch,
but does not provide a response. In phase 2, it inserts and
removes a dummy flow. (A) firstly sends Flow-mod to (X) to
add a new flow entry, which does not match any packet.
Then, it sends another Flow-mod to delete the entry. In
return, the switch can send a Flow-removed message to
controllers because of (B) is an equal controller right now.
The Flow-removed offers a transfer of ownership for the
switch (X) from (A) to (B). Besides, a barrier message is
requested after the insertion of the dummy flow. In phase 3,
it flushes pending requests for a barrier. (A) transmits a
Barrier-request and waits for the Barrier-reply, only after
which it sends “end migration” to the final master (B). In
phase 4, it makes the target controller final master. The final
master (B) sets its role to master for the switch by sending a

Role-request message to the switch. Finally, it updates the
distributed data store.

Core Controller Module

Application 1 Application 2 ...

Core Controller Module

Application 1 Application 2 ...

Distributed Data Store (e.g. Hasekast)

Load
Measurement

Load
Balance

Scale up
Scale down...

Actions:
• Migrating switch
• Add New Controller
• Remove Controller

Physical network infrastructure

Load adaption decision

FIGURE 11. Elastic framework

Elastic Control (ElatiCon): ElastiCon [56] is the first

switch migration framework based on dynamic multi-
controller architecture. Fig. 11 sets the complete framework
of ElastiCon, which contains three modules: load
measurement modules, load adaptation decision modules,
and action modules. The load measurement module collects
the load of each controller and sends the load information to
load adaptation decision module, which decides load
allocation among controllers. The action module conducts
control actions (e.g., migrating switch, adding and removing
controllers) to achieve the dynamic control of controllers and
switches. ElastiCon periodically monitors the load on each
controller, detects imbalances, and automatically balances the
load across controllers by migrating switches from the
overloaded controller to a lightly loaded one. Meanwhile, in
order to harmonize the migration, a novel switch migration

protocol is designed for enabling such load shifting, which
conforms to the OpenFlow standard. Finally, a prototype of
ElastiCon is built and its performance is evaluated based on
Mininet. Therefore, ElastiCon ensures predictable controller
performance even under highly dynamic workloads.

Game-Theoretic Approach: In [57], the authors solve the
switch migration algorithm with game theory. By taking light
controllers as the game players and switches as the
commodities, a zero-sum game model is exploited to emulate
the competitions for migrating switches among overloaded
controllers. The controller selects the optimal elements to
implement the transaction by increasing or decreasing the
commodity value of the switch. The game model is fast and
efficient to achieve switch migration but is not suitable for
large-scale network due to the high complexity of algorithm
design.

Distributed Decisions Scheme: In [58], the authors define
the Switch Migration Problem (SMP) and a Network Utility
Maximization (NUM) problem with the objective of
maximizing the number of serving requests under the
available control resource. Distributed Hopping Algorithm
(DHA) is designed to achieve optimal switch migration via
Log-Sum-Exp function. The DHA procedure is a time-
reversible markov chain process. The simulation results show
DHA outperforms existing schemes by reducing flow setup
time and improving the average utilization ratio of controller.

Load Informing Strategy: In [59], the authors present a
load balancing mechanism based on a load informing
strategy for controllers. Emphatically, it builds distributed
decision architecture, including four components that were
load measurement, load informing, and balancing decision
and switch migration. In this strategy, each controller can
periodically actively report its load information to other
controllers, and it also handles and stores the load
information from others. While the periodical active load
informing can decrease the decision delay, it also causes
additional processing and communication overhead in the
control plane. Especially, when the current load value does
not change much compared to the last value, reporting it to
other controllers is a redundant operation.

Balanced Controller (BalCon): BalCon is a heuristic
solution proposed in [60]. It is based on two key observation:
(1) an effective switch migration should consider the
communication patterns of the SDN switches, (2) the switch
migration should be processed at the granularity of clusters:
switches with strong connections, which has the shorter
distance to controller, should always be assigned to the same
controller. BalCon is achieved by a realistic prototype based
on Ryu, and the results show BalCon significantly reduces
the number of migrating switches.

We investigate and analyze the controller clustering
techniques for multi-controller load balancing in Table 8.

VII.� FUTURE WORK

The existing research focuses on solving challenges on multi-
controller scalability, reliability, consistency and load
balancing. However, there are still several problems that
deserve deep research. We briefly discuss the research
emphasis and development direction of multi-controller in
the future.

(1) The development of control software
Control software is an important application in the control

plane, and its main form is the controller. Therefore,
implementing multi-controller architecture is greatly related
to the development of control software. Based on the existing
controller versions, simplifying the deployment way and
improving compatibility are the most important tasks for the
exploitation of control software that supports multi-controller
architecture.

(2) Controller safety
The controller plays a critical role in monitoring and

dispatching the network traffic, but the existing multi-
controller architecture is lack of safety mechanism and
anomaly detection. The hostile attack is not difficult to break
the protection measures of controllers. Therefore, Enhancing
the anti-attack performance of multi-controller architecture is
another important research topic.

(3) Multi-controller architecture
In the initial phase, application scenarios of SDN mostly

focus on colleges, enterprises or data centers, and SDN is
lack of deployment experience in the large-scale network due
to the constraint of scalability. The introduction of multi-
controller provides the possibility for the widespread
deployment of SDN. Unfortunately, the actual deployment of
multiple controllers still lacks relevant technical guidance.
There is still a long way to go before the multi-controller is
promoted.

(4) Heterogeneous multi-controller
The existing researches about the heterogeneous controller

focus mainly on security and convergence area. However, in
analogy with the homogeneous multi-controller, the
exploration of the heterogeneous multi-controller must be
applied into more research fields, such as availability and
consistency. Meanwhile, the performance interruption
between different types of controllers also should get more
attention.

VIII.� CONCLUSION
The design and performance of the control plane are the
critical part of SDN. In order to achieve the large-scale
application of SDN, the control plane has evolved from the
single centralized controller to multiple controllers. In this
paper, based on the existing literature, we first provide an
overview of multi-controller, including the origin of multi-
controller and its challenges. Then, we summarize the main
research challenges of multi-controller: scalability,
consistency, reliability, and load balancing. Meanwhile, we
also consider the corresponding solution for these challenges.

Further, we give some promising research problems of multi-
controller in the future.

REFERENCES
[1] H. c. Wang and H. s. Doong, “Validation in Internet Survey

Research: Reviews and Future Suggestions,” System Sciences,
2007. HICSS 2007. 40th Annual Hawaii International Conference
on, Waikoloa, HI, 2007, pp. 243-243.

[2] A. M. Ahmed, T. Qiu, F. Xia, B. Jedari and S. Abolfazli, “Event-
Based Mobile Social Networks: Services, Technologies, and
Applications,” in IEEE Access, 2014, vol. 2, pp. 500-513.

[3] T. Benson, A. Akella, and D. Maltz, “Unraveling the complexity of
network management,” in Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Implementation,
ser. NSDI’09, Berkeley, CA, USA, 2009, pp. 335–348.

[4] A. Ghodsi, S. Shenker, T. Koponen, A. Singla, B. Raghavan, and J.
Wilcox, “Intelligent design enables architectural evolution,” in
Proceedings of the 10th ACM Workshop on Hot Topics in
Networks, ser. HotNets-X. New York, NY, USA: ACM, 2011, pp.
3:1–3:6.

[5] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker, “Software-defined internet architecture: Decoupling
architecture from infrastructure,” in Proceedings of the 11th ACM
Workshop on Hot Topics in Networks, ser. HotNets-XI. New York,
NY, USA: ACM, 2012, pp. 43–48.

[6] FEAMSTER N, REXFORD J, ZEGURA E. “The road to SDN: an
intellectual history of programmable networks,” ACM Sigcomm
Computer Communication Review, vol. 44, no. 2, pp. 87-98.

[7] NADEAU T D, GRAY K. “SDN: Software Defined Networks,”
O’Reilly Media, Inc, 2013.

[8] V. López, O. González de Dios, B. Fuentes, M. Yannuzzi, J. P.
Fernández-Palacios and D. López, “Towards a network operating
system,” OFC 2014, San Francisco, CA, 2014, pp. 1-3.

[9] Ryu. [Online]. Available: http://osrg.github.com/ryu/
[10] Zehua Guo, Ruoyan Liu, Yang Xu, Andrey Gushchin, Anwar Walid

and H. Jonathan Chao, “STAR: Preventing flow-table overflow in
software-defined networks,” Computer Networks, 2017.

[11] L. Sidki, Y. Ben-Shimol and A. Sadovski, “Fault tolerant
mechanisms for SDN controllers,” 2016 IEEE Conference on
Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, 2016, pp. 173-178.

[12] Oktian Y E, Lee S G, Lee H J, et al. “Distributed SDN controller
system: A survey on design choice,” Computer Networks, 2017,
vol. 121, pp. 100-111.

[13] Y. Jia, N. Hua, Y. Yu, Y. Li and X. Zheng, “Experimenting with
multi-controller collaboration for large-scale intra-data center
networks,” 2017 Optical Fiber Communications Conference and
Exhibition (OFC), Los Angeles, CA, 2017, pp. 1-3.

[14] Karakus M, Durresi A. “A survey: Control plane scalability issues
and approaches in Software-Defined Networking (SDN),”
Computer Networks, 2017, vol. 112, pp. 279-293.

[15] Xia W, Wen Y, Foh C H, et al. “A Survey on Software-Defined
Networking,” IEEE Communications Surveys & Tutorials, 2015,
vol. 17, no. 1, pp. 27-51.

[16] Kreutz D, Ramos F M V, Esteves Verissimo P, et al. “Software-
Defined Networking: A Comprehensive Survey,” Proceedings of the
IEEE, 2014, vol. 103, no. 1. pp. 10-13.

[17] Songtao, WANG, Konglin, et al. “A survey of network update in
SDN,” Frontiers of Computer Science, 2017, vol. 11, no. 1, pp. 4-
12.

[18] Huang T, Yu F R, Zhang C, et al. “A Survey on Large-scale
Software Defined Networking (SDN) Testbeds: Approaches and
Challenges,” IEEE Communications Surveys & Tutorials, 2016, pp.
1-1.

[19] Rawat D B, Reddy S R. “Software Defined Networking
Architecture, Security and Energy Efficiency: A Survey,” IEEE
Communications Surveys & Tutorials, 2017, vol. 19, no. 1, pp. 325-
346.

[20] https://www.scribd.com/document/117471434/OpenFlow-1-2.
[21] D. Dotan and R. Y. Pinter, “HyperFlow: an integrated visual query

and dataflow language for end-user information analysis,” 2005

IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC'05), 2005, pp. 27-34.

[22] R. Y. Shtykh and T. Suzuki, “Distributed Data Stream Processing
with Onix,” 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing, Sydney, NSW, 2014, pp. 267-268.

[23] A. M. Al-Sadi, A. Al-Sherbaz, J. Xue and S. Turner, “Routing
algorithm optimization for software defined network WAN,” 2016
Al-Sadeq International Conference on Multidisciplinary in IT and
Communication Science and Applications (AIC-MITCSA),
Baghdad, 2016, pp. 1-6.

[24] M. Hungyo and M. Pandey, “SDN based implementation of
publish/subscribe paradigm using OpenFlow multicast,” IEEE
International Conference on Advanced Networks and
Telecommunications Systems (ANTS), Bangalore, 2016, pp. 1-6.

[25] S. H. Yeganeh and Y. Ganjali, “Kandoo: A framework for efficient
and scalable offloading of control applications,” 1st Workshop
HotSDN, 2012, pp. 19-24.

[26] B. Heller, R. Sherwood, and N. McKeown, “The controller
placement problem,” 1st Workshop HotSDN, 2012, pp. 7–12.

[27] H. K. Rath, V. Revoori, S. M. Nadaf and A. Simha, “Optimal
controller placement in Software Defined Networks (SDN) using a
non-zero-sum game,” IEEE International Symposium on a World of
Wireless, Mobile and Multimedia Networks, Sydney, NSW, 2014,
pp. 1-6.

[28] A. Ksentini, M. Bagaa, T. Taleb and I. Balasingham, “On using
bargaining game for Optimal Placement of SDN controllers,” 2016
IEEE International Conference on Communications (ICC), Kuala
Lumpur, 2016, pp. 1-6

[29] A. Sallahi and M. St-Hilaire, “Optimal Model for the Controller
Placement Problem in Software Defined Networks,” in IEEE
Communications Letters, 2015, vol. 19, no. 1, pp. 30-33.

[30] Y. Fu et al., “A Hybrid Hierarchical Control Plane for Flow-Based
Large-Scale Software-Defined Networks,” in IEEE Transactions on
Network and Service Management, 2015, vol. 12, no. 2, pp. 117-
131.

[31] F. Yeung, “Internet 2: scaling up the backbone for R&D,” IEEE
Internet Computing, 1997, vol. 1, no. 2, pp. 36-37.

[32] B. Soper and J. Musacchio, “A non-zero-sum, sequential detection
game,” 2015 53rd Annual Allerton Conference on Communication,
Control, and Computing (Allerton), Monticello, IL, 2015, pp. 361-
371.

[33] K. Phemius, M. Bouet and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” 2014 IEEE Network Operations and
Management Symposium (NOMS), Krakow, 2014, pp. 1-4.

[34] G. Wang, Z. Zhao, J. Peng, R. Li, “An approximate algorithm of
controller configuration in multi-domain SDN architecture,” 9th
International Conference on Communications and Networking in
China, Maoming, 2014, pp. 601-605.

[35] P. Xiao et al., “A Traffic Classification Method with Spectral
Clustering in SDN,” 2016 17th International Conference on Parallel
and Distributed Computing, Applications and Technologies
(PDCAT), Guangzhou, China, 2016, pp. 391-394.

[36] Peng, XIAO, Zhi-yang, et al. “A K self-adaptive SDN controller
placement for wide area networks,” Frontiers of Information
Technology & Electronic Engineering, 2016, vol. 17, no 7, pp. 620-
633.

[37] M. Caria, A. Jukan and M. Hoffmann, “SDN Partitioning: A
Centralized Control Plane for Distributed Routing Protocols,” in
IEEE Transactions on Network and Service Management, 2016, vol.
13, no. 3, pp. 381-393.

[38] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable flow-
based networking with difane,” SIGCOMM Comput. Commun.
2014, Rev., vol. 41, no. 4, pp. 1-6.

[39] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “DevoFlow: scaling flow management for
highperformance networks,” Comput. Commun. Rev., 2011, vol.
41, no. 4, pp. 254-265.

[40] Ho, Chia Chen, K. Wang, and Y. H. Hsu. "A fast consensus
algorithm for multiple controllers in software-defined networks."
International Conference on Advanced Communication Technology
IEEE, 2016, pp. 1-1.

[41] ZHOUBoyang, WUChunming, GAOWen, et al. “Achieving
Consistence for Cross -Domain WAN Control in Software-Defined
Networks,” China Communication, 2015, vol. 12, no. 10, pp. 136-
146.

[42] Guo, Zehua, et al. "Improving the performance of load balancing in
software-defined networks through load variance-based
synchronization." Computer Networks 68 (2014): 95-109.

[43] X. Xiong and J. Fu, “Active Status Certificate Publish and
Subscribe Based on AMQP,” 2011 International Conference on
Computational and Information Sciences, Chengdu, China, 2011,
pp. 725-728.

[44] Zhou W, Jin D, Croft J, et al. “Enforcing customizable consistency
properties in software-defined networks,” Usenix Conference on
Networked Systems Design and Implementation. USENIX
Association, 2015, pp. 73-85.

[45] Y. Hu, W. Wang, X. Gong, X. Que and S. Cheng, “On reliability-
optimized controller placement for Software-Defined Networks,” in
China Communications, 2014, vol. 11, no. 2, pp. 38-54.

[46] N. Beheshti and Y. Zhang, “Fast failover for control traffic in
Software-defined Networks,” 2012 IEEE Global Communications
Conference (GLOBECOM), Anaheim, CA, 2012, pp. 2665-2670.

[47] L. F. Müller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary,
“Survivor: An enhanced controller placement strategy for improving
SDN survivability,” 2014 IEEE Global Communications
Conference, Austin, TX, 2014, pp. 1909-1915.

[48] S. Song, H. Park, B. Y. Choi, T. Choi and H. Zhu, “Control Path
Management Framework for Enhancing Software-Defined Network
(SDN) Reliability,” in IEEE Transactions on Network and Service
Management, 2017, vol. 14, no. 2, pp. 302-316.

[49] Y. Jiménez, C. Cervelló-Pastor and A. J. García, “On the controller
placement for designing a distributed SDN control layer,” 2014 IFIP
Networking Conference, Trondheim, 2014, pp. 1-9.

[50] Sahoo, Kshira Sagar, et al. "Optimal controller selection in Software
Defined Network using a Greedy-SA algorithm." IEEE Conference
Indiacom IEEE, 2016.

[51] B. P. R. Killi and S. V. Rao, “Optimal Model for Failure Foresight
Capacitated Controller Placement in Software-Defined Networks,”
in IEEE Communications Letters, 2016, vol. 20, no. 6, pp. 1108-
1111.

[52] Hu Y, Wang W, Gong X, et al. “BalanceFlow: Controller load
balancing for OpenFlow networks,” IEEE International Conference
on Cloud Computing and Intelligent Systems, 2013, pp. 780-785.

[53] H. Selvi, G. Gür and F. Alagöz, “Cooperative load balancing for
hierarchical SDN controllers,” 2016 IEEE 17th International
Conference on High Performance Switching and Routing (HPSR),
Yokohama, 2016, pp. 100-105

[54] H. Sufiev and Y. Haddad, “A dynamic load balancing architecture
for SDN,” 2016 IEEE International Conference on the Science of
Electrical Engineering (ICSEE), Eilat, 2016, pp. 1-3.

[55] F. Yonghong, B. Jun, W. Jianping, C. Ze, W. Ke and L. Min, “A
dormant multi-controller model for software defined networking,”
China Communications, 2014, vol. 11, no. 3, pp. 45-55.

[56] A. Dixit, F. Hao, S. Mukherjee, T. V. Lakshman and R. R.
Kompella, “ElastiCon; an elastic distributed SDN controller,” 2014
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), Marina del Rey, CA, 2014, pp.
17-27.

[57] Hongchang Chen, Guozhen Cheng, Zhiming Wang. “A Game-
Theoretic Approach to Elastic Control in Software-Defined
Networking,” China Communication, 2016, vol. 13, no. 5, pp. 103-
109.

[58] Cheng G, Chen H, Wang Z, et al. “DHA: Distributed decisions on
the switch migration toward a scalable SDN control plane,” Ifip
NETWORKING Conference. IFIP, 2015, pp. 473-477.

[59] Yu J, Wang Y, Pei K, et al. “A load balancing mechanism for
multiple SDN controllers based on load informing strategy,”
Network Operations and Management Symposium, 2016, pp. 1-6.

[60] Cello M, Xu Y, Walid A, et al. “BalCon: A Distributed Elastic SDN
Control via Efficient Switch Migration,” IEEE International
Conference on Cloud Engineering, 2017, pp. 40-50.

TABLE 1. An overview of current controller placement techniques for multi-controller scalability

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Heller et
al. [26]

Flat Studying the impact of
propagation latency on multi-
controller placement.

K-center Low

• The analysis shows that deploying
one controller is sufficient to meet
the latency constraint for the most
topologies.

• Adding controllers in the network
could effectively reduce both
average and worst-case latency.

√ √ √ √

Rath et
al. [27]

Flat Minimizing the packet drops
and delay, and saving the
cost of deployment and
operation.

Non-Zero-
Sum game

Low • Packet drops can be avoided by the
addition of new controllers and/or
offloading.

√ √ × ×

Ksentini
et al. [28]

Flat Minimizing the propagation
latency and communication
overhead.

Bargaining
game

High • The proposed solutions show the
better performance in reducing
communication overhead of switch-
controller and controller-controller.

• The solutions can also achieve the
Pareto-Optimal efficiency in the
network.

√ √ × ×

Sallahi et
al. [29]

Flat Minimizing the network cost
that includes (installing
controllers, linking switches
to controllers and linking the
controllers).

Linear
programmin

g

Low

• The results show that the proposed
model can be used to design the
new SDN network, or migrate the
traditional network into SDN.

× √ √ ×

Fu et al.
[30]

Hierarchical Reducing the computational
complexity of the control
plane by several orders of
magnitude and planning the
fast reroute for the flow.

Heuristic
approach
and graph

theory

Low • The flow set-up rate of the
proposed solutions is better than
Floodlight.

• If there are 3 hops from the source
host to the destination host, the
proposed solutions cost 8.6 ms to
reroute the data flow.

×

√ √ ×

TABLE 2. An overview of current domain partition techniques for solving multi-controller scalability

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Phemius
et al.
[33]

Flat Studying the resilient, scalable and
easily extensible SDN control plane
by designing domain organization.

Service agent High • The proposed solutions
could achieve the
dynamic network
partition for the most
topologies.

× × × √

Wang et
al. [34]

Flat Minimizing the number of
controllers needed in the network.

Interdependence
graph

Low • The number of controllers
needed to be deployed in
the network is reduced by
35%.

• The compute complexity
of the proposed algorithm
is less than O(n2).

× × × √

Peng et
al. [36]

Flat Partitioning a large network into
several small SDN domains for
improving the scalability.

Matrix theory Low • Results show the
controller latency
becomes more balanced
in the network.

• The throughput has been
improved about 10%,
compared with the
average-latency
placement under the
realistic traffic.

× × √ √

Caria et
al. [37]

Flat Balancing the network topology
partition and designing the network
management schemes.

Heuristic
approach

High • The minimum capacity
requirements of
controllers have been
reduced about 25.3%.

• The link utilization of the
proposed schemes is close
to 60%.

√ × × ×

TABLE 3. An overview of current controller state consistency techniques for solving multi-controller consistency

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Dotan et al.
[21]

Flat Achieving the consistent state
among controller via WheelFs
distributed file system.

Publish/subscribe
mode

High • The proposed method
guarantees the bounded
window of inconsistency,
if network changes occur
at a rate < 1000 event/sec.

√ √ √ √

Shtykh et al.
[22]

Flat Providing a general API for
control plane, allowing
controllers to make trade-offs
for consistency.

Structure
optimization

High • The controller with the
proposed API can handle
more than 24,000 Packet-
in messages per second.

• The solutions take 120 ms
at most to repair the
tunnel once the failure has
been detected.

× √ × √

Ho et al. [40] Flat Reaching a consistent network
state among SDN controllers to
provide strong consistency.

Consensus
Algorithm

High • The proposed solution has
lower average consensus
time (35.3% lower) than
Raft protocol.

√ √ × ×

ZHOU et al.
[41]

Flat Reducing the complexity of the
cross-domain control.

Consistence
layer

High • Results show that the
active and passive
snapshots are executed
with the mean times of
1.873s and 105ms in 135
controllers.

× × × √

Guo et al.
[42]

Flat Reducing the synchronization
overhead of controllers.

Variance
synchronization

High • The proposed solutions
can provide the loop-free
forwarding and keep the
synchronization overhead
in the low level.

× √ √ √

TABLE 4. An overview of current control strategy consistency techniques for solving multi-controller consistency

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Phemius et
al. [33]

Flat Coping with the distributed and
heterogeneous nature of modern
overlay networks.

Service agent High • The proposed scheme can
provide a consistent
network view by inter-
domain agent, which has
low latency and high
stability.

× × × √

Xiong et
al. [43]

Hierarchical Supporting customizable consistent
policies during network updates.

Policy tree High • When the network
updates, it can provide
the update time that is
less than 100ms.

• The consistent state can
stay longer even if the
network has node or link
failures.

√ √ × √

Zhou et al.
[44]

Flat Reducing the task of synthesizing
an update plan under the constraint
of a given consistency policy.

Uncertainty-
aware model

High • The proposed solutions
can complete the different
types of consistency
(path, bandwidth), which
has zero switch memory
overhead.

• The update complete time
is close to the optimal
solutions (100 ms).

× × × √

TABLE 5. An overview of current control path reliability techniques for solving multi-controller reliability

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Hu et al.
[45]

Flat Maximizing the reliability of SDN
control networks.

Heuristic
approach

High • When placing only one
controller, it can produce
the optimal reliability.

• When placing three to four
controllers, the average
and worst-case latencies
has been reduced by
13.7% and 13.8%,
respectively.

√ × × √

Beheshti et
al. [46]

Flat Maximizing the possibility of fast
failover once the connection between
switches and controller breaks.

Greedy
approach

Low • The reliability
improvement is between
51% and 100%, where all
nodes are protected.

• The average path length of
the proposed solutions is
less than Shortest Path
Tree’s.

√ √ √ ×

Müller et al.
[47]

Flat Designing the SDN control plane,
considering the path diversity,
capacity, and failover mechanisms.

Linear
programm

ing

Low • The results show the
probability of connectivity
loss is still around 80%
when the chance of failure
is 60%.

× × × √

Song et al.
[48]

Flat Minimizing the length of control
path to enhance SDN reliability.

Cluster
approach

High • When using the
registration facility, the
unsynchronized and
redundant control
messages can be filtered.

• The recovery time of
controller failure has been
reduced 10ms at least.

√ × √ ×

TABLE 6. An overview of current controller node reliability techniques for solving multi-controller reliability

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Jiménez et
al. [49]

Hierarchical Studying the minimum number of
controllers and their location to
create a robust control topology that
deals robustly with failures.

K-center High • In terms of the sparse
networks, the proposed
solutions show that five
controllers are the
optimal choice.

• In terms of the dense
network, one controller is
an optimal choice,
considered with
controller latency.

× × × √

Sahoo et
al. [50]

Flat Deciding where to place the
controllers with a limited amount of
resources within the network.

Greedy
approach

High • Result shows that the
average delay gained by
the proposed solution is
always relatively stable
compared to simulated
annealing.

× × √ √

Killi et al.
[51]

Flat Minimizing the worst-case latency
between the switches and their Kth
reference controllers.

Linear
programming

Low • The worst latency has
been reduced by 15.3%
and 17.8% in failure and
no-failure scene,
respectively.

• As the number of
controllers increases, the
proposed solution can
minimize the probability
of network congestion.

× × × √

TABLE 7. An overview of current controller clustering techniques for solving multi-controller load balancing

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario
Enterprise DC Cloud WAN

Hu et al.
[52]

Flat Partitioning control traffic load
among different controller instances
in a more flexible way.

Heuristic
approach

Low • The results show that the
mean value of the average
delay is about 8.7% larger
than the optimal value.

• The recovery time of
overload controller has
been reduced to 60s.

√ √ × √

Selvi et al.
[53]

Hierarchical Studying a load-balancing scheme
for hierarchical controller
configurations.

Greedy
approach

Low • The time to load
balancing has been
reduced by 16%
compared to ElastiCon.

• The controller throughput
of the proposed method is
higher than Random
controller configuration.

× √ √ √

Sufiev et
al. [54]

Hierarchical Enabling dynamic load balancing
among multi-controller.

Cluster
approach

High • The solution breaks the
dependency during the
periodical load balancing.

• The run time of periodic
controller operation has
reduced by 50%.

× √ √ √

Fu et al.
[55]

Flat Constituting logically centralized
control plane to provide load
balancing and fail over.

Queuing
analysis

High • The results show the
solutions have saved the
30% energy consumption
by setting dormant
controllers.

• The probability of
controller overload has
been reduced 28%.

× × √ √

TABLE 8. An overview of current switch migration techniques for solving multi-controller load balancing

Authors Mode Objective Method Complexity Simulation/Evaluation Application scenario

Enterprise DC Cloud WAN

Dixit et al.
[56]

Flat Achieving the dynamic
mapping between switches and
controllers.

Linear
programming

Low • The controller response
time has been reduced to
5ms averagely.

× √ √ ×

Chen et al.
[57]

Flat Studying how to improve the
load balancing performance of
controllers in SDN.

Game theory High • Only 1.25% switches have
been migrated when a half
of controllers need master
reelection operation.

× × √ √

Cheng et al.
[58]

Flat Studying which switch should
be migrated and where it will
be moved.

Heuristic
approach

High • Only 10% of switches in
such a network have been
migrated to load rebalance
when there are 40∼50%
heavy controllers.

√ × × ×

Yu J et al. [59] Flat Reducing the load balancing
decision time as rapidly as
possible.

Linear
programming

Low • Results show that the load
balancing is completed
within 5s.

• The proposed method has
the higher throughput,
compared with the static
mapping between switch
and controller.

√ √ × ×

Cello et al.
[60]

Flat Reducing the number of the
migrated switches to keep
efficient switch migration.

Heuristic
approach

High • The proposed solutions
reduce the load imbalance
among SDN controllers by
40% by migrating only a
small number of switches.

• The computational time is
11.51s in the proposed
method.

× × √ √

