
UNIVERSITÉ DE SHERBROOKE
Faculté de génie

Département de génie électrique et de génie informatique

Gestion Flexible des Ressources dans Les
Réseaux de Nouvelle Génération avec SDN
Flexible Resource Management in Next-Generation Networks

with SDN

Thèse de doctorat
Specialité: génie électrique

Abderrahime Filali

Sherbrooke (Québec) Canada

Décembre 2021

JURY MEMBERS

Soumaya Cherkaoui
Supervisor

Hossam Hassanein
Examiner

Rodolfo Coutinho
Examiner

Eric Plourde
Examiner

RÉSUMÉ

La 5G et au-delà de la 5G/6G sont censées dessiner la future croissance économique
de multiples industries verticales en fournissant l’infrastructure réseau nécessaire pour
permettre l’innovation et la création de nouveaux modèles économiques. Elles permettent
d’offrir un large spectre de services, à savoir des débits de données plus élevés, une latence
ultra-faible et une fiabilité élevée. Pour tenir leurs promesses, la 5G et au-delà de la-
5G/6G s’appuient sur le réseau défini par logiciel (SDN), l’informatique en périphérie et
le découpage du réseau d’accès (RAN). Dans cette thèse, nous visons à utiliser le SDN
en tant qu’outil clé pour améliorer la gestion des ressources dans les réseaux de nouvelle
génération.

Le SDN permet une gestion programmable des ressources informatiques en périphérie
et une orchestration dynamique de découpage du RAN. Cependant, atteindre une per-
formance efficace en se basant sur le SDN est une tâche difficile due aux fluctuations
permanentes du trafic dans les réseaux de nouvelle génération et aux exigences de qua-
lité de service diversifiées des applications émergentes. Pour atteindre notre objectif, nous
abordons le problème de l’équilibrage de charge dans les architectures SDN distribuées, et
nous optimisons le découpage du RAN des ressources de communication et de calcul à la
périphérie du réseau.

Dans la première partie de cette thèse, nous présentons une approche proactive pour équi-
librer la charge dans un plan de contrôle SDN distribué en utilisant le mécanisme de
migration des composants du plan de données. Tout d’abord, nous proposons des modèles
pour prédire la charge des contrôleurs SDN à long terme. En utilisant ces modèles, nous
pouvons détecter de manière préemptive si la charge sera déséquilibrée dans le plan de
contrôle et, ainsi, programmer des opérations de migration à l’avance. Ensuite, nous amé-
liorons les performances des opérations de migration en optimisant le compromis entre
un facteur d’équilibrage de charge et le coût des opérations de migration. Cette approche
proactive d’équilibrage de charge permet non seulement d’éviter la surcharge des contrô-
leurs SDN, mais aussi de choisir judicieusement le composant du plan de données à migrer
et l’endroit où la migration devrait avoir lieu.

Dans la deuxième partie de cette thèse, nous proposons deux mécanismes de découpage du
RAN qui allouent efficacement les ressources de communication et de calcul à la périphérie
des réseaux. Le premier mécanisme de découpage du RAN effectue l’allocation des blocs de
ressources radio (RBs) aux utilisateurs finaux en deux échelles de temps, à savoir dans une
échelle de temps large et dans une échelle de temps courte. Dans l’échelle de temps large, un
contrôleur SDN attribue à chaque station de base un certain nombre de RB à partir d’un
pool de RB radio partagé, en fonction de ses besoins en termes de délai et de débit. Dans
l’échelle de temps courte, chaque station de base attribue ses ressources disponibles à ses
utilisateurs finaux et demande, si nécessaire, des ressources supplémentaires aux stations
de base adjacentes. Le deuxième mécanisme de découpage du RAN alloue conjointement les
RB et les ressources de calcul disponibles dans les serveurs de l’informatique en périphérie

iii

en se basant sur une architecture RAN ouverte. Nous développons, pour les mécanismes
de découpage du RAN proposés, des algorithmes d’apprentissage par renforcement et
d’apprentissage par renforcement profond pour allouer dynamiquement les ressources du
RAN.

Mots-clés : 5G et au-delà de la-5G/6G, réseau défini par logiciel, informatique en pé-
riphérie, découpage du réseau d’accès, apprentissage par renforcement, apprentissage par
renforcement profond, haut débit mobile amélioré, communication ultra-fiable à faible
latence.

ABSTRACT

5G and beyond-5G/6G are expected to shape the future economic growth of multiple
vertical industries by providing the network infrastructure required to enable innovation
and new business models. They have the potential to offer a wide spectrum of services,
namely higher data rates, ultra-low latency, and high reliability. To achieve their promises,
5G and beyond-5G/6G rely on software-defined networking (SDN), edge computing, and
radio access network (RAN) slicing technologies. In this thesis, we aim to use SDN as a
key enabler to enhance resource management in next-generation networks.

SDN allows programmable management of edge computing resources and dynamic orches-
tration of RAN slicing. However, achieving efficient performance based on SDN capabilities
is a challenging task due to the permanent fluctuations of traffic in next-generation net-
works and the diversified quality of service requirements of emerging applications. Toward
our objective, we address the load balancing problem in distributed SDN architectures,
and we optimize the RAN slicing of communication and computation resources in the edge
of the network.

In the first part of this thesis, we present a proactive approach to balance the load in a dis-
tributed SDN control plane using the data plane component migration mechanism. First,
we propose prediction models that forecast the load of SDN controllers in the long term.
By using these models, we can preemptively detect whether the load will be unbalanced in
the control plane and, thus, schedule migration operations in advance. Second, we improve
the migration operation performance by optimizing the tradeoff between a load balancing
factor and the cost of migration operations. This proactive load balancing approach not
only avoids SDN controllers from being overloaded, but also allows a judicious selection of
which data plane component should be migrated and where the migration should happen.

In the second part of this thesis, we propose two RAN slicing schemes that efficiently
allocate the communication and the computation resources in the edge of the network.
The first RAN slicing scheme performs the allocation of radio resource blocks (RBs) to
end-users in two time-scales, namely in a large time-scale and in a small time-scale. In the
large time-scale, an SDN controller allocates to each base station a number of RBs from
a shared radio RBs pool, according to its requirements in terms of delay and data rate.
In the short time-scale, each base station assigns its available resources to its end-users
and requests, if needed, additional resources from adjacent base stations. The second
RAN slicing scheme jointly allocates the RBs and computation resources available in edge
computing servers based on an open RAN architecture. We develop, for the proposed
RAN slicing schemes, reinforcement learning and deep reinforcement learning algorithms
to dynamically allocate RAN resources.

Keywords: 5G and beyond-5G/6G, software-defined networking, edge computing, ra-
dio access network slicing, reinforcement learning, deep reinforcement learning, enhanced
mobile broadband, ultra-reliable low-latency communication.

To my beloved parents, my sister, and my
brother for their encouragement and endless
support.

ACKNOWLEDGEMENTS

I have been able to complete this thesis with the help and active support of several persons.

First and foremost, I am extremely grateful to my research director, Prof. Soumaya
Cherkaoui, for her permanent support and invaluable advice during my Ph.D. Thank you
for your constant encouragement and for always being willing and enthusiastic to enrich
and complete this research project.

I would like to thank Prof. Abdellatif Kobbane for his mentoring and expert advice.
Thank you for the opportunity you offered me, and for accompanying me in my first
research steps.

I would like to thank my committee members, not only for their time and extreme patience,
but also for their insightful comments and suggestions.

I would also like to thank the co-authors of my papers for their great contributions: Dr.
Zoubeir Mlika, thank you for your help, support, and guidance. Dr. Boubakr Nour, thank
you for sharing with me your versatile and diversified knowledge. Amine Abouaomar, my
first lab mate, thank you for being there from the beginning, for bringing your boundless
work energy and the great camaraderie we have shared over these years.

Oussama, Afaf and Hajar! Thank you for being wonderful colleagues and more than just
friends. Thank you for the fantastic moments spent together inside and outside the lab, for
your incredible spirit of solidarity that helped me through the stressful times. To all my
friends outside the lab, thank you for your motivation and for all the fun we had together.

Lastly and most importantly, my deepest and most sincere thanks to my family who
deserve endless gratitude. To my father Abdellatif, thank you for your unconditional
trust, your timely encouragement, and your wise counsel. To my mother Fatna, who was
my first teacher in primary school, thank you for your unwavering emotional support, your
countless sacrifices, and for helping me to become the person I am today. To my brother
Abdelilah and my sister Salma, thank you for your love, your outstanding support, and
your pleasant spirit.

TABLE OF CONTENTS

1 INTRODUCTION 1
1.1 Problem Statement . 3
1.2 Objective . 4
1.3 Contributions and Originality . 5

1.3.1 List of Papers . 8
1.4 Thesis Plan . 8

2 State of the Art 11
2.1 Software-defined networking . 11

2.1.1 SDN control plane architecture . 12
2.1.2 OpenFlow protocol . 13
2.1.3 SDN for next generation networks 14

2.2 SDN for edge computing . 15
2.2.1 Edge computing . 15
2.2.2 Edge computing in next-generation networks 16
2.2.3 SDN for edge computing . 17

2.3 SDN control plane load balancing . 20
2.3.1 Load balancing problem . 20
2.3.2 Load balancing approaches . 20
2.3.3 Conclusion . 23

2.4 SDN for network slicing . 23
2.4.1 Network slicing . 23
2.4.2 Network slicing in next-generation networks 24
2.4.3 SDN-based RAN slicing . 25
2.4.4 Conclusion . 27

3 Prediction-Based Switch Migration Scheduling for SDN Load Balancing 31
3.1 Abstract . 31
3.2 Introduction . 31
3.3 Related Work . 34
3.4 Problem formulation . 36
3.5 Workload prediction model . 37

3.5.1 Time Series and Forecasting . 37
3.5.2 One-step prediction . 39
3.5.3 Multi-step prediction . 40
3.5.4 Switch migration scheduling algorithm 40

3.6 Numerical results . 42
3.6.1 Prediction performance evaluation 42
3.6.2 Proposed algorithm performance evaluation 43

3.7 Conclusion . 45

xi

xii TABLE OF CONTENTS

4 Preemptive SDN Load Balancing With Machine Learning for Delay Sen-
sitive Applications 51
4.1 Abstract . 51
4.2 Introduction . 52
4.3 Related Work . 55
4.4 SDN controller load prediction models . 58

4.4.1 SDN controller load . 58
4.4.2 Time series and predictions . 59
4.4.3 Multi-step load prediction . 59
4.4.4 Load prediction using ARIMA and LSTM 60

4.5 Construction of prediction models . 62
4.5.1 Simulation setup . 62
4.5.2 Dataset description and preparation 62
4.5.3 ARIMA modeling . 64
4.5.4 LSTM network modeling . 67

4.6 Prediction performance evaluation . 69
4.6.1 Evaluation metrics . 69
4.6.2 Prediction results . 69

4.7 System model . 72
4.7.1 Controller response time . 72
4.7.2 Migration protocol . 74
4.7.3 Migration cost . 75

4.8 Problem formulation and NP-hardness . 77
4.8.1 Problem formulation . 77
4.8.2 NP-hardness . 78

4.9 Reinforcement learning algorithm . 80
4.9.1 Preliminary definitions . 80
4.9.2 Two-win-stay-lose-shift algorithm (2WSLS) 82

4.10 Simulation results . 86
4.10.1 Parameters of 2WSLS . 88
4.10.2 Performance of 2WSLS . 93

4.11 Conclusion . 96

5 Dynamic SDN-based Radio Access Network Slicing with DRLearning
for URLLC and eMBB Services 103
5.1 Abstract . 103
5.2 Introduction . 104
5.3 Related Work . 108
5.4 System Model . 110
5.5 Problem Formulation and NP-Hardness . 115

5.5.1 Problem Formulation . 115
5.5.2 NP-Hardness . 116

5.6 Single-Agent Multi-Agent Reinforcement Learning Based RAN Resource
Slicing . 118
5.6.1 MDP formulation of the SDN allocation level 120

TABLE OF CONTENTS xiii

5.6.2 MDP formulation of the gNodeB allocation level 122
5.6.3 Single-agent EXP3 algorithm . 125
5.6.4 Multi-agent deep Q-Learning algorithm 127

5.7 SIMULATION RESULTS . 132
5.7.1 Experiment scenarios and setup . 132
5.7.2 DDQN training results . 134
5.7.3 SAMA-RL performance Evaluation 136

5.8 Conclusion . 139

6 Communication and Computation O-RAN Resource Slicing for URLLC
Services Using Deep Reinforcement Learning 145
6.1 Abstract . 145
6.2 Introduction . 145
6.3 Unveiling the Curtain: Network Slicing . 148
6.4 Joint Slicing of Communication and Computation RAN Resources 151

6.4.1 System Model . 151
6.4.2 Deep Reinforcement Learning based RAN Resource Slicing 153
6.4.3 Deep Q-learning Slicing Algorithm 158

6.5 Performance Evaluation . 159
6.6 Conclusion and Future Work . 164

7 Conclusions and Future Works 165
7.1 Conclusions . 165
7.2 Future Works . 167

8 Conclusions et Travaux Futurs 169
8.1 Conclusions . 169
8.2 Travaux Futurs . 172

LIST OF REFERENCES 173

xiv TABLE OF CONTENTS

LIST OF FIGURES

1.1 5G connections forecast 2021-2025 [1] . 1

2.1 SDN control plane hierarchical architecture 12
2.2 SDN control plane flat architecture . 13

3.1 A distributed architecture of controllers with their respective control domains 34
3.2 Akaike information criterion . 44
3.3 Residues autocorrelation function of the 1st and 50th forecast step 45
3.4 Response time of controllers without migration 46
3.5 Response time of controllers with migration 46

4.1 A distributed SDN Mobile Networks Architecture 53
4.2 Autocorrelation function of the original series 65
4.3 Autocorrelation function of 1st differencing 65
4.4 Residual errors of the fitted ARIMA(4,1,3) model. 67
4.5 Residual errors density of the fitted ARIMA(4,1,3) model. 67
4.6 Autocorrelation function of residual errors. 68
4.7 SDN controller load prediction results of ARIMA and LSTM models for

different steps. 70
4.8 RMSE of ARIMA and LSTM from t+1 to t+30. 72
4.9 R2 of ARIMA and LSTM from t+1 to t+30. 72
4.10 Messages exchanged between the data plane component, the initial con-

troller and the final controller during a migration operation. 74
4.11 The impact of the weight factor (ω) on load balancing factor and migration

cost for different data plane topologies. 88
4.12 The impact of the winning increment factor (τ1) on 2WSLS for different

data plane topologies. 90
4.13 The impact of the winning increment factor (τ2) on 2WSLS for different

data plane topologies. 91
4.14 The impact of the winning increment factor (τ1) on 2WSLS for different

control plane topologies. 92
4.15 The impact of the winning increment factor (τ2) on 2WSLS for different

control plane topologies. 93
4.16 The impact of the number of iterations on 2WSLS. 94
4.17 The impact of the winning increment factor (τ1) on 2WSLS for different

reward configurations. 95
4.18 The impact of the winning increment factor (τ2) on 2WSLS for different

reward configurations. 96
4.19 The performance of 2WSLS in terms of load balancing (LB) compared to

OPT, MCBLB and SMCLBRT. 97
4.20 The performance of 2WSLS in terms of migration cost (Tm) compared to

OPT, MCBLB and SMCLBRT. 97

xv

xvi LIST OF FIGURES

5.1 Resource block allocation procedure . 105
5.2 Single-agent multi-agent interaction with the MDP environment. 119
5.3 Training rewards. 135
5.4 Training loss. 135
5.5 Impact of the number of end-users on the objective function. 137
5.6 Impact of the minimum data rate threshold (Rmin) on the objective function.138
5.7 Impact of the minimum data rate threshold (Rmin) on the number of end-

users. 139
5.8 Impact of the the maximum delay threshold (Dmax) on the number of end-

users. 139

6.1 Reference network RAN slicing model. 154
6.2 Deep Reinforcement Learning based RAN Resource Slicing. 155
6.3 Training performance of the communication model. 160
6.4 Training performance of the computation model. 161
6.5 Delay performance. 162

LIST OF TABLES

4.1 AIC results. 66
4.2 Retained Hyperparameters for LSTM network. 68
4.3 MAE and MAPE scores of ARIMA and LSTM. 71
4.4 Simulation parameters . 86

5.1 Simulation parameters. 133
5.2 Retained hyper-parameters for DDQN. 134

xvii

xviii LIST OF TABLES

LIST OF ACRONYMS

Acronyme Définition

3GPP 3rd generation partnership project
ACF Autocorrelation function
AI Artificial intelligence
AIC Akaike information criterion
AMF Access and mobility management function
AR Autoregressive
ARIMA Autoregressive integrated moving average
ARMA Autoregressive moving average
AWGN Additive white Gaussian noise
C-RAN cloud radio access network
DNS Domain name system
DQL Deep Q-learning
eMBB enhanced mobile broadband
ETSI European telecommunications standards institute
HTTP Hypertext transfer protocol
IoT Internet of things
LBDSA Load balancing for delay sensitive applications
LSTM Long short-term memory
MA Moving average
MAE Mean absolute error
MAPE Mean absolute percentage error
MCBLB Migration competency-based load balancing
MDP Markov decision process
MEC Multi-access edge computing
MIMO Multiple input and multiple output
ML Machine learning
mMTC massive machine-type communications
NFV Network function virtualization
NR New radio
OFDMA Orthogonal frequency division multiple access
PACF Partial autocorrelation function
PCF Policy control function
QoS Quality of service
RAN Radio access network
RIC RAN intelligent controller
RL Reinforcement Learning
RMSE Root mean square error
RNN Recurrent neural network
SDN Software defined networking
SFC Service function chaining

xix

xx LIST OF ACRONYMS

SLA Service-level agreement
SMCLBRT SDN multiple controller load-balancing strategy based on response time
SMF Session management function
TCP Transmission control protocol
UDP User datagram protocol
UPF User plane function
URLLC ultra-reliable low-latency communications
VNF Virtualized network function
VoIP Voice over Internet protocol
WSLS Win-stay, lose-shift

CHAPTER 1

INTRODUCTION

While 5G — the fifth generation of cellular network technology — is undergoing significant
deployment growth, beyond-5G and 6G networks are already taking shape on the horizon.
These next-generation networks are driving many vertical industries in the midst of a
technological transformation. Indeed, analysts from Ericsson report that 5G coverage is
expected to reach 60% of the world’s population by 2026 [2]. In addition, according to 5G
Americas [1], the forecast number of 5G connections worldwide will grow rapidly to 3.4
billion by 2025, where North America, North-East Asia, and Western Europe will have
the most 5G subscriptions. We can see in Figure 1.1 that the number of 5G connections
will increase roughly five and a half times between 2021 and 2025, from 619 million to
3.4 billion - with an average growth rate of 41%. With their ability to support various
cutting-edge applications such as autonomous vehicles, virtual reality, automated factories,
and eHealth care, next-generation networks are paving the way for telecom operators to
collaborate with new industry sectors as business partners. This partnership forms the
foundation to establish smart cities with a new ecosystem where all stakeholders can share
the benefits.

Figure 1.1 5G connections forecast 2021-2025 [1]

To realize a fruitful cooperation with different vertical industries, 5G and beyond-5G/6G
networks should provide the required network infrastructure that meets the diversified
requirements of their applications. For instance, 5G is expected to support three main
heterogeneous services [3], namely ultra-reliable low-latency communications (URLLC),
enhanced mobile broadband (eMBB) services, and massive machine-type communication
(mMTC) services. The URLLC services support low-latency and high reliability applica-

1

2 CHAPTER 1. INTRODUCTION

tions, such as self-driving transport and remote surgery. The eMBB services provide very
high data rates for applications such as high-resolution video streaming and augmented
reality. The mMTC services enable the connection of a huge number of devices, i.e.,
Internet of things (IoT) devices.

In order to deliver this wide range of applications in a more cost-effective and high-
performance manner, next-generation networks rely on key enablers, including edge com-
puting [4] and network slicing [5] technologies. Edge computing enables data processing,
storage, and analysis to be performed at the edge of the network, very close to where the
data is generated, to reduce response latency, allow near real-time analysis, and decrease
demands on cloud and data center resources. Network slicing allows multiple logical net-
works, i.e., network slices, to be created and to operate on a common and shared physical
infrastructure. Each network slice is tailored to satisfy the specific requirements of an
application from the radio access network (RAN) to the core network. In particular, RAN
slicing is an essential part of the end-to-end network slicing to enable a more granular
differentiation of the services that will be available in the network.

To efficiently exploit the capabilities of these technologies, network operators need to
automate the management of network resources and the monitoring of network perfor-
mance. Software defined networking (SDN) technology has been presented as an innova-
tive paradigm to revolutionize traditional network architecture [6]. The idea behind SDN
is to decouple the control plane and the data plane of the network by removing the network
intelligence from the data plane components, and then centralizing it within a network
entity, known as the SDN controller. The latter maintains a global view of the network to
manage the data plane components, such as virtualized switches, base stations, and vir-
tualized network functions (VNFs). In addition, the deployment of artificial intelligence
(AI) and machine learning (ML) techniques is easier in the SDN-based network architec-
ture since SDN provides logically centralized control, a global view of the network, and a
software-based resource configuration. As a result, next-generation network management
decisions will become more intelligent and robust.

Accordingly, SDN technology allows programmable and dynamic orchestration of 5G and
beyond-5G/6G networks. However, achieving efficient performance in edge computing re-
source management and network resource slicing based on SDN capabilities is a challenging
task. This is due to the permanent fluctuations of data traffic in next-generation networks
and the diversified quality of service (QoS) requirements of their emerging applications.

1.1. PROBLEM STATEMENT 3

1.1 Problem Statement
As described previously, SDN enables the automation of network supervision. In partic-
ular, it brings agility to network resource management by enabling policy-driven network
monitoring. However, some issues related to leveraging SDN in next-generation network
resource management continue to attract researchers in both academic and industrial
fields.

To avoid a single point of failure and to ensure the availability of SDN controllers, the
SDN control plane architecture is designed in a distributed manner [7]. A distributed
architecture of the SDN control plane consists of several SDN controllers, where each
controller manages a subset of data plane components. This distributed architecture
of the SDN control plane is currently being adopted in large-scale networks as a key
solution to guarantee scalability in handling the data plane components. However, such
an architecture gives rise to the load balancing problem in the control plane. Indeed,
since network traffic is highly dynamic, each SDN controller may receive a huge number
of requests that it should process, and then make appropriate decisions quickly. These
permanent fluctuations in network traffic can make some controllers overloaded while
others will be underloaded. When a controller is overloaded, its processing time for received
requests increases. Accordingly, the performance of the overloaded controller and the
control plane in general decreases. Load balancing between controllers is therefore required
to maintain efficient performance of the SDN control plane in managing the entire network.

Network operators leverage the programmability provided by the SDN technology to dy-
namically manage the allocation of RAN resources to RAN slices. In an SDN-enabled
RAN architecture, an SDN controller manages multiple base stations and multi-access
edge computing (MEC) servers as data plane components. The base stations provide
communication resources, and the MEC servers bring computation resources near the
end-users. Under the supervision of the SDN controller, the allocation of RAN resources,
namely communication and computation resources, can be performed automatically. How-
ever, RAN slicing operations in an SDN control domain are not obvious. Indeed, this is
due to several constraints: 1) the RAN traffic is highly dynamic, 2) the transmission con-
ditions on wireless channels vary permanently, 3) and the QoS requirements of emerging
applications are diversified. Therefore, when the allocation of RAN resources to end-users
is entrusted exclusively to the SDN controller, several problems will occur. These prob-
lems can be the increase in the signaling overhead between the SDN controller and the
base stations or MEC servers. In addition, the RAN slicing operations can be performed
with high latency, which is not sustainable for delay-sensitive applications.

4 CHAPTER 1. INTRODUCTION

In light of these challenging problems, this thesis raises the following fundamental research
question:

How to enable efficient and flexible management of next-generation network
resources with SDN?

1.2 Objective
The main objective of this thesis is to leverage SDN as a key enabler to improve the
management of next-generation network resources. To achieve this objective, we tackle
the two sub-problems discussed previously, namely load balancing in the distributed SDN
control plane and RAN slicing of communication and computation resources at the edge
of the network. Accordingly, we divide the main objective into the following intermediate
objectives.

• Prevent the load imbalance in the SDN control plane
The first intermediate objective is to avoid load imbalance problems in the dis-
tributed SDN control plane. For this reason, we need to define the load of an SDN
controller. Then, we have to preemptively detect if the load will be unbalanced in
the SDN control plane. When a load imbalance occurs, we need to balance the load
between controllers based on the data plane component migration approach. The
corresponding research questions for this intermediate objective are as follows:

- How to define the load of an SDN controller?

- How to efficiently predict if the load will be unbalanced in the SDN control
plane?

• Improve the data plane component migration performance
The second intermediate objective is to improve the data plane component migration
performance. A migration operation of a data plane component involves changing its
SDN controller. When the load of the control plane becomes unbalanced, some data
plane components under the control of the overloaded SDN controllers migrate to be
under the control of the underloaded SDN controllers. The corresponding research
questions for this intermediate objective are as follows:

- Which metrics should be used to define the migration operation?

- Which data plane components should be migrated?

- Where should the migration operations happen?

• Enhance the SDN-based RAN slicing performance
The last intermediate objective is to enhance the slicing performance of the RAN

1.3. CONTRIBUTIONS AND ORIGINALITY 5

resources, namely communication and computation resources. We propose RAN
slicing approaches that allow allocating resources to RAN slices at multiple levels.
These approaches avoid the problems of a centralized RAN slicing mechanism that
relies only on the SDN controller and meet the requirements of emerging applications
considering the limited RAN resources. The corresponding research questions for this
intermediate objective are as follows:

- How to fairly partition the RAN resources between the slices?

- How to ensure that heterogeneous RAN slices are satisfied in terms of quality
of service?

- How to adapt the proposed resource allocation approaches to the variable and
highly dynamic nature of the RAN environment?

1.3 Contributions and Originality
Load balancing in the SDN control plane and RAN slicing of communication and compu-
tational resources are important aspects for efficient utilization of SDN as a key enabler
to improve the management of next-generation network resources. Therefore, this thesis
proposes three approaches to deal with these aspects. In the first approach, we present
an efficient load balancing scheme of the distributed SDN control plane based on the data
plane component migration mechanism. In the second approach, we propose a new RAN
slicing scheme that optimizes the allocation of RAN communication resources to meet the
requirements of emerging applications. In the last approach, we design a RAN slicing
scheme that jointly optimizes the allocation of communication and computation resources
based on the open radio access network (O-RAN) architecture.

The first approach is divided into two main parts. In the first part, we propose prediction
models that forecast the load of SDN controllers in long term. These long-term predictions
of the controller load enable preemptive detection of whether the load will be unbalanced
in a distributed SDN control plane. Then, data plane migration operations can be sched-
uled in advance. This proactive load balancing mechanism not only avoids SDN controllers
from being overloaded, but also allows a judicious selection of which data plane compo-
nent should be migrated and where the migration should happen. Accordingly, in the
second part, we solve the load balancing problem of the distributed SDN control plane by
optimizing the tradeoff between a load balancing factor and the cost of migration opera-
tions. The load balancing factor is defined based on the response time of controllers, and
it measures how fairly the load is partitioned among the SDN controllers. On the other
hand, the migration cost of a data plane migration operation is defined based on the time

6 CHAPTER 1. INTRODUCTION

required to execute a migration protocol. The main contributions of this approach can be
summarized as follows:

• We build and evaluate two prediction models. The first model is a traditional
stochastic model called autoregressive integrated moving average (ARIMA). The
second model is a machine learning prediction model known as long short-term
memory (LSTM).

• We provide a performance analysis comparing the accuracy of the short and long-
term SDN controllers’ load predictions of the ARIMA and LSTM models.

• We use mathematical programming techniques to formulate the SDN load balancing
problem as an optimization program where the objective is to minimize, through
migration operations, the load balancing factor considering the migration operation
cost.

• We prove that the SDN load balancing optimization problem is NP-complete by
reducing the partition problem to it.

• We propose a reinforcement learning (RL) algorithm to solve the formulated opti-
mization problem.

• We assess the performance of the proposed RL algorithm against the optimal solution
and load balancing algorithms from the literature.

The second approach proposes an SDN-based RAN slicing mechanism that allocates the
communication resources to end-users. The communication resources considered in this
approach is the radio resource blocks (RBs). The proposed mechanism performs the
allocation of RBs to end-users in two time-scales, namely a large time-scale and a small
time-scale. In a large time-scale, an SDN controller allocates to each base station a number
of RBs from a shared radio RBs pool, based on its requirements. In a short time-scale,
each base station assigns, based on the pre-allocated RBs, to each of its associated end-
users the needed RBs to meet their QoS requirements. If the RBs allocated by the SDN
controller are not sufficient for a base station, the latter can request additional RBs from
other base stations instead of waiting for the next large time-scale RB reservation update.
In this approach, we consider two types of RAN slices, including the eMBB service and the
URLLC service. We solve this RAN slicing problem by optimizing the achieved data rate
of eMBB and URLLC end-users. The key contributions of this approach can be resumed
as follows:

• We formulate the RB allocation problem as an optimization program where the
objective is to maximize the total achievable data rate of eMBB and URLLC end-
users.

1.3. CONTRIBUTIONS AND ORIGINALITY 7

• We prove the NP-Hardness of the formulated optimization problem by reducing the
0-1 knapsack problem to it.

• We model each RB allocation time-scale level as a Markov decision process (MDP).
Specifically, we model the large time-scale RB allocation level as a single-agent MDP
and the short time-scale RB allocation level as multi-agent MDP.

• We propose an RL algorithm and a deep Q-learning algorithm to solve the single-
MDP and the multi-agent MDP, respectively.

• We evaluate the performance of the proposed RAN slicing mechanism against a
benchmark algorithm.

The last approach presents a RAN slicing mechanism to jointly allocate the communication
and computation resources in an O-RAN architecture. In this approach, the communi-
cation and computation resources considered are the RBs of base stations and the CPU
cores of the MEC server, respectively. The proposed mechanism performs the RAN slicing
into two levels. In the first RAN slicing level, each base station allocates its RBs to its
end-devices that need to offload their computational tasks to more resourceful units, i.e.,
MEC servers. In the second RAN slicing level, we allocate the computation resources to
compute the tasks offloaded by the end devices. In this approach, we leverage the O-RAN
architecture to provide an implementation of the proposed RAN slicing mechanism. O-
RAN architecture introduces the hierarchical RAN intelligent controller (RIC), including
non-real-time RIC (non-RT) and near-real-time RIC (near-RT) where ML/AI algorithms
are integrated to enable RAN programmability. The non-RT RIC handles the heaviest
RAN functions while the near-RT RIC executes critical RAN functions. Therefore, non-RT
and near-RT RICs can be leveraged to dynamically allocate the RAN communication and
computation resources using ML/AI capabilities. The main contributions of this approach
can be summarized as follows:

• We model, for each RAN slicing level, the resource slicing problem as a single-agent
MDP.

• We develop, for each RAN slicing level, a DQL algorithm to solve each single-agent
MDP.

• We define the role of the non-RT and near-RT RICs of the O-RAN architecture in
performing slicing operations.

• We describe where and how the training phase and the implementation phase of
each DQL can be performed in an O-RAN architecture.

• We conduct extensive simulations to demonstrate the efficiency of the proposed RAN
slicing mechanism in meeting the desired QoS requirements.

8 CHAPTER 1. INTRODUCTION

1.3.1 List of Papers
The research conducted during this doctoral project resulted in high-quality papers, which
are published and submitted to renowned and highly respected conferences and journals.
The list of the papers is as follows:

Published papers:

1. A. Filali, S. Cherkaoui and A. Kobbane, "Prediction-Based Switch Migration Schedul-
ing for SDN Load Balancing," ICC 2019 - 2019 IEEE International Conference on
Communications (ICC), Shanghai, China, 2019, pp. 1-6, 2019 (Chapter 3)

2. A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane and M. Guizani, "Multi-Access
Edge Computing: A Survey," in IEEE Access, vol. 8, pp. 197017-197046, 2020.

3. A. Filali, Z. Mlika, S. Cherkaoui and A. Kobbane, "Preemptive SDN Load Balancing
With Machine Learning for Delay Sensitive Applications," in IEEE Transactions on
Vehicular Technology, vol. 69, no. 12, pp. 15947-15963, Dec. 2020. (Chapter 4)

Papers under revision:

1. A. Filali, Z. Mlika, S. Cherkaoui and A. Kobbane, "Dynamic SDN-based Radio
Access Network Slicing with Deep Reinforcement Learning forURLLC and eMBB
Services," IEEE Transactions on Network Science and Engineering (Chapter 5)

2. A. Filali, B. Nour, S. Cherkaoui, and A. Kobbane, "Joint Slicing of Communication
and Computation RAN Resources Using Deep Reinforcement Learning for URLLC
Services," in IEEE Communications Standards Magazine. (Chapter 6)

1.4 Thesis Plan
This thesis is based on manuscripts (Article-based). Chapter 2 conducts a literature
review describing recent advances related to our research project. Chapter 3 and chapter
4 present our contribution related to the load balancing in the distributed SDN control
plane. In chapter 3, we propose a long-term prediction model for the SDN controller load
based on ARIMA, an optimization model to balance the load in the control plane, and a
heuristic algorithm to solve the optimization problem. In chapter 4, we propose two long-
term prediction models based on ARIMA and LSTM respectively, perform a comparative
study to evaluate their accuracy, formulate an optimization model to balance the load in
the control plane, and develop an algorithm to solve the optimization problem. Chapter 5
and chapter 6 present our contribution to improving the performance of RAN slicing. In
chapter 5, we describe the proposed scheme for allocating communication resources, the
optimization model formulated to allocate communication resources, and the algorithms
developed to solve the optimization problem. In chapter 6, we present the proposed

1.4. THESIS PLAN 9

scheme for the joint allocation of communication and computation resources, the RAN
architecture adapted for the proposed scheme, and the algorithms developed to perform
the allocation of communication and computation resources.

10 CHAPTER 1. INTRODUCTION

CHAPTER 2

State of the Art

SDN technology is a key component of the current 5G network architecture as well as future
telecommunication network architectures (i.e., beyond-5G and 6G networks). It represents
a promising technology that provides more programmability to operators in managing their
resources, especially at the edge of the network. In addition, SDN is being leveraged as an
enabler of other pillar technologies for next-generation networks, namely edge computing
and network slicing. Therefore, improving next-generation resource management using
SDN technology is increasingly attracting researchers in both academic and industrial
fields.

In this chapter, we conduct a literature review describing recent advances related to our
research project. We start by providing, in section 2.1, an overview of SDN technology
and its architecture, and highlight the potential opportunities that SDN brings to 5G
and beyond-5G/6G networks. In section 2.2, we initially introduce the edge computing
paradigm and elaborate on its role in 5G and beyond-5G/6G networks. Then, we empha-
size the capabilities of SDN that enhance the edge computing operation. In section 2.3,
we review recent approaches proposed to address the load balancing problem in the SDN
control plane. In section 2.4, we provide an overview of the network slicing paradigm, its
main use cases in 5G and beyond-5G/6G networks, and the role of SDN in improving its
performances, with a particular focus on RAN slicing. Finally, in section 2.5, we present
recent approaches proposed to overcome the challenges of RAN slicing.

2.1 Software-defined networking
SDN was born with the idea of bringing the concepts of programmability and virtualiza-
tion to networks. Indeed, the static nature of the traditional network architecture model
fails to support the exponential increase in traffic volume generated by modern services
- mobile broadband, massive IoT, and critical business - that 5G and beyond-5G/6G
networks is expected to provide to verticals. Therefore, operators need to adapt their
networks automatically and in real-time to respond quickly to changing business require-
ments. Achieving this requires technology such as SDN, which provides operators with
the flexibility and agility to manage their networks. SDN consists in decoupling the con-
trol plane and the data plane, and then centralizing the network control functions in an

11

12 CHAPTER 2. STATE OF THE ART

external entity called an SDN controller. The latter interprets the policies received from
an application layer and then enforces them by configuring and controlling the data plane
components. In SDN, the application program interfaces (APIs) used to enable communi-
cation between the SDN controller and the control applications running in a higher-layer
are known as northbound interfaces. On the other hand, the APIs that allow communica-
tion between the SDN controller and the data plane components are called the southbound
interfaces [6].

2.1.1 SDN control plane architecture
Although SDN enables dynamic and programmable network configuration, the centralized
control logic in a single SDN controller results in a lack of scalability, a single point of
failure, and performance bottlenecks, especially when managing an increasing number of
data plane components. Therefore, to overcome these issues and meet the real-world
network requirements, e.g., 5G, in terms of scalability, reliability, and performance, the
SDN control plane architecture is designed to be physically distributed while maintaining
a logically centralized network view [8]. In this architecture, multiple SDN controllers are
used, which share the control load and synchronize information with each other to improve
the performance and consistency of the entire network. There are two types of physically
distributed and logically centralized architectures: i) hierarchical architecture and ii) flat
architecture.

Figure 2.1 SDN control plane hierarchical architecture

2.1. SOFTWARE-DEFINED NETWORKING 13

In a hierarchical architecture, as shown in figure 2.1, controllers are arranged in a tree
structure, in which there exist two types of controllers: the root controller and the domain
controller. The domain controller maintains a local view of the network since it manages
only a part of the data plane components that form an area called the control domain.
The root controller manages the domain controllers. It has a global view of the network
since the domain controllers communicate with it all the necessary information about
their control domains. Note that in a hierarchical architecture, there is no communication
between the domain controllers. B4 [9] is an example of SDN control plane hierarchical
architecture.

Figure 2.2 SDN control plane flat architecture

In a flat architecture, figure 2.2, controllers are at the same level, and each controller man-
ages a single control domain. In order to preserve consistency, the controllers exchange
network information with each other using east-west interfaces. The most popular exam-
ples of SDN control plane flat architecture are OpenDaylight (ODL) [10], Open Network
Operating System (ONOS) [11], HyperFlow [12], and ONIX [13].

2.1.2 OpenFlow protocol
The OpenFlow protocol is a standard southbound communication interface between the
control plane and the data plane in an SDN environment [14]. Indeed, the SDN controller
uses the OpenFlow protocol to manage the data plane elements by 1) pushing down
the directives received from the application layer to the data plane components, and 2)
collecting information about the data plane network. The OpenFlow protocol defines three

14 CHAPTER 2. STATE OF THE ART

types of exchanged messages between the two planes, including controller to data plane
component messages, asynchronous messages, and symmetric messages.

• Controller to data plane component messages: are initiated by the controller and
used to configure and program the data plane components, collect statistical infor-
mation about the network, and inspect the state of data plane components.

• Asynchronous messages: are initiated by the data plane component without solicit-
ing the controller and used to notify the latter of network events and any change in
the data plane component state.

• Symmetric messages: are initiated by the controller or the data plane component
without soliciting each other and used to maintain the communication channel active
between the controller and the data plane component.

2.1.3 SDN for next generation networks
Next generation networks are expected to provide network operators with the ability to
deliver faster and more responsive network services to their users and partners. However,
the exponential increase in the size and complexity of networks, and the volume of data
they are intended to convey have accelerated the adoption of SDN solutions. Designing
the network according to the SDN architecture, i.e., separating the network control plane
from the data plane, brings several benefits that stem from its programmable management,
easy reconfiguration, and on-demand resource allocation. To achieve this, several efforts
have been conducted to incorporate the SDN concepts into the RAN and core networks.

• SDN in RAN: The work in [15] presents a software-defined RAN solution, which
abstracts all the control operations in a logically centralized SDN controller. The
latter manages the RAN infrastructure entities, e.g., base stations, and orchestrates
their operations, such as resource block allocation. Authors in [16] propose an imple-
mentation of SDN architecture for heterogeneous 5G RANs. Two main components
are used, a centralized controller that maintains the network abstraction and a set of
agents, each running on a RAN element where its actions are managed by the con-
troller. OpenRAN 5G NR project [17] introduces a programmable and softwarized
RAN, which is aligned with SDN principles by adopting the RAN functional split
and proposing a hierarchical controller architecture known as RAN intelligent con-
trollers (RICs). The split concept consists in defining which RAN functions should
be centralized and those that should be distributed. RICs control, configure and op-
timize the RAN infrastructure with embedded machine learning (ML) and artificial
intelligence (AI) tools. Authors in [18] leverage a hierarchical controller architecture
to perform dynamic and automatic optimization of RAN resources, e.g., spectrum,

2.2. SDN FOR EDGE COMPUTING 15

computation, and transmission power. A central controller maintains a global view
of the RAN, generates optimization problems based on the operator policies, and
performs problem decomposition. Then, multiple local controllers, each controlling
a base station, receive the programs from the central controller and solve them using
appropriate algorithms.

• SDN in core network: In [19], SDN controllers are deployed in the core network to
handle control plane signaling procedures, such as user attachment and mobility.
For an optimal SDN-based core network design, three optimization models are pro-
posed to place SDN controllers and map them with the required virtualized network
functions (VNFs). The proposed optimization models take into account the latency
requirements of the data plane and the control plane. The work in [20] focuses on
separating the functions of the control plane and the data plane of some entities in
the core network entities. Then, it proposes an approach for optimal placement of
SDN controllers to reduce the communication cost between controllers as well as be-
tween data plane components and controllers. Authors in [21] propose an SDN-based
core network architecture that relocates all core network control functions such as
Access and Mobility Management Function (AMF), Session Management Function
(SMF) and Policy Control Function (PCF) as applications on top of an SDN con-
troller, which controls the core network data plane components such as User Plane
Function (UPF). The proposed architecture reduces the end-to-end delay during two
important control plane procedures, namely registration and handover, compared to
the traditional core network architecture.

2.2 SDN for edge computing
2.2.1 Edge computing
With the massive deployment of IoT devices and the emergence of new applications that
require a powerful real-time computing resource, the edge computing concept continues
to surge in popularity as an innovative information and communication technology. Edge
computing refers to the processing, analysis, and storage of data in proximity to where
it is generated, such as IoT devices or edge servers. In other words, rather than sending
the data to be processed on centralized cloud servers, which is costly in terms of latency
and bandwidth, computing tasks take place closer to the end-devices. Therefore, edge
computing improves network performance by reducing bandwidth utilization and latency,
providing network scalability, and enhancing data security. Bandwidth utilization is re-
duced since most of the generated data by end-devices does not need to travel to the data
centers to be processed, analyzed, and stored. Since data can be processed at the edge

16 CHAPTER 2. STATE OF THE ART

of the network, low latency can be achieved. Therefore, delay-sensitive applications can
receive notifications, decisions, and actions in near real-time. Network scalability is due to
the ability to expand computing capacity at the network edge through a combination of
edge-devices and edge servers, which is less expensive than dedicated data centers. Edge
computing distributes data processing, analysis, storage among a wide range of end-device
and edge servers, which avoid the unsecured transmission of data over long distances and
through multi-hop paths to centralized servers.

The European Telecommunications Standards Institute (ETSI) is leading the definition
of most technical and architectural specifications for the MEC concept through the MEC
Industry Specification Group (ISG) [22]. The latter represents a collection of standards
that help service providers to implement and deliver edge computing capabilities to their
users. MEC enables communication service providers and third parties to have an open
environment to flexibly develop and deploy a new range of services and applications.
Indeed, being closer to end-devices and providing a fast and efficient way to act on data
can benefit many use cases including industrial IoT [23], augmented and virtual reality [24],
autonomous vehicles [25], and e-health [26].

2.2.2 Edge computing in next-generation networks
One of the main promises of next-generation networks is to reduce network round-trip
times to provide low-latency communication services to delay-sensitive applications. To
achieve this, they rely on MEC technology, which is considered the key enabler to meet
the latency targets specified by the Third Generation Partnership Project (3GPP) [27].
With MEC, 5G and beyond-5G/6G are able to create new business opportunities in many
vertical industries, such as private and public transportation, smart city management,
agriculture, healthcare, manufacturing. In fact, Gartner, Inc. estimates that by 2025,
75% of enterprise-generated data will be created and processed outside a traditional cen-
tralized data center or cloud when 5G networks become widely deployed [28]. Accordingly,
combining 5G and beyond-5G/6G with the MEC capabilities results in two major benefits:

• Scalability: involves adapting the network resources to the requirements of the con-
nected devices to prevent the network from being overwhelmed, which decreases the
quality of the provided services. MEC technology can ensure the network scalabil-
ity since it supports network function virtualization (NFV). Therefore, additional
network functions can be deployed quickly and flexibly, allowing multiple services
to be initiated just in time. Through virtualization, the scalability of the 5G and
beyond-5G/6G networks can be improved, making them more adept in handling the
growth of new application and service requirements. In addition, it enables network

2.2. SDN FOR EDGE COMPUTING 17

operators to efficiently and seamlessly provide new network services and applications
on demand, without requiring additional hardware resources.

• Innovation: refers to the ability to develop and deploy new applications and services
in a flexible manner due to the open and interoperable nature of the MEC environ-
ment. MEC avoids the restrictions imposed by propriety solutions that are driven
by particular providers. It enables efficient integration of applications developed by
various participants, namely traditional network operators or other service providers.
For instance, network operators, with the support of third-party developers can de-
velop and implement a variety of applications within an open and global standard,
which is adopted by different verticals.

2.2.3 SDN for edge computing
In the 5G and beyond-5G/6G networks, edge computing is accelerating the creation of new
applications with varying requirements, e.g., latency-sensitive applications and bandwidth-
intensive applications. These requirements dictate a joint management of edge computing
resources, namely computing, communication, and storage resources. SDN technology
promotes efficient utilization of edge computing resources by supporting policy-driven
network supervision and implementing automatic orchestration of network resources [29].
Indeed, the logically centralized view of the SDN control plane allows operators to easily
define the appropriate policies to manage all the available resources at the edge of the
network. Then, they leverage the programmability of SDN to automate the enforcement,
adaptation, and reconfiguration of these policies to quickly fulfill application requirements
for computing, communication, and storage resources. Furthermore, SDN can manage the
interaction between the edge and cloud computing environments [30]. The SDN controller
can decide, based on its global view of the available resources at the edge of the network,
whether a required service is suitable for edge computing resources or it should be sent to
a more resourceful environment such as cloud computing. Accordingly, SDN improves the
availability of edge computing by simplifying the management of its resources.

The cooperation between SDN and edge computing technologies has proven to enable
more dynamism and operational efficiency in the 5G and beyond-5G/6G networks. Several
works in the literature have shown the importance of SDN as a key enabler to improve
the availability, flexibility, and resilience of the edge computing environment.

• Availability: Authors in [31] propose a MEC-based architecture to support the in-
creased volume of data traffic and computing/storage tasks in autonomous vehicular
networks. The proposed architecture incorporates a hierarchical SDN control plane,
composed of edge controllers and a cloud controller, to improve resource utilization

18 CHAPTER 2. STATE OF THE ART

and availability. An edge SDN controller allocates local computing/storage resources
in MEC servers to connected autonomous vehicles, routes traffic, and performs ra-
dio resource pooling and slicing. The cloud SDN controller uses its global view of
the network to manage the global traffic steering among cloud servers and make
decisions about task migration between MEC servers based on resource availability
at the edge. In [32], an SDN-based edge-cloud interaction is presented to handle
the scheduling and routing of big data flows in an industrial IoT environment. The
SDN control plane executes a flow scheduling and routing algorithm that optimizes
the trade-offs between energy efficiency and bandwidth, and energy efficiency and
latency. The results obtained show that the proposed SDN-based architecture sup-
ports the availability of the bandwidth resource. The work in [33] introduces an
SDN-based management framework to manage the utilization of MEC computing
resources, which are distributed across the RAN. An SDN orchestration layer com-
posed of multiple hierarchically organized controllers ensures the availability of the
MEC’s computing resources. It instantiates, implements, monitors, and terminates
network service nodes (virtual machines) on demand by users. In addition, it coordi-
nates the cooperation between multiple network operators to share different network
services.

• Flexibility: The work in [34] designs a MEC-based RAN managed by a hierarchi-
cal structure of SDN controllers to make efficient resource allocation decisions in
an industrial IoT environment. It proposes two resource control schemes, namely a
centralized and a distributed scheme. In the former, for each task offloaded from an
industrial IoT device, a high-level controller is responsible for designating a MEC
server and allocating the appropriate computing and transmission resources to ex-
ecute and transmit this task. Then, it delivers commands to the local controllers,
who ensure the fulfillment of these commands by managing their local resources. In
the distributed scheme, the high-level controller only designates where a task should
be executed, and each local controller allocates the computing and transmission
resources to execute and transmit each task. Therefore, the hierarchical SDN con-
trol plane provides more flexibility in managing the MEC environment’s resources.
Authors in [35] propose an offloading and resource allocation mechanism in an SDN-
based MEC vehicular network. The proposed mechanism runs on an SDN controller.
The latter uses this mechanism to decide, based on an execution delay threshold,
whether a task should be offloaded to a MEC server or executed locally in the ve-
hicle. If a task is offloaded, the SDN controller jointly optimizes the transmission
power of the vehicle, subchannel assignment, and computing resource allocation. By

2.2. SDN FOR EDGE COMPUTING 19

leveraging the features of SDN technology, i.e., centralized logic control and pro-
grammability, MEC resources can be flexibly allocated and jointly optimized with
other network resources such as radio sub-channels and transmission power. In [36],
an SDN-enabled model is introduced to place the virtual network functions in a
MEC environment and allocate the computing and storage resources to them. The
SDN controller decides how many virtual network functions are needed to meet the
end users’ requirements, where each virtual network function should be placed, and
how many computing and storage resources each VNF should have. These decisions
are subject to the availability of resources in the MEC servers. The SDN controller
facilitates the placement of virtual network functions, which reduces the cost of
allocating MEC resources.

• Resilience: Authors in [37] leverages SDN to design a resilient IoT data exchange
approach in an edge computing infrastructure. To maintain services provided to IoT
devices in the event of connectivity issues, this approach uses SDN to configure edge
computing resources as a backup to cloud resources. The SDN controller uses its
global view of the network to collect information about the network state to be aware
of any link or node failures. When a failure occurs, the SDN controller redirects the
data flow to an available edge node or to the cloud using the appropriate paths. SDN
enables dynamic adaptation of IoT data exchanges without changing already defined
requirements by collecting and maintaining accurate network conditions. In [38], a
distributed software-defined edge computing system is implemented to manage the
mobile access of IoT devices. Each SDN controller uses an efficient algorithm to
match the available edge access point to IoT devices based on its local view of the
network. Also, SDN controllers exchange information to ensure seamless switching
of IoT devices between access points located in different geographical areas. A
distributed SDN control plane supports resilient access control to IoT devices over
heterogeneous edge access points. In [39], SDN is used to support fault tolerance in
the task processing of delay-sensitive applications within an edge computing Internet
of vehicles network. When a road-side unit receives a request from a vehicle, it
notifies the SDN controller that defines an optimal data forwarding path and allocate
computing resources. In the process of allocating computing resources and data
transmission links, the SDN controller considers the failure rates of links and edge
nodes, which improves the resilience of the edge environment.

20 CHAPTER 2. STATE OF THE ART

2.3 SDN control plane load balancing
SDN technology is currently indispensable for managing edge computing resources, and its
role is becoming more prominent with the deployment of the 5G network. In particular,
the distributed architecture of the SDN control plane is widely adopted in large-scale
networks since it provides more scalability in managing network resources, which efficiently
increases network performance. In a distributed SDN control plane architecture, each
SDN controller has a partial view of the network and manages only a part of the network
elements and resources. To maintain consistency in the network management by several
SDN controllers, they communicate with each other and exchange necessary information.
Although such a distributed architecture meets the requirements of large-scale real-world
network deployments in terms of scalability and reliability, it raises a serious challenge,
namely load balancing between SDN controllers.

2.3.1 Load balancing problem
The load balancing problem in the SDN control plane can be defined as an uneven dis-
tribution of the control load between controllers. This problem is due to permanent and
unpredictable traffic fluctuations at the data plane level, notably in large-scale networks
when the number of applications is huge. To support this traffic behavior, each SDN
controller must react quickly by communicating with multiple network elements and mak-
ing appropriate decisions to better manage the resources under its control. Thus, an
SDN controller is exposed to a tremendous number of requests received, either from the
data plane components that it is managing or from other network elements, to which it
should respond as fast as possible. In a distributed SDN control plane architecture, such a
scenario makes the traffic sizes that should be handled by different controllers become dis-
parate, where some controllers will be too loaded or even overloaded, while others will be
underloaded. When an SDN controller becomes overloaded, its performance in processing
received requests and managing its local network decreases.

2.3.2 Load balancing approaches
To balance the load between SDN controllers, various approaches have been proposed,
including data plane component migration, traffic redirection [40], and workload sharing
[41]. The data plane component migration approach is widely used to fairly balance
the load of the control plane since it dynamically adjusts the load of the controllers. It
involves changing the control domains to which the data plane components belong. In
other words, when the load of the control plane becomes unbalanced, some data plane
components under the control of overloaded SDN controllers migrate to be under the
control of underloaded SDN controllers. Accordingly, the overloaded SDN controllers can

2.3. SDN CONTROL PLANE LOAD BALANCING 21

be alleviated and, at the same time, exploit the processing capacity of the underloaded
SDN controllers. To migrate a data plane component from an overloaded controller to an
underloaded controller, Dixit et al. defined a migration protocol in [42].

In recent years, a large variety of algorithms and schemes based on data plane component
migration have been proposed in the literature. To improve the load balancing performance
in the SDN control plane using the data plane component migration technique, different
parameters have been considered. Therefore, we classify these works based on three main
parameters: migration efficiency, response time, and resource utilization.

• Migration efficiency: is defined as the trade-off between the load balancing rate and
the data plane component migration cost. The load balancing rate indicates the
degree of load balancing in the control plane. To complete a data plane compo-
nent migration operation, the protocol [42] consists in exchanging several messages
between the concerned entities, i.e., overloaded and underloaded controllers, and
data plane components. Thus, the migration cost can refer to the time required to
exchange all these messages, the network overhead generated by exchanging these
messages, or the load change of the control plane. The authors of [43] define the load
balancing rate as the difference between the control plane load variances before and
after performing migration operations. To improve the migration efficiency, they pro-
pose a three-stage load balancing scheme. First, it divides controllers into overloaded
and underloaded controllers using a load diversity factor. This factor measures the
load difference between controllers and when it exceeds a defined threshold, migra-
tion operations of the data plane components must be performed. Second, it selects
which data plane components should be migrated from the overloaded controllers
according to a distribution probability. Indeed, the data plane components with a
small load and located far from overloaded controllers, have a high probability of
being migrated. Third, it chooses a destination controller for each migrated data
plane component that maximizes the migration efficiency. Similarly, the works [44]
and [45] propose the same approach. However, the authors of [44] define the load
balancing rate using the response time of the controllers instead of their load. On
the other hand, the authors in [45] define the load of a controller by considering
the requests received from the data plane components, as well as the synchroniza-
tion and routing overheads. The authors of [46] improve the migration efficiency
by defining two types of data plane migration operations, namely shift and swap
moves. A shift move is a classical operation of migrating a data plane component
from an overloaded controller to an underloaded controller. A swap move is when

22 CHAPTER 2. STATE OF THE ART

two data plane components simultaneously exchange their control domains through
migration operations. A swap move is performed when the load is unbalanced in the
control plane and shift moves fail for certain reasons such as overloading the target
controller.

• Resource utilization: Refers to the network resources, such as bandwidth status,
computing load, or memory usage. In [47], the proposed load balancing framework
selects the data plane components to be migrated and where the migration should
occur based on the CPU, memory, and bandwidth status of the controllers. Specif-
ically, this framework migrates, from the control domains of overloaded controllers,
the data plane components whose load consumes less controller resources. In [48],
it is stated that the more the data plane traffic crosses several control domains, the
more the communication between the control plane and the data plane increases.
Consequently, the resource consumption of the control plane increases. To achieve
an efficient allocation of control resources, the association between the data plane
components and the controllers is adjusted based on the flow path characteristics.
For this reason, the data plane components are assigned to controllers with the
aim of reducing the number of control domains through which the data plane traf-
fic should pass. In [49], a control plane resource utilization model is designed to
measure the resources requested by the data plane components in terms of CPU,
memory, and bandwidth. This model is used to detect overloaded controllers. Then,
the data plane components to be migrated are chosen based on the improvement in
resource utilization balancing. In addition, the delay required to complete migration
operation is considered to avoid costly and time-consuming migration operations.

• Response time: Represents the time required for an SDN controller to respond to
a request received from a data plane component. The authors of [50] design a load
balancing mechanism that identifies overloaded and underloaded controllers based
on their response time. The latter is used to measure the load of controllers and to
define an overload threshold at which migration operations should be triggered. The
authors of [51] propose a two-phase algorithm that minimizes the average response
time of the control plane. In the first phase, a stable matching between controllers
and data plane components is performed while ensuring a worst-case controller re-
sponse time for each data plane component. In the second phase, the previous
matching is adjusted to achieve a near-optimal load balancing among controllers.
The authors of [52] target the same objective, i.e., minimizing the response time of
the controllers, by balancing the control plane load. To ensure this objective, they
define a minimum threshold of processing resource utilization that each controller

2.4. SDN FOR NETWORK SLICING 23

should achieve. When performing migration operations, this threshold prevents mi-
grating a large number of data plane components to controllers with high-processing
capacity.

2.3.3 Conclusion
Nevertheless, despite the potential advantages of the previously discussed work, we identify
a significant research gap in their SDN control plane load balancing approaches. All
approaches act in a reactive manner when performing migration operations of the data
plane components. Indeed, a reactive mechanism triggers migration operations of the
data plane components after detecting that the load is unbalanced in the control plane.
Accordingly, the overloaded controller remains congested until the migration operations
are completed, which increases its response time to requests received from the data plane
components. Therefore, when the performance of an SDN controller decreases, it affects
the overall operation of the network.

2.4 SDN for network slicing

2.4.1 Network slicing
To accurately design network services that meet the end-user requirements and deliver
them in a more cost-effective manner, network operators need better control over the
characteristics and quality parameters of these services. To achieve this goal, network slic-
ing technology enables network operators a significant opportunity to create and deliver
diversified network services compatible with the varying requirements of end-users while
reducing operators’ capital (CAPEX) and operating (OPEX) expenditures [5]. With net-
work slicing, operators can segment the network to deploy multiple logical networks on top
of a common and shared physical infrastructure. Each logical network, called a network
slice, is tailored and dedicated to serving a specific service or application by providing the
appropriate resources that guarantee the required quality of service. Operators can flex-
ibly deploy, optimize, and retire network slices according to their needs, allowing a much
more granular level of control over how they allocate their network resources. A network
slice can span across multiple network domains, namely the RAN, transport network,
and core network to provide end-to-end service. RAN slicing consists in customizing and
managing the virtualized base stations functions and sharing radio resources between the
created network slices. Core network slicing involves partitioning the main resources of the
core network, including the computing and storage resources, as well as assigning VNFs
operating in the core network to the crated network slices. Transport network slicing is

24 CHAPTER 2. STATE OF THE ART

an abstract network topology that seeks to connect different endpoints with appropriate
isolation and a specific service-level agreement (SLA).

Network slicing standardization efforts are conducted in several working groups and projects
such as 3GPP and global system for mobile communications (GSMA). In 3GPP, several
working groups are actively involved in defining the network slicing specifications. For
instance, the 3GPP SA1 group identifies the potential service requirements to enhance
network slicing support in different use cases and scenarios [53]. The 3GPP SA2 group
defines the fundamental system architecture to support network slicing technology [54].
The 3GPP RAN group describes the use cases and solutions to improve the RAN slic-
ing [55]. The GSMA network slicing taskforce project harmonizes the network slicing
standardization ecosystem to ensure that operators, vendors, and service providers can
consider common network slicing solutions [56].

2.4.2 Network slicing in next-generation networks
5G and beyond-5G/6G networks are enabling a new world of applications and services for
a wide range of industries. Indeed, 5G supports three main services that are classified into
enhanced mobile broadband (eMBB), massive machine-type communications (mMTC),
and ultra-reliable low-latency communications (URLLC) services [3]. The eMBB services
accommodate the applications that require stable connection with a very high data rate,
such as Virtual Reality (VR) and high-definition streaming. The mMTC services support
the connection of a massive number of devices, e.g., IoT devices, which generate small
data and have sporadic traffic. The URLLC services target small payload applications
that require low latency transmissions with very high reliability, such as manufacturing
automation, autonomous driving, and remote surgery. Therefore, each application has a
distinct set of requirements to accommodate a specific use case, which presents a serious
challenge for network operators. Network slicing technology overcomes this problem since
it allows network operators to create very specific network slices for very specific applica-
tions over a single physical network [57]. In addition, network slicing not only meets the
requirements of new applications, but also unlocks new revenue for network operators by
enabling SLA and performance-based pricing.

RAN slicing is an essential part of end-to-end network slicing as it allows for a much
more granular degree to differentiate the services that will be available in the network
[58]. As a result, innovation can be stimulated in various sectors, which presents a major
opportunity for service providers to better monetize the services offered to their customers.
The RAN slicing also affects the number of users who can access to the provided services,
which in turn has a direct impact on the revenues of the service providers. Note that with

2.4. SDN FOR NETWORK SLICING 25

edge computing capabilities, the RAN slicing involves the management and control of
two main resources, namely communication resources and computation resources. RAN
communication resource slicing involves sharing the radio resources such as bandwidth
and transmission time interval among the deployed RAN slices. On the other hand, RAN
computation resource slicing consists in allocating the available computing resources in
the MEC servers, which are connected to the base stations, between the deployed RAN
slices. Therefore, when RAN slicing is performed in an appropriate manner, it maximizes
network resource utilization and revenue while meeting customer requirements.

2.4.3 SDN-based RAN slicing
SDN provides the ingredients required for RAN slicing [59]. The SDN controller can seam-
lessly manage and orchestrate the RAN slices using its global view of the network. Indeed,
it can dynamically manage the lifecycle of a RAN slice, which includes the preparation
phase, the commissioning phase, the operation phase, and the decommissioning phase
[60]. The preparation phase consists in designing and preparing the environment and the
resources required to deploy the slice. In the commissioning phase, the slice is instantiated
by assigning to it the reserved resources. The operation phase involves supervising the
slice operation and performing resource updates if needed. When the slice is no more
needed, the decommissioning phase is activated to remove the crated slice.

Network operators can leverage the programmability provided by SDN controllers to auto-
mate the allocation of RAN resources, such as communication and computation resources,
to RAN slices. Although SDN enables RAN slicing with great agility and efficiency to
deliver the required services, defining the appropriate RAN slicing policies that will be
used by the SDN controllers is a challenging task. This challenge is due to the limited
resources of the RAN that should meet the diversified requirements of a large number of
next-generation network applications.

Several SDN-based approaches have been proposed in the literature to address the resource-
constrained challenges of RAN slicing, including how to ensure that heterogeneous RAN
slices are satisfied in terms of quality of service, and how to adapt the resource alloca-
tion mechanism to the variable and highly dynamic nature of the RAN environment. We
classify these approaches according to the RAN resources considered in the RAN slicing.
Note that we focus on the two main RAN resources, i.e., the communication resources
and the computation resources. Therefore, to perform the RAN slicing, some approaches
consider only the RAN communication resource, while others jointly consider the RAN
communication resource and the RAN computation resource.

26 CHAPTER 2. STATE OF THE ART

• Communication resources slicing: The authors of [61] propose a resource scheduling
strategy for RAN slicing, where the spectrum resources are shared among a number
of RAN slices to meet their required throughput. The proposed strategy performs
the resource allocation in two time-scales, namely large time-scale and small time-
scale. For large time-scale resource allocation, a deep learning algorithm is used to
predict the periodic traffic of RAN slices. The obtained traffic prediction results are
used to perform the large time-scale resource allocation for each RAN slice. To deal
with inaccurate predictions and unexpected network states, a reinforcement learn-
ing algorithm is used to perform online resource allocation of RAN slices on a small
time-scale. The authors of [62] design two schemes to allocate radio resources to
users considering the requirements of delay-sensitive and delay-elastic applications.
The first scheme assigns radio resources to RAN slices based on their preferences
and importance in different base stations. The second scheme adjusts the previously
allocated resource to balance QoS satisfaction and resource utilization between the
RAN slices. The authors of [63] propose a heuristic algorithm to partition the radio
spectrum resources into different bandwidth slices and allocate them to heteroge-
neous base stations. The proposed algorithm considers the QoS requirements of two
types of end-devices, including end-devices requiring high transmission reliability
and end-devices demanding high throughput. It seeks to maximize the achievable
downlink rates of the end-devices.The author of [64] design a hierarchical RAN slicing
framework to support eMBB and URLLC services with various QoS requirements.
In the upper level, an SDN controller manages a pool of radio resources that are
shared among the base stations. According to instantaneous traffic demands, the
SDN controller allocates a number of radio resource blocks to each base station. In
the lower level, each base station allocates to each of its associated users a num-
ber of radio resource blocks based on the pre-allocated resources by the controller.
The authors of [65] develop a dynamic radio resource allocation scheme based on a
genetic algorithm. To meet the data rate and latency requirements, the proposed
algorithm allocates radio resources to eMBB, URLLC, and mMTC users considering
their location and distribution.

• Communication and computation resources slicing: The authors of [66] present a
RAN slicing framework for the Internet of vehicle services to dynamically allocate
radio spectrum and computation resources among RAN slices. They propose a
reinforcement learning algorithm that first makes the resource allocation decision,
which includes the allocation of radio spectrum and computation resources for the
slices in the base stations. Then, it distributes the workload offloaded by vehicles

2.4. SDN FOR NETWORK SLICING 27

between the slices to balance the load between the base stations. The authors of
[67] study the multi-tenant cross-slice resource allocation problem, where multiple
service providers compete with each other to provide their subscribers access to the
virtual computation and communication slices. When the auction bids from ser-
vice providers are received by the infrastructure provider, an SDN controller assigns
channels to the users according to the computation and communication resources
required by the subscribers. A DRL algorithm is used to learn the optimal compu-
tation offloading and packet scheduling policies. The authors of [68] propose a RAN
slicing and computation task scheduling framework that intends to jointly maxi-
mize the communication and computation resource utilization while guaranteeing
the QoS for autonomous driving tasks. They leverage a multi-agent DRL algorithm
to slice the pooled radio resources between the base stations and allocate the com-
puting resources to the offloaded tasks from vehicles based on network traffic load
conditions. The authors of [69] propose a novel dynamic wireless and computation
resource allocation scheme based on a deep deterministic policy gradient algorithm.
The proposed scheme considers the task offloading cost and provides both resources
to eMBB, URLLC, and mMTC slices with the purpose of maximizing the revenue of
the network operator. The authors of [70] design an online method that optimizes the
RAN resource consumption, including computation and bandwidth resources while
ensuring an isolation level between the slices. For achieving this, a DRL algorithm
is exploited to explore the near-optimal RAN slicing decisions.

2.4.4 Conclusion
These approaches perform the RAN slicing either centrally or hierarchically. In centralized
resource allocation solutions, the SDN controller makes all decisions. On the other hand, in
hierarchical solutions, the allocation of RAN resources is performed in several levels, such
as in the SDN controller level and the base stations level. However, the centralized RAN
slicing approaches suffer from bottleneck and single point of failure issues. In hierarchical
RAN slicing solutions, the resource allocation operation in the lower levels can fail when
the resources pre-allocated by the upper levels are not sufficient since it should wait for
the next resource reservation update.

28 CHAPTER 2. STATE OF THE ART

Chapitre 3: Avant-propos
Auteurs et affiliation:

Abderrahime Filali: étudiant au doctorat, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Soumaya Cherkaoui: Professeure, Université de Sherbrooke, Faculté de
génie, Département de génie électrique et de génie informatique, Labora-
toire de recherche INTERLAB.

Abdellatif Kobbane: Professeur, Université Mohammed-V, École Nationale
Supérieure d’Informatique et d’Analyse des Systèmes (ENSIAS), Rabat-
Maroc.

Date d’acceptation: avril 2019.

État de l’acceptation: version finale publiée.

Revue: IEEE International Conference on Communications (ICC).

Titre français: Planification de la migration des commutateurs basée sur
la prédiction pour l’équilibrage de charge SDN.

Résumé français:

Les architectures distribuées du plan de contrôle du réseau défini par logiciel
(en anglais software-defined networking, SDN) nécessitent une conception
judicieuse pour équilibrer la charge entre les contrôleurs. Les solutions pro-
posées pour l’équilibrage de charge SDN utilisent généralement des opéra-
tions de migration de commutateurs. Cependant, une migration efficace
des commutateurs nécessite de déclencher l’opération au bon moment, et
de choisir judicieusement le commutateur migré et le contrôleur de destina-
tion. Dans cet article, nous proposons un algorithme de planification de la

2.4. SDN FOR NETWORK SLICING 29

migration des commutateurs pour améliorer l’efficacité de la migration et as-
surer l’équilibrage de charge entre les contrôleurs. Notre algorithme utilise un
modèle de prévision auto-régressif intégré à moyenne mobile (en anglais auto
regressive integrated moving average, ARIMA) ARIMA à plusieurs étapes
pour prédire la charge du contrôleur à long terme. Lorsqu’une surcharge
est prédite, une opération de migration des commutateurs est programmée à
l’avance. Après avoir validé la précision du modèle de prévision ARIMA, nous
avons évalué la performance de l’algorithme en analysant le temps de réponse
des contrôleurs. Les résultats numériques confirment les performances de
l’algorithme proposé.

30 CHAPTER 2. STATE OF THE ART

Chapitre 3: Foreword
Authors and affiliation:

Abderrahime Filali: Ph.D. Student, INTERLAB Research Laboratory,
Faculty of Engineering, Department of Electrical and Computer Science
Engineering, Université de Sherbrooke.

Soumaya Cherkaoui: Professor, INTERLAB Research Laboratory, Fac-
ulty of Engineering, Department of Electrical and Computer Science En-
gineering, Université de Sherbrooke.

Abdellatif Kobbane: Professor, École Nationale Supérieure d’Informatique
et d’Analyse des Systèmes (ENSIAS) Mohammed V University in Rabat,
Morocco

Date of acceptance: april 2019.

Acceptance status: final version published.

Conference: IEEE International Conference on Communications (ICC).

Title: Prediction-based Switch Migration Scheduling for SDN Load Balanc-
ing

CHAPTER 3

Prediction-Based Switch Migration Schedul-
ing for SDN Load Balancing

3.1 Abstract

Distributed architectures of the SDN control plane require a careful design for
balancing the load among controllers. Solutions proposed for SDN load bal-
ancing usually use switch migration operations. However, an efficient switch
migration means triggering the operation at the right moment, and judi-
ciously choosing the migrated switch and the destination controller. Here, we
propose a switch migration scheduling algorithm to improve the migration
efficiency, and ensure load balancing between controllers. Our algorithm uses
a multi-step ARIMA forecasting model to predict the long-term controllers
load. When an overload is predicted, a switch migration operation is sched-
uled in advance. After validating the accuracy of the ARIMA forecasting
model, we evaluated the performance of the algorithm by analyzing the re-
sponse time of controllers. Numerical results confirm the performance of the
proposed algorithm.

3.2 Introduction

In large-scale networks, a distributed architecture of SDN (Software Defined
Networking) control plane is highly recommended because of its flexibility and
ability to handle huge amounts of traffic [7]. A distributed SDN architecture
is, indeed, an effective way to provide more scalability to the network, regard-
less of the target applications in the data plane (i.e., IoT, connected vehicles
or future 5G NR-enabled applications [71, 72, 73]). However, several load
distribution issues can make the exploitation of the distributed controllers’

31

32
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

processing capacity inefficient. Traffic fluctuations in large-scale networks
(e.g., commercial data centers), can translate directly in hugely disparate
traffic sizes to be handled by different controllers in the control plane. In
fact, each controller can receive, from the data plane equipment in its control
domain, thousands of packets to process as quickly as possible. When there
is an overload, the controller’s response time will increase, thus affecting the
traffic flows in the data plane. Some load balancing between SDN controllers
is, therefore, required to minimize latency and optimize processing resources
utilization at different controllers.

Switch migration is a solution that is usually used to fairly distribute load
among controllers. Switch migration consists in a migration operation which
is initiated when the controller load reaches a defined threshold, where some
switches are migrated to less-loaded controllers. Changing the master con-
troller of a specific switch happens by exchanging role request messages be-
tween the two involved controllers (i.e., the source controller and the desti-
nation controller) [42]. Switch migration has been intensively studied and a
large variety of schemes and algorithms have been proposed over the previous
years [74, 43, 75, 76, 77, 78, 79, 80, 52]. However, most of these works propose
either reactive mechanisms for switch migration or apply simple load predic-
tion models to decide whether a migration is necessary. Reactive mechanisms
start a switch migration after a controller overload has already been detected.
Therefore, the overloaded controller remains congested for a certain period of
time, during which the response time of the controller increases. Also, using
simple prediction models may yield less accurate load estimations, leading to
delayed switch migrations or to unnecessary migration. Such approaches may
overlook a significant number of messages sent by some switches, which can
bias the load estimation.

3.2. INTRODUCTION 33

In this paper, we define a long-term switch load prediction model, based
on the autoregressive integrated moving average (ARIMA) time series ap-
proach [81]. ARIMA is a flexible class of forecasting models that utilize
historical information (in this case controller load information) to make pre-
dictions. Our model uses previous observations of the switch’s load to predict
its future loads. Forecasting switch load allows to find out if a controller will
be overloaded and, thus, schedule a switch migration in advance. Accordingly,
we propose a switch migration scheduling algorithm to decide which switch
should be migrated, and where the migration should happen. Knowing in
advance that a controller could be overloaded can improve switch migration
efficiency and help avoid the processing congestion in the control plane.

Our contributions in this work can be summarized as follows: (1) we define
an optimization problem minimizing the load difference between controllers;
(2) we use the ARIMA model to forecast switch load and prevent controllers’
overload; and (3) based on ARIMA, we propose a switch migration scheduling
algorithm to transfer some switches from overloaded controllers to underuti-
lized ones. We performed extensive simulations to evaluate the forecasting
model and the switch migration scheduling algorithm. The results show that
the prediction model is accurate and parsimonious (i.e., our model uses fewer
parameters to adjust the data). Also, the small difference between the re-
sponse of the controllers confirms the performance of the proposed algorithm.

The remainder of this paper is structured as follows: Section II discusses some
proposed algorithms and schemes for switch migration. In Section III, we de-
fine the network architecture model, and formulate the optimization problem.
Section IV introduces the multi-step prediction model using ARIMA and de-
scribes the proposed algorithm. Section V discusses the obtained results and
highlights the performances of the proposed algorithm. Finally, Section VI
concludes the paper.

34
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

Domain 1
Domain 2

Domain 3

Data plane

Asynchronous messages

Controller-to-switch messages

Figure 3.1 A distributed architecture of controllers with their respective control
domains

3.3 Related Work

Switch migration is considered as an interesting solution for load balancing in
the control plane. Several algorithms and schemes have been proposed in the
literature to improve switch migration operations. G. Cheng et al. [74] formu-
lated the switch migration problem as an optimization problem maximizing
processing resources’ utilization. For solving the problem, they designed a
distributed hopping algorithm to reach the desired service level agreement.
However, the load estimation algorithm predicts the controller load by cal-
culating the average arrival rate of the requests from the switches, which is
less accurate than a forecasting model like ARIMA. Furthermore, migrated
switches and destination controllers are randomly chosen by their algorithm.
In [43], a switch migration plan was proposed by making a trade-off between
load balancing rates and migration costs. In the switch migration opera-
tion, the phase of election of a destination controller consists of choosing the
controller according to migration efficiency, which is defined by the ratio of
load balance variation to migration cost. Therefore, the same controller may
be chosen as a target controller for several migrated switches, thus poten-
tially increasing its load. Moreover, to reach the destination controller, a

3.3. RELATED WORK 35

transit controller can be added in the proposed switch migration plan, which
complicates the migration operation. The authors in [75] addressed the con-
troller load balancing problem as a zero-sum game problem, where underuti-
lized controllers are the players and migrated switches are considered to be
commodities. To maximize their payoffs, the players (cold spot controllers)
compete to be elected as a master controller. In this game, however, the
communication overhead between controllers is high since several messages
will be exchanged in the network (e.g., invitation requests to the neighbor
controllers to participate in the game, information about migrated switches).

The authors in [76] proposed an algorithm for switch cluster migration from
congested SDN controllers. The algorithm forms a cluster of switches char-
acterized by a strong communication between them and assigns the formed
cluster to one controller. However, the algorithm increases the control traffic
overhead considerably because it migrates a cluster of switches. To decrease
the load of an overloaded controller as fast as possible, [77] defined a dynamic
scheme to choose the migrated switch with largest flow arrival rate from edge
switches. However, choosing the migrated switch only from the boundary
switches can decrease the migration efficiency if no boundary switch migra-
tion offloads the controller. In [78], a two-phase algorithm is proposed to
dynamically assign switches to controllers. The first phase is based on the
matching game concept and in the second phase a coalition game is used to
ensure load balancing between controllers. In the second phase, switches can
change their coalitions (i.e., migration operation) according to their utilities
to achieve Nash equilibrium. The presented approach produces a high switch
migration frequency during the first and second phases. Thus, the migration
cost will be important. Using the standard deviation of the controllers’ load,
the authors in [79] developed an f-approximation algorithm. The first step of
the algorithm initializes the partitions of the whole network. In the second
step, each controller evaluates its state with regard to a local threshold to see

36
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

whether a transfer of heavily loaded switch to nearby controllers is necessary.
The migration decision-making is based on the calculated threshold consid-
ering only nearby controllers, which can impact when the effectiveness of the
migration in balancing the load.

3.4 Problem formulation
A distributed Software Defined Networking architecture adopts a finite set
of controllers, C = {c1, c2, ..., cn}, |C| = n. Each controller has a processing
capacity in terms of the number of packets that it can handle per second,
α = {α1, α2, ..., αn}. The forwarding plane is composed by a finite set of
switches denoted by S = {s1, s2, ..., sm}, |S| = m. In such architecture each
controller manages several switches in its domain. In a master/slave SDN
model, we define a Boolean variable xki ∈ {0, 1}, where xki = 1 if ck is the
master controller of the switch si. Otherwise xki = 0.

In a switch-controller communication based on Open Flow protocol, there
are three types of exchanged messages: Controller-to-switch (e.g., switch_
configuration, modify_state), Asynchronous (e.g., Packet_in, Port_status)
and Symmetric (e.g., Hello and Echo). To measure the load of a controller,
Packet_in messages processing is generally considered the most significant
load. A Packet_in message is generated from the switch to its controller
when a new flow of packets arrives to the switch and there is no matching
rule in the flow table. Let li(t) be the generated load by the switch si ∈ S,
i.e., the number of Packet_in messages sent to the controller at time t. Thus,
the load of the kth controller Lk(t) at time t is defined by equation 3.1.

Lk(t) =
m∑︂
i=1

li(t) ∗ xki (3.1)

Load balancing between controllers is ensured by minimizing the load differ-
ence between them. Accordingly, we have formulated the following optimiza-

3.5. WORKLOAD PREDICTION MODEL 37

tion problem:

minimize
x

1

n

n∑︂
k=1

|Lk(t)− L∗| (3.2a)

subject to L∗ =
1

n

n∑︂
k=1

Lk(t), (3.2b)

n∑︂
k=1

xki = 1,∀ 1 ≤ i ≤ m, (3.2c)

xki ∈ {0, 1},∀ 1 ≤ i ≤ m,∀ 1 ≤ k ≤ n. (3.2d)

Constraint (3.2b) calculates the average load of controllers. Constraint (3.2c)
ensures that each switch maintains connectivity with a single master con-
troller. Constraint (3.2d) guarantees that the variable xik is binary.

Keeping the network performance in a good condition requires each controller
to have almost the same load. However, a controller load can be unbalanced
compared to the other if the traffic flow variation is important. In the case of
an imbalanced load, some switches need to be migrated. Nevertheless, waiting
for the controller load to reach its maximum capacity to migrate switches can
lead to a degradation of system performance and a decrease in traffic flow
processing capability. To avoid these issues a primitive switch migration,
i.e., before an overload happens, is needed. Of course, unnecessary switch
migration can also degrade system performance, so a suitable load prediction
model is necessary.

3.5 Workload prediction model
3.5.1 Time Series and Forecasting

Predicting the future load of an SDN controller Lt at time t is possible through
the analysis of the historical data using a time series approach. A time series
is defined as a sequence of observed data over a fixed-length time interval.
Modeling a time series aims to understand the past observations for devel-

38
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

Algorithm 1 Scheduling Switcher Migration
Inputs: ∀ck ∈ C, ∀si ∈ S, ∀αk ∈ α
Outputs: MigrationSchedule
1: Initialize:
CM : The set of controllers with migration actions.
CA : The set of controllers with no migration actions.
Tol : The controller overload threshold.
migrationList = ∅.

2: for all ck ∈ CA do
3: W ck

ol = overload_Prediction(ck,W, Tol) % Algorithm2
4: if W ck

ol ̸= −1 then
5: flag = 0
6: for all si ∈ Sck do
7: if Lk(t+Wol)− li(t+Wol) ≤ Tol && flag = 0 then
8: add si to migrationList
9: flag = 1

10: end if
11: end for
12: if flag == 0 then
13: choose the switch with the smallest load and add it to migrateList
14: end if
15: end if
16: end for
17: while migrationList ̸= ∅ do
18: choose the switch si with the smallest Wol

19: sort the CA controllers in an ascending according to their load Lk(t)
20: for all ck ∈ CA do
21: if li(t) + Lk(t) < αk then
22: add (si −→ ck) into MigrationSchedule
23: move ck to CM

24: delete si from migrationList
25: end if
26: end for
27: end while

3.5. WORKLOAD PREDICTION MODEL 39

oping a prediction model used to generate future values for the series (i.e.,
make forecasts). The choice of an appropriate model is decisive for a success-
ful time series forecasting. Among several forecasting methods, we preferred
exploiting the autoregressive integrated moving average model. The ARIMA
process was chosen for the implementation of our model because it is able
to represent non-stationary time series, it is the most appropriate general
model for treating problems with a single variable (switch’s load in our case)
and, extreme values have a less impact on the model. Depending on the
use case, forecasts can be used for short or long term horizons. Often, time-
series models are used to predict the next step, called one-step forecasting.
In some cases, like ours, where decisions must be made based on long-term
predictions, a multi-step forecast is required for planning strategies.

3.5.2 One-step prediction

Knowing the last p observations of l(t), i.e., {l(t−p+1), . . . , l(t)}, the aim is
to predict l(t+1), which is the expected load that the switch si will transmit
to its controller at time t+1. The time series l(t) follows an ARMA (p,q)
model if it is stationary and for each instant t :

l(t) = E(t) +

p∑︂
i=1

ϕiB
il(t) +

q∑︂
j=1

θjB
jE(t) (3.3)

Where ϕi (i = 1, 2, . . . , p) and θj (j = 1, 2, . . . , q) are the model parame-
ters estimated from available data. Et terms are random errors, i.e., white
noise process with zero-mean and constant variance σ2. p and q are the
number of lags used by the model, i.e., the autoregressive order and moving
average order, respectively. B is the backshift operator defined as follows:
Bi ∗ l(t) = l(t − i). The ARMA model previously described can only be
used for stationary time series. However, in our case, the time series shows
a non-stationary behavior. Thus, to make our model stationary, we apply
a finite differentiation using the backshift operator so, the differentiation of

40
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

degree d is defined by: (1 − Bd) ∗ l(t) = l(t) − l(t − d). Hence, an ARIMA
(p,d,q) model is an ARMA (p,q) model that has been differentiated d times
and can be given by:

(1−
p∑︂

i=1

ϕiB
i)(1−B)dl(t) = (1 +

q∑︂
j=1

θjB
j)E(t) (3.4)

3.5.3 Multi-step prediction

In our model, we aim to schedule migration operations over a time window
W ∈ N+. For this purpose, the multi-step forecast is an appropriate approach
to predict the future load few seconds ahead. There are several multi-step
techniques, we opt for the recursive multi-step forecast strategy. This method
involves using a one-step model multiple times where, the prediction for the
previous time step is used as an input for making a prediction on the following
step. Let l(t + w) denotes the wth step prediction of l(t), the prediction of
{l(t+1), l(t+2), . . . , l(t+w)} is obtained by iterating the one-step prediction
w times. The wth step prediction l(t+ w) is given by:

l(t+ w) = ARIMA(l(t+ w − p),, l(t+ w − 1)) (3.5)

3.5.4 Switch migration scheduling algorithm

We present a switch migration scheduling algorithm inspired from [82]. Based
on the ARIMA time series model described above, the algorithm makes a
multi-step prediction of the load sent by each switch to predict a possible
controller overload. The algorithm then schedules a migration operation af-
ter choosing the migrated switch and the destination controller. Algorithm 1
takes as input the set of controllers, their processing capacities, and the set of
switches handled by each controller. To avoid complexity and to reduce the
communication overhead between controllers in the control plane, each over-
loaded controller will migrate only one switch. We divide the controllers into

3.5. WORKLOAD PREDICTION MODEL 41

two sets, a set of controllers performing a migration operation denoted by CM ,
and the other set presents the controllers without any migration operation
denoted by CA. We set an overload threshold Tol and, the migrationList is
empty in the beginning. The first stage of Algorithm 1 is to predict in which
step, from a time window W , a controller may be overloaded. Thus, for each
controller in set CA, Algorithm 2 is called (step 3 in Algorithm 1) to predict
its load multi-steps ahead (w steps) depending on the desired time window
W ∈ N+. The output of the Algorithm 2 is the predicted overload step of
the controller ck ∈ CA , denoted by W ck

ol . Using ARIMA model (steps 5-9 in
Algorithm 2) the load li(t+w) of each managed switch si by the controller ck
will be forecasted for each step w ∈ W . Then (steps 10-15 in Algorithm 2),
if the predicted load Lk(t + w) of the controller ck, which is the sum of the
predicted loads of switches that it manages (equation 3.1), exceeds the fixed
threshold, the Algorithm 2 returns in which step W ck

ol the controller will be
overloaded.

The next stage of Algorithm 1 defines the switch to migrate (steps 4-15 in
Algorithm 1). For that, if the controller ck will be overloaded in step W ck

ol ,
among all switches in Sck (i.e., the set of switches managed by the controller
ck), the algorithm will choose the one which, after its migration, the controller
load will be lower than the fixed threshold Tol. If switch satisfies this con-
straint, it will be added to the migrationList . Otherwise, the switch with
the smallest load will be chosen to quickly offload the overloaded controller.
The final stage of Algorithm 1 is to specify destination controllers for all mi-
grated switches in migrationList (steps 17-27 in Algorithm 1). First, all
switches in migrationList are sorted in an ascending order according to the
overload step Wol (i.e., the switch that its master controller is the closest to
be overloaded, will be migrated first). Then, sort the set CA in an ascending
order according to the load Lk(t) and chose the destination controller for each
switch, respecting not to violate the processing capacity α of the controller.

42
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

Finally, add each migration action to the migrationSchedule and move the
included controllers to the set CM .

Algorithm 2 Overload prediction
Inputs: ck ∈ CA.
W : The number of steps to predict.
Tol: The controller overload threshold.

Outputs: W ck
ol : The predicted overload step of the controller ck.

1: Initialize:
W ck

ol = −1
Let Sck denotes the set of switches handled by the controller ck.
Let li(t) denotes the generated load by the switch si at time t.
Let li(t+ w) denotes the predicted generated load at the wth step.

2: for all si ∈ Sck do
3: for w = 1, ...,W do
4: li(t+ w) = ARIMA(li(t+ w − p),, li(t+ w − 1))
5: end for
6: end for
7: for w = 1, ...,W do
8: Lk(t+ w) =

∑︁
i∈Sck

li(t+ w)

9: if Lk(t+ w) ≥ Tol then
10: W ck

ol = w
11: break
12: end if
13: end for

3.6 Numerical results
3.6.1 Prediction performance evaluation

Forecasts accuracy can be verified by analyzing the forecasting model per-
formance on new data that were not used during the model fitting phase.
Thus, the generated dataset was divided in two portions, training and test
data. The training data are used to estimate the parameters of the forecasting
model and the test data are used to evaluate its accuracy. Using MATLAB,
we generated 300 observations for 100 switches, i.e., we have 100 time se-
ries and each one has a size equal to 300. An observation presents the load
that a switch can generate (Packet_in requests). As mentioned above the
observed data were divided into two parts, 250 observations were reserved for

3.6. NUMERICAL RESULTS 43

training phase and 50 observations for testing the model. To determine the
autoregressive and moving average order of the ARIMA model, the analysis
of autocorrelation functions and partial autocorrelation functions allows to
have an idea about each parameter. Moreover, we used Akaike Information
Criterion (AIC) to choose the best model by varying p and q between [0-1].
AIC criterion (equation 3.6) has as input likelihood value L generated by the
estimator and the number of parameters to be estimated K.

AIC = 2K − 2log(L) (3.6)

In each time series, which presents the observed switch’s load, we calculated
the AIC for each forecasting step (50 steps). Figure 3.2 illustrates the average
AIC value of the 100 time series in each forecasting step. A good model is
the one with the smallest AIC values, according to the figure, the model with
p = 0 and q = 1 is the best one. Moreover, evaluating a forecast model could
be done through the residual analysis. A good forecasting model will yield
residuals without autocorrelations. Thus, figure 3.3 depicts the residuals’
correlogram of the 1st and the 50th forecast step and it can be seen that the
residuals are uncorrelated. We choose to plot the autocorrelation function of
the residuals in the 1st and the 50th prediction step, in order to check that
there is no correlation between residuals in short and long-term predictions.

3.6.2 Proposed algorithm performance evaluation

Let us consider an SDN architecture composed of a set of controllers and
switches. In a large-scale network, an important number of new flows can be
received by a given switch within 10 µs [83]. Therefore, under such conditions,
we assumed that a switch can generate a number of Packet_in messages
ranging between 50000 and 100000. The simulation inputs of the algorithm
are: n = 6 controllers, m = 100 switches and each controller has a processing
capacity α = 1800000. For ARIMA prediction model, we define 300 seconds

44
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

0 5 10 15 20 25 30 35 40 45 50

Long-term forecasting steps

5360

5380

5400

5420

5440

5460

5480

5500

5520

5540

A
IC

 v
a
lu

e
s

p=q=0
p=0,q=1
p=1,q=0
p=1,q=1

Figure 3.2 Akaike information criterion

of previous observations. The number of steps for the long-term forecasting
is 15. The switch migration scheduling algorithm is used to forecast the
controller load for the next 15 steps and schedule a migration operation in
case of overload. We evaluate the algorithm performance by analyzing each
controller’s response time. Assuming that a controller can be considered as
queue system and the arrival time of requests follows the Poisson process, the
controller’s response time Trk (equation 3.7) at time t is calculated by applying
Little’s law where, αk and Lk(t) are respectively the controller processing
capacity and load at time t.

Trk =
1

αk − Lk(t)
(3.7)

Figures 3.4 and 3.5 show the response time of the six controllers with and
without migration. Using the algorithm, the load of each controller was
forecasted 15 steps ahead. Figure 3.4 shows a big difference in the response
time of the controllers due to the unbalanced load between them. Hence,
scheduling a switch migration operation in case of overloading or significant
load unbalance is required. Figure 3.5 illustrates the difference between the

3.7. CONCLUSION 45

-0.5

0

0.5

1

A
C

F
 o

f
th

e
 1

s
t
s
te

p
0 2 4 6 8 10 12 14 16 18 20

lag

ACF
Confidence bounds

-0.5

0

0.5

1

A
C

F
 o

f
th

e
 5

0
th

 s
te

p

0 2 4 6 8 10 12 14 16 18 20

lag

ACF
Confidence bounds

Figure 3.3 Residues autocorrelation function of the 1st and 50th forecast step

response times of controllers c2, c3, c4 and c5 is slight during the long-term
prediction (15 steps). The controller c1 is too overloaded so, the algorithm
tries to offload it by migrating the switch with the smallest load.

3.7 Conclusion
The major concern of switch migration operations in SDN networks, is choos-
ing the right time to migrate switches. Here, we proposed a prediction-based
switch migration scheduling algorithm to balance the load between SDN con-
trollers. Based on ARIMA multi-step forecasting model, the algorithm pre-
dicts when a controller can be overloaded. As a result, a switch migration
is scheduled by choosing the migrated switch and the destination controller
while respecting the controllers’ processing capacity constraints. After vali-
dating the selected ARIMA model, using the AIC criterion and the residu-
als autocorrelation functions, the model performance by analyzing the con-
trollers’ response time. The simulation results show that switch migrations
during the prediction interval allow avoiding controllers’ congestion while re-
ducing the difference between controllers’ response time.

46
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

2 4 6 8 10 12 14

Prediction steps

0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
s
p
o
n
s
e
 T

im
e
 o

f
C

o
n
tr

o
lle

rs

10-6

c1
c2
c3
c4
c5
c6

Figure 3.4 Response time of controllers without migration

2 4 6 8 10 12 14

Prediction steps

0

0.5

1

1.5

2

2.5

3

3.5

4

R
e
s
p
o
n
s
e
 T

im
e
 o

f
C

o
n
tr

o
lle

rs

10-6

c1
c2
c3
c4
c5
c6

Figure 3.5 Response time of controllers with migration

3.7. CONCLUSION 47

Chapitre 4: Avant-propos
Auteurs et affiliation:

Abderrahime Filali: étudiant au doctorat, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Zoubeir Mlika: Chercheur post-doctoral, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Soumaya Cherkaoui: Professeure, Université de Sherbrooke, Faculté de
génie, Département de génie électrique et de génie informatique, Labora-
toire de recherche INTERLAB.

Abdellatif Kobbane: Professeur, Université Mohammed-V, École Nationale
Supérieure d’Informatique et d’Analyse des Systèmes, Rabat-Maroc.

Date d’acceptation: novembre 2020.

État de l’acceptation: version finale publiée.

Revue: IEEE Transactions on Vehicular Technology (TVT).

Titre français: Équilibrage de charge SDN préemptif avec apprentissage
automatique pour les applications sensibles au délai.

Résumé français:

Le réseau défini par logiciel (en anglais software-defined networking, SDN)
est un élément clé pour assurer l’évolutivité des réseaux 5G et des réseaux
de périphérie à accès multiple. Pour équilibrer la charge entre les contrôleurs
SDN distribués, la migration des composants du plan de données a été pro-
posée. Contrairement à la plupart des travaux précédents qui utilisent des
mécanismes réactifs, nous proposons d’équilibrer, de manière préemptive, la

48
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

charge dans le plan de contrôle SDN afin de supporter les flux réseau qui
nécessitent des communications à faible latence. Tout d’abord, nous prédis-
ons la charge des contrôleurs SDN pour éviter les déséquilibres de charge et
planifier à l’avance la migration des composants du plan de données. En-
suite, nous optimisons les opérations de migration pour obtenir un meilleur
équilibrage de charge en respectant les contraintes de délai. Plus précisé-
ment, dans la première étape, nous construisons deux modèles de prédiction
basés sur les approches auto-régressive intégrée à moyenne mobile (en anglais
auto regressive integrated moving average, ARIMA) et récurrente à mémoire
court-terme et long terme (en anglais long short-term memory, LSTM) pour
prédire la charge des contrôleurs SDN. Puis, nous réalisons une étude com-
parative entre ces deux modèles et calculons leurs précisions et leurs erreurs
de prévision. Les résultats montrent que, dans les prédictions à long terme,
la précision du modèle LSTM surpasse celle du modèle ARIMA par 55% en
termes d’erreurs de prédiction. Dans la deuxième étape, pour sélectionner
les composants du plan de données à migrer et où la migration devrait avoir
lieu sous des contraintes de délai, nous formulons le problème comme un pro-
gramme binaire non linéaire, prouvons sa NP-complétude et proposons un
algorithme d’apprentissage par renforcement pour le résoudre. Les simula-
tions révèlent que l’algorithme proposé est proche de l’optimal et surpasse les
algorithmes de référence récemment publiés dans la littérature.

3.7. CONCLUSION 49

Chapitre 4: Foreword
Authors and affiliation:

Abderrahime Filali: Ph.D. Student, INTERLAB Research Laboratory,
Faculty of Engineering, Department of Electrical and Computer Science
Engineering, Université de Sherbrooke.

Zoubeir Mlika: Postdoctoral Research Fellow, INTERLAB Research Lab-
oratory, Faculty of Engineering, Department of Electrical and Computer
Science Engineering, Université de Sherbrooke.

Soumaya Cherkaoui: Professor, INTERLAB Research Laboratory, Fac-
ulty of Engineering, Department of Electrical and Computer Science En-
gineering, Université de Sherbrooke.

Abdellatif Kobbane: Professor, École Nationale Supérieure d’Informatique
et d’Analyse des Systèmes (ENSIAS) Mohammed V University in Rabat,
Morocco

Date of acceptance: november 2020.

Acceptance status: final version published.

Journal: IEEE Transactions on Vehicular Technology (TVT).

Title: Preemptive SDN Load Balancing With Machine Learning for Delay
Sensitive Applications

50
CHAPTER 3. PREDICTION-BASED SWITCH MIGRATION SCHEDULING FOR

SDN LOAD BALANCING

CHAPTER 4

Preemptive SDN Load Balancing With Ma-
chine Learning for Delay Sensitive Applica-
tions

4.1 Abstract

SDN is a key-enabler to achieve scalability in 5G and Multi-access Edge Com-
puting networks. To balance the load between distributed SDN controllers,
the migration of the data plane components has been proposed. Different
from most previous works which use reactive mechanisms, we propose to pre-
emptively balance the load in the SDN control plane to support network flows
that require low latency communications. First, we forecast the load of SDN
controllers to prevent load imbalances and schedule data plane migrations
in advance. Second, we optimize the migration operations to achieve bet-
ter load balancing under delay constraints. Specifically, in the first step, we
construct two prediction models based on Auto Regressive Integrated Mov-
ing Average (ARIMA) and Long Short-Term Memory (LSTM) approaches
to forecast SDN controllers’ load. Then, we conduct a comparative study
between these two models and calculate their accuracies and forecast errors.
The results show that, in long-term predictions, the accuracy of LSTM model
outperforms that of ARIMA by 55% in terms of prediction errors. In the sec-
ond step, to select which data plane components to migrate and where the
migration should happen under delay constraints, we formulate the problem
as a non-linear binary program, prove its NP-completeness and propose a
reinforcement learning algorithm to solve it. The simulations show that the

51

52
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

proposed algorithm performs close to optimal and outperforms recent bench-
mark algorithms from the literature.

4.2 Introduction

A distributed architecture of the SDN control plane is the appropriate solu-
tion to overcome the present issues of the centralized architecture, especially
in large scale networks [71]. Specifically, a distributed architecture provides
high scalability and higher processing capacity for mobile applications at the
control plane, while avoiding traffic congestion, high delays and single point
of failure (i.e., bottleneck) issues [84]. In a distributed control plane archi-
tecture, see figure 4.1, the network is horizontally partitioned into several
disjoint areas called control domains, where each control domain is managed
by a single controller. This distributed architecture is currently coupled with
several standards of existing and emerging technologies, notably Network
Function Virtualization (NFV), Service Function Chaining (SFC) and Multi-
Access Edge Computing (MEC) [85]. Moreover, it is a key component in the
5G network [86]. Being part of all these technologies, the distributed SDN
architecture has, indeed, the ability to sustainably ensure the performance
required by the target applications in the data plane, notably delay-sensitive
applications [87, 72, 88]. However, such an architecture gives rise to load
distribution problems which can seriously affect the scalability of the con-
trol plane and decrease the exploitation of its resources (e.g., the controllers’
processing capacity) [7]. In large-scale networks, where the number of appli-
cations is huge and traffic fluctuations are permanent, each controller should
process and respond, as fast as possible, to thousands of requests received
from the data plane components. Accordingly, this dynamic network traffic
can lead to a load imbalance among controllers, i.e., some controllers will be
overloaded while others will be underloaded. When a controller is overloaded,
its response time to data plane components requests increases. Therefore,

4.2. INTRODUCTION 53

load balancing between SDN controllers is necessary to minimize latency and
to efficiently exploit the control plane resources.

Figure 4.1 A distributed SDN Mobile Networks Architecture

The data plane component migration is an efficient solution that is widely
used to balance the load between controllers [89]. Indeed, when the load on
controllers becomes disparate, some data plane components are migrated from
overloaded controllers to underloaded controllers, which can fairly balance the
load between controllers. A migration operation of a data plane component
consists in changing its control domain through a four-phase mechanism [42].
Although the data plane component migration is a key-enabler to achieve load
balancing in the control plane, it presents several challenges such as where
the migration should happen (i.e., determining the overloaded and the un-
derloaded controllers) and which data plane component should be migrated.
To overcome these challenges, a large variety of algorithms and schemes have
been proposed in recent years [50, 90, 91, 48, 51, 92, 46, 44, 45, 47, 52]. How-
ever, we identify two important research gaps in these works. First, all of
them propose reactive mechanisms for data plane component migration. A
reactive mechanism triggers a migration operation after detecting a controller
overload, which makes it congested for a certain period of time. Consequently,
the response time of the overloaded controller increases during this period.

54
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

Second, the cost of a migration operation has not been defined in terms of
delay, which can decrease the migration efficiency.

In this paper, we aim to preemptively balance the load between controllers
for delay sensitive applications on the edge. Therefore, in order to fill the
aforementioned research gaps, we: (1) propose a long-term prediction model
that forecasts the controllers’ load; and (2) solve the load balancing of the
distributed SDN architecture by optimizing the trade-off between load bal-
ancing and migration operation costs that are based on the response times
of SDN controllers. Long-term predictions allow to detect a load unbalanced
in the control plane and, thus, react proactively by scheduling migration op-
erations in advance. This proactive mechanism not only prevents controllers
from being overloaded, but also allows a careful selection of which data plane
components should be migrated and where the migration should happen.
Consequently, we formulate the SDN load balancing problem, called SDN
Load Balancing for Delay Sensitive Applications (LBDSA), as an optimiza-
tion program where the objective is to minimize, through migration opera-
tions, a load balancing factor combined with a migration operation cost. Due
to this proactive mechanism as well as the design of LBDSA model, the delay
sensitive application requirements are respected.

To summarize, the novelty of this work lies in two main parts. The first
part is a comparative study between Autoregressive Integrated Moving Aver-
age (ARIMA) [93]—a traditional stochastic model—and a machine learning
prediction model—Long Short-Term Memory (LSTM) [94]. In the second
part, we define the LBDSA problem and propose a reinforcement learning
algorithm to solve it. The key contributions of this work are summarized as
follows:

• We build and evaluate two prediction models, one based on ARIMA and
the other on LSTM.

4.3. RELATED WORK 55

• We provide a performance analysis comparing the accuracy of the short
and long term SDN controller load predictions of the ARIMA and LSTM
models.

• We model LBDSA as a non-linear binary program and study its NP-
completeness.

• Due to the NP-completeness result, obtaining an optimal solution to
LBDSA is computationally expensive. Thus, we propose a reinforcement
learning algorithm, called 2WSLS, that is based on the well-known Win-
Stay-Lose-Shift (WSLS) learning policy [95, 96].

• We evaluate the performance of 2WSLS against the optimal solution
and two state-of-art SDN load balancing algorithms [46] and [50]. We
show that 2WSLS is close to optimal and outperforms the benchmark
algorithms.

The rest of the paper is organized as follows. Section II discusses recent
works on load balancing in the SDN control plane based on data plane com-
ponents migration operations. Section III introduces the ARIMA and LSTM
prediction models. Sections IV constructs the ARIMA and LSTM models
used for long-term predictions and evaluates the obtained models. Section V
compares the performance of the constructed models in terms of accuracy for
short-term and long-term predictions. Section VI and Section VII present, re-
spectively, the system model for the SDN load balancing optimization and the
mathematical programming formulation of LBDSA and its NP-completeness.
Section VIII presents the proposed learning algorithm, 2WSLS, and explain
its operations. Section IX highlights the performances of 2WSLS and dis-
cusses the obtained results. Finally, section X concludes the paper.

4.3 Related Work
The works presented in this section can be divided into those that: (i) do
not consider any costs related to data plane component migration operations

56
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

[50, 90, 91, 48, 51, 92] and (ii) consider data plane component migration costs
[46, 44, 45, 47].

In [50], the authors propose a load balancing mechanism based on the real
response time of controllers. They also use this response time to define an
appropriate threshold to decide whether a controller is overloaded or not.
Overloaded controllers simultaneously migrate the heaviest switches to un-
derloaded controllers. However, the proposed mechanism can increase the
control traffic overhead since migration operations are performed simultane-
ously. The authors of [90] use a load diversity factor, which is the ratio of
their loads, to find overloaded controllers and underloaded controllers. When
the diversity is caused by an overloaded controller, some switches should be
migrated from its domain of control, and when it is caused by an under-
loaded controller, all switch under its control should be migrated. To solve
this switch migration problem, they use a non-cooperative game in which the
players are the immigration controllers. In [91], a modified version of the Hun-
garian algorithm is used to assign switches to controllers. In the assignment
process, the proposed algorithm considers the round-trip time between the
switches and the controllers as well as the current load of the controllers. The
work in [48] solves the switch-controller assignment problem in a two-phase
manner. First, based on the flow paths, a greedy set coverage algorithm is
used to form a minimum number of control domains that contain the most
switches on the paths. The obtained assignment is used in the second phase
by a coalition game strategy to improve the load balancing between the con-
trollers. In this phase, switches can change their coalitions to achieve a Nash
equilibrium. However, the proposed approach results in a higher number
of migration operations. To solve the dynamic controller-switch assignment
problem in a long-term horizon, authors in [51] decompose it into a series
of one time-slot assignment problems using the Randomized Fixed Horizon
Control (RFHC) framework. In each time slot, given the request rate of each

4.3. RELATED WORK 57

switch, a two-phase algorithm is used to assign switches to controllers. In
the first phase, the assignment problem is modeled as many-to-one matching
game. In the second phase, the obtained result from the first phase is used
as an input for a coalition game to achieve a Nash equilibrium. To maximize
the efficiency of the flow setup between controllers and switches, the authors
in [92] define a long-term optimization problem for controller placement and
controller-switch assignment. The placement of controllers is planned consid-
ering eventual future switch migration operations. After the controllers are
placed, switch migration operations can be performed by choosing switches
with the highest load from overloaded controllers. To sum up, the works in
[50, 90, 91, 48, 51, 92] do not consider any migration cost to evaluate the
effectiveness of migration operations.

The authors of [46] deal with the switch migration problem by performing
two types of switch movements. They propose a heuristic algorithm that
uses shift and swap moves to migrate switches from overloaded controllers
to underloaded controllers. A shift move is the classical migration operation
of a switch while a swap move is when two switches exchange their master
controllers through migration operations. The cost of migrating a switch de-
pends on the latency between (i) the controllers involved in the migration
operation and (ii) the migrated switch and the controllers involved in the
migration operation. The swap move is very useful for load balancing be-
tween controllers when the shift move is impossible. However, performing
swap moves hugely increase the migration cost in terms of time and control
plane overhead. The authors of [44] define a load diversity factor to divide
controllers into overloaded controllers and underloaded controllers. The load
diversity factor between two controllers is the ratio of their loads and when
this ratio exceeds a predetermined threshold, switch migration is performed.
The overloaded controller chooses to migrate the switch which has a large
latency to it and consumes less resources. A destination controller is selected

58
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

to maximize the migration efficiency which is defined as the ratio of load
balancing variation to migration cost. Similarly, the authors of [45] use the
same load diversity factor but they consider the synchronization and routing
overheads when calculating the load of a controller. In [47], a multi-criteria
decision method called Technique for Order Preference by Similarity to an
Ideal Solution (TOPSIS) is used to choose the target controller. These cri-
teria are based on resource consumption and hop distance. Also, they use a
probabilistic model in which the switch with a low resource consumption is
selected for migration. The cost of a migration operation is mainly defined,
in [44, 45, 47], by the load added to the control traffic overhead without con-
sidering the time required for this migration operation, which can decrease
the migration efficiency.

4.4 SDN controller load prediction models

In this section, we define the SDN controller load considered in this work and
the basic concepts of time series. Then, we review the essential mathemati-
cal background on how the predictions are made using ARIMA and LSTM
models.

4.4.1 SDN controller load

The load of an SDN controller at time t, denoted by L(t), can be defined as
the sum of the requests received from (i) the managed data plane components,
(ii) other SDN controllers, or (iii) any network entity which can communicate
with this controller. In this work, we consider the requests sent by the data
plane components as the most important load of an SDN controller [97], in
particular, the Packet_In messages of the OpenFlow protocol.

To predict the load of each SDN controller in a distributed control plane
architecture, we assume that there exists a root controller that has a global
view of the network [98]. Indeed, the root controller is connected to the
other controllers and does not manage any data plane component. In such an

4.4. SDN CONTROLLER LOAD PREDICTION MODELS 59

architecture, all controllers update the root controller of their control domain
state. Thus, the root controller knows all information about each controller,
including their load history. Based on the load history of the SDN controllers,
the root controller can make load predictions for each controller.

4.4.2 Time series and predictions

Time series is an ordered sequence of measured data points (i.e., observations)
over a period of time, usually at regular time intervals. The importance of
the order lies in a possible existence of dependencies between the observa-
tions, thus, changing the order could change the meaning of the data. In
our case, we are working on a single variable, which is the SDN controller
load L(t). Therefore, the studied time series is termed univariate. Moreover,
the controller load is measured every second, which makes it a discrete time
series. The major benefit of analyzing the load of SDN controllers as a time
series is to predict its future values. Make predictions is about forecasting
the future with no error or as little error as possible. For this reason, a suit-
able prediction model must be trained by using the time series data. Also,
the parameters of the model should be fitted to extract patterns from the
data. Depending on the studied problem, predictions can be performed for
short-term or long-term prospects. For the purpose of our study, which is
the prediction of any load imbalance in the control plane to schedule data
plane component migration operations in advance, the long-term forecast is
the appropriate model.

4.4.3 Multi-step load prediction

Our objective through load prediction is to detect any load imbalance in the
control plane. Hence, it is possible to schedule migration operations for data
plane components in advance. To perform effective migration operations, sev-
eral tasks need to be executed such as choosing the data plane components to
migrate and their new control domains. For this reason, long-term prediction
is the appropriate model that allows a careful selection of which data plane

60
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

components need to migrate and where the migration should happen. Long-
term prediction refers to perform multi-step forecasting of SDN controller
load. In this work, we used Multiple Input and Multiple Output (MIMO)
strategy to predict multi-step of the SDN controller load. MIMO strategy
uses the same past observations to predict the entire forecast sequence in one
shot manner with the same fitted model. Let L(t+w) be the predicted SDN
controller load in step w (i.e., at time t+ w), the prediction of the sequence
{L(t+ 1), L(t+ 2), ..., L(t+w)} can be defined by F (L(t), ..., L(t− p+ 1)),
where F is vector-valued function and p is the number of observations.

4.4.4 Load prediction using ARIMA and LSTM

In order to investigate the effectiveness of time series models to make predic-
tions with higher accuracy and lower forecast errors, our study aims to com-
pare a traditional stochastic and a machine learning models, namely ARIMA
and LSTM, respectively. The main reasons that led us to choose ARIMA
as a representative of stochastic forecasting models are the non-stationary
property of our dataset and that ARIMA is considered to be the most gen-
eral model among linear models. As a representative of the machine learning
models, we preferred LSTM for many reasons, namely our data can be non-
linear, it is dynamic and can comprise high autocorrelations across different
periods of time. Also, LSTM can preserve and train the features of data for
a longer period of time. Moreover, ARIMA and LSTM have been widely
exploited in different forecasting domains [99, 100].

1) Load prediction using ARIMA

In an Autoregressive Integrated Moving Average (ARIMA) model, the
future values of a variable are supposed to be a linear combination of
several past values (i.e., observations) and random errors. In time series
analysis and prediction applications, the ARIMA model is the general
model of the Autoregressive (AR) model, the Moving Average (MA)

4.4. SDN CONTROLLER LOAD PREDICTION MODELS 61

model, and the combination of AR and MA (ARMA) models. Indeed,
an autoregressive model of order p, denoted by AR(p), is based on the
idea that the current value L(t) of the time series at time t, i.e., the SDN
controller load in our case, can be expressed as a linear combination
of p past values, with a random error E(t). Rather than using past
observations of the forecast variable, a moving average model of order
q, denoted by MA(q), uses the previous errors as predictors for future
outcomes. ARMA(p, q) model combines the two previous models as
follows : L(t) = E(t) +

∑︁p
i=1 ϕiB

iL(t) +
∑︁q

j=1 θjB
jE(t), where ϕi and

θj are the parameters of the model and E(t) is a random error with
zero mean and constant variance. Bi ∗ L(t) = L(t− i) is the backshift
operator.

The ARMA model can only be used for stationary time series. How-
ever, in many situations, the statistical properties (e.g., mean, variance)
of a time series change over time, making it non-stationary. For this
reason, the ARMA model has been generalized by the ARIMA model
to integrate the case of non-stationary time series. A non-stationary
time series becomes unpredictable and cannot be modeled or predicted.
Thus, working with stationary time series is easier because they can be
analyzed and forecasted. In an ARIMA (p, d, q) model, a non-stationary
time series can be transformed to a stationary series through the dif-
ferentiation process. The ARIMA (p, d, q) model is formulated as

(︁
1 −∑︁p

i=1 ϕiB
i
)︁
(1−B)dL(t) =

(︁
1 +

∑︁q
j=1 θjB

j
)︁
E(t), where d is the degree

of differencing and (1−B)dL(t) = L(t)− L(t− d).

2) Load prediction using LSTM

As a type of Recurrent Neural Network (RNN), the LSTM network has
a powerful ability to remember information from earlier stages in order
to make predictions over an extended horizon. In fact, the main idea
behind these networks is to give the model visibility about the previous

62
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

stages while generating predictions for the current input. Accordingly,
previous states need to be remembered, which allows the network to learn
and exploit the sequential observations when forecasting next steps. The
LSTM network has the particularity to selectively remember pattern for
long sequences. An LSTM network is a set of memory blocks called cells
which are responsible for filtering, eliminating and adding information
through three gates, namely the input gate, the forget gate and the
output gate. The forget gate is used to decide whether the information
from the previous cell should be thrown. The decision of which part
should be memorized from the current input and hidden state is made
by the input gate. The output gate acts as a filter to determine what
will be conducted out of the cell.

4.5 Construction of prediction models
This section introduces the source of the dataset used in this work and how
it is prepared before being used by prediction models. Next, we describe
the process of constructing the ARIMA and LSTM models and evaluate the
obtained models.

4.5.1 Simulation setup

All simulations and experiments, namely dataset generation, ARIMA and
LSTM modeling, training process and predictions, were performed on a laptop
with an Intel Core i7-8750H processor, 16 GB of RAM and NVIDIA GeForce
GTX 1070 graphic card. The software environment used in this work includes
Keras version 2.2.4 with TensorFlow 1.14.0 backend.

4.5.2 Dataset description and preparation

The dataset used in this work is the SDN controller load, in other words,
the sum of the number of requests sent by the data plane components to the
controller. In order to have this type of data, we created an SDN network
using the Mininet emulator. We used RYU [101] as an SDN controller and

4.5. CONSTRUCTION OF PREDICTION MODELS 63

the OpenFlow protocol version 1.3 as a southbound interface between the
data plane components and the SDN controller. As data plane components,
we used virtual switches that support the OpenFlow protocol. We built a
data plane layer that contains 38 virtual switches. The virtual switches are
randomly connected, and each switch is connected to 3 hosts. To avoid net-
work architecture dependency, different data plane topologies are created by
regularly and randomly changing the connection between switches through-
out the generation period of the dataset. In order to have dynamic traffic as
in a real network, we used Iperf to generate UDP and TCP traffic, the D-
ITG generator to produce VoIP and DNS traffic and Wget to generate HTTP
traffic. Also, the generated VOIP and DNS traffics follow an exponential and
uniform distribution, respectively. These setups enable the dynamicity in the
generated traffic of the constructed network. All these traffics are generated
by randomly selecting hosts. The traffic generators are executed for 6 hours
while capturing the exchanged messages between the SDN controller and the
virtual switches. Then, the captured traffic was filtered to keep only the
requests received by the SDN controller (e.g., Packet_In messages).

Dataset preparation is crucial to achieve better forecasting performance. First,
we dealt with noisy and inconsistent data by replacing outliers with the aver-
age of the sequence data. Since the processing capacity of an SDN controller
is defined by the number of packets that it can handle per second, the ob-
tained traffic is sampled every second. Thus, our data is transformed into
time series with a time step size equal to 1 second. Each value in the time
series represents an observation of the SDN controller load. Then, the data
is divided into two partitions, train and test subsets, while maintaining the
temporal order of observations. Training data is used to fit the model by
adjusting its parameters. Test data is used to evaluate the obtained model
after the training phase and is not used in learning phase. Our data is large

64
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

enough, thus, using 80% for training and 20% for test keeps both subsets
highly representative.

4.5.3 ARIMA modeling

An ARIMA model, denoted by ARIMA(p, d, q), is composed of integrated
I(d), autoregressive AR(p) and moving average MA(q) components, where d
is the number of differencing required to make the time series stationary; p
is the number of lag observations included in the model; and q is the number
of lagged forecast errors in the prediction equation. In order to build an
effective forecasting model, the three parameters d, p and q must be carefully
determined.

1) Differencing Order

The purpose of differencing a time series is to make it stationary (i.e.,
the properties of the time series doesn’t depend on the time). In order
to study the stationarity and define the right degree of differencing, we
analyzed the AutoCorrelation Function (ACF). A time series is said to be
stationary if the ACF plot quickly reaches zero, while the ACF of a non-
stationary time series slowly decreases to zero. In figure 4.2, we observed
that the ACF of the original time series has positive autocorrelations for
a large number of lags (more than 10 lags), thus, the time series needs to
be differentiated. Also, if the autocorrelation of lag 1 is too negative, less
than -0.5, the time series is over-differentiated. Therefore, looking at the
ACF plot of the 1st differencing, see figure 4.3, the lag 1 autocorrelation
is greater than -0.5, which indicates that the time series is not over-
differentiated. Accordingly, the optimal degree of differencing for this
time series is d = 1. To remove all traces of autocorrelations in the
residuals, autoregressive and moving average terms should be added.

2) Autoregressive and moving average order

The next step in building the ARIMA model for our time series is the
identification of the autoregressive degree p and the moving average de-

4.5. CONSTRUCTION OF PREDICTION MODELS 65

Figure 4.2 Autocorrelation function of the original series

Figure 4.3 Autocorrelation function of 1st differencing

gree q. ARIMA model selection requires fitting multiple models on the
prepared dataset (i.e., estimating the performance of several models)
and then choosing the best one of them. A model is considered the best
if its performance on the training dataset is good and its complexity is
low. We can use the Partial AutoCorrelation Function (PACF) and the
ACF to approximately figure out how many autoregressive and moving
average terms, respectively, are required to remove any autocorrelation
in the stationary time series. However, inspecting the PACF and ACF
plots may not lead us to identify the optimal AR and MA degrees. In
order to obtain an optimal ARIMA model we employed Akaike Informa-
tion Criterium (AIC) method to select AR and MA degrees. AIC is an

66
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

effective way to choose a model that has a good fit but few parameters
(i.e., p and q in our case) and is given by AIC = 2K − 2ln (L), where
K is the number of parameters in the model (e.g., p, q degrees) and L
is the likelihood of the data. Since we determined before the degree of
differencing, d = 1, we varied the values of p and q to find the smallest
AIC result. Table 4.1 summarizes the obtained results. Accordingly, the
best model is ARIMA (4,1,3).

Table 4.1 AIC results.
Model AIC

ARIMA(1,1,1) 29075.185
ARIMA(0,1,0) 29207.288
ARIMA(1,1,0) 29073.316
ARIMA(0,1,1) 29081.751
ARIMA(2,1,1) 29058.922
ARIMA(3,1,0) 29047.015
ARIMA(3,1,2) 29016.949
ARIMA(4,1,3) 28997.957
ARIMA(4,1,2) 29007.532

3) Evaluation of the obtained ARIMA model

All steps previously followed to build an adequate ARIMA model with
the time series, namely the identification of the differentiation degree,
the AR degree and the MA degree, aim to build an effective and parsi-
monious model. In order to evaluate the obtained model, i.e., ARIMA
(4,1,3), we examined the residuals plot to ensure there are no patterns.
Figure 4.4 and figure 4.5 illustrate the residual errors plot and the den-
sity plot, respectively. The residual errors seem to be stationary, i.e.,
fluctuation around a mean of zero, and the density plot shows a Gaus-
sian distribution with mean zero. Figure 4.6 depicts the ACF plot of
the residual errors in which we can observe that all autocorrelations are
within the threshold limits, i.e., no autocorrelations between the resid-
uals. Therefore, the fitted ARIMA(4,1,3) model is excellent.

4.5. CONSTRUCTION OF PREDICTION MODELS 67

Figure 4.4 Residual errors of the fitted ARIMA(4,1,3) model.

Figure 4.5 Residual errors density of the fitted ARIMA(4,1,3) model.

4.5.4 LSTM network modeling

To select an LSTM network that can make predictions with high accuracy,
several hyperparameters, such as the number of hidden layers, the number
of neurons of each layer, the loss function, the optimizer and the number of
previous observations, need to be tuned. The hyperparameter tuning process
refers to find the best combination of hyperparameters to obtain a better
performance. Before tuning the hyperparameters of the LSTM network, we
first differentiated the time series to make it stationary. According to the
construction process of the ARIMA model, performing first order differencing
is sufficient to make the time series stationary. Then, we transformed the time
series values to be on a scaled between 0 and 1. Data scaling is important

68
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

Figure 4.6 Autocorrelation function of residual errors.

because it avoids large input values that could slow down the leaning and
convergence of the LSTM network. To provide an unbiased evaluation of the
fitted model on the training dataset, we used the validation dataset. The
model consults the validation dataset to validate its performance and not to
learn from it.

In this work we performed the random search method to find the best solution
for the built LSTM model. Based on this method, random combinations of
the hyperparameters are used to train the LSTM model. The utilization of
random search method allows to explicitly control the used parameters and
the number of attempted combinations. After training and tuning multiple
combinations, the most important hyperparameters of the retained LSTM
model are summarized in table 4.2.

Table 4.2 Retained Hyperparameters for LSTM network.
Hyperparameter Value

Number of hidden layers 3
Number of neurons in each layer 200
Activation function in all layers Relu

Optimizer Adam
Loss function Mean Squared Error

Number of previous observations 200

4.6. PREDICTION PERFORMANCE EVALUATION 69

4.6 Prediction performance evaluation

To compare the performance of ARIMA and LSTM in terms of short-term
and long-term prediction, we present, in this section, the metrics used to
evaluate the studied models. Then, we show the prediction results of each
model and compare their performance in SDN controller load prediction.

4.6.1 Evaluation metrics

To assess the performance of the two prediction models, i.e., ARIMA and
LSTM, in terms of accuracy, we used the Root Mean Square Error (RMSE),
the Coefficient of Determination R2, the Mean Absolute Error (MAE) and
the Mean Absolute Percentage Error (MAPE) as evaluation metrics. For
each step w (i.e., at time t + w). In RMSE formula the errors are squared
before they are averaged, which penalizes large errors. R2 the square of the
correlation between the actual and predicted values. MAE is the average of
all absolute errors of predictions and it is a linear score, which means that
all the individual differences are weighted equally in the average. MAPE
measures the accuracy of a model as a percentage.

4.6.2 Prediction results

Using ARIMA and LSTM models, we performed multi-step predictions. The
experiment involved forecasting the controller load from 1 to 30 seconds into
the future. As mentioned before, we used the 20% of the dataset (i.e., dataset
of tests) to compare ARIMA and LSTM in terms of prediction accuracy.

Figure 4.7a, 4.7b and 4.7c illustrate the prediction results of SDN controller
load for step 1, 15 and 30, respectively. From figure 4.7a, we observe that
both models achieved good forecast performance for short-term predictions
t+1. In fact, ARIMA and LSTM predictions for step t + 1 closely follow
the actual (i.e., real values) SDN controller load, displaying similar patterns.
On the one hand, ARIMA prediction results slightly outperform those of
LSTM in step t + 1 with 4.91% and 13.78 of difference in terms of MAPE

70
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

(a) t+ 1. (b) t+ 15.

(c) t+ 30.

Figure 4.7 SDN controller load prediction results of ARIMA and LSTM models
for different steps.

and MAE, respectively. On the other hand, from table 4.3, LSTM model has
the minimum score in terms of MAE and MAPE for step t+15 and t+30.
We can note that LSTM model can follow some peaks of SDN controller
load fluctuations, figure 4.7b and figure 4.7c. The percentage error (i.e.,
MAPE) of the ARIMA model predictions in step 30 reached 99.99% while
the MAPE of the LSTM model stopped at 45%. With this difference of 55%,
the performance of LSTM is much better in long-term predictions than the
ARIMA model. In addition, ARIMA predictions results for the three steps,
namely t + 1, t + 15 and t + 30, have roughly the same outline, which is
explained by the fact that an ARIMA model try always to follow the mean

4.6. PREDICTION PERFORMANCE EVALUATION 71

value. Furthermore, to compare the accuracy of the ARIMA and LSTM

Table 4.3 MAE and MAPE scores of ARIMA and LSTM.
Metrics Forecasting step ARIMA LSTM

t+1 64.04 77.82
MAE t+15 353.94 204.74

t+30 573.71 296.95
t+1 12.49 17.40

MAPE(%) t+15 50.02 32.16
t+30 99.99 45.32

models, the RMSE score and the coefficient of determination R2 were plotted
from step t+1 to step t+30. Figure 4.8 shows that the RMSE score increases
proportionally with the prediction steps. In fact, the errors in the prediction
results of the two models, i.e., ARIMA and LSTM, become high where the
forecasts are made for farther stages in the future. However, the LSTM model
has better results in long-term predictions than ARIMA with a difference of
400.31 in terms of RMSE score for t+30, while ARIMA is still lightly good
in short-term predictions. Similarly, we plotted and analyzed the R2 scores
in figure 4.9. R2 varies between 0 and 1, i.e., between a weak prediction
results when R2 is close to 0 and a good prediction results when R2 is close
to 1. From figure 4.9, we can see that the R2 scores of both models decrease
tend to 0 as the prediction step increases. However, the R2 of ARIMA model
quickly reaches 0, starting from step 18, while the R2 of LSTM achieves 0.35
at step t+30.

Using the predefined evaluation metrics, we compared the accuracy of ARIMA
and LSTM to predict, in short-term and long-term, the load of SDN con-
trollers. When a load imbalance is predicted in a distributed SDN control
plane, we need to judiciously choose which data plane component to migrate
and where the migration should happen to guarantee an efficient migration
operation. Thus, the next step is to properly design a migration-based model
to balance the load between controllers while considering a migration cost.

72
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

Figure 4.8 RMSE of ARIMA and LSTM from t+1 to t+30.

Figure 4.9 R2 of ARIMA and LSTM from t+1 to t+30.

4.7 System model
4.7.1 Controller response time

We consider a distributed SDN control plane architecture composed of a
finite set of SDN controllers C = {c1, c2, c3, ..., cn} , with |C| = n. Each
controller ck has a limited processing capacity αk defined as the possible
number of requests that can be processed per time unit,and we denote by
α = {α1, α2, α3, ..., αn} the set of capacities of the controllers. The data
plane contains a finite set of components S = {s1, s2, s3, ..., sm} , with |S| =
m. In a distributed control plane architecture, each controller manages a
sub-set of data plane components. Accordingly, we define the association
between controllers and data plane components as a binary matrix Xn×m,

4.7. SYSTEM MODEL 73

where xki = 1 if and only if ck manages the data plane component si. As
explained before, the load of an SDN controller is the sum of the Packet_In
messages sent by the data plane components. Therefore, the load of the kth

controller can be calculated as Lk =
∑︁m

i=1 xki ∗ li, where li is the number of
requests sent by si.

In order to calculate the response time of a controller, we consider the fol-
lowing assumptions: (i) the arrival process of the number of requests follows
a Poisson distribution (i.e., Packet_In messages) whereas the inter-arrival
times follows an exponential distribution; (ii) the processing times (i.e., ser-
vice times) of the requests, within an SDN controller, are independent of each
other, independent of the arrival process and obey an exponential distribu-
tion. Accordingly, the SDN controller can be modeled as an M/M/1 queuing
system. By applying Little’s law, we calculate the response time of controller
ck as follows:

Trk =
1

αk − Lk
. (4.1)

To meet the requirements of delay sensitive applications, the response time of
controllers should be adequate with the latency required by these applications.
Thus, the response time of each controller must not exceed a threshold Tth.

From equation 4.1 we notice that the response time Trk of controller ck is
proportional to its load Lk. Thus, performing load balancing in the control
plane maintains fairness between controllers in terms of response time. To
measure how fairly the load is distributed among controllers, we define the
load balancing factor LB as follows:

LB =
n∑︂

k=1

n∑︂
k′>k

⃓⃓
Trk − Trk′

⃓⃓
. (4.2)

In equation 4.2, the lower the difference between the response times, the
greater is the load balancing in the control plane.

74
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

Figure 4.10 Messages exchanged between the data plane component, the initial
controller and the final controller during a migration operation.

4.7.2 Migration protocol

In a migration operation, when a data plane component si migrates from con-
troller ck to controller ck′, the former is called the initial controller and the
later is called the final controller. In order to ensure a normal operation of si,
ck and ck′ during a migration operation, a migration protocol [42] should be
implemented, which includes four phases, as shown in figure 4.10: (i) change
role of the final controller to Equal, (ii) insert and remove a dummy flow,
(iii) flush pending requests with a barrier, and (iv) change role of the final
controller to Master. The first phase consists in changing the role of the final
controller from Slave to Equal. For this reason, the final controller should
respond to two received messages, the first one is sent by the initial controller
(i.e., Start migration) and the second one is an asynchronous message sent
by the migrated data plane component (i.e., Role-reply message for Equal).
In the end of this phase, the final controller sends to the initial controller a
message indicating that it is ready for the migration operation. Consequently,
in the second phase, the initial controller sends two successive messages (i.e.,

4.7. SYSTEM MODEL 75

a Flow-mod add command and a Barrier request message) to the migrated
data plane component as a response to the last message from the final con-
troller. Next, in response to the Barrier-replay message, the initial controller
removes the flow table entry added by the Flow-mod command. In the third
phase, the initial controller sends another Barrier message to the migrated
data plane component as a consecutive command upon receiving the Flow-
Removed message in the second phase. This message is used by the controller
to ensure that all previous requests are processed by the data plane compo-
nent before detaching from its management as a Master controller. Then, as
a response to the Barrier-replay message, the initial controller sends a mes-
sage to the final controller indicating the end of the migration. Finally, in
the fourth phase, the final controller changes its role from Equal to Master
by sending a Role-request message to the migrated data plane component.

By analyzing the behavior of the initial and the final controllers in the four-
phase migration protocol, we can notice that the initial controller should
react four times after receiving four messages and the final controller should
react three times after receiving three messages. The four responses of the
initial controller are: (i) Flow-mod add command and Barrier request mes-
sage, (ii) Flow-mod delete command, (iii) Barrier request message, and (iv)
End-migration.The three responses of the final controller are: (i) Ready for
migration, (ii) Role-request message to Equal, and (iii) Role-request message
to Master.

4.7.3 Migration cost

We denote the initial association matrix by X initial
n×m and the final association

matrix, after performing migration operations, by Xfinal
n×m . The logical XOR

operation between X initial
n×m and Xfinal

n×m defines the binary migration matrix
Mn×m, i.e., Mn×m = X inital

n×m ⊕X
final
n×m , where mki = 1 if and only if ck is either

an initial or a final controller of si.

76
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

To present the controllers involved in migration operations as initial con-
trollers, we define the binary matrix M initial

n×m = Mn×m • X inital
n×m , where • is

the AND operator and minitial
ki = 1 if and only if ck is the initial controller

of si. Similarly, we define M final
n×m =Mn×m •Xfinal

n×m to present the controllers
involved in migration as final controllers, where mfinal

ki = 1 if and only if ck
is the final controller of si.

Using the OpenFlow-based migration mechanism, the migration operation
of a data plane component is performed by exchanging a set of messages,
as shown in figure 4.10, between this component, the initial controller and
the final controller. Therefore, we define the migration cost of a data plane
component based on the time required to exchange all of these messages.
This needed time for the accomplishment of a migration operation depends
on the transmission delay of these messages, the response time of the initial
controller, the response time of the final controller and the response time of
the data plane component. Since the response time of a controller is usually
much greater than the transmission delay and the response time of the data
plane component [102][103], we assume that the cost of a migration operation
depends only on the response time of the initial and final controller. Hence,
the cost of migrating si can be defined as follows:

Tmi
=

n∑︂
k=1

4 ∗ Trk ∗minitial
ki +

n∑︂
k′=1

3 ∗ Trk′ ∗m
final
k′i . (4.3)

In equation 4.3, the first sum calculates the response time of the initial con-
troller required to migrate si and the second sum calculates the needed re-
sponse time of the final controller. Since the initial controller should respond
four times after receiving four messages and the final controller should respond
three times after receiving three messages (see Section VI-B), we multiply the
response time of the initial controller by four and that of the final controller

4.8. PROBLEM FORMULATION AND NP-HARDNESS 77

by three. In addition, we define the total migration cost Tm as follows:

Tm =
m∑︂
i=1

Tmi
(4.4)

Performing many migration operations increases the migration cost, which
affects the performance of controllers. Since we are studying the SDN load
balancing problem for delay-sensitive applications on the edge [104], a signifi-
cant migration cost heavily impacts the services offered by these applications.
Accordingly, the objective of LBSDA is to minimize the LB factor through
migration operations, but not at the expense of the migration cost. To opti-
mally solve the LBDSA problem, we formulate it as an optimization problem
in the next section.

4.8 Problem formulation and NP-hardness
4.8.1 Problem formulation

In order to optimize the load balancing and the migration cost, we transform
the two objectives, LB and Tm, into a weighted sum by introducing a weight
factor ω ∈ [0, 1]. Consequently, LBDSA can be formulated as follows:

minimize
X,M

ω × LB + (1− ω)× Tm (4.5a)

subject to
n∑︂

k=1

xki = 1,∀i ∈ {1, 2, 3, ...,m} , (4.5b)

Lk < αk,∀k ∈ {1, 2, 3, ..., n} , (4.5c)

Trk ≤ Tth,∀k ∈ {1, 2, 3, ..., n} , (4.5d)

xki,mki,m
initial
ki ,mfinal

ki ∈ {0, 1} . (4.5e)

Equation (4.5a) formulates the weighted summation of the two objectives.
Constraints (4.5b) ensure that each data plane component must be assigned
to exactly one controller. Constraints (4.5c) guarantee that the load of each

78
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

controller should not exceed its processing capacity. Constraints (4.5d) state
that the response time of each controller cannot exceed a defined threshold
Tth related to latency required by delay sensitive applications. Constraint
(4.5e) lists the optimization variables.

Due to the non-linearity of equation 4.1, LBDSA is a non-linear binary pro-
graming problem.

4.8.2 NP-hardness

We denote the LBDSA problem (equation 4.5) here by P . To prove that P
is NP-complete we (i) consider a decision version of the problem, (ii) show
that P belongs to the non-deterministic polynomial time class (NP), and (iii)
reduce, on a polynomial-time, PARTITION problem [105] to P . In [79], the
reduction from PARTITION problem has been used to demonstrate the NP-
completeness of a similar load balancing problem in the SDN control plane.
Since our problem is different from the one in [79], we cannot argue that our
problem is NP-hard. A reduction from the problem of [79] to our problem
is probably possible but it is not evident as both problems have different
objectives and constraints. To present a simple proof, we use partition to
prove the NP-hardness of our problem.

Definition 1 (PARTITION problem). The PARTITION problem is a deci-
sion problem and is defined as follows: given a set S of integers, the task is
to find if S can be divided into two subsets S1 and S2 such that the sum of
all elements in S1 equals the sum of all elements in S2, i.e., S1∪S2 = S and∑︁

s1∈S1
s1 =

∑︁
s2∈S2

s2.

Theorem 1. P is NP-complete.

Proof. We prove the theorem by restriction, i.e., we prove that a restricted
version of P is NP-complete. First, we prove that P is in NP. This is true
since the knowledge of an association matrix Xn×m between data plane com-

4.8. PROBLEM FORMULATION AND NP-HARDNESS 79

ponents and controllers makes it is possible to verify, in polynomial time, that
the processing capacity (α) of the controllers has not been violated and the
response time (Tr) of the controllers does not exceed the defined threshold
(Tth).

PARTITION problem can be stated alternatively as follows: given a finite
set S and each element s ∈ S present a load value load(s) ∈ N, is there a
subset S ′ ⊆ S such that

∑︁
s∈S′ load(s) =

∑︁
s∈S\S′ load(s)?

The restricted version of P is constructed as follows. Let C = {c1, c2}, ω = 1

and α1 = α2. Each si represents an element s ∈ S and has a number of
requests (i.e., load) li = load(si). Then, given a YES solution S1 and S2

for PARTITION problem, we can create an association matrix Xn×m as a
solution to P as follows, x1i = 1 for all i ∈ S1 and x2i = 1 for all i ∈ S2. We
obtain

∑︁m
i=1 x1i × li =

∑︁m
i=1 x2i × li, so L1 = L2. Since, we choose α1 = α2,

then Tr1 = Tr2. Thus, we have a solution xki ∈ {0, 1} ,∀i ∈ {1, 2, ...,m} and
∀ k ∈ {1, 2} with LB = 0. The reverse part can be done similarly. Since
PARTITION problem is NP-complete, the reduction is done in polynomial-
time and P is in NP, this proves that P is NP-complete which proves the
theorem.

We showed that LBDSA is NP-complete, and thus it is very challenging to
solve optimally, specifically in large-scale networks. To overcome this issue,
we invoke machine learning tools for performing the association task between
data plane components and SDN controllers in a computationally efficient
manner. In particular, we use Reinforcement Learning (RL) to efficiently
obtain the association solution to LBDSA. In the next section, we describe
our proposed RL algorithm.

80
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

4.9 Reinforcement learning algorithm

In RL, an agent interacts with its environment and its aim is to make sub-
optimal decisions based on its previous experience. The major challenge the
agent is facing is to find a tradeoff between exploitation, the desire to make
the best decision given current information, and exploration, the desire to try
a new decision which may lead to better results. While interacting with its
environment, the agent observes the state of the environment and performs
an action using a certain policy. According to the performed action, the state
of the environment changes and the agent receives a reward or penalty. The
agent would like to maximize its accumulated reward (or minimize its accu-
mulated penalty) in the long run. Every time the agent observes the state of
the environment, performs an action it learns from this experience and refines
its policy. This process is repeated until a suboptimal decision is found. The
details are given in the sequel.

4.9.1 Preliminary definitions

First, we assume that the root controller includes a RL agent that knows the
necessary network information about this architecture, namely the control
domain of each controller, the load of controllers and the response time of
controllers. In other words, we assume that the root controller represents the
RL agent which will perform the learning process.

For LBDSA, we define the state set, action set and rewards as follows.

States. The observed state by the RL agent is given by the data plane compo-
nents managed by each controller, the load of controllers, the response time
of controllers (equation 4.1) and the achieved load balancing level LB.

Actions. An action represents the decision to choose a controller ck ∈ C as
the final controller for a data plane component si ∈ S. To define the global
action of the RL agent, first we define the set of actions available to migrate
si as C, i.e., the set of controllers. We denote the action for data plane

4.9. REINFORCEMENT LEARNING ALGORITHM 81

component si by ai ∈ {c1, c2, ..., cn}. If ai is the initial controller for data
plane component si, it means that this data plane component will not be
migrated.

The RL agent simultaneously chooses an action for each data plane compo-
nent si. Therefore, we define the global action, denoted by a, of the RL agent
and it’s represented as a vector of size |S| = m, where a ≜ [a1, a2, ..., am].
Note that a global action vector a is equivalent to an association matrix
X(n×m) because each element ai of vector a corresponds to the master con-
troller of the data plane component si. A global action a is feasible if it
meets the constraints (4.5b), (4.5c) and (4.5d) of the LBDSA problem.

Rewards. After performing the actions for all data plane components and
obtaining the global action, the RL agent receives a set of rewards denoted
by {R(ai, a−i)}i∈{1,2,...m}. Each reward R(ai, a−i) depends both on the cho-
sen action ai for data plane component si and on the global action a. We
define R(ai, a−i) to belong to {δ1, ..., δ4} where δ1, δ2, δ3 and δ4 are any
real numbers such that δ1 > δ2 > δ3 > δ4. For j ∈ {1, 2, 3, 4}, the reward
R(ai, a−i) is set to δj if condition ζj is true. The conditions ζj are given by:

1) ζ1: the global action a is feasible, the data plane component si has not
been migrated and the LB factor has decreased.

2) ζ2: the global action a is feasible, the data plane component si has been
migrated and the LB factor has decreased.

3) ζ3: the global action a is feasible, the data plane component si has been
migrated and the LB factor has increased.

4) ζ4: the global action a is not feasible.

Next, we define how the agent responds to each action to find a suboptimal
policy. Our approach is based on the well-known learning rule Win-Stay-
Lose-Shift Algorithm [95].

82
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

4.9.2 Two-win-stay-lose-shift algorithm (2WSLS)

In order to solve LBDSA based on the RL framework, we developed 2WSLS
for two-win-stay-lose shift algorithm which is derived from the win-stay-lose-
shift learning strategy. In the original WSLS algorithm, an action is either
a winning action or a losing one while in our algorithm, we consider two
types of winning actions, hence the name 2WSLS. Given an initial associ-
ation between controllers and data plane component, 2WSLS aims to solve
LBDSA by finding a suboptimal tradeoff between the load balancing and the
migration cost while respecting the constraints (4.5b), (4.5c) and (4.5d). In
the following, we describe the first iteration of the algorithm, the learning
process and the termination process.

Algorithm 3 2WSLS for data plane component si
Input: A, τ1, τ2, ϵ, πi
Output: action ai
1: if R(ai, a) = δ1 then
2: πi[ai]← πi[ai] + τ1(1− πi[ai])
3: for aj ∈ A do
4: if aj ̸= ai then
5: πi[aj]← πi[aj]− τ1πi[aj]
6: end if
7: end for
8: else if R(ai, a) = δ2 then
9: πi[ai]← πi[ai] + τ2(1− πi[ai])

10: for aj ∈ A do
11: if aj ̸= ai then
12: πi[aj]← πi[aj]− τ2πi[aj]
13: end if
14: end for
15: else if R(ai, a) = δ3 then
16: πi[ai]← πi[ai]− ϵ
17: πi[cinitial]← πi[cinitial] + ϵ
18: end if
19: return ai

1) First iteration

The RL agent simulates 2WSLS independently for each data plane com-
ponent. Every data plane component chooses a random action ai from

4.9. REINFORCEMENT LEARNING ALGORITHM 83

its action space C. Once every data plane component has chosen an
action, the RL agent formulates the global action a = [a1, a2, ..., am]

and calculates the load and the response time of each controller. If the
global action is feasible, the agent calculates the rewards according to
the constraints ζ1, ζ2, ζ3 and ζ4.

According to the computed rewards and the formulated global action,
the RL agent can have information about the reliability of certain actions
chosen for the data plane components. Indeed, when a global action is
feasible the agent can find out if: (i) the non-migration of si can increase
the LB factor, i.e., R(ai, a−i) = δ1 and (ii) the migration of si can de-
crease or increase the LB factor, i.e., R(ai, a−i) = δ2 or δ3, respectively.
Whereas, when the global action is not feasible, the agent cannot know
whether the migration or non-migration of a specific data plane compo-
nent is beneficial. The acquired information should be efficiently used
by the agent to choose a better action in the future. Therefore, we de-
fine for each si ∈ S a probability vector πi = [πi[a1], πi[a2], ..., πi[an]] of
size n = |C|. Each element πi[ak] for all k ∈ {1, 2, ..., n} corresponds
to the probability of playing action ai = ck by RL agent for the data
plane component si. Part of the 2WSLS pseudo-code executed by the
RL agent for data plane component si is presented in Algorithm 3.

2) Learning Process

Once the RL agent computes the rewards and associates them to the data
plane components, it updates the probability vectors of the data plane
components as shown in Algorithm 3. These updates should efficiently
reflect the results that the RL agent received to improve the learning
process. In WSLS, there are two types of actions: (i) a winning action if
the received reward is higher and (ii) a losing action if the received reward
is not good. In the case of a winning action, the RL agent continues to
play this action in future iterations while in the case of a losing action,

84
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

the RL agent should try another action. The WSLS original learning
algorithm has been shown to be commonly used in binary rewards choice
problems. However, the modeling must be modified and improved for
problems where the RL agent receives a non-binary reward after each
iteration which is the case in LBDSA.

Since in 2WSLS there is a tradeoff design problem, a single winning
action does not model the multi-objective correctly. Thus, we define
two winning actions and one losing action. The first winning action
results in the δ1 reward and the second winning action results in the
δ2 reward. We consider that the first winning action is better than the
second one (δ1 > δ2) because we aim to minimize the LB factor as well
as the migration cost. Thus, the reward of δ1 that corresponds to a
lower LB factor and no migration should have the highest reward. In
the second winning action, the LB factor decreases but a cost incurs
which corresponds to the migration cost of a data plane component.
Therefore, to increase the chance to converge to the two winning actions
at the end of the learning process, the probabilities of playing these
actions must be increased, but with a preference for the first winning
action. Accordingly, for si ∈ S, the probabilities corresponding to the
two winning actions are updated as follows:

πi[ai] =

⎧⎨⎩πi[ai] + τ1(1− πi[ai]), if R(ai, a−i) = δ1,

πi[ai] + τ2(1− πi[ai]), if R(ai, a−i) = δ2,
(4.6)

where τ1 and τ2 represent the winning increment factors such that τ1 > τ2

because the first winning action is better than the second one. In order to
keep the sum of the probabilities in πi equal to one, all the probabilities
πi[aj] such that aj ̸= ai must be decreased by the same factor as follows:

4.9. REINFORCEMENT LEARNING ALGORITHM 85

πi[aj] =

⎧⎨⎩πi[aj]− τ1πi[aj], if R(ai, a−i) = δ1,

πi[aj]− τ2πi[aj], if R(ai, a−i) = δ2.
(4.7)

When the reward is equal to δ3, we consider the action chosen as a losing
one because it leads not only to increase the LB factor but also to migrate
a data plane component which increases the migration cost. Therefore,
the probability of choosing this action is reduced and the probability of
not migrating the associated data plane component is increased, i.e., the
probability of choosing the initial controller. In this way, we teach the
RL agent that it is better not to migrate at all. Hence, the probability
vector is updated as follows:

πi[ai] = πi[ai]− ϵ, (4.8)

πi[cinitial] = πi[cinitial] + ϵ, (4.9)

where ϵ represents the losing decrement factor and cinitial is the initial
controller of the data plane component si.

Finally, when the reward is equal to δ4, the global action is not feasible.
In this case, we cannot find out whether the migration or non-migration
of a specific data plane component is beneficial to minimize the LB
factor and the migration cost. Therefore, the RL agent does not perform
any probability update. In other words, the RL agent must favor the
exploration in order to find out better solutions.

3) 2WSLS termination

The RL agent terminates the execution of the 2WSLS algorithm when
the number of iterations reaches a predefined threshold or the probability
vectors converge. Then, the agent chooses the last feasible global action
a which represents the final association matrix Xfinal

n×m .

86
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

4.10 Simulation results
We conduct the simulations using three topologies with a different number
of data plane components (switches), namely 20, 25 and 30 components. For
all these topologies, the number of controllers is set to 5 and for the sake
of simplicity, all controllers have the same capacity α. We assume that the
number of Packet_In messages sent by the data plane components is ran-
dom. To provoke a load imbalance state in the control plane, we apply great
stress on at least one controller by generating a large number of Packet_In
messages. The optimization problem (equation 4.5) is modeled in AMPL
[106] and solved using the Knitro solver to obtain a global optimal solution
OPT. For all simulations, we performed 100 independent random realizations
which are then averaged out. Table 4.4 summarizes the key parameters of
the simulations. These parameters were chosen based on common settings in
the literature [46, 50].

Table 4.4 Simulation parameters
Name Description Value
li Number of Packet_in messages sent by si [5-500]
α Capacity of controllers 2000
Tth Controller response time threshold 0.005 s
R Number of iterations of 2WSLS 500
R1 Number of realizations of 2WSLS 100

To benchmark our 2WSLS algorithm, we implemented two algorithms from
the literature called MCBLB for migration competency-based load balanc-
ing [46] and SMCLBRT for SDN multiple controller load-balancing strategy
based on response time [50]. In order to balance the load in the SDN control
plane, MCBLB uses shift and swap moves to migrate switches between con-
trollers. The shift move is a simple migration operation of a switch from an
overloaded controller to an underloaded controller. However, in some cases,
shift moves are not always possible. For instance, when the only solution to
offload a controller is to migrate a heavy switch, but this switch may overload

4.10. SIMULATION RESULTS 87

the final controller. In this case, swapping two switches can be beneficial for
the load balancing. In SMCLBRT, the response time of controllers is used to
figure out if a controller is overloaded or not. Indeed, based on an appropriate
threshold, the controllers are divided into overloaded controllers and under-
loaded controllers. Then, the heavy switches are migrated simultaneously
from overloaded controllers to less-loaded ones. We adapted this algorithm
by using our definition of the controller response time (equation 4.1) and the
controller response time threshold defined in table 4.4. To fairly benchmark
the performance of 2WSLS against the two algorithms in [50] and [46], the
parameters of our simulation are chosen similar to those used in [50] and [46].

We evaluate the performance of 2WSLS in two stages. First, we analyze the
parameters of the algorithm, namely the winning increment factors τ1 and
τ2, the losing decrement factor ϵ and the number of iterations, denoted by R.
Then, we compare 2WSLS to the optimal solution, denoted by OPT, MCBLB
and SMCLBRT.

Before discussing the performance of 2WSLS, we start by analyzing the results
obtained by solving the optimization problem (equation 4.5) through AMPL
modeling and using the Knitro solver. Figure 4.11a, 4.11b and 4.11c show
the LB factor (equation 4.2) and migration cost Tm (equation 4.4) values for
the three topologies of 20, 25 and 30 data plane components, respectively.
For each topology, we plot the LB and Tm values for different tuning tradeoff
weights w ∈ [0, 1]. As expected, the results show that the more the policy
is LB-oriented (w > 0.5), the more we sacrifice on migration cost Tm (i.e.,
Tm increases) and vice versa. This value is almost the same for the three
topologies m = 20, m = 25 and m = 30. From these figures, we can see that
Pareto solutions to the optimization problem (equation 4.5) can be found
around w = 0.65. Therefore, in the rest of the simulations, w = 0.65 is
chosen as an efficient and no dominated solution to the LBDSA problem.

88
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) m = 20.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) m = 25.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)
(c) m = 30.

Figure 4.11 The impact of the weight factor (ω) on load balancing factor and
migration cost for different data plane topologies.

4.10.1 Parameters of 2WSLS

The performance of the 2WSLS algorithm depends on the choice of its param-
eters, namely the winning increment factors τ1 and τ2, the losing decrement
factor ϵ and the number of iterations R. Accordingly, they should be cho-
sen carefully to obtain good results. Figures 4.12, 4.13, 4.14, 4.15 and 4.16
illustrate the impact of these parameters on the objective function (equation
4.5).

In order to figure out an optimal value of the winning increment factor τ1,
we compare the performance of 2WSLS to that of OPT for different values of
τ1. In other words, given a value of τ1, how much 2WSLS can minimize the
objective function in equation 4.5 compared to the optimal solution. Figure
4.12a, 4.12b and 4.12c show that there exists an optimal value of τ1 at which

4.10. SIMULATION RESULTS 89

the performance of 2WSLS is close to the OPT value, given by τ1 = 0.5. This
optimal value is almost the same for the three topologies m = 20, m = 25

and m = 30 which is a very good and an important observation that implies
that our proposed learning algorithm is scalable. We notice, for all these
topologies, that small values of τ1 prevent the RL agent from converging to the
winning actions and, thus, the performance of 2WSLS decreases. On the other
hand, when the value of τ1 is high, the probability of choosing the associated
winning action will also be high. Therefore, the RL agent will not explore new
actions, which may lead to better performances, but it will quickly choose few
actions by simply exploiting the current information. Similarly, figure 4.13a,
4.13b and 4.13c show, for the three topologies, that there is an optimal value of
the winning increment factor τ2, given by τ2 = 0.04, at which the performance
of 2WSLS is close to OPT. Again, figure 4.13 shows the scalability of 2WSLS.

To further verify the scalability of our proposed 2WSLS algorithm, we com-
pare its performance to that of OPT for different control plane topologies,
namely n = 5, n = 7 and n = 9. In other words, we show, via simula-
tions, that the optimal values of τ1 and τ2 are almost the same for n = 5,
n = 7 and n = 9. To verify the 2WSLS algorithm scalability under a dense
network topology, the number of data plane components is set to 30 for all
these control plane topologies. Figure 4.14a, 4.14b and 4.14c illustrate that
the performance of our proposed algorithm is close to OPT performance at
τ1 = 0.5 for n = 5, n = 7 and n = 9, respectively. Figure 4.15a, 4.15b
and 4.15c show, for the three control plane topologies, the existence of an
optimal value of τ2, given by τ2 = 0.04, at which 2WSLS has close-to-optimal
performance. These results conform with those presented in figure 4.12 and
figure 4.13 and demonstrate the scalability of our 2WSLS algorithm.

90
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) m = 20.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) m = 25.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)
(c) m = 30.

Figure 4.12 The impact of the winning increment factor (τ1) on 2WSLS for
different data plane topologies.

Figure 4.16 illustrates the impact of the number of iterations R on 2WSLS
for different values of τ1. We notice that the performance of the optimal
value of τ1, i.e., τ1 = 0.5, outperforms the performances of the other values.
These results confirm those obtained in figure 4.12 and 4.14. Indeed, higher
values of τ1 improve the performance of 2WSLS faster while they result in low
performance for a large number of iterations R. For instance, the performance
comparison between τ1 = 0.5 and τ1 = 0.7 shows that, with τ1 = 0.7, 2WSLS
is able to reach an objective value equal to 0.046 in just 20 iterations while
to reach roughly the same value, 2WSLS needs 30 iterations with τ1 = 0.5.
However, τ1 = 0.5 gives better performances than τ1 = 0.7 for a large number
of iterations. In the case of small values of τ1, i.e., τ1 < 0.5, we observe

4.10. SIMULATION RESULTS 91

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06
Lo

ad
 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) m = 20.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) m = 25.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)

(c) m = 30.

Figure 4.13 The impact of the winning increment factor (τ2) on 2WSLS for
different data plane topologies.

that 2WSLS does not converge towards good performances even with a large
number of iterations, e.g., R = 500.

The value of δ1, δ2, δ3, and δ4 are not very important. In other words, any real
number values should work fine for the proposed 2WSLS algorithm subject
to the constraints that δ1 > δ2 > δ3 > δ4. To show that the exact values
of δ1, δ2, δ3, and δ4 are not so important, we compare the performance of
our proposed RL algorithm to that of OPT algorithm for different chosen
random values of δ1, δ2, δ3, and δ4. Precisely, we show, via simulations, that
2WSLS converges to the same optimal values of the winning increment fac-
tors τ1 and τ2. For this purpose, we define the vector ∆ = (δ1, δ2, δ3, δ4) and
we test three different configurations of ∆. These configurations are given by
∆1 = (2, 1, 0,−4), ∆2 = (7, 5, 3, 1), and ∆3 = (100, 70, 40, 10). Figure 4.17a

92
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) n = 5.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) n = 7.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)
(c) n = 9.

Figure 4.14 The impact of the winning increment factor (τ1) on 2WSLS for
different control plane topologies.

corresponding to ∆1, figure 4.17b corresponding to ∆2, and figure 4.17c cor-
responding to ∆3, show the performance of the proposed RL algorithm with
comparison to OPT algorithm when varying the winning increment factor
τ1. The three figures show the existence of an optimal value of τ1, given by
τ1 = 0.5, at which the performance of our proposed algorithm is close to opti-
mal. Similarly, figure 4.18a corresponding to ∆1, figure 4.18b corresponding
to ∆2, and figure 4.18c corresponding to ∆3, show the performance of the
proposed RL algorithm with comparison to OPT algorithm when varying
the winning increment factor τ2. The three figures show the existence of an
optimal value of τ2, given by τ2 = 0.04, at which the performance of our
proposed algorithm is close to the optimal one. These results comply with
those presented in figure 4.12, 4.13, 4.14 and 4.15 for the previously chosen

4.10. SIMULATION RESULTS 93

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06
Lo

ad
 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) n = 5.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) n = 7.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)

(c) n = 9.

Figure 4.15 The impact of the winning increment factor (τ2) on 2WSLS for
different control plane topologies.

configuration (2, 1, 0,−4) and demonstrate that the values of the deltas are
not very important unless δ1 > δ2 > δ3 > δ4. This, indeed, shows that the
2WSLS is flexible, robust and scalable.

4.10.2 Performance of 2WSLS

To verify the effectiveness of 2WSLS in solving the LBDSA problem, we
compare its performance against OPT, MCBLB and SMCLBRT algorithms
in terms of load balancing (LB) and migration cost (Tm) separately.

Figure 4.19 presents the comparison of 2WSLS, OPT, MCBLB and SM-
CLBRT in terms of load balancing (LB) for the three topologies m = 20,
m = 25 and m = 30. Based on these results, we make the following observa-
tions: (1) It is clear that the performance of 2WSLS is close to that of OPT for

94
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

0 100 200 300 400 500
Number of iterations (R)

0.02

0.03

0.04

0.05

0.06

Ob
je
ct
iv
e
va

lu
e

2WSLS, τ1 =0.1
2WSLS, τ1 =0.3
2WSLS, τ1 =0.5
2WSLS, τ1 =0.7

Figure 4.16 The impact of the number of iterations on 2WSLS.

the different values of m; (2) The performance gap between 2WSLS and OPT
is almost the same for the different topologies, which illustrates its scalability;
(3) 2WSLS outperforms MCBLB and SMCLBRT. Indeed, 2WSLS minimize
the load balancing factor better than MCBLB since the latter compares the
degree of load balancing achieved by a shift or a swap move against only
the non-execution of this move. Also, in the definition of the cost function
associated to a shift move or a swap move, MCBLB includes a factor which
encourages migrating switches with low latency to final controllers. Therefore,
this factor can poorly offload overloaded controllers, which has an impact on
the load balancing. In SMCLBRT, the load balancing between the controllers
is not really considered since determining whether a controller is overloaded
or not depends only on a predefined threshold. Moreover, SMCLBRT simply
selects the switch with the maximum load from the overloaded controller’s
domain then migrates it to an underloaded one.

In figure 4.20, we compare the performance of 2WSLS, OPT, MCBLB and
SMCLBRT in terms of migration cost (Tm) for the three topologies m = 20,
m = 25 and m = 30. Note that the migration cost results, presented in figure
4.20, are obtained for the same realizations as the load balancing results in

4.10. SIMULATION RESULTS 95

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06
Lo

ad
 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) Configuration ∆1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) Configuration ∆2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)

(c) Configuration ∆3.

Figure 4.17 The impact of the winning increment factor (τ1) on 2WSLS for
different reward configurations.

figure 4.19. We can observe that the migration cost of 2WSLS is the closest
one to that of OPT for all m values. Furthermore, for the three topologies,
we notice that the gap between the 2WSLS and OPT migration costs re-
mains constant which illustrates its scalability. We can once again confirm
that 2WSLS gives better performance compared to MCBLB and SMCLBRT.
MCBLB is outperformed by 2WSLS because it uses swap moves when shift
moves are not possible. In other words, swap moves generate more migration
operations than shift moves which increases the migration cost. As for SM-
CLBRT, we can see that it has the worst performance among all algorithms
in terms of migration cost. Indeed, SMCLBRT uses a threshold to determine
the overloaded controllers and when this threshold is low which is the case in
this paper, i.e., to meet the requirements of delay sensitive applications, the

96
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

0.06

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

0.10

M
ig
ra
tio

n
co

st
 (s

)

(a) Configuration ∆1.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.01

0.02

0.03

0.04

0.05

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.02

0.04

0.06

0.08

M
ig
ra
tio

n
co

st
 (s

)

(b) Configuration ∆2.

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Weight factor (ω)

0.010

0.015

0.020

0.025

0.030

0.035

Lo
ad

 b
al
an

cin
g
fa
ct
or
 (s

)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

M
ig
ra
tio

n
co

st
 (s

)
(c) Configuration ∆3.

Figure 4.18 The impact of the winning increment factor (τ2) on 2WSLS for
different reward configurations.

number of overloaded controllers is higher. Hence, the number of migrated
switches from overloaded controller increases which increases the migration
cost.

4.11 Conclusion

In this paper, we tackled the load balancing problem in distributed SDN archi-
tecture using machine learning. Reactive load balancing mechanisms make
the overloaded SDN controllers suffer from high response time until their
offloading happens through migration operations. Furthermore, the time re-
quired to migrate a data plane component is not considered in most proposed
algorithms. Thus, we propose to preemptively balance the load in the SDN
control plane while minimizing the migration time such that the latency re-

4.11. CONCLUSION 97

Figure 4.19 The performance of 2WSLS in terms of load balancing (LB) com-
pared to OPT, MCBLB and SMCLBRT.

Figure 4.20 The performance of 2WSLS in terms of migration cost (Tm) com-
pared to OPT, MCBLB and SMCLBRT.

quirements of delay sensitive applications are satisfied. For this purpose,
first, we built Auto Regressive Integrated Moving Average (ARIMA) and
Long Short-Term Memory (LSTM) models to predict the load of SDN con-
trollers and compared their performance in terms of accuracy in short-term
and long-term predictions. Comparison results showed that ARIMA lightly
outperforms LSTM in short-term predictions while LSTM widely surpasses
ARIMA in long-term predictions. Long-term predictions allow to preemp-
tively figure out if the load in the control plane will be unbalanced and,
consequently, schedule migration operations in advance. Second, to select
which data plane component should be migrated and where the migration

98
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

should happen, we formulate the load balancing for delay sensitive applica-
tions (LBDSA) problem as a non-linear binary program and prove its NP-
completeness. To solve this problem, we proposed a reinforcement learning
algorithm, called 2WSLS, which is inspired by the well-known learning rule
of win-stay-lose-shift. Finally, we benchmark 2WSLS against two algorithms
from the literature. Simulation results demonstrated that 2WSLS has close
to optimal performance and outperforms the benchmark algorithms in terms
of load balancing and migration cost.

4.11. CONCLUSION 99

Chapitre 5: Avant-propos
Auteurs et affiliation:

Abderrahime Filali: étudiant au doctorat, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Zoubeir Mlika: Chercheur post-doctoral, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Soumaya Cherkaoui: Professeure, Université de Sherbrooke, Faculté de
génie, Département de génie électrique et de génie informatique, Labora-
toire de recherche INTERLAB.

Abdellatif Kobbane: Professeur, Université Mohammed-V, École Nationale
Supérieure d’Informatique et d’Analyse des Systèmes, Rabat-Maroc.

Date de soumission: avril 2021.

État de l’acceptation: en cours sous révision.

Revue: IEEE Transactions on Network Science and Engineering (TNSE).

Titre français: Découpage dynamique du réseau d’accès radio basé sur
SDN avec apprentissage par renforcement profond pour les services URLLC
et eMBB.

Résumé français:

Le découpage du réseau d’accès radio (en anglais radio access network, RAN)
est une technologie clé qui permet au réseau 5G de répondre aux exigences
hétérogènes des services génériques, à savoir la communication ultra-fiable à
faible latence (en anglais ultra-reliable low-latency communication, URLLC)
et le haut débit mobile amélioré (en anglais enhanced mobile broadband,

100
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

eMBB). Le réseau défini par logiciel (en anglais software-defined networking,
SDN) peut contribuer à assurer la programmabilité et la flexibilité du dé-
coupage du RAN sur une large échelle de temps et à contrôler l’allocation des
ressources radio des différentes tranches du RAN sur une échelle de temps
plus courte. Dans cet article, nous proposons un mécanisme de découpage du
RAN à deux échelles de temps pour optimiser les performances des services
URLLC et eMBB. Dans la première grande échelle de temps, les ressources
radio sont allouées aux gNodeBs en fonction des exigences des services eMBB
et URLLC. Dans la deuxième échelle de temps courte, chaque gNodeB alloue
ses ressources disponibles à ses utilisateurs finaux et demande, si nécessaire,
des ressources supplémentaires aux gNodeB adjacentes. Nous formulons ce
problème d’allocation de ressources à deux échelles de temps sous la forme
d’un programme binaire non linéaire et prouvons qu’il est NP-difficile. En-
suite, pour chaque échelle de temps, nous modélisons le problème comme un
processus de décision de Markov (en anglais Markov decision process, MDP),
où le problème à grande échelle de temps est modélisé comme un MDP à
un seul agent tandis que le problème à courte échelle de temps est modélisé
comme un MDP multi-agents. Pour résoudre chaque MDP, une approche
basée sur l’apprentissage par renforcement est proposée. Plus précisément,
nous utilisons l’algorithme d’exploration et d’exploitation à poids exponen-
tiel (en anglais exponential-weight algorithm for exploration and exploitation,
EXP3) pour résoudre le MDP à agent unique à grande échelle de temps et
l’algorithme d’apprentissage Q-profond (en anglais deep Q-learning, DQL)
multi-agent pour résoudre le MDP multi-agent de l’allocation des ressources
à courte échelle de temps. Des simulations extensives montrent que notre
approche est efficace sous différentes configurations de paramètres de réseau
et qu’elle surpasse les solutions de référence récentes.

4.11. CONCLUSION 101

Chapitre 5: Foreword
Authors and affiliation:

Abderrahime Filali: Ph.D. Student, INTERLAB Research Laboratory,
Faculty of Engineering, Department of Electrical and Computer Science
Engineering, Université de Sherbrooke.

Zoubeir Mlika: Postdoctoral Research Fellow, INTERLAB Research Lab-
oratory, Faculty of Engineering, Department of Electrical and Computer
Science Engineering, Université de Sherbrooke.

Soumaya Cherkaoui: Professor, INTERLAB Research Laboratory, Fac-
ulty of Engineering, Department of Electrical and Computer Science En-
gineering, Université de Sherbrooke.

Abdellatif Kobbane: Professor, École Nationale Supérieure d’Informatique
et d’Analyse des Systèmes (ENSIAS) Mohammed V University in Rabat,
Morocco

Date of submission: april 2021.

Acceptance status: under revision.

Journal: IEEE Transactions on Network Science and Engineering (TNSE).

Title: Dynamic SDN-based Radio Access Network Slicing with Deep Rein-
forcement Learning for URLLC and eMBB Services

102
CHAPTER 4. PREEMPTIVE SDN LOAD BALANCING WITH MACHINE

LEARNING FOR DELAY SENSITIVE APPLICATIONS

CHAPTER 5

Dynamic SDN-based Radio Access Network
Slicing with DRLearning for URLLC and eMBB
Services

5.1 Abstract

Radio access network (RAN) slicing is a key technology that enables 5G net-
work to support heterogeneous requirements of generic services, namely ultra-
reliable low-latency communication (URLLC) and enhanced mobile broad-
band (eMBB). Software defined networking (SDN) can help ensuring the
programmability and the flexibility of RAN slicing in a large time-scale and
monitoring the allocation of radio resources of different RAN slices in a shorter
time-scale. In this paper, we propose a two time-scales RAN slicing mecha-
nism to optimize the performance of URLLC and eMBB services. In the first
large time-scale, radio resources are allocated to gNodeBs according to the re-
quirements of the eMBB and URLLC services. In the second short time-scale,
each gNodeB allocates its available resources to its end-users and requests, if
needed, additional resources from adjacent gNodeBs. We formulate this two
time-scales resource allocation problem as a non-linear binary program and
prove its NP-hardness. Next, for each time-scale, we model the problem as
a Markov decision process (MDP), where the large-time scale is modeled as
a single agent MDP whereas the shorter time-scale is modeled as a multi-
agent MDP. To solve each MDP, a reinforcement learning-based approach
is proposed. Specifically, we leverage the exponential-weight algorithm for
exploration and exploitation (EXP3) to solve the single agent MDP of the
large time-scale MDP and the multi-agent deep Q-learning (DQL) algorithm

103

104
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

to solve the multi-agent MDP of the short time-scale resource allocation. Ex-
tensive simulations show that our approach is efficient under different network
parameters configuration and it outperforms recent benchmark solutions.

5.2 Introduction

The heterogeneous services supported by the fifth-generation (5G) new ra-
dio (NR) can be classified mainly into enhanced mobile broadband (eMBB),
ultra-reliable low-latency communication (URLLC) and massive machine-
type communication (mMTC) services [107]. The eMBB services target
the applications that require a high data rate such as high definition (HD)
video or large-scale video streaming. The URLLC services accommodate
low-latency and high reliability applications such as autonomous driving or
robotic surgery. Finally, the mMTC services provide connectivity to a large
number of devices, e.g., massive access in Internet of things (IoT) networks [108,
109], that are characterized by small data and sporadic traffic. To support
these three 5G services while respecting their heterogeneous and different
requirements over a common wireless network infrastructure, radio access
network (RAN) slicing [58] is introduced as a key enabling technology in the
new generation of cellular networks. Network slicing (NS) provides the abil-
ity to build several independent logical networks, called network slices, each
adapted to the requirements of a specific service [85]. Therefore, each RAN
slice can be tailored and dedicated to support a specific service with distinc-
tive characteristics and requirements. The network operator can leverage the
network programmability provided by software defined networking (SDN) to
dynamically manage the provisioning of radio resources for the RAN slices
[16, 59, 110].

Unlike the cloud RAN (C-RAN) architecture, which presents major challenges
in its deployment with a multi-access edge computing (MEC) environment in
terms of maintaining service availability and leveraging MEC resource [111],

5.2. INTRODUCTION 105

URLLC eMBB

SDN Controller

RBs allocated
to BS1

RBs allocated
to BS2

RBs allocated
to BS3

RBs allocated
to BS4

RB pool of a sharing group

BS1 BS2 BS3
BS4

R
ad

io
 A

cc
e

ss
 N

e
tw

o
rk

B
S

al
lo

ca
ti

o
n

 le
ve

l
C

o
n

tr
o

lle
r

al
lo

ca
ti

o
n

 le
ve

l

URLLC eMBB
URLLC eMBB

URLLC eMBB

Figure 5.1 Resource block allocation procedure

SDN can be recognized as an important 5G RAN enabler in a fog RAN (F-
RAN) architecture. Specifically, co-deploying SDN with F-RAN increases the
ability of exploiting radio resources using its global view of the network [112].
The radio resource considered in this work is the resource block (RB), which
is the minimum resource element that can be allocated to an end-user and
it is identified by the frequency band and time slot pair [113]. Each gNodeB
should have enough RBs from the shared radio RBs pool to meet the require-
ments of its end-users [114]. In a RAN slicing scenario, SDN can be used to
allocate the appropriate RBs for each RAN slice in each gNodeB, depending
on the radio resource availability and the services required by the end-users
of the corresponding gNodeB. A notable challenge here is how to achieve an
optimal RBs allocation for each gNodeB to satisfy the quality of service (QoS)
requirements of its end-users in different slices.

To solve this problem, a large variety of algorithms and schemes have been
proposed in recent years [61, 62, 63, 64, 65, 66, 67, 115, 116] that mainly
present either centralized resource allocation solutions or multi-level resource
allocation solutions. However, we identify important gaps in these related-
works. In the centralized solution approaches, the radio resource allocation

106
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

decision relies only on a central entity (e.g., an SDN controller), which in-
creases the signaling overhead in the network caused by frequent communica-
tions between the gNodeBs and the central entity, especially when the latter
has to perform the resource allocation of the different gNodeBs. Therefore,
the operation of allocating radio resources to end-users is expected to be per-
formed in a large time-scale. On the other hand, in the multi-level resource
allocation solution approaches, the SDN controller allocates, in the upper
level, radio resources to RAN slices or gNodeBs. The latter are responsi-
ble, in the lower level and based on the pre-allocated resources by the SDN
controller, for allocating radio resources to end-users. Although multi-level
resource allocation solutions can efficiently allocate RBs to end-users, when
the pre-allocated resources by the SDN controller are not sufficient to handle
the required services, the low-level allocation operation can fail since it must
wait for the next resource reservation update or immediately solicit the SDN
controller for more resources, which can significantly reduce the QoS that the
network operator is expected to provide.

In this paper, we fill these two gaps by proposing a two-level RB allocation
mechanism. In the first level and in a large time-scale, the SDN controller
allocates to each gNodeB a number of RBs from the common radio RBs pool,
according to the gNodeB requirements. In the second level, each gNodeB
schedules the pre-allocated RBs to its associated end-users in a short time-
scale to satisfy their QoS requirements in terms of data rates and delay.
This mechanism avoids frequent communications between gNodeBs and the
SDN controller caused by abrupt and potentially unexpected fluctuations in
wireless network traffic. To further reduce communications between gNodeBs
and the SDN controller, a gNodeB can request additional RBs from other
adjacent gNodeBs when its pre-allocated RBs are not sufficient, which allows
to immediately respond to the requirements of the end-users.

5.2. INTRODUCTION 107

In this work, two types of slices are considered, each one is dedicated to a
single 5G service, namely the eMBB service and the URLLC service. Then,
we formulate the two-level RB allocation problem as an optimization problem
where the objective is to maximize the total achievable data rate of eMBB and
URLLC end-users. This objective has to be achieved subject to the ultra-low
latency requirements of the URLLC services as well as to the minimum data
rate requirements of the eMBB services. The proposed mechanism to solve
this optimization problem will: (1) reduce the signaling overhead between
the gNodeBs and the SDN controller, and (2) quickly provide the required
RBs for different slices to meet the services requested by the corresponding
end-users.

The novelty of this work lies in two main parts. In the first part, we define
the two-level radio RB allocation problem using integer programming and
we analyze its NP-hardness. In the second part, we propose a single-agent
multi-agent reinforcement learning (SAMA-RL) framework to solve the two-
level radio RB allocation problem. Therefore, the proposed RL-based RAN
slicing framework is dynamic since RL algorithms can adapt their RB alloca-
tion policies permanently according to different factors that mainly include
the density of the end-users in the network, the requirements of the eMBB and
the URLLC services, and the transmission conditions of the wireless channel.
In addition, the proposed RAN slicing approach is performed in two-time
scales to allocate resources for two levels including the SDN controller level
and the gNodeBs level. Precisely, the proposed two-time scales RAN slicing
approach is supervised by an SDN controller to manage the resource block
allocation policies dynamically, which means that the programmability pro-
vided by the SDN controller enables an automatic resource management. The
main contributions of this paper are summarized as follows:

108
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

• We use mathematical programming techniques to model the global RBs
allocation for eMBB and URLLC end-users as a non-linear binary pro-
gram and study its NP-hardness.

• Due to the NP-completeness result, obtaining an optimal solution to the
RB allocation problem is computationally expensive. Thus, we model
each level of the RB allocation problem as a Markov decision process
(MDP).

• To fairly partition RBs between gNodeBs according to their require-
ments, we design a single agent RL-based algorithm to partition the
RBs between gNodeBs in the first allocation level.

• In the gNodeBs level, based on the pre-allocated RBs by the SDN con-
troller to gNodeBs, we propose a multi-agent deep Q-learning (DQL)
approach to allocate RBs to eMBB and URLLC end-users and perform
RBs sharing between gNodeBs.

• We evaluate the performance of our proposed mechanism against a bench-
mark algorithm and perform extensive simulations to show the superi-
ority of the proposed framework.

The rest of the paper is organized as follows. Section II discusses analyzes the
related works. Section III presents the system model. Section IV formulates
the RB allocation problem as a mathematical program and studies its NP-
hardness. Section V presents the proposed learning solutions. Section VI
highlights the performances of the proposed mechanism and discusses the
obtained results. Finally, section VII concludes the paper.

5.3 Related Work
In [61], the authors propose a framework for RAN slicing by using two
machine-learning approaches: (i) LSTM is used to predict the resources that
should be allocated to a slice in a large time-scale (ii) a multi-agent RL-
Algorithm, known as A3C, is exploited for on-line resource scheduling of

5.3. RELATED WORK 109

RAN slices. However, the proposed framework considers only eMBB end-
users and the slicing for individual end-users is not considered. In [115], the
controller reserves resources for URLLC and eMBB slices at each base station
considering the minimum resource requirement of each slice. Then, to meet
the required QoS and increase the resource utilization utility of slices, a deep
RL algorithm is executed for each slice on each base station to dynamically
update the allocated RBs based on the reserved resources. Similarly, the au-
thors of [62] improve the user QoS satisfaction and resource utilization utility
by adjusting the resource provided to individual RAN slices. They leverage
DQL approach with the dueling DQN algorithm to solve the slice resource
provisioning problem. However, if the resources reserved for a given slice are
not sufficient to handle the required services, the slice must wait for the next
resources reservation update since the slice cannot occupy more resources
than those assigned by the controller. The authors of [63] present a dynamic
radio resource slicing scheme for a two-tier heterogeneous wireless network
to determine the optimal bandwidth slicing ratios for slices. An alternative
concave search algorithm is designed to solve the maximum network utility
optimization problem. Although the proposed scheme satisfies the QoS re-
quirement of machine-type and data slices, it cannot support URLLC slices
which need much lower latency. Also, resources for each slice are expected
to be updated only in a large time-scale. In [64], a two-level SDN-based ra-
dio resource allocation framework is designed to improve RAN slicing over
different time scales. In a large time-scale, the SDN controller allocates RBs
to gNodeBs, while in a small time-scale the pre-allocated RBs are scheduled
by each gNodeB to eMBB and URLLC users. Moreover, each gNodeB can
borrow RBs from other gNodeBs when the pre-allocated RBs are insufficient.
However, the interactions between the base stations to share the RBs are
not described. In meeting the eMBB, URLLC and mMTC slice user require-
ments, the authors of [65] formulate the user-association and resource alloca-

110
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

tion problem as a maximum utility optimization problem. The optimization
problem is decomposed in two sub-problems using the hierarchical decompo-
sition method. The base station-slice user association sub-problem is solved
by many-to-one matching game and a genetic algorithm is adopted to solve
the dynamic resource allocation sub-problem. The authors of [66] present
a dynamic framework to allocate radio resources for two types of vehicular
network services, i.e., delay-sensitive service and delay-tolerant service. The
radio resource allocation problem is jointly formulated with that of comput-
ing resource allocation as an optimization problem. To solve this problem,
they use a two-layer constrained RL algorithm. Based on the proposed RL
algorithm, the SDN controller is responsible for allocating resources to slices
at all the base stations. In order to provide their mobile users the access to
the virtual computation and communication slices, multiple service providers
compete in [67] to orchestrate channel access opportunities. The authors
model such resource allocation problem as a non-cooperative stochastic game
and leverage a deep learning approach based on double deep Q-network to
approximate the optimal allocation strategy. In [116], a two-step RAN slicing
framework is proposed to improve bandwidth utilization. In the first step, the
framework selects a set of users whose QoS can be satisfied simultaneously. In
the second step, each admissible user is associated with a slice via a specific
base station and a fraction of the base station bandwidth is allocated to it.

5.4 System Model

We consider an SDN-enabled 5G RAN architecture composed of a finite set
of gNodeBs B = {1, 2, . . . , B}. Two types of slices are considered, namely
the URLLC slice and the eMBB slice, which are denoted by su and se, re-
spectively. Spectrum resources are represented as a shared RBs pool denoted
by K = {1, 2, . . . , K}, where each RB represents the minimum scheduling
unit. The end-users U = {1, 2, . . . , U} are randomly located across the net-

5.4. SYSTEM MODEL 111

work area and where they are URLLC end-users and eMBB end-users. Each
end-user u ∈ U is served by one gNodeB and belong to one slice, i.e., su
or se. Each gNodeB b ∈ B has a set of associated end-users denoted by
Ub. We consider the orthogonal frequency division multiple access (OFDMA)
downlink (DL) scenario, where the RBs are organized as a resource grid [117].
With OFDMA, the transmissions to end-users are scheduled in an orthogonal
manner to reduce interference.

The RB allocation procedure is performed in two levels. In the first level, the
SDN controller, since it has a global view of the network, allocates the RBs
to the gNodeBs using the available RBs pool, in a large time-scale. We call
this RB allocation level the SDN allocation level. The set of RBs assigned
by the SDN controller to a gNodeB b ∈ B is donated by Kb ⊆ K. In the
second level, the RB allocation procedure is performed by the gNodeBs to
allocate the necessary RBs to each end-user. We call this RB allocation level
the gNodeB allocation level. Each gNodeB b ∈ B allocates to each of its
associated end-users, during a short time-scale, a number of RBs, from the
pre-allocated RBs Kb ⊆ K, to satisfy the various QoS requirements in terms
of data rate and latency of each end-user. To ensure the orthogonality of DL
transmissions among end-users which are served by the same gNodeB b ∈ B,
each RB k ∈ Kb is exclusively assigned to one end-user ub ∈ Ub. Also, if
b ∈ B borrows k′ ∈ K \Kb to allocate it to one of its end-users, then this RB
k′ should be unallocated. Thus, we define the assignment of an RB k ∈ K to
an associated end-user ub ∈ Ub with b ∈ B as a binary variable xkub

, where:

xkub
=

⎧⎨⎩1, if k ∈ K is assigned to ub ∈ Ub, b ∈ B,

0, otherwise.
(5.1)

∑︂
ub∈Ub

xkub
≤ 1,∀k ∈ K,∀b ∈ B. (5.2)

112
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

Equation (5.2) states that an RB must be allocated to only one end-user at
a time, which meets the OFDMA constraints.

In 5G NR, the scalable OFDM technology is a key innovation. The 3GPP 5G
NR Release 15 specifications [118] state that the waveform is scalable in the
sense that the subcarrier spacing of OFDM can be adapted to channel width.
The choice of the spacing parameter depends on several factors, including the
requirements of 5G services, e.g., low latency for URLLC services and high
data rate for eMBB services. Indeed, eMBB and URLLC services can be
supported simultaneously on the same carrier by multiplexing two different
numerologies, larger subcarrier spacing for URLLC services and lower subcar-
rier spacing for eMBB services. In our approach, the RB allocation operation
is performed considering a given time-frequency resource grid model. In other
words, for each numerology strategy, i.e., a specific subcarrier spacing, such
as 15 kHz, 30 kHz and 60 kHz, the appropriate trained model should be used
to perform the RB allocation operation. Since the gNodeB is responsible for
deciding which numerology strategy should be applied based on the channel
state information, it can select the appropriate trained model for the selected
numerology to allocate the RBs. Therefore, our approach can be applied with
multiple 5G NR OFDM numerologies to allocate the RBs, provided that the
appropriate trained model for each possible numerology strategy is available.

In this article, we assume that the gNodeBs have a (near) perfect knowledge
of the channel state information [119, 120]. The availability of (near) perfect
channel state information at the gNodeB in a real 5G network can be justified
when fading varies slowly over time and the mobility of the end-users is low
since the wireless channel does not change rapidly, which is similar to our case.
The channel state information can be accurately estimated in 5G networks
using, for example, deep learning algorithms [121].

5.4. SYSTEM MODEL 113

The achievable data rate of the ub-th end-user associated with the b-th gN-
odeB over the k-th RB and belonging to a slice s ∈ {su, se} is defined as
follows:

rsub,k
= W log2

(︃
1 +

P s
ub
Gub,k

σ2

)︃
, (5.3)

where W denotes the bandwidth of an RB, P s
ub

is the transmission power of
b ∈ B to end-user ub ∈ Ub in slice s ∈ {su, se}, Gub,k is the DL channel gain
between b ∈ B and its associated end-user ub ∈ Ub, and σ2 is the power of
the additive white Gaussian noise (AWGN). We assume that the bandwidth
and the downlink transmission power are the same for all RBs.

During the second level of resource allocation, if the SDN controller does
not allocate sufficient RBs to a gNodeB, the latter can request additional
RBs from other gNodeBs. In other words, we assume that a gNodeB can
request additional RBs from other gNodeBs only if all its pre-allocated RBs
are already assigned to its end-users. Mathematically, gNodeB b can request
additional RBs from other gNodeBs and allocate them to its associated end-
users if and only if

∑︁
ub∈Ub

∑︁
k∈Kb

xkub
≥ |Kb|. This constraint can be defined

as follows:
xk

′

ub
|Kb| ≤

∑︂
ub∈Ub

∑︂
k∈Kb

xkub
, (5.4)

where k′ ∈ Kb′ is a borrowed RB by the gNodeB b ∈ B from gNodeB b′ ̸=
b ∈ B and obviously xk′ub

= 1.

The total achievable data rate of end-user ub ∈ Ub belonging to slice s ∈
{su, se} and associated to gNodeB b ∈ B is defined as follows:

rsub
=

∑︂
k∈Kb

xkub
rsub,k

+
∑︂
b′∈B
b′ ̸=b

∑︂
k′∈Kb′

xk
′

ub
rsub,k′

(5.5)

114
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

To calculate the delay for URLLC and eMBB traffic, we consider the following
assumptions: (i) the arrival process of each gNodeB’s packets follows a Pois-
son distribution, and (ii) the inter-arrival times of the packets are independent
and follow an exponential distribution [122]. Accordingly, the queuing traf-
fic model can be considered as an M/M/1 queuing system. In addition, the
packet lengths for different slices are different but they are similar in a slice
s ∈ {su, se}. By applying Little’s law, we calculate the average delay dsub

experienced by an end-user packet ub belonging to slice s ∈ {su, se} and
associated with b ∈ B as follows:

dsub
=

1

rsub
− λsub

, (5.6)

where λsub
is the packets arriving rate of ub ∈ Ub and belonging to slice

s ∈ {su, se}.

We choose the M/M/1 queuing system since it is widely used to character-
ize wireless communication systems, particularly in RAN slicing approaches
[123, 124, 66]. However, in some practical scenarios, the traffic becomes bursty
and, therefore, the M/M/1 assumption (i.e., the packet arrival process of each
gNodeB follows a Poisson distribution) may become too optimistic. In such
scenarios, the gNodeB cannot be considered as an M/M/1 system and the
queue cannot be modeled as a continuous-time Markov process. In this case,
when the traffic is bursty, the queuing system can be modeled as a discrete-
time Markov process [125, 126]. As shown in [127], many continuous-time
Markov processes can be transformed into discrete-time Markov processes by
observing only the state transitions. Therefore, since the M/M/1 queuing as-
sumption can be seen as a continuous-time Markov process, the analyses and
results obtained in this work are valid for most scenarios where the Poisson
distribution cannot be applied. Note that, under different queuing assump-

5.5. PROBLEM FORMULATION AND NP-HARDNESS 115

tions, the mathematical analysis may be different and more complicated.
Thus, for simplicity, we only assume the M/M/1 case.

5.5 Problem Formulation and NP-Hardness

5.5.1 Problem Formulation

The main question of RB allocation problem in RAN is how to derive a two-
level optimal allocation of RBs to URLLC and eMBB end-users that meet
their QoS requirements in terms of data rate and delay. For this purpose, the
global RB allocation optimization problem is formulated as follows:

maximize
x

∑︂
b∈B

∑︂
s∈{su,se}

∑︂
ub∈Ub

rsub
(5.7a)

subject to∑︂
k∈K

xkub
≤ Kmax,∀ub ∈ Ub,∀b ∈ B, (5.7b)∑︂

ub∈Ub

xkub
≤ 1,∀k ∈ K,∀b ∈ B, (5.7c)

xk
′

ub
× |Kb| ≤

∑︂
ub∈Ub

∑︂
k∈Kb

xkub
,∀k′ ∈ K \ Kb,∀ub ∈ Ub,∀b ∈ B, (5.7d)

rseub
≥ Rmin,∀ub ∈ Ub,∀b ∈ B, (5.7e)

dsuub
≤ Dmax,∀ub ∈ Ub,∀b ∈ B, (5.7f)

xkub
∈ {0, 1},∀k ∈ K,∀ub ∈ Ub,∀b ∈ B. (5.7g)

The objective function in (5.7a) maximizes the total sum data rates of the
URLLC and eMBB end-users. Constraints (5.7b) guarantee a fair RBs al-
location by forcing the number of RBs allocated to each end-user ub to not
exceed a maximum number Kmax. Constraints (5.7c) respect the OFDMA
constraints by ensuring that each RB is allocated to only one end-user at a
time. Constraints (5.7d) guarantee that a gNodeB b can request additonal
RBs from other gNodeBs if and only if all of its pre-allocated RBs are used

116
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

by its end-users. Constraints (5.7e) state that the data rate of the eMBB
end-users must be greater than a minimum required threshold Rmin. Con-
straints (5.7f) ensure that the delay of URLLC end-users cannot exceed a
maximum required threshold Dmax. Finally, constraints (5.7g)) list the opti-
mization variables.

Note that the dynamic resource allocation problem considers limited re-
sources. In fact, the formulated RB allocation problem consists of maxi-
mizing the total achievable data rate of eMBB and URLLC end-users subject
to quality-of-service constraints and limited resources constraints represented
by the set of constraints given in (5.7b). These constraints guarantee that ev-
ery end-user cannot be allocated more than a maximum number of resources.
They limit the number of resources that each end-user can have and thus can
allocate the remaining resources more efficiently and in a fair manner between
end-users. The limitation of resources in the considered problem is also stated
by the borrowing concept. Once a gNodeB is out of resources because all of
its SDN-allocated resources are used, it can borrow other gNodeBs-resources.

Due mainly to the binary nature of the optimization variables and the non-
linearity of the delay experienced by an end-user defined in equation (5.6),
the RB allocation problem is a non-linear binary programming problem. It
is thus very challenging to solve (5.7) in general. In the sequel, we study its
NP-hardness.

5.5.2 NP-Hardness

Here, we denote the problem (5.7) by P . To prove that P is NP-hard, we
reduce the 0-1 knapsack problem [128], which is NP-hard, to an instance of
P .

Definition 2 (0-1 knapsack problem). A 0-1 knapsack problem is defined as
follows: given a set N of n items, each one with its profit pi and weight wi,
and a knapsack of capacity C. Each item can be put into the knapsack or not

5.5. PROBLEM FORMULATION AND NP-HARDNESS 117

(1 or 0). The objective of this problem is to find a subset N ′ ⊆ N such that
the total value of items

∑︁
ni∈N ′ pi is maximized and the total weight of the

selected items is less than or equal to the knapsack capacity, i.e.,
∑︁

ni∈N ′ wi ≤
C.

Theorem 2. P is NP-hard.

Proof. We prove the theorem by considering a restricted version of P . This
shows that the problem is NP-hard in the general case as well. We consider
the following restricted version of P :

• there is only one gNodeB denoted by b with its associated end-users set
Ub.

• there is only the eMBB slice.

• the RBs pre-allocated by the SDN controller Kb for b are known, i.e.,
the first level of the RB allocation procedure is already performed by
the SDN controller.

In this case, P becomes equivalent to the following:

maximize
x

∑︂
ub∈Ub

rseub
(5.8a)

subject to∑︂
k∈Kb

xkub
≤ |Kb|,∀ub ∈ Ub, (5.8b)∑︂

ub∈Ub

xkub
≤ 1,∀k ∈ Kb, (5.8c)

rseub
≥ Rmin,∀ub ∈ Ub, , (5.8d)

xkub
∈ {0, 1},∀k ∈ Kb,∀ub ∈ Ub, . (5.8e)

The mathematical statement of the problem in equation (5.8) is equivalent
to finding an allocation of the RBs set Kb to the eMBB end-user set Ub such

118
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

that: (i) the sum data rates of the end-users is maximized, (ii) the maximum
number of pre-allocated RBs to gNodeB b does not exceed Kmax = |Kb|
(5.8b), (iii) each RB is allocated to only one end-user at a time (5.8c), and
(iv) the data rate of the eMBB end-users must be greater than a minimum
required threshold Rmin (5.8d).

To reduce the 0-1 knapsack problem to (5.8), we let (i) the number of items
N be the number of eMBB end-users, (ii) the profit pi for item i be the
achievable data rate rseub

for eMBB end-user ub, (iii) the weight wi for item i

be the allocated RBs for eMBB end-user ub, and (iv) the knapsack capacity
C be the number of the pre-allocated RBs to gNodeB b. Problem P is now
clearly reduced to a knapsack problem. The knapsack capacity is respected
and, thus, the number of allocated RBs to all eMBB end-users does not exceed
|Kb|.

Since the reduction is clearly done in a polynomial-time and the 0-1 knapsack
problem is NP-hard, we conclude that the restricted problem formulated in
equation (5.8) is also NP-hard, which proves the theorem.

5.6 Single-Agent Multi-Agent Reinforcement Learning

Based RAN Resource Slicing

The resource allocation problem is very challenging to solve optimally in a
two-level procedure, i.e., in the controller level and in the gNodeBs level. To
overcome this challenge, we leverage machine learning techniques, particularly
RL for performing RB allocation tasks due to its excellent capability to solve
wireless network resource allocation problems in a computationally efficient
manner [129]. We propose a single-agent multi-agent reinforcement learning
(SAMA-RL), figure. 5.2, framework to solve the two-level radio RB allocation
problem.

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 119

SDN allocation level

environment

gNodeBs allocation

level

environment

Central

agent

Agent 1

Agent 2

Agent m

Joint

action

Action

Action 1

Action m

Observation

Reward

Observation 1

Observation 2

Rewards

Action 2

Observation m

Figure 5.2 Single-agent multi-agent interaction with the MDP environment.

More precisely, in the SDN allocation level, we adapt the well-known exponential-
weight algorithm for exploration and exploitation (EXP3) [130]. The SDN
controller plays the role of an RL agent that performs the operation of allo-
cating the RBs to the gNodeBs. In the gNodeB allocation level, a distributed
multi-agent deep RL approach is proposed. Each gNodeB, acting as a DRL
agent, schedules the pre-allocated RBs by the SDN controller to its associated
end-users and, if necessary, cooperate with the other gNodeBs to dynamically
share the unexploited RBs between them. To do so, we apply a DQL [131]
model where each gNodeB acts as an independent agent. To avoid any confu-
sion between the SDN controller agent and a gNodeB agent, the former will
be called the central agent.

We opt for a classical RL algorithm, i.e., EXP3, in the SDN allocation level
because this resource allocation level does not suffer from the curse of dimen-
sionality problem [132]. In fact, the state and action spaces are not large,
which allows the central agent to learn in a reasonable time. EXP3 is a
promising algorithm because it does not depend on any assumption related
to the dynamicity of the SDN allocation system, which makes it relevant
when the channel gains offered by RBs vary randomly. Moreover, EXP3

120
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

provides a good tradeoff between exploitation, the desire to make the best
decision given current information, and exploration, the desire to try a new
decision which may lead to better results. On the other hand, the gNodeB
allocation level suffers from the curse of dimensionality due to the multi-agent
scenario and presence of a large number of end-users, which leads the size of
state space to grow significantly. Therefore, using a simple RL framework
becomes computationally intractable. To overcome this challenge, we resort
to a distributed multi-agent DRL approach in the gNodeB allocation level.
Indeed, the agents are capable of discovering meaningful information through
an appropriate deep neural network architecture. Therefore, the agents can
learn close-optimal policies. In addition, DRL has been proven to be effi-
cient in solving many resource allocation problems in wireless networks, such
as energy scheduling [133] and orchestration of edge computing and caching
resources [134].

Before explaining in details the proposed SAMA-RL algorithms, we first
model, in what follows, each RB allocation problem of each level as a Markov
decision process (MDP) and we define the main components of each MDP in
details.

5.6.1 MDP formulation of the SDN allocation level

The MDP of the first resource allocation level is given by the triplet (Sc,Ac,Rc)

where Sc represents the state space, Ac designates the action space and Rc is
the reward function.

1) The state space

As discussed previously, the central agent is incorporated into the SDN
controller which has a global view of the network. In fact, the central
agent’s state contains information about its previously allocated RBs to
the gNodeBs and other global parameters of the network. More precisely,
the state space of the central agent is composed of the triple Sc given as

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 121

follows:
Sc = (B,K,Kh), (5.9)

where Kh = {Kb,∀b ∈ B} represents the allocated RBs previously to
each gNodeB. Also, the central agent’ state includes the sets B and K
that represent the sets of gNodeBs and RBs, respectively.

2) The action space

Since the central agent performs the RB allocation in a large time-scale,
it has to decide which subset Kb ⊆ K of RBs it should allocate to each
gNodeB b ∈ B. Note that the central agent has to make sure that
an RB is assigned to only one gNodeB each time it performs the RB
allocation. Therefore, the action space of the central agent, denoted by
Ac, is defined as follows:

Ac = {0, 1}|K|×|B|, (5.10)

where an action ac ∈ Ac is given by the row vector [a11, . . . , a
|K|
1 , a12, . . . , a

|K|
2 ,

. . . , a1|B|, . . . , a
|K|
|B|]. If an element akb of vector ac is equal to 1, it means

that the central agent has decided to allocate RB k to gNodeB b. Also,
to avoid assigning the same RB k to several gNodeBs, the central agent
has to make sure that the constraints akb ̸= akb′,∀k ∈ K and b ̸= b′ ∈ B
are satisfied.

3) The reward function

Once the central agent observes the environment through its current
state, it chooses an action ac from the set Ac. After choosing an action
from the action space Ac, the central agent receives a reward Rc. Since
the objective is to maximize the total sum-rate, the objective of the
central agent has to be related to the sum-rate of the network given
in equation (5.7a). We define the reward as how the assigned RBs to
gNodeBs affect the achieved data rate of the entire system. In other

122
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

words, the more the total data rate of the system is higher, the better is
the action chosen by the central agent. Thus, the reward of the central
agent is given by equation (5.7a), where:

Rc =
∑︂
b∈B

∑︂
s∈{su,se}

∑︂
ub∈Ub

rsub
(5.11)

According to equation (5.11), the value of Rc depends on the RB alloca-
tion decisions in the gNodeB level. Indeed, the central agent should wait
for the results of the second resource allocation level in order to efficiently
explore its environment. Therefore, the RB allocation is performed in a
joint manner between the two allocation levels.

5.6.2 MDP formulation of the gNodeB allocation level

The MDP of the second resource allocation level is given by the triplet
(Sb,Ab,Rb) where Sb represents the state space of agent b, Ab designates
the action space of agent b and Rb is the reward function of agent b.

1) The state space

As illustrated in figure 5.2, we propose a multi-agent DQL algorithm,
with each gNodeB acts as an agent, to allocate the required RBs to
eMBB and URLLC end-users and performs RBs sharing between gN-
odeBs, if necessary. Indeed, based on the chosen action by the central
agent in the SDN allocation level, each agent observes its local state
Sb. In our model, we consider that the controller communicates to each
agent the information about the RBs allocated to all other agents. Ac-
cordingly, each agent b’s state Sb,∀b ∈ B, is given by the following tuple:

Sb = (Gb,Ub,Kb,Rmin,Dmax), (5.12)

where Ub and Kb represents the set of associated end-users with agent b
and the set of pre-allocated RBs to agent b respectively. The term Gb =

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 123

(Gub,k : u ∈ Ub, k ∈ K) represents the DL channel gain between agent
b and its associated end-users in each RB k ∈ K. The channel gains Gb
can be easily collected by agent b as follows: (i) agent b broadcasts pilot
signals to all of its associated end-users. Then, each end-user estimates
the channel state information and sends it back to the corresponding
agent through a feedback channel. The estimation of Gb between each
associated end-user over each RB in the system helps agent b to take
good decisions, especially to borrow the needed RBs from the other
agents. The state Sb also includes the minimum data rate threshold
Rmin and the maximum delay threshold Dmax that corresponds to the
requirements of eMBB and URLLC slices, respectively.

2) The action space

In the gNodeB allocation level, each agent takes actions according to
its own allocation policy. In fact, the agent has to (i) assign the pre-
allocated RBs to its associated end-users and (ii) request additional RBs
from other agents when its pre-allocated RBs are not sufficient. Also, it
is assumed that each agent is aware of the number of RBs present in the
entire system. This information is acquired as follows: in each round of
the SDN allocation level, the controller communicates with each agent
the information on the RBs allocated to the other agents. Therefore, we
define the space action of agent b, denoted by Ab, as follows:

Ab = {0, 1}|K|×|Ub|, (5.13)

where an action ab ∈ Ab is given by the row vector [a11, . . . , a
|K|
1 , a12, . . . ,

a
|K|
2 , . . . , a1|Ub|, . . . , a

|K|
|Ub|]. Note that a vector ab is equivalent to an asso-

ciation matrix [xkub
] because each element akub

of vector ab corresponds
to the assignment of an RB k ∈ K to an associated end-user ub ∈ Ub. In
other words, if an element akub

of vector ab is equal to 1, it means that
agent b has decided to allocate RB k to end-user ub. Also, if all elements

124
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

ak
′

ub
,∀k′ ∈ K \ Kb, of vector ab are equal to 0, it means that agent b

does not request additional resources from the other gNodeBs. When
constructing the action space Ab of agent b, the constraints (5.7b), (5.7c)
and (5.7d) should be respected. By applying these constraints, we sig-
nificantly reduce the action space Ab. As a result, the exploration phase
is significantly improved to discover better strategies, which consider-
ably accelerates the learning process of agent b. Further, considering
that agents should cooperate to dynamically share the unexploited RBs
among themselves, each agent communicates its chosen action to the oth-
ers [135, 136]. Therefore, each agent b forms a joint action a = (ab,a−b)

where a−b denotes the actions chosen by the other agents.

3) The reward function

Multi-agent reinforcement learning methods seek to learn a policy that
achieves the maximum expected total reward for all agents. Indeed, the
learning process of all agents is driven by the reward function. In our
model, the main objective is to maximize the total achievable data rate
of the entire system to meet the QoS requirement of eMBB and URLLC
end-users. Therefore, the reward function of agent b relates to its total
sum-rate subject to the ultra-low latency requirements of the URLLC
services as well as to the minimum data rate requirements of the eMBB
services.

The reward of agent b depends on whether or not it has successfully
allocated the needed RBs to its associated end-users. An RB allocation
operation is considered to be feasible if the chosen action ab satisfies
the constraints (5.7b), (5.7c), (5.7d), (5.7e) and (5.7f), otherwise it is
considered as an infeasible operation. The constraints (5.7b), (5.7c)
and (5.7d) are already verified in the action space construction phase.
However, as an allocation operation can require borrowing some RBs
from other agents, it is necessary to verify if a borrowed RB is: (i)

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 125

exploited by its owner and (ii) also chosen by at least one agent other
than its owner. Since each agent forms the joint action a, (i) and (ii)
can be easily verified by agent b. If at least one of them is correct, the
constraint (5.7d) is not satisfied and thus the action chosen by agent b
is not feasible. As a result, the individual reward of agent b, denoted by
Rb is expressed as follows:

Rb =

⎧⎪⎨⎪⎩
∑︁

s∈{su,se}

∑︁
ub∈Ub

rsub
, if ab is feasible,

−1, if ab is not feasible.
(5.14)

When an action ab ∈ Ab is not feasible, it is penalized with a negative
reward, Rb = −1, to prevent the agent from choosing infeasible actions
in the future.

5.6.3 Single-agent EXP3 algorithm

In order to solve the SDN allocation level problem, we adopt an online learning
algorithm that is based on the multi-armed bandit (MAB) approach [130].
In MAB, a player needs to choose, at each round of the game, one arm from
a finite set of arms, each characterized by an unknown reward, with the
objective of maximizing his expected cumulative reward. The single-agent
MDP is modeled as a MAB as follows. The central agent, i.e., the SDN
controller, represents the player and the set of arms is given by its action
space Ac. We propose the EXP3 algorithm as a popular bandit strategy to
solve the SDN allocation level problem [108]. The SDN controller runs the
EXP3 algorithm where each action is assigned a weight to evaluate how good
the action is for the SDN controller, i.e., the higher the weight of an action,
the better the action is. At the beginning of the algorithm, the weights of
all actions are uniformly distributed. Then, the algorithm iterates several
rounds. For each round, the SDN controller:

126
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

1. calculates the probability of choosing each action, which is proportional
to its weights;

2. chooses an action according to the probability distribution calculated
previously and receives a reward; and

3. uses the received reward to update the weights of each action by applying
an exponential weighting scheme. The advantage of such a scheme is
that it rapidly increases the probability of good actions, while rapidly
reducing the probability of bad actions.

The pseudo-code of the EXP3 algorithm is presented in Algorithm 4.

In detail, the EXP3 algorithm takes as input an exploration parameter α ∈
[0, 1] that controls the desire to choose an action uniformly at random. It
starts by assigning a weight ψi to each action ac,i, which is initialized to 1.
Then, it iterates the rounds. For each round, the central agent calculates the
probability πi, given in equation (5.15), of choosing action ac,i. Based on π, it
selects an action ac,i and receives a reward Rc,i. The obtained reward is scaled
to the range [0, 1] and it is denoted by R̄c,i. Since Rc,i is the total achievable
data rate of the system, it can be scaled using equation (5.16). After scaling
the obtained reward, the central agent calculates an estimated reward R̂c,i

using equation (5.16). The idea behind estimating the reward in such manner
is to compensate for a potentially low probability of obtaining the observed
reward. Finally, the weights are updated as ψi = ψi exp (αR̂c,j/|Ac|).

πi = (1− α) ψi∑︁|Ac|
j=1 ψj

+
α

|Ac|
(5.15)

R̄c,i = 1− 1

(1 + Rc,i)
(5.16)

R̂c,i =
R̄c,i

πi
(5.17)

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 127

Algorithm 4 EXP3-based SDN allocation level
Parameters: α ∈ [0, 1]
Initialize ψi = 1 for all i ∈ {1, 2, . . . , |Ac|}
1: for each round do
2: for i = 1, 2, . . . , |Ac| do
3: Calculate πi using Eq. (5.15)
4: end for
5: Select an action ac,i according to πi
6: Receive reward Rc,i

7: Calculate R̄c,i using Eq. (5.16)
8: for j = 1, 2, . . . , |Ac| do
9: R̂c,j ← R̄c,j/πi · 1j=i

10: ψi ← ψi exp (α
R̂c,j

|Ac|)
11: end for
12: end for

The EXP3 algorithm is simple to implement and does not require enormous
computational complexity since it simply updates the weights of choosing
actions by increasing or decreasing their probabilities according to their per-
formance. Note that the EXP3 algorithm is an online learning algorithm that
enables the SDN controller to increase or decrease the weight of the actions
according to the feedback received from the gNodeBs. Precisely, the SDN
controller selects an action ac,i to allocate the resource blocks to the gN-
odeBs. Then, it waits for the results of the second resource block allocation
level, which is performed by the gNodeBs. Once the gNodeBs have assigned
the resource blocks, chosen by the SDN controller, to their end-users, each
gNodeB: 1) calculates its achieved data rate, and 2) communicates this infor-
mation to the SDN controller. The total sum-data rate of all gNodeBs will
be the reward received by the SDN controller after choosing action the ac,i,
that will be used by the EXP3 algorithm to update the actions’ weights.

5.6.4 Multi-agent deep Q-Learning algorithm

The DQL algorithm [131] extends the classical Q-learning RL [137] algorithm
by approximating the Q-function using a deep neural network known as deep
Q-network (DQN). In order to be used as an efficient non-linear approximator,

128
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

Algorithm 5 DQL Algorithm Training Phase
Input: Agents and environment
Output: Trained DDQNs
Start simulator: generate end-users and network parameters;
Initialize for each agent b: the main DQN, the target DQN and the replay memory
Mb;
1: for each episode do
2: Reset and build the agents’ environment;
3: for each step do
4: for each agent b do
5: Get observation Sb;
6: Choose an action ab using ϵ-greedy;
7: end for
8: for each agent b do
9: Obtain the joint action a and receive reward Rb;

10: Obtain the next observation S′
b;

11: Store the experience expb in replay buffer Mb;
12: if batch size then
13: Randomly sample a mini-batch from Mb;
14: Calculate target Q-value;
15: Calculate loss between the main network and the target network;
16: Update the parameters of the main network using gradient descent to min-

imze loss;
17: end if
18: if target step then
19: Update the target network parameters;
20: end if
21: end for
22: end for
23: end for

such a network must be trained to observe the state of the agent and learn
weights in order to play actions that yield the highest rewards. Once the
DQN is properly trained, it is exploited by the agent to take actions based on
the observed state [138]. To solve the multi-agent MDP model, we propose
a multi-agent DQL algorithm. This algorithm consists of two main phases:
the training phase and the implementation phase. In the training phase,
each agent trains a deep neural network (DNN) in an offline manner using a
large amount of experiences (collected dataset). In the implementation phase,
each agent chooses actions in an online manner using its trained model. We

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 129

describe, in the following, the training and implementation phases of the
proposed multi-agent DQL approach.

1) The training phase of DQL

DQN approximates the Q-value function Q(s, a) through a neural net-
work that performs a mapping between states and actions. In other
words, this network returns, for any given state-action pair, the esti-
mated Q-value Q(s, a;w), where w represents the parameters of the net-
work (i.e., the weights). In order to improve the learning performance,
DQN introduces the experience replay memory strategy that overcomes
the learning stability issues. Indeed, this strategy stores the agent’s ex-
periences that include state transitions, actions and rewards, and then
randomly samples from these experiences to perform Q-learning. As a
result, the experience replay memory strategy reduces the correlation
between the training samples, which prevents the optimal policy from
being conducted to a local minimum. Although DQN can be effective, it
still suffers from the problem of overestimating action Q-values. Double
DQN (DDQN) [139] is proposed to mitigate this limitation and improve
learning performance. The idea behind DDQN is to decouple action se-
lection from evaluation. To achieve this, two neural networks are used,
a main Q-network that selects an action and a target Q-network that
calculates the Q-value of the selected action. In our DQL-based MARL
algorithm, each agent b has a DDQN that takes the current state as in-
put and outputs the Q-value function of all actions. The training phase
of the proposed multi-agent DDQN is given in Algorithm 5.

In detail, the training phase requires as input the environment of each
agent which includes gNodeBs, end-users, pre-allocated RBs, service re-
quirements and channel state information. As output, it returns the
trained DQN of each agent. The training starts by : (1) generating the
network parameters, the end-users including their positions on the grid,

130
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

the service required (i.e., eMBB or URLLC) and their packet sizes, and
(2) initializing the DQN of each agent. Next, DQL iterates the episodes.
At the beginning of each episode, each agent’s environment is built by
updating the end-user locations and the channel coefficients (i.e., large
scale fading). In each step, each agent b observes the current state Sb

of its environment and takes an action ab from its action space Ab by
using the ϵ-greedy policy. With the ϵ-greedy policy, an agent selects an
action randomly or using the Q-network. Precisely, this policy chooses
the action with the highest Q-value with probability 1 − ϵ, where the
exploration rate ϵ represents the probability that an agent will explore
its environment rather than exploit it. As we go forward (i.e., after
each step), each agent learns more about its environment and ϵ decays
by some rate, so that exploring the environment becomes less probable.
Once all agents choose their action following the ϵ-greedy policy, they
communicate them to each other. Accordingly, each agent b forms its
joint action, calculates its reward Rb using equation (5.14) and moves to
a new state S′b. Next, the obtained tuple (Sb,ab,Rb, S

′
b), called agent’s

b experience and denoted by expb, is stored in its replay memory Mb.
In practice, since the size of the replay memory is limited to a defined
threshold M, only the last M experiences can be stored. After stor-
ing enough experiences, each agent samples a random mini-batch from
its replay memory. Note that the size of the replay memory should be
large enough to reduce the correlation between the data that will be
sampled from it. The obtained dataset is used by the agent to perform
the training. With the objective of minimizing the loss function, given
by equation (5.18), the main Q-network is used to approximate the Q-

5.6. SINGLE-AGENT MULTI-AGENT REINFORCEMENT LEARNING BASED
RAN RESOURCE SLICING 131

value function while the target Q-network is used to outputs the target
Q-value.

Lb(wb) = E[(yb − Q(Sb,ab;wb))
2], (5.18)

where Qb(Sb,ab;wb) is the approximated Q-value function given by the
main Q-network of agent b with weight parameter wb and yb denotes the
target Q-value and it is given as follows:

yb = Rb + γQ(Sb,max
ab

{Q(Sb,ab;wb)};w−b), (5.19)

where 0 ≤ γ ≤ 1 is called the discount factor, w−b is the weight parameter
of the target Q-network. Note that the value of yb is not necessarily the
largest Q-value in the target Q-network, which allows to avoid chossing
an overestimated action.

After calculating the loss function, each agent performs a gradient de-
scent to update the parameters of the main Q-network. Finally, the
parameters of the target Q-network are updated, at each fixed target
step, by copying the parameters of the main Q-network.

Since the learning of the DDQNs is computationally heavy, the training
phase of the DQL algorithm is performed in an offline manner. Accord-
ingly, the training can be conducted using a large amount of dataset
resulting from different network topologies and channel conditions.

2) The implementation phase of DQL

After the training phase, the parameters of the main Q-networks are
used to find an RB allocation solution for the end-users in the online
implementation phase of the DQL algorithm. The implementation phase
is presented in Algorithm 6. This phase uses the trained DDQNs of the
agents. At the beginning of each episode, it builds the environment of
each agent. Then, for each step, when a new state is observed, each

132
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

Algorithm 6 DQL Algorithm Implementation Phase

Input: The trained DDQNs
Output: RB allocation for end-users

Load the DDQN of each agent;
1: for each episode do
2: Reset and build the agents’ environment;
3: for each step do
4: for each agent b do
5: Obtain observation Sb;
6: Choose ab that maximize the Q-function;
7: end for
8: Obtain the joint action a;
9: Find a solution to RB allocation for end-users;

10: end for
11: end for

agent b selects the action that maximizes the Q-value of current state.
Once all agents have chosen their actions, each agent can form a joint
action. Accordingly, an RBs allocation solution is obtained.

5.7 SIMULATION RESULTS

This section investigates the performance of the proposed two-level RB allo-
cation mechanism through several simulated scenarios.

5.7.1 Experiment scenarios and setup

We consider an SDN-enabled RAN architecture where the gNodeBs are de-
ployed in a square of area 1 km2. The end-users are uniformly distributed
across the entire coverage area where each one of them is associated to only
one gNodeB. Each end-user is assumed to be either an eMBB end-user or a
URLLC end-user. For the sake of simplicity, the transmission power P s

ub
is

the same for all ub ∈ Ub and b ∈ B. The key parameters of the simulations are
summarized in table 5.1. These parameters were chosen based on common
settings in the literature [62, 115]. In order to select an effective Q-network
model, the training phase of the DQL algorithm is performed on a laptop with

5.7. SIMULATION RESULTS 133

an Intel Core i7-8750H processor, 16 GB of RAM and NVIDIA GeForce GTX
1070 graphic card. We create and train the DDQNs of the agents using the
PyTorch framework. To select the best hyperparameters values for training
the DDQN models, extensive simulations are performed. Indeed, we tested
random combinations of hyperparameters in a fine-grained set of values cho-
sen based on common settings in the literature [67, 140]. In particular, each
DDQN consists of two fully connected hidden layers, each with 256 neurons.
Rectified linear unit (ReLU) is used as the activation function to avoid the
vanishing gradient problem in backpropagation, which accelerates the learn-
ing process. The Adam optimizer is used with a learning rate of 0.001 since
it is computationally efficient. During the training process, the weights of
the main Q-network are copied to the weights of the target Q-network every
1000 steps to avoid overestimating the Q-values. In addition, we consider
end-users with low mobility, so the channel gains between a gNodeB and an
end-user remain unchanged for a certain period of time. To do so, we fix the
location of the end-user for a few training episodes, which helps the learning
algorithm to better acquire the dynamics of the end-users and, at the same
time, stabilize the training. The other hyperparameters of DDQN are given
in table 5.2.

Table 5.1 Simulation parameters.
Parameter Value

Number of gNodeBs 2
Total number of end-users 8
Bandwidth of an RB 180 KHz
Transmit power of gNodeB, P s

ub
30 dBm

Power of AWGN, σ2 -114 dBm
Packet arriving rate per end-user, λsub

100
packets/s

Packet length for an eMBB & URLLC end-user 400 & 120
bits

Minimum data rate for eMBB end-user, Rmin 100 kbps
Maxim delay for URLLC end-user, Dmax 10 ms

134
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

Table 5.2 Retained hyper-parameters for DDQN.
Hyper-parameter Value

Learning rate 0.001
Epsilon/ϵ-greedy 1
Discount factor 0.996
ϵ-min 0.01
Size of replay memory 100000
Size of mini-batch 64
Target network update interval 1000 steps
Loss function Mean squared

error
Optimizer Adam
Activation function ReLu

5.7.2 DDQN training results

To assess the training performance of the proposed multi-agent DRL ap-
proach, we observe the cumulative rewards per training episode and the be-
havior of the loss function during the training process.

Figure 5.3 shows the cumulative average rewards of agents per episode. From
this figure, the cumulative rewards improve as the number of training episodes
increases, which demonstrates the effectiveness of the proposed training algo-
rithm. When the training episode approximatively reaches 1800, the agents
gain interesting experiences and start to exploit better actions. Accordingly,
the cumulative reward approaches to a maximum value, indicating that the
training process converges after an acceptable number of training episodes.
Note that the convergence of the DQL algorithm does not present large fluc-
tuations which are principally due to the low-mobility of the end-users in the
environment.

Figure 5.4 illustrates the convergence of the loss function, equation (5.18),
during the training process of the DDQNs. It plots the average of the agents’
loss results versus the episodes. The loss decreases with the increase in train-
ing episodes. In the first few episodes, the loss declines gradually because var-
ious new actions were explored randomly and as learning progressed, good

5.7. SIMULATION RESULTS 135

0 100 200 300 400 500 600
Episodes(×5)

20

25

30

35

40

45

50

Cu
m
ul
at
iv
e
av

g
re
wa

rd
s

Figure 5.3 Training rewards.

actions were selectively performed based on the Q-value function that had
become more reliable. Consequently, after episode 2500, the loss converges to
a minimum value, which demonstrates the accurate Q-value approximation.

0 500 1000 1500 2000 2500 3000
Episodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Av
er
ag

e
lo
ss

Figure 5.4 Training loss.

It is worth noting that the convergence results of the reward and loss function
are obtained by assuming that the gNodeBs have perfect knowledge of the
channel state information, which is used as input of the DDQN algorithm.

136
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

In the case of imperfect channel state information, the convergence time of
the DDQN algorithm may increase [141]. Therefore, the DDQN algorithm
takes more time to accurately learn the appropriate policies. But, once the
offline training of the DDQN algorithm is performed, the learned policy can
be applied rapidly to obtain the resource allocation solution.

5.7.3 SAMA-RL performance Evaluation

To benchmark our SAMA-RL approach, we implemented a DRL-based radio
resource allocation approach from the literature [115], which we called 3-SRA
for three-stage resource allocation. 3-SRA allocates radio resources to end-
users by considering two types of slices, namely the rate constrained slice (i.e.,
eMBB slice) and the delay constrained slice (i.e., URLLC slice). In the first
stage, a central controller uses a heuristic algorithm to reserve radio resources
(i.e., a fraction of the system bandwidth) to the eMBB and URLLC slices in
each gNodeB. In the second stage, the reserved radio resources for each slice
in each gNodeB are adjusted using a DRL algorithm. In the final stage, a
heuristic algorithm is deployed to map the fraction of bandwidth assigned to
a slice with the physical resource blocks. Accordingly, we have chosen 3-SRA
since it: 1) is a competitive approach that performs the slicing operation
of radio resources in a hierarchical manner, 2) is integrated into a network
architecture similar to our proposed architecture, for instance, the presence of
a central controller that has a global view of the RAN, 3) considers two types
of slices, namely the eMBB slice and the URLLC slice, and 4) is based on a
DRL algorithm to solve the radio resource allocation problem in the RAN.

To adapt 3-SRA to our model, two gNodeBs cannot serve a single end-user
under the 3-SRA algorithm. Also, to fairly benchmark the performance of
SAM-RL against 3-SRA, most of the simulation parameters are chosen simi-
larly to those used in 3-SRA. Note that the comparison results are averaged
over 1000 trials.

5.7. SIMULATION RESULTS 137

4 5 6 7 8
Number of end-users

10

20

30

40

50

60

Ob
j.
fu
nc
tio

n
va
lu
e
(×

10
0k

bp
s)
 SAMA-RL

3-SRA

Figure 5.5 Impact of the number of end-users on the objective function.

Figure 5.5 shows the performance of SAMA-RL compared to the benchmark
approach when varying the number of end-users. SAMA-RL always achieves
the best performance in terms of the objective function value when the num-
ber of end-users increases. We notice that, for both approaches, the value of
the objective function, that represents the total sum data rates of the URLLC
and eMBB end-users, decreases as the number of end-users increases, which
is due to the increase of the competitiveness among end-users to obtain a suf-
ficient number of RBs that guarantees their requirements. Indeed, in the case
of a low number of end-users, the agent can select an RB allocation action
where several RBs are assigned to one end-user to guarantee its requirements
in terms of data rate and delay. On the other hand, when the number of
end-users is large, the agent seeks to allocate a minimum number of RBs to
each end-user in order to satisfy as many end-users as possible in terms of
data rate and delay requirements.

Figure 5.6 illustrates the impact of the minimum data rate threshold (Rmin)
on the objective function equation (5.7a). Based on these results, we make the
following observations: (1) SAMA-RL outperforms 3-SRA for all minimum

138
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

data rate thresholds; (2) the higher is the minimum data rate threshold,
the larger is the performance gap between SAMA-RL and 3-SRA. This is
due to the multi-agent approach proposed in the gNodeB allocation level
where a gNodeB can borrow RBs from other adjacent gNodeBs when the RBs
pre-allocated by the SDN controller are insufficient. This indeed illustrates
the effectiveness of the proposed multi-agent method and demonstrates its
robustness.

30 40 50 60 70 80 90 100
Rmin(kbps)

30

35

40

45

50

55

60

Ob
j.
fu
nc
tio

n
va

lu
e
(×

10
0
kb
ps
) SAMA-RL

3-SRA

Figure 5.6 Impact of the minimum data rate threshold (Rmin) on the objective
function.

Figure 5.7 presents the comparison of SAMA-RL and 3-SRA in terms of
the average number of end-users whose achieved data rate is greater than
or equal the minimum data rate threshold Rmin. We can see that SAMA-
RL always outperforms 3-SRA for all minimum data rate thresholds. These
results can be justified as follows: in 3-SRA, if the reserved resources for a
given slice are not sufficient to provide the required service, i.e., minimum
data rate threshold, the slice must wait for the next resources reservation
update, while in SAMA-RL, a gNodeB can request, if necessary, some RBs
from other gNodeB.

5.8. CONCLUSION 139

30 40 50 60 70 80 90 100
Rmin(kbps)

0

1

2

3

4

5

6

7

8

Av
g.
 n
um

be
r o

f e
nd

-u
se
rs SAMA-RL

3-SRA

Figure 5.7 Impact of the minimum data rate threshold (Rmin) on the number
of end-users.

10 20 30 40 50 60 70 80
Dmax(ms)

0

1

2

3

4

5

6

7

8

Av
g.
 n
um

be
r o

f e
nd

-u
se
rs SAMA-RL

3-SRA

Figure 5.8 Impact of the the maximum delay threshold (Dmax) on the number
of end-users.

In figure 5.8, we compare the performance of SAMA-RL and 3-SRA in terms
of the average number of end-users whose delay experienced by a packet is less
than or equal to the maximum delay threshold Dmax. Similar to the obtained
results in figure 5.7, we can once again confirm that SAMA-RL gives better
performance compared to 3-SRA for all maximum delay thresholds.

5.8 Conclusion
Toward an efficient radio resource slicing of an SDN-enabled RAN, we pro-
posed a two-level RAN slicing mechanism where the allocation of radio RBs

140
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

is performed in the SDN level and in the gNodeBs level. The SDN level allo-
cates RBs to gNodeBs in a large time-scale while the gNodeBs allocate their
RBs to its associated end-users in a short time-scale to efficiently meet their
dynamic requirements. Moreover, each gNodeB can borrow some RBs from
other gNodeBs when the pre-allocated RBs are insufficient, which decreases
the signaling overhead between the two allocation levels and rapidly provide
the needed resources to its end-users. We formulated a data rate maximiza-
tion problem subject to the ultra-low latency requirements of URLLC services
as well as to the minimum data rate requirements of eMBB services. Subse-
quently, we proved its NP-hardness. Then, we modeled the SDN allocation
level problem and the gNodeB allocation problem as a single MDP and a
multi-agent MDP, respectively. We adapt the EXP3 algorithm and the DQL
algorithm to solve the SDN allocation problem and the gNodeB allocation
problem, respectively. In addition, the DQL algorithm applies robust state-
of-the-art approaches such as double DQN and replay memory to improve
its performance. Simulation results have shown that the proposed two-level
mechanism yields significant improvements in terms of RBs allocation. Fur-
thermore, our mechanism outperformed a benchmark algorithm by ensuring
the requirements of the URLLC and eMBB services in terms of data rate and
delay.

5.8. CONCLUSION 141

Chapitre 6: Avant-propos
Auteurs et affiliation:

Abderrahime Filali: étudiant au doctorat, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Boubakr Nour: Chercheur post-doctoral, Université de Sherbrooke, Fac-
ulté de génie, Département de génie électrique et de génie informatique,
Laboratoire de recherche INTERLAB.

Soumaya Cherkaoui: Professeure, Université de Sherbrooke, Faculté de
génie, Département de génie électrique et de génie informatique, Labora-
toire de recherche INTERLAB.

Abdellatif Kobbane: Professeur, Université Mohammed-V, École Nationale
Supérieure d’Informatique et d’Analyse des Systèmes, Rabat-Maroc.

Date de soumission: août 2021.

État de l’acceptation: en cours sous révision.

Revue: IEEE Communications Standards Magazine.

Titre français: Découpage des ressources O-RAN de communication et de
calcul pour les services URLLC à l’aide de l’apprentissage par renforcement
profond.

142
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

Résumé français:

L’évolution des futurs réseaux 6G et au-delà de la 5G vers un réseau adapté
aux services repose sur la technologie de découpage du réseau. Avec le dé-
coupage du réseau, les fournisseurs de services de communication visent à
répondre à toutes les exigences imposées par les secteurs verticaux, notam-
ment les services de communication ultra-fiable à faible latence (en anglais
URLLC). En outre, l’architecture du réseau d’accès radio ouvert (en anglais
open radio access network, O-RAN) ouvre la voie à un partage flexible des
ressources du réseau en introduisant plus de programmabilité dans le RAN.
Le découpage du RAN est une partie essentielle du découpage du réseau de
bout en bout, car il assure un partage efficace des ressources de communi-
cation et de calcul. Cependant, en raison des exigences strictes des services
URLLC et de la dynamique de l’environnement RAN, le découpage du RAN
représente un véritable défi. Dans cet article, nous proposons une approche
de découpage du RAN à deux niveaux basée sur l’architecture O-RAN pour
allouer les ressources de communication et de calcul du RAN entre les dis-
positifs finaux URLLC. Pour chaque niveau de découpage du RAN, nous
modélisons le problème de découpage des ressources sous la forme d’un pro-
cessus de décision de Markov à un seul agent et concevons un algorithme
d’apprentissage par renforcement profond pour le résoudre. Les résultats des
simulations démontrent l’efficacité de l’approche proposée pour répondre aux
exigences de qualité de service souhaitées.

5.8. CONCLUSION 143

Chapitre 6: Foreword
Authors and affiliation:

Abderrahime Filali: Ph.D. Student, INTERLAB Research Laboratory,
Faculty of Engineering, Department of Electrical and Computer Science
Engineering, Université de Sherbrooke.

Boubakr Nour: Postdoctoral Research Fellow, INTERLAB Research Lab-
oratory, Faculty of Engineering, Department of Electrical and Computer
Science Engineering, Université de Sherbrooke.

Soumaya Cherkaoui: Professor, INTERLAB Research Laboratory, Fac-
ulty of Engineering, Department of Electrical and Computer Science En-
gineering, Université de Sherbrooke.

Abdellatif Kobbane: Professor, École Nationale Supérieure d’Informatique
et d’Analyse des Systèmes (ENSIAS) Mohammed V University in Rabat,
Morocco

Date of submission: august 2021.

Acceptance status: under revision.

Journal: IEEE Communications Standards Magazine.

Title: Communication and Computation O-RAN Resource Slicing for URLLC
Services Using Deep Reinforcement Learning

144
CHAPTER 5. DYNAMIC SDN-BASED RADIO ACCESS NETWORK SLICING

WITH DRLEARNING FOR URLLC AND EMBB SERVICES

CHAPTER 6

Communication and Computation O-RAN Re-
source Slicing for URLLC Services Using Deep
Reinforcement Learning

6.1 Abstract

The evolution of the future beyond-5G/6G networks towards a service-aware
network is based on network slicing technology. With network slicing, com-
munication service providers seek to meet all the requirements imposed by
the verticals, including ultra-reliable low-latency communication (URLLC)
services. In addition, the open radio network (O-RAN) architecture paves
the way for flexible sharing of network resources by introducing more pro-
grammability into the RAN. RAN slicing is an essential part of end-to-end
network slicing since it ensures efficient sharing of communication and com-
putation resources. However, due to the stringent requirements of URLLC
services and the dynamics of the RAN environment, RAN slicing is challeng-
ing. In this article, we propose a two-level RAN slicing approach based on the
O-RAN architecture to allocate the communication and computation RAN
resources among URLLC end-devices. For each RAN slicing level, we model
the resource slicing problem as a single-agent Markov decision process and
design a deep reinforcement learning algorithm to solve it. Simulation results
demonstrate the efficiency of the proposed approach in meeting the desired
quality of service requirements.

6.2 Introduction

Although fifth-generation (5G) standards are not yet fully finalized, the roadmap
for sixth-generation (6G) networks is already taking shape due to several in-

145

146
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

dustrial and academic research efforts [142]. 6G networks are expected to sup-
port more diversified services than 5G networks aiming to create compelling
business opportunities in many vertical industries. Achieving this requires
(i) improving the technologies behind the evolution of 5G, such as network
slicing [58], and (ii) leveraging machine learning (ML)/artificial intelligence
(AI) techniques, such as deep reinforcement learning (DRL) for an efficient
management of network resources. In addition, to meet the requirements
of various industries, 6G should not only rely on new enabling technologies
but also provide an innovative network architecture beyond current network
designs. Open radio access network (O-RAN) is a key component of this ar-
chitectural transition to more open and intelligent networks [17]. The O-RAN
approach sustains the disaggregation between hardware and software to cre-
ate a multi-supplier RAN solution through open and interoperable protocols
and interfaces. The O-RAN specification, which is still compliant with 3GPP
standards, introduces the hierarchical RAN Intelligent Controller (RIC), in-
cluding non-real-time RIC (non-RT) and near-real-time RIC (near-RT) where
ML/AI algorithms are integrated to enable RAN programmability.

RAN slicing is a critical component of end-to-end network slicing, as it de-
termines the degree of flexibility network operators have to meet the needs
of new verticals [58]. In particular, ultra-reliable low-latency communica-
tions (URLLC) is the foundation for emerging mission-critical applications
in 6G networks, such as autonomous driving, industrial IoT, e-health (e.g.,
remote surgery) and mobile or m-health (e.g., patient monitoring and virtual
reality-assisted care in ambulances). Due to the stringent requirements of
these applications, they are expected to rely on multi-access edge computing
(MEC) to deliver added value services to the end users. Therefore, effec-
tive management of RAN slicing will rely on the ability to optimally manage
communication and computing resources placed at the MEC [85].

6.2. INTRODUCTION 147

Considerable efforts have been devoted to improving the performance of RAN
slicing to efficiently offload tasks at the MEC [143], where the RAN resource
slicing problem is usually formulated using optimization techniques [144].
However, due the dynamics of the RAN environment, solving the problem of
RAN slicing is complex and challenging to solve in polynomial time.

To overcome these issues, 6G RAN slicing operations will need to be per-
formed with more intelligent resource allocation capabilities that achieve
delay-efficient performances. Under the O-RAN architecture, RICs can dy-
namically create multiple RAN slices tailored to URLLC services using ML/AI
capabilities such as DRL algorithms. Indeed, non-RT and near-RT RICs can
leverage DRL’s excellent learning ability and effectiveness in solving complex
and dynamic environment problems, such as the RAN environment, to make
optimal RAN slicing decisions for URLLC services [145].

In this work, we are motivated to apply the DRL algorithms within the O-
RAN architecture to jointly slice the communication and computation re-
sources at the RAN level for URLLC task offloading operations. Indeed, we
propose a two-level RAN slicing approach based on DRL. The first RAN
slicing level, called the communication slicing level, concerns the allocation
of radio resources to end-devices. The second RAN slicing level, called the
computation slicing level, deals with the allocation of computation resources
to end-devices. The contribution of our work is as follows. We first intro-
duce the RAN slicing paradigm and its associated challenges and highlight
the role of non-RT and near-RT RICs in performing RAN slicing operations
in an O-RAN architecture. Then, we model each RAN slicing resource level
as a single agent Markov decision process. Next, we propose, for each RAN
slicing level, a DRL algorithm to solve it. Finally, we illustrate through ex-
tensive simulations that the proposed approach exhibits fast convergence and
achieves delay-efficient performance.

148
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

6.3 Unveiling the Curtain: Network Slicing

Network slicing is the transformation of a physical network into a set of
logical networks on top of a shared infrastructure. This logical separation
aims to meet the emerging requirements of a wide range of verticals. Each
logical network, i.e., network slice, is defined in a way to meet efficiently
the business requirements of a vertical application by providing the needed
network resources from the RAN to the core network [146]. In particular,
RAN slicing [58] is a critical part of end-to-end network slicing to enable
differentiated traffic processing and isolation. This can be achieved through
application-based prioritization of data, resource allocation, and scheduling.

To date, various efforts have been presented to improve URLLC services
through RAN slicing. The Third Generation Partnership Project (3GPP) has
made significant standardization efforts to define RAN slicing specifications
and promote its implementation. For example, 3GPP introduced the RAN
slicing management framework to manage the life cycle of RAN slices [146].
In addition, it provided efficient solutions that allow end-devices to rapidly
access a cell and select the desired RAN slices [147]. To satisfy as many
RAN slices as possible, [148] proposes a portioning algorithm that allocates
radio resources to RAN slices according to their prioritization. A joint RAN
slicing framework for communication and computation resources has been
developed in [135]. Communication and computation resources are allocated
to RAN slices in order to minimize the delay needed to offload and process
time-sensitive users’ tasks. To support a maximum number of RAN slices
while meeting their performance requirements, [143] proposes to share the
radio resource between RAN slices by allocating, to each of them, a fraction
of bandwidth that maximizes the access probability to the base station and
the energy efficiency of end-devices.

6.3. UNVEILING THE CURTAIN: NETWORK SLICING 149

Reinforcement learning-based RAN slicing approaches have also emerged as
practical solutions with low computational complexity, simplifying implemen-
tation for real-world applications. For instance, [66] introduces an RL-based
framework to dynamically allocate radio spectrum and computation resources
to RAN slices. The allocation process considers the delay as the primary QoS
metric that should be less than a maximum threshold. [149] employs DRL
to design a decentralized RAN resource orchestration system. The latter in-
cludes an agent to slice each RAN resource and a central coordinator that
manages the resource orchestration between the agents. Each orchestration
agent uses DRL to allocate its resources to the RAN slices, while the central
coordinator ensures SLA requirements.

Despite the aforementioned solutions, various issues remain open. These
issues could be summarized as follows:

• Resource Sharing: Efficient resource sharing is a primary objective of
RAN slicing. However, when a slice is instantiated, dedicated resources
may become unavailable to others. Resources reallocation among slices
may further enhance optimizing resources utilization as well as improv-
ing the network performance. However, dynamic changes in network
load, end-devices mobility, and task distribution make resource reallo-
cation challenging. Furthermore, to fulfill the minimum requirements of
vertical applications, efficient scheduling mechanisms to allocate radio
resources among slices are required while maintaining efficient sharing
of computation resources between MEC servers.

• Dynamic Slice Creation and Management: In light of the previous point,
optimizing resource allocation is indispensable to maximize verticals’
benefits, where dynamic slice creation and management are critical dur-
ing the slice lifecycle. With the aim to accommodate a maximum amount
of service requests with minimum resources, the network operator needs
to deploy various dynamic functions and mechanisms to quickly create

150
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

and manage slices. Verticals, on the other hand, must have partial per-
mission and the ability to configure the slices while ensuring a high level
of security and privacy.

• Mobility Management: Today’s users may shift from a network to an-
other while requesting services. Seamless handover and interference
management add more challenges to RAN slicing. For instance, it is
critical to ensure fast mobility handover for real-time services. The sys-
tem performance relies on the performance of the handover mechanism.
Therefore, there is a need for a slice-oriented mobility management pro-
tocol to tackle the mobility issues in RAN slicing.

• Algorithmic Aspects of Resource Allocation: Resource allocation is a
challenging problem that often encompasses many parameters and con-
straints. Different algorithms have been adopted to solve the problem
according to its complexity. Exact algorithms can be applied to find opti-
mal solutions for less complex problems, while meta-heuristic algorithms
are more efficient when dealing with more complex problems. Therefore,
practical and efficient resource allocation algorithms are necessary with
the ability to reconfigure slice resources based on the dynamic network
changes.

With O-RAN, the door is now unlocked to enhance RAN slicing and address
many of its challenges using the non-RT and near-RT RICs [150]. The former
handles the heaviest RAN functions, at a time scale > 1s, including robust
RAN analytics, control policy design, providing trained AI/ML models and
guidance to support near-RT RIC operations. The latter executes critical
RAN functions, at a time scale that could be as low as 10ms, to interpret
and enforce the received policies from non-RT RIC such as using AI/ML
inference to control RAN behavior. Therefore, the interaction between non-
RT and near-RT RICs can be used to design and fine-tune efficient AI/ML
control algorithms for RAN slicing.

6.4. JOINT SLICING OF COMMUNICATION AND COMPUTATION RAN
RESOURCES 151

6.4 Joint Slicing of Communication and Computation

RAN Resources

We describe, in the following, the proposed two-level RAN slicing approach,
where the communication and computation RAN resources are jointly sliced
and allocated to the end-devices according to their URLLC requirements.

6.4.1 System Model

Network Model: We consider an O-RAN-based cellular network archi-
tecture, as depicted in figure 6.1, composed of five network components:
(i) non-RT RIC that is directly connected to near-RT RIC through A1 inter-
face, MEC servers, and gNodeBs through O1 interface to enables non-real–
time control and optimization of RAN elements and resources, (ii) near-RT
RIC that performs near-real-time control and optimization of O-RAN ele-
ments and resources over the E2 interface, (iii) a set of MEC servers, controller
by the near-RT RIC, among which we consider a group of servers relatively
close to each other as a MEC server sharing group, (iv) a set of gNodeBs that
provide communication resources to URLLC end-devices in their coverage
area, and (v) URLLC end-devices that offload their computing tasks under
URLLC constraints, i.e., strict latency, to the MEC servers.

Each gNodeB is attached to one MEC server to provide computation re-
sources to URLLC end-devices. A gNodeB sharing group consists of a group
of gNodeBs with highly overlapped in their communication coverage areas.
The communication and computation resources, considered in this work, are
the resource block (RB) of gNodeB and the CPU core of the MEC server,
respectively. RB is the smallest unit of radio resources that can be allocated
to an end-device. A CPU core is defined as the computation capability in
terms of CPU cycles per second. We also consider the orthogonal frequency
division multi-access offloading scenario, where the radio resources of a gN-

152
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

odeB are divided into multiple RBs. Hence, we avoid intra-cell interference
where a specific RB is exclusively assigned to only one end-device.

Assumptions: In our model, we consider the following assumptions: (i) since
radio resources are limited, it is challenging to provide enough orthogonal ra-
dio resources (in a multi-cell scenario). Thus, some gNodeBs can share the
same radio resources, which may cause interference between cells. To counter-
balance radio resources sharing and inter-cell interference reducing, the same
set of radio resources can be assigned to multiple gNodeBs as long as the
distance between them is sufficient to reduce inter-cell interference; (ii) since
a gNodeB sharing group is an area with strong overlaps between gNodeBs,
the orthogonal resources are assigned to gNodeBs within one sharing group,
which means the unavailability of interference within gNodeB sharing group;
(iii) each gNodeB covers a set of end-devices that are uniformly distributed
in the gNodeB’s coverage area; (iv) each end-device is associated with only
one gNodeB; and (v) each MEC server is equipped with multiple CPU cores
to provide parallel computing.

The near-RT RIC performs the slicing operation of communication and com-
putation RAN resources in two levels: (a) communication slicing level, and
(b) computation slicing level

Communication Slicing Level: Each gNodeB assigns a number of RBs
to its associated end-devices. The objective is to meet the QoS requirements
of the URLLC services (e.g., delay). The RBs allocated to each end-device
should ensure a low communication delay in offloading the task from end-
device to the associated gNodeB through wireless transmission. A task’s
communication delay depends on its size and the total attainable data rate
over the allocated RBs. Each end-device can be considered as an M/M/1
queuing system under the following assumptions: (i) the arrival process of
each end-device’s tasks follows a Poisson distribution, and (ii) the inter-arrival

6.4. JOINT SLICING OF COMMUNICATION AND COMPUTATION RAN
RESOURCES 153

times of the tasks are independent and follow an exponential distribution.
Therefore, the delay experienced by a given task, in an offloading operation,
can be calculated by applying Little’s law.

Computation Slicing Level: The computation resource slicing consists of
allocating the required CPU cycles to successfully execute the offloaded tasks
and meet the required QoS requirements. In fact, for each arrival task in each
MEC server, the near-RT RIC needs to decide: (i) where the task should be
executed, and (ii) how many computation resources should be allocated to
this task. For a given task, the near-RT RIC checks the available computation
resources of the associated MEC servers, based on which it decides whether
the task could be executed locally by its associated MEC server or forwarded
to another MEC server in the same sharing group. Then, the near-RT RIC
allocates the required CPU cycles to execute this task. The computation
delay can be defined as the ratio of the number of CPU cycles required to
accomplish this task to the CPU cycles allocated by the near-RT RIC. When
a task is forwarded to a different MEC server, the round-trip communication
delay is added to the computation delay.

6.4.2 Deep Reinforcement Learning based RAN Resource Slicing

In an O-RAN architecture, the near-RT RIC is responsible for making re-
source allocation decisions. The efficiency of these decisions impacts the per-
formance of the overall system. In particular, each gNodeB communicates the
state of its environment, through the E2 interface, with the near-RT RIC that
allocates the required communication resources, i.e., RBs, to the end-devices
associated with this gNodeB. Similarly, the near-RT RIC collects informa-
tion about the computation resource status of the MEC servers and allocates
the resources, i.e., CPU cycles, needed to execute the offloaded tasks in the
appropriate MEC servers. Intending to ensure URLLC services, communica-
tion and computation resource slicing operations become very challenging to
solve, especially in large-scale networks where the number of end-devices is

154
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

Figure 6.1 Reference network RAN slicing model.

huge. To overcome this challenge, DRL can be applied since it can efficiently
deal with the curse of dimensionality problem. Figure 6.2 illustrates the over-
all working principle of the proposed DRL-based RAN resource slicing in an
O-RAN architecture.

In this work, we opt for deep Q-learning (DQL), a traditional DRL algorithm
[131], to solve the RAN resource allocation problem in both communication
and computation slicing. Contrary to classic Q-learning algorithms, DQL
uses a deep neural network (DNN) as a Q-function approximator. This ex-
tension of the Q-learning algorithm is known as the deep Q-network (DQN)
algorithm. Indeed, for a given input state, DQN generates a Q-value of all
possible actions. The agent frequently interacts with its environment to ef-
fectively enhance its decision-making. The agent’s experience is defined by
the tuple (current state, action, reward, next state). Instead of immediately
training the DNN by feeding it with successive experience tuples, they are

6.4. JOINT SLICING OF COMMUNICATION AND COMPUTATION RAN
RESOURCES 155

Figure 6.2 Deep Reinforcement Learning based RAN Resource Slicing.

stored in a replay buffer according to the time sequence. During the DQN
training process, the stored experiences are randomly sampled to train the
DNN. The experience replay memory strategy allows efficient use of previous
experiences in the DNN training process since it breaks the correlations in
the observation sequences.

To further stabilize the approximation of the Q-value function, we employ the
double DQN (DDQN) algorithm. DDQN mitigates the overestimation prob-
lem that occurs in DQN algorithms since it applies a maximization operation
on both the selection and evaluation actions. Specifically, DDQN uses two
neural networks: main Q-network to select action, and target Q-network to
calculate the estimated Q-value of each selected action. The main Q-network
is trained by minimizing the loss function. The latter calculates the mean

156
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

square error between the current Q-values of actions selected by the main
Q-network and their estimated Q-values calculated by the target Q-network.

In the O-RAN architecture, figure 6.2, we consider that each gNodeB is con-
trolled by a DRL agent, called gNodeB-agent, which performs the commu-
nication resource slicing between the associated end-devices of this gNodeB.
For the computation slicing level, we consider that the MEC server sharing
group is controlled by a DRL agent, called MEC-agent, which allocates the
CPU cycles required to successfully execute the offloaded tasks. Each DRL
agent runs in a xApp on the near-RT RIC and manages its resources through
the E2 interface.

Before describing the proposed DRL-based approach, we first model each
resource slicing problem as a Markov decision process (MDP).

MDP-based Communication Resource Slicing: Each gNodeB-agent
observes its environment and allocates RBs to its associated end-devices. For
each gNodeB, the communication resource slicing is modeled as a single-agent
MDP given by the following state space, action space, and reward function.

• The State Space: The state space of a gNodeB-agent includes the: (i) set
of associated end-devices, (ii) radio resource that represents the available
RBs, (iii) channel gain between the gNodeB and its associated end-
devices over a given RB, and (iv) maximum delay threshold required by
the URLLC service.

• The Action Space: A gNodeB-agent has to decide which RBs should be
allocated to each of the associated end-devices. Since an end-device can
have more than one RB to meet the desired QoS, an action is defined
by a row vector where each element represents the RB - end-device
assignment.

6.4. JOINT SLICING OF COMMUNICATION AND COMPUTATION RAN
RESOURCES 157

• The Reward Function: The reward received by the gNodeB-agent de-
pends on whether it successfully allocated the required RBs to the as-
sociated end-devices or not. An action is considered to be successful
if it meets the constraints of the RB allocation model. Since our ob-
jective is to minimize the communication delay, the received reward is
the inverse of the sum of all communication delays of all tasks offloaded
by the associated end-devices. If an unsuccessful action is chosen, the
gNodeB-agent is penalized with a negative reward.

MDP-based Computation Resource Slicing: The MEC-agent collects
information about all MEC servers in the sharing group (e.g., computation
resources and offloaded tasks). It is able to observe the environment and
make decisions. Therefore, we model the computation resource slicing as a
single-agent MDP.

• The State Space: The state space of the MEC-agent is given by infor-
mation about each MEC server including the offloaded tasks and the
available computation resources. Since the observed state is unknown
directly to the MEC-agent, each MEC server regularly updates the MEC-
agent about its local state. An update can include task-related informa-
tion such as the number of tasks currently in its buffer, the size of each
task, the number of CPU cycles needed, and a maximum delay threshold
required by the URLLC service.

• The Action Space: The MEC-agent decides the computation resource
allocation for each offloaded task. A decision includes: (i) in which
MEC server a task should be executed , and (ii) CPU cycles allocation
that consists in determining the number of CPU cores to be assigned for
computing a received task.

• The Reward Function: The reward obtained by the MEC-agent after
taking an action depends on whether the chosen action is feasible or not

158
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

and at what level the computation delay was minimized. An action is
considered feasible if it meets the computation resource allocation con-
straints (e.g., maximum computation delay threshold). The received
reward is the inverse of the sum of computation delays of all tasks of-
floaded by the end-devices. Otherwise, the received reward is set to
a negative value to prevent the MEC-agent from choosing non-feasible
actions in the future.

6.4.3 Deep Q-learning Slicing Algorithm

A DQL-based approach consists of two main phases: the training phase and
the implementation phase, i.e., inference. In the training phase, a DDQN is
trained in an offline manner. In the implementation phase, the agent takes
actions in an online manner based on its trained DDQN. In the O-RAN
architecture, the DDQN model is trained offline in the non-RT RIC, while
the model inference is deployed in the near-RT RIC. The non-RT RIC uses
the O1 interface to collect data for offline model training. Note that the
trained model can undergo an evaluation step validating that it is reliable
for deployment in the near-RT RIC. The model inference is executed and
fed with online data, through the E2 interface, to produce the slicing actions
that will be used in the resource allocation operation. The training and
implementation phases of both slicing levels are conducted in the same way 1,
which can be summarized as follows.

The Training Phase: The training phase takes place in several episodes
and requires, in each episode, the state of the environment as input. As
output, a trained DDQN is produced. Systematically, to train the DDQN,
the agent initializes the DDQN hyperparameters and collects information
about its environment.

1. The term agent is used to refer to the gNodeB-agent or MEC-agent, based on the slicing level.

6.5. PERFORMANCE EVALUATION 159

The learning process is then begun by iterating the episodes. At the beginning
of each step for each episode, the agent observes the state of its environment
and chooses an action according to an ϵ-greedy policy. With the help of
ϵ-greedy policy, the training process is balanced between exploitation and
exploration. At each step, the agent takes a random action with a probability
of ϵ (i.e., exploration) and follows its current policy by choosing the action
with the highest Q-value in the remaining time (i.e., exploitation). As the
training process proceeds, the ϵ value gradually decreases, indicating that the
agent becomes more confident to optimally interact with the environment
and choosing optimal actions. The obtained experience tuple is stored in a
replay buffer. When the buffer contains enough experiences, the agent picks
a random sample to create training data. Then, it performs the gradient
descent algorithm to minimize the loss function and update the parameters
of the main Q-network. On the other hand, the target Q-network parameters
do not need to be updated at each training step but replaced by the main
Q-network parameters with a certain frequency.

The Implementation Phase: Once the offline training phase is complete,
the agents can use their trained DDQNs to efficiently allocate RBs and CPU
cycles. During the implementation phase, when a new state of the environ-
ment is observed, the agent selects the best action (i.e., the action with the
highest Q-value). Afterward, end-devices can offload their tasks to the asso-
ciated gNodeB using the optimal RBs. Then, tasks will be executed by the
MEC servers using an optimal CPU cycle allocation.

6.5 Performance Evaluation

Simulation Setup and Scenario: Following the reference network model
shown in figure 6.1, we implemented an O-RAN-based cellular network ar-
chitecture with four gNodeBs. The gNodeBs are deployed in a geographical
zone modeled by a square of a side of 2000 m. Each gNodeB covers a circular

160
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

0 500 1000 1500 2000 2500 3000
Episodes

−1

0

1

2

3

Cu
m
ul
at
iv
e
av

g
re
wa

rd
s

(a) Training reward.

0 250 500 750 1000 1250 1500
Episodes

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Av
er
ag

e
lo
ss

(b) Training loss.

Figure 6.3 Training performance of the communication model.

area with a radius of 500 m and is accompanied by one MEC server. Each
MEC server is equipped with four CPU cores with a computation capability
equals to 3 gigacycles each. End-devices, with URLLC services, are uniformly
distributed within the coverage area. Each end-device is associated with only
one gNodeB and can offload only one task at a time. The data size of each
task is uniformly distributed from 0.5 MB to 2 MB and the required CPU
cycles to compute one bit is 400. The transmission power of end-devices is 23
dBm, while the bandwidth of an RB is 180 kHz and the noise power is -114
dBm. The DDQNs were implemented and trained using the PyTorch frame-

6.5. PERFORMANCE EVALUATION 161

750 1000 1250 1500 1750 2000 2250 2500
Episodes

−10

0

10

20

30

40

50

Cu
m
ul
at
iv
e
av

g
re
wa

rd
s

(a) Training reward of the computation model.

100 600 1100 1600 2100 2600 3000
Episodes

4

6

8

10

12

14

16

18

Av
er
ag

e
lo
ss

(b) Training loss of the computation model.

Figure 6.4 Training performance of the computation model.

work. For the training, we used two fully connected hidden layers composed
of 256 neurons each, ReLu as the activation function, Adam as the optimizer,
and the mean square error as the loss function. The non-identical hyperpa-
rameters include the learning rate and the mini-batch size. The learning rate
of the communication model and the computation model is 0.01 and 0.001,
respectively, while the mini-batch size is 64 and 256, respectively. We evalu-
ated the performance for DDQN training as well as the performance of the
delay experienced end-users.

162
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

8 10 12 14 16
Number of end-users

0.20

0.25

0.30

0.35

0.40

to
ta
l d

el
ay

 (m
s)

task size=0.5Mbits
task size=0.7Mbits
task size=1Mbits

(a) Communication model.

8 10 12 14 16
Number of end-users

50

75

100

125

150

175

200

to
ta
l d

el
ay

 (m
s)

task size=0.5Mbits
task size=0.7Mbits
task size=1Mbits

(b) Computation model.

Figure 6.5 Delay performance.

DDQN Training Performance: Figures 6.3 and 6.4 show the training per-
formance of the communication and the computation models, respectively.
Indeed, figures 6.3a and 6.4a illustrate the convergence of the communica-
tion and computation DQL algorithms, respectively, versus training episodes.
They show the cumulative average rewards of the agent per episode. It can be
seen from both figures that when the number of training episodes increases,
the cumulative average reward grows. We also notice that the convergence of
the computation DQL algorithm is faster (converge after 2000 episodes) than
that of the communication DQL algorithm (from episode number 2500). The

6.5. PERFORMANCE EVALUATION 163

convergence of the communication DQL algorithm is relatively slow due to
the mobility of end-devices, so the channel gains between the gNodeBs and
the end-devices change frequently. These convergence results demonstrate
the effectiveness of the proposed algorithms.

Figures 6.3b and 6.4b show how the behavior of the loss function for both
communication and the computation DQL algorithms, respectively, evolves as
training proceeds. In the early stages of the training process, the performance
of both algorithms is weak due to exploration phenomena, i.e., the gNodeB-
agents and the MEC-agent take random actions more than exploiting what
they have learned. The loss value decreases to reach a minimum value at the
end of the training process, which indicates that the Q-value approximation
has become accurate.

Delay Performance: In this experiment, we evaluated the performance
of the proposed RAN slicing approach in terms of the delay experienced by
tasks. For each resource slicing model, we varied the number of end-device
and calculated the delay experienced by tasks for different task sizes, e.g., 0.5
MB, 0.7 MB, and 1 MB. Based on the observed results in figures 6.5a and 6.5b,
we make the following observations: (1) it is clear that as the number of end-
device increases, the delay experienced by the tasks increases, and (2) the
performance gap between the three task sizes remains relatively constant for
a different number of end-devices. For (1) when the number of the end-
devices becomes higher, the competitiveness among end-devices increases to
obtain sufficient RBs and CPU cycles. In fact, when the number of the end-
devices is low, the gNodeB-agents and the MEC-agent can assign several
RBs and CPU cycles, respectively, to only one end-device. In contrast, when
the number of end-devices is high, the gNodeB-agents and the MEC-agent,
respectively, assign a minimum of RBs and CPU cycles to satisfy all end-

164
CHAPTER 6. COMMUNICATION AND COMPUTATION O-RAN RESOURCE

SLICING FOR URLLC SERVICES USING DEEP REINFORCEMENT LEARNING

devices. Observation (2) demonstrates the scalability of the proposed RAN
slicing approach under a dense network topology.

6.6 Conclusion and Future Work
The use of dynamic resource allocation algorithms will undoubtedly be paramount
to increasing the efficiency of network slicing in future mobile networks. While
current management and orchestration frameworks offer fast resource alloca-
tion capabilities, these frameworks will also need to rely on fast intelligent
algorithms to predict service demands and anticipate resource needs for op-
timal orchestration. Artificial intelligence, in particular DRL, can offer inter-
esting techniques to provide such functionality. In this article, we designed a
two-level RAN slicing approach to allocate communication and computation
resources to URLLC end-devices. The approach is integrated in the O-RAN
architecture with MEC technology. We modeled each RAN resource slicing
problem as a single-agent MDP. Then, we developed a DQL algorithm to
solve each resource slicing problem and described the role of non-RT and
near-RT RICs in performing slicing operations. The proposed DQL-based
solution shows robust and efficient performance in meeting the requirements
of URLLC services. The results of this study show that a deep reinforcement
learning based RAN resource slicing architecture such as the one presented
is promising and deserves further investigation.

CHAPTER 7

Conclusions and Future Works

We presented throughout this thesis several approaches to improve the man-
agement of next-generation network resources by leveraging the SDN paradigm
as a key enabler of edge computing and network slicing technologies. This
chapter concludes the thesis and suggests new research directions for future
works.

7.1 Conclusions
In chapter 3, we tackled the load balancing problem in distributed SDN con-
trol plane architectures. We proposed a proactive approach to fairly dis-
tribute the load among SDN controllers based on the data plane component
migration mechanism. For this reason, we introduced a long-term prediction
model using ARIMA—a stochastic prediction model—to forecast the load of
the SDN controllers. Then, we formulated the load balancing problem as an
optimization program with the objective to minimize the difference between
the loads handled by the controllers. To solve the formulated optimization
problem, we developed a heuristic algorithm that migrates the data plane
components from overloaded controllers to underloaded controllers.

In chapter 4, we improved the proactive load balancing approach proposed
in chapter 3. Specifically, we presented two prediction models to forecast the
load of the SDN control plane. The first model is ARIMA and the second
one is LSTM—a machine learning prediction method. Then, we conducted
a comparative study between these models to evaluate their prediction accu-
racy. To improve the migration operations performance in balancing the load
in the SDN control plane, we formulated the load balancing problem as a
non-linear binary program considering the tradeoff between the load balanc-

165

166 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

ing degree in the control plane and the cost of migration operations. To solve
this optimization problem, we designed a reinforcement learning algorithm.

Long-term forecasts enable preventive detection of whether the load of the
control plane will be unbalanced and, consequently, trigger migration oper-
ations in advance. We demonstrated through extensive simulations that the
proposed algorithms for load balancing in the SDN control plane outperform
recent benchmark algorithms and have close to optimal performance.

In chapter 5, we addressed the slicing problem of communication resources
in the RAN. We proposed an SDN controller-based RAN slicing mechanism
to allocate the radio RBs to eMBB and URLLC end-users. This mechanism
allocates the RBs in two time-scales. The SDN controller manages a shared
pool of RBs and allocates, in a large time-scale, to each base station a number
of RBs according to its requirements in terms of delay and data rate. Then,
each base station schedules the pre-allocated RBs to its associated end-users
in a short time scale. In addition, a base station can request additional RBs
from other base stations if the allocated RBs by the SDN controller are not
sufficient. To solve this RAN slicing problem, we formulated it as a non-
linear binary program where the objective is to maximize the achievable data
rate of the end-users subject to the ultra-low latency requirements of URLLC
services as well as to the minimum data rate requirements of eMBB services.
We leveraged reinforcement learning algorithms to solve the RB allocation to
the base stations and end-users. Specifically, we adopted the EXP3 algorithm
and the DQL algorithm to allocate RBs to base stations in a large time scale
and end-users in a short time scale, respectively.

In chapter 6, we proposed a two-level RAN slicing approach where the com-
munication and the computation resources are jointly sliced and allocated to
end-devices. In the first level, each base station allocates a number of its
radio RBs to each of its associated end-devices to offload their tasks. In the

7.2. FUTURE WORKS 167

second level, a central controller allocates the required computation resources
of MEC servers to compute the tasks offloaded by the end-devices. We devel-
oped, for each RAN slicing level, a DRL algorithm to appropriately allocate
the required resources. The proposed approach is designed in an O-RAN ar-
chitecture, where we described how the non-RT RIC and the near-RT RIC
can perform the RAN slicing operations.

The presented RAN slicing approaches, in chapter 5 and chapter 6, perform
the allocation of the radio RBs and computation resources hierarchically.
These hierarchical approaches prevent entrusting the allocation of RAN re-
sources solely to a central control entity, e.g., the SDN controller, thereby
reducing network overhead due to frequent communication between network
entities, such as base stations and the SDN controller.

7.2 Future Works

The works performed in this thesis open the door to several future research
directions. We list in the following some perspectives for future works.

• In chapter 4, we formulated the load balancing problem as a non-linear
binary program considering the tradeoff between a load balancing fac-
tor and the cost of migration operations. Investigating other objective
functions is, obviously, an important and open research direction, ei-
ther to improve the proposed algorithm or to develop new competitive
algorithms.

• In chapter 5, we studied the RB allocation problem to base stations by
the SDN controller, and provided only a classical reinforcement learning
algorithm, i.e., EXP3. Developing more competitive algorithms for this
problem is important and remains an open problem.

• In chapter 5, when we defined the system model, we considered the
queueing traffic model as an M/M/1 queueing system and assumed that

168 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

the base stations have perfect knowledge of the channel state informa-
tion. Considering more general systems is a potential research direction
to propose more general solutions.

• In chapter 6, the proposed RAN slicing approach only considers the
URLLC service requirements. Therefore, it can be improved to support
other service requirements, such as eMBB and mMTC service require-
ments.

CHAPTER 8

Conclusions et Travaux Futurs

Nous avons présenté tout au long de cette thèse plusieurs approches pour
améliorer la gestion des ressources dans les réseaux de nouvelle génération
en tirant parti du paradigme SDN en tant qu’outil clé des technologies de
l’informatique en périphérie et de découpage du réseau. Ce chapitre conclut la
thèse et propose de nouvelles directions de recherche pour les travaux futurs.

8.1 Conclusions
Dans le chapitre 3, nous avons abordé le problème de l’équilibrage de charge
dans les architectures de plan de contrôle SDN distribuées. Nous avons pro-
posé une approche proactive pour répartir équitablement la charge entre les
contrôleurs SDN en se basant sur le mécanisme de migration des composants
du plan de données. Pour cette raison, nous avons introduit un modèle de pré-
diction à long terme utilisant ARIMA - un modèle de prédiction stochastique
- pour prévoir la charge des contrôleurs SDN. Ensuite, nous avons formulé
le problème d’équilibrage de charge comme un programme d’optimisation
dont l’objectif est de minimiser la différence entre les charges gérées par les
contrôleurs. Pour résoudre le problème d’optimisation formulé, nous avons
développé un algorithme heuristique qui migre les composants du plan de
données des contrôleurs surchargés vers des contrôleurs sous-chargés.

Dans le chapitre 4, nous avons amélioré l’approche proactive d’équilibrage de
charge proposée dans le chapitre 3. Plus précisément, nous avons présenté
deux modèles de prédiction pour prévoir la charge du plan de contrôle SDN.
Le premier modèle est ARIMA et le second est LSTM - une méthode de pré-
diction par apprentissage automatique. Ensuite, nous avons mené une étude
comparative entre ces modèles pour évaluer leur précision de prédiction. Afin

169

170 CHAPTER 8. CONCLUSIONS ET TRAVAUX FUTURS

d’améliorer la performance des opérations de migration dans l’équilibrage
de la charge dans le plan de contrôle SDN, nous avons formulé le problème
d’équilibrage de la charge comme un programme binaire non linéaire en con-
sidérant le compromis entre le degré d’équilibrage de la charge dans le plan
de contrôle et le coût des opérations de migration. Pour résoudre ce problème
d’optimisation, nous avons conçu un algorithme d’apprentissage par renforce-
ment.

Les prévisions à long terme permettent de détecter de manière préventive
si la charge du plan de contrôle sera déséquilibrée et, par conséquent, de
déclencher à l’avance des opérations de migration. Nous avons démontré par
des simulations extensives que les algorithmes proposés pour l’équilibrage
de la charge dans le plan de contrôle SDN surpassent des algorithmes de
benchmark récents et ont une performance proche de l’optimum.

Dans le chapitre 5, nous avons abordé le problème du découpage des ressources
de communication dans le RAN. Nous avons proposé un mécanisme de dé-
coupage du RAN basé sur un contrôleur SDN pour allouer les RBs radio aux
utilisateurs finaux eMBB et URLLC. Ce mécanisme alloue les RBs à deux
échelles de temps. Le contrôleur SDN gère un pool partagé de RBs et al-
loue, dans une échelle de temps large, à chaque station de base un nombre
de RBs en fonction de ses besoins en termes de délai et de débit. Ensuite,
chaque station de base attribue les RBs préalloués à ses utilisateurs finaux
associés dans une échelle de temps courte. En outre, une station de base
peut demander des RBs supplémentaires à d’autres stations de base si les
RBs alloués par le contrôleur SDN ne sont pas suffisants. Pour résoudre ce
problème de découpage du RAN, nous l’avons formulé sous la forme d’un
programme binaire non linéaire dont l’objectif est de maximiser le débit de
données atteignable par les utilisateurs finaux en tenant compte des exigences
de latence ultra-faible des services URLLC ainsi que des exigences de débit

8.1. CONCLUSIONS 171

de données minimum des services eMBB. Nous avons utilisé des algorithmes
d’apprentissage par renforcement pour résoudre l’allocation des RBs aux sta-
tions de base et aux utilisateurs finaux. Plus précisément, nous avons adopté
l’algorithme EXP3 et l’algorithme DQL pour allouer les RBs aux stations
de base dans une échelle de temps large et aux utilisateurs finaux dans une
échelle de temps courte, respectivement.

Dans le chapitre 6, nous avons proposé une approche de découpage du RAN à
deux niveaux où les ressources de communication et de calcul sont découpées
conjointement et allouées aux équipements finaux. Au premier niveau, chaque
station de base alloue un certain nombre de ses RBs radio à chacun de ses ap-
pareils finaux associés pour décharger leurs tâches. Au deuxième niveau, un
contrôleur central alloue les ressources de calcul requises des serveurs MEC
pour calculer les tâches déchargées par les dispositifs finaux. Nous avons
développé, pour chaque niveau de découpage du RAN, un algorithme DRL
pour allouer de manière appropriée les ressources requises. L’approche pro-
posée est conçue dans une architecture O-RAN, où nous avons décrit com-
ment le non-RT RIC et le near-RT RIC peuvent effectuer les opérations de
découpage du RAN.

Les approches de découpage du RAN présentées dans les chapitres 5 et 6
effectuent l’allocation des RBs radio et des ressources de calcul de manière
hiérarchique. Ces approches hiérarchiques évitent de confier l’allocation des
ressources RAN uniquement à une entité de contrôle centrale, telle que le
contrôleur SDN, réduisant ainsi la charge du réseau due à la communication
fréquente entre les entités du réseau, telles que les stations de base et le
contrôleur SDN.

172 CHAPTER 8. CONCLUSIONS ET TRAVAUX FUTURS

8.2 Travaux Futurs
Les travaux réalisés dans cette thèse ouvrent la porte à plusieurs directions
de recherche pour le futur. Nous citons dans ce qui suit quelques perspectives
pour des travaux futurs.

• Dans le chapitre 4, nous avons formulé le problème d’équilibrage de
charge sous la forme d’un programme binaire non linéaire considérant le
compromis entre un facteur d’équilibrage de charge et le coût des opéra-
tions de migration. L’étude d’autres fonctions objectives est, évidem-
ment, une direction de recherche importante et ouverte, soit pour améliorer
l’algorithme proposé, soit pour développer de nouveaux algorithmes com-
pétitifs.

• Dans le chapitre 5, nous avons étudié le problème de l’allocation de
RBs aux stations de base par le contrôleur SDN, et nous n’avons fourni
qu’un algorithme classique d’apprentissage par renforcement, qui est
l’algorithme EXP3. Le développement d’algorithmes plus compétitifs
pour ce problème est important et reste un problème ouvert.

• Dans le chapitre 5, lorsque nous avons défini le modèle du système,
nous avons considéré le modèle de trafic de file d’attente comme un
système de file d’attente M/M/1 et supposé que les stations de base
aient une connaissance parfaite de l’information sur l’état du canal. La
considération des systèmes plus généraux est une direction de recherche
potentielle pour proposer des solutions plus générales.

• Dans le chapitre 6, l’approche proposée pour le découpage du RAN ne
prend en compte que les exigences du service URLLC. Elle peut donc
être améliorée pour prendre en charge d’autres exigences de service, telles
que les exigences de service eMBB et mMTC.

LIST OF REFERENCES

[1] 5G Americas. Global statistics. https://www.5gamericas.org/
resources/charts-statistics/global, 2021. Accessed: 2021-09-30.

[2] Bugel Jim, John Suja, and Schwartz Stacy. Ericsson mobility report.
Technical report, Ericsson, June 2021. https://www.ericsson.com/
en/mobility-report/reports.

[3] ITU-R. IMT Vision – Framework and overall objectives of the future
development of IMT for 2020 and beyond. Technical report, , Sep 2015.
M.2083-0.

[4] Quoc-Viet Pham, Fang Fang, Vu Nguyen Ha, Md Jalil Piran, Mai Le,
Long Bao Le, Won-Joo Hwang, and Zhiguo Ding. A survey of multi-
access edge computing in 5G and beyond: Fundamentals, technology
integration, and state-of-the-art. IEEE Access, 8:116974–117017, 2020.

[5] Latif U Khan, Ibrar Yaqoob, Nguyen H Tran, Zhu Han, and
Choong Seon Hong. Network slicing: Recent advances, taxonomy, re-
quirements, and open research challenges. IEEE Access, 8:36009–36028,
2020.

[6] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Chris-
tian Esteve Rothenberg, Siamak Azodolmolky, and Steve Uhlig.
Software-defined networking: A comprehensive survey. Proceedings of
the IEEE, 103(1):14–76, 2014.

[7] Yuan Zhang, Lin Cui, Wei Wang, and Yuxiang Zhang. A survey on soft-
ware defined networking with multiple controllers. Journal of Network
and Computer Applications, 103:101–118, 2018.

[8] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed
SDN control: Survey, taxonomy, and challenges. IEEE Communications
Surveys & Tutorials, 20(1):333–354, 2017.

[9] Sushant et al. Jain. B4: Experience with a globally-deployed software
defined WAN. ACM SIGCOMM Computer Communication Review,
43(4):3–14, 2013.

[10] Opendaylight project. https://www.opendaylight.org/. Accessed:
2021-09-30.

173

https://www.5gamericas.org/resources/charts-statistics/global
https://www.5gamericas.org/resources/charts-statistics/global
https://www.ericsson.com/en/mobility-report/reports
https://www.ericsson.com/en/mobility-report/reports
https://www.opendaylight.org/

174 LIST OF REFERENCES

[11] Open Networking Foundation. Open Network Operating System
(ONOS). https://opennetworking.org/onos/. Accessed: 2021-09-
30.

[12] Amin Tootoonchian and Yashar Ganjali. HyperFlow: A Distributed
Control Plane for OpenFlow. In Proceedings of the 2010 Internet Net-
work Management Conference on Research on Enterprise Networking,
INM/WREN’10, page 3, USA, 2010. USENIX Association.

[13] Teemu et al. Koponen. Onix: A distributed control platform for large-
scale production networks. In OSDI, volume 10, pages 1–6, 2010.

[14] Open Networking Foundation. OpenFlow Switch Specification. Tech-
nical specification, Mar. 2015. Version 1.5.1.

[15] Xenofon et al. Foukas. FlexRAN: A flexible and programmable platform
for software-defined radio access networks. In International on Con-
ference on emerging Networking EXperiments and Technologies, pages
427–441, 2016.

[16] Estefanía Coronado, Shah Nawaz Khan, and Roberto Riggio. 5G-
EmPOWER: A software-defined networking platform for 5G radio ac-
cess networks. IEEE Transactions on Network and Service Manage-
ment, 16(2):715–728, 2019.

[17] O-RAN Alliance. O-RAN: Towards an Open and Smart RAN. Technical
report, , Oct. 2018. White Paper.

[18] Leonardo et al. Bonati. CellOS: Zero-touch softwarized open cellular
networks. Computer Networks, 180:107380, 2020.

[19] Arsany Basta, Andreas Blenk, Klaus Hoffmann, Hans Jochen Morper,
Marco Hoffmann, and Wolfgang Kellerer. Towards a cost optimal de-
sign for a 5G mobile core network based on SDN and NFV. IEEE
Transactions on Network and Service Management, 14(4):1061–1075,
2017.

[20] Adlen Ksentini, Miloud Bagaa, and Tarik Taleb. On using SDN in 5G:
The controller placement problem. In 2016 IEEE Global Communica-
tions Conference (GLOBECOM), pages 1–6. IEEE, 2016.

[21] Abdulaziz Abdulghaffar, Ashraf Mahmoud, Marwan Abu-Amara, and
Tarek Sheltami. Modeling and evaluation of software defined networking
based 5G core network architecture. IEEE Access, 9:10179–10198, 2021.

https://opennetworking.org/onos/

LIST OF REFERENCES 175

[22] ETSI. Industry Specification Group (ISG) on Multi-access Edge Com-
puting (MEC). https://www.etsi.org/committee/1425-mec. Ac-
cessed: 2021-09-30.

[23] Davide Borsatti, Gianluca Davoli, Walter Cerroni, and Carla Raffaelli.
Enabling Industrial IoT as a Service with Multi-Access Edge Comput-
ing. IEEE Communications Magazine, 59(8):21–27, 2021.

[24] Yushan Siriwardhana, Pawani Porambage, Madhusanka Liyanage, and
Mika Ylianttila. A Survey on Mobile Augmented Reality With 5G
Mobile Edge Computing: Architectures, Applications, and Technical
Aspects. IEEE Communications Surveys & Tutorials, 23(2):1160–1192,
2021.

[25] Hongjun Dai, Xiangyu Zeng, Zhilou Yu, and Tingting Wang. A schedul-
ing algorithm for autonomous driving tasks on mobile edge computing
servers. Journal of Systems Architecture, 94:14–23, 2019.

[26] Alaa Awad Abdellatif, Amr Mohamed, Carla Fabiana Chiasserini,
Mounira Tlili, and Aiman Erbad. Edge computing for smart health:
Context-aware approaches, opportunities, and challenges. IEEE Net-
work, 33(3):196–203, 2019.

[27] Service requirements for the 5G system; Stage 1 (Release 18). Technical
Specification Group Services and System Aspects 22.261, 3rd Genera-
tion Partnership Project (3GPP), Jun. 2021. Version 18.3.0.

[28] R Meulen. What edge computing means for infrastructure and opera-
tions leaders. Web post on Infrastructure & Operations, Garner, 2018.

[29] Ahmet Cihat Baktir, Atay Ozgovde, and Cem Ersoy. How can edge
computing benefit from software-defined networking: A survey, use
cases, and future directions. IEEE Communications Surveys & Tu-
torials, 19(4):2359–2391, 2017.

[30] Partha Pratim Ray and Neeraj Kumar. SDN/NFV architectures for
edge-cloud oriented IoT: A systematic review. Computer Communica-
tions, 2021.

[31] Haixia Peng, Qiang Ye, and Xuemin Sherman Shen. SDN-based re-
source management for autonomous vehicular networks: A multi-access
edge computing approach. IEEE Wireless Communications, 26(4):156–
162, 2019.

https://www.etsi.org/committee/1425-mec

176 LIST OF REFERENCES

[32] Kuljeet Kaur, Sahil Garg, Gagangeet Singh Aujla, Neeraj Kumar,
Joel JPC Rodrigues, and Mohsen Guizani. Edge computing in the
industrial internet of things environment: Software-defined-networks-
based edge-cloud interplay. IEEE communications magazine, 56(2):44–
51, 2018.

[33] Prateek Shantharama, Akhilesh S Thyagaturu, Nurullah Karakoc,
Lorenzo Ferrari, Martin Reisslein, and Anna Scaglione. LayBack: SDN
management of multi-access edge computing (MEC) for network access
services and radio resource sharing. IEEE Access, 6:57545–57561, 2018.

[34] Wenchao Xia, Jun Zhang, Tony QS Quek, Shi Jin, and Hongbo Zhu.
Mobile edge cloud-based industrial internet of things: improving edge
intelligence with hierarchical SDN controllers. IEEE Vehicular Tech-
nology Magazine, 15(1):36–45, 2020.

[35] Haibo Zhang, Zixin Wang, and Kaijian Liu. V2X offloading and resource
allocation in SDN-assisted MEC-based vehicular networks. China Com-
munications, 17(5):266–283, 2020.

[36] Nahida Kiran, Xuanlin Liu, Sihua Wang, and Changchuan Yin. VNF
placement and resource allocation in SDN/NFV-enabled MEC net-
works. In 2020 IEEE Wireless Communications and Networking Con-
ference Workshops (WCNCW), pages 1–6. IEEE, 2020.

[37] Kyle E Benson, Guoxi Wang, Nalini Venkatasubramanian, and Young-
Jin Kim. Ride: A resilient IoT data exchange middleware leveraging
SDN and edge cloud resources. In 2018 IEEE/ACM Third International
Conference on Internet-of-Things Design and Implementation (IoTDI),
pages 72–83. IEEE, 2018.

[38] Di Wu, Xin Huang, Xiaofeng Xie, Xiang Nie, Lichun Bao, and Zhijin
Qin. LEDGE: Leveraging edge computing for resilient access manage-
ment of mobile IoT. IEEE Transactions on Mobile Computing, 2019.

[39] Xiangwang Hou, Zhiyuan Ren, Jingjing Wang, Wenchi Cheng, Yong
Ren, Kwang-Cheng Chen, and Hailin Zhang. Reliable computation
offloading for edge-computing-enabled software-defined IoV. IEEE In-
ternet of Things Journal, 7(8):7097–7111, 2020.

[40] Federico Cimorelli, Francesco Delli Priscoli, Antonio Pietrabissa,
Lorenzo Ricciardi Celsi, Vincenzo Suraci, and Letterio Zuccaro. A dis-

LIST OF REFERENCES 177

tributed load balancing algorithm for the control plane in software de-
fined networking. In 2016 24th Mediterranean Conference on Control
and Automation (MED), pages 1033–1040. IEEE, 2016.

[41] Ping Song, Yi Liu, Tianxiao Liu, and Depei Qian. Flow Stealer:
lightweight load balancing by stealing flows in distributed SDN con-
trollers. Science China Information Sciences, 60(3):032202, 2017.

[42] Advait Dixit, Fang Hao, Sarit Mukherjee, T.V. Lakshman, and Ra-
mana Rao Kompella. ElastiCon; an elastic distributed SDN controller.
In 2014 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS), pages 17–27. IEEE, 2014.

[43] Chuan’an Wang, Bo Hu, Shanzhi Chen, Desheng Li, and Bin Liu. A
switch migration-based decision-making scheme for balancing load in
SDN. IEEE Access, 5:4537–4544, 2017.

[44] Rajat Chaudhary and Neeraj Kumar. LOADS: Load optimization and
anomaly detection scheme for software-defined networks. IEEE Trans-
actions on Vehicular Technology, 68(12):12329–12344, 2019.

[45] Tao Hu, Julong Lan, Jianhui Zhang, and Wei Zhao. EASM: Efficiency-
aware switch migration for balancing controller loads in software-defined
networking. Peer-to-Peer networking and applications, 12(2):452–464,
2019.

[46] Faroq Al-Tam and Noélia Correia. On load balancing via switch mi-
gration in software-defined networking. IEEE Access, 7:95998–96010,
2019.

[47] Kshira Sagar Sahoo, Deepak Puthal, Mayank Tiwary, Muhammad Us-
man, Bibhudatta Sahoo, Zhenyu Wen, Biswa PS Sahoo, and Rajiv Ran-
jan. ESMLB: Efficient switch migration-based load balancing for mul-
ticontroller SDN in IoT. IEEE Internet of Things Journal, 7(7):5852–
5860, 2019.

[48] Ziyong Li, Yuxiang Hu, Tao Hu, and Peng Wei. Dynamic SDN con-
troller association mechanism based on flow characteristics. IEEE Ac-
cess, 7:92661–92671, 2019.

[49] Penghao Sun, Zehua Guo, Gang Wang, Julong Lan, and Yuxiang Hu.
MARVEL: Enabling controller load balancing in software-defined net-
works with multi-agent reinforcement learning. Computer Networks,
177:107230, 2020.

178 LIST OF REFERENCES

[50] Jie Cui, Qinghe Lu, Hong Zhong, Miaomiao Tian, and Lu Liu. A
load-balancing mechanism for distributed SDN control plane using re-
sponse time. IEEE transactions on network and service management,
15(4):1197–1206, 2018.

[51] Tao Wang, Fangming Liu, and Hong Xu. An efficient online algo-
rithm for dynamic SDN controller assignment in data center networks.
IEEE/ACM Transactions on Networking, 25(5):2788–2801, 2017.

[52] Abderrahime Filali, Abdellatif Kobbane, Mouna Elmachkour, and
Soumaya Cherkaoui. SDN controller assignment and load balancing
with minimum quota of processing capacity. In 2018 IEEE Interna-
tional Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[53] 3GPP. Study on Enhanced Access to and Support of Network Slice
(Release 18). Technical Specification (TS) 28.835, 3rd Generation Part-
nership Project (3GPP), June 2021. Version 18.1.0.

[54] 3GPP. Study on enhancement of network slicing Phase 2 (Release
17). Technical Specification (TS) 28.835, 3rd Generation Partnership
Project (3GPP), Mar. 2021. Version 17.0.0.

[55] 3GPP. Study on enhancement of Radio Access Network (RAN) slic-
ing (Release 17). Technical Specification (TS) 28.835, 3rd Generation
Partnership Project (3GPP), June 2021. Version 17.0.0.

[56] GSMA. E2E Network Slicing Architecture. White Paper NG.127,
Global System for Mobile Communications, June 2021. Version 1.0.

[57] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini,
and Hannu Flinck. Network slicing and softwarization: A survey on
principles, enabling technologies, and solutions. IEEE Communications
Surveys & Tutorials, 20(3):2429–2453, 2018.

[58] Salah Eddine Elayoubi, Sana Ben Jemaa, Zwi Altman, and Ana
Galindo-Serrano. 5G RAN slicing for verticals: Enablers and challenges.
IEEE Communications Magazine, 57(1):28–34, 2019.

[59] Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and An-
drew Hines. 5G network slicing using SDN and NFV: A survey of
taxonomy, architectures and future challenges. Computer Networks,
167:106984, 2020.

LIST OF REFERENCES 179

[60] ETSI. 5G; Management and orchestration; Concepts, use cases and
requirements (Release 16). Technical Specification (TS) 128.530, Euro-
pean Telecommunications Standards Institute (ETSI), Jan. 2021. Ver-
sion 16.4.0.

[61] Mu Yan, Gang Feng, Jianhong Zhou, Yao Sun, and Ying-Chang Liang.
Intelligent resource scheduling for 5G radio access network slicing. IEEE
Transactions on Vehicular Technology, 68(8):7691–7703, 2019.

[62] Guolin Sun, Kun Xiong, Gordon Owusu Boateng, Guisong Liu, and Wei
Jiang. Resource slicing and customization in RAN with dueling deep Q-
Network. Journal of Network and Computer Applications, 157:102573,
2020.

[63] Qiang Ye, Weihua Zhuang, Shan Zhang, A-Long Jin, Xuemin Shen,
and Xu Li. Dynamic radio resource slicing for a two-tier heteroge-
neous wireless network. IEEE Transactions on Vehicular Technology,
67(10):9896–9910, 2018.

[64] Junling Li, Weisen Shi, Peng Yang, Qiang Ye, Xuemin Sherman Shen,
Xu Li, and Jaya Rao. A hierarchical soft RAN slicing framework for
differentiated service provisioning. IEEE Wireless Communications,
27(6):90–97, 2020.

[65] Sunday Oladayo Oladejo and Olabisi Emmanuel Falowo. Latency-aware
dynamic resource allocation scheme for multi-tier 5G network: A net-
work slicing-multitenancy scenario. IEEE Access, 8:74834–74852, 2020.

[66] Wen Wu, Nan Chen, Conghao Zhou, Mushu Li, Xuemin Shen, Weihua
Zhuang, and Xu Li. Dynamic RAN Slicing for Service-Oriented Ve-
hicular Networks via Constrained Learning. IEEE Journal on Selected
Areas in Communications, 2020.

[67] Xianfu Chen, Zhifeng Zhao, Celimuge Wu, Mehdi Bennis, Hang Liu,
Yusheng Ji, and Honggang Zhang. Multi-tenant cross-slice resource
orchestration: A deep reinforcement learning approach. IEEE Journal
on Selected Areas in Communications, 37(10):2377–2392, 2019.

[68] Qiang Ye, Weisen Shi, Kaige Qu, Hongli He, Weihua Zhuang, and
Xuemin Shen. Joint RAN slicing and computation offloading for
autonomous vehicular networks: A learning-assisted hierarchical ap-
proach. IEEE Open Journal of Vehicular Technology, 2:272–288, 2021.

180 LIST OF REFERENCES

[69] Yin Ren, Aihuang Guo, Chunlin Song, and Yidan Xing. Dynamic
Resource Allocation Scheme and Deep Deterministic Policy Gradient-
Based Mobile Edge Computing Slices System. IEEE Access, pages
86062–86073, 2021.

[70] Pengfei Zhu, Jiawei Zhang, Yuming Xiao, Jiabin Cui, Lin Bai, and Yue-
feng Ji. Deep reinforcement learning-based radio function deployment
for secure and resource-efficient NG-RAN slicing. Engineering Applica-
tions of Artificial Intelligence, 106:104490, 2021.

[71] Tao Hu, Zehua Guo, Peng Yi, Thar Baker, and Julong Lan. Multi-
controller based software-defined networking: A survey. IEEE Access,
6:15980–15996, 2018.

[72] Meysam Azizian, Soumaya Cherkaoui, and Abdelhakim Senhaji Hafid.
Vehicle software updates distribution with SDN and cloud computing.
IEEE Communications Magazine, 55(8):74–79, 2017.

[73] Zainab Zaidi, Vasilis Friderikos, Zarrar Yousaf, Simon Fletcher, Mis-
cha Dohler, and Hamid Aghvami. Will SDN be part of 5G? IEEE
Communications Surveys & Tutorials, 20(4):3220–3258, 2018.

[74] Guozhen Cheng, Hongchang Chen, Zhiming Wang, and Shuqiao Chen.
DHA: Distributed decisions on the switch migration toward a scalable
SDN control plane. In 2015 IFIP Networking Conference (IFIP Net-
working), pages 1–9. IEEE, 2015.

[75] Hongchang Chen, Guozhen Cheng, and Zhiming Wang. A game-
theoretic approach to elastic control in software-defined networking.
China Communications, 13(5):103–109, 2016.

[76] Marco Cello, Yang Xu, Anwar Walid, Gordon Wilfong, H Jonathan
Chao, and Mario Marchese. BalCon: A distributed elastic SDN control
via efficient switch migration. In 2017 IEEE International Conference
on Cloud Engineering (IC2E), pages 40–50. IEEE, 2017.

[77] Long Yao, Peilin Hong, Wen Zhang, Jianfei Li, and Dan Ni. Controller
placement and flow based dynamic management problem towards SDN.
In 2015 IEEE International Conference on Communication Workshop
(ICCW), pages 363–368. IEEE, 2015.

[78] Tao Wang, Fangming Liu, Jian Guo, and Hong Xu. Dynamic SDN con-
troller assignment in data center networks: Stable matching with trans-

LIST OF REFERENCES 181

fers. In IEEE INFOCOM 2016-The 35th Annual IEEE International
Conference on Computer Communications, pages 1–9. IEEE, 2016.

[79] Xiaofeng Gao, Linghe Kong, Weichen Li, Wanchao Liang, Yuxiang
Chen, and Guihai Chen. Traffic Load Balancing Schemes for Devolved
Controllers in Mega Data Centers. IEEE Transactions on Parallel &
Distributed Systems, 28(02):572–585, 2017.

[80] Yuanhao Zhou, Mingfa Zhu, Limin Xiao, Li Ruan, Wenbo Duan, Deguo
Li, Rui Liu, and Mingming Zhu. A load balancing strategy of sdn con-
troller based on distributed decision. In 2014 IEEE 13th International
Conference on Trust, Security and Privacy in Computing and Commu-
nications, pages 851–856. IEEE, 2014.

[81] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M
Ljung. Time series analysis: forecasting and control. John Wiley &
Sons, 2015.

[82] Qingjia Huang, Kai Shuang, Peng Xu, Jian Li, Xu Liu, and Sen Su.
Prediction-based dynamic resource scheduling for virtualized cloud sys-
tems. Journal of Networks, 9(2):375, 2014.

[83] Theophilus Benson, Aditya Akella, and David A Maltz. Network traffic
characteristics of data centers in the wild. In Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, pages 267–280,
2010.

[84] Murat Karakus and Arjan Durresi. A survey: Control plane scalability
issues and approaches in software-defined networking (SDN). Computer
Networks, 112:279–293, 2017.

[85] Abderrahime Filali, Amine Abouaomar, Soumaya Cherkaoui, Abdellatif
Kobbane, and Mohsen Guizani. Multi-access edge computing: A survey.
IEEE Access, 8:197017–197046, 2020.

[86] Catherine Nayer Tadros, Mohamed RM Rizk, and Bassem Mahmoud
Mokhtar. Software defined network-based management for enhanced
5G network services. IEEE Access, 8:53997–54008, 2020.

[87] Chuan Lin, Guangjie Han, Xingyue Qi, Mohsen Guizani, and Lei Shu.
A distributed mobile fog computing scheme for mobile delay-sensitive
applications in SDN-enabled vehicular networks. IEEE Transactions
on Vehicular Technology, 69(5):5481–5493, 2020.

182 LIST OF REFERENCES

[88] Meysam Azizian, Soumaya Cherkaoui, and Abdelhakim Hafid. An op-
timized flow allocation in vehicular cloud. IEEE Access, 4:6766–6779,
2016.

[89] Ali Akbar Neghabi, Nima Jafari Navimipour, Mehdi Hosseinzadeh, and
Ali Rezaee. Load balancing mechanisms in the software defined net-
works: a systematic and comprehensive review of the literature. IEEE
Access, 6:14159–14178, 2018.

[90] Guowei Wu, Jinlei Wang, Mohammad S Obaidat, Lin Yao, and Kuei-
Fang Hsiao. Dynamic switch migration with noncooperative game to-
wards control plane scalability in SDN. International Journal of Com-
munication Systems, 32(7):e3927, 2019.

[91] Ali El Kamel and Habib Youssef. Improving switch-to-controller as-
signment with load balancing in multi-controller software defined WAN
(SD-WAN). Journal of Network and Systems Management, pages 1–23,
2020.

[92] Noelia Correia and AL-Tam Faroq. Flow setup aware controller place-
ment in distributed software-defined networking. IEEE Systems Jour-
nal, 14(4):5096–5099, 2019.

[93] GM Jenkins. Autoregressive–Integrated Moving Average (ARIMA)
Models. Wiley StatsRef: Statistics Reference Online, 2014.

[94] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[95] Martin Nowak and Karl Sigmund. A strategy of win-stay, lose-shift
that outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature,
364(6432):56–58, 1993.

[96] Zoubeir Mlika, Elmahdi Driouch, and Wessam Ajib. A fully distributed
algorithm for user-base station association in HetNets. Computer Com-
munications, 105:66–78, 2017.

[97] Yang Zhou, Kangfeng Zheng, Wei Ni, and Ren Ping Liu. Elastic
switch migration for control plane load balancing in SDN. IEEE Access,
6:3909–3919, 2018.

[98] Mateus AS Santos, Bruno AA Nunes, Katia Obraczka, Thierry Turletti,
Bruno T De Oliveira, and Cintia B Margi. Decentralizing SDN’s control
plane. In 39th Annual IEEE Conference on Local Computer Networks,
pages 402–405. IEEE, 2014.

LIST OF REFERENCES 183

[99] Abderrahime Filali, Soumaya Cherkaoui, and Abdellatif Kobbane.
Prediction-based switch migration scheduling for SDN load balancing.
In ICC 2019-2019 IEEE International Conference on Communications
(ICC), pages 1–6. IEEE, 2019.

[100] Afaf Taïk and Soumaya Cherkaoui. Electrical load forecasting using
edge computing and federated learning. In ICC 2020-2020 IEEE In-
ternational Conference on Communications (ICC), pages 1–6. IEEE,
2020.

[101] Telephone Corporation Nippon Telegraph and. RYU the Net-
work Operating System(NOS) — Ryu 4.34 documentation.
https://ryu.readthedocs.io/en/latest/.

[102] Liehuang Zhu, Md Monjurul Karim, Kashif Sharif, Fan Li, Xiaojiang
Du, and Mohsen Guizani. SDN controllers: Benchmarking & perfor-
mance evaluation. arXiv preprint arXiv:1902.04491, 2019.

[103] Danny Yuxing Huang, Kenneth Yocum, and Alex C Snoeren. High-
fidelity switch models for software-defined network emulation. In Pro-
ceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking, pages 43–48, 2013.

[104] Amine Abouaomar, Soumaya Cherkaoui, Abdellatif Kobbane, and Ous-
sama Abderrahmane Dambri. A resources representation for resource
allocation in fog computing networks. In 2019 IEEE Global Communi-
cations Conference (GLOBECOM), pages 1–6. IEEE, 2019.

[105] Gerhard J Woeginger and Zhongliang Yu. On the equal-subset-sum
problem. Information Processing Letters, 42(6):299–302, 1992.

[106] Robert Fourer, David M Gay, and Brian W Kernighan. A modeling lan-
guage for mathematical programming. Management Science, 36(5):519–
554, 1990.

[107] Anutusha Dogra, Rakesh Kumar Jha, and Shubha Jain. A survey on
beyond 5G network with the advent of 6G: Architecture and emerging
technologies. IEEE Access, 9:67512–67547, 2020.

[108] Zoubeir Mlika and Soumaya Cherkaoui. Massive IoT Access with
NOMA in 5G Networks and Beyond using Online Competitiveness and
Learning. IEEE Internet of Things Journal, 2021.

184 LIST OF REFERENCES

[109] Boubakr Nour and Soumaya Cherkaoui. A Network-based Com-
pute Reuse Architecture for IoT Applications. arXiv preprint
arXiv:2104.03818, 2021.

[110] Zhaogang Shu and Tarik Taleb. A novel QoS framework for network
slicing in 5G and beyond networks based on SDN and NFV. IEEE
Network, 34(3):256–263, 2020.

[111] Alex Reznik, Luis Miguel Contreras Murillo, Yonggang Fang, Walter
Featherstone, Miltiadis Filippou, Francisco Fontes, Fabio Giust, Qiang
Huang, Alice Li, Charles Turyagyenda, et al. Cloud RAN and MEC: A
perfect pairing. ETSI White paper, (23):1–24, February 2018.

[112] Kai Liang, Liqiang Zhao, Xiaoli Chu, and Hsiao-Hwa Chen. An in-
tegrated architecture for software defined and virtualized radio access
networks with fog computing. IEEE Network, 31(1):80–87, 2017.

[113] Yu Abiko, Takato Saito, Daizo Ikeda, Ken Ohta, Tadanori Mizuno, and
Hiroshi Mineno. Flexible resource block allocation to multiple slices for
radio access network slicing using deep reinforcement learning. IEEE
Access, 8:68183–68198, 2020.

[114] Rui Dong, Changyang She, Wibowo Hardjawana, Yonghui Li, and
Branka Vucetic. Deep learning for radio resource allocation with diverse
quality-of-service requirements in 5G. IEEE Transactions on Wireless
Communications, 20(4):2309–2324, 2020.

[115] Guolin Sun, Zemuy Tesfay Gebrekidan, Gordon Owusu Boateng, Daniel
Ayepah-Mensah, and Wei Jiang. Dynamic reservation and deep rein-
forcement learning based autonomous resource slicing for virtualized
radio access networks. IEEE Access, 7:45758–45772, 2019.

[116] Yao Sun, Shuang Qin, Gang Feng, Lei Zhang, and Muhammad Imran.
Service provisioning framework for RAN slicing: user admissibility, slice
association and bandwidth allocation. IEEE Transactions on Mobile
Computing, 2020.

[117] Praveenkumar Korrai, Eva Lagunas, Shree Krishna Sharma, Symeon
Chatzinotas, Ashok Bandi, and Björn Ottersten. A RAN resource
slicing mechanism for multiplexing of eMBB and URLLC services in
OFDMA based 5G wireless networks. IEEE Access, 8:45674–45688,
2020.

LIST OF REFERENCES 185

[118] 3GPP. 5GM; NR; Physical channels and modulation. Technical Specifi-
cation (TS) 38.211, 3rd Generation Partnership Project (3GPP), 2019.

[119] Petar Popovski, Kasper Fløe Trillingsgaard, Osvaldo Simeone, and
Giuseppe Durisi. 5G wireless network slicing for eMBB, URLLC, and
mMTC: A communication-theoretic view. IEEE Access, 6:55765–55779,
September 2018.

[120] Eduardo Noboro Tominaga, Hirley Alves, Onel L Alcaraz López,
Richard Demo Souza, João Luiz Rebelatto, and Matti Latva-Aho. Net-
work Slicing for eMBB and mMTC with NOMA and Space Diver-
sity Reception. In 2021 IEEE 93rd Vehicular Technology Conference
(VTC2021-Spring), pages 1–6, April 2021.

[121] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li.
Channel state information prediction for 5G wireless communications:
A deep learning approach. IEEE Transactions on Network Science and
Engineering, 7(1):227–236, 2018.

[122] Abderrahime Filali, Zoubeir Mlika, Soumaya Cherkaoui, and Abdellatif
Kobbane. Preemptive SDN load balancing with machine learning for
delay sensitive applications. IEEE Transactions on Vehicular Technol-
ogy, 69(12):15947–15963, 2020.

[123] Farhad Rezazadeh, Hatim Chergui, and Christos Verikoukis. Zero-touch
Continuous Network Slicing Control via Scalable Actor-Critic Learning.
arXiv preprint arXiv:2101.06654, 2021.

[124] Mojdeh Karbalaee Motalleb, Vahid Shah-Mansouri, and Salar Nouri
Naghadeh. Joint power allocation and network slicing in an open RAN
system. arXiv preprint arXiv:1911.01904, 2019.

[125] Qianyu Xu, Suoping Li, Tien Van, Kejun Jia, and Nana Yang. Per-
formance Analysis of Cognitive Radio Networks with Burst Dynamics.
IEEE Access, 2021.

[126] Nikolaos Pappas. Performance Analysis of a System with Bursty Traffic
and Adjustable Transmission Times. In 2018 15th International Sympo-
sium on Wireless Communication Systems (ISWCS), pages 1–6. IEEE,
2018.

[127] John F Shortle, James M Thompson, Donald Gross, and Carl M Harris.
Fundamentals of queueing theory, volume 399. John Wiley & Sons,
2018.

186 LIST OF REFERENCES

[128] David Pisinger and Paolo Toth. Knapsack Problems, pages 299–428.
Springer US, Boston, MA, 1998.

[129] Jingjing Wang, Chunxiao Jiang, Haijun Zhang, Yong Ren, Kwang-
Cheng Chen, and Lajos Hanzo. Thirty years of machine learning: The
road to Pareto-optimal wireless networks. IEEE Communications Sur-
veys & Tutorials, 22(3):1472–1514, 2020.

[130] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire.
The Nonstochastic Multiarmed Bandit Problem. SIAM J. Comput.,
32(1):48–77, January 2003.

[131] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, An-
dreas K Fidjeland, Georg Ostrovski, et al. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015.

[132] Richard E. Bellman. Dynamic Programming. July 2010.

[133] Qingchen Zhang, Man Lin, Laurence T Yang, Zhikui Chen, and Peng
Li. Energy-efficient scheduling for real-time systems based on deep
Q-learning model. IEEE Transactions on Sustainable Computing,
4(1):132–141, 2019.

[134] Yueyue Dai, Du Xu, Sabita Maharjan, Guanhua Qiao, and Yan Zhang.
Artificial intelligence empowered edge computing and caching for inter-
net of vehicles. IEEE Wireless Communications, 26(3):12–18, 2019.

[135] Sheyda Zarandi and Hina Tabassum. Delay Minimization in Sliced
Multi-Cell Mobile Edge Computing (MEC) Systems. arXiv preprint
arXiv:2101.03405, 2021.

[136] Xenofon Foukas, Mahesh K Marina, and Kimon Kontovasilis. Orion:
RAN slicing for a flexible and cost-effective multi-service mobile network
architecture. In Proceedings of the 23rd annual international conference
on mobile computing and networking, pages 127–140, October 2017.

[137] Christopher J. C. H. Watkins and Peter Dayan. Q-learning. Machine
Learning, 8(3):279–292, May 1992.

[138] Zoubeir Mlika and Soumaya Cherkaoui. Network slicing with mec and
deep reinforcement learning for the internet of vehicles. IEEE Network,
35(3):132–138, 2021.

LIST OF REFERENCES 187

[139] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double Q-learning. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 30, March 2016.

[140] Fengsheng Wei, Gang Feng, Yao Sun, Yatong Wang, Shuang Qin, and
Ying-Chang Liang. Network Slice Reconfiguration by Exploiting Deep
Reinforcement Learning With Large Action Space. IEEE Transactions
on Network and Service Management, 17(4):2197–2211, August 2020.

[141] Amandeep Kaur and Krishan Kumar. Imperfect CSI based Intelli-
gent Dynamic Spectrum Management using Cooperative Reinforcement
Learning Framework in Cognitive Radio Networks. IEEE Transactions
on Mobile Computing, 2020.

[142] Sonia Shahzadi, Muddesar Iqbal, and Nauman Riaz Chaudhry. 6G Vi-
sion: Toward Future Collaborative Cognitive Communication (3C) Sys-
tems. IEEE Communications Standards Magazine, 5(2):60–67, 2021.

[143] Peng Yang, Xing Xi, Tony QS Quek, Jingxuan Chen, Xianbin Cao,
and Dapeng Wu. RAN slicing for massive IoT and bursty URLLC ser-
vice multiplexing: Analysis and optimization. IEEE Internet of Things
Journal, 2021.

[144] Ruoyu Su, Dengyin Zhang, Ramachandran Venkatesan, Zijun Gong,
Cheng Li, Fei Ding, Fan Jiang, and Ziyang Zhu. Resource allocation
for network slicing in 5G telecommunication networks: A survey of
principles and models. IEEE Network, 33(6):172–179, 2019.

[145] Leonardo Bonati, Salvatore D’Oro, Michele Polese, Stefano Basagni,
and Tommaso Melodia. Intelligence and Learning in O-RAN for Data-
driven NextG Cellular Networks. arXiv preprint arXiv:2012.01263,
2020.

[146] 3GPP. Management and orchestration Concepts, use cases and require-
ments (Release 17). Technical Specification (TS) 28.530, 3rd Generation
Partnership Project (3GPP), Mar. 2021. Version 17.1.0.

[147] 3GPP. Study on enhancement of Radio Access Network (RAN) slicing
(Release 17). Technical Specification (TS) Group RAN 38.832, 3rd
Generation Partnership Project (3GPP), Mar. 2021. Version 1.0.0.

[148] Chia-Yu Chang, Navid Nikaein, and Thrasyvoulos Spyropoulos. Radio
access network resource slicing for flexible service execution. In IEEE

188 LIST OF REFERENCES

Conference on Computer Communications Workshops, pages 668–673.
IEEE, 2018.

[149] Qiang Liu, Tao Han, and Ephraim Moges. EdgeSlice: Slicing Wire-
less Edge Computing Network with Decentralized Deep Reinforcement
Learning. In IEEE International Conference on Distributed Computing
Systems (ICDCS), pages 234–244, 2020.

[150] Solmaz Niknam, Abhishek Roy, Harpreet S Dhillon, Sukhdeep Singh,
Rahul Banerji, Jeffery H Reed, Navrati Saxena, and Seungil Yoon. Intel-
ligent O-RAN for beyond 5G and 6G wireless networks. arXiv preprint
arXiv:2005.08374, 2020.

	INTRODUCTION
	Problem Statement
	Objective
	Contributions and Originality
	List of Papers

	Thesis Plan

	State of the Art
	Software-defined networking
	SDN control plane architecture
	OpenFlow protocol
	SDN for next generation networks

	SDN for edge computing
	Edge computing
	Edge computing in next-generation networks
	SDN for edge computing

	SDN control plane load balancing
	Load balancing problem
	Load balancing approaches
	Conclusion

	SDN for network slicing
	Network slicing
	Network slicing in next-generation networks
	SDN-based RAN slicing
	Conclusion

	Prediction-Based Switch Migration Scheduling for SDN Load Balancing
	Abstract
	Introduction
	Related Work
	Problem formulation
	Workload prediction model
	Time Series and Forecasting
	One-step prediction
	Multi-step prediction
	Switch migration scheduling algorithm

	Numerical results
	Prediction performance evaluation
	Proposed algorithm performance evaluation

	Conclusion

	Preemptive SDN Load Balancing With Machine Learning for Delay Sensitive Applications
	Abstract
	Introduction
	Related Work
	SDN controller load prediction models
	SDN controller load
	Time series and predictions
	Multi-step load prediction
	Load prediction using ARIMA and LSTM

	Construction of prediction models
	Simulation setup
	Dataset description and preparation
	ARIMA modeling
	LSTM network modeling

	Prediction performance evaluation
	Evaluation metrics
	Prediction results

	System model
	Controller response time
	Migration protocol
	Migration cost

	Problem formulation and NP-hardness
	Problem formulation
	NP-hardness

	Reinforcement learning algorithm
	Preliminary definitions
	Two-win-stay-lose-shift algorithm (2WSLS)

	Simulation results
	Parameters of 2WSLS
	Performance of 2WSLS

	Conclusion

	Dynamic SDN-based Radio Access Network Slicing with DRLearning for URLLC and eMBB Services
	Abstract
	Introduction
	Related Work
	System Model
	Problem Formulation and NP-Hardness
	Problem Formulation
	NP-Hardness

	Single-Agent Multi-Agent Reinforcement Learning Based RAN Resource Slicing
	MDP formulation of the SDN allocation level
	MDP formulation of the gNodeB allocation level
	Single-agent EXP3 algorithm
	Multi-agent deep Q-Learning algorithm

	SIMULATION RESULTS
	Experiment scenarios and setup
	DDQN training results
	SAMA-RL performance Evaluation

	Conclusion

	Communication and Computation O-RAN Resource Slicing for URLLC Services Using Deep Reinforcement Learning
	Abstract
	Introduction
	Unveiling the Curtain: Network Slicing
	Joint Slicing of Communication and Computation RAN Resources
	System Model
	Deep Reinforcement Learning based RAN Resource Slicing
	Deep Q-learning Slicing Algorithm

	Performance Evaluation
	Conclusion and Future Work

	Conclusions and Future Works
	Conclusions
	Future Works

	Conclusions et Travaux Futurs
	Conclusions
	Travaux Futurs

	LIST OF REFERENCES

