962 research outputs found

    A data management system for identifying the traceability of returnable transit items using radio frequency identification portals

    Get PDF
    The advancement of paradigms such as Industry 4.0 and cyber physical systems herald increased productivity and efficiency for manufacturing businesses through increased capture and communication of data, information and knowledge. However, interpreting the raw data captured by sensing devices into useful information for decision making can be challenging as it often contains errors and uncertainty. This paper specifically investigates the challenges of analysing and interpreting data recorded using Radio Frequency IDentification (RFID) portals to monitor the movements of Returnable Transit Items (RTI), such as racks and stillage, within an automotive manufacturing environment. Data was collected over a yearlong pilot study using an RFID portal system installed across two automotive facilities to trace the movement of RTIs between the sites. Based upon the results key sources of errors and uncertainty have been identified and a data management framework is proposed to alleviate these errors

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Using low-level reader data to detect false-positive RFID tag reads

    Full text link

    RFID Data Management

    Get PDF

    The SARFID technique for discriminating tagged items moving through a UHF-RFID gate

    Get PDF
    The discrimination of tagged items moving along a conveyor belt from other tagged items that are present in the scenario is investigated, when a UHF-RFID gate is installed at a conveyor section. Indeed, tagged items that are static or randomly moving in the scenario (nomad tags) around the reader antenna could be detected even if they are not on the conveyor (false positive readings). The classification procedure here proposed exploits the SARFID phase-based technique used to localize tags on a conveyor belt, which takes advantage of the fact that the tagged items move along a conveyor, whose path and instantaneous speed are both known. The latter can be implemented with only a firmware upgrade, in any conveyor belt scenario already equipped with an RFID system, without any modification of the system infrastructure and additional (reference tags/multiple antennas) or ad hoc hardware. From experimental results in a real scenario, the discrimination between moving tags from static/nomad tags can be obtained with an overall accuracy greater than 99.9%, by employing only one reader antenna

    Novel Cryptographic Authentication Mechanisms for Supply Chains and OpenStack

    Get PDF
    In this dissertation, first, we studied the Radio-Frequency Identification (RFID) tag authentication problem in supply chains. RFID tags have been widely used as a low-cost wireless method for detecting counterfeit product injection in supply chains. We open a new direction toward solving this problem by using the Non-Volatile Memory (NVM) of recent RFID tags. We propose a method based on this direction that significantly improves the availability of the system and costs less. In our method, we introduce the notion of Software Unclonability, which is a kind of one-time MAC for authenticating random inputs. Also, we introduce three lightweight constructions that are software unclonable. Second, we focus on OpenStack that is a prestigious open-source cloud platform. OpenStack takes advantage of some tokening mechanisms to establish trust between its modules and users. It turns out that when an adversary captures user tokens by exploiting a bug in a module, he gets extreme power on behalf of users. Here, we propose a novel tokening mechanism that ties commands to tokens and enables OpenStack to support short life tokens while it keeps the performance up

    Integrating the Supply Chain with RFID: A Technical and Business Analysis

    Get PDF
    This paper presents an in-depth analysis of the technical and business implications of adopting Radio Frequency Identification (RFID) in organizational settings. The year 2004 marked a significant shift toward adopting RFID because of mandates by large retailers and government organizations. The use of RFID technology is expected to increase rapidly in the next few years. At present, however, initial barriers against widespread adoption include standards, interoperability, costs, forward compatibility, and lack of familiarity. This paper describes basic components of an RFID system including tags, readers, and antennas and how they work together using an integrated supply chain model. Our analysis suggests that business needs to overcome human resource scarcity, security, legal and financial challenges and make informed decision regarding standards and process reengineering. The technology is not fully mature and suffers from issues of attenuation and interference. A laboratory experiment conducted by the authors\u27 shows that the middleware is not yet at a plug-and-play stage, which means that initial adopters need to spend considerable effort to integrate RFID into their existing business processes. Appendices contain a glossary of common RFID terms, a list of RFID vendors and detailed findings of the laboratory experiment. NOTE: BECAUSE OF THE ILLUSTRATIONS USED, THIS ARTICLE IS LONG; APPROXIMATELY 850KB IN BOTH JOURNAL AND ARTICLE VERSIO

    UHF-RFID smart gate: Tag action classifier by artificial neural networks

    Get PDF
    The application of Artificial Neural Networks (ANNs) to discriminate tag actions in UHF-RFID gate is presented in this paper. By exploiting Received Signal Strength Indicator values acquired in a real experimental scenario, a multi-layer perceptron neural network is trained to distinguish among tags incoming, outgoing or passing the RFID gate. A 99% accuracy can be obtained in tag classification by employing only one reader antenna and independently from tag orientation and typology

    When things matter: A survey on data-centric Internet of Things

    Get PDF
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Monitoring cold chain logistics by means of RFID.

    Get PDF
    Every day, millions of tons of temperature sensitive goods are produced, transported, stored or distributed worldwide. For all these products the control of temperature is essential. The term “cold chain” describes the series of interdependent equipment and processes employed to ensure the temperature preservation of perishables and other temperaturecontrolled products from the production to the consumption end in a safe, wholesome, and good quality state (Zhang, 2007). In other words, it is a supply chain of temperature sensitive products. So temperature-control is the key point in cold chain operation and the most important factor when prolonging the practical shelf life of produce. Thus, the major challenge is to ensure a continuous ‘cold chain’ from producer to consumer in order to guaranty prime condition of goods (Ruiz-Garcia et al., 2007).These products can be perishable items like fruit, vegetables, flowers, fish, meat and dairy products or medical products like drugs, blood, vaccines, organs, plasma and tissues. All of them can have their properties affected by temperature changes. Also some chemicals and electronic components like microchips are temperature sensitive
    • 

    corecore