7 research outputs found

    Faster Algorithms for the Sparse Random 3XOR Problem

    Get PDF
    We present two new algorithms for a variant of the 3XOR problem with lists consisting of N n-bit 10 vectors whose coefficients are drawn randomly according to a Bernoulli distribution of parameter 11 p 0.13. The analysis of these algorithms reveal a "phase change" for a 16 certain threshold p. 17 2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-18 tography; Theory of computation 1

    On Multidimensional and Monotone k-SUM

    Get PDF
    The well-known k-SUM conjecture is that integer k-SUM requires time Omega(n^{ceil{k/2}-o(1)}). Recent work has studied multidimensional k-SUM in F_p^d, where the best known algorithm takes time tilde O(n^{ceil{k/2}}). Bhattacharyya et al. [ICS 2011] proved a min(2^{Omega(d)},n^{Omega(k)}) lower bound for k-SUM in F_p^d under the Exponential Time Hypothesis. We give a more refined lower bound under the standard k-SUM conjecture: for sufficiently large p, k-SUM in F_p^d requires time Omega(n^{k/2-o(1)}) if k is even, and Omega(n^{ceil{k/2}-2k(log k)/(log p)-o(1)}) if k is odd. For a special case of the multidimensional problem, bounded monotone d-dimensional 3SUM, Chan and Lewenstein [STOC 2015] gave a surprising tilde O(n^{2-2/(d+13)}) algorithm using additive combinatorics. We show this algorithm is essentially optimal. To be more precise, bounded monotone d-dimensional 3SUM requires time Omega(n^{2-frac{4}{d}-o(1)}) under the standard 3SUM conjecture, and time Omega(n^{2-frac{2}{d}-o(1)}) under the so-called strong 3SUM conjecture. Thus, even though one might hope to further exploit the structural advantage of monotonicity, no substantial improvements beyond those obtained by Chan and Lewenstein are possible for bounded monotone d-dimensional 3SUM

    Algorithms for sparse convolution and sublinear edit distance

    Get PDF
    In this PhD thesis on fine-grained algorithm design and complexity, we investigate output-sensitive and sublinear-time algorithms for two important problems. (1) Sparse Convolution: Computing the convolution of two vectors is a basic algorithmic primitive with applications across all of Computer Science and Engineering. In the sparse convolution problem we assume that the input and output vectors have at most t nonzero entries, and the goal is to design algorithms with running times dependent on t. For the special case where all entries are nonnegative, which is particularly important for algorithm design, it is known since twenty years that sparse convolutions can be computed in near-linear randomized time O(t log^2 n). In this thesis we develop a randomized algorithm with running time O(t \log t) which is optimal (under some mild assumptions), and the first near-linear deterministic algorithm for sparse nonnegative convolution. We also present an application of these results, leading to seemingly unrelated fine-grained lower bounds against distance oracles in graphs. (2) Sublinear Edit Distance: The edit distance of two strings is a well-studied similarity measure with numerous applications in computational biology. While computing the edit distance exactly provably requires quadratic time, a long line of research has lead to a constant-factor approximation algorithm in almost-linear time. Perhaps surprisingly, it is also possible to approximate the edit distance k within a large factor O(k) in sublinear time O~(n/k + poly(k)). We drastically improve the approximation factor of the known sublinear algorithms from O(k) to k^{o(1)} while preserving the O(n/k + poly(k)) running time.In dieser Doktorarbeit über feinkörnige Algorithmen und Komplexität untersuchen wir ausgabesensitive Algorithmen und Algorithmen mit sublinearer Lauf-zeit für zwei wichtige Probleme. (1) Dünne Faltungen: Die Berechnung der Faltung zweier Vektoren ist ein grundlegendes algorithmisches Primitiv, das in allen Bereichen der Informatik und des Ingenieurwesens Anwendung findet. Für das dünne Faltungsproblem nehmen wir an, dass die Eingabe- und Ausgabevektoren höchstens t Einträge ungleich Null haben, und das Ziel ist, Algorithmen mit Laufzeiten in Abhängigkeit von t zu entwickeln. Für den speziellen Fall, dass alle Einträge nicht-negativ sind, was insbesondere für den Entwurf von Algorithmen relevant ist, ist seit zwanzig Jahren bekannt, dass dünn besetzte Faltungen in nahezu linearer randomisierter Zeit O(t \log^2 n) berechnet werden können. In dieser Arbeit entwickeln wir einen randomisierten Algorithmus mit Laufzeit O(t \log t), der (unter milden Annahmen) optimal ist, und den ersten nahezu linearen deterministischen Algorithmus für dünne nichtnegative Faltungen. Wir stellen auch eine Anwendung dieser Ergebnisse vor, die zu scheinbar unverwandten feinkörnigen unteren Schranken gegen Distanzorakel in Graphen führt. (2) Sublineare Editierdistanz: Die Editierdistanz zweier Zeichenketten ist ein gut untersuchtes Ähnlichkeitsmaß mit zahlreichen Anwendungen in der Computerbiologie. Während die exakte Berechnung der Editierdistanz nachweislich quadratische Zeit erfordert, hat eine lange Reihe von Forschungsarbeiten zu einem Approximationsalgorithmus mit konstantem Faktor in fast-linearer Zeit geführt. Überraschenderweise ist es auch möglich, die Editierdistanz k innerhalb eines großen Faktors O(k) in sublinearer Zeit O~(n/k + poly(k)) zu approximieren. Wir verbessern drastisch den Approximationsfaktor der bekannten sublinearen Algorithmen von O(k) auf k^{o(1)} unter Beibehaltung der O(n/k + poly(k))-Laufzeit

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    corecore