66,691 research outputs found

    Helicopter rotor wake geometry and its influence in forward flight. Volume 1: Generalized wake geometry and wake effect on rotor airloads and performance

    Get PDF
    An analytic investigation to generalize wake geometry of a helicopter rotor in steady level forward flight and to demonstrate the influence of wake deformation in the prediction of rotor airloads and performance is described. Volume 1 presents a first level generalized wake model based on theoretically predicted tip vortex geometries for a selected representative blade design. The tip vortex distortions are generalized in equation form as displacements from the classical undistorted tip vortex geometry in terms of vortex age, blade azimuth, rotor advance ratio, thrust coefficient, and number of blades. These equations were programmed to provide distorted wake coordinates at very low cost for use in rotor airflow and airloads prediction analyses. The sensitivity of predicted rotor airloads, performance, and blade bending moments to the modeling of the tip vortex distortion are demonstrated for low to moderately high advance ratios for a representative rotor and the H-34 rotor. Comparisons with H-34 rotor test data demonstrate the effects of the classical, predicted distorted, and the newly developed generalized wake models on airloads and blade bending moments. Use of distorted wake models results in the occurrence of numerous blade-vortex interactions on the forward and lateral sides of the rotor disk. The significance of these interactions is related to the number and degree of proximity to the blades of the tip vortices. The correlation obtained with the distorted wake models (generalized and predicted) is encouraging

    Sharp-edged geometric obstacles in microfluidics promote deformability-based sorting of cells

    Full text link
    Sorting cells based on their intrinsic properties is a highly desirable objective, since changes in cell deformability are often associated with various stress conditions and diseases. Deterministic lateral displacement (DLD) devices offer high precision for rigid spherical particles, while their success in sorting deformable particles remains limited due to the complexity of cell traversal in DLDs. We employ mesoscopic hydrodynamics simulations and demonstrate prominent advantages of sharp-edged DLD obstacles for probing deformability properties of red blood cells (RBCs). By consecutive sharpening of the pillar shape from circular to diamond to triangular geometry, a pronounced cell bending around an edge is achieved, serving as a deformability sensor. Bending around the edge is the primary mechanism, which governs the traversal of RBCs through such DLD device. This strategy requires an appropriate degree of cell bending by fluid stresses, which can be controlled by the flow rate, and exhibits good sensitivity to moderate changes in cell deformability. We expect that similar mechanisms should be applicable for the development of novel DLD devices that target intrinsic properties of many other cells.Comment: 16 pages, 9 figure

    The prospect of using LES and DES in engineering design, and the research required to get there

    Full text link
    In this paper we try to look into the future to divine how large eddy and detached eddy simulations (LES and DES, respectively) will be used in the engineering design process about 20-30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed.Comment: accepted for publication in the Royal Society Philosophical Transactions

    Dynamic Matrix-Fracture Transfer Behaviour in Dual-Porosity Models

    Get PDF
    Imperial Users onl

    High-fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications

    Get PDF
    A multidisciplinary sensitivity analysis of rotorcraft simulations involving tightly coupled high-fidelity computational fluid dynamics and comprehensive analysis solvers is presented and evaluated. A sensitivity-enabled fluid dynamics solver and a nonlinear flexible multibody dynamics solver are coupled to predict aerodynamic loads and structural responses of helicopter rotor blades. A discretely consistent adjoint-based sensitivity analysis available in the fluid dynamics solver provides sensitivities arising from unsteady turbulent flows and unstructured dynamic overset meshes, while a complex-variable approach is used to compute structural sensitivities with respect to aerodynamic loads. The multidisciplinary sensitivity analysis is conducted through integrating the sensitivity components from each discipline of the coupled system. Accuracy of the coupled system is validated by conducting simulations for a benchmark rotorcraft model and comparing solutions with established analyses and experimental data. Sensitivities of lift computed by the multidisciplinary sensitivity analysis are verified by comparison with the sensitivities obtained by complex-variable simulations. Finally the multidisciplinary sensitivity analysis is applied to a constrained gradient-based design optimization for a HART-II rotorcraft configuration

    Tests of stellar model atmospheres by optical interferometry: VLTI/VINCI limb-darkening measurements of the M4 giant psi phe

    Full text link
    We present K-band interferometric measurements of the limb-darkened intensity profile of the M4 giant star psi Phoenicis obtained with VLTI/VINCI. High-precision squared visibility amplitudes in the second lobe of the visibility function were obtained employing two 8.2 m UTs. This succeeded one month after light from UTs was first combined for interferometric fringes. In addition, we sampled the visibility function at small spatial frequencies using the 40cm test siderostats. Our measurement constrains the diameter of the star as well as its CLV. We construct a spherical hydrostatic PHOENIX model atmosphere based on spectrophotometric data from the literature and confront its CLV prediction with our interferometric measurement. We compare as well CLV predictions by plane-parallel hydrostatic PHOENIX, ATLAS9, and ATLAS12 models. We find that the Rosseland angular diameter as predicted by comparison of the spherical PHOENIX model with spectrophotometry is in good agreement with our interferometric diameter measurement. The shape of our measured visibility function in the second lobe is consistent with all considered PHOENIX and ATLAS model predictions, and significantly different from UD and FDD models. We derive high-precision fundamental parameters for psi Phe, namely a Rosseland angular diameter of 8.13 +/- 0.2 mas, with the Hipparcos parallax corresponding to a Rosseland linear radius R of 86 +/- 3 Rsun and an effective temperature of 3550 +/- 50 K, with R corresponding to a luminosity of log (L/Lsun)=3.02 +/- 0.06. Together with evolutionary models, these values are consistent with a mass of 1.3 +/- 0.2 Msun, and a surface gravity of log g = 0.68 +/- 0.11.Comment: 13 pages, 6 figures, accepted for publication in A&
    • …
    corecore