214 research outputs found

    Enhanced Piezoelectric Performance of Printed PZT Films on Low Temperature Substrates

    Get PDF
    Since piezoelectric effect was discovered in 1880, it has been widely used in micro-actuators, sensors, and energy harvesters. Lead Zirconate Titanate (PZT) is a commonly used piezoelectric material due to the high piezoelectric response. The basic PZT film fabrication process includes deposition, sintering, and poling. However, due to the high sintering temperature (\u3e 800 °C) of PZT, only high melting point material can be served as the substrate. Otherwise, complex film transfer approach is needed to achieve flexible and foldable PZT devices. The exploration is accordingly necessary to realize direct fabrication of PZT films on low melting point substrates without affecting the piezoelectric performance. In order to lower the PZT film sintering temperature, in this work, the effect of the powder size and sintering aid on the sintering temperature was studied. A maskless, CAD driven, non-contact direct printing system, aerosol jet printer, was used to deposit PZT thick films on the substrate. This technique allows creating features without masking and etching processes that are generally required for realizing designed features via conventional deposition approaches. Broadband, sub-millisecond, high intensity flash pulses were used to sinter the PZT films. The role of all sintering parameters was investigated to regulate the sintering quality of the PZT thick films. The photonically sintered films showed much lower substrate temperature increase mainly due to the extremely short pulse duration and temperature gradient through the film thickness. The superior piezoelectric property to thermally sintered group was also obtained. This process significantly shortens the processing duration and dramatically expands the possible substrate materials. It accordingly opens the possibility of processing PZT film directly on low melting point materials. A PZT energy harvester based on this process was directly fabricated on the polyethylene terephthalate (PET) substrate to demonstrate the capability. The relation between the load and the generated power was investigated to obtain the highest output power. Up to 0.1 μW was generated from this flexible energy harvester when connected with 10 MΩ resistive load. Photonic sintering of PZT film also creates the opportunity of processing poling during sintering. Different combinations of the sintering and poling techniques were studied. It was observed that the best piezoelectric property was obtained while performing poling during photonic sintering. Consequently, a new method of printing, sintering, and poling of micro-scaled PZT films was demonstrated in this work resulting in high performance films. This process provides the capability of realizing PZT devices on low temperature substrate, facilitates the fabrication of flexible piezoelectric devices, and enhances the piezoelectric property

    Energy harvesting of low-grade waste heat with colloid based technology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN

    Get PDF
    Finding alternative power sources has been an important topic of study worldwide. It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable energy sources and infinite supplies. Such limitless sources are derived from ambient energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities megaprojects have been receiving enormous amounts of funding to transition our lives into smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small amounts of energy to run. Using batteries as the power source for such smart devices imposes environmental and labor cost issues. Moreover, in many cases, smart devices are in hard-to-access places, making accessibility for disposal and replacement difficult. Finally, battery waste harms the environment. To overcome these issues, vibration-based energy harvesters have been proposed and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy which is generated due to the motion of an object into electric energy. Energy transduction mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic methods; the piezoelectric method is generally preferred to the other methods, particularly if the frequency fluctuations are considerable. In response, piezoelectric vibration-based energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are two challenges with PVEH: the maximum amount of extractable voltage and the effective (operational) frequency bandwidth are often insufficient. In this dissertation, a new type of integrated multiple system comprised of a cantilever and spring-oscillator is proposed to improve and develop the performance of the energy harvester in terms of extractable voltage and effective frequency bandwidth. The new energy harvester model is proposed to supply sufficient energy to power low-power electronic devices like RFID components. Due to the temperature fluctuations, the thermal effect over the performance of the harvester is initially studied. To alter the resonance frequency of the harvester structure, a rotating element system is considered and analyzed. In the analytical-numerical analysis, Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive the governing equations of the harvester motion and corresponding electric circuit. It is observed that integration of the spring-oscillator subsystem alters the boundary condition of the cantilever and subsequently reforms the resulting characteristic equation into a more complicated nonlinear transcendental equation. To find the resonance frequencies, this equation is solved numerically in MATLAB. It is observed that the inertial effects of the oscillator rendered to the cantilever via the restoring force effects of the spring significantly alter vibrational features of the harvester. Finally, the voltage frequency response function is analytically and numerically derived in a closed-from expression. Variations in parameter values enable the designer to mutate resonance frequencies and mode shape functions as desired. This is particularly important, since the generated energy from a PVEH is significant only if the excitation frequency coming from an external source matches the resonance (natural) frequency of the harvester structure. In subsequent sections of this work, the oscillator mass and spring stiffness are considered as the design parameters to maximize the harvestable voltage and effective frequency bandwidth, respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. Since the voltage frequency response function cannot be implemented in a computer algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic and neural networks. The voltage function requires manual assistance to find the resonance frequency and cannot be done automatically using computer algorithms. Specifically, to apply the numerical root-solver, one needs to manually provide the solver with an initial guess. Such an estimation is accomplished using a plot of the characteristic equation along with human visual inference. Thus, the entire process cannot be automated. Moreover, the voltage function encompasses several coefficients making the process computationally expensive. Thus, training a supervised machine learning regressor is essential. The trained regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic optimization procedure. The optimization problem is implemented, first to find the maximum voltage and second to find the maximum widened effective frequency bandwidth, which yields the optimal oscillator mass value along with the optimal spring stiffness value. As there is often no control over the external excitation frequency, it is helpful to design an adaptive energy harvester. This means that, considering a specific given value of the excitation frequency, energy harvester system parameters (oscillator mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) frequency of the system aligns with the given excitation frequency. To do so, the given excitation frequency value is considered as the input and the system parameters are assumed as outputs which are estimated via the neural network fuzzy logic regressor. Finally, an experimental setup is implemented for a simple pure cantilever energy harvester triggered by impact excitations. Unlike the theoretical section, the experimental excitation is considered to be an impact excitation, which is a random process. The rationale for this is that, in the real world, the external source is a random trigger. Harmonic base excitations used in the theoretical chapters are to assess the performance of the energy harvester per standard criteria. To evaluate the performance of a proposed energy harvester model, the input excitation type consists of harmonic base triggers. In summary, this dissertation discusses several case studies and addresses key issues in the design of optimized piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the integrated systems is presented with equation derivations. Second, the proposed model is decomposed and analyzed in terms of mechanical and electrical frequency response functions. To do so, analytic-numeric methods are adopted. Later, influential parameters of the integrated system are detected. Then the proposed model is optimized with respect to the two vital criteria of maximum amount of extractable voltage and widened effective (operational) frequency bandwidth. Corresponding design (influential) parameters are found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a soft computing method. The accuracy of the trained integrated algorithms is verified using the analytical-numerical closed-form expression of the voltage function. Then, an adaptive piezoelectric vibration-based energy harvester (PVEH) is designed. This final design pertains to the cases where the excitation (driving) frequency is given and constant, so the desired goal is to match the natural frequency of the system with the given driving frequency. In this response, a regressor using neural network fuzzy logic is designed to find the proper design parameters. Finally, the experimental setup is implemented and tested to report the maximum voltage harvested in each test execution

    Simultaneous use of shape memory alloys and permanent magnets in multistable smart structures for morphing aircraft applications

    Get PDF
    This Thesis considers the simultaneous use of shape memory alloys and permanent magnets for achieving multistable smart structures aiming towards morphing applications. Motivation for this approach lies in the poor energetic efficiency of shape memory alloys, which can void system-level benefits provided by morphing technologies. Multistability can therefore be adopted to prevent continuous operation of shape memory alloy actuators. Objectives of the study involve the combination of shape memory alloys and permanent magnets in new geometrical arrangements to achieve multistable behavior; the development of a numerical modeling procedure that is able to simulate the multi-physics nature of the studied systems; and the proposal of a geometric arrangement for morphing applications that is based on a repeating pattern of unit cells which incorporate the combined use of shape memory alloy wires and permanent magnets for multistability. The proposed modeling strategy considers a geometrically nonlinear beam finite element; a thermo-mechanical constitutive behavior for shapememoryalloys;theinteractionofcuboidalpermanentmagnetswitharbitraryorienta- tions; and node-to-element contact. Experiments are performed with three distinct systems, including a proof-of-concept beam, a three cell morphing beam metastructure, and a morphing airfoil prototype with six unit cells. Results show that the combination of shape memory alloys and permanent magnets indeed allows for multistable behavior. Furthermore, the dis- tributedactuationcapabilitiesofthe morphingmetastructureallowforsmoothandlocalized geometrical shape changes.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoTese (Doutorado)Esta Tese considera o uso simultâneo de ligas com memória de forma e ímãs permanentes para a obtenção de estruturas inteligentes multiestáveis, com vistas a sua aplicação em aeronaves de geometria variável. A motivação para tal abordagem reside na baixa eficiência energética associada às ligas com memória de forma, a qual pode eliminar benefícios oriundos de tecnologias relacionadas a geometria variável. Multiestabilidade pode, desta forma, ser adotada para prevenir operação contínua de atuadores baseados em ligas com memória de forma. Objetivos do estudo envolvem a combinação de ligas com memória de forma e ímãs permanentes em novos arranjos geométricos para a obtenção de comportamento multiestável; o desenvolvimento de um procedimento de modelagem numérica que pode simular a natureza multifísica dos sistemas estudados; e a proposição de um arranjo geométrico para aplicações que envolvem geometria variável, o qual é baseado num padrão repetitivo de células unitárias que incorporam o uso combinado de ligas com memória de forma e ímãs permanentes para mul- tiestabilidade. A estratégia de modelagem proposta considera um elemento finito de viga com não-linearidades geométricas; um modelo constitutivo termomecânico para ligas com memória de forma; a interação entre ímãs permanentes cúbicos com orientação arbitrária; e contato entre elemento-e-nó no contexto de elementos finitos. Experimentos são realizados com três sistemas distintos, incluindo uma viga para prova de conceito, uma metaestrutura do tipo viga com geometria variável composta por três células unitárias, e um protótipo de aerofólio com geometria variável composto por seis células unitárias. Resultados mostram que a combinação de ligas com memória de forma e ímãs permanentes permite a obtenção de comportamento multiestável. Além disso, a característica de atuação distribuída das metaestruturas com geometria variável permite alterações de forma suaves e localizadas

    Using a GIS technology to plan an agroforestry sustainable system in Sardinia

    Get PDF
    This study was conducted with the aim to quantify the spread of livestock agroforestry in a Mediterranean ecosystem (island of Sardinia, Italy) and evaluate its sustainability in terms of grazing impact. By using GIS software ArcMap 10.2.2, the map of Sardinia vegetal landscape, obtained by information of Sardinia nature map based on the classification of habitat according to CORINE-Biotopes system, have been overplayed with the map of livestock grazing impact map CAIA developed by INTREGA (spin-off ENEA), to obtain for Meriagos (local agro-silvo-pastoral systems; classified “Dehesa 84.6” according to CORINE-Biotopes system), bushlands and woodlands, the surfaces under grazing and evaluate the extension of overgrazing for each of them

    Dissection of Affective Catecholamine Circuits Using Traditional and Wireless Optogenetics

    Get PDF
    Parsing the complexity of the mammalian brain has challenged neuroscientists for thousands of years. In the early 21st century, advances in materials science and neuroscience have enabled unprecedented control of neural circuitry. In particular, cell-type selective manipulations, such as those with optogenetics and chemogenetics, routinely provide answers to previously intractable neurobiological questions in the intact, behaving animal. In this two-part dissertation, I first introduce new minimally invasive, wireless technology to perturb neural activity in the ventral tegmental area dopaminergic system of freely moving animals. I report a series of novel devices for studying and perturbing intact neural systems through optogenetics, microfluidic pharmacology, and electrophysiology. Unlike optogenetic approaches that rely on rigid, glass fiber optics coupled to external light sources, these novel devices utilize flexible substrates to carry microscale, inorganic light emitting diodes (μ-ILEDs), multimodal sensors, and/or microfluidic channels into the brain. Each class of device can be wirelessly controlled, enabling studies in freely behaving mice and achieving previously untenable control of catecholamine neural circuitry. In the second part of this dissertation, I apply existing cell-type selective approaches to dissect the role of the locus coeruleus noradrenergic (LC-NE) system in anxiety-like and aversive behaviors. The LC-NE system is one of the first systems engaged following a stressful event. While LC-NE neurons are known to be activated by many different stressors, the underlying neural circuitry and the role of this activity in generating stress-induced anxiety has not been elucidated until now. I demonstrate that increased tonic activity of LC-NE neurons is both necessary and sufficient for stress-induced anxiety; a behavior which is driven by LC projections to the basolateral amygdala. Furthermore, this activity and behavior is elicited by corticotropin releasing hormone-containing afferent inputs into the LC from the central amygdala. These studies position the LC-NE system as a critical mediator of acute stress-induced anxiety and offer a potential intervention for preventing stress-related affective disorders. Together these two objectives provide a rich technological toolbox for neuroscientists and yield important knowledge of how small catecholamine structures with widespread forebrain innervation can selectively mediate higher order behaviors

    WP3 – Innovation in Agriculture and Forestry Sector for Energetic Sustainability

    Get PDF
    The papers published in this Special Issue “WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability” bring together some of the latest research results in the field of biomass valorization and the process of energy production and climate change and other areas relevant to energetic sustainability [1–20]. Moreover, several works address the very important topic of evaluating the safety aspects for energy plant use [21–24]. Responses to our call generated the following statistics:• Submissions (21);• Publications (15);• Rejections (6);• Article types: research articles (13), reviews (2). Of the submitted papers, 15 have been successfully published as articles. Reviewing and selecting the papers for this Special Issue was very inspiring and rewarding. We also thank the editorial staff and reviewers for their efforts and help during the process. For better comprehension, the contributions to this Special Issue are divided into sections, as follows

    Fiscal year 1973 scientific and technical reports, articles, papers, and presentations

    Get PDF
    Formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY73 are presented. Papers of MSFC contractors are also included

    Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application

    Get PDF
    This book is a collection of the research articles and review article, published in special issue "Structural, Magnetic, Dielectric, Electrical, Optical and Thermal Properties of Nanocrystalline Materials: Synthesis, Characterization and Application"

    Women in Science 2017

    Get PDF
    Ever since its 1967 start, SURF has been a cornerstone of Smith’s science education. Women in Science 2017 summarizes research done by Smith College’s SURF Program participants during the summer of 2017. 151 students participated in SURF (144 hosted on campus and nearby eld sites), supervised by 58 faculty mentor-advisors drawn from the Clark Science Center and connected to its eighteen science, mathematics, and engineering departments and programs and associated centers and units. At summer’s end, SURF participants summarized their research experiences for this publication.https://scholarworks.smith.edu/clark_womeninscience/1006/thumbnail.jp
    corecore