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ABSTRACT OF DISSERTATION 

 
 
 

MECHANICAL ENERGY HARVESTER FOR POWERING RFID SYSTEMS 
COMPONENTS: MODELING, ANALYSIS, OPTIMIZATION AND DESIGN  

 

Finding alternative power sources has been an important topic of study worldwide. 

It is vital to find substitutes for finite fossil fuels. Such substitutes may be termed renewable 

energy sources and infinite supplies. Such limitless sources are derived from ambient 

energy like wind energy, solar energy, sea waves energy; on the other hand, smart cities 

megaprojects have been receiving enormous amounts of funding to transition our lives into 

smart lives. Smart cities heavily rely on smart devices and electronics, which utilize small 

amounts of energy to run. Using batteries as the power source for such smart devices 

imposes environmental and labor cost issues. Moreover, in many cases, smart devices are 

in hard-to-access places, making accessibility for disposal and replacement difficult. 

Finally, battery waste harms the environment.   

To overcome these issues, vibration-based energy harvesters have been proposed 

and implemented. Vibration-based energy harvesters convert the dynamic or kinetic energy 

which is generated due to the motion of an object into electric energy. Energy transduction 

mechanisms can be delivered based on piezoelectric, electromagnetic, or electrostatic 

methods; the piezoelectric method is generally preferred to the other methods, particularly 

if the frequency fluctuations are considerable. In response, piezoelectric vibration-based 

energy harvesters (PVEHs), have been modeled and analyzed widely. However, there are 

two challenges with PVEH: the maximum amount of extractable voltage and the effective 

(operational) frequency bandwidth are often insufficient. In this dissertation, a new type of 

integrated multiple system comprised of a cantilever and spring-oscillator is proposed to 

improve and develop the performance of the energy harvester in terms of extractable 

voltage and effective frequency bandwidth. The new energy harvester model is proposed 

to supply sufficient energy to power low-power electronic devices like RFID components. 

Due to the temperature fluctuations, the thermal effect over the performance of the 

harvester is initially studied. To alter the resonance frequency of the harvester structure, a 

rotating element system is considered and analyzed. In the analytical-numerical analysis, 

Hamilton’s principle along with Galerkin’s decomposition approach are adopted to derive 

the governing equations of the harvester motion and corresponding electric circuit. It is 

observed that integration of the spring-oscillator subsystem alters the boundary condition 



 

     

 

of the cantilever and subsequently reforms the resulting characteristic equation into a more 

complicated nonlinear transcendental equation. To find the resonance frequencies, this 

equation is solved numerically in MATLAB. It is observed that the inertial effects of the 

oscillator rendered to the cantilever via the restoring force effects of the spring significantly 

alter vibrational features of the harvester. Finally, the voltage frequency response function 

is analytically and numerically derived in a closed-from expression. Variations in 

parameter values enable the designer to mutate resonance frequencies and mode shape 

functions as desired. This is particularly important, since the generated energy from a 

PVEH is significant only if the excitation frequency coming from an external source 

matches the resonance (natural) frequency of the harvester structure. In subsequent sections 

of this work, the oscillator mass and spring stiffness are considered as the design 

parameters to maximize the harvestable voltage and effective frequency bandwidth, 

respectively. For the optimization, a genetic algorithm is adopted to find the optimal values. 

Since the voltage frequency response function cannot be implemented in a computer 

algorithm script, a suitable function approximator (regressor) is designed using fuzzy logic 

and neural networks. The voltage function requires manual assistance to  find the resonance 

frequency and cannot be done automatically using computer algorithms. Specifically, to 

apply the numerical root-solver, one needs to manually provide the solver with an initial 

guess. Such an estimation is accomplished using a plot of the characteristic equation along 

with human visual inference. Thus, the entire process cannot be automated. Moreover, the 

voltage function encompasses several coefficients making the process computationally 

expensive. Thus, training a supervised machine learning regressor is essential. The trained 

regressor using adaptive-neuro-fuzzy-inference-system (ANFIS) is utilized in the genetic 

optimization procedure. The optimization problem is implemented, first to find the 

maximum voltage and second to find the maximum widened effective frequency 

bandwidth, which yields the optimal oscillator mass value along with the optimal spring 

stiffness value. As there is often no control over the external excitation frequency, it is 

helpful to design an adaptive energy harvester. This means that, considering a specific 

given value of the excitation frequency, energy harvester system parameters (oscillator 

mass and spring stiffness) need to be adjusted so that the resulting natural (resonance) 

frequency of the system aligns with the given excitation frequency. To do so, the given 

excitation frequency value is considered as the input and the system parameters are 

assumed as outputs which are estimated via the neural network fuzzy logic regressor. 

Finally, an experimental setup is implemented for a simple pure cantilever energy harvester 

triggered by impact excitations. Unlike the theoretical section, the experimental excitation 

is considered to be an impact excitation, which is a random process. The rationale for this 

is that, in the real world, the external source is a random trigger. Harmonic base excitations 

used in the theoretical chapters are to assess the performance of the energy harvester per 

standard criteria. To evaluate the performance of a proposed energy harvester model, the 

input excitation type consists of harmonic base triggers. In summary, this dissertation 

discusses several case studies and addresses key issues in the design of optimized 

piezoelectric vibration-based energy harvesters (PVEHs). First, an advanced model of the 

integrated systems is presented with equation derivations. Second, the proposed model is 

decomposed and analyzed in terms of mechanical and electrical frequency response 

functions. To do so, analytic-numeric methods are adopted. Later, influential parameters 

of the integrated system are detected. Then the proposed model is optimized with respect 



 

     

 

to the two vital criteria of maximum amount of extractable voltage and widened effective 

(operational) frequency bandwidth. Corresponding design (influential) parameters are 

found using neural network fuzzy logic along with genetic optimization algorithms, i.e., a 

soft computing method. The accuracy of the trained integrated algorithms is verified using 

the analytical-numerical closed-form expression of the voltage function. Then, an adaptive 

piezoelectric vibration-based energy harvester (PVEH) is designed. This final design 

pertains to the cases where the excitation (driving) frequency is given and constant, so the 

desired goal is to match the natural frequency of the system with the given driving 

frequency. In this response, a regressor using neural network fuzzy logic is designed to 

find the proper design parameters. Finally, the experimental setup is implemented and 

tested to report the maximum voltage harvested in each test execution.    

 

 

 

KEYWORDS: Piezoelectric vibration-based energy harvester (PVEH), harvestable 

electric voltage, effective (operational) frequency bandwidth, genetic 

optimization, neural network fuzzy inference system, soft computing 

algorithms  
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CHAPTER 1.  INTRODUCTION 

1.1 Introduction and Motivation for the Proposed Research  

The primary motivation of this dissertation is to investigate energy harvesting 

modules for low-power electronics such as RFID systems. One of the driving forces behind 

the research for novel energy harvesting modules is the ubiquitous demand for energy 

sources to power devices ranging from small-scaled (micro-electro-mechanical-systems) 

MEMS devices (sensors, actuators, accelerometers, resonators, etc.), wearable electronics, 

wireless sensor networks (WSNs), and internet of thing devices (IOT) to large-scale 

applications in industrial sectors. Many RFID components associated with the Internet of 

Things (IoT) generally require power on the order of a few watts. Considering the fact that 

RFID tags and associated sensors mostly require small amounts of energy, it is timely to 

find reliable alternative power sources. One such source is the vibration-based energy 

harvester. In an RFID system, several components usually need very small amounts of 

energy to operate. Replacing the conventional power sources with an energy harvester 

module provides the required energy for such components. This also results in financial 

benefits. Furthermore, there may be a reduced need for regular maintenance as the 

mentioned energy harvester module has a long lifespan. Such strengths are great benefits 

for numerous RFID-based applications. In other words, it is of high interest to devise a 

free vibration energy harvester to augment the power requirements of RFID components 

due to economic benefits. As the last incentive and impetus, coincidence and overlapping 

of excitation frequency with the system’s resonant frequency is a challenge with current 

energy harvesters which requires in-depth and profound investigation in terms of effective 

frequency bandwidth, modal and vibrational feature analysis. In other words, frequency 
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widening is another important stimulus to adapt (adjust) the harvesting system with the 

excitation frequency available in the background. Thus, this dissertation aims to 

investigate and improve the efficacy of piezoelectric vibration energy harvesters, to 

augment the energy requirements of a RFID fixture, yielding a more reliable system, less 

energy usage from non-renewable sources and more efficient developed RFID fixtures in 

several sectors.  

         

1.2 Preliminaries to Energy Harvesting Technology   

Energy harvesting, also called power harvesting, energy scavenging, energy 

harnessing, or ambient power, mainly pertains to the process by which energy is obtained 

from external sources such as wind energy, thermal energy, solar power and kinetic or 

mechanical energy. Such energy can be harnessed for small-sized, low-powered 

autonomous devices. The historical roots of energy harvesting date back to the waterwheel 

and windmill. Scavenging energy from available sources has been an everlasting challenge 

for human beings. The evolutionary path of this technology has enabled us to potentially 

power sensor networks and mobile devices. Powering such devices enables us to eliminate 

batteries from the target fixtures or platforms. Another distinct application of energy 

harvesting lies in the field of climate change and global warming. Harnessed energy can 

also be implemented to power small-sized autonomous sensors such as those developed 

using micro-electro-mechanical and nano-electro-mechanical systems (MEMS, and 

NEMS) technology. Although MEMS and NEMS elements require a small amount of 

energy, their operation and performance is limited to battery lifespan. A harvested energy 

source could lead to a much longer lifespan. Energy harvesting devices converting free, 
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clean, and available ambient energy into electrical energy have attracted significant 

interest in commercial, industrial, and medical sectors. Most majority of harvesting 

systems are established based on the concept of converting ubiquitous mechanical motion 

into electricity useable in several disparate applications. A main source for energy is often 

vibrational-mechanical energy; however, electromagnetic energy, thermal energy, sound 

energy, and light energy are all available as energy resources. Generally, captured energy 

is stored in battery, capacitor, or super capacitor. Battery is a proper fit for long-term usage 

and super-capacitor for short-term applications. Less energy is dissipated with a battery 

and it is suitable for devices requiring steady energy flow. A capacitor is a good choice, if 

an application necessitates huge energy spikes. Super capacitors have virtually unlimited 

charge-discharge cycles, so it can perform efficiently for an extended period of time. Such 

feature of super capacitor provides a maintenance-free operation with internet of things 

(IoT), wireless sensor network (WSN) devices, and RFID systems’ components [1]. In the 

following section there are some examples of energy harvesting in different approaches 

[2]:  

• Some wristwatches (also called automatic watches) are powered by kinetic energy 

derived from arm and hand locomotion. 

• Micro wind turbines scavenge wind energy and put out the supply for WSNs.  

• Piezoelectric fibers (crystals) generate small amount of electrical voltage as they 

are mechanically deformed.  

Electrostatic and piezoelectric techniques are often common and well-accepted 

regarding mechanical and vibration-based energy harvesting systems. In electrostatic 

energy harvesters, a variable capacitor modulates a change in capacitance to either increase 

https://en.wikipedia.org/wiki/Capacitor
https://en.wikipedia.org/wiki/Super_capacitor
https://en.wikipedia.org/wiki/Wristwatch
https://en.wikipedia.org/wiki/Micro_wind_turbine
https://en.wikipedia.org/wiki/Piezoelectricity
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voltage or electric charge. Based on the principles of electrostatics, such variations 

including mechanical mobility can be converted into electricity. However, electromagnetic 

approach may be impractical or ill-advised under certain circumstances. The piezoelectric 

approach is a well-accepted and widely used method among researchers and industrial 

sectors. In the scope of this research, a key focus is to better understanding and improving 

piezoelectric energy harvesting technology [3].  

 

 

 

 

 

 

 

 

 

 

Figure 1. Energy harvesting flowchart 

 

Figure 1 demonstrates the above-mentioned energy harvesting methods, with a 

schematic process view ranging from energy sources up to applications. Piezoelectricity is 

the electric charge accumulating in certain types of materials in response to 

applied mechanical stress. Materials with this specific trait include certain ceramics, 

crystals, humans bone, DNA and various protein. Piezoelectricity was discovered by 

French physicists Jacques and Pierre Curie [1]. 
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An applied force to an element of a material equipped with piezoelectric materials 

can generate electrical voltage. It is assumed that the element is connected to the electrical 

circuit with a resistance through the electrodes. Perfect bonding of electrodes to the 

element surfaces at the top and bottom creates a uniform electric field. A linear 

electromechanical interaction between the mechanical and electrical states in crystalline 

materials leads to the piezoelectric effect. The piezoelectric effect is a reversible process 

conveying that materials exhibiting the piezoelectric effect demonstrate reverse 

piezoelectric field as well. The piezoelectric effect pertains to the internal electrical charge 

due to applied mechanical force(s); respectively, reverse piezoelectric effect refers to the 

internal mechanical strain generation due to applied electrical field. Such inverse feature 

of piezoelectric materials is utilizable in ultrasonic sound wave production [2]. In addition 

to applications tied to energy harvesting, piezoelectricity is also exploited in several further 

applications such as: sound production and detection, piezoelectric inkjet printing, 

generation of high voltages, electronic frequency generation, microbalances, 

driving ultrasonic nozzles, and ultrafine focusing of optical assemblies. During World War 

I, the first practical application of piezoelectric materials was accomplished by Paul 

Langevin in France. He would utilize these phenomena for sonar applications. After this 

successful implementation of piezoelectricity, during World War II and afterwards, 

researchers in United States, Russia and Japan devoted significant effort to study and apply 

piezoelectricity for several applications [2]. In a piezoelectric Material, the atoms 

distribution and electric charge distribution are unique. It means that atoms distribution is 

not symmetric. So, positive and negative charge distribution exist in the unit cell. In static 

equilibrium such dipoles cancel each other out. But if the unit is stretched, the dipoles no 

https://en.wikipedia.org/wiki/Reversible_process_(thermodynamics)
https://en.wikipedia.org/wiki/Piezoelectric_material_properties
https://en.wikipedia.org/wiki/Inkjet_printing
https://en.wikipedia.org/wiki/Microbalance
https://en.wikipedia.org/wiki/Ultrasonic_nozzle
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longer cancel each other out and positive and negative charges emerge on opposite sides 

of the crystal. Opposite charges can be directed through the electrical circuit which 

generates electricity.   

   

1.3 Preliminaries to RFID Technology   

Radio frequency identification system (RFID) is a suite of technologies with 

significant versatility and simplicity. RFID technologies can be adopted in a wide range 

of applications such as industrial, system monitoring, biomedical applications, etc. [4].  

The advent of RFID technology seeks its roots in World War II. Léon Theremin, a 

scientist from the Soviet Union devised a covert listening device capable of being powered 

by means of radio waves. This listening device was essentially a long-range passive RFID 

tag [5]. In the 1940's, the Allies were developing a similar ID device for tracking 

applications of incoming airplanes. The Scottish physicist Sir Robert Alexander Watson-

Watt invented an active tracking system named identify friend or foe (IFF). Subsequently, 

airplanes were equipped with radio transmitter which would respond back to the signal 

broad-casted by the radar stations at the ground [6]. After such inspiring research-based 

efforts, several improvements have arisen to develop tracking systems for several 

applications ranging in different industries. The prominent superiority of RFID systems 

pertains to the fact that RFID systems do not require a line of sight to access the targeted 

information [7]. A tag with the bar code printed on the back is shown in Figure 1. There 

are numerous practical applications for RFID currently and the list continues to grow. An 

example list of companies integrating RFID as an essential component of operations is 

given in [8]. There is an ever-growing rate of research projects and journal publications in 
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the field of RFID technology. Such RFID systems have several advantages over 

conventional tracking methods (printed ID), making RFID very attractive from both 

manufacturing and research aspects. Several industries deploy RFID technology to 

minimize operational costs [9]. After such inspiring research-based efforts, several 

improvements have arisen to develop tracking systems for several applications ranging in 

different industries. The prominent superiority of RFID systems pertains to the fact that 

RFID systems do not require a line of sight to access the targeted information [7]. A tag 

with the bar code printed on the back is shown in Figure 1. One of the practical applications 

of such RFID tags systems may lay in the example of finding out if a specific object or 

goods is out of stock or not. Walmart is one of the biggest retail companies which utilizes 

RFID and integration technologies [8]. There is an ever-growing rate of research projects 

and journal publications in the field of RFID technology. Such RFID systems have several 

advantages over conventional tracking methods (printed ID), making RFID very attractive 

from both manufacturing and research aspects. Several industries deploy RFID technology 

to minimize operational costs [9].  

 

1.4 Overview and Goals of the Proposed Research Project 

Based on the information provided in the motivation section, it is worth to establish 

effort in the frame of academic research to propose and devise more efficient, improved, 

and developed energy harvester systems applicable and integrable with targeted tag RFID 

systems and internet of things (IOTs). Upon successful modeling, analysis, optimization, 

and design; it is expected that research results will suggest a framework to power selected 

RFID components using efficient piezoelectric vibration-based energy harvester (PVEH) 
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and save energy consequently. Moreover, it was remarked that energy harvesters have 

challenges and potential drawbacks. Such systems need to be efficient enough to produce 

and generate acceptable amounts of energy, and to keep an admissible lifespan 

simultaneously. For example, energy harvester systems used with RFID might be expected 

to experience temperature fluctuations. Operation of antenna during reading process and 

backscattering leads to temperature shifts. To get a precise prediction and estimation of 

temperature effects on harvester performance (i.e., the amount of harvestable power and 

the frequency bandwidth), temperature effects will be perused theoretically and modeled 

via energy and variational approaches. From longevity viewpoint, energy harvesters could 

be anticipated to face severe and harsh excitations. Regardless of controlled harmonic 

(deterministic), impact-driven, or random and stochastic motivations as the inputs to the 

harvester system; large-amplitude mechanical forces would mostly end up in desirable and 

bigger electrical energies. However, two main obstacles exist for severe and large-

amplitude mechanical forcing conditions: natural restriction with the exciting force (input 

excitation), and durability and harvester’s failure problem. Natural restriction points to the 

fact that excitation source is limited and cannot be intensified at any level. Durability deals 

with the fact that any mechanical system has a specific and bounded lifespan. Based on 

the concepts in strength of materials and machine component design; force magnitude and 

load cycles expedite rupture and failure. As a result, extracting more energy and lifespan 

of the harvester are in inverse (contrary) relationship. In other words, extracting more 

electrical energy usually leads to less durability and lifespan of the device. Another issue 

alludes to the fact that, if the excitation frequency from the external source (operator) is 

not at close vicinity of the resonant frequency of the energy harvester beam, an 
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insignificant amount of energy will be generated. This is known as tuning and effective 

frequency bandwidth issues which is a drawback with conventional energy harvesters. 

Conventional energy harvesters simply consist of a beam and tuning mass (oscillator) 

welded to the tip end of the beam. To compensate and obviate tuning and frequency 

bandwidth issues, in this research a new theoretical modeling is presented which consists 

of the oscillator held and hung by the beam using an elastic support like a spring rather 

than using welding. In other words, the new modeling encompasses system integration of 

oscillator-spring to the cantilever beam. As a result of such novel modeling design of 

cantilever joined with elastically restrained oscillator, the spring restoring forces will 

generate a new vibration mode much smaller than the first mode of conventional systems, 

increase the degrees of freedom and the degree of generalized modal coordinates. The 

newly generated minimal vibration mode is between the fundamental resonance of the 

conventional system and zero. Such manipulation will significantly widen the effective 

frequency bandwidth and overcome the prevalent issue. Furthermore, the new model of 

cantilever-spring-oscillator system will overcome the inefficient amount of generated 

energy as for a given frequency bandwidth, one further vibration mode is being augmented 

in a given bandwidth which generates another maximum value of electric voltage (and 

power). So, the novel cantilever-spring-oscillator model enhances the piezoelectric 

vibration-based energy harvesters’ efficacy both in terms of the amount of power and 

effective (operational) frequency bandwidth. Moreover, such a system demonstrates great 

adapting capability meaning that based on the input excitations coming from an external 

source, the PVEH can be adjusted to match the external driving (excitation) frequency by 

taking decent oscillator mass or spring stiffness values. Such an adaptive PVEH is 
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particularly helpful in cases where the external source cannot be modified, and the energy 

harvester’s substrate needs to compensate. Besides the mentioned theoretical modeling, 

experimental setup is implemented for the conventional model of cantilever to gather the 

maximum amount of harvested voltage for disparate values of beam length. The 

experiment is implemented with random impact-driven impulse inputs to conduct the 

randomness of the generated power. Thus, the experiment setup only consists of a simple 

cantilever and does not have the oscillator and the tuning mass. Eventually, models 

considering thermal stress, and spring-oscillator system integration are proposed to 

improve the piezoelectric vibration-based energy harvesters from theoretical perspectives, 

while the experimentation is to be implemented with impact-driven stochastic input 

excitations.     

Fundamental research problems in the modeling-analysis section of the research 

consist of: effects of temperature gradients, adjustable and elastically-mounted inertial 

effects of oscillator (dynamic magnifier), spring restoring force effect; upon 

electromechanical response of energy harvesters mountable to targeted tag RFID fixture. 

In the next step, the proposed model is optimized with respect to the adjustable design 

parameters to optimize and maximize the: amount of extractable electric energy and 

effective frequency bandwidth. Moreover, as for the natural frequency of the system to 

match the excitation frequency, the adjustable parameters are found to the particular 

values. The primary purpose of the current project can be extended to further industrial 

applications wherever energy sources are required for internet of things (IOTs), wireless 

sensor networks (WSNs), and radio frequency identification systems (RFID). The primary 

goals are summarized as follows:  
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• Reinforced and enhanced extractable energy from modeling.   

• Widened effective frequency bandwidth from modeling.   

• Optimized system with optimal characteristics using soft computing 

techniques.  

• Studied the randomness of the impact-driven experimentation.  

 

1.5 Major Contributions (Problem Statement) of the Proposed Research Project 

In this research project, first,  modeling of temperature effects is elaborated. Since, 

almost all of mechanical devices operating solely or in interaction with electrical, civil, 

chemical, or computer components; they face temperature shits, so it is imperative to study 

thermal effects over systems response from mechanical (vibrational-dynamical) and 

electrical viewpoints. Correspondingly, creating a decent temperature-dependent model of 

the electromechanical energy harvester is of concern. It is good to note that such a model 

addressing thermal effects can be extended and applied in further harvesting devices as 

long as accounting the corresponding governing equations integrated. In addition to 

temperature effects, it was implied that the challenge of matching the excitation frequency 

and the harvester’s resonant frequency should be addressed to harness more energy, widen 

the effective frequency bandwidth, and soothing the harsh oscillations resulted from the 

oscillator’s inertia. In this response, energy harvester models undergoing restoring spring 

forces originating from the elastic support, and dynamic magnifier’s (oscillator) inertial 

effects are studied as well. In each of the mentioned case studies, governing coupled 

electro-mechanical dynamic-vibration equations are to be obtained and proper solution 

procedures including: Galerkin’s based modal decomposition analysis, analytical-
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numerical approaches along with soft computing algorithms will be adopted. Adaptive-

neuro Fuzzy inference system (ANFIS) which takes the benefits of both fuzzy logic and 

neural network will be utilized to approximate the nonlinear model and then genetic 

optimization algorithm will find the optimal values of the oscillator mass and the spring 

stiffness. With such adjustable parameters, it is expected to develop and improve the 

efficiency and performance of the piezoelectric vibration-based energy harvesters. Such 

improvements and modifications refer to: reinforcing and maximizing the extractable 

amount of electric voltage, and to widening the effective (operational) frequency 

bandwidth. The mentioned improvement is rendered using the soft computing technique. 

In short, impact of: sudden temperature fluctuations, and elastically-attached dynamic 

magnifier will be theoretically addressed with focus on extractable electrical power, tip 

displacement and maximum vibration amplitudes of the harvester module, and effective 

frequency bandwidth widening. Graphical demonstrations of the mechanical and electrical 

frequency response functions (FRFs) will be provided to better and accurately understand 

the influential factors, and optimize such factors for the desired reinforced extractable 

energy along with widened bandwidth. Besides optimization, sub-system parameters 

(oscillator mass and spring stiffness values) will be designed to reach the specific 

excitation frequency and design a customized energy harvester. In the next step, 

experimental implementation will be set up with impact-driven random inputs for the 

purpose of studying the variance and dispersion of the generated voltage. Expected major 

contributions are summarized as follows:  

• Modeling temperature effects via energy and variational concepts  

• Studying thermal effects over harvester’s electro-mechanical response  
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• Modeling elastically restrained dynamic magnifier (cantilever-spring-

oscillator)  

• Studying spring restoring forces effects over: extractable power, and 

operational frequency bandwidth 

• Studying oscillator mass effects over: extractable power, frequency bandwidth 

• Optimizing the PVEH using soft computing techniques and finding the optimal 

design parameters (oscillator mass and spring constant)  

• Designing a well-tuned fuzzy inference system (FIS) as a regressor model via 

neural networks   

• Developing a proper genetic optimization algorithm using the designed 

regressor   

• Adjusting the PVEH according to the given excitation (driving) frequency of 

the external source  

• Running experimentation to record the maximum extractable voltage in a 

conventional energy harvester (cantilever)  
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CHAPTER 2. STATE OF THE ART (LITERATURE REVIEW) 

2.1 Background and Preliminaries  

In this section, literature review regarding vibration-based (mechanical) energy 

harvesting via different transduction mechanisms including piezoelectric materials is 

presented. Vibration-based energy harvesting from ambient indefinite sources has gained 

remarkable attention among researchers, research-based institutes, research and 

development (R&D) sectors of several industries and corporations all around the world. 

Vibration-based energy scavenging is almost anywhere since the whole universe, 

creatures, human bodies, and machines are all in motion. The evolution of harvesting 

devices covers several areas, mostly including mechanical aspects along with some 

modifications to the electrical aspect. Vibration energy is prevalent not only in the 

environment due to wind, and fluid flow; but also, in operational conditions wherever 

rotating, or any other type of machinery is in progress. Conversion of dynamic motion into 

electrical energy via piezoelectricity effect is often called piezoelectric energy harvesting. 

Contrary to the thermal and solar energy harvesting approaches that can generate hundreds 

of watts; small-size piezoelectric vibration energy harvesting method mostly can generate 

only microwatts or even milli-watts. The good thing with piezoelectric energy harvesting 

is due to general improvement in technology, there are several electronics requiring low-

level energy. In other words, new generations of electronic devices are operational with 

low power sources. On the other hand, piezoelectric vibration-based energy harvesters are 

mostly smaller than wind energy harvesters in the shape of wind turbine or solar panels. 

Such compactness in size means less cost of manufacturing, easy setup, and simple 

replacement. A further positive point is the fact that they are functional regardless of 
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atmospheric condition, which is a big drawback for solar panels and wind turbines. With 

all this in mind, it seems reasonable why worldwide annual revenue of piezoelectric 

devices has increased from $22 billion in 2012 to $37 billion in 2017 [10]. Examples in 

which vibration-based piezoelectric energy harvesting can be deployed include civil 

infrastructures such as bridges and buildings, human body, and aerospace systems ([11], 

[12], [13], [14], [15], [16]). Converting vibratory energy into electrical energy via 

piezoelectric phenomena has advantages over other transduction mechanisms such as 

magnestrictive, electrostatic, triboelectric, and electromagnetic converters, since 

piezoelectric approach include factors like: inherent transduction capacity, the 

preservation of efficiency, higher power density, and capacity to function in high 

frequency applications [17], [18], [19]. Most of the mentioned points are derived since the 

scale in the system is reduced to smaller orders. In order to harness dynamic motion and 

energy via the harvester element, piezoelectric harvester is to be attached to the host 

system. Then, the mentioned interface can be set up in several approaches considering 

design constraints and system characteristics imposed to the harvester device. Given the 

fact that most piezoelectric harvesting systems operate at the microwatt to milliwatt scale, 

the most common application of piezoelectric energy harvesting is to provide energy for 

low-power electronics including embedded electronics, implantable biomedical devices, 

wireless sensor nodes (WSNs), internet of things (IoT), and portable and wearable 

electronics as well as RFID components. Piezoelectric energy harvesting systems can 

provide a permanent, autonomous power source that does not need replacement or 

maintenance. Compared to traditional energy sources, like batteries, autonomous operation 

can reduce costs associated with battery replacement and labor expenses. Furthermore, 
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autonomous power supplies allow electronic devices to be embedded into structures or 

placed in remote locations. With recent growth in low-power electronics (e.g., wireless 

sensors, microelectronics), piezoelectric energy harvesting has drawn significant attention 

in the research community over the past decade. From a material viewpoint, several 

piezoelectric material structures have been improved and a diverse range of such materials is 

presented. Amongst the most prevalent piezoelectric material is the perovskite lead zirconate 

titanate, which is known as PZT that is stupefied with lanthanum or niobium to form hard or 

soft materials, respectively. Moreover, piezoelectric ceramics (piezo-ceramics) have been 

widely used in sensors and actuators due to their direct coupling which enables operation 

without bias voltages, and their ability to output large voltages on the order of 50 V to 100 V.  

Table 1 is presented to refer to typical research efforts carried out in the field of 

windmill-type energy harvesters which are all modeled as beam elements as mechanical 

elements. It is good to mention that most of such energy harvester devices are made up of 

PZT as the base material type [10].   

As mentioned in the above sections, piezoelectric vibration-based energy 

harvesting systems perform based on the mechanical motions. Such motions mostly 

exhibit in the form of oscillations and vibrations. In mechanical engineering, vibrations 

pertain to phenomena whereby oscillations take place around the equilibrium points, 

resulting in unbalanced systems from dynamical viewpoint. Vibration can be desired, such 

as the case pertinent to musical instruments, cone of loudspeakers, or even in mobile 

phones. However, vibration can be pernicious and unwanted; especially in electric motors, 

mechanical engines, rotating and non-rotating machinery. Such vibrations usually lead to 

waste of significant amount of energy and even failure and rupture of the electrical or 



 

17 

 

mechanical element. Vibration in industrial category usually is the resultant of imbalances, 

misalignments, uneven friction, or meshing of the gear teeth in gear boxes in coupling with 

each other. It was implicitly mentioned that devising harvesting systems helps us to take 

advantage of such dynamic vibratory motions. Such harvesting systems are supposed to 

take advantage of the unwanted vibrations and convert them to electrical energy. In order 

to improve performance of current energy harvesters, in-depth understanding of 

mechanical vibrational-dynamical analysis of such systems is essential, otherwise the 

amount of generated energy is insignificant. This means that reaching goals such as 

increasing maximum power or voltage extractable as well as an environmentally robust 

and durable system; vibration, modal and dynamic analysis of systems should be perused 

in detail. In this regard, concise literature review is presented. One of the most efficient 

mechanical elements with attractive mode shape functions is beams.  

 

2.2 Size Competency and Considerations  

As the size and dimension of the system is scaled down, classical mechanics 

theorems usually fail to capture anticipated accuracy. To handle this issue, non-classical 

theories have been developed. Modified couple stress theory (MCST) and non-local strain 

gradient theory (NLSG) are among the theories with significant and high attention [20]. In 

modified couple stress theory, it is assumed that besides to Cauchy stress-strain tensors 

conjugated; couple stress tensor is also conjugated with curvature tensor and a material 

length scale parameter is included consequently. In non-local strain gradient theory, it is 

assumed that stress of a point of an infinitesimal element is not only function of strain of 

that point but also is a function of strain of all points in the domain. This assumption is 
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joined with strain gradient theory noting that stress accounts for higher order strain 

gradient as well. Such theories are highly applicable and efficient in modeling, analysis, 

simulation and design of micro-electro-mechanical-systems and nano-electro-mechanical-

systems (MEMS and NEMS) which can be deployed in small-scaled (MEMS-NEMS) 

energy harvesters as well ([21], [22]).  

 

2.3 Material Gradation and Modifications   

Another feature with high attraction among several researchers refers to the 

material gradation throughout the main element axis or the one perpendicular to it. 

Technically this is called axially functionally graded (AFG) or functionally graded (FG) 

materials. The design of AFGMs is tied to geometrical modification. So that cross-

sectional area perpendicular to the axis of beam is changing with respect to 𝑥-direction. 

AFGMs; however, are the result of more complicated technology than changing cross 

sectional areas and geometry solely. With the help of centrifugal forces, mixture of two 

different material types is adopted. FGMs usually consist of two constituents: metal alloy, 

and ceramic. Metal constituent helps the system in terms of toughness and increases its 

strength in deformations and vibrations. On the other hand, ceramic portion enhances 

system’s resistance to potential thermal fluctuations available in most operation sites. 

Furthermore, ceramic provides another benefit to the system by keeping weight quite 

lighter than pure metal system ([23], [24]).  

2.4 Temperature Fluctuations Effect Over the Dynamic Response    

Another key point with electromechanical and even pure mechanical systems 

pertains to the presence of temperature fluctuations. This hypothesis is derived from 



 

19 

 

realistic adoptions of various systems in operational machinery conditions. Temperature 

mutations are an unavoidable process with almost all of the machinery, either harvesters 

or pure functional machines. Since; almost all machines waste some amount of energy via 

thermal energy, it sounds essential to address thermal effects over the dynamic response 

and performance of energy harvesters and electro-mechanical elements ([25], [26], [27], 

[28]). Eventually, since some electro-mechanical systems fall in the placement and 

interface of another host substructure, the effects of such host element over the 

performance and operations of devised electro-mechanical systems is of importance. To 

bring up such an idea, elastic and viscoelastic effects of host structures need to be covered. 

Ranging from simple dynamic support to complicated static-dynamic supports; several 

foundation-shape models have been perused ([29], [30]).      

 

2.5 State of the Art  

In this section, concise review of research efforts accomplished within the dynamic 

analysis of electro-mechanical systems and models is presented:  

Zannosi [31] investigated dynamic response of porous small-scaled beams based 

on the modified couple stress theory. Presented model in this study is made up of material 

mutations and the effects of such factors are addressed as well. Li et al. [32] carried out 

research addressing dynamic response of beams submerged in fluid. Authors utilized 

added mass method to obtain effects of hydrodynamic load induced from fluid as well as 

material gradation profile. Temperature-dependent model of MCST beam is presented by 

Babaei et al. [33]. Authors prove that it is essential to address thermal stress imposition 

effects on the sensor models. Besides, a proper model of electro-mechanical system with 
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continuously varying thermo-mechanical properties is proposed. Axially functionally 

graded electro-mechanical model is suggested based on the modified couple displacement 

field [34]. Results demonstrate that mutation of cross-sectional area of the model ends up 

in gradations of flexural rigidity, and oscillatory response of the system. Such traits can be 

adopted in the design and analysis of gyroscopes and energy harvesters as well as sensors. 

As one of the key research articles published in the field of piezoelectric energy harvesting 

using beam elements, Erturk and Inman investigated dynamic importance within energy 

harvesting design procedure [35]. Su et al. [36] carried out a research for energy harvesting 

of rotating systems. Authors considered centrifugal forces effects upon harvester model in 

several orientations. Results of this paper illustrate that tilt angle of the tip mass mounted 

at the end of the beam can be used to adjust resonant frequency with respect to the 

excitation frequency. Effects of two hard base accelerations upon harvester performance 

model is reported by Rezaei et al. [37]. Authors present a nonlinear model which can be 

solved using multiple scales method. Results point to the higher accuracy of nonlinear 

resonator-harvesters contingent to the proper mechanical parameter adoption. Since most 

of the energy harvesters operate with quite weak excitations, several researchers have tried 

to improve and enhance the input excitation or improve the operational aspect of the 

harvester by means of mechanical or electrical modifications. Fan et al. [38] proposed 

mechanical stoppers in combination with electrical magnetic field to make mono-stable 

model which finally yields more extractable power in comparison to conventional 

harvesters. The model is also tested under random excitations by means of White Gaussian 

noise. Dehsaraji et al. [39] perused size-dependent models integrated with energy 

harvesters. They proposed that small-scaled energy harvesters can be modeled based on 



 

21 

 

the non-classical theories. In this regard, modified couple stress theory is utilized to predict 

more accurate results. In extension to remedy the size-dependency issue, Tadi Beni et al. 

[40] improved nonlinearity within the system of energy harvester. Interactions between 

size-dependent models and nonlinear forcing terms have also been reported in this model. 

Shifting the harvesters more towards material engineering, Tan et al. [41] devised a 

composite-based structure as the harvester. They addressed material effects over dynamic 

and electrical response of the system. Several numerical methods and approaches have 

been adopted by researchers regarding investigation of oscillatory response of nonlinear 

complicated energy harvesters. Zhou et al. [42] used harmonic balance method to solve 

nonlinear equations derived from electro-mechanical energy harvester model. Results of 

this research prove the accuracy and validity of harmonic balance method for analyzing 

nonlinear harvester models. Incorporating electromagnetic and piezoelectric methods in 

harvesting energy; Bolat et al. [43] proposed a hybrid model to harness energy of low-

frequency moving aerodynamic elements. Authors considered air flow as the main reason 

and source for dynamic motions. Stephen and Renno et al. [44], [45] reported sequel of 

electro-mechanical coupling coefficient and load resistance on electrical amount of 

extractable power. Erturk and Inman [46], [47] carried out performance evaluation of 

cantilever beam energy harvester analytically and experimentally. Another category of 

energy harvesters falls in small-scale systems. Although it is proved that in such 

miniaturized systems, non-classical theorems should be adopted; for the sake of energy 

scavenging, most research skip size-dependency and only concentrate on 

electromechanical aspects, but several researchers establish energy harvester model based 

on size-dependent models. Tao et al. [13] proposed a 2DOF MEMS vibration-based energy 
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harvester comprising environmental-friendly material. This model includes two 

subsystems; the primary system is set for energy conversion from mechanical into 

electrical energy forms, and the second one is an auxiliary subsystem for the purpose of 

frequency adjustment. Such frequency adjustment can be employed properly to increase 

operational frequency bandwidth. Designing a cantilever energy harvester based on 

seesaw mechanism is reported by Asthana et al. [48]. Using the finite element method 

(FEM), this novel type of harvester enables covering wider bands of operational frequency. 

Incorporating graded material into the harvester design enables mechanical property 

variations. Property profile gradation directly impresses bending stiffness (flexural 

rigidity) which alters resonance and fundamental frequency range. Heshmati and Amini 

[49] investigated model parameter effects along with multi-moving oscillators located on 

a functionally graded (FG) beam. Model parameters are affected by material property 

gradation according to graded pattern. Rotational effect in dynamic response of beams has 

been of great importance among researchers. Fu and Yeatman [50] incorporated rotating 

beam with electromechanical dynamics to remedy the issue of harnessing energy from 

low-frequency operations as long as enhancing frequency bandwidth. Authors proposed 

rotational energy scavenger model considering bi-stability and frequency-up conversion 

which is suitable for wide bandwidth systems. Tang and Wang [51] developed a new type 

of harvesting systems by means of mobile end effects and dynamic magnifiers. This new 

type of dynamic magnifier widens the frequency bandwidth and results in increased power 

output. Besides, the effect of mass offsets has been perused. Mass offsets are basically 

resultant of considerable magnifier width. Authors suggest a more efficient energy 

harvester design with proper mass offset and spring stiffness ratio values. Fan et al.[33], 
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devised a new type of piezoelectric energy harvester with stoppers enabling the harvester 

to generate enough power from low-frequency harmonic or low-intensity random 

excitations. This new type of energy scavenger is a guarantee for low-level ambient 

excitation usage under both harmonic and random excitations. Besides the mentioned 

research papers, some industrial elements are supposed to work in ambient with 

temperature fluctuations. Devising new-type dynamic magnifier is carried out by Tang and 

Wang [52]. Authors propose elimination of clamped-type support of a cantilever beam and 

employing translational spring with linear characteristics at the clamped end. Such 

elastically restrained harvesters are allowed to translate vertically and harness more energy 

from the same input conditions. Aladwani et al. [53], [54] proposed similar type of 

dynamic magnifier to extract more energy. Authors proved that providing two inertial 

effects at clamped and free ends of the system enables the system to scavenge more energy. 

Moreover, it is mentioned in the paper that proper selection of design factors and 

parameters with such dynamically magnified system leads to increased frequency 

bandwidth. In lumped-parameter energy harvesters, mass, spring’s constant, and the 

damping constants are the dominant factors determining the oscillatory response of the 

mass, which renders the amount of extractable voltage [10].    
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Figure 2. Distributed parameter (cantilever) energy harvester 

 

As mentioned in the above sections, lumped-parameter model was improved into a 

distributed-parameter model which mainly consisted of a cantilever beam with 

piezoelectric patches bonded on top of the beam. This type of energy harvester is shown 

in figure 2. The generated electrodes due to vibrations and on the piezoelectric surface are 

directed to the electric circuit ([35]-[49]).   

There are specific types of energy harvesters in which the harvested energy is 

enhanced with dynamic magnifiers. The rotational spring provides rotations, and the 

translational spring enables the beam to move translationally. The mass at the right end 

(also called the tip mass, proof mass, end mass, attached mass) acts as a tuning inertia. The 

mass on the left end plays the main role as the dynamic magnifier and yields more 

harvestable energy ([51]-[54]). Cantilever beam configurations play a predominant role in 

piezoelectric vibration-based energy harvesters (PVEH) [55]. Roundy and Wright [56] 

employed a lumped-parameter configuration for harvesting mechanical energy using the 

piezoelectric phenomena. This model encompasses only one vibration mode and lacks the 

electromechanical coupling effects in terms of higher vibration mode shapes and strain 

distribution. In contrast, scholars employed distributed-parameter models (e.g. cantilever 
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beams) to address the mentioned drawbacks of lumped-parameter systems and improve 

the harvesters efficacy ([47], [35]). As a result, it seems essential to scrutinize the 

dynamical response and analysis of mechanical beams. There are multiples of technical 

articles covering this scope ([57], [58], [25]) and for the purpose of brevity we only focus 

on the energy harvesting analysis. Naseer et al. [59] investigated the analysis of piezo-

electric vibration-based energy harvesters (PVEH) considering the vortex phenomena. In 

this study, vortex-induced vibrations are the origin of energy harvesting. Zhang et al. [55] 

studied the PVEH made up of composites. Nonlinearities in this study are derived from 

magnetic force and restoring forces. A harmonic balance approach is taken to find the 

semi-analytical response of the energy harvester. To improve the efficiency of PVEH 

exposed to small-frequencies (low excitation frequencies). Asthana et al. [60] conducted 

a research addressing the optimization of a cantilever beam. Moon et al. [61] reported the 

efficacy of the tuning mass in widening the operational frequency bandwidth of a 

cantilever-based energy harvester. Dechant et al.  [62] carried out research concerning the 

application of tuning masses integrated with cantilever beam arrays to reinforce the 

outcome voltage. Such arrays of energy harvesters reinforced with tuning masses can be 

highly helpful for wireless sensor networks. Jia and Seshia [63] conducted an experimental 

investigation to find the optimal tuning mass ratio to the mass of the cantilever beam. They 

also verified their experimental results with numerical analysis. Staaf et al. [64] adopted a 

sliding tuning mass mechanism to enhance the effective frequency bandwidth of the 

energy harvesters. They proposed such a model for functionality in wireless sensor 

networks (WSN) under stochastic excitations which are known as random vibrations. Zhao 

et al. [65] proposed a novel 2D energy harvester with self-tuning capability. They studied 
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the effects of the vibration direction on the performance of the harvester module. Nonlinear 

energy harvester analysis under mounted on a rotating element is studied by Mei et al. 

[66].    

2.6 Energy Harvesting Integrated with IoT  

Sine the energy harvesting topic is highly attractive to the small emerging 

technologies such as: internet of things (IoT), wireless sensor networks (WSNs), and 

micro-electro-mechanical-systems (MEMS); it sounds helpful to provide a brief literature 

review and fundamentals about such integrated technologies: new dynamic of networks 

connecting different objects, in various places and in constant timespan, was first created 

by the invention of internet of things (IoT). The first report in this response was first 

published by the International Telecommunications Union (ITU) [67]. Nowadays, IoT is 

integrated with disparate industries encompassing transportation, civil structures, defense 

and aerospace, manufacturing, energy generation and management, healthcare, 

environment and condition monitoring, and smart cities. Ever-growing IoT technology has 

been expected to creep into all aspects of human beings in close future, life without IoT 

technology will be impossible [68]. IoT major components can be visualized in the 

following figure:  
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Figure 3. Internet of Things (IoT) principal components 

 

Sensors and actuators integrated with IoT, operate data collection and control a 

desired process. Protocols and gateways transfer data in the online world. The data is 

stored in the IoT cloud. Decisions are also taken in this section. The gathered data is 

processed and analyzed in the data management and IoT analytics section. Eventually, the 

user interfaces control the system [69]. In a different fashion, IoT can be classified with 

following parts:  
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Figure 4. IoT principal components (2nd outlook) 

 

In this outlook, classification mainly pertains to the capability of objects 

communicating with each other and taking actions accordingly. Such comprehension and 

response are doable using machine learning or artificial intelligence. Architecture of IoT 

comprises the following layers:  

 

Figure 5. Layers of IoT 

 

Technology section is made up of the 7 well-known sub-divisions of technologies 

which are imperative to make IoT realistic and applicable:  
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Figure 6. IoT applications in technologies 

 

RFID is the heart of IoT as the technology of enabling objects to be identifiable. 

Objects equipped with RFID are uniquely detectable which enables the operator or the 

system to keep track of any object. Mostly the RFID system comprises of three elements: 

the reader, the antenna, and the tag. Tags are indeed the microchip transceiver which 

contains unique information of each object in it. Tags can be active or passive. If the RFID 

is equipped with an external power source (e.g., battery) the tag is called an active tag. If 

there are not any external power sources, the tag is passive. Passive tags get activated using 

the backscattering process in which, the signal emitted from the antenna, includes an 

amount of energy and triggers (activates) the tag to send the signal back to the antenna 

along with the unique information stored in it [70].  
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RFID tags can be divided into low frequency, high frequency, ultra-high frequency, 

and microwave frequency. Bar code technology performs in a similar fashion to RFID. 

However, RFID is a superior method since it works basically with radio frequency electro-

magnetic waves. But the bar code is basically an optical method which requires the 

physical existence of the object. Moreover, RFID can be programmed to act as an actuator 

in contrast to the bar code. WSN is a wirelessly connected set of sensors which are 

connected to each other to pass on the target data such as: temperature, humidity, velocity, 

and displacement to the processing unit. Such a connected network requires power to 

operate. Such a power source can be battery. However, there are some issues with batteries. 

Batteries have limited lifespan and end up in replacement actions. This means a huge 

drawback, and labor costs. Besides, in some cases, the WSN is placed in hard-to-access 

(remote) locations making it arduous to reach the device. Besides, batteries waste causes 

environmental issues as they contribute to earth pollution. With this in mind, recently the 

adoption of energy harvester modules has gained significant attention among industries 

and research corporations. This topic is elaborated in detail in the preceding sections. 

Cloud computing is deemed to be the most vital IoT component. Considering the ever-

growing number of IoT devices, a very powerful and strong computing technology is in 

demand to store and analyze such big data effectively. In cloud, several servers are 

converged on a single mother platform. This way, resources can be readily shared between 

all servers at any place and any time. Using cloud, all servers are converted into a single 

one, with stronger processing capabilities [67].  
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Connecting technologies are designed to connect different objects to each other. 

Already for wide-range transmission, the 3G, and 4G are taken. As for mobile traffic, since 

we usually have usual tasks, it is predictable which bandwidth is required. But, with 

creeping into the ubiquitous computing era; it is no longer predictable to estimate the right 

bandwidth. Nano technology is mainly defined to reinforce a system operation quality, 

while decreasing the dimensions in nano scale. Such a decrement renders smaller usage of 

material and lower manufacturing cost, higher resistance to mechanical noise and 

vibrations, better packing ability, and more accuracy. Adoption of nano technology results 

in nano IoT devices called internet of nano-things. Optical technology developments such 

as: Li-Fi and Bi-Di have made various breakthrough improvements in IoT. Li-Fi and 

epoch-making visible light communication is capable of providing big connectivity on 

high bandwidth which is useful for interconnections applied in IoT. Similar to Li-Di, bi-

directional (Bi-Di) technology makes the 40G ethernet connectivity feasible. With the 

advent of micro technology and miniaturization, Micro-electro-mechanical-systems 

(MEMS) have been introduced with widespread applications in engineering and medical 

sectors. MEMS sensors and actuators, gyroscopes and resonators have been studied in big 

volume by different researchers all around the world. There are several appliances and 

devices in our daily life that are intelligent and smart. The main concept behind IoT is to 

connect all such devices with each other, so that the data will be shared within a single 

cloud and decision-making system. Six symbolic examples of IoT applications are brought 

in the following picture [69], [71]:  
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Figure 7 . IoT and smart city 

 

Replacing image processing techniques with IoT-enabled traffic systems leads to 

much better and more efficient traffic monitoring in smart cities. Using IoT, automatic 

identification of vehicles, and all traffic-related factors is doable. This technology can 

render theft detection, traffic issues, road conditions, accidents. IoT enables the smart 

traffic monitoring system to be adaptive with respect to weather and climatic changes 

which results in less cost and a more efficient system. It is evident that discerning an 

environmental phenomenon like an earthquake is of crucial importance. Smart 

environment is doable by innovative IoT which enables us to predict natural disasters like 

fire, tsunami, and flood. With IoT, smart homes are reachable. This way, we can control 

our homes and appliances remotely. Home automation is expected to save a significant 

amount of time and energy for residential complex residents. Additionally, the monitoring 

of water and electricity usage per house can reveal potential technical issues like leakage. 
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This has the potential to result in great economic savings. IoT-enabled security cameras 

and systems will guarantee house security against burglaries. Smart hospitals: one of the 

technologies helping doctors and nurses to monitor patient conditions (temperature, heart 

rate, pulse rate, respiration rate) is based on the integration of wearable monitoring 

devised. Also, in case of a medical emergency (cardiac arrest), it takes a time for the 

ambulance to reach the target point, while using drone ambulances, they can rapidly reach 

the patient with an emergency kit and doctors using the monitoring system can provide 

proper medical care and survive the patient until the ambulance arrives. In smart 

agriculture, the product will be mostly optimized by monitoring humidity, temperature, 

light, water, and fertilizers. In retailing, IoT integrated with RFID helps to track specific 

objects to see whether the item is in stock or not. Besides, placing online orders is doable 

by this method, which is widely stated in the preceding parts. Finally, statistical charts and 

information will be available for effective analysis and future decisions. Security and 

privacy challenges with IoT: as IoT makes everyone and any object detectable and 

identifiable at any time at any place, there are some privacy issues and concerns arising 

among society. Specifically, thinking about abuse of IoT intensifies such a concern. There 

are three symbolic issues addressed with IoT [71]:  
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Figure 8. IoT and security issues 

 

Accessing a RFID tag can expose and reveal confidential information, the tag can 

be read by a miscreant reader and damaged. With WSNs, there are issues regarding data 

manipulation and acquisition: by interfering with the nodal frequencies, Jamming 

obstructs the whole network system. In Tampering, the node is controlled by the attacker. 

If multiple pseudonymous identities are attributed to a node, Sybil attack takes place. In 

this case the target node is adversely influenced. In Flooding, the memory is exhausted 

and exploited as big data traffic is being operated. As mentioned earlier, in cloud 

computing, big servers’ networks are converged to share resources in between. Man-in-

the-middle attack (MIMA), Phishing. Cloud Security Alliance (CSA) have announced 

some threats: Malicious Insider attack is a type of attack in which there is an individual 

inside the system and can manipulate the data. Data Loss refers to the threat where the user 

can delete the data by accessing it. Man-in-the-middle pertains to an Account Hijacking 
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threat that the attacker can interfere with the messages and data being transmitted between 

two parties. Cloud computing can be very dangerous as if the attacker can access the entire 

servers on the cloud, he can upload malicious software and control many devices. IoT has 

shown the capability to impact on today’s life intensively and at an ever-growing pace. 

Several training projects and initiatives have been incorporating with IoT to benefit this 

technology and thrive in different aspects. IoT impacts disparate facets of life. IoT has 

gained remarkable attention and attract from research institutes worldwide. Thus, it is 

expectable the technology will boost several job opportunities and affect future economy. 

Such a striking impact is mentioned to be directed toward the information technology (IT) 

based applications and software domains. From hardware outlook and perspective, the 

consolidation and integration of microsystem technologies with IoT can guarantee its 

establishment and obviate its limits and restrictions in hardware and infrastructural 

assemblies. The accessible and sustainable infrastructure for globalizing IoT is still in 

shortage. Such an issue seems to be solvable by providing scalable and small-size 

infrastructures with self-powering trait. This solution pertains to the proper integration of 

various technologies and interdisciplinary research areas pointing to autonomous devices. 

With autonomous devices, energy harvesting, and ultra-low power electronics play the key 

role. IoT European Research Cluster states the requirement for development in energy 

harvesting and energy storage plazas as the crucial demands in realization of ubiquitous 

connectivity that IoT proclaims. WSNs as a subdivision of IoT requires low-energy, 

miniaturized, and integrated nodes. Such nodes are typically powered by batteries. 

Batteries as non-renewable energy sources carry unavoidable issues like environment 

pollution, labor cost, and difficulty with replacements particularly in hard-to-access 
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locations. Considering the growing development in electronics technology, low-power 

electro-mechanical devices run on minimal and small amounts of energy. Besides, there 

are several energy conversion mechanisms to exploit the ubiquitous energy forms 

available in the universe generating small amounts of energy. Thus, integration of 

electronics with microsystem energy harvesting technologies result in energy-autonomous 

technology enabling the electro-mechanical systems (e.g., WSN nodes, IoT devices) to 

supply their own required energy and operate without any external power sources. Such a 

triumph in interdisciplinary technology plaza promises mass production and pervasiveness 

meaning that IoT-related devices and subsidiaries are independent from energy restrictions 

and render robust infrastructures. As mentioned comprehensively in the preceding 

sections, energy scavenging (ES) or energy harvesting (EH) is the technology of utilizing 

and exploiting different forms of energy available in the environment and converting it to 

electric power. Such a new and emerging technology is highly attractive and helpful for 

IoT-related applications ([69], [71], [72], [73], [74]) 
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CHAPTER 3. PRELIMINARIES TO DYNAMICAL ANALYSIS OF BEAM ELEMENTS  

In this chapter, the main focus is to provide preliminaries and in-depth study of 

beam elements undergoing various operational conditions and modifications. Such 

conditions are essential to be considered and modeled properly to understand the induced 

mutation and effects over the vibrational response of the electro-mechanical elements. In 

detail, studying the resonance frequency profiles, mode shapes in disparate vibration 

modes; are among the priorities. To do so, proper modeling is the very first step. Then, 

adopting the variational principle of Hamilton, governing equations of motion will be 

derived and discretized using the suitable discretization approach (e.g., Galerkin, Navier, 

etc.).   

3.1 Temperature Effects over Oscillatory Response of Beam Elements   

In this section, the main purpose is to model the thermal energy induced to the beam 

system and study how it alters the energy harvester’s systems behavior particularly from 

dynamical and vibratory aspects. Electro-mechanical system is supposed to be placed 

inside an RFID fixture with temperature fluctuations due to the operation of antenna. So, 

we assume sudden temperature increments and decrements need to be modeled and taken 

into account. Different types of boundary conditions are considered to cover a wide range 

of applications. Since antenna works and stops regularly, heat generation is negligible. In 

other words, generated heat is not continuous with respect to time and only sudden 

fluctuations emerge. Consequently, due to the time gap between each operation cycle of 

the antenna, the beam fits to a steady-state condition and role of such thermal energies 

appear in the form of time-invariant energy. However, thermal energy still is big enough 

to alter thermo-mechanical properties of the beam specifically because of the compact 
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configuration and small sizes of the entire fixture. Top and bottom surfaces are the surfaces 

which are mostly imposed to the ambient, so temperature fluctuations start from the 

mentioned surfaces. Modulus of Young (E), modulus of rigidity (G), Poisson’s ratio (ν), 

and thermal expansion coefficients are supposed to be varying due to temperature shifts. 

To use a proper mathematical model for such variations, following non-linear parameter-

temperature equation is proposed ([28]):  

P = P0(P−1T
−1 + 1 + P1T + P2T

2 + P3T
3) (3.1) 

in Eq. (3.1), Pi are specific coefficients which are shown in Table 2.   

 

3.1.1 Kinematic Relations and Kinetics  

To model the system of a beam in oscillations, first one needs to define the 

displacements and the corresponding forces. Boundary conditions of electro-mechanical 

system presented is firstly considered as simply supported (pinned-pinned) beam with 

length L, width b and thickness h. In order to derive governing equation of motion, energy 

method along with Hamilton’s variational principle is used. Energy method is independent 

of coordinates and is more useful for complicated systems where coordinate-dependent 

method is unable to be used. The energy method is established based on the variational 

principle expressing those variations of Lagrangian of any system with respect to time is 

zero. Based on classical continuum mechanics, strain energy of the infinitesimal element 

of beam configuration is: 

Us =
1

2
∫ (σij ∶ εij) dVV

,  i=j=x,y,z (3.2) 

σij = 2Gεij + λtr(εij)Id (3.3a) 
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εij =
1

2
(ui,j + uj,i) 

(3.3b) 

 

Figure 9. Schematic of a simply-supported beam 

 

where σ and ε represent Cauchy stress and strain tensors, Id shows identity tensor, λ is 

Lame’s constant, and G represents shear modulus of rigidity. Using Euler-Bernoulli theory, 

displacement field of a random point on the neutral axis is as follows: 

ux(x, z, t) = −z∅(x, t) (3.4a) 

uy(x, z, t) = 0 (3.4b) 

uz(x, z, t) = w(x, t) (3.4c) 

in Eqs. (3.4), ∅(𝑥, 𝑡) =
𝜕𝑤

𝜕𝑥
 is independent rotation, w(x, t) is lateral displacement of 

neutral axis. Using Eqs. (3.4b) and (3.4c) following elements are found: 

εxx = −z
∂2w

∂x2
 

(3.5a) 

σxx = −z
∂2w

∂x2
E 

(3.5b) 

substituting Eqs. (3.5a) and (3.5b) into Eq. (3.2) leads to the strain energy term: 

Us =
1

2
∫ E(−z

∂2w

∂x2
)

2

V

dV 
(3.6) 
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variation of Eq. (3.6) is:  

∫ δUsdt
t2

t1

= ∫ ∫[E(−z
∂2w

∂x2
)(−z

∂2

∂x2
(δw)]

V

t2

t1

dVdt 
(3.7) 

by taking integration by parts from Eq. (3.7), it can be rewritten in the following form: 

∫ δUsdt
t2

t1

= ∫ {∫ EI
∂4w

∂x4
δwdx

L

0

}dt
t2

t1

 
(3.8) 

in Eq. (3.8), I represents second moment of inertia (I = bh
3

12⁄ ) and A represents area of 

cross section (A = bh).  

To consider the effects of temperature, temperature energy renders energy terms which 

need to be determined as well. In this response, reinforced strain energy derived from 

thermal stress is expressed in Eq. (3.9): 

UT =
1

2
∫σx

T

V

(
∂w

∂x
)
2

dV 
(3.9) 

σx
T is thermal stress: 

σx
T = −EαΔT (3.10) 

ΔT is temperature shift from reference temperature (ΔT = T − Tr). 

variation of Eq. (3.10) with respect to time is to be found: 

∫ δUT

t2

t1

dt = ∫ ∫ Eα
L

0

ΔTA
∂2w

∂x2
δwdxdt

t2

t1

 
(3.11) 

Kinetic energy of the beam is expressed in the following equation: 

K1 =
1

2
∫ ρ(

∂w

∂t
)2dV

V

 
(3.12) 

in Eq. (3.12), ρ is density. Besides to translational kinetic energy, reinforced kinetic energy 

is augmented to the system due to relative rotation of beam elements with respect to the 

fixed axis. This is resultant from the concept of the rotating beams around an axis. 
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Corresponding coupled rotational displacement field is assumed to have a linear relation 

with the translational displacements.  

xθ(x, t) = aw(x, t) (3.13) 

𝑎 is speed coefficient multiplied with lateral displacement. The resultant augmented 

kinetic energy is: 

K2 =
1

2
∫ρ
V

x2 (
∂θ

∂t
)
2

dV 
(3.14) 

variations of total kinetic energy (K = K1 + K2) with respect to time is: 

∫ δK
t2

t1

dt = ∫ −(1 + 𝑎2)ρA
∂2w

∂t2
δwdt

t2

t1

 
(3.15) 

based on Hamilton’s principle, Lagrangian of energy terms is constant with respect time: 

∫ (δK − δUs − δUT)dt = 0 
t2

t1

 
(3.16) 

substituting Eqs. (3.8), (3.11), (3.15) into Eq. (3.16) yields following dynamic-vibration 

equation of thermally stressed rotating-element electro-mechanical beam under free 

vibrations:  

(1 + a2)ρA
∂2w

∂t2
+ Eα∆TA

∂2w

∂x2
+ EI

∂4w

∂x4
= 0 

(3.17) 

moreover, boundary conditions of the simply supported beam are as follows: 

w|x=0,L = 0,     
∂2w

∂x2
|
x=0,L

= 0 
 

for the case of forced vibrations, variation of Lagrangian is equal to variation of external 

load (𝑓(𝑥, 𝑡) per unit length). Variation of external load is:  

∫ f(x, t)δwdt
𝑡2

𝑡1

 
(3.18) 
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thus, dynamic-vibration equation of thermally stressed rotating-element electro-

mechanical model under the forced vibrations is:  

(1 + a2)ρA
∂2w

∂t2
+ Eα∆TA

∂2w

∂x2
+ EI

∂4w

∂x4
= f 

(3.19) 

  

3.1.2 Solution Procedure and Results   

Eqs. (3.17) and (3.19) are linear partial differential equations with constant 

coefficients. Using modal decomposition concepts, lateral displacement can be expressed 

in following form:  

𝑤(𝑥, 𝑡) =  ∑𝜙𝑛(𝑥)𝜂𝑛(𝑡)

∞

𝑛=1

 
(3.20) 

𝜙𝑛(𝑥) is the eigenfunctions and 𝜂𝑛(𝑡) is modal time response for n’th vibration mode.  

Free vibrations: in this case governing equation is homogenous and method of separation 

of variables is adopted. Besides, since there is no viscous damping effect, time response is 

equal to exponential function of natural frequency (𝜔𝑛) times time variant (𝑡). (𝜁𝑛(𝑡) =

𝑒𝑗𝜔𝑛𝑡):  

𝐸𝐼
𝑑4𝜙𝑛
𝑑𝑥4

+ 𝐸𝛼Δ𝑇𝐴
𝑑2𝜙𝑛
𝑑𝑥2

− 𝜔2(1 + 𝑎2)𝜌𝐴𝜙𝑛 = 0 
(3.21) 

applying boundary conditions to the discretized equation, one may obtain following modal 

function and eigenvalues:  

𝜙𝑛(𝑥) = 𝑠𝑖𝑛𝜆𝑛(𝑥),   𝜆𝑛 =
𝑛𝜋

𝐿⁄  (3.22) 

substituting Eq. (3.22) into Eq. (3.21) one may find an explicit expression for natural 

frequency:  



 

43 

 

 𝜔𝑛𝑟𝑡 = √(𝐸𝐼𝜆𝑛
4 − 𝐸𝛼Δ𝑇𝐴𝜆𝑛

2) ((1 + 𝑎2)𝜌𝐴)⁄  
(3.23) 

in Eq. (3.23) taking values of rotation effect and temperature shift equal to zero (𝑎, Δ𝑇 =

0) gives the frequency of a classical beam as presented in vibration books. Taking only the 

rotation factor equal to zero yields the thermally stressed natural frequency (𝜔𝑛−𝑡ℎ =

√(𝐸𝐼𝜆𝑛
4 − 𝐸𝛼Δ𝑇𝐴𝜆𝑛

2) 𝜌𝐴⁄ ). To validate current model and results, one need to derive 

non-dimensional frequency:  

𝜔̂𝑛𝑟𝑡 = 𝜔𝑛𝑟𝑡𝐿
2√𝜌𝐴 𝐸𝐼⁄  (3.24) 

  

 

Table 1. Comparison of different frequencies 

Dimensionless Frequency Present 

ω̂1 9.8696 

ω̂2 39.4784 

ω̂3 88.8264 

 

Table 1 is presented to show the natural frequencies at the first three vibration modes.  

Forced vibration-Harmonic motivations: For the forced vibration case, Eq. (3.19) 

is adopted which is a non-homogenous equation. Substitution of Eq. (3.20) into Eq. (3.19) 

yields:  

𝐸𝐼 ∑
𝑑4

𝑑𝑥4
𝜙𝑛(𝑥)𝜂𝑛(𝑡)

∞
𝑛=1 + 𝐸𝛼Δ𝑇𝐴∑

𝑑2

𝑑𝑥2
𝜙𝑛(𝑥)𝜂𝑛(𝑡)

∞
𝑟=1 +

𝜌𝐴∑ 𝜙𝑛(𝑥)
𝑑2

𝑑𝑡2
𝜂𝑛(𝑡)

∞
𝑟=1 = 𝑓(𝑥, 𝑡)  

(3.25) 

considering a harmonic motivation as external force (𝑓(𝑥, 𝑡) = 𝑓0𝑒
𝑗𝜔𝑒𝑡) and noting 

orthogonality of modal displacement functions; by multiplying Eq. (3.25) by 𝜙𝑠(𝑥) and 

integrating over length of beam (0 − 𝐿), following equation is obtainable:  
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𝐴1𝑟𝑡
𝑑2

𝑑𝑡2
𝜂𝑛(𝑡) + 𝐴2𝑟𝑡𝜂𝑛(𝑡) = 𝐴3𝑟𝑡𝑒

𝑗𝜔𝑒𝑡 
(3.26) 

where 𝜔𝑒 represents excitation frequency and 𝑓0 is the external force amplitude. 

Coefficients are:  

𝐴1𝑟𝑡 =
𝐿

2
𝜌𝐴(1 + 𝑎2) 

(3.27a) 

𝐴2𝑟𝑡 =
𝜆𝑛
4𝐿

2
𝐸𝐼 −

𝜆𝑛
2𝐿

2
𝐸𝛼Δ𝑇𝐴 

(3.27b) 

𝐴3𝑟𝑡 =
2

𝜆𝑛
𝑓0 

(3.27c) 

solution of Eq. (3.26) encompasses the combination of homogeneous section and the 

particular one which can be written in the following form:  

𝜂𝑛(𝑡) = 𝑎0 cos(𝜔𝑛𝑡) + 𝑎1 sin(𝜔𝑛𝑡) + 𝑎3𝑟𝑡 𝑒
𝑗𝜔𝑒𝑡 (3.28) 

where: 

𝑎3𝑟𝑡 =
𝐴3𝑟𝑡

𝐴2𝑟𝑡 − 𝐴1𝑟𝑡𝜔𝑒
2
 

(3.29) 

𝑎0 and 𝑎1 are coefficients to be determined based on the initial conditions of the system. 

In this section we focus on response of system at rest (𝜂(0) = 𝜂̇(0) = 0) which is known 

as beating phenomena. It is a decent assumption when there is a concentration of system 

dynamics at initial steps and beginning of the performance of electro-mechanical system. 

Exerting initial conditions of beating status, leads to 𝑎0 = 𝑎1 = 0.   
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Figure 10. Variation of fundamental frequency with temperature 

 

Figure 10 is provided to demonstrate variations of the first mode of vibration 

frequency with temperature mutations. It can be understood that increasing temperature 

results in frequency decrement with negative curve. Variations seem sharp at higher 

temperatures. It is good to note that passing a specific temperature, the first frequency of 

vibrations is suppressed. To find this specific temperature named as critical temperature 

(𝑇𝑐𝑟), one needs to solve Eq. (3.23) for zero value which leads to 𝑇𝑐𝑟 = 298.3739 𝑘.  
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Figure 11. Variation of fundamental frequency with rotation factor 

 

Impact of constrained rotations over frequency of the system is provided in Figure 

11. One may conclude steep decrement of frequency for small values of 𝑎, meaning that 

small values of rotation factor ride severe role and makes system decrease in oscillations. 

Realistic expectations are assumed to remain for very small rotation effects. However, to 

accomplish mathematical conditions, taking the limit of Eq. (3.23) conveys no-vibration 

condition:  

lim
𝑛→∞

𝜔𝑛 = 0 (3.30) 

To get a decent quantitative measure of the output spectrum of the system under 

external stimuli, frequency response function (FRF) is a good measurement method. For 

this purpose, external force amplitude ratio with respect to response amplitude is to be 

obtained using Eqs. (3.26) and (3.29). After some mathematical operations, following FRF 

is obtained: 
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𝐹𝑅𝐹 = 1 (1 − 𝜔𝑟𝑟𝑡2)
⁄  (3.31) 

where 𝜔𝑟𝑟𝑡 is ratio of excitation frequency (𝜔𝑒) to natural frequency bearing thermal stress 

and rotation effects (𝜔𝑛𝑟𝑡):  

𝜔𝑟𝑟𝑡 =
𝜔𝑒
𝜔𝑛𝑟𝑡⁄  (3.32) 

  

 

Figure 12. Frequency response function of a system under thermal stress and rotation 

effects 

 

To present FRF of current model, Figure 12  has been included. Based on this 

figure, whenever excitation frequency is equal to fundamental frequency (𝜔𝑒 = 𝜔𝑛𝑟𝑡), 

FRF goes to infinity (𝐹𝑅𝐹
𝑦𝑖𝑒𝑙𝑑𝑠
→    ∞) which is named as resonance. In this case, ratio of 

response amplitude (𝑎3) to input amplitude (𝐴3) is infinitely large. An interesting finding 

refers to similar FRF for classical beam and current model which is bearing temperature 

shifts and rotation effects. In other words, the layout of FRF for the current model is 

identical to FRF of a classical model. Besides, static and dynamic deflection ratios of 
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thermally-stressed rotating-element model versus classical model (𝑎, ∆𝑇 = 0), also 

provide valuable information of the output spectrum in terms of temperature shift effects 

and rotation influence. Static deflection of classical and current models (𝛿𝑠𝑡, 𝛿𝑠𝑡𝑟𝑡) is ratio 

of applied force magnitude to system stiffness which can be obtained as following for both 

classical and current models:  

𝛿𝑠𝑡 =
𝐴3
𝐴2
⁄   (3.33) 

𝛿𝑠𝑡𝑟𝑡 =
𝐴3𝑟𝑡

𝐴2𝑟𝑡
⁄  (3.34) 

𝐷𝑠𝑡 is a notation for static deflection ratio:  

𝐷𝑠𝑡 =
𝛿𝑠𝑡𝑟𝑡

𝛿𝑠𝑡
⁄  (3.35) 

substitution of coefficients and simplification of Eq. (3.35) leads to:   

𝐷𝑠𝑡 =
𝜆𝑛
2𝐼
(𝜆𝑛

2𝐼 − 𝐴𝛼Δ𝑇)
⁄  

(3.36) 

 

Figure 13. Static deflection ratio with respect to temperature 
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Based on Eq. (3.35), static deflection ratio spectrum is a function of temperature 

and frequency ratio, meanwhile rotation does not play a role. Thus, variation of this 

spectrum with temperature fluctuations is presented for the first three vibration modes in 

Figure 13. Obviously, each static deflection ratio spectrum shows sudden changes at 

specific temperatures. Such temperatures can be calculated using Eq. (3.35). (𝑇𝑐𝑟1 =

298.3739𝑘, 𝑓𝑜𝑟 𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑜𝑑𝑒: 𝑇𝑐𝑟2 = 314.2753, 𝑡ℎ𝑖𝑟𝑑 𝑚𝑜𝑑𝑒: 𝑇𝑐𝑟3 = 340.0858) 

Regarding dynamic deflection ratio (𝐷𝑑𝑦𝑛); amplitude of response is to be divided 

by external force amplitude: 

𝐷𝑑𝑦𝑛 =
𝑎3𝑟𝑡

𝑎3⁄  (3.37) 

by substitution of Eqs. (3.27), (3.29), and (3.32) into Eq. (3.37); Eq. (3.38) is obtainable:  

𝐷𝑑𝑦𝑛 =

(
𝜆𝑛
4𝐿

2
𝐸𝐼 −

𝐿

2
𝜌𝐴𝜔𝑒

2)

(
𝜆𝑛
4𝐿

2
𝐸𝐼 −

𝜆𝑛
2𝐿

2
𝐸𝛼Δ𝑇𝐴 −

𝐿

2
𝜌𝐴(1 + 𝑎2)𝜔𝑒2)

⁄   

(3.38) 

Dynamic deflection ratio spectrum is function of temperature, rotation, and 

excitation frequency (𝐷𝑑𝑦𝑛 = 𝐷𝑑𝑦𝑛(𝑇, 𝑎, 𝜔𝑒)). Practically it is impossible to plot 

variations of this spectrum with respect to all three independent variables simultaneously. 

Instead, separate plots are provided:  
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Figure 14. Dynamic deflection ratio with respect to excitation frequency and temperature 

 

Figure 14 demonstrates dynamic deflection ratio spectrum variations with 

temperature and excitation frequency. Based on this figure, temperature changes do not 

affect dynamic deflection ratio unless at critical temperatures which was discussed earlier. 

In other words, dynamic deflections of a system undergoing temperature changes and a 

system free of thermal effects, are identical as far as temperature range excludes the critical 

value for each vibration mode.   
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Figure 15. Dynamic deflection ratio with respect to excitation frequency and rotation 

factor 

 

Figure 15 shows dynamic deflection spectrum ratio with excitation and rotation 

factor variations. Based on this figure, increasing rotation factor and excitation frequency 

lead to increment in dynamic deflection ratio. Meaning that exerting rotation into the 

system yields in higher dynamic deflections than the system of free of rotations.    
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Figure 16. Steady-state time response with respect to rotation factor 

 

In Figure 16, time modal response of the system based on rotation effect is shown. 

Increment in rotation factor, ends up in decreased time modal response. Depending on the 

value of frequency ratio of rotating-element thermally-stressed system, passing specific 

values of rotating factor leads to gradual decrement in response. For example, when 

excitation frequency is two times fundamental frequency, reaching 𝑎 > 300 deforms 

oscillatory response to non-oscillatory one and eventually system time response reaches 

smooth-varying spectrum. Another finding reveals the fact that when 𝜔𝑟𝑟𝑡 < 1, system 

oscillations are a lot more sever than large values of excitation frequency (𝜔𝑟𝑟𝑡 > 1).     
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Figure 17. Steady-state time response with respect to temperature 

 

This figure presents modal time response based on temperature variations. It can be 

observed that for temperature values far from critical value (𝑇𝑐𝑟1 = 298.3739𝑘), 

temperature has no effects on time response. However, at the vicinity of critical 

temperature, time response goes to infinity with different rates depending on the value of 

𝜔𝑟𝑟𝑡.    

 

3.1.3 Conclusion  

In order to design a proper energy harvester element applicable in RFID 

components; primary step includes proposing a decent mechanical model, scrutinizing 

static and dynamical responses of the proposed model. The proposed model is a pinned-

pinned beam with transverse displacements of main concern. To get a thorough analysis, 

realistic environmental impacts should be considered. Since the energy scavenger is to 

perform inside a fixture with sudden temperature fluctuations, the proposed model counts 

thermal stresses. To reach more precision, rotation of elements around the axis of lateral 

displacement is also counted. In this regard, modified coupled displacement field is used. 
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In the rotating-element thermally-stressed model, temperature and rotation influxes can be 

abbreviated in the following:  

Static extent: Temperature fluctuations are effective around the critical temperature 

available at each vibration mode. At the vicinity of such critical temperatures, static 

deflection and the corresponding ratio reach infinity. Higher modes get bigger critical 

temperatures as well. Moreover, severity of temperature impression looks sharper as 

vibration mode increases. Element rotations do not play a role in static spectrums at all. In 

other words, static response of the system is independent of rotations around transverse 

axis.  

Dynamic extent: Temperature gain results in gradual cutback of natural vibration 

frequency. This deduction is maintained up to the critical temperature. At the exact value 

of critical temperature, oscillations of the system are damped. Element rotations result in 

decrement of vibration frequencies but enhancement in dynamic deflection ratio. Another 

point is the fact that dynamic behavior of the system is a function of driving frequency 

along with both temperature and rotation.  

Forced vibrations extent: Time response illustrates similar variations with 

temperature as those of static and dynamic deflections. In details: around critical 

temperature, the system shows severe responses towards infinity regardless of driving 

frequency value. Excitation frequency value however determines slope and shape of the 

response. It means at resonance condition, break process from horizontal to vertical lines 

in response plot, takes place through a single point and steeply. However, this whole 

process for values of driving frequency far away from natural frequency happens 

throughout smooth and gentle variations. It is also good to note that temperature does not 
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have any impact over modal response except around critical value. In contrast, element 

rotations show significantly more impressions over time modal response for all values of 

rotation factor. Increasing this factor, ends up in less oscillatory shape. In other words, 

rotation growth damps the system and leads to more stability.  

 

3.2 Higher-Order Shear Effect and Rotation Effect over Oscillatory Response of 

Beam Elements   

In this section some preliminaries about the shear effects on the oscillatory response 

of a beam are presented which is vital particularly for thick beam elements. More 

importantly, rotating-element method to alter the natural frequencies of beam elements is 

studied along with the interactions with shearing effect. Such a manipulations in resonant 

frequency can be highly attractive to energy harvesters as they can be matched to the 

excitation frequency available at the background to render more power. In more details, a 

piezoelectric vibration-based energy harvester is made up of a beam as the main substrate 

(element), it is good to find the influential factors over the oscillatory response of beams. 

A pinned-pinned (simply-supported) beam is considered to have length L and a width equal 

to h. In order to derive the mechanical equations of motion, elastic strain energy of the 

infinitesimal element of the beam is defined in Eq. (3.1), where σ and ε represent Cauchy 

stress and strain tensors, Id shows identity tensor, λ shows Lame’s constant, and G is shear 

modulus of rigidity. To consider the shearing effects, Reddy-Levinson theory is adopted. 

Based on the Reddy-Levinson beam theory, displacement field of a random point on the 

neutral axis is defined according to the following relations 

ux(x, z, t) = −z
∂w(x,t)

∂x
+ z (1 −

4z2

3h2
) θ(x, t)  (3.39a) 
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uy = 0 (3.39b) 

uz(x, z, t) = w(z, t) (3.39c) 

where w(x, t) represents lateral displacement of any point on the neutral axis and θ(x, t) 

shows the variation of lateral displacement with respect to x. Using Eqs. (2b)-(3c), the 

following stress and strain elements are found: 

εxx = −z
∂2w

∂x2
+ z (1 −

4z2

3h2
)
∂θ(x, t)

∂x
 

(3.40a) 

εxz =
1

2
(1 −

4z2

h2
) θ(x, t)) 

(3.40b) 

σxx = (2G + λ) εxx (3.40c) 

σxx = 2G εxz (3.40d) 

Similar to the former section, Hamilton’s principle is taken to obtain the governing 

equations. To use this method, variations of the strain energy should be found: 

∫ ∫ δUsdt
L

0

t2

t1

= ∫ ∫(2G + λ) εxxδεxx
V

t2

t1

dVdt 
(3.41) 

2G + λ can be replaced by E. Substitution of Eqs (3.40a)-(3.41b) into Eq. (3.1) gives the 

following  equation: 

∫ ∫ δUsdt
L

0

t2
t1

= ∫ ∫ E (−z
∂2w

∂x2
+ z (1 −

4z2

3h2
)
∂θ(x,t)

∂x
)(−z

∂2

∂x2
δw +

V

t2
t1

z (1 −
4z2

3h2
)
∂

∂x
δθ) dVdt  

(3.42) 

Eq. (3.42) can be simplified into Eq. (3.43) by using several numerical operations, 

including integration by parts:  
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∫ ∫ δUsdt
L

0

t2
t1

= ∫ ∫ (
∂2

∂x2
(EI1

∂2w

∂x2
) δw −

∂

∂x
((

4

3h2
EI2 −

L

0

t2
t1

EI1)
∂2w

∂x2
) δθ +

∂2

∂x2
((

4

3h2
EI2 − EI1)

∂θ

∂x
) δw − E(I1 +

16

9h4
I3 −

8

3h2
I2)

∂2θ

∂x2
δθ + G(A −

16

h4
I2 −

8

h2
I1)θδθ) dxdt  

(3.43) 

in Eq. (3.43), A shows area, E is Young’s modulus, I1is second moment of inertia, I2 and 

I3 are also defined as following:     

A = bh (3.44a) 

I1 = ∫ z
2dA

A
  (3.44b) 

I2 = ∫z
4dA

A

 
(3.44c) 

I3 = ∫z
6dA

A

 
(3.44d) 

the translational kinetic energy of the Reddy-Levinson beam is defined in Eq. (3.44): 

K1 =
1

2
∫ ρ((−z

∂2w

∂t ∂x
+ z (1 −

4z2

3h2
)
∂θ

∂t
)

2

+ (
∂w

∂t
)2)dV

V

 
(3.45) 

in Eq. (3.45), ρ is density. Variations of this equation gives the following one:  

δK1 = ∫ ρ((−z
∂2w

∂t∂x

∂2

∂t ∂x
δw + z (1 −

4z2

3h2
)
∂θ

∂t

∂

∂t
δθ)  +

∂w

∂t

∂

∂t
δw)dV

V
  (3.46) 

Besides the translational kinetic energy displayed in Eq. (3.46), the coupled kinetic energy 

term should be considered. This additional term emerges at the time of rotations 

specifically associated with gyroscope applications. For this purpose, Reddy-Levinson 

beam is supposed to rotate around a fixed vertical axis. Based on Eq. (3.13) rotational 

displacement is assumed to have a linear relation with the translational displacements. 
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K2 =
1

2
∫ρ
V

x2 (
∂θ

∂t
)
2

dV 
(3.47) 

using a similar process for finding the variations of Eq. (3.47), following equation is found:  

δK2 = ∫ρ
V

x2
∂θ

∂t

∂

∂t
δθdV 

(3.48) 

taking variations with respect to time, integration by parts method, following relationships 

are obtained:   

∫ δKsdt
t2
t1

= ∫ (−ρA(1 + α2)
∂2w

∂t2
δw +

∂2

∂x∂t
(ρI1

∂2w

∂x∂t
− ρI1

∂θ

∂t
+

L

0

4

3h2
ρI2

∂θ

∂t
) δw −

∂

∂t
(−ρI1

∂2w

∂x∂t
+

4

3h2
ρI2

∂2w

∂x∂t
+ ρI1

∂θ

∂t
−

8

3h2
ρI2

∂θ

∂t
+

16

9h4
ρI3

∂θ

∂t
)δθ) dx  

(3.49) 

as a result, the dynamic-vibration equations of the Reddy-Levinson beam are expressed in 

the following system of coupled equations: 

−ρA(1 + α2)
∂2w

∂t2
+ ρI1

∂4w

∂x2 ∂t2
+ (

4

3h2
ρI2 − ρI1)

∂3θ

∂x∂t2
− EI1

∂4w

∂x4
−

((
4

3h2
EI2 − EI1)

∂3θ

∂x3
) = 0  

(3.50a) 

(
4

3h2
EI2 − EI1)

∂3w

∂x3
+ (ρI1 −

4

3h2
ρI2)

∂3w

∂x∂t2
+ (

8

3h2
ρI2 − ρI1 −

16

9h4
ρI3)

∂2θ

∂t2
+

(EI1 +
16

9h4
EI3 −

8

3h2
EI2)

∂2θ

∂x2
− (GA −

16

h4
GI2 −

8

h2
GI1) θ = 0  

(3.50b) 

the boundary conditions for this system are: 

w|x=0,L = 0,     
∂2w

∂x2
|
x=0,L

= 0 
(3.51) 
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3.2.1 Navier’s Method and Discretizing Procedure  

Eqs. (3.50a) and (3.50b) indicate a linear coupled system of partial differential 

equations. The Navier method is one of the most efficient methods for discretizing such 

systems and finding numerical answers. Navier’s method is established on the assumption 

of expressing the functions (translational and rotational field functions), including 

unknown coefficients and specific admissible functions, in terms of expansion series. Such 

admissible functions are adopted based on the type of boundary conditions satisfying the 

equations at the initial boundaries. Thus, for the translational functions, sinusoidal 

functions are used and, for the rotational function, cosine functions are employed in the 

series. 

w(x, t) =∑ Wnsin (mnx)e
iωnt

n

i=1
, mn =

nπ

L
 

(3.52a) 

θ(x, t) =∑ Θncos(mnx)e
iωnt

n

i=1
 

(3.52b) 

in Eqs. (3.52a) and (3.52b), Θn and Wn are the unknown Fourier coefficients, 

i represents the complex number (i. e. g, i = √−1), and ω is the vibration frequency. 

Substituting the expansions presented in Eqs. (3.52a) and (3.52b) into Eqs. (3.50a) and 

(3.50b) results in the following system of homogenous equations: 

∑ [{(1 + α2)ρAωn
2 + ρI1ωn

2mn
2}Wn + {(

4

3h2
ρI2 −

n
i=1

ρI1)ωn
2mn − EI1mn

4 + (EI1 −
4

3h2
EI2)mn

3}Θn] = 0  

(3.53a) 
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∑ [{EI1 −
4

3h2
EI2)mn

3 + (
4

3h2
ρI2 − ρI1)ωn

2mn}Wn + {(ρI1 +
n
i=1

16

9h4
ρI3 −

8

3h2
ρI2)ωn

2 + (
8

3h2
EI2 − EI1 −

16

9h4
EI3)mn

2 + (
8

h2
GI1 +

16

h4
GI2 − GA)}Θn] = 0  

(3.53b) 

The system of equations shown represents a linear homogenous system. Based on linear 

algebra, the determinant of such a system is equal to zero which yields a quadratic equation. 

Finding the answer of such a system is the frequency.  

 

3.2.2 Results and Verification 

To numerically validate the model and results presented with benchmark, 

frequency is to be non-dimensional using the relationship in the following format: ω̂ =

ωL2√ρA EI⁄  

in Table 1, results from the proposed model are presented in the following table for a range 

of slenderness ratios (𝐿 ℎ⁄ ). 

 

Table 2. Different frequencies for different length ratios 

𝐿
ℎ⁄  10 20 50 

Present 9.3679 9.7359 9.8478 

 

Table 2 indicates an influence of different slenderness ratios over the natural 

frequency values, expressing that as the slenderness ratio increases, the difference between 

the two results diminishes.  
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Figure 18. Comparison between EBBT and RLBT for different values of slenderness ratio 

 

An important point to study is the behavior of the system for different values of 

slenderness ratio. Slenderness ratio is the ratio of the beam length to the beam thickness. 

Based on figure 18, thinner beams produce more intense oscillations of the beam. In this 

figure, results for both Euler-Bernoulli (EBBT) and Reddy-Levinson (RLBT) are 

illustrated and compared. It is observable that for both EBBT and RLBT, increasing the 

slenderness ratio results in more severe oscillations. Differences between EBBT and 

RLBT are detected for small values of slenderness ratios. In detail, when considering a 

thick beam, RLBT yields smaller and quite gentle oscillations in comparison to the EBBT. 

Briefly, based on RLBT, oscillations of a system are more sensitive to the slenderness 

ratios than EBBT.  



 

62 

 

 

Figure 19. Impression of coupled rotation over fundamental frequency for thin and thick 

RLBT beams 

 

Observations from the figure 19 demonstrate decrement of oscillations with respect 

to high values of the rotation parameter (𝛼). In other words, the rotation of the beam around 

a fixed axis (representing the gyroscope mount axis) decreases the vibrations. Another 

finding discloses the fact that, for both thin beams (big slenderness ratios) and thick beams 

(small slenderness ratios), the same pattern in oscillatory response is detected.  
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Figure 20. Frequency shift based on rotation effects for thin and thick RLBT beams 

 

This figure is plotted to indicate the effect of rotation in terms of frequency shift. 

In other words, the percentage of frequency mutation due to rotation effects helps us to 

understand the intensity of rotation impacts. As shown in the figure, regardless of the 

slenderness ratio, the rotation effect can alternate the oscillatory response up to 90%. This 

figure illustrates the impacts of a coupled displacement field and rotations on the dynamic 

behavior of electro-mechanical systems.  

 

3.2.3 Conclusion  

Following the analysis of vibratory response of beam elements, shearing effects 

resulting from thick beams is an influential factor. So, in this section, oscillatory response 

of a rotating Reddy-Levinson beam is studied based on the coupled displacement field 

theory. This theory was first introduced by Babaei and Yang to consider the simultaneous 

effects of translation and rotation of electromechanical systems for the purpose of precise 

and better design and analysis. Current results compared with benchmark findings indicate 
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a good level of accuracy for the current model. Findings disclose that rotation decreases 

vibration frequency and for very large values of rotation, vibrations tend to diminish. This 

finding is valid for any range of slenderness ratio. The only distinction referring to 

slenderness ratio takes place at very insignificant rotation velocities. Thus, it has been 

found that highly-rotating systems essentially behave independently of the slenderness 

ratio. Eventually, rotation effects in terms of coupled displacement field theory can 

mitigate and suppress vibrations; which can be a key point in design of energy harvester. 

In other words, rotations lead to less extractable energy but a more durable energy 

harvester device from a longevity perspective. Further investigation is required to address 

the effect of rotations over increasing frequency bandwidth, which can be attractive from 

all aspects including device durability, vibration suppression and most energy harness-

able.         

3.3 Deriving System of Coupled Electromechanical Integral-Partial Differential 

Equations 

In this section, using coordinate-dependent variational method, mechanical 

equation of motion with electrical coupling and electrical circuit equation will be obtained 

for the cantilever beam undergoing temperature fluctuations. Such system of equations 

pertains to the cantilever beam covered with piezoelectric layers at the top and bottom 

surfaces which is connected to the electric circuit with resistance load.  
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Figure 21. Cantilever beam with piezoelectric layers at the top and bottom 

 

Geometric properties of the cantilever are shown in Figure 21. To consider non-

conservative work induced to the system, extended Hamilton’s principle is in use. Based 

on the plane-stress assumptions for liner isotropic elements following the Hooke’s law, 

constitutive relations of substrate and piezoelectric layers can be stated as following [35]:  

𝑇1
𝑠 = 𝐸𝑠𝑆1 (3.54) 

𝑇1
𝑠 is stress, 𝐸𝑠 represents elastic modulus and 𝑆1 is strain of substrate layer. The above 

equation and most of the following equations except the novelties of this paper are derived 

from the reference paper [35]. Based on piezoelectric constitutive equations stress-strain 

and electric field relations are:  

𝑇1
𝑝 = 𝐸𝑝(𝑆1 − 𝑑31𝐸3) (3.55) 

𝜀33
𝑠 = 𝜀33

𝑇 − 𝑑31
2𝐸𝑝 (3.56) 

𝐷3 = 𝑑31𝑇1
𝑝 + 𝜀33

𝑇𝐸3 (3.57) 
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𝑇1
𝑝,𝐸𝑝 are stress at piezoelectric layers and elastic modulus at constant electric field of 

piezoelectric. 𝑑31 is piezoelectric coupling coefficient. 𝐸3 is electric field in 𝑧-direction. 

𝜀33
𝑠 and 𝜀33

𝑇 show permittivity at constant strain and stress. 𝐷3 is electric displacement 

which acts only in 𝑧-difrection, respectively. Two types of damping mechanisms, internal 

and external, are considered in this study. Internal damping is modeled as Kelvin-Voigt 

damping also named as strain-rate damping [35]:  

𝑇𝑑 = 𝑐𝑠𝑆̇1 (3.58) 

𝑇𝑑 is stress due to strain-rate damping and 𝑐𝑠 illustrates viscoelastic damping coefficient 

due to structural viscoelasticity. Dot sign indicates differentiation in temporal domain. Both 

internal and external damping satisfy proportional damping criteria. For the proposed 

cantilever beam model, the kinetic energy (𝑈𝑘) due to base excitations is [35]:  

𝑈𝑘 =
1

2
∫𝜌𝐴(𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̇𝑏(𝑥, 𝑡))

2

𝐿

0

𝑑𝑥 

(3.59) 

𝜌 is density and 𝐴 denotes cross section area of the beam. Strain energy generated due to 

deflections (𝑈𝑠) is comprised of energy of substrate and energy of piezoelectric layers 

integrated over volume fractions (𝑉𝑠, 𝑉𝑝):  

𝑈𝑠 = 𝑈𝑠−1 + 𝑈𝑠−2 = 
1

2
∫ 𝑇1

𝑠𝑆1𝑑𝑉𝑠𝑉𝑠
+
1

2
∫ 𝑇1

𝑝𝑆1𝑑𝑉𝑝𝑉𝑝
=

1

2
∫ 𝐸𝑠𝑆1

2𝑑𝑉𝑠𝑉𝑠
+
1

2
∫ 𝐸𝑝(𝑆1

2 − 𝑆1𝑑31𝐸3)𝑑𝑉𝑝𝑉𝑝
  

(3.60) 

similar to the preceding sections, temperature shifts exerted to the system show up in the 

form of energy term which is due to the thermal stress: 

𝑈𝑇 =
1

2
∫ 𝑇𝑡ℎ(𝑤𝑟𝑒𝑙,𝑥)

2

𝑉𝑠

𝑑𝑉𝑠 
(3.61) 

thermal stress (𝑇𝑡ℎ) can be reputed as:  
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𝑇𝑡ℎ = −𝐸𝑠𝛼𝑠∆𝑇 (3.62) 

𝛼 is the thermal expansion coefficient of substrate layer. Electrical energy (𝑊𝑒) is [35]:  

𝑊𝑒 =
1

2
∫ 𝐷3𝐸3𝑑𝑉𝑝
𝑉𝑝

 
(3.63) 

using following auxiliary relations, Eq. (3.63) can be written in the following format [35]: 

𝐸3 = −
𝑣(𝑡)

(2ℎ𝑝)
⁄   

(3.64) 

𝐷3 = 𝑑31𝐸𝑝𝑆1 − 𝜀33
𝑠
𝑣(𝑡)

2ℎ𝑝
 

(3.65) 

𝐶𝑝 =
𝜀33

𝑠𝑏𝐿

ℎ𝑝
 

(3.66) 

𝑣(𝑡) = 𝑅𝑙𝑞̇3(𝑡) (3.67) 

𝑊𝑒 =
1

2
∫ −𝑑31𝐸𝑝𝑧𝑤𝑟𝑒𝑙,𝑥𝑥(

−𝑣(𝑡)

2ℎ𝑝
)𝑑𝑉𝑝 +

1

2𝑉𝑝

∫ 𝜀33
𝑠(
−𝑣(𝑡)

2ℎ𝑝
)2𝑑𝑉𝑝

𝑉𝑝

 
(3.68) 

in which 𝑣(𝑡) is voltage across the resistive load and 𝑞3(𝑡) is electric charge. External 

virtual work (𝑊𝑛𝑐) resulting from damping and dissipating resistive load of electrical 

circuit is [35]:  

𝑊𝑛𝑐 = −
𝑑

𝑑𝑡
∫

1

2
𝑐𝑎

𝐿

0
(𝑤𝑟𝑒𝑙 + 𝑤𝑏)

2𝑑𝑥 −
𝑑

𝑑𝑡
∫

1

2
𝑇𝑠𝑆1𝑉𝑠

𝑑𝑉𝑠 −

𝑑

𝑑𝑡
(
1

2
𝑅𝑙𝑞3

2(𝑡))  

(3.69) 

based on the extended Hamilton’s variational principle, variations of energy terms’ 

Lagrangian (𝐿 = 𝑈𝑘 − 𝑈𝑠 − 𝑈𝑡ℎ +𝑊𝑒 +𝑊𝑛𝑐) is zero in a short time interval (∫ 𝛿𝐿𝑑𝑡 =
𝑡2
𝑡1

0). To this end, variations of energy terms are to be obtained:  

𝛿𝑈𝑘 = ∫ 𝜌𝐴
𝐿

0

(𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̇𝑏(𝑥, 𝑡))𝛿𝑤̇𝑟𝑒𝑙𝑑𝑥 
(3.70) 
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𝛿𝑈𝑠−1 = 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
− 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 +

∫ 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥  

(3.71) 

𝛿𝑈𝑠−2 = 2𝐼𝑝𝐸𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
− 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 +

∫ 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 + −𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 −

𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
+ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙|0

𝐿 −

∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿́(𝑥) − 𝛿́(𝑥 − 𝐿)]

𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 −

∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑣̇(𝑡)𝑑𝑥  

(3.72) 

𝛿𝑈𝑡ℎ = −𝐸𝑠𝐴𝑠𝛼∆𝑇𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
+∫ 𝐸𝑠𝐴𝑠𝛼∆𝑇𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙𝑑𝑥

𝐿

0

 
(3.73) 

𝛿𝑊𝑒 = = −𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|0

𝐿
+

𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙|0

𝐿 − ∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿́(𝑥) −

𝐿

0

𝛿́(𝑥 − 𝐿)] 𝛿𝑤𝑟𝑒𝑙𝑑𝑥 − ∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑣̇(𝑡)𝑑𝑥 +

∫ 𝜀33
𝑠 𝑣(𝑡)

(2ℎ𝑝)
2 𝛿𝑣(𝑡)𝑑𝑉𝑝𝑉𝑝

  

(3.74) 

𝛿𝑊𝑛𝑐 = −∫ 𝑐𝑎(𝑤̇𝑟𝑒𝑙 + 𝑤̇𝑏)𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

0
− ∫ 𝑐𝑠𝐼

𝐿

0
𝑤̇𝑟𝑒𝑙,𝑥𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙𝑑𝑥 −

𝑣̇(𝑡)

𝑅𝑙
𝛿𝑣  

(3.75) 

in these equations 𝐼𝑠, 𝐼𝑝 are second moment of inertia of substrate and piezoelectric layers. 

𝐻(𝑥) is Heaviside (unit step) function to model concentrated coverage of electrodes in 𝑥-

direction. 𝛿(𝑥) is Dirac delta function. 𝑄𝑝 is the first moment of inertia of piezoelectric 

layers. 𝑐𝑎 denotes viscous air damping coefficient.            
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𝐼𝑠 = ∫ 𝑧2𝑑𝐴𝑠 =
𝐴𝑠

1

12
𝑏ℎ𝑠

3
 

(3.76) 

𝑄𝑝 = ∫ 𝑧𝑑𝐴𝑝
𝐴𝑝

=
1

2
𝑏ℎ𝑝(ℎ𝑝 + ℎ𝑠) 

(3.77) 

𝐼𝑝 = ∫ 𝑧2𝑑𝐴𝑝
𝐴𝑝

=
1

3
𝑏ℎ𝑝(ℎ𝑝

2 +
3

2
ℎ𝑝ℎ𝑠 +

3

4
ℎ𝑠
2) 

(3.78) 

𝐸𝐼 = 𝐸𝑠𝐼𝑠 + 2𝐸𝑝𝐼𝑝 (3.79) 

𝐸𝐼 is the total flexural rigidity of cantilever beam in bending. After some mathematical 

operations, system of coupled electromechanical partial integral-differential equations of 

the thermally stressed piezoelectric beam is:  

𝜌𝐴𝑤̈𝑟𝑒𝑙 + 𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥 + 𝐸𝑠𝐴𝑠𝛼𝑠𝛥𝑇𝑤𝑟𝑒𝑙,𝑥𝑥 + 𝑐𝑎𝑤̇𝑟𝑒𝑙 + 𝑐𝑠𝐼𝑤̇𝑟𝑒𝑙,𝑥𝑥𝑥𝑥 −

𝛤2𝑣(𝑡)[ 𝛿́(𝑥) − 𝛿́(𝑥 − 𝐿)]=−𝜌𝐴𝑤̈𝑏 − 𝑐𝑎𝑤̈𝑏 

(3.80) 

∫ 𝛤2

𝐿

0

𝑤̇𝑟𝑒𝑙,𝑥𝑥𝑑𝑥 +
𝐶𝑝

2
𝑣̇ = −

𝑣

𝑅𝑙
 

(3.81) 

where, Γ2 is:  

Γ2 =
𝐸𝑝𝑄𝑝𝑑31

ℎ𝑝
 

(3.82) 

boundary conditions of the thermally stressed cantilever energy harvester are: 

𝑥 = 0,  

𝑤𝑟𝑒𝑙 = 𝑤𝑟𝑒𝑙,𝑥 =0 

(3.83) 

𝑥 = 𝐿,  

𝑤𝑟𝑒𝑙,𝑥𝑥 = 𝑤𝑟𝑒𝑙,𝑥𝑥𝑥 =0 
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3.3.1 Analytical-Numerical Solution Approach Based on Modal Decomposition 

Method 

Based on modal decomposition, relative vibratory motion of the distributed-

parameter system can be expressed by convergent expansion series [35]:  

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑𝜙𝑛(𝑥)

∞

𝑛=1

𝜂𝑛(𝑡) 
(3.84) 

𝜙𝑛(𝑥) is mass-normalized eigenfunction and modal coordinate of the system in 𝑛th 

vibration mode. 𝜙𝑛(𝑥)  can be obtained from the corresponding undamped cantilever 

system with free vibration and stress-free conditions: 

𝜙𝑛(𝑥) =
1

√𝜌𝐴𝐿
(cosh 𝜆𝑛 𝑥 − cos 𝜆𝑛 𝑥 −

cosh𝜆𝑛𝐿+cos𝜆𝑛𝐿

sinh𝜆𝑛𝐿+sin𝜆𝑛𝐿
(sinh 𝜆𝑛𝑥 −

sin 𝜆𝑛𝑥))  

(3.85) 

𝜆𝑛𝐿 is the root of the following transcendental equation:       

1 + cos 𝜆𝑛 𝐿 cosh 𝜆𝑛 𝐿 = 0 (3.86) 

substituting Eq. (3.83) into Eq. (3.79), and multiplying by 𝜙𝑚(𝑥), and utilizing 

orthogonality of eigenfunctions, Eq. (3.79) can be re-written as: 

𝜂̈𝑛(𝑡) + (
𝑐𝑠𝐼

𝐸𝐼
𝜔𝑛

2 +
𝑐𝑎

𝜌𝐴
) 𝜂̇𝑛(𝑡) + (𝜔𝑛

2 +𝑀𝑛
𝑡ℎ)𝜂𝑛(𝑡) = 𝜒𝑛𝑣(𝑡) +

𝜌𝐴𝛾𝑛𝑌0𝜔𝑒
2𝑒𝑗𝜔𝑒𝑡  

(3.87) 

Where: 

𝐷𝑛 = ∫ 𝜙𝑛,𝑥𝑥(𝑥)𝜙𝑛
𝐿

0
(𝑥)𝑑𝑥   (3.88) 

𝛾𝑛 = ∫𝜙𝑛(𝑥)𝑑𝑥

𝐿

0

 

(3.89) 

𝜒𝑛 = Γ2𝜙𝑛,𝑥|𝐿 
(3.90) 
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𝑀𝑛
𝑡ℎ = 𝐸𝑠𝐴𝑠𝛼𝑠𝛥𝑇𝐷𝑛 (3.91) 

it is also important to note that according to the findings of section 3.1, 𝜔𝑛
2 +𝑀𝑛

𝑡ℎ is 

identical to 𝜔𝑛
2. The excitations are supposed to be simple harmonic excitation: 𝑤𝑏 =

𝑌0𝑒
𝑗𝜔𝑒𝑡. Since the model is linear and based on the principle of superposition, output 

voltage can also be assumed as a harmonic function with amplitude 𝑉0 [35]:  

𝑣(𝑡) = 𝑉0𝑒
𝑗𝜔𝑒𝑡 (3.92) 

substituting Eqs. (3.92) and (3.84) into Eq. (32) yields the following equation:  

𝑣̇(𝑡) +
1

𝜏𝑐
𝑣(𝑡) = −∑Θ𝑛

∞

𝑛=1

𝜂̇𝑛(𝑡) 
(3.93) 

𝜏𝑐 =
𝐶𝑝𝑅𝑙

2
 

(3.94) 

Θ𝑛 =
2Γ2
𝐶𝑝
𝜙𝑛,𝑥|𝐿 

(3.95) 

in energy harvesting systems, steady-state response of the vibratory part is of main concern. 

Thus, particular answer part of Eq. (3.86) is to be obtained in the following form:  

𝜂𝑛(𝑡) =
𝜌𝐴𝛾𝑛𝑌0𝜔𝑒

2 + 𝜒𝑛𝑉0
𝜔𝑛−𝑡ℎ2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

𝑒𝑗𝜔𝑒𝑡 
(3.96) 

in Eq. (3.96), thermally-stressed natural frequency obtained informer section is replaced 

with natural frequency term. Also 𝜁𝑛 is modal damping term [35]:  

𝜁𝑛 =
𝑐𝑎

2𝜌𝐴𝜔𝑛
+
𝑐𝑠𝐼

2𝐸𝐼
𝜔𝑛 

(3.97) 

now, substitution of Eq. (3.97) into Eq. (3.87) results output voltage across the resistive 

load: 
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𝑣(𝑡) =

∑
−𝑗𝛩𝑛𝜌𝐴𝑌0𝛾𝑛𝜔𝑒

3

𝜔𝑛−𝑡ℎ2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒
∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝜔𝑛−𝑡ℎ2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

𝑒𝑗𝜔𝑒𝑡 

(3.98) 

besides to the output voltage, shunted vibration response can be found using Eq. (3.98), 

(3.84) and (3.85): 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑
1

√𝜌𝐴𝐿
(cosh 𝜆𝑛 𝑥 − cos 𝜆𝑛 𝑥 −

cosh𝜆𝑛𝐿+cos𝜆𝑛𝐿

sinh𝜆𝑛𝐿+sin𝜆𝑛𝐿
(sinh 𝜆𝑛𝑥 −

∞
𝑛=1

sin 𝜆𝑛𝑥))

𝜌𝐴𝛾𝑛𝑌0𝜔𝑒
2+𝜒𝑛

∑
−𝑗Θ𝑛𝜌𝐴𝑌0𝛾𝑛𝜔𝑒

3

𝜔𝑛−𝑡ℎ
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

1
𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗Θ𝑛𝜒𝑛𝜔𝑒
𝜔𝑛−𝑡ℎ

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

𝜔𝑛−𝑡ℎ
2−𝜔𝑒2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

𝑒𝑗𝜔𝑒𝑡  

(3.99) 

 

3.3.2 Results and Discussion 

In this section parametric study of steady-state response of the proposed 

electromechanical system is to be elucidated. Piezoelectric systems under an input 

(mechanical excitation), operate with both transient and steady-state responses. Since 

energy scavenging takes place in long time span, steady-state response is the desired one 

for analysis. Geometrical parameters of the harvester piezoelectric beam are presented in 

the former tables of current chapter. 

Table 3. Geometric and mechanical properties of beam [35] 

Beam length  𝐿 = 100𝑚𝑚 

Beam width 𝑏 = 20𝑚𝑚 

Substrate layer thickness  ℎ𝑠 = 5µ𝑚 

PZT layer thickness  ℎ𝑝 = 4µ𝑚 

PZT modulus of elasticity  𝐸𝑝 = 66 𝐺𝑃𝑎 

PZT mass density  
𝜌 = 7800

𝑘𝑔

𝑚3
 

PZT coupling coefficient  𝑑31 = −190
𝑝𝑚

𝑉
 

PZT permittivity at constant strain 
𝜀33

𝑠 = 15.93
𝑛𝐹

𝑚
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Temperature shift range is supposed to be big enough to be enforceable in further 

applications besides to the RFID tag communication systems. Reference temperature 

(ambient temperature) is supposed to be: 𝑇𝑟𝑒𝑓 = 20
𝑜𝐶. Using the method of modal 

decomposition, distributed-parameter model is considered as infinite lumped-parameter 

models with infinite degrees of freedom (DOF). On the other hand, it is proved in 

benchmark that matching of driving frequency with natural frequencies results in 

maximum (utmost) values in output voltage. Furthermore, such remarkable peak values 

pertain to initial natural frequencies. As a result, excitation frequency is considered to 

cover the first three vibration modes of the mechanical part. Since, effect of various 

resistive load values over output voltage and shunted vibration response are widely 

explained in benchmark, we take a representative value of 𝑅𝑙 = 10
6Ω for current analysis. 

As a standard scale to figure out responses of a system, electromechanical frequency 

response function (FRF) is provided. Damping ratio is considered following values which 

are obtained experimentally by Erturk and Inman [35]: 

Table 4. Proportional damping values for first three modes of vibration [35] 

𝜁1 𝜁1 𝜁1 

0.010 0.013 0.033 

  

Output voltage frequency response function (V-FRF): mostly, in coupled 

electromechanical systems voltage FRF is described as modulus of output voltage to the 

base acceleration ratio [35]. 

𝑣(𝑡)

𝑔̈(𝑡)
=

∑
−𝑗Θ𝑛𝜌𝐴𝛾𝑛𝜔𝑒

𝜔𝑛−𝑡ℎ2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒
∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗Θ𝑛𝜒𝑛𝜔𝑒
𝜔𝑛−𝑡ℎ2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

 

(3.100) 
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to give a better description, 𝜙𝑛(𝑥) is normalized with respect to mass of the system. 

However, thermal stress effect is independent of mass/inertia and bending stiffness of the 

system. Consequently, to calculate values of this factor, MATLAB is employed. Using 

MATLAB, voltage-FRF (V-FRF) of current model is obtained and demonstrated as 

follows: 

 

Figure 22. Verification of current results 

 

In Figure 22, the current model is compared with the experimentation result 

reported in the benchmark to verify current results accuracy. Obviously, deleting thermal 

stress effects (∆𝑇 = 0), the results should be identical to the case reported in benchmark. 

The red line represents the current model whenever the temperature fluctuations are zero. 

This red line is in a good level of agreement with the blue line which certifies the accuracy 

of the current model.        
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Figure 23. Voltage frequency response function (V-FRF) 

 

Figure 23 is plotted for five different temperature shifts. It can be interpreted that 

with temperature increment (∆𝑇 = −2,−4), first V-FRF crest (taking place at 𝜔𝑒 → 𝜔1) 

is tilted to the left. In other words, increasing temperature leads to the occurrence of the 

first maximum value of V-FRF in smaller frequency. Conversely, such thermal 

manipulation drives occurrence of second and third summits in a bit bigger frequency. 

Since it is complicated to find extreme/tip values with calculation treatment, approximate 

MATLAB tool named as “Data Cursor” is adopted. It can be deduced that the maximum 

value of the obtainable voltages is not manipulated by temperature fluctuations. However, 

the effective frequency bandwidth has changed. According to the observations mentioned, 

temperature increments result in widened bandwidth which can be highly appealing and 

helpful. As for the shunted vibration frequency response function (Wrel-FRF), relative 

motion transmissibility function of the energy harvester is of concern which can be gained 

by finding ratio of shunted relative tip displacement to input excitation. Wrel-FRF provides 
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information addressing shunted vibration response due to the electrical coupling. This FRF 

is accompanied by impression of thermal stress as well [35].  

𝑤𝑟𝑒𝑙(𝑥,𝑡)

𝑔(𝑡)
= ∑

1

√𝜌𝐴𝐿
(cosh 𝜆𝑛 𝑥 − cos 𝜆𝑛 𝑥 −

cosh𝜆𝑛𝐿+cos𝜆𝑛𝐿

sinh𝜆𝑛𝐿+sin𝜆𝑛𝐿
(sinh 𝜆𝑛𝑥 −

∞
𝑛=1

sin 𝜆𝑛𝑥))

𝜌𝐴𝛾𝑛𝑌0𝜔𝑒
2+𝜒𝑛

∑
−𝑗Θ𝑛𝜌𝐴𝛾𝑛𝜔𝑒

3

𝜔𝑛−𝑡ℎ
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

1
𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗Θ𝑛𝜒𝑛𝜔𝑒
𝜔𝑛−𝑡ℎ

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

∞
𝑛=1

𝜔𝑛−𝑡ℎ
2−𝜔𝑒2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒

  

 

(3.101) 

 

Figure 24. Shunted vibration frequency response function (Wrel-FRF) 

 

Shunted vibration FRF is plotted in Figure 24 for five sampling temperature shifts. 

Results of mechanical FRF are rectified with those available in the benchmark. Several 

findings can be achieved from this figure. Firstly, temperature fluctuations gradually 

deform minimal value which happens between second and third excitation modes (𝜔𝑒 =

𝜔2 and 𝜔𝑒 = 𝜔3). In details, for zero temperature fluctuations or quite small values of Δ𝑇, 

there is only one minima point. Contrarily, As highlighted in the box for Δ𝑇 ≥ 4 double 
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consecutive minima points emerge. Mechanical FRF profile passing from the first minima 

to the second one reveals a concave-wise curve. Besides, comparing different concave 

curves in this interval ascertains the fact that greater temperature shifts end up in 

approximately identical minima points. However, for mild values of temperature shift, 

former minima is less extreme than the latter one corresponding to bigger frequency value. 

Moreover, temperature increments lead to less minima point(s). Next observation 

addresses the aberration of mechanical FRF in two different manners. Temperature growth 

drags the first (major) crest point to the right while second and third climax points are 

inclined to the left. Minima point(s) deviate to the left. Increasing temperature yields 

concave curves for all three excitation modes. For the first excitation mode, temperature 

fluctuations cause severe and intense variations of mechanical FRF. However, such 

mutations are mild and gentle for the second and specifically for the third excitation mode. 

In contrast to the electrical FRF, there are not any double-successive summits when 

excitation frequency is identical to the first natural frequency.  
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CHAPTER 4. ANALYTICAL NUMERICAL ANALYSIS OF OSCILLATOR-SPRING SUBSYSTEM 

INTEGRATION  

4.1 Reinforced Piezoelectric Vibration Energy Harvester Using Cantilever-Spring-

Oscillator System - Pure Mechanical Analysis  

In this section of the dissertation, an improved model for energy harvesters will be 

presented and proposed. As discussed earlier, efficacy of a piezoelectric vibration-based 

energy harvester (PVEH) is assessable according to three items: 1- maximum amount of 

extractable voltage (or power), 2- effective frequency bandwidth, and 3- transmissibility 

function of the oscillator. The former two cases are usually more attractive and integral to 

the scholars and designers. Lack of match (synchrony) between the excitation (driving) 

frequency and the natural frequency of the cantilever beam is one of the main challenges 

and issues with PVEH. Such a drawback leads to trifle extractable power and inefficiency 

of the harvester module. To remedy such disadvantage, tuning masses has been widely 

utilized with PVEH. Such a tip mass (end mass, attached mass, tuning mass) is usually 

constrained to lateral displacement of the cantilever beam at the free end (tip). With such 

constraint, although the maximum voltage is enhanced it yields to fleet and ephemeral 

oscillations. The shortened duration of oscillations results in fugacious chance to harness 

the electric power. In order to further improve the efficacy of the harvester in terms of 

maximum extractable power and more importantly to obviate the fleet (transient) response 

challenge, the conventional cantilever-tuning mass system is supposed to be replaced with 

a cantilever-spring-oscillator system and instead of constraining the tuning mass to the tip 

of the beam, the augmented inertia will be hung by means of a spring and move as an 

oscillator. Such modification results in a more perplexing system with three differential 

equations rather than two, increases the degrees of freedom from three to four and the 



 

79 

 

generalized modal coordinates from two to three. As compensation for such added 

complexity, the new system will render one more eigenvalue smaller than the conventional 

first eigenvalue (1.8759). Correspondingly, one more resonance will be generated. Such 

new behavior of the harvester system ends up in significantly wider effective frequency 

bandwidth and strikingly more amount of power extractable in a given bandwidth. This 

way, the PVEH system will be notably and efficiently improved and developed. To model 

such reinforced PVEH; first, mechanical-domain modeling is required. This means to 

study the cantilever-spring-oscillator system from advanced vibrations and dynamics 

viewpoint to eventually derive the governing equations of motion, which provides valuable 

information about the vibratory response of the system including: frequency shifts, and 

mode shapes, and transmissibility functions. 

 4.2 Governing Equations of Motion, Boundary Conditions and Kinematics of 

Cantilever-Oscillator-Spring  

Schematic configuration of the elastically restrained oscillator and cantilever beam 

system is presented in Figure 32. Oscillator with mass 𝑚0 is attached to the cantilever via 

a linear spring with constant of 𝑘𝑠.   
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Figure 25. Schematic of cantilever-oscillator-spring system 

 

𝜌 is beam density, 𝐴 is the cross-section area, 𝐸 represents Young’s modulus, 𝐼 is 

second moment of inertia, beam has length of 𝐿, thickness of ℎ, width of 𝑏; 𝑥 − 𝑦 

represents the Lagrangian cartesian coordinates, 𝑋 − 𝑌 is the fixed Eulerian cartesian 

coordinates. 𝑤𝑏(𝑥, 𝑡) is the base excitation in case of forced vibrations, and 𝑤𝑟𝑒𝑙(𝑥, 𝑡) and 

𝑤𝑠(𝑡) represent relative lateral displacement of beam and oscillator with respect to the 

Lagrangian coordinates, respectively. According to Euler-Bernoulli beam models; 

displacement fields are defined as following [35]:  

ux(x, z, t) = −y
∂w𝑟𝑒𝑙
∂x

(x, t) 
(4.1a) 

uy(x, z, t) = w𝑟𝑒𝑙(𝑥, 𝑡) (4.1b) 

uz(x, z, t) = 0 (4.1c) 

4.3 Variational Terms and Extended Hamilton’s Principle 

According to the modified couple stress theory, variations of strain energy terms 

due to deformation (𝑈𝑠−1), spring (𝑈𝑠−2) and kinetic energy terms (𝑈𝑘) are as follows [35]: 
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𝛿𝑈𝑠−1 = (𝐸𝐼 + 𝐺𝑙
2𝐴)

𝜕2𝑤𝑟𝑒𝑙

𝜕𝑥2
𝛿
𝜕𝑤𝑟𝑒𝑙

𝜕𝑥
|
0

𝐿

− (𝐸𝐼 + 𝐺𝑙2𝐴)
𝜕3𝑤𝑟𝑒𝑙

𝜕𝑥3
𝛿𝑤𝑟𝑒𝑙|0

𝐿 +

∫ (𝐸𝐼 + 𝐺𝑙2𝐴)
𝜕4𝑤𝑟𝑒𝑙

𝜕𝑥4

𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥  

(4.2a) 

𝛿𝑈𝑠−2 = 𝑘𝑠𝑤𝑠𝛿𝑤𝑠 (4.2b) 

𝛿𝑈𝑘 = ∫ 𝜌𝐴(𝑤̈𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̈𝑏(𝑥, 𝑡))𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

𝑜
+𝑚𝑠(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) +

𝑤̈𝑏(𝐿, 𝑡) + 𝑤̈𝑠(𝑡))𝛿𝑤𝑠 +𝑚𝑠(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡))𝛿𝑤𝑟𝑒𝑙 +

∫ 𝑚𝑠𝑤̈𝑏(𝑥, 𝑡)𝛿(𝑥 − 𝐿)𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

𝑜
  

(4.2c) 

variations of nonconservative dissipating terms (𝑊𝑛𝑐) are:  

𝛿𝑊𝑛𝑐 = −∫ 𝑐𝑎(𝑤̇𝑟𝑒𝑙 + 𝑤̇𝑏)𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

0

−∫ 𝑐𝑠𝐼
𝐿

0

𝜕4𝑤̇𝑟𝑒𝑙
𝜕𝑥4

𝛿𝑤𝑟𝑒𝑙𝑑𝑥 
(4.3) 

where, 𝐺 represents rigidity modulus of beam, 𝑙 is the material length scale parameter, and 

𝛿 is the Dirac delta function. 𝑐𝑎 is viscous air damping coefficient, and 𝑐𝑠 represents 

equivalent coefficient of strain rate damping (Kelvin-Voigt damping). Using the Extended 

Hamilton’s variational approach, governing system of equations are as follows: 

𝜌𝐴𝑤̈𝑟𝑒𝑙(𝑥, 𝑡) + (𝐸𝐼 + 𝐺𝑙
2𝐴)

𝜕4𝑤𝑟𝑒𝑙

𝜕𝑥4
+ 𝑐𝑠𝐼

𝜕4𝑤̇𝑟𝑒𝑙

𝜕𝑥4
+ 𝑐𝑎𝑤̇𝑟𝑒𝑙 = −(𝜌𝐴 +

𝑚𝑠𝛿(𝑥 − 𝐿))𝑤̈𝑏(𝑥, 𝑡) − 𝑐𝑎𝑤̇𝑏  

(4.4a) 

𝑚𝑠(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑏(𝐿, 𝑡) + 𝑤̈𝑠(𝑡)) + 𝑘𝑠𝑤𝑠 = 0 (4.4b) 

corresponding boundary condition are shown in the following: 

𝑤𝑟𝑒𝑙(0, 𝑡) = 0 (4.5a) 

𝜕

𝜕𝑥
𝑤𝑟𝑒𝑙(0, 𝑡) = 0 

(4.5b) 

𝜕2

𝜕𝑥2
𝑤𝑟𝑒𝑙(0, 𝑡) = 0 

(4.5c) 
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(𝐸𝐼 + 𝐺𝑙2𝐴)
𝜕3

𝜕𝑥3
𝑤𝑟𝑒𝑙(0, 𝑡) − 𝑚𝑠(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡)) = 0 

(4.5d) 

4.4 Solution Procedure 

4.4.1 Free Vibrations: Natural Frequency, Mode Shape Functions  

Finding resonant frequencies of the system is imperative for any further analysis. 

In this regard, equating all damping terms as well as forcing term to zero, and using the 

method of separation of variables (𝑤𝑟𝑒𝑙 = 𝜑𝑛(𝑥)𝑒
𝑗𝜔𝑛𝑡, 𝜑𝑛(𝑥) is eigenfunctions, 𝑗 is unit 

imaginary number, 𝜔𝑛 represents beam natural frequency, and 𝑡 is time variable), Eq. (4.4) 

is in the following form: 

(𝐸𝐼 + 𝐺𝑙2𝐴)
𝜕4𝜑𝑛(𝑥)

𝜕𝑥4
− 𝜌𝐴𝜑𝑛(𝑥)𝜔𝑛

2 = 0 
(4.6a) 

𝑤̈𝑠(𝑡) + 𝜔𝑛−𝑜
2𝑤(𝑡) = 𝜔𝑛

2𝜑𝑛(𝐿)𝑒
−𝑗𝜔𝑛𝑡 (4.6b) 

where, 𝜔𝑛−𝑜 represents natural frequency of the oscillator (𝜔𝑛−𝑜 = √
𝑘𝑠
𝑚0⁄ ). General 

solution to the Eq. (4.6a) is a combination of trigonometric and hyperbolic functions with 

eigenvalue 𝜆𝑛 (𝜆𝑛
4 =

𝜌𝐴𝜔𝑛
2

(𝐸𝐼 + 𝐺𝑙2𝐴)
⁄ ).  

𝜑𝑛(𝑥) = 𝐴1 cosh(𝜆𝑛𝑥) + 𝐴2 cos(𝜆𝑛𝑥) + 𝐴3 sinh(𝜆𝑛𝑥) + 𝐴4 sin(𝜆𝑛𝑥) (4.7) 

corresponding boundary conditions to the undamped, free vibration case is as following:  

𝜑𝑛(0) = 0 (4.8a) 

𝜕

𝜕𝑥
𝜑𝑛(0) = 0 

(4.8b) 

𝜕2

𝜕𝑥2
𝜑𝑛(𝐿) = 0 

(4.8c) 

(𝐸𝐼 + 𝐺𝑙2𝐴)
𝜕3

𝜕𝑥3
𝜑𝑛(𝐿) − 𝑚𝑠(−𝜔𝑛

2𝜑𝑛(𝐿) + 𝑤̈𝑠(𝑡)) = 0 
(4.8d) 
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Obviously, the shear force boundary condition is dependent on the motions and inertia of 

the oscillator. So, solving Eq. (4.6b) is the proceeding step. Considering beating conditions 

(𝑤𝑠(0) = 𝑤𝑠̇ (0) = 0), proposed solution is: 

𝑤𝑠(𝑡) =
𝜔𝑛

2

𝜔𝑛−𝑜2 − 𝜔𝑛2
𝜑𝑛(𝐿) 

(4.9) 

inserting Eq. (4.9) into Eq. (4.8d) and applying the boundary conditions of Eq. (4.8) into 

the general solution in Eq. (4.7), after some mathematical operations one obtains the 

following nonlinear transcendental equation:  

 

(𝐸𝐼 + 𝐺𝐴𝑙2)𝜆𝑛
3(1 + cosh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿)) +

𝜔𝑛−𝑜
2𝜔𝑛

2𝑚0

𝜔𝑛−𝑜2−𝜔𝑛2
(sinh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿) − cosh(𝜆𝑛𝐿) sin(𝜆𝑛𝐿)) = 0  

(4.10) 

 

It is very important to note the differences between the obtained characteristic equation and 

that of the reference systems (cantilever-oscillator or a single cantilever). In the reference 

system, a rigid support is assumed instead of the spring support with changeable stiffness 

and as mentioned in several research efforts, such a characteristic equation is simply the 

first part of Eq. 4.10 (1 + cosh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿)). So, including an elastic support renders a 

more complicated transcendental characteristic equation. Introducing mass ratio (𝑟𝑚 =

𝑚0

𝜌𝐴𝐿
) and stiffness ratio (𝑟𝑠 =

𝑘𝑠

(𝐸𝐼 𝐿3⁄ )
), and ignoring nonclassical effects as having either 𝐸𝐼 

or 𝐸𝐼 + 𝐺𝐴𝑙2 as the coefficient of 1 + cosh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿) does not alter function graph 

remarkably; Eq. (4.10) can be re-written in the following shape:  
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𝑓(𝜆𝑛𝐿) = (𝑟𝑠 − 𝑟𝑚(𝜆𝑛𝐿)
4)(1 + cosh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿)) +

(𝑟𝑠𝑟𝑚((𝜆𝑛𝐿))(sinh(𝜆𝑛𝐿) cos(𝜆𝑛𝐿) − cosh(𝜆𝑛𝐿) sin(𝜆𝑛𝐿))  

(4.11) 

 

Eq. (4.11) as a nonlinear transcendental equation does not have a closed-form (exact) 

solution. Consequently, numerical solvers are proposed. Among root-finding algorithms 

available, VPASOLVE is an efficient solver included within MATLAB software package. 

However, similar to most of the numerical solvers, VPASOLVE precision entirely depends 

on the value of the initial guess. To reach the most feasible precise numerical values of the 

eigenvalues of Eq. (4.11), plotting the nonlinear transcendental equation is helpful.  

 

 

Figure 26. Characteristic equations’ graphs for different values of mass ratio and stiffness 

ratio 

 

Based on the figure presented, it is interesting to note that adding an oscillator 

which is attached to the free end of the beam via a spring results in roots smaller than 

1.875104. 1.875104 is the first eigenvalue of a clamped free beam in sole. This conveys 
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that if the oscillator is attached via a spring support with elasticity, the restoring force in 

the spring accompanied with the mass of the oscillator yields another root (eigenvalue) 

smaller than 1.875104. Second root of cantilever-oscillator-spring system is almost 

overlapped with the first root of the reference system (𝑟𝑠 → ∞). This key point can be 

highly important through the analysis of such integrated multi-systems. Accordingly, 

eigenvalues of the nonlinear transcendental equation are numerically obtainable. In the 

following, dimensionless undamped natural frequency of the considered system is defined 

based on both classical and modified couple stress theories, respectively.  

Ω𝑛 = 𝜔𝑛𝐿
2√𝜌𝐴 𝐸𝐼⁄ = (𝜆𝑛𝐿)

2,   𝜔𝑛 = √𝐸𝐼 𝜌𝐴⁄  𝜆𝑛
2
 (4.12a) 

Ω𝑛−𝑀𝐶𝑆𝑇 = √(𝐸𝐼 + 𝐺𝐴𝑙2) 𝐸𝐼⁄ (𝜆𝑛𝐿)
2,   𝜔𝑛−𝑀𝐶𝑆𝑇 =

√(𝐸𝐼 + 𝐺𝐴𝑙2) 𝜌𝐴⁄  𝜆𝑛
2
  

(4.12b) 

Despite the transition from Eq. (4.10) to Eq. (4.11) in which nonclassical effects were 

ignored, such effects emerge stronger within the definition of natural frequencies. So, in 

Eq. (4.12b), 𝐺𝐴𝑙2 is weighted. Correspondingly, mass-normalized mode shape functions 

(eigenfunction) are expressible in the following format:  

𝜑𝑛(𝑥) =
1

√𝜌𝐴𝐿
(cosh(𝜆𝑛𝑥) − cos(𝜆𝑛𝑥) −

(
cosh(𝜆𝑛𝐿)+cos(𝜆𝑛𝐿)

sinh(𝜆𝑛𝐿)+sin(𝜆𝑛𝐿)
)(sinh(𝜆𝑛𝑥) + sin(𝜆𝑛𝑥)))  

 

(4.13) 

4.4.2 Forced Vibrations: Harmonic Base Excitations  

To analyze the multisystem performance under forced vibrations, harmonic 

excitations are considered. Harmonic base excitations (𝑤𝑏 = 𝑌0𝑒
𝑗𝜔𝑒𝑡), with excitation 

frequency and amplitude of 𝜔𝑒, 𝑌0 triggers the system to oscillate. Mechanical frequency 
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response functions along with temporal modal response of the system are under scrutiny. 

Using Galerkin modal decomposition, displacement function is assumed as [35]: 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑𝜑𝑛(𝑥)

∞

𝑛=1

𝜂𝑛(𝑡) 
(4.14) 

due to proportional damping criteria, 𝜑𝑛(𝑥) is the same mode shape functions of the 

undamped free system. 𝜂𝑛(𝑡) is the modal coordinate of the beam at the 𝑛′𝑡ℎ mode. After 

discretizing the governing equations of motion of the beam and multiplying by 𝜑𝑚(𝑥), 

and using the orthogonality in integration over beam length 𝐿; one obtains the following 

relationship:  

∫ 𝜌𝐴
𝐿

0

𝜑𝑛(𝑥)
2𝑑𝑥 = 𝐵𝑛 ≅ 1 

(4.15a) 

∫ (𝐸𝐼 + 𝐺𝑙2𝐴)𝜑𝑛(𝑥)
𝑑4

𝑑𝑥4
𝜑𝑛(𝑥)

𝐿

0

𝑑𝑥 = 𝐵𝑛𝜔𝑛−𝑀𝐶𝑆𝑇
2 

(4.15b) 

duplicating same process for the Eq. (4.14a) and using Eqs. (4.15); following time-domain 

ordinary differential equation is obtained (Eq. 4.16b is extracted from reference [35]):  

𝐵𝑛(𝜂̈𝑛(𝑡) + 2𝜔𝑛𝜁𝑛𝜂̇𝑛(𝑡) + 𝜔𝑛−𝑀𝐶𝑆𝑇
2𝜂𝑛(𝑡)) = (𝜌𝐴𝛾𝑛 +

𝑚0𝛾́𝑛)𝑌0𝜔𝑒
2𝑒𝑗𝜔𝑒𝑡  

(4.16a) 

𝜁𝑛 =
𝑐𝑎

2𝜌𝐴𝜔𝑛−𝑀𝐶𝑆𝑇
+
𝑐𝑠𝐼𝜔𝑛−𝑀𝐶𝑆𝑇

2𝐸𝐼
 

(4.16b) 

𝛾𝑛 = ∫ 𝜑𝑛

𝐿

0

(𝑥)𝑑𝑥 
(4.16c) 

𝛾́𝑛 = ∫ 𝜑𝑛

𝐿

0

(𝑥)𝛿(𝑥 − 𝐿)𝑑𝑥 
(4.16d) 
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𝜁𝑛 is the mechanical damping ratio including both Kelvin-Voigt and air viscous damping.  

According to the beating conditions, steady-state temporal modal response of the system 

is the only solution of Eq. (4.16a) which is expressed as:  

𝜂𝑛(𝑡) =
(𝜌𝐴𝛾𝑛 +𝑚0𝛾́𝑛)𝑌0𝜔𝑒

2

𝐵𝑛(𝜔𝑛−𝑀𝐶𝑆𝑇
2 − 𝜔𝑒2 + 𝑗2𝜔𝑛𝜔𝑛−𝑀𝐶𝑆𝑇𝜁𝑛)

𝑒𝑗𝜔𝑒𝑡 
(4.17) 

  

4.5 Results and Discussion 

In this section, numerical results pertaining to the natural frequency, modal 

response, and mechanical frequency response functions (FRFs) are brought and 

elaborated. Geometrical, and mechanical properties utilized in reference [35], is used in 

this study which is summarized in the following table: 

 

Table 5. Geometrical, and mechanical parameters of the cantilever-oscillator-spring [35] 

𝐿 = 100𝑚𝑚 , beam length 𝜌 = 7165 𝑘𝑔 𝑚3⁄  , beam 

density 

𝜁2 = 0.013, damping ratio 

of 2nd mode 

𝑏 = 20𝑚𝑚 , beam width 𝐸 = 100𝐺𝑃𝑎, Young’s 

modulus 

𝜁3 = 0.033, damping ratio 

of 3rd mode 

𝐿 = 0.5𝑚𝑚 , beam 

thickness 

𝐺 = 41𝐺𝑃𝑎 , shear 

modulus 

 

𝑙 = 15𝜇𝑚 , non-classical 

parameter 

𝜁1 = 0.010 , damping ratio 

of 1st mode 

 

 

According to the plots of the characteristic equation, it sounds necessary to find 

eigenvalues and frequencies of the system of cantilever-oscillator-spring, specifically new 

roots (eigenvalues) are present that are not accompanied with a simple cantilever or 

cantilever-oscillator systems. 
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4.5.1 New Eigenvalues and Restoring Force of the Spring  

To study the effects of the subsystem integrated to the cantilever system, 4 extreme 

cases of the oscillator mass and spring stiffness values are considered. Then, the first three 

frequencies of the new multi-system are found numerically and according to the path 

explained above. Such values are compared against the reference system of a cantilever.   

 

Table 6. First eigenvalue and dimensionless resonant frequency of cantilever-oscillator-

spring system 

(𝑟𝑚, 𝑟𝑠) 𝜆1𝐿 Overshoot (%) 

compared with 

1.875104 

Ω1 Ω1−𝑀𝐶𝑆𝑇 

(0.01,0.01) 0.999097 46.7178 0.998196 1.000403 

(0.01,100) 1.856765 0.9780 3.455203 3.447578 

(10,0.01) 0.177680 90.5243 0.031570 0.031640 

(10,100) 0.730603 61.0366 0.533782 0.5349626 

 

Table 7 is provided to numerically evaluate the effects of restoring force of the 

spring and the following effects of oscillator inertia over fundamental natural frequency 

of the proposed multisystem. Four representative cases of: light oscillator-soft spring 

(𝑟𝑚 = 0.01, 𝑟𝑠 = 0.01); light oscillator-stiff spring (𝑟𝑚 = 0.01, 𝑟𝑠 = 100); heavy 

oscillator-soft spring (𝑟𝑚 = 10, 𝑟𝑠 = 0.01); heavy oscillator-stiff spring (𝑟𝑚 = 10, 𝑟𝑠 =

100) are shown in the table. Results show that if the oscillator is hung with a soft spring, 

the first eigenvalue (fundamental natural frequency) of the cantilever-spring-oscillator is 

significantly far away from the reference one (pure cantilever) (1.875104). Remarkably, 

increasing the mass of the oscillator, attempts to further deviate from the reference one. 

On the other hand, perusing spring constant effects reveals an attractive tendency of the 
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first eigenvalue towards the reference one, meaning that stiffer spring is inclined to 

suppress and counteract the inertial effects of the oscillator.  

  

Table 7. Second eigenvalue and dimensionless resonant frequency of cantilever-

oscillator-spring system 

(𝑟𝑚, 𝑟𝑠) 𝜆2𝐿 Overshoot (%) 

compared with 

4.694091 

Ω2 Ω2−𝑀𝐶𝑆𝑇 

(0.01,0.01) 1.876751 60.0189 3.522196 3.529985 

(0.01,100) 4.647680 0.9887 21.60093 21.64870 

(10,0.01) 1.876618 60.0217 3.521698 3.529487 

(10,100) 3.655735 22.1205 13.36440 13.39396 

 

Table 8 is duplicated in a similar path for the second vibration mode. Comparatively 

to the first mode gradations, light oscillator-stiff spring has almost same second eigenvalue 

(𝜆2𝐿) of rigidly-hung oscillator (𝑟𝑠 = ∞). With the strong restoring forces (𝑟𝑠 = 100) 

oscillator inertial effect is tangible only if the mass ratio is strikingly high (𝑟𝑚 = 10). 

Conversely, with weak restoring forces (𝑟𝑠 = 0.01) inertial effects of the oscillator 

significantly deduces the second eigenvalue. Interestingly, inertial effect drags the second 

eigenvalue towards the first eigenvalue of the rigidly-hung oscillator (𝜆2𝐿 → 𝜆1𝐿). 

Eventually, if stiff spring is used with heavy oscillator; moderate variations are observable 

as restoring forces tend to behave like the reference system, but inertial effects are inclined 

to deviate from the reference system.  

       

Table 8. Third eigenvalue and dimensionless resonant frequency of cantilever-oscillator-

spring system 

(𝑟𝑚, 𝑟𝑠) 𝜆3𝐿 Overshoot (%) 

compared with 

7.854757 

Ω3 Ω3−𝑀𝐶𝑆𝑇 

(0.01,0.01) 4.694188 40.2376 22.035401 22.084133 
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(0.01,100) 7.747153 1.3699 60.018382 60.151116 

(10,0.01) 4.694187 40.2376 22.035399 22.084131 

(10,100) 5.623066 28.4120 31.618871 31.688798 

 

Table 9 pertains to the third vibration mode. Similar patterns to the first and second 

vibration mode are inferable. Main differences between the first three modes include: the 

most notable deviation refers to the heavy oscillator with weak spring. In this case, 

oscillator has sensible relative motions so impacts the beams behavior substantially. 

Clearly, the least sensible effects of oscillator inertia occur with stiff or hard spring with 

the least overshoot. Finally, it is also good to note that dimensionless frequency of classical 

theory and Modified Couple Stress theory (MCST) have almost 0.22% shifts.  

 

4.5.2 Effect of Mass and Stiffness Ratios over Natural Frequencies 

By detecting the emerging minimal frequency values, it sounds necessary to study 

the effect of the oscillator mass and spring stiffness over the frequency values for a specific 

range of continuous values.  
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Figure 27. Variations of dimensionless frequencies versus mass ratio with soft spring 

(r_s=0.01; a. first mode, b. second mode, c. third mode) 

 

This figure demonstrates variations of dimensionless frequency of the first three 

modes with respect to mass ratio in case of soft spring. Obviously, in the first mode, 

increasing the mass ratio (increasing the mass of the oscillator) decreases the frequency. 

In the second mode, such a decrement is barely sensible, while in the third mode, mass 

ratio almost does not alter the frequency. Even for the first mode with more tangible 

variations, frequency decrements take place at the very small values of mass ratio only.    
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Figure 28. Variations of dimensionless frequencies versus mass ratio with stiff spring 

(r_s=100; a. first mode, b. second mode, c. third mode) 

 

Figure 28 is plotted to show the variations of the first three frequency modes with 

respect to mass ratio in case of stiff (hard) spring. It is evident that despite the case of soft 

spring, oscillator mass suppresses frequencies significantly as it increases. In other words, 

mass ratio effects over frequencies is more perceptible if the spring is stiffer. Besides the 

impression of spring stiffness, the heavier the oscillator the smaller the natural frequencies.  
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Figure 29. Variations of dimensionless frequencies versus stiffness ratio with light 

oscillator (𝑟𝑚=0.01; a. first mode, b. second mode, c. third mode) 

 

To peruse the effect of the spring stiffness constant over natural frequency, figure 

29 is presented. In this figure, light-mass oscillator (𝑟𝑚 = 0.01) is assumed. It is evident 

that all three mode’s frequencies increase with increment in the stiffness. It means that 

stiffer spring yields bigger resonant frequencies.  
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Figure 30. Variations of dimensionless frequencies versus stiffness ratio with heavy 

oscillator (𝑟𝑚 =10; a. first mode, b. second mode, c. third mode) 

 

Figure 30 illustrates variations of frequencies with respect to stiffness ratio in case 

of heavy-mass oscillator. A similar profile to the case of light-mass oscillator is repeated 

confirming that stiffer spring ends up in increments in frequencies.   
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Figure 31. Mode shape functions of reference system and extreme cases of mass and 

stiffness ratios (a. mode one; b. mode two; c. mode three) 

 

Mode shape functions are plotted to signify the effect of new resonant frequency 

generated due to the inertial effects of the oscillator accompanied with stiffness effects 

(restoring force) of the spring. It is evident that mode shape functions of all three first 

modes are the most diverse than the reference system (also mentioned as free in the figure 

legend) if oscillator is heavy. Besides, to focus on small-scaled systems, results of the 

modified couple stress theory are presented only.    

 

4.5.3 Mechanical Frequency Response of Beam Vibration  

In this section relative tip motion frequency response function (FRF) also known 

as the relative motion transmissibility function, is presented and elaborated. Relative 

motion transmissibility function is the ratio of vibration amplitudes at the free end (tip of 

the beam) to the amplitude of the base displacement.  
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𝑤𝑟𝑒𝑙
𝑌0𝑒𝑗𝜔𝑒𝑡

= ∑𝜑𝑛(𝐿)[
(𝜌𝐴𝛾𝑛 +𝑚0𝛾́𝑛)𝜔𝑒

2

𝐵𝑛(𝜔𝑛−𝑀𝐶𝑆𝑇
2 − 𝜔𝑒2 + 𝑗2𝜔𝑛𝜔𝑛−𝑀𝐶𝑆𝑇𝜁𝑛)

]

∞

𝑛=1

 
(4.18) 

 

Relative motion transmissibility (tip motion FRF) is of particular interest, 

specifically for the cantilever energy harvesters or vibration isolators. With such 

mechanical FRF, valuable information about the level of tip displacement of a harvester 

or isolator is demonstrated.     

 

Figure 32. Relative tip motion FRF versus dimensionless excitation frequency (reference 

system and extreme cases of mass and stiffness ratios) 

 

In Figure 32, the modulus of relative tip motion FRF against dimensionless 

excitation frequency is plotted for the four extreme cases as well as the reference case 

(𝑟𝑠 → ∞, or 𝑟𝑚 = 0). According to this plot, vibration amplitudes at the tip (free end) is 

increased substantially with heavy oscillator (𝑟𝑚 = 10). While, spring stiffness constant 

does not manipulate oscillation amplitudes, restoring spring force drags the FRF towards 

the reference case (𝑟𝑚 = 0 𝑜𝑟 𝑟𝑠 → ∞). It means that a weak (soft) spring yields in striking 
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shortened frequency bandwidth as in red and blue lines. Such finding is also sensible by 

comparison between red line and cyan line, where both pertain to identical mass ratios but 

different restoring forces. Red line refers to the soft spring and has significantly shorter 

bandwidth between the first and second resonant frequencies than cyan with hard (stiff) 

spring between the first and second resonant frequencies. Concisely, vibration amplitudes 

are mutable with only mass ratios and frequency bandwidth is highly dependent on the 

amount of restoring forces. In details, dominant inertial effects (heavy oscillator) generate 

a minimal resonant frequency close to zero, while the second resonant frequency is 

overlaid on the first resonant frequency of the reference case. Finally, it is understandable 

that the inertial effects strongly impact the oscillation amplitudes, but frequency bandwidth 

is varying based on both inertial effects and spring stiffness in correlation. It is also good 

to note that with heavy oscillator and soft spring, system’s behavior is the most 

significantly diverse than the reference system’s behavior, and with the light oscillator and 

stiff spring, system’s behavior is most remarkably similar to the behavior of reference 

system. Such findings can be crucial for the design of energy harvesters or vibration 

controllers. For example; in the case of energy harvesters, increasing the relative tip motion 

is of interest, while decreasing the frequency bandwidth is not desired. So, a trade-off 

should be considered with heavy oscillator and stiff spring. However, according to the 

desires of each application, spring stiffness constant and oscillator mass should be adopted 

quantitatively and in single case-study rather than qualitative elaboration which was 

provided in this study.          
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4.6 Conclusion 

Energy harvesters at small scales have high resonance frequencies which are hard 

to reach for the external source frequency. Thus, devising novel models to extenuate the 

harvesters’ resonance frequency is beneficial. For the first time, the effects of an 

augmented generalized coordinate over the vibratory response of a cantilever-oscillator-

spring system are scrutinized. In this chapter, it is elaborated that for such a multisystem 

with applications in energy harvesters integrable with RFID components, vibration 

controllers, or M-NEMS sensors; replacing a rigid support with an elastic support via a 

spring will shift systems response drastically. Such mutation is very important as the 

resonance frequency is generatable at smaller values which strikingly increases the 

efficiency of the harvesters. The corresponding new nonlinear transcendental 

characteristic equation is numerically solved using the MATLAB root-solver algorithm. 

Due to the relative motions of the oscillator with respect to the cantilever, small newly-

generated frequencies between zero and the first natural frequency of the cantilever system 

(reference system) are detected. Through our scrutiny, we figured out that increasing the 

stiffness of the spring results in a response similar to the response of the reference system 

which is valid for all three vibration modes. Contrarily, inertial effects derived from the 

oscillations of the lumped oscillator are prone to substantially deviate system response by 

means of dragging the minimal (new) frequency to the left and far from the first frequency 

of the reference system. For the case of forced vibrations with harmonic base excitations, 

relative tip motion FRF (transmissibility function) is obtained. Results demonstrate that 

significant inertial effects resulted from a heavier oscillator, alter system’s response and 

yield big amplitudes and strikingly increased transmissibility. On the other hand, spring 
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stiffness cannot neutralize the inertial effects regarding the vibration amplitudes and 

transmissibility. However, such parameters can stretch the FRF diagram profile, meaning 

that stiffer springs result in wider bandwidth. The new system, with values of oscillator 

inertia and spring restoring force, leads to the generation of minimal frequencies which 

can be at the vicinity of the first frequency of the reference system. In any case, such 

newly-generated frequency yields widened bandwidth and one more resonance 

particularly at the small excitations. In short, it is inferable that depending on the specific 

desires of each application, oscillator mass and spring stiffness can be greatly conducive 

as the design parameters, and to alter systems response as demanded. Findings of current 

chapter are summarized in the following:        

1- The cantilever system joined with oscillator-spring leads to the generation 

of new characteristic equations and eigenvalues. This means the opportunity for an 

augmented resonance particularly at low frequencies, which can be helpful as the external 

excitations are mostly small and generation of more resonances in a given bandwidth. 

2- The increment in mass ratio (inertial effects of the oscillator), causes 

intensified oscillation amplitudes, but the impact over the bandwidth is suppressed by 

rigidity level.  

3- The increment in rigidity of the support (spring constant) ends up in wider 

bandwidth and stretched profile of transmissibility FRF. Spring constant is the more 

dominant influential factor rather than inertia in terms of bandwidth mutations and 

gradations.   

4- To design more efficient energy harvesters, vibration controllers, M-NEMS 

sensors, quantitative analysis is required over qualitative analysis. This means that for a 
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cantilever energy harvester system integrated with a spring-mass system at the tip, stiffness 

and mass ratios are the design parameters providing plenty of maneuverability which needs 

to be studied for each specific value of such parameters.   

5- To tune an energy harvester, such a proposed system overcomes the lack of 

coincidence and overlap between the excitation and natural frequencies since the location 

of the resonant frequencies can be significantly manipulated and altered by means of 

different values of oscillator mass and spring constant.  

Finally, it is noteworthy to mention that further analysis and study is required to 

find the optimal values of the design parameters (oscillator mass, and spring stiffness) to 

design the most optimized piezoelectric vibration-based energy harvester. Such topics will 

be studied and presented in the following chapter.       

 

 

 

 

 

 

 

 

 

 

 

 



 

101 

 

CHAPTER 5. OPTIMIZATION OF THE ENERGY HARVESTER   

5.1 Introduction and Background  

As mentioned in the preceding chapter, there is a growing trend in the generation 

of electrical energy from mechanical vibrations particularly from piezoelectricity. Current 

piezoelectric vibration-based energy harvesters (PVEH) are under significant attention to 

improve and develop them for more applicable usage. Current PVEHs usually have two 

big issues which decrease efficacy: the matching between the excitation (driving) 

frequency and the effective (operational) frequency bandwidth. It is widely explained in 

the former chapters that as long as the excitation or driving frequency coming from an 

external source is not aligned with the resonance frequency of the harvester substrate, the 

outcome energy is insignificant. So, it is vital to match the mentioned frequencies. Mostly, 

the excitation frequency is not adaptable and there is no control over it. Besides, in small-

size energy harvesters, due to the size reduction the resonance frequency of the system is 

notably high. With all that mentioned, it sounds reasonable to alter the resonance frequency 

of the substrate to match the frequency coming from the external source. To do so, the 

integration of spring-mass subsystem with the main substrate (cantilever) is proposed. 

Another important point is to widen the effective frequency bandwidth. This leads to 

capturing and harvesting more energy since the wider bandwidth encompasses more 

resonance. It was discussed how the integration of such a subsystem alters the vibratory 

response of the harvesters from a dynamic aspect. In this chapter, such integration will be 

studied in detail from an electrical energy aspect. Besides, the optimum values of the 

oscillator mass and spring stiffness constant will be found using the optimization 

algorithms. Such optimal design parameters lead to the maximum amount of harvestable 
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power as well as the maximum widened effective frequency bandwidth. In other words, in 

this chapter, besides the effects of the subsystem integration over the harvester’s 

performance and efficacy, the proposed model of the PVEH is optimized. Such 

optimization of the PVEH renders the best performance possible and enhances and 

reinforces the performance. Based on the literature review presented in the former 

chapters, several research efforts have been accomplished to optimize the tuning mass to 

maximize the harvestable energy as well as widening the effective frequency bandwidth. 

According to the literature review presented, there is no published technical essay 

considering optimizing the efficacy of energy harvesters with a spring-mass system 

integrated with the cantilever. In detail, it is established to provide a relative motion and 

oscillation for the tuning mass (oscillator) by means of a spring. This is feasible by 

replacing the rigid support with an elastic support with restoring force capability. Such 

augmentation increases the degrees of freedom and the number of governing equations. 

Moreover, the boundary condition is strikingly changed which raises the expectations for 

different resonance frequencies. In this response, in this chapter, the proposed model of 

the cantilever-oscillator-spring is modeled accounting the electrical circuit equations. 

Some of the mechanical and kinematics are similar to the former chapter, but for purpose 

of integrity they are duplicated in this chapter as well.   

 

5.2 Mathematical Modeling  

Schematic configuration of a cantilever energy harvester integrated with oscillator-

spring system at the tip end is shown in the following figure which includes the 

piezoelectric layers highlighted in black at the top and bottom surfaces:  
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Figure 33. Schematic of the cantilever-spring-mass energy harvester 

 

𝜌𝑠, 𝜌𝑝 are substrate and piezoelectric layers density, 𝐴𝑠, 𝐴𝑝 show substrate and 

piezoelectric layers cross section areas, 𝐸𝑠, 𝐸𝑝 represent substrate and piezoelectric layers 

Young’s modulus, 𝐼𝑠, 𝐼𝑝 are substrate and piezoelectric layers second moment of inertia, 

beam has length of 𝐿, thickness of ℎ, width of 𝑏; 𝑥 − 𝑦 represents the Lagrangian cartesian 

coordinates, 𝑋 − 𝑌 is the fixed Eulerian cartesian coordinates. 𝑤𝑏(𝑥, 𝑡) is the base 

excitation, and 𝑤𝑟𝑒𝑙(𝑥, 𝑡) and 𝑤𝑠(𝑡) represent relative lateral displacement of beam and 

oscillator with respect to the Lagrangian coordinates, respectively. According to the Euler-

Bernoulli beam models; displacement fields are defined as follows [35]:  

ux(x, z, t) = −y
∂w𝑟𝑒𝑙
∂x

(x, t) 
(5.1a) 

uy(x, z, t) = w𝑟𝑒𝑙(𝑥, 𝑡) (5.1b) 

uz(x, z, t) = 0 (5.1c) 

to consider non-conservative work induced in the system, extended Hamilton’s principle 

will be utilized. Based on plane-stress assumptions for liner isotropic elements following 
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Hooke’s law, constitutive relations of substrate and piezoelectric layers can be expressed 

as follows [35]:  

𝑇1
𝑠 = 𝐸𝑠𝑆1 (5.2) 

𝑇1
𝑠 is stress, 𝑆1 is strain of substrate layer. Based on the piezoelectric constitutive equations 

stress-strain and electric field relations are [35]:  

𝑇1
𝑝 = 𝐸𝑝(𝑆1 − 𝑑31𝐸3) (5.3a) 

𝜀33
𝑠 = 𝜀33

𝑇 − 𝑑31
2𝐸𝑝 (5.3b) 

𝐷3 = 𝑑31𝑇1
𝑝 + 𝜀33

𝑇𝐸3 (5.3c) 

𝑇1
𝑝 is stress at piezoelectric layers. 𝑑31 is piezoelectric coupling coefficient. 𝐸3 is electric 

field in 𝑦-direction. 𝜀33
𝑠 and 𝜀33

𝑇 represent permittivity at constant strain and stress. 𝐷3 is 

electric displacement which acts only in 𝑧-difrection, respectively. Two types of damping 

mechanisms, internal and external, are considered in this study. Internal damping is 

modeled as Kelvin-Voigt damping also named as strain-rate damping:  

𝑇𝑑 = 𝑐𝑠𝑆̇1 (5.4) 

𝑇𝑑 is stress due to strain-rate damping and 𝑐𝑠 illustrates viscoelastic damping coefficient 

due to structural viscoelasticity. Dot sign indicates differentiation in temporal domain. Both 

internal and external damping satisfy proportional damping criteria. For the proposed 

cantilever beam model, the kinetic energy (𝑈𝑘) due to base excitations is: 

𝑈𝑘 =
1

2
∫ 𝜌𝐴(𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̇𝑏(𝑥, 𝑡))

2𝐿

0
𝑑𝑥 +

1

2
𝑚𝑜(𝑤̇𝑟𝑒𝑙(𝐿, 𝑡) +

𝑤̇𝑏(𝐿, 𝑡) + 𝑤̇𝑠(𝑡))
2  

(5.5) 

strain energy generated due to deflections (𝑈𝑠) is comprised of energy of the substrate and 

energy of the piezoelectric layers integrated over volume fractions (𝑉𝑠, 𝑉𝑝):  
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𝑈𝑠 = 𝛿𝑈𝑠−1 + 𝛿𝑈𝑠−2 = 
1

2
∫ 𝑇1

𝑠𝑆1𝑑𝑉𝑠𝑉𝑠
+
1

2
∫ 𝑇1

𝑝𝑆1𝑑𝑉𝑝𝑉𝑝
=

1

2
∫ 𝐸𝑠𝑆1

2𝑑𝑉𝑠𝑉𝑠
+
1

2
∫ 𝐸𝑝(𝑆1

2 − 𝑆1𝑑31𝐸3)𝑑𝑉𝑝𝑉𝑝
  

(5.6) 

electrical energy (𝑊𝑒) is [35]:  

𝑊𝑒 =
1

2
∫ 𝐷3𝐸3𝑑𝑉𝑝
𝑉𝑝

 
(5.7) 

following auxiliary relations are used to re-write the electrical section of the equation [35]:  

E3 = −
v(t)

(2hp)
⁄   

(5.8) 

D3 = d31EpS1 − ε33
s
v(t)

2hp
 

(5.9) 

Cp =
ε33

sbL

hp
 

(5.10) 

𝑣(𝑡) = 𝑅𝑙𝑞̇3(𝑡) (5.11) 

𝑊𝑒 =
1

2
∫ −𝑑31𝐸𝑝𝑧𝑤𝑟𝑒𝑙,𝑥𝑥(

−𝑣(𝑡)

2ℎ𝑝
)𝑑𝑉𝑝 +

1

2𝑉𝑝

∫ 𝜀33
𝑠(
−𝑣(𝑡)

2ℎ𝑝
)2𝑑𝑉𝑝

𝑉𝑝

 
(5.12) 

in which 𝑣(𝑡) is the voltage across the resistive load and 𝑞3(𝑡) is the electric charge.    

External virtual work (𝑊𝑛𝑐) resulting from damping and dissipating resistive load of 

electrical circuit is [35]:  

𝑊𝑛𝑐 = −
𝑑

𝑑𝑡
∫

1

2
𝑐𝑎

𝐿

0
(𝑤𝑟𝑒𝑙 + 𝑤𝑏)

2𝑑𝑥 −
𝑑

𝑑𝑡
∫

1

2
𝑇𝑠𝑆1𝑉𝑠

𝑑𝑉𝑠 −
𝑑

𝑑𝑡
(
1

2
𝑅𝑙𝑞3

2(𝑡))  (5.13) 

based on the Hamilton’s variational principle, variations of systems’ Lagrangian ( 

𝐿 = 𝑈𝑘 − 𝑈𝑠 − 𝑈𝑡ℎ +𝑊𝑒 +𝑊𝑛𝑐) is zero in a short time interval (∫ 𝛿𝐿𝑑𝑡 = 0
𝑡2
𝑡1

).  To apply 

such a concept, variations of energy terms are to be obtained:  
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𝛿𝑈𝑘 = ∫ 𝜌𝐴
𝐿

0
(𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̇𝑏(𝑥, 𝑡))𝛿𝑤̇𝑟𝑒𝑙(𝑥, 𝑡)𝑑𝑥 + 𝑚𝑜(𝑤̇𝑟𝑒𝑙(𝐿, 𝑡) +

𝑤̇𝑏(𝐿, 𝑡) + 𝑤̇𝑠(𝑡))𝛿𝑤̇𝑠(𝑡)+∫ 𝑚𝑜
𝐿

0
(𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) + 𝑤̇𝑏(𝑥, 𝑡) +

𝑤̇𝑠(𝑡))𝛿(𝑥 − 𝐿)𝛿𝑤̇𝑟𝑒𝑙(𝑥, 𝑡)𝑑𝑥 

(5.14) 

𝛿𝑈𝑠−1 = 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
− 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 +

∫ 𝐸𝑠𝐼𝑠𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥  

(5.15) 

𝛿𝑈𝑠−2 = 2𝐼𝑝𝐸𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
− 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙|0

𝐿 +

∫ 2𝐸𝑝𝐼𝑝𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥
𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 + −𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 −

𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|0
𝐿
+ 𝑄𝑝𝐸𝑝

𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙|0

𝐿 −

∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿́(𝑥) − 𝛿́(𝑥 − 𝐿)]

𝐿

0
𝛿𝑤𝑟𝑒𝑙𝑑𝑥 −

∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑣̇(𝑡)𝑑𝑥  

(5.16) 

𝛿𝑈𝑠𝑠 = 𝑘𝑠𝑤𝑠𝛿𝑤𝑠 (5.17) 

𝛿𝑊𝑒  = −𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝐻(𝑥) − 𝐻(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙,𝑥|0

𝐿
+

𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿(𝑥) − 𝛿(𝑥 − 𝐿)]𝛿𝑤𝑟𝑒𝑙|0

𝐿 − ∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝
𝑣(𝑡)[𝛿́(𝑥) −

𝐿

0

𝛿́(𝑥 − 𝐿)] 𝛿𝑤𝑟𝑒𝑙𝑑𝑥 − ∫ 𝑄𝑝𝐸𝑝
𝑑31

2ℎ𝑝

𝐿

0
𝑤𝑟𝑒𝑙,𝑥𝑥𝛿𝑣̇(𝑡)𝑑𝑥 +

∫ 𝜀33
𝑠 𝑣(𝑡)

(2ℎ𝑝)
2 𝛿𝑣(𝑡)𝑑𝑉𝑝𝑉𝑝

  

(5.18) 

𝛿𝑊𝑛𝑐 = −∫ 𝑐𝑎(𝑤̇𝑟𝑒𝑙 + 𝑤̇𝑏)𝛿𝑤𝑟𝑒𝑙𝑑𝑥
𝐿

0
− ∫ 𝑐𝑠𝐼

𝐿

0
𝑤̇𝑟𝑒𝑙,𝑥𝑥𝑥𝑥𝛿𝑤𝑟𝑒𝑙𝑑𝑥 −

𝑣̇(𝑡)

𝑅𝑙
𝛿𝑣  

(5.19) 
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in the above-mentioned equations 𝐼𝑠, 𝐼𝑝 are second moment of inertia of the substrate and 

the piezoelectric layers. 𝐻(𝑥) is Heaviside (unit step) function to model concentrated 

coverage of electrodes in 𝑥-direction. 𝛿(𝑥) is Dirac delta function. 𝑄𝑝 is the first moment 

of inertia of the piezoelectric layers. 𝑐𝑎 and 𝑐𝑎 denote the viscous air damping and the 

structural strain rate (Kelvin-Voigt) damping coefficients.            

𝐼𝑠 = ∫ 𝑧2𝑑𝐴𝑠 =
𝐴𝑠

1

12
𝑏ℎ𝑠

3
 

(5.20) 

𝑄𝑝 = ∫ 𝑧𝑑𝐴𝑝
𝐴𝑝

=
1

2
𝑏ℎ𝑝(ℎ𝑝 + ℎ𝑠) 

(5.21) 

𝐼𝑝 = ∫ 𝑧2𝑑𝐴𝑝
𝐴𝑝

=
1

3
𝑏ℎ𝑝(ℎ𝑝

2 +
3

2
ℎ𝑝ℎ𝑠 +

3

4
ℎ𝑠
2) 

(5.22) 

𝐸𝐼 = 𝐸𝑠𝐼𝑠 + 2𝐸𝑝𝐼𝑝 (5.23) 

𝐸𝐼 is the total flexural rigidity (bending stiffness) of the cantilever beam in bending. After 

some mathematical operations, the system of coupled electromechanical partial integro-

differential equations of the cantilever-oscillator-spring piezoelectric beam is derived:  

𝜌𝐴𝑤̈𝑟𝑒𝑙(𝑥, 𝑡) + 𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) + 𝑐𝑎𝑤̇𝑟𝑒𝑙(𝑥, 𝑡) +

𝑐𝑠𝐼𝑤̇𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) − 𝛤2𝑣(𝑡)[ 𝛿́(𝑥) − 𝛿́(𝑥 − 𝐿)]=−𝜌𝐴𝑤̈𝑏(𝑥, 𝑡) −

𝑐𝑎𝑤̈𝑏(𝑥, 𝑡) − 𝑚𝑜𝛿(𝑥 − 𝐿)𝑤̈𝑏(𝑡) 

(5.24a) 

∫ 𝛤2

𝐿

0

𝑤̇𝑟𝑒𝑙,𝑥𝑥(𝑥, 𝑡)𝑑𝑥 +
𝐶𝑝

2
𝑣̇(𝑡) = −

𝑣(𝑡)

𝑅𝑙
 

(5.24b) 

𝑚𝑜(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡) + 𝑤̈𝑏(𝐿, 𝑡)) + 𝑘𝑠𝑤𝑠(𝑡) = 0 (5.24c) 

 where, 𝛤2 is:  

𝛤2 =
𝐸𝑝𝑄𝑝𝑑31

ℎ𝑝
 

(5.25) 

corresponding boundary conditions of the modeled system is: 
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𝑤𝑟𝑒𝑙(0, 𝑡) = 0 (5.26a) 

𝑤𝑟𝑒𝑙,𝑥(0, 𝑡) =0 (5.26b) 

𝑤𝑟𝑒𝑙,𝑥𝑥(𝐿, 𝑡) =0 (5.26c) 

𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥(𝐿, 𝑡) − 𝑚𝑜(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡)) = 0 (5.26d) 

  

5.3 Analytical Solution Approach Based on Galerkin’s Modal Decomposition 

Method 

Using the modal Galerkin’s decomposition, relative vibratory motion of the 

distributed-parameter system can be expressed by converging expansion series of temporal 

and spatial functions [35]:  

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑𝜙𝑛(𝑥)

∞

𝑛=1

𝜂𝑛(𝑡) 
(5.27) 

𝜙𝑛(𝑥) is the mass-normalized eigenfunction corresponding to the free vibration case and 

𝜂𝑛(𝑡) is the modal coordinate of the system in 𝑛th vibration mode. To find the 

eigenfunctions and the eigenvalues, spatial part can be assumed as an exponential function 

𝜂𝑛(𝑡) = 𝑒
𝑗𝜔𝑛𝑡 (however to find the time-domain response, 𝜂𝑛(𝑡) needs to be determined). 

𝑗 is the unit imaginary number, 𝜔𝑛 is the natural frequency of the system, and 𝑡 is the time 

variable. The undamped free vibration system is simply obtainable and the boundary 

conditions are identical to the main system:  

𝜌𝐴𝑤̈𝑟𝑒𝑙(𝑥, 𝑡) + 𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥𝑥(𝑥, 𝑡) = 0 (5.28a) 

𝑚𝑜(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡)) + 𝑘𝑠𝑤𝑠(𝑡) = 0 (5.28b) 

𝑤𝑟𝑒𝑙(0, 𝑡) = 0 (5.29a) 

𝑤𝑟𝑒𝑙,𝑥(0, 𝑡) =0 (5.29b) 
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𝑤𝑟𝑒𝑙,𝑥𝑥(𝐿, 𝑡) =0 (5.29c) 

𝐸𝐼𝑤𝑟𝑒𝑙,𝑥𝑥𝑥(𝐿, 𝑡) − 𝑚𝑜(𝑤̈𝑟𝑒𝑙(𝐿, 𝑡) + 𝑤̈𝑠(𝑡)) = 0 (5.29d) 

general proposed solution for 𝜙𝑛(𝑥) is a linear combination of trigonometric and 

hyperbolic functions: 

𝜙𝑛(𝑥) =
1

√𝜌𝐴𝐿
(𝑐𝑜𝑠ℎ 𝜆𝑛 𝑥 − 𝑐𝑜𝑠 𝜆𝑛 𝑥 −

𝑐𝑜𝑠ℎ 𝜆𝑛𝐿+𝑐𝑜𝑠 𝜆𝑛𝐿

𝑠𝑖𝑛ℎ 𝜆𝑛𝐿+𝑠𝑖𝑛𝜆𝑛𝐿
(𝑠𝑖𝑛ℎ 𝜆𝑛𝑥 −

𝑠𝑖𝑛 𝜆𝑛𝑥))  

(5.30) 

the equation of the oscillator should be solved first.  

𝑤̈𝑠(𝑡) + 𝜔𝑛𝑜
2𝑤𝑠(𝑡) − 𝜔𝑛

2𝜙𝑛(𝐿)𝑒
𝑗𝜔𝑡 = 0 (5.31) 

where 𝜔𝑛𝑜 represents the natural frequency of the oscillator (𝜔𝑛𝑜 = √𝑘𝑠 𝑚𝑜⁄ ). The 

particular solution (transient response) for oscillations of the oscillator is:  

𝑤𝑠(𝑡) =
𝜔𝑛

2

𝜔𝑛𝑜2 − 𝜔𝑛2
𝜙𝑛(𝐿)𝑒

𝑗𝜔𝑡 
(5.32) 

applying the natural boundary conditions of a clamped-free beam to Eq. (5.30), the 

transcendental characteristic equation is derived with 𝜆𝑛𝐿 as the roots (eigenvalues):       

(
𝑚𝑜𝐿

3

𝜌𝐴𝐿
𝜆𝑛
4 −

𝑘𝑠𝐿
3

𝐸𝐼𝐿
) (1 + 𝑐𝑜𝑠(𝜆𝑛 𝐿) 𝑐𝑜𝑠ℎ(𝜆𝑛 𝐿)) −

𝜆𝑛 (
𝑚𝑜

𝜌𝐴𝐿
) (

𝑘𝑠𝐿
3

𝐸𝐼
) (𝑠𝑖𝑛ℎ(𝜆𝑛𝐿) 𝑐𝑜𝑠(𝜆𝑛𝐿) − 𝑐𝑜𝑠ℎ(𝜆𝑛𝐿) 𝑠𝑖𝑛(𝜆𝑛𝐿)) = 0  

(5.33) 

 

introducing the mass ratio (𝑟𝑚 =
𝑚𝑜

𝜌𝐴𝐿
) and the stiffness ratio (𝑟𝑠 =

𝑘𝑠

(𝐸𝐼 𝐿3⁄ )
) parameters, one 

can re-write the transcendental nonlinear characteristic equation in the following format:  

 

𝑟𝑠𝑟𝑚(𝜆𝑛𝐿)(𝑠𝑖𝑛ℎ(𝜆𝑛𝐿) 𝑐𝑜𝑠(𝜆𝑛𝐿) − 𝑐𝑜𝑠ℎ(𝜆𝑛𝐿) 𝑠𝑖𝑛(𝜆𝑛𝐿)) − (𝑟𝑠 −

𝑟𝑚(𝜆𝑛𝐿)
4)(1 + 𝑐𝑜𝑠(𝜆𝑛 𝐿) 𝑐𝑜𝑠ℎ(𝜆𝑛 𝐿)) = 0  

(5.34) 
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Eq. (5.40) as a nonlinear transcendental equation does not have a closed-form (exact) 

solution. Consequently, numerical solvers are proposed. Among root-finding algorithms 

available, VPASOLVE is an efficient solver included within MATLAB software package. 

It is reported how to solve the mentioned characteristic nonlinear equation in the former 

chapter and to avoid duplication, next steps are to be mentioned here. After finding the 

eigenvalues of the system, one can find the time-domain response using Galerkin’s 

approach. Substitution Eq. (5.27) into Eq. (5.24a), multiplying both sides by 𝜙𝑚(𝑥) and 

integrating over the length of the beam along with benefiting the orthogonality of 

eigenfunctions, partial differential equation can be converted into time-domain ordinary 

differential equation:  

𝜂̈𝑛(𝑡) + (
𝑐𝑠𝐼

𝐸𝐼
𝜔𝑛

2 +
𝑐𝑎

𝜌𝐴
) 𝜂̇𝑛(𝑡) + 𝜔𝑛

2 𝜂𝑛(𝑡) = (𝜒𝑛𝑣(𝑡) + (𝜌𝐴𝛾𝑛 +

𝑚𝑜𝛾𝑛
𝑜)𝜔𝑒

2𝑌0𝑒
𝑗𝜔𝑒𝑡)/𝐵𝑛  

(5.35) 

where, 

𝐵𝑛 = ∫ 𝜙𝑛,𝑥𝑥(𝑥)𝜙𝑛
𝐿

0
(𝑥)𝑑𝑥   (5.36a) 

𝛾𝑛 = ∫𝜙𝑛(𝑥)𝑑𝑥

𝐿

0

 

(5.36b) 

𝛾𝑛 = 𝜙𝑛(𝐿) (5.36c) 

𝜒𝑛 = 𝛤2𝜙𝑛,𝑥|𝐿 
(5.36d) 

the excitation is assumed to be harmonic  

(𝑤𝑏(𝑡) = 𝑌0𝑒
𝑗𝜔𝑒𝑡) and, since the model is linear and based on the principle of 

superposition, output voltage can also be assumed as a harmonic function of identical 

argument with amplitude of 𝑉0 [35]:  
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𝑣(𝑡) = 𝑉0𝑒
𝑗𝜔𝑒𝑡 (5.37) 

substituting Eqs. (5.35) and (5.34) into Eq. (5.32) yields the following:  

𝑣̇(𝑡) +
1

𝜏𝑐
𝑣(𝑡) = −∑𝛩𝑛

∞

𝑛=1

𝜂̇𝑛(𝑡) 
(5.38a) 

𝜏𝑐 =
𝐶𝑝𝑅𝑙

2
 

(5.38b) 

𝛩𝑛 =
2𝛤2
𝐶𝑝
𝜙𝑛,𝑥|𝐿 

(5.38c) 

in energy harvesting systems, steady-state response of the vibratory part is of primary 

concern. Thus, particular answer part of the Eq. (5.35) is to be obtained:  

𝜂𝑛(𝑡) =
(𝜌𝐴𝛾𝑛 +𝑚𝑜𝛾𝑛

𝑜)𝑌0𝜔𝑒
2 + 𝜒𝑛𝑉0

𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
𝑒𝑗𝜔𝑒𝑡 

(5.39) 

in Eq. (5.39), 𝜁𝑛 is modal damping term [35]:  

𝜁𝑛 =
𝑐𝑎

2𝜌𝐴𝜔𝑛
+
𝑐𝑠𝐼

2𝐸𝐼
𝜔𝑛 

(5.40) 

now, substitution Eq. (39) into Eq. (38a) results the output voltage across the resistive load: 

𝑣(𝑡) =

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛 +𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒
3𝑌0

𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

𝑒𝑗𝜔𝑒𝑡 

(5.41) 

besides to the output voltage, shunted vibration response of the cantilever can be found as 

follows: 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) = ∑
1

√𝜌𝐴𝐿
(𝑐𝑜𝑠ℎ 𝜆𝑛 𝑥 − 𝑐𝑜𝑠 𝜆𝑛 𝑥 −

𝑐𝑜𝑠ℎ 𝜆𝑛𝐿+𝑐𝑜𝑠 𝜆𝑛𝐿

𝑠𝑖𝑛ℎ 𝜆𝑛𝐿+𝑠𝑖𝑛 𝜆𝑛𝐿
(𝑠𝑖𝑛ℎ 𝜆𝑛𝑥 −

∞
𝑛=1

𝑠𝑖𝑛 𝜆𝑛𝑥))

(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛
𝑜)𝑌0𝜔𝑒

2+𝜒𝑛

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛+𝑚𝑜𝛾𝑛

𝑜)𝛾𝑛𝜔𝑒
3

𝐵𝑛(𝜔𝑛
2−𝜔𝑒

2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

1
𝜏𝑐
+𝑗𝜔𝑒+∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛

2−𝜔𝑒
2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

𝐵𝑛(𝜔𝑛2−𝜔𝑒2+𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
𝑒𝑗𝜔𝑒𝑡  

(5.42) 
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5.4 Results and Discussion  

In this section parametric study of the steady-state response of the 

electromechanical system is to be elucidated. Piezoelectric systems under an input 

(mechanical excitation), operate with both transient and steady-state responses. Since 

energy scavenging takes place in long-time span, steady-state response is the desired one 

for analysis. The properties of the harvester piezoelectric beam are presented in the 

following table.  

 

Table 9. geometric and mechanical properties of beam [35] 

Beam length  𝐿 = 100𝑚𝑚 

Beam width 𝑏 = 20𝑚𝑚 

Substrate layer thickness  ℎ𝑠 = 5µ𝑚 

PZT layer thickness  ℎ𝑝 = 4µ𝑚 

PZT modulus of elasticity  𝐸𝑝 = 66 𝐺𝑃𝑎 

PZT mass density  
𝜌 = 7800

𝑘𝑔

𝑚3
 

PZT coupling coefficient  𝑑31 = −190
𝑝𝑚

𝑉
 

PZT permittivity at constant strain 
𝜀33

𝑠 = 15.93
𝑛𝐹

𝑚
 

   

It is proved in the benchmark that synchrony of the driving frequency with the 

natural frequencies results in leap in the output voltage. Furthermore, such remarkable 

upheavals pertain to the first three vibration modes. As a result, excitation frequency range 

is considered to cover the first three vibration modes of the mechanical part. Since, the 

effect of various resistive load values over the output voltage and the shunted vibration 

response are widely explained in the benchmark, we take a representative value of 𝑅𝑙 =

106Ω for current analysis. As a standard scale to figure out the responses of a system, 

eletromechanical frequency response function (FRF) is provided. Damping ratio is 
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considered as following values which are obtained experimentally by Erturk and Inman 

[35]: 

 

Table 10. Proportional damping values for first three modes of vibration [35] 

𝜁1 𝜁1 𝜁1 

0.010 0.013 0.033 

  

Mostly, in coupled electromechanical systems voltage FRF is described as the 

modulus of the output voltage to the base acceleration.         

𝑣(𝑡)

𝑔̈(𝑡)
=

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛 +𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

 

(5.43) 

accessing the voltage function, the power frequency response function is simply 

obtainable:  

𝑝(𝑡)

𝑔̈(𝑡)
= (

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛 +𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

)2/𝑅𝑙 

(5.44) 

  

5.5 Optimizing the Energy Harvester via Soft Computing Techniques  

After proposing a new type of piezoelectric vibration-based energy harvesters 

(PVEH) based on the model of cantilever-oscillator-spring system, variational concepts of 

advanced continuous vibrations and dynamics were employed to derive the governing 

differential equations and the corresponding boundary conditions. It was observed that the 

new type of elastic boundary condition at the tip end of the cantilever appoints a relative 

motion for the oscillator. This means that there are three distinct relative motions 

(oscillations) with respect to the Eulerian coordinates. Three distinct degrees of freedom 
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(DOF) of such proposed model encompass: the base motion, the cantilever motion, and 

the oscillator motion. Degrees of freedom (DOF) in terms of vibrations though is one order 

more. Since the system deals with mechanical oscillations and the resulting electric charge; 

a total of four DOF are to be considered in variational approach. It was well-described and 

studied that the adoption of spring which results in the distinct and relative motion of the 

oscillator, ends up in three coupled integral-partial differential equations. Two of the 

mentioned equations are titled mechanical equations with electrical coupling and the 

electrical equation is usually called the electrical equation with mechanical coupling. 

Moreover, the oscillation of the oscillator significantly changes the shearing boundary 

condition. Such impact is derived from the inertial effect of the oscillator when the system 

is in vibration and oscillation. Due to such mutation, the corresponding characteristic 

equation is a much more complicated transcendental nonlinear equation than the equation 

of the conventional system. After solving the mentioned equation using VPASOLVE 

algorithm in MATLAB, it was observed that for a wide range of the oscillator mass and 

the spring constant; the first eigenvalue is remarkably dragged to the left and close to the 

origin. For the conventional system (cantilever), the first eigenvalue is at the vicinity of 

1.8749. The generation of such a minimal eigenvalue is strikingly beneficial for the PVEH 

particularly at small scales. For micro-electro-mechanical-systems (MEMS) energy 

harvesters, it is well-studied and reported in the literature that the first resonance is a large 

value meaning that resonance takes place at high frequencies. Such an increment in 

frequency value is usually due to the shrinkage in the system’s dimensions. On the other 

hand, the excitation (driving) frequency as the external frequency and generated at the 

background, is mostly limited to a few hundreds of hertz. To compensate such a drawback 
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and incommensurateness, it is essential to alter systems vibrational characteristics and 

devise more efficient PVEH. In this response, the cantilever-oscillator-spring system is 

modeled in this dissertation. Eventually, tuning of PVEH is crucially important and vital. 

As far as the PVEH is not well-tuned the harvestable amount of electric energy is trivial. 

Such energy harvesting systems are inefficient and practically unapplicable to the 

industrial level implementations. Tuning of a PVEH mostly alludes to two distinct features 

of the harvester: the oscillator mass and stiffness constant of the spring. Tuning such 

factors leads to development and improvement in two vital features of the harvester: 

reinforcing the maximum amount of the harvested energy particularly throughout initial 

resonances as well as widening the effective (operational) frequency bandwidth. As 

mentioned earlier, optimizing PVEH from maximum harvested energy and maximum 

operational (effective) frequency bandwidth aspects, is vitally essential to improve and 

develop the PVEH efficiency. 
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Figure 34. Tuned PVEH perspective 

 

The well-tuned piezoelectric vibration-based energy harvester (PVEH) should be 

able to render the most feasible amount of electric power (or voltage), and the most 

widened effective (operational) frequency bandwidth (EFBW). The mentioned 

qualifications mostly are important spanning through the first few resonances. The reason 

for this is: most vibrating elements oscillate at the vicinity of the initial vibration modes. 

Higher vibration modes require very strong and specific motivations and excitements 

which is mostly rare in the physical realistic world. At the end it is good to note that such 

a tuning problem falls in the optimization category:   

Maximum Electric Voltage: It is expressed in the preceding chapter that the 

maximum amount of electric voltage of a harvester system (PVEH) takes place at the first 

resonance. This fact is certainly conditional to the harmonic type of base excitations. In 

other words, harmonic type of excitation is assumed to motivate the harvester to oscillate 

Maximum 
extracted 
voltage

Widened 
effective 

frequency 
bandwidth

Tuned 
PVEH
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and vibrate. Comprehensive analysis of the electric frequency response function (FRF) is 

submitted in the former chapter and only the conclusion is used in this episode. Obviously, 

any continuous vibration system has infinite numbers of degrees of freedom (DOF) and 

consequently infinite numbers of resonances. However, in analyzing the electric FRF only 

the first few resonances are of importance. This is because in the higher vibration modes, 

the extractable amount of electric voltage is diminished. So, it suffices to mainly focus on 

the first vibration mode (or the few initial modes) in terms of mechanical and electrical 

analysis. Obviously, the desired situation and performance of any harvester is to extract 

and harness (scavenge) as much electric voltage (power) as viable and feasible. This means 

it is desired to maximize the performance of the PVEH so that the tuned and maximized 

system renders the most electric power.  

Widened Effective (Operational) Frequency Bandwidth (EFBW): Another feature 

to assess the performance of any PVEH is the operational frequency bandwidth. Besides 

the maximum extractable voltage amount, the frequency bandwidth that the harvester 

operates is also of major vitality. There are several PVEHs that have great potential to 

convert mechanical energy into big huge amount of electrical energy; but, the operating 

frequency bandwidth is not wide enough to cover acceptable frequency range and span. 

So, widening the EFBW of a PVEH directly determines the system’s success and 

operation.  

In conclusion, the goal is to tune the PVEH in terms of maximizing the resonance 

voltage and widening the effective and operational frequency bandwidth. Basically and as 

mentioned earlier, such problems are maximization optimization problems. For any 

optimization problem, design parameters are to be well-addressed, clearly specified and 
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customized according to the current demands. For particular and specific values of design 

parameters, the objective function yields the optimal value. Such specific and particular 

design parameter values are titled the optimal parameters and the value of the desired 

function is entitled the optimal value. For minimization optimization problems the 

objective function is interchangeably called the cost (loss) function. In contrast, in 

maximization cases, the mentioned function is titled as the utility or fitness function. In 

short; in this part of the current chapter, two separate optimization case studies are 

delivered:  

 

5.5.1 Optimizing the Extractable Voltage Amount at the First Resonance:  

The closed-form solution found previously for the proposed PVEH, is a hard-to-

assess function. The process of finding the voltage (electric) frequency response function 

(FRF) includes the following steps: first, the roots of the nonlinear transcendental 

characteristic equation are to be found. Since the equation is transcendental one, it does 

not have any exact solutions and numerical methods are adopted inevitably. Among such 

methods, the VPASOLVE algorithm requires decent initial guesses. To estimate such 

suitable guesses, the characteristic equation is plotted and visualized. In this section the 

human being inference and deduction is required to make an initial guess. After finding 

the roots which are indeed the system’s eigenvalues, several coefficients are to be found 

and substituted in the voltage FRF. The mentioned integral coefficients are mostly 

expensive in terms of computational time and resource power as they are based on multi-

functions of hyperbolic and trigonometric functions. There are two major issues in this 

whole process. First of all, the process is not automated. It means there is not any 
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programming script which can accomplish disparate steps in a single run. The very first 

step (finding the roots/eigenvalues) cannot be rendered by a computer or programming 

algorithm. As mentioned, this step needs an operator’s insight and visualizing inferences. 

In other words, the analyzer (human being operator) needs to deduce and infer the 

eigenvalue initial guesses. The second issue refers to the huge number, and highly 

complicated computations which requires fast and strong processor and power resources 

with super powerful compiling capabilities. In other words, the derived voltage function 

is a hard-to-evaluate function since it is computationally expensive.  On the other side, to 

find the optimal values of mass and spring constant an optimization algorithm should be 

applied and implemented. Such an optimizer mostly launches with an initial population of 

guesses titled as the candidate solutions. Such candidate solutions will undergo particular 

operations (e.g., in the case of genetic algorithm; genetic operations like: mutation, 

crossover, etc.). The result will be a set of solutions titled offspring population which 

genetically have superior features. This process will be iterated several times until a 

satisfactory level of solutions are obtained or there is no further convergence available. In 

each iteration, the objective function will be evaluated. Depending on the complexity of 

the problem, such objective functions will be evaluated hundreds, thousands, or even 

millions of times. Function evaluation requires a strong processor and compiler. 

Particularly if the function is too complicated, the optimization computational time costs 

will be unaffordable. In the first part of this section, it is already well detailed how and 

why the electric frequency response function (FRF) is a hard-to-assess function with non-

automated (algorithmic) steps as well as the computational unaffordable costs. Due to the 

mentioned issues, it sounds necessary to find a decent regressor (estimator) which plays 
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the role of a function approximator. In other words, it is implied that the closed-form 

voltage FRF cannot be utilized in function evaluation in the optimization process. 

Consequently, it is indispensable to approximate the function using regression algorithms 

and execute the genetic algorithm with such an estimator. Such function approximator 

should be capable of finding the patterns in the electric FRF and render decent 

approximations. To do so, neural networks (or any machine learning regression 

algorithms) can be adopted. On the other hand, fuzzy logic is a superior method as it can 

utilize human reasoning for taking decisions, fuzzy logic can handle nonlinearity and 

uncertainty well. Consolidation and integration of fuzzy logic and neural networks is 

formed in ANFIS (adaptive-neuro-fuzzy-inference-system) toolbox in MATLAB. The 

proposed neural network fuzzy inference model captures the mass of the oscillator, and 

stiffness of the spring; and yields an approximation for the electric (in this case the voltage) 

value. Consolidation of the fuzzy logic, neural networks, and the genetic algorithm; forms 

a soft computing approach for the case studies in this chapter. After finding the optimal 

values of the design parameters (the oscillator mass and the spring constant) by means of 

the soft computing algorithms; the analytical methods (presented in former chapters and 

sections) will be implemented to verify the correctness and soundness of the soft 

computing method (the fuzzy logic, the neural network, and the genetic algorithm). So that 

several random values for the design parameters will be adopted arbitrarily. Voltage FRF 

will be then compared between the random parameter values and the optimal values. Such 

a comparison can validate the correctness of the designed soft computing algorithms. 

Adaptive-Neuro-Fuzzy-Inference-System (ANFIS): as for explaining ANFIS 

shortly, one needs to first consider the fuzzy logic (FL) or fuzzy inference system (FIS). 
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FL mainly pertains to the multivalued logic. Fuzzy boundaries have a distinct and bold 

difference than classical logics. Fuzzy boundaries are not crisp, unlike the classical 

boundaries with clearly defined crisp set. Another feature of FL alludes to the fact that 

fuzzy sets are basically established based on the linguistic variables and words rather than 

numbers and numeric entities. Computations and reasoning based on linguistic variables 

are inherently less precise than numbers; though, such type of operation for decision taking 

is close to human intuition. Moreover, linguistic-based decisional operations exploit the 

tolerance for imprecision and lower the computational and solution costs subsequently. 

Fuzzy rules are mainly formed according to the simple if-then rules. An ever-growing 

trend pertains to the application of fuzzy logic in combination with genetic algorithm and 

neuro-computing. As mentioned earlier in this chapter, such a subtle combination is titled 

soft computing. On contrary to hard computing, soft computing accommodates the 

imprecision in the real world, exploits the tolerance and error for imprecision, captures and 

takes into account the uncertainty and nonlinearity, provides robustness, decreases the time 

computations and costs, and renders partial truth to gain tractability. It is expected the soft 

computing will play a remarkably important role in the design of futuristic systems with 

strikingly high machine IQ (MIQ). One of the major benefits rendered by neuro-fuzzy 

systems is to balance a tradeoff between precision and significance. Fuzzy logic as a black 

box simply maps an input space to an output space. Such a black box is better than most 

of the artificial intelligence algorithms since it is faster and cheaper, conceptually it is easy 

to understand for human beings since it is an intuitive approach, deals with uncertainty and 

error tolerance, can model nonlinearity, or functions with high complexity. All if-then 

rules in FL take the role of mapping inputs to outputs. Fuzzy rules are executed in parallel. 
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Within the structure of a fuzzy system, we have fuzzy sets with fuzzy boundaries and can 

contain elements with partial degree of membership. Another constituent of FL is the 

membership functions (MFs). A MF defines how each point in the input space is mapped 

to a membership value or degree of membership between zero and one. There are eight 

built-in MFs in MATLAB. However, it is feasible to devise a new MF from scratch. In the 

design of any MF, it is valuable to consider some factors including the: convenience, 

efficiency, simplicity, and speed or computational time. Two linear built-in MFs include: 

the trapezoidal and triangular functions. These are the fastest MFs with lower precision 

and simple structure. On the other hand, we have nonlinear MFs like: Gaussian, Gaussian2, 

Generalized Bell shaped, sigmoidal, double sigmoidal, polynomial sigmoidal. Fuzzy 

operations mainly include fuzzy intersection or conjunction (AND), fuzzy union or 

disjunction (OR), and fuzzy complement (NOT). Classical operators for the motioned 

functions are: AND ≡ min, OR ≡ max, NOT ≡ additive complement. Fuzzy sets and 

operators are the subjects and verbs of fuzzy rules. If-then rules are then used to formulate 

the conditional statements that comprise the fuzzy logic. In FL, interpreting the if-then 

rules involves two steps: evaluation of the antecedent and application of the result to the 

consequent.  

Integration of fuzzy logic with neural networks ends up in adaptive-neuro (network-

based)-fuzzy-inference-system (ANFIS). ANFIS executes the FL using neural networks. 

In a plain language, designing a fuzzy inference system needs adoption of MFs specifying 

limits and statistical parameters. It means how much of a function span is overlapped with 

the other function. What part of a function is interfered mathematically with another 

function. In other words, the function curve distributions are so important. Such function 
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distribution can be accomplished using neural networks. Benefits of utilizing the neural 

networks instead of manual MF distribution may pertain to more accuracy while keeping 

the computational costs as low as possible. This means efficient adoption of the functions. 

However manual procedure requires a high level of experience. Even with high 

experience, the process may be a burden and time-consuming.  

 

Figure 35. FIS schematic structure 

 

In Figure 35, the schematic structure of fuzzy inference systems is provided in a 

single chart. The first step is the fuzzification step: in the fuzzification step; we utilize the 

MF to determine the degree to which the inputs belong to each appropriate fuzzy set (i.e., 

linguistic variables and semantic descriptions). Output of the fuzzification step is numeric 

value. Now, such numeric value is fed to the fuzzy rules.  

 

Fuzzification
Fuzzy 

operators
Implication

Aggregation
De-

fuzzification
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Figure 36. Fuzzy inference structure to make the aggregated output. 

 

Fuzzy rules consist of antecedents and consequents with fuzzy operators including 

AND (min), OR (max), NOT (complement). Output of the fuzzy operators is to be fed to 

the implication step. Before the implication step, we can apply a weight to the rules to alter 

a specific rule effect over the others. This can be helpful when some specific rules are prior 

to the others and have a stronger impact. Implication: using implication the antecedents 

will be signified and implicated to the sequels. So, implication will be used to generate the 

consequents, which is a fuzzy set represented by MF. For each rule, the implication process 

from antecedent to consequent will take place. Input to the implication process is a single 

number and the output is a fuzzy set. In implication we have two built-in methods to imply 

the antecedents to consequent: AND (min) which truncates the output fuzzy set; and prod 

(product) which scales the output fuzzy set. Since we have multiple fuzzy rules in FIS, we 

need to integrate and incorporate all such rules into a single one. Aggregation is the process 

by which the fuzzy sets representing outputs of each rule will be combined into a single 
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fuzzy set. As long as the aggregation is a commutative process, then the order in which the 

rules are executed is unimportant. Three built-in methods for aggregation encompass: Max 

(OR), propor (probabilistic OR), sum (sum of the rule output sets).  Eventually, last step 

is the de-fuzzification step to yield the final result. De-fuzzification: input to this step is 

the aggregated single fuzzy set (linguistic variables-semantic descriptions) and the output 

will be a numeric entity. Five built-in methods for de-fuzzification encompass: centroid, 

bisector, middle of maximum (the average of the maximum value of the output fuzzy set), 

largest of maximum, and smallest of maximum. 

 

Figure 37. FIS editors and viewers in MATLAB 
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Figure 37 summarizes different steps in the FIS toolbox in MATLAB. In fuzzy 

logic designer section, one can change and modify inference settings. In the Membership 

function editor, one can modify input-output membership functions in terms of statistical 

features and the distribution. In Surface viewer the membership functions and the 

generated rules are observable in a graphical user interface (GUI) platform. In rule viewer, 

one can readily and instantly test input-output relationships. In the rule editor, one can 

modify or define the fuzzy rules including the if-then rules.   

After providing a comprehensive explanation regarding the fuzzy inference system 

(FIS) structure and how it works, it is readily describable to state what adaptive-neuro-

fuzzy-inference-system (ANFIS) is comprised of and how it works. Main part of the 

ANFIS is the FIS. ANFIS is a superior choice to FIS which is made up manually, as the 

neural network helps in integration and formation of the membership functions and fuzzy 

inference part. However, to benefit from such a privilege, one needs to provide sufficient 

and pre-processed dataset. So, ANFIS takes advantage of both fuzzy logic and neural 

networks in a single platform. The only limit to ANFIS alludes to the fact that since it is 

based on the Takagi-Sugeno inference logic, only systems with single output are qualified.     
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Figure 38. Schematic of the 5 layers in ANFIS 

 

Figure 38 visually depicts the five layers implemented in an ANFIS structure. The 

first layer is the inputs. Such inputs depend on the number of entities describing the system 

input. Per each input specific number of membership functions (MFs) will be allotted. 

Premise (antecedence) set will be formed in this step. This step is usually titled as the 

fuzzification layer. In the second layer, strength fuzzy rules are generated. So, this layer is 

usually called the rule layer. In the third layer, the computed firing strengths are 

normalized. This process can be readily doable by dividing each value to the total firing 

strengths value. In the fourth layer, the consequence set, and the normalized value of the 

firing strength are taken. Values returned by this layer are de-fuzzified and fed to the last 

layer. In the last layer, the output of the fourth layer is aggregated, and the final output is 

achieved.  

In this section, using the closed-form solution captured in the preceding chapter, 

voltage frequency response function (FRF) is to be discussed and plotted. For the two 

influential factors (oscillator mass, and spring stiffness coefficient); it is already stated that 
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the voltage FRF is altered and mutated strikingly with respect to various values of the 

mentioned parameters.   

 

Figure 39. Voltage frequency response function with respect to excitation frequency 

(constant mass ratio) 

 

As a recap from the former chapter, and to consider the effects of the restoring force 

effects resulting from the spring, constant value for mass ratio is adopted. It is evident that 

for very big values of the spring stiffness, two resonant voltages are observed. While, 

adopting a weaker spring (less stiff or a soft spring) with more flexibility in elongations 

results in three resonant voltages. Based on the figure provided, it can be concluded that 

number of resonant voltages is more dependent on the stiffness ratio and mass ratio 

implicitly alters the amount of harvestable voltage in each resonance. It is also good to 

note that the pure and sheer effects of the mass of the oscillator are reported in the former 

chapter in detail. Thus, considering the fact that for some values of the spring constant the 

minimal (newly-generated) resonance at the vicinity of the origin is observed; it sounds 
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essential to consider a wide range of spring constant along with oscillator mass to peruse 

the optimization problem of the proposed energy harvester.     

Training ANFIS for the first resonance voltage: it is proved in the literature that the 

maximum voltage corresponds to the first resonance. So, only the first vibration mode is 

studied. Besides, to train the FIS by means of the neural network a decent dataset is 

required. Such dataset will be divided into three sections in which one of them will be 

utilized to train the FIS. Since the current case study has two inputs, a minimum of 100 

datasets should suffice. It is derived from the concept that per each degree of freedom at 

least 10 data samples are needed. So, for a two-DOF system 10 by 10 results in 100 dataset. 

231 cases (11 different values for 𝑟𝑚 and 21 different values for 𝑟𝑠) have been perused 

using the closed-form expressions for electrical FRFs. The first three eigenvalues along 

with all of the coefficients have been found for such cases.   

 

𝑟𝑠 = [10
−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106] 

𝑟𝑚 = [10
−4, 0.005, 10−3, 0.005, 10−2, 0.05, 10−1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,  

2.5, 5, 7.5, 10, 102]  

 

The generated dataset (available in the appendix) of the resonance voltages is 

divided into train set (80%), validation (checking) set (10%), and test set (10%). Test 

dataset is used to evaluate the performance of the trained model on the new and previously 

unseen data. On the other hand, validation (checking) dataset is created to avoid overfitting 

of the model. It is also good to note that overfitting and underfitting mainly pertain to the 

complexity of the model. If the model is too simple, it will fail to predict with the train 

dataset, this is known as the underfitting issue. Such models are computationally cost-
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effective, but practically they lack precision. Increasing the complexity of the model leads 

to more accurate predictions and regression performance on the train dataset. However, 

this will also result in more computational time and effort and slows the regressor model 

pace and speed. Besides the computational cost issue, highly complex models perform 

well with the train dataset but fail to operate correctly with the new previously unseen 

datasets in terms of accuracy and precision of the estimations. This is known as the 

overfitting issue which means the model fails to generalize with unseen data. Similarly, 

such too complex models are impractical and not desired. To avoid the overfitting issue 

by means of cross validation technique, ANFIS toolbox in MATLAB is equipped with 

checking (validation) dataset. In this section fuzzy inference systems (FISs) are designed 

and trained based on the eight built-in membership functions (MFs) available in MATLAB 

fuzzy toolbox.  

 

 

Figure 40. Neuro Fuzzy designer 
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The neuro fuzzy designer application in MATLAB is toolbox is shown in Figure 

40. Due to the type of the input dataset distribution, it is required to pre-process the data 

and scale them in an effective expression range. To do so, input datasets are converted into 

the logarithm range to the base of 10. Features adopted to train the FIS based on the built-

in MFs are summarized in Table 14:  

 

Table 11. ANFIS training properties 

Number of MF for 𝑟𝑚: 8 Neural network 

optimization: Hybrid 

Fuzzy type: Takagi 

Sugeno (MISO) 

Number of MF for 𝑟𝑠: 8 Number of Epochs: 300 Number of Fuzzy rules: 64 

Type of MF: Gaussian Error tolerance: 0  

FIS Generation: Grid 

partitioning 

Output MF type: Constant  

 

Table 12 shows a brief comparison between different types of membership 

functions executed with 8 functions per each input (total of 64 fuzzy rules in the fuzzy set) 

and 300 epochs as the number of times the training dataset has been passed through the 

learning procedure.  

 

Table 12. Comparison of various built-in membership functions (MFs) 

MF type Train RME Test RMSE Validation RMSE 

Triangular 0.66464 1.2794 0.69288 

Trapezoidal 0.50462 0.89916 1.34183 

G-Bell shaped 0.14981 0.21771 0.207997 

Gauss 0.34832 0.55443 0.30657 

Double Gauss 

(Gauss2) 

0.42936 0.67454 0.64669 

Polynomial 4.4771 8.8079 6.9751 

Double sigmoid 1.0146 1.9336 1.1787 

P-sigmoidal 1.018 1.9495 1.1778 
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The table presented in the above section compares disparate membership functions 

in terms of accuracy in training the membership functions (MFs). Such a comparison is 

assessed based on the root-mean-square-error (RMSE) for train dataset, RMSE of test 

dataset, and RMSE of checking (validation) dataset. Obviously, it is shown that 

Generalized-Bell shaped (G Bell shaped) type of membership functions show the least 

root-mean-square-error (RMSE) for all datasets. This means that fuzzy system established 

based on the Generalized-Bell shaped functions have the most accuracy and precision as 

well as the most generalization. Generalization refers to the capability of the fuzzy system 

to avoid overfitting. A generalized system has the power to predict unseen data with a high 

level of accuracy. Such a regressor system has small test RMSE. Besides the Generalized-

Bell shaped MFs, Gaussian MFs rank the second place as the best function to train an 

adaptive network based fuzzy system. Best here means the function with most accuracy in 

capturing the structure of train dataset along with the smallest RMSE for previously unseen 

dataset. The latter particularly alludes to the generalization feature. After choosing the type 

of the best membership functions, the next step is to come up with the proper number of 

the membership functions per degree of freedom (input). To do so, a trial-and-error 

procedure is adopted to pick the proper number of membership functions per input along 

with a decent number of epochs. Such an effort is considered to reach a high level of 

accuracy along with reasonable time computations to find a cost-effect fuzzy system. It 

means the major goals are: Accuracy and precision of the regressor (estimator, 

approximator) FIS, Computational costs in terms of time. 
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Table 13. Evaluation of Gaussian MF, 300 epochs 

Number of 

MFs 

Number of 

Epochs 

Train RMSE 

error 

Test RMS 

error 

Validation 

RMSE error 

4 by 4 300 8.1471 10.6965 7.9777 

5 by 5 300 5.575 6.5074 5.8024 

6 by 6 300 2.5022 2.8248 2.0664 

7 by 7 300 0.71071 1.0824 0.97397 

8 by 8 300 0.34832 0.55443 0.30657 

9 by 9 300 0.25229 3.2761 4.016 

10 by 10 300 0.22361 54.9307 21.4041 

11 by 11 300 0.077939 182.4772 182.5246 

 

Taking different numbers of MFs with Gaussian MF also called Gauss MF, 

corresponding RMSE values of the train, test, and validation datasets are found. It is 

observed that the number of epochs does not significantly alter the RMSE. RMSE 

diminishes gradually as the epoch number increases. However, the number of MFs 

strongly and highly impacts the performance of the FIS. So, to reach the desired accuracy 

level, MF numbers as the role-playing factor are to be scrutinized. In contrast, the epoch 

number is a minor factor which is not as important as the number of MFs. The epochs 

number only increases the time computations with minimal modification over the 

performance of the FIS. This is the main reason to keep the epoch numbers constant and 

mainly alter the membership function numbers.   
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Figure 41. RMSE with respect to the Gaussian fuzzy rule numbers 

 

To visualize the RMSE value for the trained fuzzy system using Gaussian MF with 

different numbers of fuzzy rules, Figure 48 is presented. It is clear that the fuzzy system 

with 64 rules demonstrates the least RMSE for test and validation datasets. Expectedly, 

the train RMSE declines with higher fuzzy rules. For example, the fuzzy system with 121 

rules, has much better RMSE value for train dataset. But, the test and validation RMSEs 

are significantly and adversely big. This fact points to the overfitting issue. So, setting the 

test RMSE as the major criteria, the 64-fuzzy rule system with Gaussian MF looks the 

most accurate and efficient choice.        
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Figure 42. RMSE with respect to the Gaussian fuzzy membership function numbers 

 

Similar results of the Gaussian type fuzzy inference systems (FIS) are shown in 

figure 42 with respect to the number of MFs. Expectedly, the FIS with 8 by 8 MFs yields 

the most accurate system with the least test and validation (checking) dataset RMSE 

values.        

 

Table 14. Evaluation of Generalized-Bell shaped MF, 300 epochs 

Number of 

MFs 

Number of 

Epochs 

Train RMSE 

error 

Test RMS 

error 

Validation 

RMSE error 

4 by 4 300 3.9852 4.66 3.9007 

5 by 5 300 1.4319 1.5073 1.4736 

6 by 6 300 1.3714 1.6408 0.80779 

7 by 7 300 0.71116 1.2121 0.83427 

8 by 8 300 0.14981 0.21771 0.208 

9 by 9 300 0.22531 0.6286 1.0404 

10 by 10 300 0.13322 68.6687 17.8264 

11 by 11 300 0.078786 182.4359 183.2008 

 

The same procedure is performed here for the Generalized-Bell shaped MFs. 

According to the explanation provided in the above section, the number of fuzzy rules or 
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number of fuzzy membership functions is of primary concern. Disparate values of MFs 

numbers are assigned to the Generalized-Bell MF to train the fuzzy inference system.  

 

 

Figure 43. RMSE with respect to the Generalized-Bell shaped fuzzy rule numbers 

 

To compare the RMSE values of the fuzzy systems trained with G Bell 

(Generalized-Bell shaped) MFs, figure 43 is presented. RMSE is plotted with respect to 

the number of MFs allotted per MF. It is good to note that identical numbers of MFs are 

assigned for each input. Visually, the 8 by 8 fuzzy system shows the least RMSE value.    
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Figure 44. RMSE with respect to the Generalized-Bell shaped fuzzy membership function 

numbers 

 

The same demonstration is duplicated with respect to the number of fuzzy rules. 

Proving findings in figure 44, the G Bell MFs with 64 fuzzy rules result in the smallest 

RMSE value for test and checking (validation) datasets. Now, based on the two adopted 

MFs, fuzzy inference system is to be designed as demonstrated in the following section:     
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Figure 45. Fuzzy logic designer application setting 

 

This figure represents the fuzzy logic file of the first FIS established based on the 

Gaussian MFs. In the ‘And method’, the production method is adopted (‘prod’), ‘Or 

method’ is established based on the ‘probor’ which refers to the probability. ‘implication’ 

is formed due to the ‘min’ which represents the minimum value, and the ‘Aggregation’ is 

taken by means of the ‘max’ which means the maximum values. Aggregation step 

integrates and incorporates all of the fuzzy output results into a single output. Finally, in 

the defuzzification step, the ‘wtaver’ is used meaning the averaging method.  
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Figure 46. Fuzzy logic membership function editor – first input 

 

In Figure 46, 8 Gaussian-type membership functions for stiffness ratio are adopted 

and depicted in the range of [−4,6]. Parameters of such functions are tuned using neural 

networks. Visually the MFs are uniformly and symmetrically distributed.  
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Figure 47. Fuzzy logic designer application setting – second input 

 

In Figures 47, 8 Gaussian-type membership functions for mass ratio are chosen and 

depicted in the range of [−4,2]. Parameters of such functions are tuned using neural 

networks. Similar to the MFs of the stiffness ratio, a uniform distribution is observed in 

this case.  
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Figure 48. Fuzzy logic rule viewer 

 

Gaussian-type membership functions of each input (𝑟𝑚 𝑎𝑛𝑑 𝑟𝑠) generate total of 64 

fuzzy rules. Corresponding fuzzy rules generated from the Gaussian type MFs are shown 

in figure 48. Such a rule viewer is conducive in interpreting the fuzzy inference process in 

a single observation. It also shows how the shape of the MFs influences the overall result 

of the fuzzy inference mechanism. It can be readily tested by changing the inputs to see 

the outcoming result.   
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Figure 49. Fuzzy inference verbose rule editor 

 

The verbose format of the mentioned fuzzy rules is shown in figure 49. Fuzzy rules 

are established based on the truncation of the fuzzy sets using the ‘AND’ (minimum) 

operator arranged with identical unit weight per set.   
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Figure 50. Fuzzy inference symbolic rule editor 

 

This picture shows the fuzzy rules in the symbolic format. The rule editor is shown 

by symbols in this figure. The relation between inputs, the weights, and the connection 

type are all shown.   
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Figure 51. Fuzzy inference indexed rule editor 

 

Rule editor in indexed format is represented in figure 51. The three above figures 

show the same thing in different expression languages and formats.  
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Figure 52. Fuzzy inference surface viewer 

 

This figure shows the graphical demonstration of the rules using the graphical user 

interface (GUI) available in MATLAB. This figure is shown in three dimensions to depict 

the corresponding rule curves with respect to the inputs (mass ratio and stiffness ratio).  

Now in the following section, similar steps in training the fuzzy inference system based 

on the G-Bell (Generalized-Bell) shaped membership functions are presented.  
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Figure 53. Fuzzy logic designer application setting 

 

Besides the implementation of Gaussian MFs, a second fuzzy inference system is 

to be designed based on the Generalized-Bell shaped MFs. Thus, in the fuzzy logic 

designer application in MATLAB, the G-Bell shaped (Generalized-Bell shaped) 

membership functions (MFs) are being utilized for both of the inputs to train the reasoning 

fuzzy inference system (FIS) using neural network. In the ‘And method’ the ‘prod’ option 

is used showing the production, ‘Or method’ is established based on the ‘probor’ which 

represents the probability. ‘implication’ is founded according to the ‘min’ representing the 

minimum value, and the ‘Aggregation’ is formed using ‘max’ meaning the maximum 

values. The aggregation step integrates and consolidates all of the fuzzy output results into 
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a single output. Finally, for defuzzification, the ‘wtaver’ is used meaning the averaging 

method.  

 

Figure 54. Fuzzy logic membership function editor – first input 

 

In this section, 8 Generalized-Bell shaped membership functions are used to 

distribute the first input functions in the range of [−4,6]. The mentioned first input pertains 

to the stiffness ratio.  
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Figure 55. Fuzzy logic membership function editor – second input 

 

Functions determining the degrees of membership of the second input (mass ratio) 

are shown in figure 55. Distribution range is [−4,2]. The functions plot shows the 

Generalized-Bell features with a smooth acme (summit) per each function.    
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Figure 56. Fuzzy inference verbose rule editor 

 

Rule editor is provided in figure 56 to show the fuzzy rules of the system in the 

verbose format. Fuzzy sets are connected to each other using the ‘and’ method, with unit 

identical weight of 1 per each entity.  
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Figure 57. Fuzzy inference symbolic rule editor 

 

Figure 57 represents the fuzzy rules generated via the Generalized-Bell shaped MFs 

in the symbolic format. It is actually the same rules expressed in symbols than verbose.  
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Figure 58. Fuzzy inference indexed rule editor 

 

Eventually, the mentioned fuzzy rules in the indexed format are shown in figure 58. 

With this figure, all three types of fuzzy rules expression are provided and presented.    
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Figure 59. Fuzzy logic rule viewer 

 

Rule viewer is presented in figure 59 to enable designer to interpret the fuzzy 

inference process at once. From this figure, it is also inferable to deduce how certain shape 

of membership functions influences the overall result. This means how the reasoning is 

justified and formed in the fuzzy rules.  
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Figure 60. Fuzzy inference surface viewer 

 

Finally, to represent the 3-dimensional (3-D) configuration of the fuzzy rules, 

surface viewer is provided. The inputs are located on the horizontal axes and the output is 

shown on the vertical axis.  

By training and designing the fuzzy inference systems (FISs) using the neural 

networks, the function approximator (regression-estimator model) can be fed to the genetic 

optimization algorithm to find the optimal values for the inputs to yield the maximum 

resonance voltage with respect to the specific values of the mass and stiffness ratios. Such 

specific values are called the optimal design parameters.  

Genetic optimization algorithms: Genetic optimization (GA) algorithm is a 

population-based, global optimization method. It is a metaheuristic approach inspired by 



 

154 

 

the process of natural selection which belongs to the bigger class named evolutionary 

algorithms. GA starts with randomly generated solutions called candidate solution. GA 

then evaluates each individual in a generation, meaning that GA finds the fitness of each 

individual with respect to the objective function. Now, GA sorts the individuals in a 

generation according to the level of fitness. It means that more fit individuals are listed at 

the top. Now, picking a finite number of more fit individuals, and applying genetic 

operations (mutation, selection, cross-over, …) results in a new generation called 

offspring. Such offspring (genome) generation is even more fit than the selected 

individuals at the former population (parent’s generation). Among different types of 

genetic operations, mutation applies a kind of jump with the hope of finding further optima 

in the whole domain, but cross-over tries to exploit the current individual to see if it can 

make it better in the smaller sub-domain. Such iterative process goes on and terminates 

until a satisfactory level of fitness is obtained or a maximum number of offspring is 

generated. As outlined in the above section, solutions need to be selected based on a well-

defined procedure. In genetic algorithms there are several selection methods proposed for 

selecting and choosing among the potential optimal solutions. Selection is indeed the stage 

of a genetic algorithm in which individual genomes (offspring) are chosen from a 

population for later breeding (using the crossover operation). Genetic selection works 

based on the following methods: the evaluation of each individual with fitness values is 

being revealed. Such values are then normalized. Normalization means dividing the fitness 

value of each individual by the sum of all fitness values, so that the sum of all resulting 

fitness values equals unity. Accumulated normalized fitness values are to be computed in 

the next step. The accumulated fitness value of an individual is the sum of its own fitness 
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value plus the fitness values of all the previous individuals; the accumulated fitness of the 

last individual should be unity, otherwise something is wrong with the normalization step. 

A random number R between 0 and 1 is adopted in an arbitrarily fashion. The selected 

individual is the first one whose accumulated normalized value is greater than or equal 

to R. For many problems the above algorithm might be computationally demanding. A 

simpler and faster alternative uses the so-called stochastic (random) acceptance. If this 

procedure is repeated until there are enough selected individuals, this selection method is 

called fitness proportionate selection or roulette wheel selection. If instead of a single 

pointer spun multiple times, there are multiple, equally spaced pointers on a wheel that is 

spun once, it is called stochastic universal sampling or random sampling. Repeatedly 

selecting the best individual of a randomly arbitrarily chosen subset is titled as the 

tournament selection. Taking the best half, third or another proportion of the individuals 

is called the truncation selection. There are other selection algorithms that do not take into 

account all individuals for selection, but only those with a fitness value that is higher than 

a given arbitrary constant are considered. Other algorithms select from a restricted pool 

where only a certain percentage of the individuals are allowed and picked, based on fitness 

value. Retaining the best individuals in a generation unchanged in the next generation is 

called elitism or elitist selection. It is a successful (slight) variant of the general process of 

constructing a new population. Roulette wheel: In the roulette wheel the probability of 

choosing an individual for breeding of the next generation is proportional to its fitness, the 

better the fitness is, the higher chance for that individual to be chosen. Choosing 

individuals can be depicted as spinning a roulette that has as many pockets as there are 

individuals in the current generation, with sizes depending on their probability. The 
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probability of choosing an individual pertains to the size of the generation and where the 

fitness belongs. In this approach, one single individual can be adopted several times. 

Stochastic universal sampling (random): it is a technique for selecting potentially useful 

solutions for recombination. It was introduced by James Baker. In this method there is no 

bias or partiality in choosing a specific individual. After choosing several numbers 

randomly, a single random value is used to sample all of the chosen solutions at an evenly 

spaced interval of numbers. Such a concept of randomness provides weaker numbers in 

terms of fitness and the chance to be adopted. In optimization problems, determining the 

design parameters range is a first step. It is supposed for the spring constant to stay in the 

interval of 𝑟𝑠 = [0.1, 100] and the oscillator mass to fall in the interval of 𝑟𝑠 = [0.01, 2].  

 

 

Figure 61. Objective function (resonance voltage) optimizing track – Gaussian FIS 

 

This figure demonstrates the evolutionary path of the genetic algorithm in finding 

the optimal solution for the resonance voltage. Three different types of selection 

approaches (roulette wheel, tournament, and random) are applied within the genetic 
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operations. Since the desired case is to maximize the electric voltage at the vibrational 

resonance, the objective function is a fitness (utility) function in terms of maximization 

problem. For this case, the genetic algorithm is being fed up by the Gaussian type of MFs.  

    

Table 15. Optimization algorithm properties and information 

GA Selection 

type 

Optimal 

rm 

Optimal 

rs 
Initial 

solution 

Optimal 

solution 

Total 

NFE 

Roulette 

wheel 

100 2 (105,26.4575) (820,26.7948) 11050 

Tournament 100 2 (105,26.587) (765,26.7948) 11050 

Random 100 2 (105,26.5679) (490,26.7948,) 11050 

population 50 

iteration 200 

FIS Gaussian 

 

Evolutions and operations of the adopted selection approaches integrated with the 

genetic algorithm are summarized in Table 16. According to this table and Figure 68, the 

optimal value for the oscillator mass is: rm = 2 and that of the spring constant is: rs =

100. The genetic algorithm has accomplished 11050 numbers of function evaluations 

(NFEs). The algorithm initiated with 50 candidate solutions which also conveys the 

number of populations in each generation. The maximum number of iterations per 

evolution is set at 200. Random selection reaches the optimal solution in the least 

computational effort and is the most cost-effective selection method. Roulette wheel 

initiates with the weakest candidate solutions and reaches the optimal solution in the most 

computationally expensive effort. In other words, the mentioned selection approach 

showed the weakest behavior. Tournament selection launches with the best initial solution 

and performs better than the roulette wheel. However, the random selection method 

renders the most cost-effective performance as it reaches the optimal solution in 
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remarkably shorter computations. In short, the random selection method reaches the 

optimal solution with the least evolutionary path jumps and genetic mutations.      

 

 

Figure 62. Objective function (resonance voltage) optimizing track – Generalized-Bell 

FIS 

 

Table 16. Optimization algorithm properties and information 

GA Selection 

type 

Optimal 

rm 

Optimal 

rs 
Initial 

solution 

Optimal 

solution 

Total 

NFE 

Roulette 

wheel 

100 2 (105,27.4287) (380,27.6038) 11050 

Tournament 100 2 (105,27.6024) (820,27.6038) 11050 

Random 100 2 (105,27.4664) (985,27.6038) 11050 

population 50 

iteration 200 

FIS Generalized-Bell shaped 

 

Evolutions of the mentioned selection approaches integrated with the fuzzy system 

of Generalized-Bell shaped (G-bell) MFs is illustrated in figure 62 with information 

summaries in Table 19. Accordingly, the obtained optimal values for the oscillator mass 

are: rm = 2 and that of the spring constant is: rs = 100. This means that using either 
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Gaussian MFs or Generalized-Bell shaped MFs, identical results are observed. The only 

difference pertains to the estimated value for the maximum value of the utility (fitness) 

function. The genetic algorithm has accomplished 11050 function evaluations. The 

algorithm initiated with 50 candidate solutions in each generation with a maximum of 200 

iterations per evolution. In comparison, roulette wheel reaches the optimal solution in a 

strikingly faster evolutionary path. All three selection approaches are initiated with almost 

identical initial (candidate) solutions but they track different evolutionary paths to reach 

the optimal solution. Tournaments and random selections trace more computations and 

require computationally expensive paths to reach the optimal solution. As a final comment, 

it is noted that, since the nature of the genetic algorithm as a population-based evolutionary 

global optimization method is established based on stochastic adoption of solutions, 

different performance of the algorithm is expected in each set of running and the 

comparison between roulette wheel, tournament, and random selection methods are valid 

only for this current run. Eventually, to ensure the correctness of the proposed genetic 

algorithms, several values of the mass and stiffness ratios are adopted and tested.      

 

Table 17. Evaluation of the proposed optimization algorithm using ‘readfis’ for various 

values of inputs (design) values 

𝑟𝑠 𝑟𝑚 Maximum voltage Percentage (%) 

1E+10 0 4.847469 49.47116 

0.01 0.01 3.344365 3.12311 

100 0.01 3.342263 3.05829 

0.01 1 15.77137 386.3084 

1 1 14.64587 351.6036 

100 1 13.61919 319.9463 

100 2 24.38628 651.9481 
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Based on Table 18, the proposed genetic optimization algorithm ends up in the 

maximum (optimal) value of the utility function. Such results verify the correctness of the 

method adopted. Moreover, adopting two different types of fuzzy inference systems (one 

based on the Gaussian MFs and the other based on the G-Bell shaped MFs); same result is 

obtained for the design parameters. Such nominated optimal values will be used in the 

closed-form solution to find the electrical frequency response function (FRF). Using the 

nominated optimal values, one needs to plot the nonlinear transcendental characteristic 

equation to estimate the initial guesses. Such initial guesses will be utilized in the 

VPASOLVE algorithm to numerically solve the mentioned equation and to find the 

eigenvalues.  

 

 

Figure 63. Plotting the characteristic equation at the vicinity of the first eigenvalue 

 

This figure shows the nonlinear characteristic equation at the vicinity of the first 

eigenvalue. The mentioned eigenvalue seems to be a number close to 1.07. 
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Figure 64. Plotting the characteristic equation at the vicinity of the second eigenvalue 

 

The second eigenvalue (root) of the cantilever-oscillator-spring system looks to be 

at the vicinity of 3.713. 

 

Figure 65. Plotting the characteristic equation at the vicinity of the third eigenvalue 

 

The third eigenvalue of the mentioned system appears at the vicinity of 5.65. Such 

plots are helpful in estimating the initial guesses for the VPASOLVE algorithm to find the 

numerically solved eigenvalues of the system. Providing such initial guesses found by 
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plotting the characteristic equation, VPASOLVE numerically solves the mentioned 

equation for the first three roots as summarized in the following table:  

 

Table 18. Numerically-solved eigenvalues by means of VPASOLVE 

𝑟𝑠 𝑟𝑚 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

0

100 

2

2 

1.069820232696740

0384678732708611 

3.713273412667149

6406982206795232 

5.651559108089050

9527882164100682 

 

To further evaluate and assess the correctness of whole soft computing procedure 

(the adaptive-network based fuzzy inference system (ANFIS) and the genetic algorithm); 

the optimal values found through the ANFIS, and genetic algorithm are used to find the 

voltage frequency response function (FRF) via the analytical and closed-form solution.   

 

Figure 66. Voltage frequency response function (FRF) 

 

Voltage frequency response function (V-FRF) is demonstrated in figure 66 to 

compare with eight random cases with arbitrary values of mass and stiffness ratios. It is 

noteworthy to mention again that Such findings are depicted using the closed-form 

solution for electrical FRFs. It is verified that the optimal piezoelectric vibration-based 
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energy harvester (PVEH) including the stiffness or spring constant of 0.01 times the 

flexural rigidity (bending stiffness) of the cantilever and an oscillator 2 times the mass of 

the cantilever; yields the maximum (optimal) voltage at the first resonance. Such findings 

improve the accuracy of the trained neuro fuzzy inference system and the genetic algorithm 

(soft computing algorithm). Furthermore, the resonant voltage at the second and the third 

vibration modes are also the biggest for the optimal case. This means that optimizing the 

PVEH with respect to the first vibrational mode automatically tunes and optimizes the 

system for the second and the third resonances as well. Finally, the corresponding 

operational frequency bandwidth is widened (considering the first and third modes). It is 

good to note that the latter two points (maximum voltages at the second and third 

resonances along with the widened effective frequency bandwidth) are studied separately 

in the following sections of the current chapter.       

 

Figure 67. Voltage frequency response function (FRF) 

 

This figure shows the same results (voltage FRF) with respect to the standard scale. 

In the former figure, the logarithmic scale was adopted. The current figure shows the same 
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results as mentioned in the above part showing that the harvester system with mass ratio 

of 2 and stiffness ratio of 0.01 leads to the most harvestable energy. 

   

5.5.2 Optimizing the Effective (Operational) Frequency Bandwidth (EFBW) 

As mentioned in the above sections of current chapter, the efficiency and success 

of a piezoelectric vibration-based energy harvester (PVEH) is mostly based on two items: 

the maximum amount of extractable voltage and the frequency bandwidth in which the 

harvester covers. The former one is studied comprehensively in terms of optimization, and 

the optimal values of the oscillator mass and spring constant are determined. In this 

section, the same procedure will be accomplished to determine the optimized PVEH in 

terms of effective (operational) frequency bandwidth. The optimal system will cover the 

most frequency bandwidth possible between the minimal resonance frequency and the 

third frequency. It is also noteworthy that the minimal resonance frequency is the one 

which is generated due to the oscillations of the oscillator at the tip end. Such oscillations 

differ from the cantilever’s modal behavior and strikingly alter such modal and vibrational 

behavior. Another important note is the third frequency which occurs at the conventional 

system’s second resonance. In response to the ambiguity why the third resonance is 

preferred to the second one for assessing the frequency bandwidth; one would interpret the 

first two resonances take place at a close vicinity. Which means they are closely located 

next to each other. In detail, the newly generated resonance at small values and close to 

the origin, is resulted from the integration of the oscillator subsystem. Such integration 

mutates the cantilever’s vibratory modes. As the new resonance is very close to the other 

following resonance, the operational bandwidth seems to be fair if considered between the 
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first (new) resonance and the third one. After defining the preliminaries of the current 

chapter, the main goal of this section is to widen the operational frequency bandwidth as 

much as possible. There is a wide range of oscillator mass and spring constant values to 

alter the mentioned factor. In other words, the major contribution of this section is to find 

the optimal oscillator mass and spring stiffness, so that the effective frequency bandwidth 

is widened the most, which results in development and improvement in PVEH 

applications. To do so, a maximization optimization problem has to be solved. As a short 

recap, due to the non-automated process of voltage and mechanical frequency response 

functions (FRFs) evaluations along with high computational costs (in terms of curse of 

high time computations); training a decent regressor (estimator, function approximator) 

model looks necessary. The designed estimator will be utilized in function evaluation step 

in the genetic algorithm to find the optimal parameters. Eventually, the nominated 

parameters will be used in the closed-from solution to evaluate the correctness of the soft 

computing process. More elaboration and explanation in this response is thoroughly 

discussed in the resonance voltage optimization part.  

Training ANFIS for the first and the third resonance frequencies: due to the nature 

of the ANFIS, two separate fuzzy inference systems (FISs) are to be designed, in which 

one estimates the first resonance frequency value and the other one predicts the third 

resonance frequency value. This mainly pertains to the ANFIS reasoning structure which 

is established based on the Takagi-Sugeno inference system. The mentioned system can 

accept multiple or single inputs but yields only single outputs. So, the ANFIS supports 

only the MISO or SISO. Moreover, design parameters are the inputs. Such specific values 

are to be found and titled as the optimal values rendering the optimal and developed energy 
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harvester. Same input dataset used in the previous section are considered here. 231 cases 

(11 different values for 𝑟𝑚 and 21 different values for 𝑟𝑠) have been taken as the input 

dataset range. The output is obtained using the closed-form solution available in the 

mechanical FRF representing the resonance frequencies. Thus, the first three eigenvalues 

along with all of the coefficients have been found for such cases.   

 

𝑟𝑠 = [10
−4, 10−3, 10−2, 10−1, 1, 10, 102, 103, 104, 105, 106]  

𝑟𝑚
= [10−4, 0.005, 10−3, 0.005, 10−2, 0.05, 10−1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2.5, 

 5, 7.5, 10, 102]  

 

Similar to the former section of current chapter, the generated dataset of voltage 

resonances is divided into train dataset (80%), validation (checking) dataset (10%), and 

test dataset (10%). Although a comprehensive explanation about the ANFIS and data pre-

processing is mentioned in the former section, it is good to note some of major points in 

short. Train dataset is expectedly used to train the model and capture the structure for the 

purpose of prediction and estimation. Test dataset is considered to evaluate the 

performance of the fuzzy inference system (FIS) which is trained using neural networks. 

This dataset is previously unseen to the model and assesses the model performance in 

terms of prediction capability. On the other side, checking (validation) dataset is supposed 

to be employed to avoid overfitting in the model. Too complicated models are usually 

capable of predicting the new dataset properly. However, the algorithm will be slow (due 

to the time computations) and more importantly the algorithm will most likely fail to 

generalize and exhibit a decent performance with respect to the new unseen dataset. A 

thorough explanation is elaborated in this response in the following section. Similar to the 
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previous section, the raw dataset including the oscillator mass and the spring constant (as 

the inputs) and the resonance frequencies (as the output); need to be pre-processed before 

being employed in the training section. Similarly, taking the logarithm of the input dataset 

to the base of 10, the dataset is ready to be uploaded.       

In the following section, all eight built-in MFs are adopted to train fuzzy inference 

systems as regressor for the first resonance and the third resonance values. Similarly, the 

criteria to choose the most accurate membership function (MF) is the root-mean-square-

error (RMSE) of the train, test, and validation (checking) dataset. In the tables, the root-

mean-square-error (RMSE) are reported per each FIS and the corresponding training 

dataset errors, test dataset errors, and the validation dataset errors are also reported. Such 

comparison makes the decision-making process easier to take the best MF to use in the 

design of the FIS, and later to choose the proper number of membership functions as well. 

Best here refers to the most accurate MF with the least test RMSE and trained RMSE, 

respectively.  

 

Table 19. Membership function type evaluation for the first resonance 

MF type Train error Test error Validation error 

Triangular 0.0068735 0.13659 0.096411 

Trapezoidal 0.010127 0.13489 0.10126 

Bell 0.0069811 0.13598 0.092355 

Gaussian 0.0068203 0.13632 0.092211 

Gaussian2 0.0094394 0.13704 0.098782 

Polynomial 0.037733 0.12612 0.11003 

Polynomial-

sigmoid 

0.0011285 0.14043 0.09739 

Double sigmoid 0.011307 0.14044 0.097398 

Epochs 300 

Number of MFs 7 by 7 
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Complicated and nonlinear MF usually start with better initial guesses. While the 

simple and linear MF (e.g., trapezoid and triangular) usually initiate with weak start offs 

(big RMSE) and as a result require more epochs and computational efforts. According to 

the different root-mean-square-error (RMSE) for train, test, and validation datasets; it is 

evident that Gauss, polynomial, trapezoidal, and bell type of membership functions show 

the best performance in capturing the structure of the dataset and ending in the least test 

error. Since, as for all the mentioned MFs, the resulting RMSE is small number, all of the 

mentioned MF stay in the acceptable region to be adopted to train the network. Although, 

the value of RMSE for test dataset looks more important in adopting the proper MF, other 

RMSE values (RMSE for train and validation datasets) can be handy and conducive in 

cases where, the test RMSE values are close to each other. In other words, since the test 

RMSE values for the mentioned MFs are highly close to each other, we rely on the values 

of the train and validation RMSE values as the alternative priority and criteria. Doing so, 

Gaussian MF looks the best function with the best RMSE values for overall train, test, and 

validation dataset root-mean-square-errors (RMSEs).   

  

Table 20. Membership function type evaluation for the third resonance 

MF type Train error Test error Validation error 

Triangular 0.0097362 0.16244 0.031308 

Trapezoidal 0.012658 0.16402 0.024406 

Bell 0.0085471 0.15886 0.022625 

Gaussian 0.008666 0.15791 0.018515 

Gaussian2 0.0088859 0.16234 0.014357 

Polynomial 0.014318 0.16453 0.025687 

Polynomial-

sigmoid 

0.0088589 0.16211 0.014197 

Double-sigmoid 0.00888698 0.16211 0.014218 

Epochs 300 

Number of MFs 7 by 7 
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A similar assessment process is accomplished to choose the best operational 

membership function (MF) for training the neural networks and fuzzy inference sets to 

estimate the third resonance frequency. To recall from the previous sections, the third 

resonance alludes to the second resonance of the conventional system. In Table 23, eight 

(8) different types of the built-in membership functions (MFs) are trained in a seven (7) 

by even (7) membership function sets for each case and 300 epochs. Error tolerance is set 

to 0. By comparison, bell, and Gaussian MFs reveal the smallest RMSE corresponding to 

the test dataset. Taking advantage of the RMSE for train and validation datasets, Gaussian 

MF yields the best MF with least root-mean-square-error overall. In other words, the fuzzy 

system established based on the Gaussian functions has the most accuracy as well as the 

most generalization which enables the system to avoid overfitting. Such a system shows 

the best performance with previously unseen and new dataset.  

  

Table 21. Gaussian membership function number evaluation for first resonance 

Number of 

MFs 

Number of FIS 

rules 

Train RMSE 

error 

Test RMS 

error 

Validation 

RMSE error 

4 by 4 16 0.020586 0.13979 0.098779 

5 by 5 25 0.012186 0.14225 0.13314 

6 by 6 36 0.0051999 0.14459 0.11353 

7 by 7 49 0.0068761 0.13632 0.092211 

8 by 8 64 0.0030542 0.14326 0.088407 

9 by 9 81 0.00313 0.42387 0.44046 

10 by 10 100 0.0005196 0.18506 0.38915 

11 by 11 121 0.00043178 0.27641 0.61551 

 

After choosing the most accurate type of MF to train the fuzzy inference system; 

number of membership functions (MFs) per each input, and the corresponding number of 

generated fuzzy rules for the entire fuzzy inference system are to be determined. It is good 

to note, since the adaptive-neural-fuzzy-inference-system (ANFIS) was established based 
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on the Takagi Sugeno system, it accepts only the MISO (multi input single output). As a 

result, two different types of ANFIS systems are designed, one for the minimal (first) 

resonance prediction, and the other one for estimating the third resonance. Identical 

numbers of the MFs are considered for each input. The ANFIS system is designed for 

various numbers of the MF revealing the corresponding RMSE for train, test, and 

validation datasets. 64-fuzzy-rule system looks the best one as it has the smallest overall 

RMSE values. The only close performance pertains to the 49-fuzzy-rule system which has 

better test RMSE but slightly bigger train and validation RMSE values.  

 

Figure 68. RMSE with respect to the Gaussian fuzzy rule numbers 

 

Results of the above table are plotted to demonstrate the trained RMSE, test RMSE, 

and validation RMSE with respect to the fuzzy rule numbers. The fuzzy system with 64 

rules exhibits the most precise performance as mentioned in the above section.      
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Figure 69. RMSE with respect to the Gaussian fuzzy MF numbers 

 

Results of the above table are plotted to demonstrate the train RMSE, test RMSE, 

and validation RMSE with respect to the fuzzy rule numbers. The fuzzy system with eight 

by eight (8 by 8) architecture exhibits the most precise performance. The interesting 

finding refers to the RMSE decrement with the ten by ten (10 by 10) fuzzy system. 

However, such a fuzzy system does not perform as accurately as the fuzzy system of eight 

by eight (8 by 8) rule sets.  

 

Table 22. Gaussian membership function number evaluation for third resonance 

Number of 

MFs 

Number of 

FIS rules 

Train RMSE error Test RMS 

error 

Validation 

RMSE error 

4 by 4 16 0.028322 0.15453 0.032258 

5 by 5 25 0.0314667 0.16453 0.027144 

6 by 6 36 0.012834 0.15349 0.020544 

7 by 7 49 0.008666 0.15791 0.018515 

8 by 8 64 0.0084171 0.21796 0.16123 

9 by 9 81 0.00042842 0.38683 0.30777 

10 by 10 100 0.00045149 0.57157 1.0133 

11 by 11 121 0.00025684 1.0601 1.0177 
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Table 23 is provided to compare different numbers of MFs and the corresponding 

generated fuzzy rules for the third resonance. Starting from a five by five (5 by 5) fuzzy 

system and increasing up to eleven by eleven (11 by 11) fuzzy system; the 49-fuzzy-rule 

system generated from a seven by seven (7 by 7) system performs the most accurately due 

to the least overall train, test, and validation RMSE values.   

 

 

Figure 70. RMSE with respect to the Gaussian fuzzy rule numbers 

 

To visualize the third resonance RMSE values for train, test, and validation 

datasets; the following figure is presented. It is observable that the 49-fuzzy-rule system 

performs with the least RMSE values.   
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Figure 71. RMSE with respect to the Gaussian fuzzy MF numbers 

 

To demonstrate the RMSE values with respect to the MF numbers, figure 71 is 

presented. Similarly, the seven by seven (7 by 7) fuzzy system operates the most accurately 

with the least root-mean-square-error. As the proper number and type of the MFs are 

adopted throughout the assessment procedure, it is required to train the fuzzy inference 

system (FIS) accordingly. Consequently, in the following section all the details and steps 

in establishing the FIs are pictured and elaborated.  
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Figure 72. Fuzzy logic designer application setting 

 

Figure 72 shows the fuzzy inference system (FIS) architecture trained using neural 

networks for the first (minimal) resonance. Since there are two inputs (the mass and the 

stiffness ratios), along with a single output (minimal resonance frequency) and the system 

is a MISO, Takagi Sugeno type of fuzzy systems is adopted. Production (‘pord’) is adopted 

as for the ‘And’ method. Probably (‘propor’) is chosen for the ‘Or’ method. Finally, 

defuzzification is established based on the ‘wtaver’ (averaging).   
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Figure 73. Fuzzy logic membership function editor – first input 

 

This figure shows the membership function (MF) distributions for the stiffness 

ratio. The eight (8) Gaussian type MFs are distributed in the interval of [−4, 6]. Statistical 

information of the chosen values is available in the ‘Params’ section.  
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Figure 74. Fuzzy logic membership function editor – second input 

 

A similar image is provided for the mass ratio as the second input to the MISO 

inference system. The only difference refers to the interval in which in this case it is: 

[−4, 2] as well as the statistical values.    
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Figure 75. Fuzzy logic verbose rule viewer 

 

Rules of the trained FIS are depicted in figure 75. A total of 64 rules are generated 

from the 8 by 8 fuzzy structure. The rules are connected with each other by ‘and’ 

connection method and with unit weight per rule.   
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Figure 76. Fuzzy inference symbolic rule editor 

 

Rule editor in symbolic format is represented in figure 76. Connection type is based 

on the ‘and’ or minimum type. Unit identical weight is also considered per each fuzzy rule.   
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Figure 77. Fuzzy inference indexed rule editor 

 

Fuzzy rules are depicted in the indexed format in figure 77. The three recent figures 

all represent the same concept in different formats. Connection types are obvious in the 

application. One can readily apply specific inputs and observe the outcome output in a 

single trial.  
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Figure 78. Fuzzy inference rule viewer 

 

Figure 78 illustrates the rule viewer separating the two inputs and the resulting 

output. Such a rule viewer illustrates the inference process of the designed fuzzy inference 

systems (FIS). In the viewer, it is feasible to adjust each of the input values and observe 

the resulting output per each fuzzy rule. Such output is the aggregated output fuzzy set and 

the defuzzied value(s).            
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Figure 79. Fuzzy inference surface viewer 

 

Surface viewer of the rules is also demonstrated in figure 79. This is a 3-

dimenstional (3-D) plot showing the dependency of the first resonance to the inputs on the 

stiffness coefficient and the oscillator mass.  
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Figure 80. Fuzzy logic designer application setting – third resonance 

 

Fuzzy inference system (FIS) architecture is plotted in figure 80 for the third 

resonance. ‘And’ method is established based on the ‘prod’ meaning the production of the 

entities, ‘Or’ method is designated to ‘probor’ alluring to the probabilistic computations, 

and ‘Defuzzification’ is formed according to the ‘wtaver’ pertaining to the averaged values 

of the output fuzzy sets.  
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Figure 81. Fuzzy logic membership function editor – third resonance 

 

Seven fuzzy membership functions (MFs) of the built-in Gaussian type are utilized 

for modeling the first input (stiffness ratio). The mentioned fuzzy MFs are distributed from 

-4 to 6. Functions are distributed in a non-symmetric fashion.  
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Figure 82. Fuzzy logic membership function editor – third resonance 

 

Seven Gaussian MFs for the second input (mass ratio) are scattered from -4 to 2 to 

capture and model the third resonance. Similar to the stiffness ratio MFs, function 

distributions are not symmetric in this case.   
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Figure 83. Fuzzy inference verbose rule editor 

 

Regarding the third resonance, adopting 7 by 7 Gaussian MFs, total of 49 fuzzy 

rules are generated with ‘and’ connection approach and the unit identical weight per each. 

This figure is in the verbose format.   
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Figure 84. Fuzzy inference indexed rule editor 

 

Fuzzy rules of the second inference system for estimating the third resonance 

frequency are depicted here, in the symbolic format.  
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Figure 85. Fuzzy inference symbolic rule editor 

 

The mentioned rules are shown in the indexed fashion in figure 85. As a brief note, 

all the three figures (Figures 90, 91, and 92) represent the fuzzy rules in different fashions. 

One can easily connect the particular type of input one to input two, and then observe the 

resulting output as the consequence.   
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Figure 86. Fuzzy inference rule viewer 

 

To view the inference process of the trained fuzzy inference system (FIS) for the 

third resonance, figure 86 is presented. Specifying numeric values for the inputs, the 

defuzzified values for the third resonance as is obtainable.  
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Figure 87. Fuzzy inference surface viewer 

 

3-D plot of the fuzzy rules pertaining to the third resonance is illustrated in figure 

87. Input1 pertains to the spring constant value, input2 refers to the oscillator’s mass value, 

and the output yields the corresponding value for the third resonance.  

By training and designing the fuzzy inference system using neural networks, the 

function approximator (regression model) can be fed up to the genetic optimization 

algorithm to find the optimal values for the inputs to yield the maximum effective 

(operational) frequency bandwidth between the minimal (first) resonance and the third 

resonance. As a recap the reason for considering such a frequency bandwidth from the 

minimal resonance rather than the second resonance is due to the fact that such a minimal 

resonance does not take place in all of the design parameter values, and this way the impact 
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of the new system configuration over the effective bandwidth is highlighted. Determining 

the design parameters range is a first step in optimization design problems. It is supposed 

for the spring constant to stay in the interval of 𝑟𝑠 = [0.01, 1] and the oscillator mass to 

fall in the interval of 𝑟𝑠 = [0.01, 2.5]. Since a comprehensive explanation regarding the 

genetic optimization algorithm is presented in the proceeding section of current chapter, 

directly the results of the soft computing algorithm are presented here:        

 

 

Figure 88. Objective function (operational frequency bandwidth) optimizing track 

 

This figure demonstrates the evolutionary path of the genetic algorithm in finding 

the optimal solution for the effective frequency bandwidth. Three different types of 

selection approaches (roulette wheel, tournament, and random) are applied within the 

genetic operations. Since the desired case is to widen the effective frequency bandwidth, 

the objective functions are indeed fitness (utility) functions in terms of maximization 

problem.     
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Table 23. Optimization algorithm properties and information 

GA Selection 

type 

Optimal 

𝑟𝑚 

Optimal 𝑟𝑠 Initial 

solution 

Optimal 

solution 

Total 

NFE 

Roulette 

wheel 

0.01 2.5 (63,2458.74) (360,2472.08) 3330 

Tournament 0.01 2.5 (63,2458.74) (426,2472.08) 3330 

Random 0.01 2.5 (63,2466.45) (690,2472.08) 3330 

population 100 

iteration 30 

FIS Generalized-Bell shaped and Triangular  

 

Evolutions and operations of the adopted selection approaches integrated with the 

genetic algorithm are summarized in figure 88. According to the mentioned table and 

figure, optimal value for the oscillator mass is: 𝑟𝑚 = 2.5 and that of the spring constant is: 

𝑟𝑠 = 0.01. The genetic algorithm is executed for 3330 number of function evaluations 

(NFEs). The algorithm initiated with 30 candidate solutions which also conveys the 

number of populations in each generation. The maximum number of iterations per 

evolution is set to 100. Roulette wheel reaches the optimal solution in the least 

computational effort and is the most cost-effective selection method. Random selection 

initiates with a better initial solution but evolves with more computations. The tournament 

launches with the same initial guess as the roulette wheel but requires more computational 

time than the others to find the optimal solutions. In short, the roulette wheel catches the 

optimal solution in the most cost-effective evolutionary path. As the final note, it is evident 

that roulette wheel shows more efficiency as it evolves with less genetic jumps 

(evolutions), tournament operates with medium genetic operational jumps and random 

traces a more complicated evolutionary track with several genetic operations. At the end 

it is noteworthy that such a comparison between different types of the selection methods 

is valid only for current results. It means that due to the nature of the genetic algorithm, 
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running the algorithm yields different evolutionary paths according to the selection types 

in each time it is run. After finding the optimal solution via soft computing algorithms 

which is combination of the fuzzy logic, neural networks, and the genetic algorithm; it is 

intended to assess the performance of the whole soft computing algorithm. To do so, the 

optimal design parameter values will be picked for the analytical solution which is found 

as a closed-form expression in the prior chapters. So, for specific mass and stiffness ratios 

(optimal values), the voltage frequency response function (FRF) is to be obtained and 

compared against several randomly-chosen case studies. Such a comparison is expected to 

certify the fact that the effective frequency bandwidth of the optimal solution is the most 

widened. To find the voltage FRF, the following steps are to be accomplished: Using the 

nominated optimal values, one needs to plot the nonlinear transcendental characteristic 

equation to estimate the initial guesses. Such initial guesses will be utilized in the 

VPASOLVE algorithm to numerically solve the mentioned nonlinear transcendental 

characteristic equation and to find the eigenvalues.   



 

193 

 

 

Figure 89. Plotting the characteristic equation at the vicinity of the first eigenvalue 

 

Zooming in the neighborhood of the first eigenvalue, the first root should stay at 

the vicinity of 𝜆1𝐿 = 0.25. 

 

Figure 90. Plotting the characteristic equation at the vicinity of the second eigenvalue 
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Neighborhood of the second root of the characteristic equation is shown in Figure 

97. Second root initial guess sounds to fit 𝜆2𝐿 = 1.8766. 

 

Figure 91. Plotting the characteristic equation at the vicinity of the third eigenvalue 

 

This figure is plotted to estimate the third eigenvalue of the cantilever-oscillator-

spring system. Visually, 𝜆3𝐿 = 4.69409 appears to be a decent guess.  

Feeding such estimations to the VPASOLVE, following values are obtained as the 

eigenvalues of the system:  

 

Table 24. Numerically-solved eigenvalues using VPASOLVE 

𝑟𝑠 𝑟𝑚 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

0.01 2.5 0.251277483823365 1.87661935315381 1.87661935315381 

 

It is good to recall that the obtained values are solved using a numerical root-solving 

algorithm. So, such values are approximate solutions as the nonlinear transcendental 

equations do not have an exact (closed form) solution. To evaluate the adaptive-network 

based fuzzy inference system (ANFIS) and the genetic algorithm; the optimal values found 
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through the ANFIS, and genetic algorithm are used to find the voltage frequency response 

function (FRF) by means of the closed-form solution found in the preceding chapters.    

 

 

Figure 92. Voltage frequency response function (FRF) 

 

Figure 92 depicts the voltage FRF for 9 case studies along with the reference case 

(pure cantilever). Oscillator mass and spring constants are chosen randomly. It is evident 

that the effective (operational) frequency bandwidth of the optimal solution is wider than 

any other case. In other words, this figure approves the authenticity and correctness of the 

ANFIS system consolidated with the genetic algorithm. Besides to the verification of the 

ANFIS-genetic algorithm, findings reveal that the weak (soft) spring and the heavy 

oscillator contribute to the most widened energy harvester which is the desired factor in 

designing the piezoelectric vibration-based energy harvesters (PVEHs). In the figure, the 

black line with optimal values of: 𝑟𝑚 = 2.5, 𝑟𝑠 = 0.01 operates with the most widened 

effective frequency bandwidth in comparison to the 8 cases studies. Similar to the former 
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section, voltage frequency response function (FRF) is found using the analytical-numerical 

method.       

 

5.6 Conclusion 

Harvested electric energy from conventional PVEH is mostly at small orders 

making the application of such devices less frequent. Another issue with the mentioned 

systems is the inefficient operating (effective) frequency bandwidth. To compensate for 

such issues, several models have been proposed. As mentioned in the literature review 

chapter of this dissertation, amongst the most common methods are using the tuning 

masses and dynamic magnifiers. In order to further develop PVEHs, integration of 

multiple subsystems is proposed and modeled in this project for the first time. In this 

chapter, the proposed model of piezoelectric vibration-based energy harvester (PVEH) is 

optimized with respect to the optimal and decent values of mass of the oscillator and 

stiffness of the spring, so that the maximum harvestable electric energy and the operational 

frequency bandwidth are both optimized. As a short recap, the proposed model of the 

energy harvester encompasses cantilever structure integrated with oscillator-spring 

subsystem at the tip end. Using the extended Hamilton’s principle, electromechanical 

equations of motion of the beam, electric circuit, and oscillator motion are obtained. Due 

to the new boundary condition resulting from the restricted tip motion of the beam, new 

resonance frequency is observed which is directly dependent on the values of the oscillator 

mass and the spring constant. The mentioned motion restriction is resultant of the restoring 

effects of the spring. To optimize the energy harvester module by genetic algorithm, 

harvestable voltage at the first vibration mode, and the operational frequency bandwidth 

between the first and the third resonances; are considered as the utility (fitness) function 
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with oscillator mass and spring constant as the design parameters. Although closed-from 

expression for the voltage frequency response function (FRF) is obtained, optimization 

algorithm requires an estimator to evaluate the utility function values at each iteration. 

This is because: the voltage FRF comprises parameters that need to be found in a non-

automated process (i.e., guessing the initial guess for eigenvalues cannot be automated). 

Moreover, the mentioned function is hard-to-evaluate function and computationally 

expensive. As a result, adaptive-neuro-fuzzy-inference-system (ANFIS), is utilized as a 

regressor to estimate the function values and perform as a function approximator. Such 

estimated values are utilized in genetic optimization and these entire inter-connected 

algorithms form the soft computing technique. To train the regressor model, 231 case 

studies are accomplished using the analytical-numerical voltage function. Two well-tuned 

and adjusted fuzzy inference systems (FISs) are designed using trial and error and by 

adopting different types and numbers of MFs. Such MFs per each input (oscillator mass 

and spring constant) and the corresponding fuzzy rules are adopted with respect to the 

regressor model precision and complexity. Gaussian and Generalized-Bell shaped MFs 

perform the most precisely than other types of the built-in functions. Both fuzzy inference 

architectures use 64 fuzzy rules which is based on the Takagi-Sugeno fuzzy type. Takagi-

Sugeno type of fuzzy inference system is adopted as multiple (two) inputs and a single 

output form current regression architecture. In the design procedure, conjunction-type 

operators (AND) are used with identical unit weight for each of the 64 fuzzy rules. Such 

regressor model is integrated with the genetic algorithm initiating with 50 candidate 

solutions selected randomly and 200 iterations per evolution loop. The other genetic 

optimization algorithm initiates with 50 candidate solutions and 100 iterations per 
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evolution loop. The former algorithm is designed for maximizing the voltage resonance 

and the later algorithm is devised for optimizing the effective frequency bandwidth. Three 

different types of selection methods: roulette wheel, tournament, and random are adopted 

and compared against each other. All selection approaches yield the same optimal design 

parameter values (for the voltage resonance: 𝑟𝑠 = 100, 𝑟𝑚 = 2, and for the effective 

frequency bandwidth: 𝑟𝑠 = 0.01, 𝑟𝑚 = 2.5). At the end, to verify soundness of the devised 

soft computing techniques, voltage FRF of the optimal case is manually found using the 

analytical-numerical closed-form FRF and compared with 8 random cases of mass and 

stiffness ratios. Besides, several values of the design parameters which are close to the 

optimal values are passed through the ‘readfis’ function in MATLAB for the purpose of 

comparison. It is shown that the optimal design parameters result in the maximum 

harvestable voltage and maximum value of the widened operational frequency bandwidth, 

approving the authenticity of the soft computing processes. Such a comprehensive study 

reveals the successful integration of a mechanical oscillatory subsystem with cantilever 

piezoelectric energy harvester to improve and develop the energy harvesters. Moreover, 

such a reinforced model is optimized via adoption of Takagi-Sugeno type of fuzzy logic, 

neural networks, and genetic algorithms to render the maximum amount of the energy 

particularly at the first resonance, along with the mostly widened effective frequency 

bandwidth. It was also observed that the optimal case not only shows the maximum amount 

of harvestable electric voltage at the first vibration mode, but also captures the most energy 

in the following modes comparatively. In short, the optimal harvester systems both excel 

in harvesting more energy as well as widening the effective frequency bandwidth, meaning 

that the system with maximum harvestable voltage also has a widened effective frequency 
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bandwidth, and the system with the most widened frequency bandwidth also harvests great 

amount of energy. To choose among the mentioned systems, designers may prioritize 

maximum harvestable energy or effective frequency bandwidth to the other. Such a 

compensation looks fair. As the final benefit of the proposed PVEH, generation of the 

minimal resonance at small frequencies is notable. In the literature it is reported that 

reaching to the resonance frequencies of the vibrating structure (cantilever) is mostly hard 

and unaffordable. This issue will be intensified adversely if the size of the PVEH is scaled 

down. In small-scale PVEH (MEMS PVEH), resonance frequency of the system is mostly 

bigger than the macro-scale PVEH, which makes their applicability lesser. In the proposed 

model of PVEH, the minimal resonance is generated around very small numbers. Such a 

resonance prior to the other resonances avoids the issue of resonance mismatch. In short, 

in the proposed PVEH model: the maximum amount of the harvestable energy as well as 

widened effective frequency bandwidth, are reinforced; the mentioned parameters are 

optimizable; and the resonance generated at small values makes their applicability 

accessible.                     
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CHAPTER 6. ADAPTIVE PIEZOELECTRIC VIBRATION-BASED ENERGY HARVESTER (PVEH)  

6.1 Introduction and Background to Adaptive PVEH 

In the preceding chapters, analytical-numerical procedure for analyzing the new 

type of piezoelectric vibration-based energy harvester (PVEH) is studied. The new model 

consists of a cantilever system with an oscillator attached to the free (tip) end via a spring. 

It was shown that the relative motion of the oscillator mass significantly changes the 

vibrational and dynamical characteristics of the cantilever-oscillator-spring system in 

terms of resonance frequency and vibration modes and mode shape functions. It is 

exclusively studied how the inertial effects of the oscillator manipulate resonance 

frequencies and new resonances emerge. It is also highlighted that generation of such 

minimal frequencies is of primary importance to energy harvesters, especially at small 

scales. In the former chapter, optimization of the proposed energy harvester is carried out. 

It is shown that PVEHs are not efficient unless at least two major cases are covered and 

accommodated technically: the maximum amount of extractable energy and the effective 

(operational) frequency bandwidth (EFBW). It is also mentioned that the proposed 

cantilever-oscillator-spring energy harvester system has a major and primary superiority 

to other systems due to the design parameters (oscillator mass and spring constant). Such 

design parameters play a vital role in the performance of the harvester as they readily 

mutate the system’s vibrational behavior. Accordingly, two separate optimization case 

studies were delivered in the former chapter to: optimize the maximum amount of electric 

voltage at the first vibration mode and optimize the systems effective frequency bandwidth 

in terms of widening the bandwidth. Such widened bandwidth leads to covering wider and 
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broader operational bandwidth. Finally, the optimal design parameters were inserted into 

the analytical solution to compare and evaluate the soft computing approach used 

beforehand. After addressing such critical points in designing the new piezoelectric 

vibration-based energy harvester (PVEH), another case study sounds essential to further 

elaborate the benefits of such novel energy harvester system.                        

In other words, in continuance of devising the efficient PVEH, it sounds helpful 

and crucial to design an adaptive system. Such an adaptive system means devising a system 

which adapts and adjusts itself to the available sources (excitation frequencies) in the 

background. Since it is proved and scrutinized that the proposed model is able to be altered 

remarkably, one can exploit such a trait in adapting the PVEH to reach harmony with 

external source. Such an adaptation and adjustment lead to resonance and wider effective 

frequency bandwidth and as a result in efficient PVEH for all scales (micro, meso, and 

macro scales). For the adaptive PVEH, the design and implementation process are reversed 

in comparison to the optimization processes. It means that, in adaptive PVEH, we intend 

to drag the system’s resonance frequency to the excitation (driving) frequency which is 

available in the external source. To do so, we need to rely on the main parameters of the 

system (spring constant and the oscillator mass). As a result, the first resonance frequency 

is the input to the adaptive PVEH design problem, and the output is going to be either the 

spring constant or the oscillator mass. The reason for choosing only the first resonance is 

stated in detail in the former chapters. As a brief and concise recall, it is due to the 

importance and accessibility of the first vibration mode than the higher modes. So; in this 

chapter, unlike the former chapter it is assumed the system needs to adjust itself to the 

surroundings and enhance its performance by such adaptation.  In this chapter, we deal 
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with a reverse engineering problem. Since the main goal is to design an adaptive energy 

harvester which adjusts either: the spring constant, or the oscillator mass; the excitation 

frequency is the input. In other words, in the ideal adaptive system, the excitation 

frequency is captured as the input and the systems’ characteristics (in this case the 

oscillator mass or the spring constant) are adjusted so that the resonance frequency of the 

energy harvester will match the excitation (driving) frequency. To accomplish such an 

adaptation, fuzzy inference regression system is taken. Since a comprehensive explanation 

about the mentioned regressor is elaborated in the former chapters, further description is 

skipped. The fuzzy inference model is expected to run with a single input (excitation or 

resonance frequency) and yield a single output (spring constant or oscillator mass). So, the 

regression model is single input-single output (SISO). It may be asked why not to design 

a model of single input-multiple output (SIMO) which can provide an estimation for spring 

stiffness (constant) and oscillator mass simultaneously? The answer to this question falls 

in the capability of fuzzy inference models. Designing a SIMO fuzzy model is definitively 

more complicated than a SISO or MISO model. The fuzzy models are basically established 

based on either Takagi-Sugeno or Mamdani reasonings. Mamdani is capable of training 

models with multiple outputs (SIMO or MIMO); although, the accuracy and the 

computational costs are not as efficient as the single output cases. It means that better and 

more accurate fuzzy systems take place with single output cases. As for Takagi-Sugeno, 

the fuzzy reasoning is only capable of training single outputs. ANFIS toolbox is 

established based on the Takagi-Sugeno. So, only single output systems are available to 

be trained and designed. Considering all the mentioned points, it sounds a better decision 

to keep one of the outputs (spring constant or oscillator mass) constant and vary the other 
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one, while the fuzzy system is provided with excitation frequency as the input or given 

data. Eventually, the fuzzy system will reveal the suitable value of one of the system 

features (spring constant or oscillator mass).  

 

6.2 Training the Fuzzy Inference System for the Adaptive PVEH 

It is already mentioned that fuzzy inference system will be built based on ANFIS 

toolbox in MATLAB. Eight built-in membership functions (MFs) are available in the 

toolbox. As a brief overview of the steps required to build and design a FIS, the following 

figure is provided:  

 

 

Figure 93. ANFIS toolbox chart in MATLAB 

 

Pre-process and gather the dataset: in this section, the excitation frequency dataset 

will be provided as the desired input, and the corresponding oscillator mass or spring 

ANFIS

pre-process 
the dataset

Data import

Generate 
FIS

Train FIS

Test FIS

Export FIS
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constant will be estimated accordingly. The given dataset should be probed first, 

particularly in terms of distribution range. Since the distribution range accompanies 

normal values and excessive variants or other statistical features do not exist; it is not 

required to apply any operations over the dataset. As another important fact, the resource 

of gathering such an input dataset is to be disclosed. Since the analytical method elaborated 

in the previous chapters provides the closed-form solution to the electric frequency 

response function (FRF), we can find the required dataset. Two different case studies of: 

fixed spring constant and varying oscillator mass, and fixed oscillator mass and varying 

spring stiffness; are to be studied. For the fixed oscillator mass, the mass ratio is taken as: 

𝑟𝑚 = 1, and the spring stiffness ratio has the distribution range of: 𝑟𝑠 = [0.0001, 100], 

starting from the weakest (the softest) spring up to the hardest (the stiffest) spring. As for 

the varying oscillator mass and fixed spring constant, the stiffness of the spring is supposed 

to be 0.1 times of the flexural rigidity (bending stiffness) of the cantilever beam, and the 

oscillator mass falls in the range of: 𝑟𝑚 = [0.0001, 100]. For each case study, the 

analytical solution is adopted to find the resonance frequency of the system:  

 

Table 25. Resonance frequency of the cantilever-spring-oscillator system found 

analytically (𝑟𝑚 = 1) 

Case study 

number 𝑟𝑠 
Frequency (Hz) 

(1/sec) 

1 0.0001 0.179089998 

2 0.0005 0.400430715 

3 0.001 0.566247364 

4 0.005 1.265324214 

5 0.01 1.787950058 

6 0.02 2.524343638 

7 0.03 3.086551165 

8 0.04 3.558143927 

9 0.05 3.971553985 
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10 0.06 4.343445122 

11 0.07 4.68373457 

12 0.08 4.998895866 

13 0.09 5.293433902 

14 0.1 5.570634804 

15 0.2 7.751334436 

16 0.3 9.343543454 

17 0.4 10.62194885 

18 0.5 11.69543259 

19 0.6 12.62110079 

20 0.7 13.43361765 

21 0.8 14.15603533 

22 0.9 14.80467272 

23 1 15.39161865 

24 1.5 17.66662197 

25 2 19.23772152 

26 2.5 20.39276512 

27 3 21.27840485 

28 3.5 21.97894735 

29 4 22.54671195 

30 4.5 23.01599073 

31 5 23.41022203 

32 5.5 23.74597357 

33 6 23.41022203 

34 6.5 24.28712083 

35 7 24.50827869 

36 7.5 24.70401645 

37 8 24.8784587 

38 8.5 25.03488657 

39 9 25.17594234 

40 9.5 25.30377725 

41 10 25.42016026 

42 20 26.59155626 

43 30 27.00974933 

44 40 27.22427744 

45 50 27.35475877 

46 60 27.44248717 

47 70 27.50551488 

48 80 27.55298564 

49 90 27.59002613 

50 100 27.61973348 
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Table 26. Resonance frequency of the cantilever-spring-oscillator system found 

analytically (𝑟𝑠 = 0.1) 

Case study 

number 𝑟𝑚 

Frequency (Hz) 

(1/sec) 

1 0.0001 62.95661845 

2 0.0005 62.90236023 

3 0.001 62.82622369 

4 0.005 61.48766825 

5 0.01 53.56161113 

6 0.02 39.01624036 

7 0.03 31.99216342 

8 0.04 27.75201867 

9 0.05 24.84406746 

10 0.06 22.6918416 

11 0.07 21.01639125 

12 0.08 19.66434189 

13 0.09 18.54351324 

14 0.1 17.59474376 

15 0.2 12.44992528 

16 0.3 10.16753468 

17 0.4 8.806283698 

18 0.5 7.877079207 

19 0.6 7.191058778 

20 0.7 6.657825723 

21 0.8 6.227964854 

22 0.9 5.871883375 

23 1 5.570634804 

24 1.5 4.548592545 

25 2 3.939277918 

26 2.5 3.523440786 

27 3 3.216473106 

28 3.5 2.977892923 

29 4 2.785576013 

30 4.5 2.62627523 

31 5 2.491510258 

32 5.5 2.375567134 

33 6 2.274436608 

34 6.5 2.185211454 

35 7 2.10572529 

36 7.5 2.034326281 

37 8 1.969729969 

38 8.5 1.910920483 

39 9 1.857082393 

40 9.5 1.807552568 
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41 10 1.761785454 

42 20 1.245778089 

43 30 1.017175631 

44 40 0.880900837 

45 50 0.787902144 

46 60 0.719253257 

47 70 0.665899316 

48 80 0.62289191 

49 90 0.587268225 

50 100 0.557131633 

            

 

A total of 100 case studies are shown in Tables 25 and 27. For each one, the following 

procedure is accomplished:  

 

Figure 94. Analytical-numerical voltage FRF procedure 

 

In the first step, the nonlinear transcendental characteristic equation is plotted. 

Second, the initial guess of the root(s) is deduced to be applied in the numerical solver. In 

the third step, initial guess is provided as input to the numerical solver (VPASOLVE) to 

Plot the 
characterisitc 

equation

Make initial 
guess

Solve 
characteristic 

equation

Use vibration 
equation



 

208 

 

find the real root(s). Finally, the root is applied into the vibration equation (𝜆𝑛𝐿 =

𝜔𝑛𝐿√𝜌𝐴 𝐸𝐼⁄ , 𝑓𝑟𝑛 = 𝜔𝑛 2𝜋⁄ ) to find the resonance frequency of the system in angular 

version (rad/sec) or in linear version (in Hz). Now, the dataset is to be utilized inversely. 

It means that the gathered and obtained frequency dataset will be the input and the spring 

constant (or mass of the oscillator) will be used as the output.     

Data import: in this section, the 50 datasets are divided into train (80%), test (10%), 

and validation (checking) (10%) datasets. Most of the dataset is used to train the fuzzy 

regressor inference system using the neural network. A small portion is required to test 

and assess the performance of the regressor (function approximator). Eventually, another 

small portion is implemented in fuzzy toolbox to avoid overfitting. Such dataset is titled 

checking or validation dataset.  

Generate Fuzzy Inference System (FIS): in this step, the fuzzy inference system 

(FIS) will be implemented and designed using the dataset provided and imported. To 

design an FIS, there are eight built-in membership functions (MFs) available in the 

toolbox. There is another option to design MFs from scratch and by writing the code at the 

editor platform window. It was tried to design specific and non-general MF but none of 

them have the accuracy and high performance of the pre-built (built-in) MFs available in 

the toolbox. In order to choose the best MF, there are two main points to be considered. 

First of all, the function should be accurate and precise enough. It means the ability to 

capture the structure in the dataset and predict the outcomes in a high level of acceptance 

and precision. To assess such trait, root-mean-square-error (RMSE) is a great and handy 

criterion. So, in the following section different types of MFs are adopted to generate the 
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FIS and the corresponding RMSE per each dataset (train, test, and checking) are recorded. 

To add MFs, eight disparate types of MFs are available:  

 

Table 27. Disparate types of built-in membership functions (MFs) 

Triangular Double Gaussian 

trapezoidal Polynomial 

Generalized Bell shaped Double sigmoid 

Gaussian Polynomial sigmoid 

   

 

It is also good to note that each input of the system is to be assigned with specific 

MFs. FIs can be imported from files, workspace, or can be generated via subtractive 

clustering or grid partitioning.  

Train the fuzzy inference system (FIS): in this section, the generated fuzzy 

inference system is optimized and trained. Two different types of optimization algorithms 

are available: the hybrid versus the back-propagation methods. Moreover, the number of 

epochs, and the error tolerance needs to be specified in this section.  

Test the fuzzy inference system (FIS): after training the FIS, the performance needs 

to be assessed and tested against the previously unseen dataset (test dataset). The 

corresponding plots for testing against the: train dataset, test dataset, and the validation 

dataset; will be shown in the plot box. Such plots disclose the error versus accurateness of 

the generated FIS.  

Export to the workspace: the generated FIS can now be exported to the workspace 

or saved as a fuzzy file with ‘.fis’ extension. In the following tables, root-mean-square-

error (RMSE) for eight different types of the built-in MFs along with disparate numbers 

and various design parameters are provided:    
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Table 28. Triangular MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.28728 0.30494 0.48043 

6 300 0.22991 0.16021 0.47199 

7 300 0.1952 0.092573 0.46825 

8 300 0.17379 0.078632 0.43309 

9 300 0.14307 0.083305 0.43642 

10 300 0.1052 0.079339 0.44039 

11 300 0.079556 0.099031 0.42106 

12 300 0.059876 0.047074 0.38766 

 

Using triangular type of membership functions, adopting more than 6 functions leads to 

small test RMSE and the best one alludes to 12 numbers. It is also good to note that if the 

number of epochs is not mentioned, it is set as 300, and main criteria for decent 

performance is obtaining 𝑅𝑀𝑆𝐸 < 0.1 in all cases.   

 

Table 29. Trapezoidal MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.4081 0.23318 0.54155 

6 300 0.33277 0.16359 0.48856 

7 300 0.26852 0.14876 0.48785 

8 300 0.23697 0.14094 0.46779 

9 300 0.19566 0.15741 0.46259 

10 300 0.14812 0.13553 0.47246 

11 300 0.1065 0.12603 0.45548 

12 300 0.068137 0.11128 0.45448 

 

 

Trapezoidal membership functions exhibit the best performance with 12 numbers. 

Adopting more MFs leads to overfitting expectedly. A small number of MFs end up in 

regressors with week precision.  
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Table 30. GeneralizedBell shaped (G-bell) MF evaluation with respect to RMSE 

MF 

numbers 

Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.29771 0.20215 0.20729 

6 300 0.26453 0.1725 0.13977 

7 300 0.22972 0.11632 0.10527 

8 300 0.20958 0.081313 0.47481 

8 300 0.20958 0.081313 0.47481 

9 300 0.12152 0.059204 0.096509 

10 300 0.11679 0.03397 0.11041 

11 300 0.11481 0.019829 0.13647 

12 300 0.11316 0.01628 0.66331 

13 300 0.11188 0.020892 0.52034 

13 300 0.11188 0.020892 0.52034 

14 300 0.11083 0.0089137 0.5565 

14 300 0.11083 0.0089137 0.5565 

14 500 0.100160 0.011729 0.32424 

15 300 0.10983 0.015019 0.78242 

16 300 0.1086 0.012102 0.13304 

16 500 0.007247 0.011306 0.099889 

16 1000 0.0062894 0.011063 0.12126 

 

Table 31. Gaussian MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.35989 0.27335 0.28226 

6 300 0.32196 0.23625 0.2216 

7 300 0.29191 0.20686 0.13546 

8 300 0.25816 0.17533 0.4682 

9 300 0.14459 0.1261 0.16817 

10 300 0.1373 0.10629 0.47266 

11 300 0.1314 0.086961 0.013093 

12 300 0.12677 0.068266 1.4865 

 

Generalized-Bell shaped membership functions with numbers more than 8 exhibit decent 

performance in terms of the root-mean-square-error. The best performance pertains to the 

14 numbers of the MF and 300 epochs.   
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Adopting Gaussian membership functions, numbers more than 11 exhibit decent RMSE 

and a suitable choice. Gaussian type of membership functions is among the well-known 

type of functions in most of the case studies. This trait pertains to the mathematical 

properties of the mentioned function which enables the curve to capture features and 

patterns in a dataset efficiently.  

    

Table 32. Gaussian2 (double Gaussian) MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.38231 0.30089 0.34652 

6 300 0.33874 0.25132 0.3177 

7 300 0.30598 0.20527 0.26177 

8 300 0.27476 0.17321 0.92836 

9 300 0.19422 0.16473 0.21536 

10 300 0.15875 0.14802 0.17772 

11 300 0.10623 0.04385 0.72062 

12 300 0.12689 0.080923 0.2049 

 

Choosing double gaussian membership functions and 300 epochs, numbers more than 11 

lead to decent performance. Adopting fewer number of membership functions ends up in 

less accurate systems and underfitting issues emerge.  

Using polynomial membership functions, it sounds that more numbers are required as the 

only decent performance is observed at 11 numbers (𝑅𝑀𝑆𝐸 < 0.1). Polynomial type of 

the membership functions requires mor computational efforts to capture the structure.     
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Table 33. Polynomial MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.47863 0.41728 0.50848 

6 300 0.44353 0.38673 0.36892 

7 300 0.43844 0.31482 0.29768 

8 300 0.44451 0.37251 0.42007 

9 300 0.37075 0.27882 0.17246 

10 300 0.29154 0.25305 0.31898 

11 300 0.24237 0.094843 0.75068 

12 300 0.23606 0.12205 0.2889 

 

 

Table 34. Double sigmoid MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.27299 0.19035 0.31572 

6 300 0.2451 0.17625 0.12893 

7 300 0.22931 0.15414 0.09776 

8 300 0.18463 0.1192 1.7933 

9 300 0.13249 0.08558 0.13321 

10 300 0.12228 0.036821 3.5956 

11 300 0.12228 0.036821 3.5956 

12 300 0.1191 0.024707 0.42674 

 

Adopting double sigmoidal membership functions, decent performance is observed for all 

numbers greater than 8. This type of function reaches a good level of accuracy in prediction 

at a fair number of the adopted functions. 

Finally, choosing polynomial sigmoidal membership functions leads to decent error for 

numbers bigger than 8. The mentioned type of the functions work based on the features of 

both polynomial and sigmoid functions. Such a combination may lead to high 

complication of the system.    
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Table 35. Polynomial-sigmoid MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.27749 0.17839 0.19521 

6 300 0.2556 0.17307 0.1575 

7 300 0.22025 0.13292 0.23212 

8 300 0.18857 0.12695 1.6113 

9 300 0.13238 0.085323 0.13309 

10 300 0.12228 0.36825 3.5957 

11 300 0.1191 0.024704 0.42674 

12 300 0.11803 0.038741 0.17486 

 

Comparatively, among all of the best performances in various types of MFs, the 

Generalized-Bell shaped type of the MF with 14 number of the membership functions 

(MF) and 300 epochs exhibits the best performance for the first adaptive case study 

(constant spring stiffness ratio and varying oscillator mass). Obviously, the RMSE of the 

test dataset is the smallest observed (0.0089137). This point is also important to note that 

there are other observations with smaller train RMSE, but the main criteria pertain to the 

test RMSE. Another interesting point refers to the increment in epochs’ number. 

Interestingly, for the same membership function type and numbers; the system with higher 

epochs not only does not show better performance (smaller test RMSE) but results in 

bigger RMSE. So, it can be deduced that increment in the number of the epochs can also 

lead to overfitting which is similar to the increment in the number of the membership 

functions. Finally, it is remarkable that the main factor in choosing the best FIS is type and 

number of the membership functions (MFs) and number of the epochs does not affect the 

outcome as rigorously as the other mentioned factors.             

The same procedure is duplicated in this section for the adaptive PVEH with constant 

oscillator mass and varying spring constant. At the end, based on the comparison of 
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different types of membership function, the most efficient MF will be captured and 

adopted to train and design the fuzzy inference system (FIS).       

 

Table 36. Generalized-Bell shaped (G-bell) MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

5 300 0.079942 0.049829 0.39412 

6 300 0.05219 0.036407 0.32394 

7 300 0.032601 0.024662 0.29147 

8 300 0.021161 0.020835 0.28185 

9 300 0.015933 0.014576 0.28063 

10 300 0.013784 0.019614 0.2931 

11 300 0.014069 0.012833 0.29699 

12 300 0.011974 0.019372 0.31464 

13 300 0.011258 0.029184 0.34296 

13 500 0.011065 0.030419 0.34122 

13 1000 0.01097 0.031101 0.34379 

14 300 0.011149 0.17639 0.33641 

15 300 0.011286 0.04445 0.35088 

16 300 0.01094 0.13359 0.52904 

17 300 0.10737 0.72623 0.72568 

  

 

Table 37. Triangular MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.029176 0.055093 0.37996 

11 300 0.023862 0.0078375 0.37664 

12 300 0.024351 0.015246 0.37925 

13 300 0.019334 0.0034548 0.37642 

14 300 0.021222 0.10405 0.27776 

15 300 0.023136 0.0075291 0.37386 

16 300 0.023468 0.022956 0.37376 

17 300 0.023987 0.05463 0.42311 

 

Adopting Generalized-Bell shaped type of membership functions, 11 numbers with 300 

epochs end up in the most decent performance. It is noteworthy to imply that due to the 
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capability of this membership function type, several numbers can be a good fit. As a recap, 

the main focus on RMSE is the test dataset RMSE.     

Using triangular membership functions, numbers with 11, 13, and 15; exhibit the most 

accurate performance (all with 𝑅𝑀𝑆𝐸 < 0.01).   

 

Table 38. Trapezoidal MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.042128 0.081579 0.37716 

11 300 0.053648 0.13356 0.40617 

12 300 0.054752 0.087603 0.42197 

13 300 0.047144 0.1548 0.56812 

14 300 0.037949 0.09475 0.42634 

15 300 0.015715 0.3092 0.41747 

16 300 0.021737 0.051579 0.47294 

17 300 0.040746 0.099037 0.46435 

 

Adopting trapezoidal membership functions, 16 numbers of the mentioned function lead 

to the most accuracy. Less numbers lead to less precise systems.      

 

Table 39. Gaussian MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.021225 0.018942 0.28139 

11 300 0.018996 0.013215 0.27946 

12 300 0.01656 0.014828 0.028476 

13 300 0.013277 0.019451 0.30863 

14 300 0.01221 0.085886 0.30778 

15 300 0.012117 0.016727 0.31674 

16 300 0.011422 0.21719 0.78383 

17 300 0.011434 0.33009 0.53152 
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Gaussian type of membership functions with 11 numbers ends up in the best performance. 

However, other acceptable operations last for numbers between10 up to 15. For more than 

16 numbers of the MFs, RMSE values for the test dataset exceeds the acceptable level. 

   

Table 40. Gaussian2 (double Gaussian) MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.019132 0.043057 0.38605 

11 300 0.017696 0.27653 0.40823 

12 300 0.016972 0.09719 0.41353 

13 300 0.01578 0.077128 0.44166 

14 300 0.013639 0.11888 0.42545 

15 300 0.011346 0.2797 0.42343 

16 300 0.011219 0.03109 0.47835 

17 300 0.011081 0.096906 0.4692 

 

Adopting double gaussian membership functions, the 16 numbers case leads to the best 

performance. Unlike some other cases in which the RMSE gradation reveals a sort of 

uniform and expectable pattern, in this case the RMSE mutation is totally unpredictable. 

It means that decent observations have been viewed at numbers: 10, 12, 13, 16 and 17.   

 

Table 41. Polynomial MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.071592 0.011366 0.41315 

11 300 0.062095 0.14915 0.44551 

12 300 0.046813 0.19312 0.45833 

13 300 0.058323 0.30478 1.3772 

14 300 0.079277 0.10419 0.48765 

15 300 0.078054 1.6378 0.52186 

16 300 0.047565 0.069815 0.4997 

17 300 0.058325 0.10909 0.48834 
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Following the note mentioned in the above section, polynomial membership functions 

show undetectable performance and only the case-by-case comparison yields in best 

decision. Doing so, numbers of 10 and 16 are the best adoptions.  

 

Table 42. Double sigmoid MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.037029 0.037273 0.33847 

11 300 0.023222 0.12083 0.35476 

12 300 0.018269 0.064844 0.37969 

13 300 0.016975 0.064097 0.87895 

14 300 0.014602 0.34084 0.40528 

15 300 0.015007 0.14025 0.4064 

16 300 0.015461 0.038661 0.46667 

17 300 0.016146 0.11045 0.4572 

 

In double sigmoid, numbers of: 10, 16 are the best followed by numbers: 12, and 13.   

 

Table 43. Polynomial MF evaluation with respect to RMSE 

MF numbers Epochs RMSE-train RMSE-test RMSE-

validation 

10 300 0.03703 0.037272 0.33847 

11 300 0.023224 0.12083 0.35476 

12 300 0.018271 0.064843 0.37969 

13 300 0.016976 0.064098 0.87893 

14 300 0.0146 0.34064 0.40528 

15 300 0.015002 0.14025 0.4064 

16 300 0.015459 0.03865 0.46665 

17 300 0.016198 0.1001 0.45697 

 

Finally, for the polynomial-sigmoidal membership functions, numbers of 10 and 16 reveal 

the most decent performance. The interesting finding refers to the similar performance of 

the polynomial, polynomial sigmoidal, and double sigmoidal membership functions. At 

the end, it is also noteworthy the epochs number is mostly kept constant unless the number 
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is explicitly stated. This is mainly because the increment in the number of epochs results 

in significantly high computational costs. In other words, the regressor takes strikingly 

longer time to make a prediction. While, the improvement in terms of the accuracy and 

precision of the estimator system is barely increased and reinforced. In contrary; increment 

in the number of the membership functions (MFs), strongly and highly improves the 

regressor models performance. It means that the number of membership functions is a 

prior item than the number of epochs in designing the most efficient fuzzy inference 

regressor system. Consequently, most of the times epochs number is kept a constant 

number and most observations and trial and error procedure is rendered with respect to the 

number of the membership functions as the more influential factor. For the adaptive PVEH 

with constant oscillator mass and varying spring stiffness; there is a very similar 

performance among triangular membership functions with 15 numbers and the 

Generalized-Bell shaped with 11 numbers. By considering other RMSEs (train and 

validation), the triangular is adopted as the best membership function to train the FIS. It is 

good to note that adoption of the best membership functions is totally selective and 

optional. Another finding is the power of the linear type of curves to perform better than 

most of other nonlinear curves. This is a good note implying the fact that nonlinearity and 

complexity of a membership function does not necessarily promise the best performance 

in terms of precision and cost effectiveness.  

 

6.3 Designing the Fuzzy Inference System (FIS) 

By adopting the most efficient and proper membership functions, a fuzzy inference 

system will be designed based on the same procedure shown in the former chapter.  
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Figure 95. Fuzzy logic designer application setting 

 

This figure represents the fuzzy logic designer toolbox. Since the fuzzy logic 

system is designed using ANFIS, such a toolbox reveals the features of the designed 

inference system. Obviously, the system is SISO (single input single output). ‘And’ 

method is based on production, ’OR’ method is established based on probabilistic. 

Implication step is based on the minimum and aggregation is based on the maximum. 

Finally, the defuzzification is set for weighted averaging.  
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Figure 96. Fuzzy logic membership function editor 

 

This figure shows the membership function plots for 14 numbers of Generalized-

Bell shaped functions distributed from 0.5571 to 62.96. Statistical information of each 

function is available in the ‘Params’ box which emerges by clicking the function. 
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Figure 97. Fuzzy inference rule viewer 

 

In this figure the rule viewer plot is represented. It is good to note that since there 

is a single input to the system, the number of fuzzy rules is identical to the number of fuzzy 

membership functions.  
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Figure 98. Fuzzy inference verbose rule viewer 

 

Rule editor is presented in figure 98 in verbose format. All of the connections are 

based on the ‘and’ method with unit identical weight.  
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Figure 99. Fuzzy inference symbolic rule viewer 

 

Fuzzy rules in symbolic format are shown in figure 99. Another feature of the rule 

editor is enabling the designer to alter the rules as desired. Designer can delete as specific 

rule, add rule(s), or even change an existing rule per desired.   
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Figure 100. Fuzzy inference indexed rule viewer 

 

Fuzzy rules for the adaptive PVEH with constant spring stiffness ration and varying 

oscillator mass are shown here. The format is indexed. Rule editor enables one to easily 

infer the relationship between the input(s) and the corresponding rule. In a SISO fuzzy 

system, such inference is straightforward.  
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Figure 101. Fuzzy inference surface viewer 

 

Finally, the rules surface viewer is shown here. Since there is a single input to the 

system, the rules surface viewer is a two-dimensional (2-D) plot demonstrating the 

relationship between the input and the resulting output.   
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Figure 102. Fuzzy logic designer application setting 

 

As for the fuzzy inference system of the adaptive PVEH with constant oscillator 

mass and varying stiffness spring; the fuzzy logic toolbox window is depicted here. The 

same adjustments are applied automatically here as well as in the former case study.   
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Figure 103. Fuzzy logic membership function editor 

 

Triangular membership functions with linear curves and 15 numbers of functions 

are shown in this figure. The functions are distributed from 0.1791 to 27.62.   
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Figure 104. Fuzzy logic rule viewer 

 

Fifteen triangular membership functions yield 15 fuzzy rules which is because of 

the single number of inputs, otherwise number of the fuzzy rules is more than the number 

of fuzzy membership functions. Such fuzzy rules are shown in the rule viewer in figure 

104.  
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Figure 105. Fuzzy inference verbose rule editor 

 

The mentioned fuzzy rules in verbose format are shown in figure 105. The 

connection type between the inputs and outputs are based on the ‘and’ method with 

identical unit weight.    
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Figure 106. Fuzzy inference symbolic rule editor 

 

The abovementioned fuzzy rules in symbolic format are illustrated in figure 106. 

The connection between the input and the resulting output is accessible to the rule viewer.     
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Figure 107. Fuzzy inference indexed rule editor 

 

Eventually, the indexed format of the mentioned fuzzy rules is shown in figure 107. 

Based on the intuition of the designer, specific rule(s) can be deleted, added or changed in 

via the rule editor. However, such a mutation requires a high level of insight of the fuzzy 

inference system along with features of the dataset available.     
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Figure 108. Fuzzy inference surface viewer 

 

The surface viewer image is represented here to show the 2-D illustration of the 

triangular fuzzy rules designated to predict the spring stiffness as the output of the system.  
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Figure 109. ANFIS model structure 

 

This figure shows the general layout of the created fuzzy inference system using 

the ANFIS toolbox in ATLAB. All 5 layers are shown. The first layer specifies the number 

of the input entities. Such entities describe the system’s degrees of freedom. In this case 

study only one input is allotted (oscillator mass or spring stiffness). Corresponding degree 

of membership to the specified input is determined using the membership functions which 

has been studied in detail. In this step which is known as the fuzzification layer, the 

premise (antecedence) set is formed. Strength fuzzy rule sets are generated in the rule 

layer. Such firing strength is normalized in the third layer. In the fourth layer, the 

normalized firing strength is taken, and the consequence set is created. Such values are de-

fuzzified and inserted into the last layer. Eventually, in the last step, the inserted values are 

aggregated, and the final single output value is determined.  
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After designing the fuzzy inference systems (FISs), it is practical to adapt and adjust 

the PVEH with respect to the desired characteristics available in the background. One 

important note pertains to the high resonance frequency of piezoelectric vibration-based 

energy harvesters. As mentioned in the above section, it particularly highlights the issue 

when the size of the energy harvester is scaled down. This means that small-size PVEH 

systems have high resonance frequency which is mostly unapproachable by the excitation 

(driving) frequency. Specifically, in such cases, it is imperative to either supply the high 

frequency or to adapt the internal features of the energy harvester system by manipulating 

the vibrational factors. Accordingly, following case study is provided: 

Adapting the PVEH to an external source with excitation frequency of 𝑓𝑒 = 5 𝐻𝑧 

Two fuzzy inference systems are designed which can estimate the proper value of 

the oscillator mass or the spring constant to yield the resonance frequency as close as 

possible to the given excitation frequency.  

 

 

Figure 110. Schematic of constant spring stiffness and varying oscillator mass 
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This figure visually conveys the process of which, the oscillator mass is to be 

adapted and the spring stiffness is kept constant (𝑟𝑠 = 0.1). The outcome is supposed to 

yield resonance frequency to a value close to the driving frequency which is already 

available in the background. 

 

 

Figure 111. Schematic of constant oscillator mass and spring stiffness 

 

This figure shows the other adaptation in which the spring stiffness is supposed to 

be adjusted to yield the resonance frequency around the given driving frequency. In this 

case obviously the oscillator mass is considered to be constant and same weight as the 

cantilever (𝑟𝑚 = 1).  

 

Table 44. Desired excitation (driving) frequency and corresponding design parameters 

FIS 𝑓𝑒 𝑟𝑚 𝑟𝑠 
Generalized-Bell 

shaped 
5 𝐻𝑧 1.24571875 0.1 

Triangular 5 𝐻𝑧 1 0.0802915 
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Running the generated fuzzy inference systems (FISs) with the given excitation frequency, 

the desired value for the oscillator mass is 1.2457 times the cantilever mass if the spring 

stiffness is constant and 0.1 times the flexural rigidity (bending stiffness) of the cantilever. 

If the oscillator mass is kept constant and identical to the mass of the cantilever, the desired 

stiffness of the spring should be 0.08029 times the flexural rigidity of the cantilever. 

Applying either of such cases is expected to yield the PVEH with the fundamental 

resonance frequency close to the driving frequency. To verify and evaluate soundness of 

the artificial intelligence-based fuzzy inference procedure used, the desired oscillator mass 

and spring constant values are to be employed in the analytical-numerical closed-form 

solution which is derived in the preceding chapters: 

 

𝑟𝑠𝑟𝑚(𝜆𝑛𝐿)(𝑠𝑖𝑛ℎ(𝜆𝑛𝐿) 𝑐𝑜𝑠(𝜆𝑛𝐿) − 𝑐𝑜𝑠ℎ(𝜆𝑛𝐿) 𝑠𝑖𝑛(𝜆𝑛𝐿)) − (𝑟𝑠 −

𝑟𝑚(𝜆𝑛𝐿)
4)(1 + 𝑐𝑜𝑠(𝜆𝑛 𝐿) 𝑐𝑜𝑠ℎ(𝜆𝑛 𝐿)) = 0  

(6.1) 

 

To find the roots of the nonlinear transcendental equation, a plot of the equation with the 

given mass ratio and stiffness ratio values is needed. 
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Figure 112. First eigenvalue around the desired frequencies 

 

According to the plot, the first root for the first case is: 0.5278, and the eigenvalue of the 

second case is: 0.5287. 

 

Table 45. Eigenvalues solved numerically via VPASOLVE 

(𝑟𝑚, 𝑟𝑠) Initial guess 

for the roots 

Roots solved by VPASOLVE method 

(1.245718750976976,0.1) 0.5278 0.52791424764030032917247877700845 

(1, 0.080291506577599) 0.5287 0.52878882169309339242226120888945 

 

Providing the initial guesses viewed in the plot section into the VPASOLVE algorithm, 

the roots (eigenvalues) of the system using the numerically solved method are reported in 

the above table. Using such eigenvalues, the resonance frequency of the cantilever-

oscillator-spring piezoelectric vibration-based energy harvester (PVEH) is obtainable:  
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Table 46. Angular and linear frequencies found via closed-form expression 

(𝑟𝑚, 𝑟𝑠) Hyperbolic 

coefficient 
𝜔1 (𝑟𝑎𝑑/𝑠𝑒𝑐) 𝑓1 (𝐻𝑧) 

(1.24571875,0.1) 1.8991483 31.3606607 4.99120417 

(1, 0.0802915) 1.89603977 31.4646547 5.0077553 

  

Obviously, the desired oscillator mass and the desired spring stiffness values found 

by the fuzzy inference system yield the resonance frequency of the system almost 5 Hz. In 

other words, after finding the desired mass and stiffness ratios by means of the fuzzy 

regressor, the analytical closed-form solution was used to assess the verification and 

soundness of the trained fuzzy estimator (approximator). Inserting the desired oscillator 

mass value yields in system resonance at: 4.991204174782064; and employing the desired 

spring stiffness value results in system resonance at: 5.007755322962248. Both cases 

show great accuracy as the first one has an error of around 0.155% and the second one has 

an error of around 0.176%. Finally, the voltage frequency response function (FRF) is 

plotted for the adaptive systems. The voltage FRF is analytically derived in the preceding 

chapters.  

𝑣(𝑡) =

∑
−𝑗𝛩𝑛(𝜌𝐴𝛾𝑛 +𝑚𝑜𝛾𝑛

𝑜)𝜔𝑒
3𝑌0

𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)
∞
𝑛=1

1
𝜏𝑐
+ 𝑗𝜔𝑒 + ∑

𝑗𝛩𝑛𝜒𝑛𝜔𝑒
𝐵𝑛(𝜔𝑛2 − 𝜔𝑒2 + 𝑗2𝜁𝑛𝜔𝑛𝜔𝑒)

∞
𝑛=1

𝑒𝑗𝜔𝑒𝑡 

(6.2) 
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Figure 113. Voltage frequency Response function (FRF) 

 

In the above figure, the voltage frequency response function is plotted with respect to the 

excitation frequency. It is evident the resonance frequencies of both case studies (varying 

oscillator mass and constant spring stiffness; varying spring stiffness and constant 

oscillator mass) match to the given driving (excitation) frequency. Expectedly, the 

maximum value of the voltage takes place at the resonance frequency of the systems (𝑓𝑒 =

4.992, 5.008 𝐻𝑧). In such adaptive PVEHs, neural network fuzzy inference is capable of 

finding proper oscillator mass and/or spring stiffness to fit the resonance frequency of the 

system to the driving frequency available in the background. One of the vital points refers 

to the fact that since there are two design parameters in the system, two potential solutions 

can be found per each case study. Another finding refers to the gradation and mutation of 

the parameters. In details, with 𝑟𝑚 = 1, corresponding stiffness ratio is 

0.080291506577599. While if a stiffer spring is adopted, heavier oscillator mass is required 

to meet the desired situation. So, both parameters exhibit complementary mutation. If one 

of the parameters is increased the other one also needs to be reinforced.      
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6.4 Conclusion  

In this chapter, the major focus is to devise adaptive piezoelectric vibration-based 

energy harvesters (PVEHs) so that the harvester is adjustable to the available sources of 

excitation. Such an adaptive system is crucially important particularly in practical 

applications as the excitation resource is not adjustable. The mismatch between the 

excitation (driving) frequency and the resonance frequency of the harvester system leads 

to an insignificant amount of harvested electric power. To remedy such an issue, adjustable 

PVEHs are of crucial importance. Particularly, in the proposed model of PVEHs, there are 

two design parameters (the oscillator mass and the spring stiffness). Adopting various 

values of each parameter leads to different voltage FRF and the harvester’s performance. 

In the adaptive case study, it is assumed the harvester is supposed to be tuned so that the 

resonance frequency of the system reaches the specific value of the excitation (driving) 

frequency. This is an inverse engineering problem in nature. Employing neural network 

fuzzy inference system, a decent regressor model is trained to estimate the desired values 

of the oscillator mass and/or the spring stiffness. In this response, eight types of built-in 

membership functions (MFs) along with different numbers of each function were tested. 

Finally, 14 Generalized-Bell shaped and 15 triangular functions were employed to train 

the function approximator. It is assumed the PVEH is excited with a driving frequency of 

𝑓𝑒 = 5𝐻𝑧. Using the designed fuzzy regressor, desired values of the design parameters are 

found as: (𝑟𝑚, 𝑟𝑠) = (1, 0.0802915) or (𝑟𝑚, 𝑟𝑠) = (1.24571875, 0.1). At the end, to 

validate and verify authenticity of the designed neural network fuzzy inference system, the 

voltage frequency response function (FRF) derived analytically-numerically is utilized. 
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The desired values of the design parameters are inserted into the mentioned voltage 

function and the final result is plotted. Findings reveal the correctness and competency of 

the designed adaptive PVEH as the maximum amount of the extractable voltage occurs 

around the given driving frequency. Such adaptive PVEHs can be highly applicable in 

industrial sectors to generate significant amount of electric energy as an alternative power 

source.         
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CHAPTER 7. EXPERIMENTAL SETUP  

7.1 Preliminaries of Statistical Data Visualization  

In the preceding chapters, analytical-numerical analysis of the novel proposed 

model of the piezoelectric vibration-based energy harvester (PVEH) is accomplished. 

Furthermore, neural network fuzzy inference system is developed to approximate the 

harvestable voltage frequency response function. Finally, to optimize the proposed model, 

soft computing algorithms including: neural networks, fuzzy logic, and genetic 

optimization are employed to find the optimal values of the oscillator mass and spring 

stiffness constant. In this chapter, experimental setup is implemented to observe and record 

the electric voltage values capturable from the PVEH. The main difference between the 

former chapters and the current one pertains to the type of input excitation. In the former 

chapters, harmonic base excitation is considered as the input. However, in this 

experimental section the PVEH system is triggered by impact-driven excitations. Such 

impact-driven excitation is a random (stochastic) process in nature and there is no 

measurable factor. The reason for adopting different types of input is to assess the 

superiority of the proposed model, a standard criterion should be used. It means, to 

evaluate and verify a harvester system’s performance, harmonic base excitation is mostly 

chosen as an accepted standard scale. After validating the proposed model, it is considered 

to record a simple PVEH (including a pure cantilever) response with respect to a type of 

excitation which most often takes place in the real world. Realistically, such an input is 

mostly a random process. For example, the piezoelectric energy harvesters mounted in 

subway or in airport hall; are subject to human foot stepping. Such a stochastic motion 

occurs with no controlled inputs. Thus, to cover such realistic triggers, impact-driven 
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excitations is considered in this chapter. In this chapter, experimental setup 

implementation is done. Data logging and data visualization is another important task.      

   

7.2 Exploratory data analysis  

Data visualization is the very first step to analyze and interpret the dataset. So, in 

this section data is rendered in an explanatory format to explore it through statistical 

plotting with interactive graphics and descriptive statistics. As mentioned in the above 

section, the excitation type in this section is random impact-driven trigger. It is well-

established that any random process initiated with random inputs (excitations) results in 

random output. To visualize the data, a well-clear definition of the response and predictor 

variables need to be expressed. For such a random process, the harvested electric voltage 

is considered as the response variable and the iteration number is considered the response 

or independent variable. To visualize such a 2-D (two dimensional) dataset, scatter plot, 

bivariate histograms and boxplots are usually the most common plots utilized. Since the 

2-D dataset is a single-variable distribution, univariate plots suffice perfectly.  
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Figure 114. Experimental setup of the piezoelectric energy harvester  

 

The above figure is a snapshot of the experimental setup. Major components 

include substrate, piezoelectric patch, clamp, multi-meter with data logging capabilities, 

smart device or laptop, hammer, multi-meter test leads and alligator clips. Each excitation 

is triggered by means of the hammer impact. The multi-meter is set for 10 seconds of time 

interval capturing the maximum amount of the generated voltage. This procedure is 

repeated 100 times.    
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Figure 115. Harvested AC voltage with respect to the experiment iteration 

 

In the above figure, collected dataset from the experimentation is plotted. The maximum 

value of captured voltage with respect to the iteration number is shown on the figure. 

However, such a presentation of dataset is rarely used, the plot shows data distribution 

perfectly.  
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Figure 116. Scatter plot of impact-driven excitation 

 

Another way to demonstrate and represent the dataset is to use the scatter plots. In 

this figure, the maximum amount of harvested alternating current voltage from the impact-

driven excitation of the energy harvester is shown in a scatter plot fashion. Data 

distribution implies randomness of the dataset which is expected due to the nature of 

inputs. Such a scatter plot is provided to reveal the relationship between the two variables 

(the iteration number of the experiment and the maximum amount of the harvested 

voltage). It is observed that the maximum amount of the alternating current (AC) voltage 

recorded (logged) is captured per experiment iteration. The iteration is accomplished 100 

times. The provided scatter plot discloses the fact that there are no trends detectable in the 

plot between the predictive and the response variables. This is an endorsement of the 

randomness of the impact-driven excitations using the hammer.  

Another visualizing method is to use the boxplot. Boxplot reveals the summary of 

the statistics in the correlational coupling between the two variables.  
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Figure 117. Box plot features 

 

In this figure, the whisker is utilized to demonstrate the variability of the outside of 

the upper and lower quartiles. Form a box plot following information is derivable: 

• The bottom and top of each box are the 25th and 75th percentiles of the sample, 

respectively. The distance between the bottom and top of each box is the interquartile 

range. 

• The red line in the middle of each box is the sample median. If the median is not 

centered in the box, the plot shows sample skewness. 

• The whiskers are lines extending above and below each box. Whiskers go from the 

end of the interquartile range to the furthest observation within the whisker length 

(the adjacent value). 
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• Observations beyond the whisker length are marked as outliers. By default, an 

outlier is a value that is more than 1.5 times the interquartile range away from the bottom 

or top of the box. However, you can adjust this value by using additional input arguments. 

An outlier appears as a red + sign. 

• Notches display the variability of the median between samples. The width of a 

notch is computed so that boxes whose notches do not overlap have different medians at 

the 5% significance level. The significance level is based on a normal distribution 

assumption, but comparisons of medians are reasonably robust for other distributions. 

Comparing box plot medians is like a visual hypothesis test, analogous to the t test used 

for means. 

 

 

Figure 118. Box plot for the experiment iteration 

 

The above figure shows the box plot for the number of iterations in the dataset 

shown on the horizontal axis of the scatter plot. Since the iteration number is merely the 
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numbers of experimentation test number, the box plot is a well-centered plot. It means that 

the minimum value is 2, the maximum value is 100, 25th percentile is aligned on the 25th 

iteration, 75th percentile shows the 75th number the test is run, and median is 50 which is 

indeed the median number between 1 to 100.  

   

 

Figure 119. Box plot for the harvested voltage 

 

Box plot for the harvested AC Voltage is expectedly not well-centered and 

represents distribution of random dataset. Besides to the minimum and maximum values, 

an outlier is also detected at the top. Detailed information in this regard is shown and stated 

in the following figure.  
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Figure 120. Box plot highlights 

 

Table 47. Box plot summary of information  

Number of points/observations 100 

Minimum value 214 mV 

Maximum value 2175 mV 

Lower adjacent 214 mV 

25th percentile 608 mV 

Low notch 800.283 mV 

median 891.5 mV 

High notch 982.717 mV 

75th percentile 1198 mV 

Upper adjacent 1733 mV 

Outlier value 2175 mV 

Distance to median of the outlier value 1283.5 

Number of IQRs to median 2.2091 

Mean (average) 916.17 mV 

Median (middle) 891.5 mV 

Skewness 0.5981 

Kurtosis 3.2438 

Interquartile range 590 

Observation row 9 

Standard deviation 365.0446 

Variance 1.3326 × 106 
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Figure 120 is duplicated for the maximum alternating current (AC) voltage values 

captured on the multi-meter with data cursor information. Such data is summarized in 

Table 50.  

It is noteworthy the outlier value detection in MATLAB is by default 1.5 

interquartile ranges (IQRs) below the first quartile or above the third quartile. According 

to the table, the mean value is bigger than the median value. Such a dataset is right skewed. 

This finding is approved because of the positive value of the skewness. Besides, the 

kurtosis value is bigger than 3 meaning that the voltage dataset has a larger peak than a 

normal distribution.    

After the scatter plot and the box plot, the histogram is another graph which is 

highly useful in showing the data distribution. Histogram or bar graph reveals the major 

features of data.  
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Figure 121. Histogram of the impact-driven experiment dataset  

 

Based on the figure, the voltage values are not normally distributed, which is an 

expected trait for a random process. There is also a useful scatter plot with marginal 

histograms.  
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Figure 122. Scatter-Histogram of the impact-driven experiment dataset 

  

Figure 122 embeds the scatter plot and the histogram plot in a single snap. Findings 

confirm those found from the above figures; x-axis shows a normal distribution as it 

pertains to the iteration number. Y-axis (vertical) displays data distribution of a random 

process. The data shows a right-shifted skewness meaning that population of the data is 

concentrated between 500 and 1300.  
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Figure 123. Scatter-Histogram of the impact-driven experiment dataset in parent container 

 

Same figure is duplicated here including the bar graphs along with the scatter plot 

and the histogram plot. Such a comprehensive plot including all three plots is called 

scatter-histogram with parent container. The bar graph conveys the same findings of the 

scatter-histogram plot meaning that the most-dense section of the data distribution belongs 

to the voltages between 500 and 1300. Outside this interval, few numbers of the dataset 

are located.     

It is also good to state how much electric power (𝑃) is generated by running the 

piezo-electric vibration-based energy harvester. Recoding the electric current (𝑖) and using 

the formula to of electric power (𝑃 = 𝑉𝑖, 𝑃 = 𝑉2 𝑅𝑙⁄ ); following values are obtained:  

In Table 51, minimum harvested electric power is 0.0458 mW, maximum value is: 

4.7306 mW, mean value is: 0.8394 W. RFID systems usually require a value between 0-

10 mW to be able to transmit data. As the RFID reader antenna and components work 

based on the passive tags, such a PVEH device is capable of providing enough amount of 

energy to run the RFID system.   
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Table 48. Box plot summary for the electric power generated from the PVEH in 

experimental setup.   

Number of points/observations 100 

Minimum value 0.0458 mW 

Maximum value 4.7306 mW 

Lower adjacent 0.0458 mW 

25th percentile 0.3697 mW 

Low notch 0.6405 mW 

median 0.7948 mW 

High notch 0.9657 mW 

75th percentile 1.4352 mW 

Upper adjacent 3.0033 mW 

Outlier value 4.7306 mW 

Mean (average) 0.8394 mW 

Median (middle) 0.7948 mW 

 

 

7.3 Clustering the dataset.  

For clustering the voltage dataset based on the fuzzy logic, one can utilize either 

fuzzy C-Means or Subtractive clustering techniques to identify clusters within the dataset. 

Then, using the Sugeno-type of FIS one can model the behavior of the energy harvester 

system. Before proceeding, clustering is required to be explained shortly: Clustering of 

numerical dataset forms the basis of several system modeling and classification 

algorithms. Main purpose of clustering is to identify chief natural groupings of data from 

a large set to yield a concise and succinct representation of the system's behavior. In 

MATLAB, cluster information can be used to generate Sugeno-type of the fuzzy inference 

system (FIS). Such a fuzzy system can model the behavior of the dataset utilizing 

minimum numbers of rules in the most efficient way. Fuzzy rules partition themselves 

according to the fuzzy qualities which are associated with each of the clusters.  
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Fuzzy C-Means clustering: Fuzzy C-means (FCM) is a data clustering technique 

wherein each data point belongs to a cluster to some degree which is determined by grade 

of a membership. This technique provides a method showing how to group data points that 

populate some multidimensional space into a specific number of different clusters. The 

command line function ‘fcm’ (fuzzy c means clustering) initiates with an initial guess for 

the cluster centers, which are intended to highlight and coincide with the mean location of 

each cluster.  However, the nominated initial guess for these cluster centers is most likely 

incorrect. ‘fcm’ assigns every single data point a membership grade for each cluster. By 

iteratively updating the cluster centers and the membership grades for each data point, 

‘fcm’ iteratively moves the cluster centers to the right location within a dataset. This 

iteration is based on minimizing an objective (cost/loss) function representing the distance 

from any given data point to a cluster center weighted by that data point's membership 

grade. In MATLAB, the command line function ‘fcm’ outputs a list of cluster centers 

along with several membership grades for each data point. Fuzzy qualities of each cluster 

disclosed by ‘fcm’, can be taken to build the fuzzy membership functions and the fuzzy 

inference system (FIS).  

Subtractive clustering: as for the cases in which, there is no clear idea of how many 

clusters there should be for a given set of data, subtractive clustering is a fast, one-pass 

algorithm for estimating the number of clusters and the cluster centers for the dataset. In 

MATLAB, the cluster estimates obtained from the ’subclust’ function, can be used to 

initialize iterative optimization-based clustering methods (fcm) and model identification 

methods (like anfis). The ‘subclust’ function finds the clusters using the subtractive 

clustering method.      
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First the voltage dataset is clustered using the C-Means method. The pertinent code 

is written in MATLAB at the command line. Using the mentioned method, one needs to 

first clarify the number of clusters. Assuming 3 clusters for the experimental dataset, 

options should be determined as well. Options in ‘fcm’ (fuzzy C-means clustering) is a 

row vector including 4 elements. The first element (options(1)) is the exponent of the fuzzy 

partition matrix shown by ‘U’. before proceeding further, the fuzzy partition matrix is a 

𝑁𝑐 by 𝑁𝑑 matrix. 𝑁𝑐 representing the number of rows is identical to the number of clusters. 

𝑈(𝑖, 𝑗) indicates the degree (grade) of membership of the 𝑗th data point in the 𝑖th cluster. 

For a given datapoint, the sum of the membership values of all clusters is equal to 1. In 

other words, sum of the entities of each column of the fuzzy partition matrix is equal to 1 

(∑ 𝑈𝑖,𝑗
𝑁𝑗
𝑗=1

= 1). The first element on the options matrix controls the amount of fuzzy 

overlap between different clusters. In MATLAB the default value for such an exponent is 

2. Greater values of this exponent indicate greater overlaps. It means with big exponent 

values; cluster boundaries are less crips and have more overlaps. In such a case which 

happens with big (wide) datasets, the calculated cluster centers are probably very close to 

each other. In such a case, each datapoint has approximately the same amount of 

membership in all clusters. In most of the clustering cases, it is recommended to adopt 

small values of option(1) (fuzzy partition matrix exponent) which leads to less overlap 

between fuzzy clusters. However, this number should be bigger than 1 to cover all of the 

datapoints in a dataset. The second entity of the option matrix is options(2) which pertains 

to the maximum number of iterations. This value is considered by 100 as default. 

Obviously increasing the option(s) leads to more computations but more accuracy. Third 

entity is the minimum improvement value of objective function between two successive 
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(consecutive) iterations. Default value is 10−5. Optimization in clustering will stop if the 

objective function improvement between the last two final iterations is less than this third 

entity. This entity determines the accuracy of clustering. The last entity of the option 

matrix is a verbose function of ‘true’ or ‘false’. This option enables MATLAB to either 

display or hide the objective function values for each iteration and loop. With all this 

explanation, classifying the dataset into the specific cluster with largest membership value 

is done.  

 

Figure 124. C-Means clustering objective function improvement. 

 

Figure 124 shows the objective function values versus iteration counts with 0.0005 

as the minimum function improvement. Obviously, throughout the initial iterations (<5) 

the objective function decreases sharply and steeply. After about 5 iterations the slope of 

decrement is reduced and the optimization algorithm stops around 70 iterations where the 

improvement between the last two functions is less than 0.0005.  
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Figure 125 experimental data clusters  

 

Figure 125 shows the clustering of the voltage dataset into two various clusters. 

Certainly, the number of elements in each cluster does not necessarily equate with the other 

cluster. In this clustering effort, 47 elements exist in the third cluster, 42 in the second and 

11elements appear in the first cluster. The center of each cluster is depicted in cross marks. 

Fuzzy partition matrix is considered as 2, maximum number of iterations is set to 500, and 

minimum objective function improvement is considered as 0.0005.   

Using the ‘genfis’ function, it is viable to train the corresponding fuzzy inference 

system (FIS) for the accomplished clustering algorithm. To customize the fuzzy inference 

system according to the clustering options, one can specify the system using 

‘genfisOptions’ function using the ‘option’ matrix which is already used in clustering the 

dataset.  
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Figure 126 Fuzzy logic designer for C-Means clustering 

 

Figure 126 shows the designed Sugeno type of fuzzy inference system for clustering 

using C-Means method. And method is ‘prod’, Or method is ‘probor’, implication is ‘min’ 

and Defuzzification is ‘wtaver’. Range of the system is [1, 100].   

 

Figure 127 Fuzzy membership function editor for C-Means clustering 
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Two Gaussian membership functions are used and shown with diverse statistical 

parameters and ranges. Such functions are generated due to the adoption of two clusters as 

well as the type of dataset and type of clustering algorithm.  

 

Figure 128 Rule editor for fuzzy C-Means clustering  

 

The rule editor shows the two fuzzy rules derived from the clustering based on C-

means and two clusters. Connection between the rules are based on the ‘and’ method and 

a unit identical weight.   
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Figure 129 Rule viewer in fuzzy C-Means clustering 

 

Rule viewer of the generated clustering algorithm shows the instinct rules and how 

inputs lead to a specific cluster as the output. Dragging the red line crossing the input boxes 

leads to instant changes in the output boxes and the aggregated outcome cluster, 

respectively.   

Further analysis over C-Means clustering can be accomplished in terms of adjusting 

the amount of overlap between different fuzzy clusters and to see how this option(1) (fuzzy 

partition matrix exponent) alters the performance of the clustering algorithm.     
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Figure 130 Exponent of fuzzy partition matrix effect over overlap in clusters  

 

Considering four disparate values of fuzzy partition matrix exponent as 𝑀 =

1.1, 2, 3, 4 and keeping constant values of other option values; clustering figure shows that 

for smaller numbers of M, crisper boundaries are observed and big values of M result in 

datapoints which belong to two or even more clusters. A given datapoint is classified into 

the cluster for which it has the highest membership value. A maximum membership value 

of 0.5 indicates that the point belongs to both clusters equally. The datapoints with marked 

yellow cross signs have maximum membership values below 0.6. These points have a 

greater degree of uncertainty in their corresponding membership. More datapoints with low 

maximum membership values indicate a greater degree of fuzzy overlap in the clustering 

result. The average maximum membership value shown by Ave. Max. provides a 

quantitative description of the overlap. In short, bigger average maximum values occurs 

with smaller fuzzy partition matrix exponent which shows crisp clusters with small or no 

overlaps. Conversely, increasing the M leads to smaller average maximum values and more 

overlapped clusters which decreases the efficacy of the clustering algorithm.  
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Another method of clustering is using the ‘subclust’ function and subtractive 

clustering technique. Subtractive clustering assumes that each datapoint is a potential 

cluster center. Thus, the algorithm calculates the likelihood that each data point would 

define a cluster center based on the density of the surrounding data points. Then algorithm 

chooses the data point with the highest potential for being the first cluster center and 

removes all data points near the first cluster center. The vicinity is determined using a 

parameter named cluster influence range. Then, algorithm m chooses the points with the 

highest potential for being the next cluster center. This whole procedure is being repeated 

until the data is within the influence range of a cluster center. Despite the C-Means 

clustering, the subtractive type yields the number of clusters automatically. The alternative 

parameter here is the influence range. Mostly, small number of influence range results in 

smaller cluster sizes and more clusters. Conversely, bigger influence range results in less 

clusters and less fuzzy rules. This parameter is ranged from 0 to 1.  

 

Figure 131 Fuzzy logic designer for subtractive clustering 
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Figure 131 displays the generated clustering fuzzy inference system (FIS) using 

subtractive method. It is good to note that the mentioned clustering algorithm is generated 

in MATLAB at the command line. The fuzzy system is established based on the Takagi 

Sugeno inference system with single input (iteration number in experiment) and single 

output (maximum harnessed voltage in an impact-driven excitation).   

 

Figure 132 Fuzzy membership function editor for subtractive clustering 

 

Figure 132 shows the membership functions forming the fuzzy rules and the fuzzy 

inference system. Clustering the experimental dataset into two different clusters leads to 

adoption of four different types of Gaussian membership function expanding over various 

ranges.  
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Figure 133 Rule editor for fuzzy subtractive clustering 

 

Fuzzy rule set is depicted in verbose format in the above figure. Using four 

membership functions leads to four fuzzy inference rules. The connection type in rules is 

based on ‘and’ method and unit identical weight is taken per rule.  
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Figure 134 Rule viewer for subtractive fuzzy clustering 

 

Rule viewer figure illustrates the fuzzy rules in visual setting. For this clustering 

type (subtractive), four fuzzy rules are shown on the left, and the outcome on the right. The 

last box including the numeric range is the aggregated value of the fuzzy clustering. 

Dragging the red line crossing the input boxes instantly ends up in variations in output 

which renders instant fuzzy changes.   

 

7.4 Conclusion 

In this chapter to evaluate the capability of a piezoelectric vibration-based energy 

harvester (PVEH) to convert mechanical energy into electric energy, a simple 

experimental energy harvester setup is implemented. Unlike to the other chapters of this 

dissertation, excitation trigger type is applied by means of the impact-driven impulses. 

However, in the former chapters the excitation is based on the harmonic base excitations. 
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The reason to choose two different types of excitations pertains to the fact that, in the 

former chapters main concern is modeling, analysis, optimization and design of a modified 

energy harvester. To show the superiority of such harvester model, a standard criterion is 

chosen to compare and validate the supremacy of the proposed model relatively. However, 

in the current chapter major concern is to test the capability of a mere cantilever 

piezoelectric vibration-based energy harvester which is excited by a realistic trigger 

similar to what is happening in the real world. In this response, impact-driven excitation 

is considered as the input. The experimental setup is implemented and the harvested 

electric voltage is captured and recorded for data visualization purposes. According to the 

nature of the impact driven excitations, collected voltage dataset is a random dataset with 

no detectable patterns. The experimentation is run for 100 iterations. It is noteworthy that 

running different iterations will lead to different dataset distributions. The current dataset 

is valid for only the 100 iterations accomplished at the specific run in the research 

laboratory, and running the setup for the next time is expected to result in different dataset.       
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CHAPTER 8. CONCLUSION 

8.1 Overview 

The work presented in this dissertation covers an exploration into generating 

electrical energy from mechanical vibration energies using the piezoelectric transduction 

method. The primary goals of the work were to devise and potentially improve upon the 

state-of-the-art technologies to convert vibration energy into electric energy. Developing 

a technology of energy harvesting based on vibrations and piezoelectricity has great 

potential as an alternative power source for low-power and ultra-low-power electronics. 

This is especially important, as the newer generation of electronic devices require very 

small amounts of energy to run.  

This chapter reviews the contributions made to developing piezoelectric vibration-

based energy harvesters (PVEHs).  

 

8.2 Improvements in understanding the vibration response of a configuration. 

Initial energy harvester devices included a single mass-spring system. Such a 

lumped-parameter system has a single degree of freedom which limits the amount of 

harvestable energy and the device application. New energy harvester modules are 

distributed-parameter systems with infinite degrees of freedom and a cantilever beam. The 

cantilever is equipped with piezoelectric patches on top (uni-morph), and both top and 

bottom surfaces (bi-morph). Mechanical oscillations of the beam can result from motions  

which have a connection to the cantilever configuration. The source of oscillations can be 

generated from flow, acoustic, or physical contact. In this work, the source of vibrations 

simulates or is due to an operator applying random impact-driven excitations. Since the 
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amount of harvestable energy vitally depends on the vibratory behavior of the cantilever, 

it is important to analyze the system considering the influential parameters. These 

parameters impact the response of the system in terms of the resonance frequency and 

frequency bandwidth. Piezoelectric vibration-based energy harvesters convert the 

mechanical energy into electric energy most efficiently when the system is in resonance. 

Thus, identifying the resonance frequencies, mode shapes, and frequency bandwidth is 

crucial to increase the efficacy and the generated amount of energy.  

In the initial chapters of this work, temperature and rotatory parameter effects upon 

the frequency variation are studied. To model the temperature effects, an extended 

Hamilton’s principle is used along with the following assumptions: one-dimensional and 

steady-state heat transfer with no heating source. The rotary element is modeled with 

respect to a constraint equation between the lateral deformations of the cantilever beam 

and the rotational orientation of the element. Deriving the governing equations of motion 

and solving for the first three modes of vibration, it was observed that temperature can 

impact the frequency bandwidth but does not affect the amount of extractable voltage. This 

is mainly because temperature fluctuations affect the resonance frequency. Modifications 

of the Rotatory element have a similar effect in decreasing the resonance frequencies. Such 

a consideration of changes in the temperature and rotary element can be important for 

understanding energy harvesters working in ambient with severe temperature fluctuations, 

or if the cantilever is being rotated by a rotor or servomechanism. Also, different boundary 

conditions of clamped-free and clamped-clamped cantilevers are considered accompanied 

with different types of solution in the spatial domain (Galerkin’s and Navier’s methods). 
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The importance of using the proper solution method is demonstrated, particularly with 

respect to symmetric and asymmetric boundary conditions.  

 

8.3 Importance of integrating a sub-system of oscillator-spring to the cantilever 

Conventional energy harvesters are comprised of a cantilever with or without a 

tuning mass at the tip end. These conventional systems usually have two important 

drawbacks: the amount of generated energy is insignificant, and the operational (effective) 

frequency bandwidth is not wide enough. Such challenges decrease the application of 

PVEHs in the real world. On the other hand, with recent improvements in electronics and 

semi-conductor technologies, new devices including RFID passive tags and components 

require only a small amount of energy to operate. Such a promising point encourages 

scholars to develop conventional PVEHs to render enough amount of energy along with 

widened effective frequency bandwidth.  

As a novel sub-system integration, a mass-spring system was integrated to the tip 

end of the beam. Such an integration increases the degrees of freedom and the generalized 

coordinate systems adding to the complexity of the analysis. The additional complexity is 

due to the relative motion or oscillation of the oscillator (mass) with respect to the 

oscillations of the tip end of the cantilever. The elastic support of the oscillator also reflects 

back vibratory energy to the cantilever. To derive the governing equations of motion, 

extended Hamilton’s principle as an energy method was adopted. Unlike systems of 

conventional PVEHs, a system of three partial differential equations (PDEs) are coupled 

in this case. The mechanical equations of the cantilever and the oscillator are coupled to 

the integral PDE of the electric circuit. Such a sub-system integration has another impact 
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in regard to the boundary conditions. Deflection, slope, and bending moment of the 

cantilever are similar to that of a conventional cantilever as the first three boundary 

conditions were unchanged. However, the spring restoring forces effect significantly alters 

the shearing force boundary condition of the cantilever. Such a mutation results in a new 

nonlinear transcendental characteristic equation which is an explicit function of the mass 

of the oscillator and spring stiffness (or mass and stiffness ratios). Galerkin’s modal 

decomposition method was initially adopted to separate the spatial and temporal domains 

of the cantilever-oscillator-spring system. Solving the mentioned nonlinear transcendental 

characteristic equation numerically revealed the initial effect of the restoring forces of the 

spring and inertia of the oscillator.        

In other words, replacing the rigid support with an elastic support renders the 

restoring forces’ impact over the oscillatory response of the cantilever. Such an impact 

was observed in both resonance frequency and effective frequency bandwidth. It was 

understood that the new system had the first resonance frequency at the vicinity of the 

origin and smaller than the conventional system’s first resonance. Accordingly, the mode 

shapes of the cantilever were dramatically changed. Such a mutation can be severe or 

minor, depending upon the amount of oscillator mass and spring stiffness. Another finding 

pertains to the second resonance frequency, which takes place around the first resonance 

of the conventional system. In short, integration of the oscillator-spring system with the 

cantilever at the tip end enables the designer with tuning capability in resonance frequency 

and frequency bandwidth. More importantly, the effect of the oscillator inertia emerges in 

the amount of harvestable voltage.  
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Based on the results summarized in Table 52, it is inferable that the harvestable 

energy can be increased by six times. Realization of such an increment depends on the 

values of the mass and stiffness ratios and is vitally important to increasing the efficiency 

of the PVEHs. Another finding pertains to the initial resonance at the first mode which 

takes place at frequencies smaller than the conventional harvesters’ first resonance. This 

is particularly important and helpful as for most cases, the incoming (driving) vibration 

frequency covers a range smaller than the first resonance of the structure. This way, the 

smaller resonance taking place at smaller frequency spectrum provides the resonance and 

generation of peak values in the harvestable energy.     

 

Table 49. Harvested voltage by oscillator-spring sub-system integration.  

𝒓𝒔 𝒓𝒎 Maximum voltage Percentage (%) 

1E+10 0 4.847469 49.47116 

0.01 0.01 3.344365 3.12311 

100 0.01 3.342263 3.05829 

0.01 1 15.77137 386.3084 

1 1 14.64587 351.6036 

100 1 13.61919 319.9463 

0.01 2 27.34958 743.3213 

100 2 24.38628 651.9481 

 

Based on the results summarized in the above table, it is inferable that harvestable 

energy can be increased by six times. Such an increment depends on the values of the mass 

and stiffness ratios and is vitally important to increase the efficiency of the PVEHs. 

Another finding pertains to the initial resonance at the first mode which takes place at 

frequencies smaller than the conventional harvesters’ first resonance. This is particularly 
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important and helpful as for most cases, the incoming (driving) vibration frequency covers 

a range smaller than the first resonance of the structure. This way, the smaller resonance 

taking place at smaller frequency spectrum provides the resonance and generation of peak 

values in the harvestable energy.     

 

8.4 Importance of optimizing the cantilever-oscillator-spring energy harvester  

In the next step of developing the PVEHs, finding those optimal values of the 

oscillator mass and spring stiffness (constant) were considered. This tuning was aimed to 

harvest the biggest amount of electric energy from a given vibration energy.  

In most cases, modifying the mechanical and geometrical properties of a cantilever 

is not a realistic idea due to limits in size and material. This means that changing the 

vibratory response of the system according to the desired pattern is not easy. To address 

such an issue, mass of the oscillator and stiffness of the spring were considered as the 

tuning parameters to optimize the behavior of the cantilever towards the desired state. A 

specific range of values for the oscillator mass and spring stiffness were considered. The 

objective function to be maximized was the voltage function. Using analytical-numerical 

methods, an explicit voltage function was derived. To optimize such a function with 

genetic algorithms, there were two main challenges. The voltage function encompasses 

several complicated coefficients which are functions of the mode shapes at different 

modes. This leads to extreme computational costs as the genetic algorithm runs on 

successive iterations of high numbers. The bigger challenge referred to the process of 

solving the nonlinear transcendental characteristic equation which was accomplished 

numerically. In this process, a developed root-solving algorithm dependent on a reasonable 
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value of the initial guess was used. To support the solver with a good initial guess, the 

characteristic equation was visualized by plotting. This step requires human action and 

cannot be automated by the software.  

To overcome such issues, a soft computing technique was investigated. 

Specifically, the analytical-numerical voltage function was used to obtain over 230 case 

studies to train a reliable approximator (regressor) algorithm. The mentioned algorithm 

was implemented using adaptive-neuro-fuzzy-logic principles. Fuzzy inference system 

(FIS) handles the nonlinearity of the voltage dataset and provides accurate estimations for 

unknown values of the variables. Neural networks were used in parallel to the fuzzy logic 

to train the inference system more efficiently. Such efficiency yields more accuracy 

(precision) of the function approximator algorithm along with reasonable computational 

costs. In tuning the fuzzy-based function approximator, several types of membership 

functions (MFs) and various combination of fuzzy rules along with different rule weights 

were verified and compared based on the root-mean-square-error (RMSE) values. 

Gaussian, and Generalized-Bell-shaped membership functions with 64 fuzzy rule sets 

showed better capability in estimating the unknown voltage values. To avoid the under-

fitting issue, a high number of fuzzy rule sets were required. However, taking so many rule 

sets deteriorates the approximator algorithm in terms of generalization. This is known as 

the over-fitting issue. To avoid generalization problems, a specific division of dataset was 

considered as a checking (validation) dataset. Multiple adaptive-neuro-fuzzy-inference-

systems (ANFIS) were implemented as inputs to the genetic algorithm. Different types of 

genetic algorithm selection types were also implemented to find the optimal solution. All 

combinations of different fuzzy systems and genetic selections yield the same results for 
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the optimum value of the oscillator mass and spring stiffness (𝑟𝑚 = 2, 𝑟𝑠 = 100). At the 

end, to evaluate the accuracy of the result obtained from the soft computing technique, 

results were compared against the analytical-numerical results in terms of harvestable 

voltage in the frequency-domain. A comparison showed the soundness and correctness of 

the soft computing algorithms, meaning that the optimal values of the oscillator mass and 

spring stiffness indeed yield the most amount of harvestable electric voltage.  

In summary, it was observed that integration of the oscillator-spring sub-system to 

the cantilever not only impacts the amount of harvestable energy, but also it is viable to 

tune and optimize such a multi-system energy harvester to deliver the most amount of 

harvestable energy.  

In a similar effort, the objective or utility (fitness) function was chosen to be the 

operational (effective) frequency bandwidth. As mentioned earlier, another drawback with 

conventional PVEHs pertains to the narrow effective bandwidth. Widening this bandwidth 

is crucial to increase the efficiency of the PVEHs. Integrating the oscillator-spring sub-

system provides the chance to alter and widen the effective bandwidth. To optimize this 

widening process, soft computing techniques were adopted to train an adaptive-neuro-

fuzzy-inference-system to approximate the resonance frequencies for unknown values of 

the oscillator mass and spring stiffness. The approximator was used as input to the genetic 

algorithm to find the optimal values. It is noted that, as the ANFIS is supported by Takagi-

Sugeno type of fuzzy logic, two separate fuzzy-inference-systems (FISs) are required per 

initial and final frequencies in the effective (operational) frequency bandwidth ranges. This 

is because of the nature of Takagi-Sugeno type of the FIS, in which unlike to the Mamdani 

FIS, the supporting algorithm handles single/multiple-input-single-output (S/MISO). 
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Trapezoidal and Gaussian functions with 49 and 64 fuzzy rule sets were used. After finding 

the optimal values, they were used in the analytical-numerical expression for the voltage 

frequency response function (FRF) to evaluate the soundness of the designed soft 

computing algorithm. Comparison showed that the optimal values nominated by the soft 

computing algorithm result in an optimal effective (operational) frequency bandwidth. The 

corresponding optimal values of the mass and stiffness ratios were 𝑟𝑚 = 2.5, 𝑟𝑠 = 100.     

 

8.5 Importance of designing an adaptive PVEH according to a given excitation  

An important case for an energy harvester would be an identifiable given excitation 

(driving) frequency to the energy harvester. This means if the amount of the driving 

frequency and the range is detectable, the easiest method to increase the harvestable 

amount of energy is to adjust the harvester system’s parameters to guarantee resonance. In 

order to avoid changing the mechanical and the geometrical properties of the cantilever, 

oscillator mass and spring stiffness can be changed. This problem is designing an 

adjustable PVEH according to the given excitation information, in which resonance is 

expected to yield the peak amount of harvestable energy. Due to the challenges mentioned 

in the above section, a fuzzy-based regressor was similarly designed to estimate the proper 

values of the design parameters (mass of the oscillator and spring stiffness). Neural 

networks were also utilized to tune the system for better accuracy and avoid the overfitting 

and generalization issues. It was assumed in this investigation that the driving (excitation) 

frequency from the ambient was 5𝐻𝑧. Using the Generalized-Bell-shaped and Triangular 

membership functions with 14 and 15 fuzzy rule sets, 𝑟𝑚 = 1.246, 𝑟𝑠 = 0.1 and 𝑟𝑚 = 1,

𝑟𝑠 = 0.0803 are the values delivered by the fuzzy-based regressor to ensure resonance will 
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take place. To verify the correctness, such values were used in the analytical-numerical 

expression for the voltage frequency response function (FRF) to observe the resonance 

frequency values.  

 

Table 50. Estimated values of the resonance frequency using ANFIS 

(rm, rs) f1 (Hz) 

(1.245718750976976,0.1) 4.991204174782064 

(1, 0.080291506577599) 5.007755322962248 

 

It is observed that the designed ANFIS systems are accurate enough to estimate the 

proper value of the oscillator mass and spring stiffness to yield resonance and match the 

excitation (driving) frequency with natural frequency of the cantilever.  

 

8.6 Importance of experimental setup to observe the amount of harvestable voltage 

and energy  

To experimentally and practically evaluate the amount of harvestable voltage and 

electric power, an experimental setup was designed and examined. The major difference 

is, in the real world, total control over the excitation or driving frequency cannot be 

guaranteed, and the excitation often looks like a random process. To follow this 

randomness, the excitation type in the experimental section was impact-driven inputs. The 

harvested voltage and current were recorded in a data-logging multi-meter per each 

iteration of the experiment. In a set of 100 times of execution; mean, and maximum values 

of the generated power were: 𝑃 = 0.839 𝑚𝑊, 4.7306 𝑚𝑊.  
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Table 51 Harvested power by oscillator-spring integration  

Minimum value 0.0458 mW 

Maximum value 4.7306 mW 

Lower adjacent 0.0458 mW 

25th percentile 0.3697 mW 

median 0.7948 mW 

75th percentile 1.4352 mW 

Upper adjacent 3.0033 mW 

Mean (average) 0.8394 mW 

 

As most of the RFID components require less only several milliwatts to transmit 

the data, the generated energy from the harvester assembly should be successful in 

supplying enough power to run the RFID system for passive components with ultra-low-

power electronics. It is also good to note that, depending on the storage type and resistance, 

one can slightly change the value of the applicable energy. At the end of the 

experimentation, fuzzy C-means type of clustering was implemented to cluster the 

experimental dataset into three different types: low-energy, mid-energy, and high-energy 

clusters. Different values of the fuzzy partition matrix exponent (𝑀) were used to cluster 

the data with decent overlap and uncertainty. A relationship between the mentioned fuzzy 

partition matrix exponent with the average maximum membership value (𝐴𝑣𝑒 𝑀𝑎𝑥) was 

also addressed. Findings revealed that it is important to find the proper value of the matrix 

exponent along with the average maximum membership value to cover all the datasets 

while the uncertainty of clustering is minimized. In this work, the proper value of the fuzzy 

partition matrix exponent was 𝑀 = 1.1 and that of the average maximum value of the 

membership was 𝐴𝑣𝑒 𝑀𝑎𝑥 = 1. Decreasing the 𝐴𝑣𝑒 𝑀𝑎𝑥 was identical to increasing the 
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𝑀 value, which resulted in less crisp boundaries and more uncertainty. It was also verified 

that choosing 𝑀 < 1 results in missing cluster points. This means that some datasets were 

abandoned and did not belong to any of the clusters. Finally, different types of data 

visualizations (scatter plot, box plot, histograms) were used to show the distribution of the 

harvested voltage data.    

 

8.7 Summary of contributions  

As a final summary: in this work, conventional piezoelectric vibration-based 

energy harvester (PVEH) devices were developed by integration of oscillator-spring sub-

system. It was observed that, based on the analytical-numerical results, the proposed model 

renders significantly more harvestable voltage than the conventional energy harvesters. 

This increase is directly tied to the inertia of the oscillator and stiffness of the spring, which 

dramatically alters the vibratory response of the cantilever. Optimal values of the oscillator 

mass and spring constant were found using soft computing techniques which were 

established based on: adaptive-neuro-fuzzy-inference-system and genetic algorithms. 

Amongst various architectures of fuzzy logic systems, Gaussian, Generalized-Bell-shaped, 

and Trapezoidal functions were used to determine the membership degree of fuzzy sets. 

Genetic algorithms were implemented with 200 initial solution population and 50 times of 

iteration and 100 population of initial solution and 100 iteration times. Random, roulette 

wheel, and tournament selection methods were deployed to achieve the optimal solution. 

Based on the random nature of genetic algorithm in selecting the initial solutions, the 

evolution path differs per each algorithm execution time. This means that it cannot be pre-

defined which selection method exceeds in computational costs. However, all three 
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different types of selection methods and various combinations of fuzzy logic yield 

identical optimal solutions for the design parameters. Two different sets of optimal values 

were found to maximize the harvestable voltage and to widen the effective (operational) 

frequency bandwidth. In the next step, designing an adjustable PVEH was reported. It was 

assumed the driving (excitation) frequency is a given and identifiable value. Determining 

the proper mass and stiffness ratios were the parameters investigated. These values should 

be obtained corresponding to the driving frequency so that resonance would take place. In 

other words, shifting the natural frequency of the cantilever towards the pre-defined value 

of the driving frequency was the identified problem. Fuzzy logic was used to design a 

function approximator to estimate the proper values of the ratios. Ultimately, the 

soundness of the designed fuzzy inference system was verified by using the analytical-

numerical method. In the last chapter, an experimental setup was implemented and 

different tests were executed to record the harvestable amount of voltage. It was observed 

that the piezoelectric vibration-based energy harvester is capable of generating up to 4.7 

mW, which can be sufficient to supply power for ultra-low-power RFID components to 

transmit data.  

 

8.8 Future work  

Developing piezoelectric vibration-based energy harvesters is in demand for 

several reasons. With the advent of smart cities and ultra-low-power electronics a new 

generation of electric devices like sensors and actuators are needed; these devices require 

small energy amount to run. Additionally, batteries can cause environmental issues and 

replacing used batteries can be difficult and increase labor costs. On the other hand, 
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developing energy harvesters has the potential to provide sufficient amounts of harvestable 

energy. As a result, developing harvesters from a dynamic perspective would be essential 

to overcome the issues of insignificant harvested energy and narrow bandwidth. As an 

extension of the work presented in this dissertation, designing parallel beams with piezo 

patches would further improve the functionality of the harvester. The single beam with 

piezoelectric patch was capable of generating up to 4.7 mW. A good parallel beam design 

would increase this amount. Another consideration would be the storage type of 

harvestable energy. It is important to design a proper storage device to minimize the 

amount of energy which is wasted in the storage process. From an analytical-numerical 

perspective, considering nonlinearity between mechanical and electrical coupling would 

be a case study. In this case, derivation of the voltage steady-state response would be the 

most challenging part. In the soft computing algorithms, one might develop the fuzzy 

inference system (FIS) to increase the accuracy in prediction of unknown voltage values 

for complicated harvester configurations. Such development would modify the fuzzy rules, 

fuzzy membership functions, or the inference type (Mamdani, fuzzy type-II). Modifying 

the geometry and configuration of the energy harvester would be another case study. It 

would necessitate a concurrent design process for a system containing multiple cantilever-

oscillator-spring subsystems. The challenge would be how to connect these subsystems in 

terms of boundary conditions (interfaces) from both modeling and experimental 

perspectives. Such interfaces transfer the oscillations from one subsystem to another. This 

would require a deep understanding of the transfer functions that describe resulting 

subsystems. Potential areas of future work are summarized in the following list:  

1- Designing parallel beams with piezoelectric patches.  



 

284 

 

2- Developing the storage type of energy. 

3- Developing analytical-numerical methods to handle nonlinearity of 

mechanical-electrical coupling.  

4- Developing soft computing technique from fuzzy inference system perspective.  

5- Developing configuration by designing multiple PVEHs.       
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APPENDICES 

APPENDIX 1. Technical Parameters and Terminology 

In this appendix, technical parameters and the corresponding terminology are represented.   

𝐿 is length of beam aligned with 𝑥-direction  

𝑏 is beam width (both substrate and piezoelectric layers have identical width) 

ℎ𝑠 is thickness of substrate   

ℎ𝑝 is thickness of each piezoelectric layer  

𝑔(𝑡) is base translation  

ℎ(𝑡) is base rotation 

𝑇1
𝑠 is normal (axial) stress at substrate (along 𝑥-direction) 

𝐸𝑠 is Young’s modulus of substrate (modulus of Elasticity) 

𝑆1 is axial (normal) strain in the 𝑥-direction 

Piezoelectric constitutive relation:  

𝐷3 = 𝑑31𝑇1
𝑝 + 𝜀33

𝑇𝐸3 

𝑇1
𝑠 = 𝐸𝑠𝑆1 

𝑆1 = 𝐸𝑝𝑇1
𝑝 + 𝑑31𝐸3 

𝑇1
𝑝 = 𝐸𝑝(𝑆1 − 𝑑31𝐸3) 

𝜀33
𝑠 = 𝜀33

𝑇 − 𝑑31
2𝐸𝑝 
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𝐸3 = −
𝑣(𝑡)

(2ℎ𝑝)
⁄  

𝐷3 = 𝑑31𝐸𝑝𝑆1 − 𝜀33
𝑠
𝑣(𝑡)

2ℎ𝑝
 

𝐶𝑝 =
𝜀33

𝑠𝑏𝐿

ℎ𝑝
 

𝑣(𝑡) = 𝑅𝑙𝑖(𝑡) = 𝑅𝑙𝑞̇3 

𝑖(𝑡) =
𝑑𝑞3(𝑡)

𝑑𝑡
 

𝐷3 is electric displacement 

𝑑31 is piezoelectric coupling coefficient  

𝑇1
𝑝 is stress of the piezoelectric layers in the 𝑥-direction  

𝜀33
𝑇 is permittivity at constant stress 

𝐸3 is electric filed through 𝑧-direction   

𝐸𝑝 is elastic modulus at constant electric field 

𝜀33
𝑠 is permittivity at constant strain  

𝐶𝑝 is capacitance  

𝑣(𝑡) is voltage across resistive road (𝑅𝑙) 

𝑅𝑙 is resistance  

𝑞3(𝑡) is electric charge  
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𝑖(𝑡) is electric current  

𝛼𝑠 is thermal expansion coefficient  𝑤𝑏is base motion with respect to Euler (fixed) 

coordinate axis in space (𝑋 − 𝑌 − 𝑍) 

𝑤𝑟𝑒𝑙(𝑥, 𝑡) is beam transverse (lateral) translation (displacement) (deflection) with respect 

to Lagrangian coordinate attached to base (𝑥 − 𝑦 − 𝑧) 

𝑈𝑘 is kinetic energy term  

𝑈𝑠 is potential strain energy term  

𝑈𝑡ℎ is potential energy term due to thermal stress 

𝑊𝑒 is electrical energy term  

𝑇𝑡ℎ is thermal stress 

𝜌 is density   

𝐴 is cross section area including substructure, top and bottom PZT layers  

𝐴𝑠 is cross section of substructure layer  

𝐼𝑠 is second moment of inertia of substructure    

𝐼𝑝 is second moment of inertia of PZT layer    

𝑄𝑝 is first moment of cross area of PZT layer  

𝐿 is Lagrangian operator  

𝑊𝑛𝑐 is non-conservative work resulted from dissipating forces, and external forces 
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𝑐𝑎 is viscoelastic damping coefficient    

𝑊𝑐𝑎 is non-conservative work due to viscoelastic dissipating force  

𝑐𝑠 is Kelvin-Voigt damping coefficient (also called as strain-rate damping coefficient) 

𝑊𝑐𝑠 is non-conservative work due to Kelvin-Voigt (strain-rate) dissipating force  

𝑊𝑅𝑙 is non-conservative work due to dissipating force of resistive load  

𝐻(𝑥) is Heaviside function  

𝛿(𝑥) is Dirac delta function  

𝑡 is time variable (temporal variable) 

𝑥 is space variable through beam length (spatial variable) 

𝛾𝑛 = 𝜙𝑛(𝐿) 

Γ2 =
𝐸𝑝𝑄𝑝𝑑31

ℎ𝑝
 

Γ1 = Γ2𝑅𝑙 

𝜒𝑛 = Γ2
𝑑𝜙𝑛
𝑑𝑥
|
𝑥=𝐿

 

𝜏𝑐 =
𝐶𝑝

2
𝑅𝑙 

Γ3 =
2

𝐶𝑝
Γ2 

Θ𝑛 = Γ3
𝑑𝜙𝑛
𝑑𝑥
|
𝑥=𝐿
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𝛾𝑛
𝑤 = ∫ 𝜙𝑛(𝑥)𝑑𝑥

𝐿

0

 

The above parameter pertains to the analytical-numerical closed-form expression of the 

voltage function frequency response function.  
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APPENDIX 2.  Dataset 

In this appendix, the dataset obtained by means of the analytical-numerical closed-form 

solution is provided.  For different values of stiffness ratio and mass ratio; the nonlinear 

transcendental characteristic equation is solved numerically using the ROOTSOLVER 

algorithm in MATLAB. To provide the decent initial guess, the mentioned characteristic 

equation is plotted and visually assessed. Such a visual inference enables us to estimate the 

initial guess. Such an estimation helps the algorithm to find the numerical solution of the 

equation. This process is accomplished for the first three vibration modes (first three roots). 

Besides, the amount of harvested voltage at the first resonance is also gathered and 

collected.   

Dataset 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

0.0001 0.0001 4.393729 0.999991 1.875121 4.694092 

0.0001 0.0005 4.365127 0.668735 1.875119 4.694092 

0.0001 0.001 4.366918 0.562337 1.875119 4.694092 

0.0001 0.005 4.410254 0.376057 1.875119 4.694092 

0.0001 0.01 4.467924 0.316225 1.875119 4.694092 

0.0001 0.05 4.931851 0.211472 1.875119 4.694092 

0.0001 0.1 5.512044 0.177826 1.875119 4.694092 

0.0001 0.2 6.672468 0.149534 1.875119 4.694092 

0.0001 0.3 7.832898 0.135119 1.875119 4.694092 

0.0001 0.4 8.99333 0.125742 1.875119 4.694092 

0.0001 0.5 10.15376 0.11892 1.875119 4.694092 

0.0001 0.6 11.31419 0.113621 1.875119 4.694092 

0.0001 0.7 12.47463 0.109326 1.875119 4.694092 

0.0001 0.8 13.63506 0.105736 1.875119 4.694092 

0.0001 0.9 14.79549 0.102668 1.875119 4.694092 

0.0001 1 15.95593 0.099999 1.875119 4.694092 

0.0001 2.5 33.36242 0.079526 1.875119 4.694092 

0.0001 5 62.37334 0.031623 1.875119 4.694092 

0.0001 7.5 91.38411 0.060427 1.875119 4.694092 

0.0001 10 120.395 0.056234 1.875119 4.694092 

0.0001 100 1164.786 0.031623 1.875119 4.694092 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

0.001 0.0001 4.814921 1.777528 1.875892 4.694101 

0.001 0.0005 4.441202 1.189089 1.875285 4.694101 

0.001 0.001 4.404222 0.99991 1.875269 4.694101 

0.001 0.005 4.417401 0.668684 1.875258 4.694101 

0.001 0.01 4.471409 0.562294 1.875257 4.694101 

0.001 0.05 4.932486 0.376029 1.875256 4.694101 

0.001 0.1 5.512339 0.316201 1.875256 4.694101 

0.001 0.2 6.672594 0.265893 1.875256 4.694101 

0.001 0.3 7.832967 0.240261 1.875256 4.694101 

0.001 0.4 8.993367 0.223588 1.875256 4.694101 

0.001 0.5 10.15378 0.211457 1.875256 4.694101 

0.001 0.6 11.3142 0.202035 1.875256 4.694101 

0.001 0.7 12.47462 0.194397 1.875256 4.694101 

0.001 0.8 13.63504 0.188014 1.875256 4.694101 

0.001 0.9 14.79546 0.182559 1.875256 4.694101 

0.001 1 15.95589 0.177813 1.875256 4.694101 

0.001 2.5 33.36232 0.14141 1.875256 4.694101 

0.001 5 62.37309 0.118911 1.875256 4.694101 

0.001 7.5 91.38389 0.107448 1.875256 4.694101 

0.001 10 120.3947 0.099992 1.875256 4.694101 

0.001 100 1164.785 0.056229 1.875256 4.694101 

0.01 0.0001 4.940796 1.87489 3.162544 4.694213 

0.01 0.0005 4.942672 1.872677 2.11743 4.694192 

0.01 0.001 4.818833 1.771247 1.882501 4.69419 

0.01 0.005 4.493757 1.188034 1.876909 4.694188 

0.01 0.01 4.509148 0.999098 1.876751 4.694188 

0.01 0.05 4.940139 0.668175 1.876644 4.694188 

0.01 0.1 5.516316 0.56187 1.876631 4.694188 

0.01 0.2 6.674741 0.472476 1.876625 4.694188 

0.01 0.3 7.834498 0.426931 1.876623 4.694188 

0.01 0.4 8.994584 0.397304 1.876622 4.694188 

0.01 0.5 10.1548 0.375747 1.876621 4.694188 

0.01 0.6 11.31509 0.359005 1.876621 4.694188 

0.01 0.7 12.47541 0.345433 1.876621 4.694188 

0.01 0.8 13.63575 0.334092 1.87662 4.694188 

0.01 0.9 14.79612 0.324398 1.87662 4.694188 

0.01 1 15.95649 0.315965 1.87662 4.694188 

0.01 2.5 33.36255 0.251277 1.876619 4.694188 

0.01 5 62.37306 0.211298 1.876619 4.694188 

0.01 7.5 91.38368 0.19093 1.876619 4.694188 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

0.01 10 120.3943 0.17768 1.876619 4.694188 

0.01 100 1164.782 0.099917 1.876619 4.694188 

0.1 0.0001 4.940831 1.874914 4.69318 5.624802 

0.1 0.0005 4.944718 1.874106 3.761139 4.695735 

0.1 0.001 4.949399 1.872972 3.164933 4.695309 

0.1 0.005 4.971562 1.852912 2.139529 4.6951 

0.1 0.01 4.883741 1.729368 1.927657 4.695079 

0.1 0.05 5.019191 1.177801 1.892798 4.695062 

0.1 0.1 5.558237 0.991179 1.891328 4.69506 

0.1 0.2 6.698303 0.833766 1.890678 4.695059 

0.1 0.3 7.851951 0.753474 1.890472 4.695059 

0.1 0.4 9.008969 0.701224 1.890372 4.695059 

0.1 0.5 10.16733 0.663198 1.890312 4.695059 

0.1 0.6 11.32637 0.633661 1.890272 4.695059 

0.1 0.7 12.48579 0.609715 1.890244 4.695059 

0.1 0.8 13.64545 0.589704 1.890223 4.695059 

0.1 0.9 14.80527 0.572597 1.890206 4.695059 

0.1 1 15.9652 0.557716 1.890193 4.695059 

0.1 2.5 33.36862 0.443552 1.890123 4.695058 

0.1 5 62.37781 0.372986 1.8901 4.695058 

0.1 7.5 91.38772 0.337032 1.890092 4.695058 

0.1 10 120.3979 0.313644 1.890088 4.695058 

0.1 100 1164.779 0.176376 1.890078 4.695058 

1 0.0001 4.940834 1.874916 4.693598 7.853492 

1 0.0005 4.944798 1.874162 4.691006 4.691006 

1 0.001 4.949741 1.87321 4.685132 5.63714 

1 0.005 4.988812 1.865249 3.765823 4.710472 

1 0.01 5.03645 1.854395 3.188059 4.70629 

1 0.05 5.38122 1.733853 2.281226 4.704209 

1 0.1 5.826954 1.569956 2.118633 4.703997 

1 0.2 6.869668 1.36091 2.055256 4.703895 

1 0.3 7.983736 1.240005 2.038224 4.703861 

1 0.4 9.119869 1.158369 2.030465 4.703844 

1 0.5 10.26537 1.097911 2.026043 2.026043 

1 0.6 11.41568 1.050472 2.02319 4.703828 

1 0.7 12.56879 1.011757 2.021197 4.703823 

1 0.8 13.72367 0.979252 2.019727 4.703819 

1 0.9 14.87974 0.95137 2.018598 4.703816 

1 1 16.03664 0.927049 2.017704 4.703814 

1 2.5 33.42283 0.738976 2.013009 4.703802 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

1 5 62.4251 0.621871 2.011494 4.703798 

1 7.5 91.43198 0.562064 2.010995 4.703797 

1 10 120.4402 0.523124 2.010746 4.703796 

1 100 1164.801 0.294272 2.010077 4.703794 

10 0.0001 4.940834 1.874917 4.69362 7.853942 

10 0.0005 4.944805 1.874167 4.691693 7.849936 

10 0.001 4.949771 1.873231 4.689188 7.842302 

10 0.005 4.989569 1.865783 4.664468 6.717245 

10 0.01 5.039496 1.856572 4.616387 5.747117 

10 0.05 5.445959 1.787147 3.802011 4.851922 

10 0.1 5.969812 1.711244 3.36328 4.817149 

10 0.2 7.054585 1.590672 3.05076 4.804366 

10 0.3 8.168464 1.500225 2.92519 4.800617 

10 0.4 9.297953 1.429603 2.857754 4.798827 

10 0.5 10.43647 1.372476 2.815819 4.797779 

10 0.6 11.58062 1.324944 2.787276 4.797091 

10 0.7 12.72847 1.284506 2.766619 4.796605 

10 0.8 13.87889 1.249489 2.750987 4.796242 

10 0.9 15.03116 1.218726 2.738751 4.795962 

10 1 16.1848 1.191379 2.728915 4.795739 

10 2.5 33.5492 0.966743 2.675184 4.79455 

10 5 62.54149 0.818536 2.657086 4.794159 

10 7.5 91.54402 0.741338 2.651038 4.794029 

10 10 120.5495 0.690691 2.648012 4.793965 

10 100 1164.886 0.389622 2.639834 4.79379 

100 0.0001 4.940834 1.874917 4.693622 7.85397 

100 0.0005 4.944806 1.874168 4.691745 7.850772 

100 0.001 4.949774 1.873233 4.689401 7.846668 

100 0.005 4.98964 1.865833 4.670742 7.80902 

100 0.01 5.039768 1.856766 4.64768 7.747153 

100 0.05 5.450654 1.790782 4.479469 6.870913 

100 0.1 5.982183 1.721639 4.31837 6.32721 

100 0.2 7.079243 1.613902 4.119489 5.981544 

100 0.3 8.200411 1.532585 4.007969 5.859089 

100 0.4 9.334168 1.46809 3.937914 5.79752 

100 0.5 10.47529 1.4151 3.89008 5.760671 

100 0.6 11.62108 1.370406 3.855416 5.736196 

100 0.7 12.77002 1.331943 3.829168 5.718778 

100 0.8 13.92118 1.298312 3.808613 5.705755 

100 0.9 15.07396 1.268522 3.792086 5.695655 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

100 1 16.22796 1.241854 3.778511 5.687593 

100 2.5 33.59304 1.016947 3.699358 5.644405 

100 5 62.58461 0.864164 3.670598 5.630158 

100 7.5 91.58657 0.783665 3.660726 5.625428 

100 10 120.5916 0.730604 3.655736 5.623066 

100 100 1164.922 0.412886 3.642076 5.616702 

1000 0.0001 4.940834 1.874917 4.693622 7.853972 

1000 0.0005 4.944806 1.874168 4.69175 7.85084 

1000 0.001 4.949774 1.873233 4.689422 7.846942 

1000 0.005 4.989648 1.865838 4.671229 7.816475 

1000 0.01 5.039795 1.856785 4.64953 7.780166 

1000 0.05 5.451109 1.791132 4.509785 7.553285 

1000 0.1 5.983379 1.722632 4.392538 7.381221 

1000 0.2 7.081699 1.616151 4.254162 7.205836 

1000 0.3 8.203702 1.535788 4.175835 7.119579 

1000 0.4 9.338008 1.471977 4.125608 7.068809 

1000 0.5 10.4795 1.419477 4.090703 7.035472 

1000 0.6 11.62556 1.375141 4.065051 7.011937 

1000 0.7 12.77469 1.336941 4.04541 6.994446 

1000 0.8 13.926 1.303506 4.029891 6.980942 

1000 0.9 15.07889 1.273864 4.017322 6.970202 

1000 1 16.23298 1.247307 4.006934 6.961458 

1000 2.5 33.59845 1.022628 3.945158 6.911804 

1000 5 62.59006 0.869427 3.922164 6.894296 

1000 7.5 91.592 0.788581 3.914201 6.888349 

1000 10 120.597 0.735256 3.910161 6.885354 

1000 100 1164.926 0.415624 3.899053 6.877198 

10000 0.0001 4.940834 1.874917 4.693622 7.853973 

10000 0.0005 4.944806 1.874168 4.691751 7.850847 

10000 0.001 4.949774 1.873233 4.689424 7.846969 

10000 0.005 4.989648 1.865838 4.671276 7.817091 

10000 0.01 5.039798 1.856787 4.649707 7.782428 

10000 0.05 5.451154 1.791167 4.51243 7.583295 

10000 0.1 5.983498 1.722731 4.398835 7.444772 

10000 0.2 7.081944 1.616375 4.265791 7.308254 

10000 0.3 8.204032 1.536107 4.190705 7.241545 

10000 0.4 9.338394 1.472365 4.142573 7.202176 

10000 0.5 10.47993 1.419916 4.109115 7.176236 

10000 0.6 11.62601 1.375616 4.084518 7.157866 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

10000 0.7 12.77517 1.337444 4.065676 7.14418 

10000 0.8 13.92648 1.304029 4.050784 7.133589 

10000 0.9 15.07939 1.274402 4.038717 7.125152 

10000 1 16.23349 1.247856 4.028742 7.118273 

10000 2.5 33.599 1.023204 3.969354 7.079013 

10000 5 62.59062 0.869962 3.947217 7.065083 

10000 7.5 91.59256 0.789081 3.939545 7.060341 

10000 10 120.5975 0.735729 3.935652 7.057951 

10000 100 1164.927 0.415903 3.924945 7.051433 

100000 0.0001 4.940834 1.874917 4.693622 7.853973 

100000 0.0005 4.944806 1.874168 4.691751 7.850847 

100000 0.001 4.949774 1.873233 4.689424 7.846971 

100000 0.005 4.989648 1.865838 4.671281 7.817152 

100000 0.01 5.039798 1.856787 4.649725 7.782647 

100000 0.05 5.451158 1.79117 4.512691 7.586022 

100000 0.1 5.98351 1.72274 4.399454 7.450435 

100000 0.2 7.081969 1.616397 4.266935 7.317372 

100000 0.3 8.204065 1.536139 4.192169 7.252462 

100000 0.4 9.338433 1.472404 4.144245 7.214169 

100000 0.5 10.47997 1.41996 4.110932 7.18894 

100000 0.6 11.62606 1.375663 4.08644 7.171074 

100000 0.7 12.77521 1.337494 4.067679 7.157762 

100000 0.8 13.92653 1.304081 4.052849 7.147461 

100000 0.9 15.07944 1.274456 4.040833 7.139254 

100000 1 16.23354 1.247911 4.0309 7.132562 

100000 2.5 33.59906 1.023261 3.971754 7.094364 

100000 5 62.59068 0.870016 3.949704 7.080808 

100000 7.5 91.59262 0.789131 3.942063 7.076192 

100000 10 120.5976 0.735777 3.938185 7.073866 

100000 100 1164.927 0.415931 3.927519 7.067521 

1000000 0.0001 4.940834 1.874917 4.693622 7.853973 

1000000 0.0005 4.944806 1.874168 4.691751 7.850847 

1000000 0.001 4.949774 1.873233 4.689424 7.846972 

1000000 0.005 4.989648 1.865838 4.671281 7.817158 

1000000 0.01 5.039798 1.856787 4.649726 7.782669 

1000000 0.05 5.451159 1.791171 4.512717 7.586292 

1000000 0.1 5.983512 1.722741 4.399516 7.450995 

1000000 0.2 7.081971 1.616399 4.267049 7.318273 

1000000 0.3 8.204069 1.536143 4.192315 7.253541 
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Dataset (continued) 

𝑟𝑚 𝑟𝑚 

Resonance 

voltage 𝜆1𝐿 𝜆2𝐿 𝜆3𝐿 

1000000 0.4 9.338437 1.472408 4.144412 7.215354 

1000000 0.5 10.47998 1.419964 4.111113 7.190196 

1000000 0.6 11.62606 1.375668 4.086632 7.17238 

1000000 0.7 12.77522 1.337499 4.067879 7.159105 

1000000 0.8 13.92654 1.304086 4.053055 7.148833 

1000000 0.9 15.07944 1.274461 4.041044 7.140649 

1000000 1 16.23354 1.247917 4.031115 7.133975 

1000000 2.5 33.59906 1.023267 3.971994 7.095884 

1000000 5 62.59068 0.870021 3.949953 7.082365 

1000000 7.5 91.59262 0.789136 3.942314 7.077762 

1000000 10 120.5976 0.735781 3.938438 7.075441 

1000000 100 1164.927 0.415934 3.927776 7.069114 
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